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ABSTRACT

Several versions of data quantizers are considered as detection

nonlinearities in a binary signal detection problem. Randomized and

dithered versions of these quantizers are formulated and the performance

of all proposed systems is compared to that of systems using some well-

known detection nonlinearities. In particular, the robustness of the

quantizer systems in noise with uncertain statistics is compared to

that of the well-known systems via asymptotic relative efficiency.
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1. INTRODUCTION

Robustness, as the term is used here, refers to the ability of a

detection system to perform well despite slight variations in the noise

statistics from those used to design the system. In general, for a set

of given noise statistics, a robust detector will be outperformed by the

optimal detector. For variations in these statistics however, the

optimum detector often performs poorly when compared to a robust

detector. In this thesis we propose some detectors involving randomized

data quantization and dithering and consider their robustness properties

relative to other commonly used systems.

The signal detection model we consider here is a simple binary

hypothesis test between a hypothesis and an alternative given as follows:

Hi: xi = ni + esi

H0: xi = ni

Here, xi is the i-th observation sample, ni is noise with a

I probability density function f(x), si is a known signal and 9 is a signal-

strength parameter.

The detector structure to be considered here is illustrated in Fig. 1.

To reflect uncertainties in the noise statistics, we use a model proposed

by Huber C1] as used by Martin and Schwartz [2] and hereinafter referred

j to as the mixture model:

Let f(x) be the noise probability density; we assume

I f(x) - (l-¢)0(x) + ch(x); where 0_ € <1; (1.1)

I 0(') is the unit normal density;

h(.) is an arbitrary density; and

I is known and is usually small.

L I
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Fig. 1. Detector structure.
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The clearest comparison of the two systems would be through the

power and false alarm rates or the probability of error. This method

quickly becomes intractable for the problem under consideration and

is abandoned in favor of the asymptotic relative efficiency.

The efficacy of a System A of the form of Fig. 1, is defined as

E= im (1.2)
A rn T I l

Li-ln CM nVar[ E s Txi

and the performance of System A compared with a System B also of the form

of Fig. 1 is given by the ratio of their efficacies which, via the Pitman-

Noether Theorem, yields the asymptotic relative efficiency (ARE) (Capon

[33J).
EA

AREA, W - (1.3)
A,B EB

Physically, the ARE represents the savings in samples required by System A

more effective than B, AREAB > 1. If System A is more complicated than B,

then the ARE should be considerably larger than unity to be practically

useful.

A quantizer is a nonlinear operation which maps the real numbers

to the real numbers in the following manner:

I
I
I
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The real line is divided into discrete non-overlapping adjacent

segments. A sample point falling in one of these intervals is mapped

to a discrete point corresponding to that interval. Let tkk - 1,...,m

be the set of endpoints of all the intervals Etk-l,tk) (hereinafter

called "breakpoints"). Then for t i > 0 Yi and t o  0, the positive real
+ m

numbers are formed bym+ - U Ctk l tk). Let the point to which
t"-. k-lm

each interval maps be qk > 0 (the "level") then the action of the quantizer

Q on sample x is Q(xjt k.l _ tk qk"

Although not strictly required, in this paper the condition qk > qk-1;

k - 1,... ,m holds and, in some cases, q0 A 0. Also, with the exception

of the dead-zone detector, qk E [tk, tkl ]. Figure 2 shows a typical

quantizer.

Examples of quantizer detection systems with fewer restrictions are

available, see Poor and Thomas [4,5] or Kassam [6] in particular. In

addition, some work has been done to optimize a quantizer with a given

number of levels by proper breakpoint and level selection according

to some fidelity criterion. See Max [ 7 J or Kassam C 6 ] .

Two ad hoc schemes for modifying quantizers are attempted here -

randomization and dithering. These techniques are inspired by reported

improvement in low-bit digital video by similar methods in two papers,

one by Roberts [ 8 ] and another by Thompson and Sparkes [9].
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Randomization refers to the perturbation from a fixed position
.4

of the quantizer breakpoint. This is achieved in the following manner:

One treats the interval length (tk - tk.l) as a r. idom variable

which takes a value at each sample independently of its value in other

samples. The length of each interval (tk - tk-l) is given the value

of this random variable. Appendix B clarifies this approach and gives

the derivation of the expression for the efficacy of this type of

quantizer-detector (Eq. (B.4)).

Dithering is performed exactly as Roberts performed it with video.

A random variable uniformly distributed between (-t1/2,t 1/2), sample-wise

independent is added to the quantizer input and subtracted from the

output. Figure 3 clari'f.es this process. Appendix C contains a

derivation of the efficacy for this system.

Appendix A is a derivation of the efficacy of a nonrandomized,

nondithered quantizer. A comparison of (A.9), (B.4) and (C.12) will

show that the quantizer output levels have no bearing on system

performance (as we define it here) except in the dithered system.

In the following sections, specific quantizers and modification

methods are described and their performances compared via Eqs. (A.9),

(B.4), (C.12), and (1.3).

l

1

!I
! ~ , --- - .
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Fig. 3. Dithered quantizer.
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2. THE FOJR-LEVEL SYMMETRICAL QUANTIZER

This quantizer is depicted in Fig. 4 and is the simplest quantizer

other than a sign detector type or dead-zone quantizer which is relatively

easy to optimize. Only three breakpoints are present at 0 and ± t. The

four levels are spaced at + q and + 2q.

The efficacy of this quantizer when used in the detector structure

of Fig. 1 is given by

E lim / 1 2 f f(0) + f (t)] 2  (2.1)4Q n 3 7/6 - F(t)n-a -i

Where f(x) and F(x) are the density function and distribution function

respectively, of the noise.

If si is assumed equal to one for all L (the parameter 8 will control

the actual received signal strength), then the efficacy E4Q may be

normalized to the following:

2 rf(0) + f(t)]2  (2.2)
I 4Q 3 7/6 - F(t)

The optimum breakpoint topt can be found by maximizing 14 over t.
opt 4Q

This leads to the following necessary condition on topt:

optopt

2 Ttopt 6 - F(t)opt] + f(O) + f(to) - 0 (2.3)

where f'(tt) f(x)l
X-topt

I
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If f(x) , exp(-x /2T ) (), Eq. (2.3) is a transcendental

equation not directly solvable for top t* Computer results were used

however to produce the estimate t a t for this case.

Randomization of this quantizer is achieved by making t a random

variable with a one sided density over [0,-) called g(x) and

corresponding distribution function G(x). Then the efficacy is given by

(2.4), a special case of (B.4).

211 ) + I Df(t)dG(t)2
2 R 0 (2.4)

7/6 - F(t)dG(t)

We consider in particular the case where g(x) is a Rayleigh

function with parameter a > 0:

(x) - (x/) 2)exp(-x /2 2 )

With f(x) again a Gaussian function, IR., becomes

(o 2a2 22(

R4Q rr a 2 4(a 2 +a2)2 _ 3a( 2 +a2)3/2] (2.5)

This can be maximized over a to find o

= opt a , K Z .4063367
opt

This yields 'fR4QtI - .7807002/a 2

i .op
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The performances of the two quantizers were compared using the

mixture model of (1.1) with h(x) a Gaussian density with variance a2. The

results of this comparison are shown graphically in Fig. 5. It is seen

that for large contamination the randomized quantizer performs only

slightly better. The trend for small values of a seems to indicate a

large performance improvement but the small range over which this occurs

may not compensate for the extra complexity of the system necessary to

achieve this improvement.

It is worth noting again that the actual level value, q, does not

appear in the efficacy expression. The output of the quantizer indicates

into which interval the received sample falls. This information alone is

all that is necessary to make a decision between H0 and HI, therefore

the actual value of the level is arbitrary.

J1I
I

~1



c1

.4.4

o W,

C4 F4 0% Go t fn



12

3. THE DEAD-ZONE QUANTIZER

The dead-zone or null-zone quantizer, as taken here, is a three

level symmetrical quantizer with output levels 0, + q and breakpoints

+ t. This type of detector was studied in a different context by Kassam

and Thomas [10]. Their use of it is different enough, however, that the

results are not comparable with those given here. Figure 6 illustrates

the dead-zone quantizer.

The efficacy of this quantizer is given by (3.1) for a symmetrical

noise density function f(x).

- 2f2(t) (3.1)DZ 1 - F(t)(31

An optimum breakpoint t can be found for a given density f byopt

maximizing 1Z over t. If f is Gaussian with variance a , then t - .

Randomization is achieved here by letting the breakpoint t be a

random variable with some distribution G(x) (and corr-sponding density

g(x)). The efficacy of the randomized dead-zone quantizer then becomes:

2[,f f(t)dG(t)] 2

0
6Z" 0 (3.2)

Three possible density functions were examined, each with a single

parameter which could be adjusted to maximize (3.2). These are listed

below

1. Single-Sided Exponential

g(x) - Y expC-Yx] .u(x) (3.3)
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Fig. 6. Dead-zone quantizer.
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2. Rayleigh

g(x) ( x/ 2)exp -X2 /(2) 2 'u(x) (3.4)

3. Triangular

x/r 2 0< x< r

g(x) - x/r2 + 2/r r < x:5 2r (3.5)

0 elsewhere

Since the nominal noise in the mixture model of (1.1) used throughout v
this paper is unit variance Gaussian noise, the three parameters were each

2
optimized for f(x) a Gaussian with variance 

a 2

Under these conditions then, the following results are achieved:

Yopt - 4M

a optW/2 (3.6)
op tr -o0
opt

Clearly y opt and ropt lead to degenerate forms in (3.3) and (3.5). 1
An arbitrary value of y was used to get some results but the use of the

triangular density was abandoned at this point. Performance measurements

are based upon an exponential contamination noise, that is, in reference

to the previously described mixture model, we have

h(x)'- (/2)exp[-B]xJ, B > 0. (3.7)

Figure 7 shows the performance of the nonrandomized dead-zone

quantizer compared with that of the 4-level quantizer described above.

Three values of e (.1, .2 and .3) are used and indicate the trend of the 3
ARE for this case. The dead-zone quantizer performs only slightly better

for c > .2 and only in a narrow range of 8.

r
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The small amount of improvement and the narrow region over which it

occurs are reasons enough to exclude the dead-zone quantizer as a

replacement for the 4-level quantizer. Coupled with these reasons is

the question of the validity of the mixture model as a representation of

uncertainty in the noise model when e becomes large. The mixture model

here is meant to represent noise that is primarily Gaussian. The detector

structure is designed with this assumption and its performance monitored as

the noise deviates from unit variance Gaussian, the amount of deviation

baing represented by e and the "direction" of deviation depending upon the

function used for h(x). Thus if e is large (e > .5 is probably a liberal

definition of large) one would do better to abandon the mixture model and

examine some othe-'. technique for detector design.

Does randomization improve the performance? Figure 8 shows the ARE

of the exponentially randomized dead-zone (RDZE) compared with the

nonrandomized version. The value used for y is y - I/ . This is an

arbitrary value and the results are not good. Since y - + maximizes

(3.2), these results are not unexpected.

Figure 9 shows the change in performance from using a Rayleigh

distributed breakpoint. Once again, the improvement is slight and

occurs only for small 0 and large e.

Dithering also provides a possible modification of the dead-zone

quantizer. This process again is best summarized by Fig. 3. in the

application of dithering to this case the random variable di (hereafter

called the dither signal) is given a uniform distribution in the interval

[-c,c] where c is a positive constant. Two cases are considered here:

1) c - t, 2) c - t/2. I
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Letting G(x) and g(x) be the distribution and density respectively

of the dither signal we have the following expressions for the efficacy

(3.8) and the normalized efficacy (3.10) of the dithered dead-zone

quantizer.

(qE s 2) 2[ff(di+c)+f(di-c))dG(di)] 2

Slim 
i -0

n-n q2ES2 1-f WF(d.c).F(d-c))dG(d )]-2q 2s~. (f(di+c)+f(d -c))dG(di)]
-. B -em

i

- L il.-j [F(d +c)+F(d -c))dG(d) 2 + s2 Var d] )  (3.8)

where all summations are over i from 1 to n.

Under the assumption that di and the noise are sample-wise independent

we make the following assumption:

lim n( )2 0 (3.9)
n-e (Z si)

ii

Under (3.9) then, the next to last term in the denominator of (3.8)

becomes zero in the limit. Since this term is subtracted, and the term

itself is positive, the denominator value will only be increased and at

worst, the normalized efficacy will be lower than if the term were

maintained. Thus, %DZ represents a worst case efficacy in those cases

where (3.9) does not strictly hold.

fC f(d.Ic-)+f(d-c)dGd)] 2

'DDZ Z a 2 (3.10)2
1-f (d+c)-F(d-c)]dG(d) - - +f(d+c)+f(d-c)]dG(d) + c.

- -3q

This assumption would be true, for example if si = (-l) ; i 1 1,2,... ,n.
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Note that dithering has increased the complexity of the efficacy

expression and has brought the level value q into play. We may now find

a qopt which maximizes the denominator of (3.10).

Using a Gaussian distribution for F(x), qopt was found for Cases

1 and 2:

Case 1: c - t, qopt = 2c 2a - a §( 2c 1 (3.11)

Case 2: c - t/2

q c2M +4 2 2 i)]+ 2L x(c2 )ep9 2+opa"r-c - -9c2

opt or :Cc +a 2 2TT 8a 28ar

(3.12)

The fact that q enters into these calculations at all is directly

attributed to the dithering process, therefore one should not be surprised

that different densities for the dither signal alter the nature of q opt*

In Case 1, it is only necessary for the received signal to vary from 0

for the dither signal to affect the quantizer output whereas in Case 2,

the input may be anywhere inside the interval [-t/2,t/2] before the

dither comes into play.

The actual derivation of Eqs. (3.11) and (3.12) is tedious but

straightforward and will not be repeated here.

A check of the efficacy values for Case 1 and Case 2 using only

Gaussian noise (no mixture model) for various values of a showed that

Case 1 was uniformly better. The dead-zone quantizer itself was optimized

with t a a. Table 1 summarizes the results for a few values of a.
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TABLE 1

Efficacy of Dithered Dead-Zone Quantizer

a Case 1 Case 2

.5 2.56 .30

1.0 .73 .09

1.5 .28 .04

2.0 .12 .02

2.5 .05 .02

Based on these results Case 2 was abandoned in favor of Case 1.

Henceforth all references to the dithered dead-zone quantizer will imply

the use of the Case 1 density for the dither signal.

Results were also obtained for values of t other than t = a and

showed that the efficacy is generally better for a value of t slightly

less than a. For this reason, results obtained with the mixture model

use t = .9.

Both the Gaussian mixture model (h(x) - N(0,a 2)) and the exponential

mixture model (h(x) as in Eq. (3.7)) were used to evaluate the dithered

dead-zone quantizer. Figures 10 through 16 summarize the results .

In addition to the comparison with the nondithered, nonrandomized dead-

zone, Figs. 12, 15 and 16 show the comparison to the sign detector.

These curves serve to relate the performance of the system to a well-known

robust detector. Equation (3.13) gives the efficacy of the sign detector.

ISD - 4 f2(0) (3.13)

1i

. . .- - .' , .--L. - . . .. ... .. . ..
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1.4 - RDDZDZ I
1.3 -1 i
1.2 L
1.1 2J

1.0
4

.93

.8 f(x) -(1-e)N(0,1) N(0,0 2)

1: a -. 5

.72: a- .6

.6 3: a 1.0

4: a -1.5
.5

.4

.3

.2

.1

I0
0 .1 .2 .3 .4 .5 .6 .7

C

Fig. 10. Dithered dead-zone compared with dead-zone quantizer.
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AREDDZ, SD
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2.4

2.3 2
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2.1 - 4
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1.9 -1
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1.7 -
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1.5 1

f(x) (1-c)N(0,1) + cN(o,a 2 ) Ii
1: a .5

2: a 1.0

3: a 1.5

4: a 2.0

5: a 2.5

0 .1 .2 .3 .4 .5 .6 .7

Fig. 12. Dithered dead-zone compared with sign detector.
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2.0 -ARE DDZDZ

19-f(x) -(1-C)N(0,1) + e(0/2)exp[-OIxfl P -3.0

1.8

1.7

1.6
p-2.5

1.5

1.4

1.3 - 2.0

1.2

1.1

1.0- 
.

.91.

.8
~ 1.0

.6

.5

.4

.3-

.2

.1-.

pis. 13. Dithered dead-zone compared with dead-zone quantizer.
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2. 0 - RDDZ,DZL
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0 1 2 3

Fig. 14. Dithered dead-zone compared with dead-zone quantizer.
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V_ Fig. 15. Dithered dead-zone compared with sign detector.
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Comparing Figs. 10 and 13 or Figs. 11 and 14, improvement with

dithering is obtained for small values of a and large values of 8.

(Note that these refer to two different mixture models.) Both of these

cases represent densities h(x) which are becoming more sharply peaked at 0.

That is, as a decreases in the Gaussian mixture model, and as B increases

in the exponential mixture model, h(x) becomes more sharply peaked at 0.

This improvement is clearly much greater for the exponential contamination

however and extends for all > 1.5. The improvement for Gaussian

contamination is not only less marked but exists only for a < 1 and

larger values of e which again brings to mind the question of the

validity of the results as a basis for detector design.

Comparison of Figs. 12 and 15 or 16 show that, under Gaussian

contamination, the dithered system performs considerably better than a

sign detector over a wide range of both a and e, whereas under exponential

contamination the dithered is worse by far except for very small e. Even

for this small e the AREDDZ,SD - 1.2 which is not a significant improvement

if one considers the additional complexity of the dithered system.

In summary, dithering seemi to produce unpredictable results.

Performance with sharply peaked contamination densities is improved

but that improvement is sensitive to the density function and may not

be significant when the dithered dead-zone is compared to some other

detection system (e.g., the sign detector).

kL A

I
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In an attempt to make the performance of the dithered dead-zone

less sensitive to the contamination density, a sign nonlinearity can be

placed in line following the correlator. For brevity, this new

detector is referred to as the dithered sign detector although it is not

really a dithered version of the sign detector. Figure 17 will clarify

the structure of this system.

Keeping all notation from the preceding discussion of the dead-zone

quantizer, we have the efficacy of the dithered sign detector:

T JSD ff(t-d) + f(-t-d)]dG(d)] 2  (3.14)
-a

In order to compare this with the previous system all parameters of

the dead-zone quantizer are maintained. That is, G(d) represents a

uniform distribution over [-t,t], t - .9 and q is given by (3.11).

The results of comparing the dithered sign detector to both the dead-

zone quantizer and the sign detector in Gaussian and exponential

contaminated noise are presented in Figs. 18 through 21. These graphs

show almost uniform degradation in performance. The only improvement

appears in the comparison to the sign detector in Fig. 21. It appears

here that, for decreasing 0 and for e > .4, the ARDSDSD increases

drastically. The importance of this result is once again undermined by

the large value and narrow range of e over which this occurs.

AI
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Fig. 18. Dithered sign detector compared with dead-zone quantizer.
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Fig. 19. Dithered sign detector compared with sign detector.
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Fig. 21. Dithered sign detector compared with sign detector.
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It appears from these results that a dithered dead-zone quantizer L.

may be useful in comparison with an ordinary dead-zone quantizer for

severe contamination of Gaussian noise with exponentially peaked noise

densities. This appears to be restrictive in the light of the reason for

proposing the dithered system - namely to improve robustness. If

robustness indicates relative insensitivity to changes in the noise it 1.
seems wasteful to use a system of increased complexity to gain only

moderate performance improvement over a restricted range of noise

contamination.

U
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4. THE 2m-LEVEL QUANTIZER AS AN APPROXIMATION TO THE LIMITER CORRELATOR

Our last investigation of a quantizer-detection scheme is possibly

the most general. Here we compare a quantizer with 2m levels (m is an

integer) with the limiter-correlator as proposed by Martin and Schwartz

[2 ]. The motivation here is that the quantizer (which is uniform and

symmetrical) appears as a discrete approximation to the limiter correlator

and represents the approximation which would be achieved by a digital

computer implementation of the detector.

First we will reiterate the development of the limiter-correlator as

in Martin and Schwartz. The problem is one of deciding between a hypo-

thesis and alternative H0 and H as described in the Introduction. The

noise density f(.) is assumed to belong to the family of densities

, - (f(x)If(x) - (l-c)cp(x)+Ch(x):h(.) EX, 0 < e < 1) (4.1)

where tp(x) denotes the unit variance Gaussian density with zero mean, X

is the class of all symmetric density functions satisfying the following

regularity condition:

Regularity Condition: Let I(G) = fL(x)h(x-9)dx where A(-) is a

bounded function and h(-) EX. Then 1(e) has one continuous derivative

given by

I' (8) = fL(x) (Bh(x-8)/B6)dx

Since cp(x) satisfies this condition as well as h(x), then ; also

satisfies the regularity condition.

Note that the other mixture models used throughout this thesis

2(with h(x) - N(0,a 2 ) and h(x) - (0/2)exp[-0IxI]) also meet this condition.
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Let S denote the set of all randomized test functions 0 = 0(X)

where X - (x,...,xN) is the set of N observations. That is, O(X)

represents the probability of choosing H1 as true given that the

observation is X.

The power function 0 (elf) of 0 E& is the probability of choosing

H1 given that H1 is true using the randomized test function 0. This is

given by

0 (eJ f) - Ee [(X)=f] f E (4.2)

The false-alarm probability is

a - (Olf) (4.3)

The problem is to find a locally most powerful test and a least-favorable

density I such that the following conditions for the power are true:

0 (01 f ) %_B (017 ) (4.4)

si (01 f ) B(011) (4.5)

where j(O.) (d/de)P(eL')leff0

If is indeed the locally most powerful test for f, then and f form a

saddle-point solution in terms of local power with constrained false alarm

probability and (4.6) and (4.7) below are satisfied.

inf ((Olf) '(Oil) = sup 0(OI) (4.6)
f E; OE&

- (O f) < (Olf) - (4.7)

Now f and must be specified for each C such that (4.6) and (4.7) hold

asymptotically over a restricted range of 2 bounded away from zero and

dependent on e.

p', ,
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The least-favorable density f is given by

f(x) - (1-c) 4 exp[-g(x)]

x2/2 lxI < K
g(x)xj - K2 Ix[ ! K (4.8)

or, since f(x) - (l-6)CP(x) + ch(x)

o (4.9)

2 -) 2 2 2(2Tr2 ) (1-e) [exp(-Klxl+K2/2)-exp(-x /2)] jxj > K

In addition, if h(x) is to be a valid density function (i.e. if

h(x)dx - 1), then K satisfies

K
cq(x)dx + 2(cP(K)/K) - (1-9) "  (4.10)

-K

Now for a noise density given by f, the density for an observation, xi,
given H is true, is

fe(xi) = f(xi " esi) (4.11)

According to the generalized Neyman-Pearson Lemma [15] then, the locally

most powerful test of size F is given by

1 TN(X) > c
(X) = a TN(X) = c( .2
S0 TN(X) - c(4.12)

where 0 < a < 1
N

and TN(X) mE sil(xi; -K,K) (4.13)

i7"!
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Here, A(y;A,B) indicates a soft limiter characteristic given by (4.14)

below

F B y tb

A(y;A,B) y A < y < B (4.14)

A y<A

This characteristic can be derived from the derivative of the probability

ratio test using !(x) above, i.e. the expression of (4.12) is equivalent to

n f(xi-esi) ]I -z' (4.15)
i=l f(x i ) e=0

where T is a threshold chosen to achieve a desired probability of false

alarm Zi. Constant terms are includes as a new threshold c.

The resulting detector structure has been dubbed the limiter-correlator

and is illustrated in Fig. 22. Note that the limiter is symmetrical and

that large e increases the limiting action (i.e., reduces K).

To conclude the description of the correlator-limiter we include

Theorem 2 of [2].

Define

Ym = (A + cK2)/A (4.16)

where A (1-), 2(x)dx + 2K(-K) (4.17)

-K

Since K is a function of e, Ym is also, therefore Ym Y (e) and a is then

also a function of e given in terms of Y :m

oe(¢) = 1-¢([210o /y 2 - 1)1 ) (4.18)
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or

Fig. 22. Limiter-correlator detector.

.
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Theorem Let f be the least favorable density (29) and N the corre-

sponding locally most powerful test given by (33) and (34). If & > f(c),

0 < € < 1, then asymptotically

info, (Ojf) 03 (01f) - sup (01f)
fE ON N E 3

and

03 (01jf) (011) at

A comparison of the limiter characteristic of Fig. 22 and the typical

quantizer of Fig. 2 reveals the similarities between the two. If qm = K,

then the quantizer may be considered a discrete approximation to the limiter

characteristic. As the number of quantizer steps grows, i.e. as m is

increased, and as long as qm = K, the steps become finer and the quantizer

becomes a closer approximation to the limiter. From experience with the

quantization of analog signals in the ordinary A/D, D/A case of signal

processing, one expects more steps to create an improvement in performance,

upper bounded by the performance of the continuous (or piecewise-continuous)

system to which the quantizer is an approximation.

In standard data quantization, the comparison between a system function

and its quantized version is mean-squared-error [7 ], absolute-mean-error [I],

or some more general error criterion [ 12,13]. These methods do not always lead

to the best solution when one considers a quantizer in a binary decision

system, however, and some other criteria may give better results, e.g.

distance measures [14].

To reiterate then, the best detection quantizer may not be merely the

least-mean-square-error approximation to the analog optimum systems. In

JKp
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light of this fact, the following questions can be asked concerning the

performance of the 2m-level uniform quantizer as an approximation to the

limiter-correlator:

1. What is the ARE of the quantizer compared to the

limiter (AREQ,LC )?

2. How does randomization affect the ARE ?Q,LC"

3. How does dithering affect the ARE LC

Implicit in theses queries is the effect of m on the ARE Q,LC.

Why, if this quantizer may be suboptimal as a detector are we worried

about its performance compared to the analog system? First of all, signal

processing of any complexity is quite likely to be carried out digitally,

implying a quantization of data. Secondly this quantization is likely

initially to be of the uniform, 2m-level type since this is the nature of

most commercially available A/D converters. Thus the need for a nonuniform

quantizer might overly complicate a system for little gain in terms of detector

performance. Thus the answers to the three questions above could well

indicate the economy of constructing a more complicated quantizer.

The efficacy of the limiter-correlator is given by

[f (n)dn] 2

nLC "K -K K2(4.19)
'~C 2K2 I 1 f(n)dn +fjn f(n)dn (.9

.4M -K

and that of the 2m-level uniform quantizer by (see Appendix A):

m-1 2
2[ 1: (2k-1)(f((k-l)t) - f(kt)] + (2m-l)f((m-l)t)]

k -1 (4.20)
IQ in-i 

2 
F~

E (2k-l)2 F(kt) -F((k-l)t)) + (2m-l)2(l-F((k-l)t))
k-i

1
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If qm a K, then t K/(m-1/2) to maintain the similarity between the

two detectors.

The results here are multidimensional. ARE's are calculated andL

plotted for both the Gaussian contaminated and the exponential contami-

nated noise with m = 3,4 and 5. In addition this is carried out for the

least-favorable noise density. All of these results use e and K as

parameters to form a set of four curves for each m in each noise case.

Plotting the ARE as a function of e was not feasible due to the compli-

cated relationship between e and K as evidenced by (4.10). The four paired

values of e and K are listed in Table 2 below.

Table 2

S .01 .02 - .o5 .1o

Figures 23 through 25 show the quantizer performance in the Gaussian

contaminated noise. Surprisingly ARE " I for all cases considered.
QLC

Two trends are clearly evident: the quantizer performance improves over

the limiter-correlator for more severe mixtures (e increasing), and as m

increases, the quantizer perfcrmance decreases. Also, at first glance,

one would expect the performance for all mixtures to be equal at a - 1,

however, it must be remembered that K changes with e so that even though

m remains the same,, the quantizers are not equivalent (nor are the limiters)

for different C. The improvement obtained here is significant and is quite

probably worth the implementation of a quantizer.

- - -
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The next question is how does randomization affect the ARE? In this

case the intervals [tk-l,tk) are treated as random variables all with

identical uniform densities. To be more precise, we define u to be the

length of the interval [tk.l tk), a constant for all values of k: u tktk~l -

We then make u a random variable with a uniform density function over (O,c).

The effect is a quantizer which collapses and expands as u takes on smaller

and larger values respectively. Note the level values q are not changed.

If u = 0, we have a sign detector with output levels + qm" If u = c, the

output levels consist of the set ('qm,....-qlx0'ql '....qm) with breakpoints

tk = kc.

For these results, c = 2t where t is the first breakpoint of the

corresponding non-randomized quantizer, i.e. c = 2K/(m-l/2).

Given the above density function for u we have an expression for the

efficacy of the randomized 2m-level quantizer given by (see Appendix B).

2 m-1 c c 2L
c E (2k-l) I (f((k-l)x)- f(kx))dx+ (2m-l) I f((m-l)x)dx]

RQ Ckl c o (4.21)

= (2k-1) [F(kx) -F((k-l)x))dx+(2m-1) 21 [l-F((m-l)x)ldx
k-1 0 0

Figures 26, 27, and 28 illustrate the performance for m - 3,4 and 5

respectively. Obviously randomizing the interval is not a technique H
useful for improving performance in this case. once again we notice a

tendency for the ARE RQLC to improve for small a indicating some improvement

by randomizing for peaked contamination noise. However for this to compete

with the nonrandomized quantizer, a must be very small.

11
II
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Figures 29, 30, and 31 are the performance curves of the non-

randomized quantizer for m - 3,4,5 in exponential contaminated noise.

Figures 32, 33, and 34 are the corresponding curves for the randomized

quantizer. The observations here are much the same as for the Gaussian

contamination case - the quantizer performance is markedly better than the

limiter and randomization ruins this performance. In this case, randomization

produces uniformly worse results with no promise of an increase in ARERQLC

for any 0 or e.

Randomization produces such terrible results that one would be led to

expect a similar degradation with dithering.

In calculating the efficacy of the dithered system, the variance given

H0 must be found. This is given by

•n t2

Var[TN , )I H0  iul s 2[iVar[(ni+d )i ] + - 2E d'Q(ni+di H 0 (4.22)

where ni a noise samples

di - either signal samples

Q(x) - output of quantizer with input x

(Note: Appendix C contains a general solution for this term).

Here di has a uniform density function over (-t/2, t/2).

The last term in (4.22) is the correlation between di and the quantizer

output. The effect of di is to cause Q(ni + di) to change by only a single I
step value up or down from what Q(ni would be, if d. causes a change at

all. Thus, although di and Q(ni + di) are not independent or uncorrelated,

we can see that the correlation is small and positive. Since the calculation

of this term becomes very complicated we will take it to be zero. This
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establishes a lower bound on the efficacy of the dithered quantizer

since inclusion of the term can only increase the value of %Q.

Under this assumption the efficacy of the dithered quantizer is

given by M

2 E (2k-l)(2F((k -- )t) - F((k -2)t) -F((k+
1m kt t2 (4.23)

t Z (2k-1)[ S F(z4 2-F(z .- )dz +

kl (k-l)t 12

where zi = ni + di .  Note that once again, dithering brings the output

level q into play.

Figure 35 shows the best AREDQ,LC curve obtained with the exponential

contaminated noise. It appears that no advantage is gained by dithering

here. As e increases, so does the ARE, but again the values at which any

performance gain appears are too large for a valid noise model.

As a final check of the validity of the results for the 2m-level

quantizer we examine the AREQLC when the noise density is given by (4.8),

the least favorable density. Since the limiter-correlator is the optimum

detector for this case, we expect AREQ,LC < I for all 6. The values

obtained are sunarized in Table 3.

Table 3

ARQ,LC

e m=3 m-4 m=5

.01 .952 .975 .985

.02 .962 .980 .988

.05 .975 .987 .992

.10 .983 .991 .995

.- - -: ,:. ' . - - . .
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I
This reinforces the optimality of the limiter correlator for the

I least-favorable density as well as verifying the validity of previous

results since the same general equations for efficacy were used throughout

this section. Also we see that, as the number of steps increases, the

performance of the quantizer approaches that of the limiter-correlator.

The performance also increases with increasing € which is consistent

with earlier findings. Thus it appears that in cases where the limiter-

correlator is optimal, our intuition is correct in assuming that increasing

the number of steps will improve the effectiveness of a quantizer used to

replace the limiter.

The answers to the three questions posed earlier can now be stated.

A quantizer may be used to some advantage in place of the limiter. Problems

arise however in trying to design the quantizer. If the noise is close to

the least favorable noise in some sense, we would do well to provide as

many steps as possible to approach the performance of the limiter as closely

as possible. If on the other hand, the noise is quite different (e.g.

I Gaussian or exponential contamination) then the quantizer should have

relatively few steps and we can expect greatly improved performance. In

either case, of course, there is also the problem of choosing an adequate

mixture model.

As far as randomization and dithering go, it appears that both lead

to either uniformly poor results or results which are beneficial under such

1narrow conditions that the question of robustness is moot.

The best that can be done then, is to choose a noise model (for the

jmixture model) and to determine for each choice whether or not the quantizer

replacement for the limiter is practical. There does not appear to be any

Irule of thumb concerning this choice.
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5. SUMMARY

We have examined quantizers in three different forms: the four-level

symmetrical uniform quantizer, the three-level or dead-zone quantizer

and the more general 2m-level symmetrical uniform quantizer. For all

three types the performance of the quantizer as a signal processor in a

binary hypothesis testing scheme was compared with several more widely

used detector nonlinearities known for their performance stability with

respect to slight noise changes.

The object of these calculations was to observe how, if at all, the

quantizers performed in terms of this stability, called robustness. A

contaminated noise mixture and the asymptotic relative efficiency (ARE)

were used to measure this robustness relative to that of the afore-

mentioned well known nonlinearities (the sign detector and the limiter-

correlator).

In addition, two techniques of randomizing the quantizer breakpoints

as well as a more general technique of randomization called dithering

were introduced and defined. These techniques were applied to all three

of the above quantizers and their effects upon the ARE were observed.

The results of these calculations were presented in either graphs

or tables.
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I
6. CONCLUSION

JIt is difficult to draw any general conclusions from these results.

-It appears that the decision on whether or not to use a quantizer must

be based on an analysis of the problem at hand. The regions where good

performance is achieved are usually quite narrow and this reflects a neces-

sarily more detailed knowledge of the noise than may be available when one is

* concerned with robust systems. At the other extreme, good performance

is frequently achieved for very high values of e, at which point non-

parametric systems might be better applied.

The possible exception to this general trend is the nonrandom quantizer

as a replacement for the limiter in a limiter-correlator detector. Here

it appears that there may be a large class of mixture models where a low

level number quantizer easily outperforms the limiter. Again it is

necessary to consider each model separately since no rule of thumb is

obvious..1.

Finally, the one uniform result of this work has been that neither

Lrandomization nor dithering significantly improves the efficacy of any of

-* these quantizers. In fact, the performance is usually far worse. As was

stated in thc Introduction, the motivation for testing these techniques

was the success found in applying similar methods to picture processing.

The difference is in the way that the output is produced. The decision system

must of course produce a hard decision - H0 or H1 - and its performance is

measurable in hard numbers - probability of error, false alarm rate, etc.

A video signal on the other hand produces an output which is further

processed by the human mind and is subject to many psychological and

physical effects.

£
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The difference between the two processes seem great enough to state

that no real comparison is possible, at least without an accurate model

of the human visual process.

In short then, as far as this work has shown, we may conclude that the

techniques of randomization and dithering appear to offer little in the

way of improving quantized decision systems.
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APPENDIX A

Derivation of the Expression of the Efficacy of a Quantizer

The following development applies to the use of a quantizer as

illustrated in Fig. 2 in a detection system similar to Fig. 1.

The system produces the statistic T(xi) given below:

T(xi) a Q(xi) (A.l)

where

Q(xi= qk xiE [tkltk) (A.2)

From (1.2) we then obtain the general expression for the efficacy

S(JE[ s. sQ(x ~ e ] ) 2

EQ lira nE111M (A.3)Q n
n-,-m n Var[ siQ(xi)Ho ]

As in the preceding work we will let f(x) and F(x) represent the proba-

bility density function and distribution function respectively. Assume

that f(-x) = f(x), (i.e. f(x) is an even function).

We will now use (A.2) and evaluate the numerator of (A.3)

Since the received signal has sample-wise independent values:

n n n
E.[ E. siQ(xi)l~ l l - E qiE[Q(xi )IH] 11 -E si E[Q(ni +9si) ]

Eli-l 1  a a=

n m
- s E ) [qk[F(tk'9Si) F(tk 1 esi)3 "q(F(-tk s F(-tkesi) ]
imI kinl

where t m -+ tm 6

I
!
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Now
n

(BE[ .. ,siQ(xi)IH 1 ]/~8)i

n m
r ls i . EZsi [-q k f(t k-es i)-f(t k-1-88d)]

i-i k-I

n n

Var[ E siQ(xi)H0] Var[ E siQ(n d]
jul i-i

Again using sample-wise independence and noting that E[Q(ni)] - 0 we have:

n n 2 2Var[ E siQ(nid] " [ nd A5
il1 iml

Now

n 2 2 2 lm 2 2
E sE(Q (ni E s 2 E F(tk)-F(tk-) + q (F(-t )-F(-tk)]
i-i ili k-i

and noting F(-x) - l-F(x)

n n 2 2
Va[ siQ(xi)j] - 2 si qk [F(t) F(tk- 01 (A.6)

il i k=

Using (A.4) and (A.6) in (A.3) yields the efficacy.
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4( E s i )  ( qk[f(tk 1 ) -f (tk 2

E -im k-i fk) (A.7)"n-Ow2
2n E s i  E qk[F(tk) - F(tk1)]

i-i k-i

If we again let si = 1 and take the limit, we obtain the expression for

the normalized efficacy.
m2

2[ E qk[f(tk_) - f(tk)] 2

2k- (A.8)

E q2[F(tk) - F(tk-1)]
k-l

where t -.m

If we assume the quantizer is uniform such that q-k (2k-l)ql - (2k-l)q

and tk -kt then

2( E (2k-1)lf((k-1)t) - f(kt)])
2

k-i (A.9)T = m 2F ( -~ )
E (2k-1) [F(kt) - F((k-1)t)]
k-i

i

I
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APPENDIX B

Derivation of the Expression of the Efficacy of a Randomized

Breakpoint Quantizer

Here we will develop an expression similar to (A.8) for the quantizer

of Fig. 2 where the breakpoints are a function of a random variable with

some probability density g(x) and distribution G(x).

Specifically, we consider all breakpoints tk, k= l,...,m, to be

functions of asingle variable t such that tk = Ckt where (ck, k= ,...,m]

is a set of m positive constants. For the uniform quantizer, ck k and

t = t 1 . Since the results of this paper concern only the uniform quantizer,

we consider only this case in our development here.

Proceeding as in Appendix A, using (1.2), (A.1) and (A.2) we can

derive an expression similar to (A.3).

n

((b E EE s Q(xi )IHltldG()

E = lim i n (B.1)
n-0 nf Var[ a siQ(xi ) jH0,tldG(t)

Assuming the necessary conditions, we take the derivative operation inside

the integral and proceed as in Appendix A to arrive at the expression for

the efficacy

n M
4( E s2) 2 C t k Cf((k-l)t) - f(kt)]dG(t)]

2

ERQ = lom n 2m 2(.)
n- 2n E s i E qk f [F(kt) - F((k-l)t)]dG(t)

i-l k=l -0F

where f(mt) 0, F(mt) 1.

Note that the sample-wise independence of the random breakpoints has been
incorporated implicitly in (B.1).



69

I
The normalized expression is then given by

m

2 qk S [f((k-l)t) - f(kt)]dG(t)3 2

k-1 "CD (B.3)-RQ 2C

r q k [F(kt) - F((k-l)t)]dG(t)
k-l

Furthermore, since we are referring to the uniform quantizer, qk " (2k-l)ql

- (2k-l)q. Using this in (B.3) we get a final, normalized expression for

the efficacy in which the output level q does not appear

4m

2( E. (2k-1) " [f((k-i)t) - f(kt)]dG(t)] 2
kinl -,
kRQ (B.4)

I (2k-1)2 f[F(kt) - F((k-l)t)]dG(t)
k-1 -*

,1.

mL

[

I..
-- .
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APPENDIX C

Derivation of the Expression for the Efficacy of a Dithered Quantizer

Herein we consider the dithered quantizer as illustrated by Fig. 3.

The dither signal d. is considere to be a random variable, the value of

which is independent from sample to sample. The probability density and

distribution functions are given by g(x) and G(x) respectively.

The test statistic is given by

T(xi) Q(xi + di) - di (C.1)

where Q(.) is described by (A.2).

We will consider only the case of uniform quantization so that

qk - (2k-l)q and tk f kt, t 0 s 0. Then (1.2) becomes
n

(E[ . si(Q(xi+d )- di)JH1]/bo)i 2

EDQ lim n (C.2)
Q n Varn E si(Q(xi+d)-di)[H0

iml

Following Appendix A, we consider first the numerator of (C.2)

n n
E[ E si(Q(xi+di) -di)JH l ] siE[Q(ni+d +esi) -di]

i-l il

In all cases considered here, E[di] - 0, therefore we have under this

assumpt ion

n n
Ef E si(Q(xi+di)-d d 1]=E siE[Q(ni+d +0s,) (C.3)
il li l ni

We now define zi = ni + di and make the further assumption that g(x) is an

even function, symmetric about x-0. Then, with the same noise density

f as in Appendix A, we can find the density f of the random variable zi.
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T (z) S f (n dg (zi-n i)dn i (C .4)

Let F(z i be the corresponding distribution function and note that

If(z i) is an even, symmetric function. Now (C.3) becomes

n n M
E[ E si (Q(x + d,) -di) Ili] m 1 1: [q k(F(t kes. -F(t k 1- es.)]

i-i i-1 k-1

q k F- - - (-t k-es )

In M
=q E s E 1 (2k-i)[F(kt-es i -F((k-l)t)-es d

i-i k-i

T(Mt) ~ ~ F . -(k-)t -e i + (-kt-es.dJ

* ~where Fm)-I

Then

n n 2 M
(21E[ E s T(x )[H ]/be)I q E s.i E (2k-l)[Ff((k-1)t-es i) -f(kt-es di-ileo i-1 k-1

- f(-kt-Os i -.f(k-1) t - .s iAl=

-2q a 2~ (2k-1)[f((k-.)t) -f(kt)] (C.5)

where f(mt) -0.
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Next we consider the variance term,

n n)2] 2n
Var( E s iT (xi )I%] 0 E[( E s 1 (Q(n 1+d ) -d i 2  -E [E s i Q(n i+d i -d i]

E[ El s sQ(n i+d i)-d )+2L E E s is LQ(n +d i)-d M)Q(n +d)-d)
i-i i-i L9-i+l '

'n 2 2 n-i n
- s iE [Q(n .+d 1)]-2 E E s is AE[Q(n. +d )I'EnI+dA

ili-I 4-i+1.lf 2 +L

and, because of independence between samples,

n2 2 2 n-
n E s, E[Q (n +Ed )2dQ(ni+di)+d.1 +2 : 1: s.s ELQ(ni+d.)IECQ(n +d A
i-li i- £n -i+l .A i. 1

n 2 2 +dl nJ
E s iE [Q(n i+ ]2 E iQ~l Pu + i +di )LLnA+dA

n 2  2 2 2  2

M ( zi EQ zi) 2E~diQ(ni+di)] 2Edl (C.6)

i-I

Recalling that E[d] 1 0, (C.6) may be simplified:

n n
Var( E 9 1T(x i)I 0] - E s (Var[Q(z i)] +Var(d 1] -2E[diQ(n +d di) (C.7)

i-i i-I.

where, similarly to (A.6)

m 2-
Var (Q(z1 j 2q I: (2k-1) [F(kt) i ((k-l)t)] (C.8)

k-i
and C

2Var(d1- di dG(d) (C.9)
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The last term of (C.7) can be evaluated as follows:

E[d Q(n +d~) I d dEtQ(n +di)Id IdG(d)

d,- 1:( k (k-d )F(-~t-d d)(cl

qk(F-(kl~td i F(-t-di J)dG(di) (.0

Finally the efficacy, using (C.7), (C.5), and (C.2) is

4 q ( 1: s (2k-i) [Y((k-l)t) kt]2

E D= lim ni-l k-I (C.11)

E s 2(Var[Q(z )] + Varfd ]-2E[d~ Q(n. -id )1)

and, normalized as before with unit signal,

4q2 (2k-i) [f((k-l)t) -fE(kt)] )2

= k-i

%Q Var[Q(z i) +Var[d i]-2Etd iQ(n .+d d]
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