THREE-DIMENSIONAL FLOW CALCULATION BASED ON EQUIVALENCE RULE. (U)

M HAFIZ

NOV 79

NOO14-76-C-0880

NL
Final Technical Report
ONR Contract No \(\text{N00014-76-C-0880} \)

Three-Dimensional Flow Calculation
Based on Equivalence Rule

By

Mohamed Hafez

November 1979

Flow Research Company
A Division of Flow Industries, Inc.
21414 - 68th Avenue South
Kent, Washington 98031
(206) 854-1370

370409 Ym
MATERIAL INSPECTION AND RECEIVING REPORT

1. PROCUREMENT IDENTIFICATION
NO0014-76-C-0880

2. SHIPMENT NO. 88205

3. DATE SHIPPED Nov. 27, '80

4. B/L TCH

5. DISCOUNT TERMS

6. INVOICE NO.

7. PAGE OF 1

8. ACCEPTANCE POINT D

9. PRIME CONTRACTOR
Flow Research Company, a Division of Flow Industries, Inc.
21414 - 68th Avenue South
Kent, Washington 98031

10. ADMINISTERED BY
DCASHA, Seattle
Attn: CAO Terminal

11. SHIPPED FROM (If other than 9) CODE 54801A

12. PAYMENT WILL BE MADE BY
Commander, Defense Contract Administration Services, Region - Los Angeles
11099 South La Cienega Blvd., P.O. Box 45011
Los Angeles, California 90045

13. SHIPPED TO
Scientific Officer, Fluid Dynamics Program
Mathematical & Information Sciences Division
Office of Naval Research
800 North Quincy St., Arlington, VA 22217

14. MARKED FOR
Scientific Officer, Fluid Dynamics Program
Mathematical & Information Sciences Division
Office of Naval Research
800 North Quincy St., Arlington, VA 22217

15. ITEM NO.

16. STOCK/PART NO.

17. DESCRIPTION
Final Report for Contract NO0014-76-C-0880

18. QUANTITY
1

19. UNIT
Sea

20. UNIT PRICE
N/A

21. PROCUREMENT QUALITY ASSURANCE

22. RECEIVER'S USE

23. CONTRACTOR USE ONLY

DTIC ELECTED

REPLACES EDITION OF 1 AUG 87 WHICH MAY BE USED
March 24, 1980
80FI-200-C188

Mr. Morton Cooper
Code 430B (N00014)
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Reference: ONR Contract No. N00014-76-C-0880

Dear Mr. Cooper:

With reference to subject contract and our telephone conversation this morning, I have enclosed the form DD-250 which was to have accompanied our final report submittal last November 1979. My understanding, after talking with you, is that the final report has been technically accepted.

I will be looking forward to receiving a signed copy of the DD-250.

Sincerely,

Mary Chandra
Contract Administrator

MC/vm

Enclosure - as stated

cc: Margaret Stinson - ACO
ONR Branch Office
J. Mercer
Transonic flows around three-dimensional configurations are calculated based on the artificial compressibility method. The transonic nonlinear mixed-type equation is treated as if it were elliptic, and the artificial viscosity is added implicitly through modifying the density. Thus, standard discretization techniques and standard iterative procedures are applicable.

The output of the full three-dimensional code are compared to the results of numerical implementation of two asymptotic theories; transonic equivalence rule and transonic lifting line. While the analytical asymptotic theories are limited to low or high aspect ratio configurations, it is found that the numerical algorithms based on these concepts can be employed efficiently in a wider range than the range where the asymptotic theories are strictly valid.

Equivalence Rule:

It is shown that for wings of small leading edge sweep angle, departure from the Whitcomb-Oswatitsch area rule is significant. For sufficiently large or moderate leading edge sweep angles, however, the agreement is satisfactory. Drag-rise and outer flow field are presented for a number of cases and their equivalent bodies. Nonlinear lift corrections to the classical area rule are examined. There seems to be good agreement between calculated flows around equivalent wing-body combinations with the same wing planform for cases with appreciable lift.

Lifting Line:

Corrected two-dimensional calculations, taking into consideration the three-dimensional upwash and sweep effects, compare favorably with the full three-dimensional calculations except at the root and tip sections of the wing as expected.

To calculate flows around complicated geometries using the above codes, the following procedures are used. In the first case, a sequence of cross flow solutions are computed, plus three-dimensional corrections obtained from flows around equivalent but simple three-dimensional configurations. In the second case, the inner limit of three-dimensional flows around a simple equivalent wing is used as an outer boundary for a sequence of two-dimensional calculations. Thus, the enforcement of body boundary conditions, as well as the grid generation, are relatively easy compared to the full three-dimensional calculations.
A Listing of Technical Reports

 Partial Support of:
