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ABSTRACT
Several versions of data quantizers are considered as detection
nonlinearities in a binary signal detection problem. Randomized and
dithered versions of these quantizers are formulated and the performance
of all proposed systems is compared to that of systems using some well-
known detection nonlinearities. In particular, the robustness of the

quantizer systems in noise with uncertain statistics is compared to

that of the well-known systems vi. asymptotic relative efficiency.
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1
I 1. INTRODUCTION
i' Robustness, as the term is used here, refers to the ability of a
}. detection system to perform well despite slight variations in the noise

statistics from those used to design the system. In general, for a set
of given noise statistics, a robust detector will be outperformed by the
optimal detector. For variations in these statistics however, the
optimum detector often performs poorly when compared to a robust
detector. In this thesis we propose some detectors involving randomized
data quantization and dithering and consider their robustness properties
relative to other commonly used systems.

The signal detection model we consider here is a simple binary
hypothesis test between a hypothesis and an alternative given as follows:

f . Hl: X, =

1 n, + esi

HO: x1 - ni

Here, L is the i-th observation sample, n

-——

i is noise with a
f! probability denmsity function f(x), sy is a known signal and § is a signal- i
strength parameter,

The detector structure to be considered here is illustrated in Fig. 1.

To reflect uncertainties in the noise statistics, we use a model proposed

by Huber [1] as used by Martin and Schwartz [2] and hereinafter referred
to as the mixture model:
let £(x) be the noise probability density; we assume
f(x) = (l-e )} (x) + ¢h(x); where 0L ¢ < 1; (1.1)
®(*) is the unit normal density;
h(*) is an arbitrary density; and

¢ is known and is usually small.
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The clearest comparison of the two systems would be through the
power and false alarm rates or the probability of error. This method
quickly becomes intractable for the problem under consideration and

is abandoned in favor of the asymptotic relative efficiency.

The efficacy of a System A of the form of Fig. 1, is defined as

=2 E[ ; s, T(x )|H ] |
[+ i 17171 -
- lim { i=1 ) é}

n
n-o
n Var[iilsi T(xi)lﬂo]

2

(1.2)

Ey

and the performance of System A compared with a System B also of the form
of Fig. 1 is given by the ratio of their efficacies which, via the Pitman-

Noether Theorem, yields the asymptotic relative efficiency (ARE) (Capon

3.

N

ARE = (1-3)

A,B

Physically, the ARE represents the savings in samples required by System A
to achieve the same power and false alarm rate as System B. Thus if A is

more effective than B, ARE 1. 1If System A is more complicated than B,

AB
then the ARE should be considerably larger than unity to be practically
useful.

A quantizer is a nonlinear operation which maps the real numbers

to the real numbers in the following manner:




The real line is divided into discrete non-overlapping adjacent
segments. A sample point falling in one of these intervals is mapped
to a discrete point corresponding to that interval. Let tk,k =]1....,m
be the set of endpoints of all the intervals [t:k_l,tk) (hereinafter

called "breakpoints"). Then for t, > O ¥i and s 4 0, the positive real

i

m
numbers are formed by Rt = 1im Uy ([t
t:m - o k=l

k-l’tk)‘ Let the point to which

each interval maps be q 2 0 (the "level") then the action of the quantizer
Q on sample x is Q(xltk-ls X< ) =q.

Alcthough not strictly required, in this paper the condition q > U1’
k =1,...,m holds and, in some cases, , 4 0. Also, with the exception
of the dead-zone detector, 9 € [tk,tk_l]. Figure 2 shows a typical
quantizer.

Examples of quantizer detection systems with fewer restrictions are
available, see Poor and Thomas [4,5] or Kassam [6] in particular. 1In
addition, some work has been done to optimize a quantizer with a given
number of levels by proper breakpoint and level selection according
to some fidelity criterion. See Max [ 7] or Kassam [ 6].

Two ad hoc schemes for modifying quantizers are attempted here -
randomization and dithering. These techniques are inspired by reported

improvement in low-bit digital video by similar methods in two papers,

one by Roberts [ 8] and another by Thompson and Sparkes [ 91].
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Randomization refers to the perturbation from a fixed position

of the quantizer breakpoint. This is achieved in the following manner:

One treats the interval length (tk - tk-l) as a rawdom variable

which takes a value at each sample independently of its value in other

samples. The length of each interval (tk - tk-l) is given the value
of this random variable. Appendix B clarifies this approach and gives
the derivation of the expression for the efficacy of this type of
quantizer-detector (Eq. (B.4)).

Dithering is performed exactly as Roberts performed it with video.
A random variable uniformly distributed between (-t1/2,t1/2), sample-wise
independent is added to the quantizer input and subtracted from the
output., Figure 3 clari“jes this process. Appendix C contains a
derivation of the efficacy for this system.

Appendix A is a derivation of the efficacy of a nonrandomized,
nondithered quantizer. A comparison of (A.9), (B.4) and (C.12) will
show that the quantizer output levels have no bearing on system
performance (as we define it here) except in the dithered system.

In the following sections, specific quantizers and modification

methods are described and their performances compared via Eqs. (A.9),

(B.4), (C.12), and (1.3). ;

- — . — -
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2. THE FOUR-LEVEL SYMMETRICAL QUANTIZER

This quantizer is depicted in Fig. 4 and is the simplest quantizer

other than a sign detector type or dead-zone quantizer which is relatively

easy to optimize. Only three breakpoints are present at 0 and + t. The
four levels are spaced at + q and + 2q.
The efficacy of this quantizer when used in the detector structure

of Fig. 1 is given by

- 1 2.2\ 2080 + £eex)?
Bug = M (n 1‘3151) 3776 - F(O) (2.1

Where £(x) and F(x) are the density function and distribution function
respectively, of the noise.

If sy is asgumed equal to one for all i (the parameter § will comtrol
the actual received signal strength), then the efficacy EAQ may be

normalized to the following:

2
J2[£(0) + £(e)]
n4Q 3 7/6 - F(t) (2.2)

The optimum breakpoint tOpt can be found by maximizing naQ over t.

This leads to the following necessary condition on to

pt’
£r(e__.)
opt_ r1 _ .
2 E(Epe) [§ = Flegped] + £€0) + £(2 ) = 0 (2.3)
' 8.4
where f (topt) Ix f(x)|x-t
opt

—_— U2 T
< [ Y U,
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Fig. 4. Four-level symmetrical quantizer.




If f(x) = exp(-xz/Zuz)/Qﬁz;cﬁ, Eq. (2.3) is a transcendental

equation not directly solvable for topt'

however to produce the estimate topt = 5 for this case.

Randomization of this quantizer is achieved by making t a random
variable with a one sided density over [0,») called g(x) and
corresponding distribution function G(x). Then the efficacy is given
(2.4), a special case of (B.4).

. 2
[f(O) +[ £(t)de(e) ]
L 0

[RYTES

Traq -
7/6 - [ F(t)do(t)
0

We consider in particular the case where g(x) is a Rayleigh

function with parameter o > O:

; (x) = (x/a’)exp(-x*/2a%)
With £(x) again a Gaussian function, nRéQ becomes

(gz + 202)2
2 2
g

02[4(a2 +-02)2 - 3a(a” +

| Teag " 2

3/2]

)

This can be maximized over o to find aopt’

: o =g/K , K& ,4063367
i opt

This ylelds Ty, = .7807002/02

S

> trt

s g

P,

Computer results were used '

by

(2.4)

(2.5)
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The performances of the two quantizers were compared using the
mixture model of (1.1) with h(x) a Gaussian density with variance cz. The
results of this comparison are shown graphically in Fig. 5. It is seen
that for large contamination the randomized quantizer performs only
slightly better. The trend for small values of o seems to indicate a
large performance improvement but the small range over which this occurs
may not compensate for the extra complexity of the system necessary to
achieve this improvement.

It is worth noting again that the actual level value, q, does not
appear in the efficacy expression. The output of the quantizer indicates
into which interval the received sample falls, This information alone is
all that is necessary to make a decision between Ho and Hl’ therefore

the actual value of the level is arbitrary.

T a AR IR 2t
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3. THE DEAD-ZONE QUANTIZER

The dead-zone or null-zone quantizer, as taken here, is a three
level symmetrical quantizer with output levels 0, + q and breakpoints
+ t. This type of detector was studied in a different context by Kassam
and Thomas [10]. Their use of it is different enough, however, that the
results are not comparable with those given here. Figure 6 illustrates
the dead-zone quantizer.

The efficacy of this quantizer is given by (3.1) for a symmetrical

noise density function f(x).

2
< 2£ () (3.1)
Bz *1T-¥e0) .
An optimum breakpoint topt can be found for a given density £ by
. 2
maximizing nDZ over t. If f is Gaussian with variance o, then topc =g,

Randomization is achieved here by letting the breakpoint t be a
random variable with some distribution G(x) (and corr-sponding density

g(x)). The efficacy of the randomized dead-zone quantizer then becomes:

Af £(t)ae(e))?
0

(3.2)

nRDZ -
[ [1-F(t)lde(e)
0
Three possible density functions were examined, each with a single
parameter which could be ad justed to maximize (3.2). These are listed
below

1. Single-Sided Exponential

g(x) = Y expl -¥x] cu(x) 3.3)




Fig. 6. Dead-zone quantizev.
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2. Rayleigh
2 2 2
g(x) = (x/a”)expl-x"/(2¢")] su(x) (3.4)
3. Triangular
x/t'2 0Sx<r l
2 b
g(x) = | -x/r” + 2/r r<x< 2r (3.5)
t}
0 elsewhere L)
Since the nominal noise in the mixture model of (1l.1) used throughout l;
this paper is unit variance Gaussian noise, the three parameters were each 4
optimized for £(x) a Gaussian with variance 02.
Under these conditions then, the following results are achieved:
Yopt = **
Yoot = c/2/2 (3.6) |
Topt = 0
Clearly Yopt and t0pt lead to degenerate forms in (3.3) and (3.5). i;
An arbitrary value of y was used to get some results but the use of the ]
triangular density was abandoned at this point. Performance measurements .

are based upon an exponential contamination noise, that is, in reference

ey

to the previously described mixture model, we have

h(x) = (B/2)exp{-B|x]], 8 > O. (3.7) .
Figure 7 shows the performance of the nonrandomized dead-zone
quantizer compared with that of the 4-level quantizer described above.
Three values of ¢ (.1, .2 and .3) are used and indicate the trend of the
ARE for this case. The dead-zone quantizer performs only slightly better

for ¢ > .2 and only in a narrow range of B.

e— s Y
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The small amount of improvement and the narrow region over which it
occurs are reasons enough to exclude the dead-zone quantizer as a
replacement for the 4-level quantizer. Coupled with these reasons is
the question of the validity of the mixture model as a representation of
uncertainty in the noise model when ¢ becomes large. The mixture model

here is meant to represent noise that is primarily Gaussian. The detector

structure is designed with this assumption and its performance monitored as

the noise deviates from unit variance Gaussian, the amount of deviation
baing represented by ¢ and the '"direction" of deviation depending upon the
function used for h(x). Thus if ¢ is large (¢ 2 .5 is probably a liberal
definition of large) one would do better to abandon the mixture model and
examine some othe- technique for detector design.

Does randomization improve the performance? Figure 8 shows the ARE
of the exponentially randomized dead-zone (RDZE) compared with the
nonrandomized version. The value used for y is y = IAJE;. This is an
arbitrary value and the results are not good. Since y = 4+® maximizes
(3.2), these results are not unexpected.

Figure 9 shows the change in performance from using a Rayleigh
distributed breakpoint. Once again, the improvement is slight and
occurs only for small B and large ¢.

Dithering also provides a possible modification of the dead-zone
quantizer. This process again is best summarized by Fig. 3. In the
application of dithering to this case the random variable di (hereafter
called the dither signal) is given a uniform distribution in the interval
[=c,c] where ¢ is a positive constant. Two cases are considered here:

1) e=t, 2) ¢ = t/2.
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Letting G(x) and g(x) be the distribution and density respectively
of the dither signal we have the following expressions for the efficacy
(3.8) and the normalized efficacy (3.10) of the dithered dead=-zome

quantizer.

1 (42s§>zt[~{f(di+c)+f(di-c>3dc(di>l2
Eppz™ lim 3

n L @
T s 1] (Fdre)F@-e)ldo(d ] -2s 1] (£(d pernE(a;-0)}da(e,)]

[
2
- [qui(l-_L{F(di+c)+~F(di-c)}dG(di))]2 +Zs; var(d ]) (3.8)

where all summations are over i from 1 to n.

Under the assumption that di and the noise are sample-wise independent

*
we make the following assumption:

n@ si)2
lim ———5—5 =0 (3.9)
2.2
n—-—o (2 S )
i
Under (3.9) then, the next to last term in the denominator of (3.8)
becomes zero in the limit. Since this term is subtracted, and the term
itself is positive, the denominator value will only be increased and at
worst, the normalized efficacy will be lower than if the term were
maintained. Thus, nDDZ represents a worst case efficacy in those cases

where (3.9) does not strictly hold.

[ {£(a+e)+£(d-c)}de(a)] 2
-

Topz * —= - (3.10)
1-[ {F(d+e)-F(d-e)}dG(d) - 2 [ r£(d4c)+E(d-e)}dG() + S
- q -® 3qz

*This assumption would be true, for example if s; = (-1)1; i{i=1,2,...,n,




Note that dithering has increased the complexity of the efficacy

expression and has brought the level value q into play. We may now find

a qopt which maximizes the denominator of (3.10).
Using a Gaussian distribution for F(x), qopt was found for Cases
1 and 2:
Case 1: c =t - BBt L k) (3.11)
vase _: ’ qopt 3 (\/E c c 2 )
Case 2: ¢ = t/2
¢? 4e 2. 2 . . 3c % -2 -9c?
ope = /(e + LT+ {a(50)-2 50N +FeXP(7)-exp( 5)])
. 2t 8 8o
(3.12)

The fact that q enters into these calculations at all is directly
attributed to the dithering process, therefore one should not be surprised
that different densities for the dither signal alter the nature of qopt'
In Case 1, it is only necessary for the received signal to vary from 0
for the dither signal to affect the quantizer output whereas in Case 2,
the input may be anywhere inside the interval [-t/2,t/2] before the
dither comes into play.

The actual derivation of Eqs. (3.11) and (3.12) is tedious but
straightforward and will not be repeated here.

A check of the efficacy values for Case 1 and Case 2 using only
Gaussian noise (no mixture model) for various values of o showed that

Case 1 was uniformly better. The dead-zone quantizer itself was optimized

with t =og. Table 1 summarizes the results for a few values of o.

.. p— -
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TABLE 1

Efficacy of Dithered Dead-~Zone Quantizer

g _Case 1 Case 2

.5 2.56 .30
1.0 .73 .09
1.5 .28 .04
2.0 .12 .02
2.5 .05 .02

Based on these results Case 2 was abandoned in favor of Case 1.
Henceforth all references to the dithered dead-zone quantizer will imply
the use of the Case 1 density for the dither signal.

Results were also obtained for values of t other than t =o and
showed that the efficacy is generally better for a value of t slightly
less than 0. For this reason, results obtained with the mixture model
use t = .9,

Both the Gaussian mixture model (h(x) = N(O’az)) and the exponential
mixture model (h(x) as in Eq. (3.7)) were used to evaluate the dithered
dead-zone quantizer. Figures 10 through 16 summarize the results .

In addition to the comparison with the nondithered, nonrandomized dead-
zone, Figs. 12, 15 and 16 show the comparison to the sign detector.
These curves serve to relate the performance of the system to a well-known

robust detector. Equation (3.13) gives the efficacy of the sign detector.

- 4 £2(0) (3.13)

Tsp
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Fig. 12, Dithered dead-zone compared with sign detector,
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Comparing Figs. 10 and 13 or Figs. 1l and 14, improvement with
dithering is obtained for small values of ¢ and large values of B.
(Note that these refer to two different mixture models.) Both of these
cases represent densities h(x) which are becoming more sharply peaked at O.
That is, as ¢ decreases in the Gaussian mixture model, and as B increases
in the exponential mixture model, h(x) becomes more sharply peaked at 0.
This improvement is clearly much greater for the exponential contamination
however and extends for all g > 1.5. The improvement for Gaussian
contamination is not only less marked but exists only for ¢ < 1 and
larger values of ¢ which again brings to mind the question of the
validity of the results as a basis for detector design.

Comparison of Figs. 12 and 15 or 16 show that, under Gaussian
contamination, the dithered system performs considerably better than a
sign detector over a wide range of both ¢ and ¢, whereas under exponential
contamination the dithered is worse by far except for very small ¢. Even
for this small ¢ the AREDDZ,SD = 1.2 which is not a significant improvement
if one considers the additional complexity of the dithered system.

In summary, dithering seem3 to produce unpredictable results.

Performance with sharply peaked contamination densities is improved

" but that improvement is sensitive to the density function and may not

be significant when the dithered dead-zone is compared to some other

detection system (e.g., the sign detector).
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In an attempt to make the performance of the dithered dead-zone
less sensitive to the contamination density, a sign nonlinearity can be
placed in line following the correlator. For brevity, this new

detector is referred to as the dithered sign detactor although it is not

really a dithered version of the sign detector. Figure 17 will clarify
the structure of this system.

Keeping all notation from the preceding discussion of the dead-zone

quantizer, we have the efficacy of the dithered sign detector:

e = L] [£(t-d) + £(-t-d)}ac(a)]? (3.14)
-o

In order to compare this with the previous system all parameters of
the dead-zone quantizer are maintained. That is, G(d) represents a
uniform distribution over [-t,t], t = .9 and q is given by (3.11).
1 The results of comparing the dithered sign detector to both the dead-
zone quantizer and the sign detector in Gaussian and exponential
contaminated noise are presented in Figs. 18 through 21. These graphs
show almost uniform degradation in performance. The only improvement

appears in the comparison to the sign detector in Fig. 21. It appears

here that, for decreasing 8 and for ¢ > .4, the AREDSD D increases
’

drastically. The importance of this result is once again undermined by

é the large value and narrow range of ¢ over which this occurs.
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It appears from these results that a ditﬁered dead-zone quantizer
may be useful in comparison with an ordinary dead-zone quantizer for
severe contamination of Gaussian noise with exponentially peaked noise
densities. This appears to be restrictive in the light of the reason for
proposing the dithered system - namely to improve robustness. If
robustness indicates relative insensitivity to changes in the noise it
seems wasteful to use a system of increased complexity to gain only
moderate performance improvement over a restricted range of noise

contamination.
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4., THE 2m-LEVEL QUANTIZER AS AN APPROXIMATION TO THE LIMITER CORRELATOR

Qur last investigaﬁion of a quantizer-detection scheme is possibly
the most general, Here we compare a quantizer with 2m levels (m i{s an
integer) with the limiter-correlator as proposed by Martin and Schwartz
[2]. The motivation here is that the quantizer (which is uniform and
symmetrical) appears as a discrete approximation to the limiter correlator
and represents the approximation which would be achieved by a digital
computer implementation of the detector.

First we will reiterate the development of the limiter-correlator as
in Martin and Schwartz. The problem is one of deciding between a hypo-
thesis and alternative H, and H, as described in the Introduction. The

0 1
noise density f(.) is assumed to belong to the family of densities

§ = {E@|£(x) = (1-€)p(x) +eh(x):h(-) €K, 0 < e <1} (4.1)

where @ (x) denotes the unit variance Gaussian density with zero mean, ¥
is the class of all symmetric density functions satisfying the following
regularity condition:

Regularity Condition: Let I(8) = jz(x)h(x-e)dx where £(+) is a

bounded function and h(-) €X. Then I(8) has one conttnﬁous derivative

given by

I'(8) = [£(x) (3 (x-8)/20)dx H

Since @ (x) satisfies this condition as well as h(x), then § also
satisfies the regularity condition.
Note that the other mixture models used throughout this thesis

(with h(x) = N(O,cz) and h(x) = (B/Z)exp[-le]]) also meet this condition.




Let 8 denote the set of all randomized test functions ¢ = ¢ (X)
where X = (xl,...,xN) is the set of N observations. That is, ¢ (X)

represents the probability of choosing H, as true given that the

1

observation is X.

The power function B¢(9]f) of p €8 is the probability of choosing

Hl given that H

given by

1 is true using the randomized test function ¢. This is

Bl = Egle0r|e] £ €y (4.2)
The false-alarm probability is

a = %(olf) (4.3)

The problem is to find a locally most powerful test ® and a least-favorable

density T such that the following conditions for the power are true:

B (ol £) < aacom (4.4)
sé(olf) > 830l H) %.5)
' A
where B4 (0] +) = (d/d@)B (8] +)
3 3¢,

I1f @ 1is indeed the locally most powerful test for F, then @ and f form a
saddle-point solution in terms of local power with constrained false alarm

probability and (4.6) and (4.7) below are satisfied.

inf aémli) = Bé(orf) = sup aé(ol"f) (4.6)
£€§ pED

o = aa(olf) < aa(ol?) =& %.7)

Now f and @ must be specified for each ¢ such that (4.6) and (4.7) hold
asymptotically over a restricted range of & bounded away from zero and

dependent on ¢.

A TrT———
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The least-favorable density T is given by

fx) = (l-e)'&exp[-s(X)]
2

. x"/2 x| <k
g(x) = 4.8)
kx| - k%2 |x] > K
or, since ’f(x) = (1-¢)P(x) + cft(x)
i
- 0 (4.9)
hix) =
(2ne?y B (1-¢) [exp (-K|x|+k2/2)-exp (-x2/2)] x| > K
In addition, if ﬁ(x) is to be a valid density function (i.e. if
=
J" f\(x)dx = 1), then K satisfies <
-0 ‘
X -1
fﬁP(X)dx + 2(@((K)/K) = (1-¢) (4.10)
-K
Now for a noise density given by %, the density for an observation, X,
3 given Hl is true, is
1 fe(xi) = f(xi - Bsi) 4.11)

According to the generalized Neyman-Pearson Lemma [15) then, the locally
} most powerful test @ of size @ is given by

>
1 TN X)~?>e¢

X =y a T X =c (4.12)
0 TN(X) <c
where 0<a<l
N !

and TN(X) -iflsi!,(xi; -K,K) (4.13)
i
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Here, 4(y;A,B) indicates a soft limiter characteristic given by (4.14)

f’ B y2b 1
i
<

L(y;A,B) = 1- y A<y<B 4.14)

below

A y<aA |

This characteristic can be derived from the derivative of the probability

ratio test using ?(x) above, i.e. the expression of (4.12) is equivalent to

i=1 f(xi) 8=0 i
L.
where T is a threshold chosen to achieve a desired probability of false
alarm @. Constant terms are includes as a new threshold c. k}
The resulting detector structure has been dubbed the limiter-correlator
and is illustrated in Fig. 22. Note that the limiter is symmetrical and lJ
that large ¢ increases the limiting action (i.e., reduces K).
To conclude the description of the correlator-limiter we include
Theorem 2 of [2 ]. ll
Define |
Y, = (4 +eK)/a (4.16) u
where

. ‘,
A= (1-6)f xPo)dx + 2B (-K) (4.17)
“K

Since K is a function of ¢, Ym is also, therefore Ym = Ym(e) and o is then 1

also a function of ¢ given in terms of Ym:

a(e) = 1'-¢([Zlogym/vi - 1)]%) (4.18)
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Fig. 22, Limiter-correlator detector.
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Theorem : Let f be the least favorable density (29) and 5N the corre-
sponding locally most powerful test givem by (33) and (34). If @ > a(e),
0 <e¢e <1, then asymptotically
[} -~ ]
inf B~ (0| £) = By (0|E) = sup (o] £)
feg % ®y Bes %N :

and

saN(ol £) < eaN(ol £) = &

A comparison of the limiter characteristic of Fig. 22 and the typical
quantizer of Fig. 2 reveals the similarities between the two. If q, = K,
then the quantizer may be considered a discrete approximation to the limiter
characteristic. As the number of quantizer steps grows, i.e. as m is
increased, and as long as q = K, the steps become finer and the quantizer
becomes a closer approximation to the limiter, From experience with the
quantization of analog signals in the ordinary A/D, D/A case of signal
processing, one expects more steps to create an improvement in performance,
upper bounded by the performance of the continuous (or piecewise-continuous)
system to which the quantizer is an approximation.

In standard data quantization, the comparison between a system function

and its quantized version is mean-squared-error [7 ], absolute-mean-error [ll],

or some more general error criterion [ 12,13]. These methods do not always lead

to the best solution when one considers a quantizer in a binary decision
system, however, and some other criteria may give better results, e.g.
distance measures [14].

To reiterate then, the best detection quantizer may not be merely the

least-mean-square-error approximation to the analog optimum systems. In
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light of this fact, the following questions can be asked concerning the
performance of the 2m-level uniform quantizer as an approximation to the
limiter-correlator:

l. What is the ARE of the quantizer compared to the

i ?
limiter (AREQ,LC)'
2. How does randomization affect the AREQ LC?
?
3. How does dithering affect the ARE ?
Q,LC

Implicit in theses queries is the effect of m on the AREQ,LC'
Why, if this quantizer may be suboptimal as a detector are we worried
about its performance compared to the analog system? First of all, signal
processing of any complexity is quite likely to be carried out digitally,
implying a quantization of data. Secondly this quantization is likely
initially to be of the uniform, 2m-level type since this is the nature of
most commercially available A/D converters. Thus the need for a nonuniform
quantizer might overly complicate a system for little gain in terms of detector
performance. Thus the answers to the three questions above could well

indicate the economy of constructing a more complicated quantizer.

The efficacy of the limiter-correlator is given by

K 2
[[ £(n)dn]
=K
e * -K K, (4.19)
212 I f(n)dn + I n“f (n)dn
- .K
and that of the 2m-level uniform quantizer by (see Appendix A):
m-1 ,
2[ T Qk-D{f((k-1)t) - £(kt)} + (2m-1)f((m-1)t)]
Yo © = (4.20)
£ @k-DHFke) - F(k-1)t)} + @m-1)2{1-F((k-1)t))
k=1
ERRRRNIOR 24 oGy cazesamd —
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1f q * K, then t = K/(m-1/2) to maintain the similarity between the
two detectors.

The results here are multidimensional. ARE's are calculated and
plotted for both the Gaussian contaminated and the exponential contami-
nated noise with m = 3,4 and 5. In addition this is carried out for the
least-favorable noise denmsity. All of these results use € and K as
parameters to form a set of four curves for each m in each noise case.
Plotting the ARE as a function of ¢ was not feasible due to the compli-
cated relationship between ¢ and K as evidenced by (4.10). The four paired

values of ¢ and K are listed in Table 2 below.

Table 2
€ ! .01 .02 .05 ’ .10
K 1.95 1.72 g 1.40 ‘ 1.14

Figures 23 through 25 show the quantizer performance in the Gaussian
contaminated noise., Surprisingly AREQ,LC > 1 for all cases considered.
Two trends are clearly evident: the quantizer performance improves over
the limiter-correlator for more severe mixtures (¢ increasing), and as m
increases, the quantizer performance decreases. Also, at first glance,
one would expect the performance for all mixtures to be equal at ¢ = 1,
however, it must be remembered that K changes with ¢ so that even though
m remains the same,. the quantizers are not equivalent (nor are the limiters)

for different €. The improvement obtained here is significant and is quite

probably worth the implementation of a quantizer,
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The next question is how does randomization affect the ARE? In this
case the intervals [t, ,,t,) aretreated as random variables all with
identical uniform densities. To be more precise, we define u to be the
length of the interval [tk-l,tk)’ a constant for all values of k: u = SRLPE
We then make u a random variable with a uniform density function over (0,c).
The effect is a quantizer which collapses and expands as u takes om smaller
and larger values respectively. Note the level values q, are not changed.

If u = 0, we have a sign detector with output levels + 4 If u = ¢, the
output levels consist of the set {-qm,...,-ql,O,ql,...,qm} with breakpoints
b = ke.

For these results, ¢ = 2t1 where tl is the first breakpoint of the
corresponding non-randomized quantizer, i.e. ¢ = 2K/(m-1/2).
Given the above density function for u we have an expression for the

efficacy of the randomized 2m-level quantizer given by (see Appendix B).

2 m=-1 c c 2
S [T (k-1 [ {E(xR-1)x) - £(kx)}dx + (2m-1) [ £((@-1)x)dx]
1 - k=1 0 0 %.21)
RQ m-1 9.8 2.C )
T (2k-1) j {F(kx) - F((k-1)x)}dx + (2m-1) j {1-F(m-1)x) }dx
k=1 o o

Figures 26, 27, and 28 illustrate the performance for m = 3,4 and 5

respectively. Obviously randomizing the interval is not a technique

useful for improving performance in this case. Once again we notice a

tendency for the ARE to improve for small ¢ indicating some improvement

RQ,LC

by randomizing for peaked contamination noise. However for this to compete

with the nonrandomized quantizer, ¢ must be very small.
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Figures 29, 30, and 31 are the performance curves of the non-
randomized quantizer for m = 3,4,5 in exponential contaminated noise.
Figures 32, 33, and 34 are the corresponding curves for the randomized
quantizer. The observations here are much the same as for the Gaussian
contamination case - the quantizer performance is markedly better than the
limiter and randomization ruins this performance. 1In this case, randomization
produces uniformly worse results with no promise of an increase in ARERQ,LC
for any B or €.

Randomization produces such terrible results that one would be led to
expect a similar degradation with dithering.

In calculating the efficacy of the dithered system, the variance given

HO must be found. This is given by

n 2
Var [Ty (X )luol =1§1 szi(Var[Q(ni+di)lHo] +‘1—2 - zz[di-Q(ni+di)\ao}] (4.22)
where n, = noise samples

i
di = cither signal samples
Q(x) = output of quantizer with input x
(Note: Appendix C contains a general solution for this term).
Here d1 has a uniform density function over (-t/2, t/2).
The last term in (4.22) is the correlation between di and the quantizer
output, The eff;ct of d1 is to cause Q(ni + di) to change by only a single
step value up or down from what Q(ni) would be, 1if di causes a change at

all, Thus, although di and Q(ni + di) are not independent or uncorrelated,

we can see that the correlation is small and positive. Since the calculation

of this term becomes very complicated we will take it to be zero. This

o tirs,
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[Ix] ¢ Jdx2(z/9)2 + (1°0IN(3-1) = (x)3
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establishes a lower bound on the efficacy of the dithered quantizer
since inclusion of the term can only increase the value of “DQ' !
Under this assumﬁtion the efficacy of the dithered quantizer is

given by o

2[ T @k-D{2F (K - PO - F(k -ty - F(k+P}1?

(4.23)

“DQ m kt 2
ez @D’ [ (F@+P -FGey -Plaz, + S5

k=1 (k-1)t 129

where z, =0y + di' Note that once again, dithering brings the output

level q into play.

Figure 35 shows the best AREDQ,LC curve obtained with the exponential
contaminated noise. It appears that no advantage is gained by dithering
here. As ¢ increases, so does the ARE, but again the values at which any
performance gain appears are too large for a valid noise model.

As a final check of the validity of the results for the 2m-level
quantizer we examine the AREQ,LC when the noise density is given by (4.8),
the least favorable density. Since the limiter-correlator is the optimum
detector for this case, we expect AREQ,LC < 1 for all €, The values
obtained are summarized in Table 3.

Table 3
ARE( 1
€ m=3 m=4 m=5
.01 «952 .975 .985
.02 . 962 .980 .988
«05 .975 .987 <992
.10 .983 .991 .995
o . u.‘i-‘uh??ﬂf PR AR MM S T 1
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This reinforces the optimality of the limiter correlator for the
least-favorable density as well as verifying the validity of previous
results since the same general equations for efficacy were used throughout
this section. Also we see that, as the number of steps increases, the
performance of the quantizer approaches that of the limiter-correlator.

The performance also increases with increasing € which is consistent

with earlier findings. Thus it appears that in cases where the limiter-
correlator is optimal, our intuition is correct in assuming that increasing
the number of steps will improve the effectiveness of a quantizer used to
replace the limiter.

The answers to the three questions posed earlier can now be stated.

A quantizer may be used to some advantage in place of the limiter. Problems
arise however in trying to design the quantizer. If the noise is close to
the least favorable noise in some sense, we would do well to provide as

many steps as possible to approach the performance of the limiter as closely
as possible. If on the other hand, the noise is quite different (e.g.
Gaussian or exponential contamination) then the quantizer should have
relatively few steps and we can expect greatly improved performance. In
either case, of course, there is also the problem of choosing an adequate
mixture model,

As far as randomization and dithering go, it appears that both lead
to either uniformly poor results or results which are beneficial under such
narrow conditions that the question of robustness is moot.

The best that can be done then, is to choose a noise model (for the
mixture model) and to determine for each choice whether or not the quantizer
replacement for the limiter is practical. There does not appear to be any

rule of thumb concerning this choice.
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5. SUMMARY

We have examined quantizers in three different forms: the four-level
symmetrical uniform quantizer, the three-level or dead-zone quantizer
and the more general 2m-level symmetrical uniform quantizer. For all
three types the performance of the quantizer as a signal processor in a
binary hypothesis testing scheme was compared with several more widely
used detector nonlinearities known for their performance stability with
respect to slight noise changes.

The object of these calculations was to observe how, if at all, the
quantizers performed in terms of this stability, called robustness. A
contaminated noise mixture and the asymptotic relative efficiency (ARE)
were used to measure this robustness relative to that of the afore-
mentioned well known nonlinearities (the sign detector and the limiter-
correlator).

In addition, two techniques of randomizing the quantizer breakpoints
as well as a more general technique of randomization called dithering
were introduced and defined. These techniques were applied to all three
of the above quantizers and their effects upon the ARE were observed.

The results of these calculations were presented in either graphs

or tables.

>




6. CONCLUSION

It is difficult to draw any general conclusions from these results.
It appears that the decision on whether or not to use a quantizer must
be based on an analysis of the problem at hand. The regions where good
performance is achieved are usually quite narrow and this reflects a neces-
sarily more detailed knowledge of the noise than may be available when one is
concerned with robust systems. At the other extreme, good performance
is frequently achieved for very high values of ¢, at which point non-
parametric systems might be better applied.

The possible exception to this general trend is the nonrandom quantizer
as a replacement for the limiter in a limiter-correlator detector. Here
it appears that there may be a large class of mixture models where a low
level number quantizer easily outperforms the limiter. Again it is
necessary to consider each model separately since no rule of thumb is
obvious.

Finally, the one uniform result of this work has been that neither
randomization nor dithering significantly improves the efficacy of any of
thése quantizers. In fact, the performance is usually far worse. As was
stated in the Introduction, the motivation for testing these techniques
was the success found in applying similar methods to picture processing.

The difference is in the way that the output is produced. The decision system
must of course produce a hard decision - H, or H

0 1

measurable in hard numbers - probability of error, false alarm rate, etc.

- and its performance is

A video signal on the other hand produces an output which is Ffurther
processed by the human mind and is subject to many psychological and

physical effects,
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, The difference between the two processes seem great enough to state

that no real comparison is possible, at least without an accurate model

of the human visual process.

In short then, as far as this work has shown, we may conclude that the

techniques of randomization and dithering appear to offer little in the

way of improving quantized decision systems.
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APPENDIX A
Derivation of the Expression of the Efficacy of a Quantizer
The following development applies to the use of a quantizer as
illustrated in Fig. 2 in a detection system similar to Fig. 1.
The system produces the statistic T(xi) given below:
T(x;) = Qxy) (A.1)
where
Q(x,) = q ; xie (¢ 108) (A.2)
From (1.2) we then obtain the general expression for the efficacy
a 2
{ @El T s,Qx )|n,1/20)] 1}
i=1 =0
E. = lin (A.3)
? n
n Var[ § 31‘2("1)1“0]
i=l

As in the preceding work we will let f(x) and F(x) represent the proba-
bility density function and distribution function respectively. Assume
that £(-x) = f(x), (i.e. £(x) is an even function).

We will now use (A.2) and evaluate the numerator of (A.3)

Since the received signal has sample-wise independent values:

n n n
E[ T s,Qx,)|H] = £ s E[Qx,)|H,] = T s.E[Qn, +8s,)]

m
=Zs,. k-fl[qk{r(:k-esi) - F(tk_l-esi)] - qk{F(-tk_l-Bsi) - F(-tk-esi)]]
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Now
2 |
QRE[ £ s.,Q(x )|H, 1/38)
e 11001 le-o
n m { }
£s,-Ts, [-qif(t, -0s )-f(t, _.-6s.)
e SRR L S S k-1"" "4
+ qk{f(-tk_l-esi)-f(-ck-esi)]]!e .
n 2 m
= 2151 sikEI q [E(t, ;) = £(t)] (A.4)

Similarly we find the variance under Ho:
n
var [ £ s,Qx)[Hy] = Var[ £ s Q(@))]
i=1 i=1
Again using sample-wise independence and noting that E[Q(ni)] = 0 we have:

n

2.2
Var( 2 s.Q(n,)] = sE[Q"(n))] (A.5)
=1 F A ¥ i-l i i
Now
SE[ )1 -n 2 ¢ Z{Ft )=F(t 1+ Z{F -t -F(-t,)}]
151 P, E, o I el Fe F e DYl Fee )oFee)
and noting F(-x) = 1-F(x)
n 2 m
Varliz s,Qx |8yl = 2T 51 qk[F(tk) F(t,_ )] (A.6)

Using (A.4) and (A.6) in (A.3) ylelds the efficacy.

2
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If we again let s, = 1 and take the limit, we obtain the expression for
the normalized efficacy.
- 2
Az qlie ) - £(e )]

Q=" n S

(A.8)

where t %
m

®,
If we assume the quantizer is uniform such that q " (2k-1)q1= (2k-1)q

and £, = kt then

k
m 2
2{ £ (2k-1)[£((k-1)t) - £(kt)]}
T = k;l (A.9)
£ @k-1)2[F(kt) - F((k-1)t)]
k=1

U it e e g — = —




APPENDIX B

Derivation of the Expression of the Efficacy of a Randomized
Breakpoint Quantizer

Here we will develop an expression similar to (A.8) for the quantizer

of Fig. 2 where the breakpoints are a function of a random variable with
some probability density g(x) and distribution G(x).

Specifically, we consider all breakpoints Cy? k=1,...,m, to be
functions of a single variable t such that t, = c, t where {ck, k=1,...,m}

is a set of m positive constants. For the uniform quantizer, ¢ = k and

t = tl. Since the results of this paper concern only the uniform quantizer, L
we consider only this case in our development here, [

Proceeding as in Appendix A, using (1.2), (A.l) and (A.2) we can

*
derive an expression similar to (A.3).

@ n
[ etz siQ(xi)lHI,t]dG(t)/OQ}Z
Epo = lim = =1 (8.1)
e o
n [’ Var[iilsiQ(xi)lHo,t]dG(t)

Assuming the necessary conditions, we take the derivative operation inside
the integral and proceed as in Appendix A to arrive at the expression for
the efficacy

222 % 2 2
4CE D £ q [ (£(k-1)E) - £(ke)]dG(e)}
i=1 k=l " -

E.. = lim (B.2)
RQ n m @
t P si T qi [ IF@e) - F(-1)t)]dG(E)
' isl k=l ¥ Yo
‘ where fme) 20, Fme) 2 1.

I

*Noce that the sample-wise independence of the random breakpoints has been
incorporated implicitly in (B.l).
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The normalized expression is

then given by

[ (ECk=1)E) - £(ke)}doce)}?

m - -]
2{¢ q

I

T\RQ m o, @

Furthermore, since we are

4

= (2k-1)q. Using this in

the efficacy in which the

T q [ [F(kt) - F((k-1)t)]dGC(t)

k=1 -

m
2{ £ (2k-1)

k=l

output level q does not appear

[ (f(k-1)e) - £(ke)ldece))?

o 2
£ (2k-1)
k=1

I [F@e) - F((k-1)t)]dG(e)

referring to the uniform quantizer, qk=-(2k-1)q1

(B.3) we get a final, normalized expression for

(B.4)
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APPENDIX C

Derivation of the Expression for the Efficacy of a Dithered Quantizer

Herein we consider the dithered quantizer as illustrated by Fig. 3.
The dither signal di is considered to be a random variable, the value of
which is independent from'samplé to sample. The probability density and
distribution functions are given by g(x) and G(x) respectively.

The test statistic is given by
T(x) = Qx; +d.) - 4, .1l
where Q(-) 1s described by (A.2).

We will consider only the case of uniform quantization so that

q = (2k-1)q and t, = kt, t e 0. Then (1.2) becomes

0

n

2
[(aE[iflsi(Q(x1+di)- di)‘H11’3°)|9=03
EDQ = 1lim n (C.2)
22° a vVar[ g s, Qx; +d,) -d)H]
i=1

|3

Following Appendix A, we consider first the numerator of (C.2)

n n
ELE 83 (Q0x; +4,) ~d)[H] =2
= 1=

. siE[Q(n1+di+esi)'di]

1

In all cases considered here, E[dil = (0, therefore we have under this

assumption
n n
E[i}:lsi(Q(xi+di) -d ) [m,) =k s;E[Q(n; +d, +85,)] (€.3)

We now define zg =, + di and make the further assumption that g(x) is an
even function, symmetric about x=0. Then, with the same noise density

f as in Appendix A, we can find the density £ of the random variable z

i.
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?(zi) = {w f(ni)g(zi-ni)dni

Let F(zi) be the corresponding distribution function and note that

?(zi) is an even, symmetric function. Now (C.3) becomes

n n m
E[iflsi(Q("i"di)'di)lHl] -iflsikfl[qk{uck-esi) -F(t, ;- 8s))

- q {F(-t,_ -9s) = F(-t -85 )]]

n m
=q T I (2k-1)[?(kc-esi) -F((k-l)t)-esi) :
i=1 * k=l
- F-(k-1)t - 9s,) +F(-kc-esi)]
where F(mt) g L.

Then

n n m _
QE[ T sir(xi)lull/ae) =q¥ si T (Zk-l)[-f'((k-l)t-esi) - £(kt-08s )
i=1 8=0 i=1 k=1

- ?(-kt-esi) +?(-(k-1)c-esi)]

0=0
n ,m _ _
=2q £ s, T (2k-1)[£((k-1)t) - £(ke)]
i=] “k=1
where ?(mt) 4 0.

(C.4)

(C.5)




Next we consider the variance term,

n n n
Vaz[ T s, Tex)lRe] = EICE s 0ty +4p) -4, 1) - [T s (Q@m; +¢p) -4,))
i=] = i=

n 2 2 n-1 n
= E[iflsi{Q(ni+di)-di} 4-211;,1 ESE+lsis£{Q(ni+di)-di}{Q(nL+dz)-dL]]

no, o, n-1 n
- T s;E"[Q(n, +d,)]-2 ¢ £ s,s,E{Q(n,+d,)]*E[n, +1d,]
=1 i i i {m] gmi+l i72 i i £ 2

and, because of independence between samples,

£ s22[0 (n,+d, )-2d,Q(n +d, )+d2] 2:;1 s [Qn,+d, ) JE[Q(n,+d,)]
= 3 s E n -2d.Q(n ]+ Z s.8,E(Q(m D JE[Q(n
0 AR TR A A A A s bl R e A

n o, 2 n-1 n
-Z s E'[Q(n+d)]-2 ¢ £ s8,8,E(Q(n,+d.)]E[Q(Mm,+H,)]
{=1 i i i i=] gai+l 12 i i L 2

o202 2 2
-iflsi{E[Q (n;+d,)]-E°[Q(n;+d,)]-2E[d,Q(n,+d )] + E[d]]]

- £ $2E @)1 - £2Q(z,)] - 2[4, Qea )] +E[d2]] €.6)

Recalling that E[di] = 0, (C.6) may be simplified:

n n
Var [ zlsiT(xi)IHO] = Elsi[Var[Q(zi)]-+Var[di] -ZE[diQ(n1+di)]} (.7
{i= {im

where, similarly to (A.6)

m
Var[Q(z)] = 2q £ (2k-1?[F(ke) = F((k=1)t)] (-8)
k=1

and -

2
Var(d ] = L df de (C.9)

¢

Lo i = o vy gy = = e




The last term of (C.7) can be evaluated as follows:

E[d,Q(n, +d,)] = LdiE[Q(nimi)ldi]dc(di)

ad m
= -Ldi'kEl[qk{F(kt'di)-F((k"]')t'di)}

- q{F(-(k-1)t-d.) - F(-ke-d )}1dGd,)

Finally the efficacy, using (C.7), (C.5), and (C.2) is

2,2 5 @ - - 2
4q (T si){ T (2k~1)[£((k-1)t) - £(kt)]]}

E = lim i=1 k=1

DQ n
D 1215§{Var[Q(zi)] + Var[d,]-2E[d Q(n, +4,)])

and, normalized as before with unit signal,

2, ® - - 2
4q {kzluk-l)[f((k-l)c) - £(kt)]}
Tpq * Var[Q(z,)] + Var[d,]-2E[d,Q(n, +4,)]
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