DYNAMIC FRACTURE TOUGHNESS PARAMETERS FOR
HY-80 AND HY~130 STEELS AND THEIR WELDMENTS

by

G. T. Hahn
Department of Mechanical Engineering and Material Science
Vanderbilt University
Nashville, Tennessee

and
|20 e
M. F. Kanninen 'Y
Applied Solid Mechanics Section £ s FE
Battelle owa T b \:{2
Columbus, Ohio . JUNG 1880 . ::

August, 1979 — A

Office of Naval Research, Structural Mechanics Program,
Report on Contract Number N00014-77-C~0576.

""B‘i’;';'{{(xh’!%'fb:q_ TATRMENT A

Appraved ler pubiic release}
\ Diatibution Ualimited
e

80 6 6 082




Unclassified : 1

SECURITY CLASSIFICATION OF TuiG BAGE “Whan Nurn Entered)

[TR-2Y READ INSTRUCTIONS
REPORT DOCU‘A:‘ITATK}N PAGE BEFORE COMPLETING FORM
V. REPCRT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

Ap-408S 19¥ |
* 4. TITLE (and Subtitle) W OF REPORT & PERIOD COVERED

m QYNAMIC FRACTURE JOUGHNESS PARAMETERS FOR;\ {Interm “opte l
— ﬂw‘z-s,d AND HY-13¢ STEELS AND THEIR WELDMENTS M T T T T TR, G T

———ate p— .

R

7. AUTHOR(s) ] . - 8. CONTRACY OR GRANT NUMBER(a)
’Q/éi ,‘ G. T.[Hahn sm M. F.[Kanninen ) {15 ¥68814-77-c-$576 Jpatelle
7 R At - )
9. PERFORMING ORGANIZATION NAME AND ADDRESS 70. PROGRAM ELEMENT. PRGJECT, TASK |
AREA & WORK UNIT NUMBERS
Vanderbilt University, Nashville, Tennessee and P —
Battelle, Columbus, Ohio .- . k.—l; /H o~
11, CONTROLLING OFFICE NAME AND ADDRESS DAFF——
Office of Naval Research \“l ,| Augweey~%979 /
Structural Mechanics Program 3. NUMBER OF PAGES

Dept. of the Navy, Arlington, VA 22217 37 j
14. MONITORING AGENCY NAME & ADDRESS(1f different from Controlling Ottice) 1S. SECURITY CLASS. (of thie report) |

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

1 4
Approved for public release; distribution unlimited
[
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If difterent from Report)
18. SUPPLEMENTARY NOTES
Will be submitted for publication in the Engineering Fracture Mechanics
x Journal
19. KEY WORDS (Continue on reverse eide i/ necessary and identify by block numbert)
crack propagation crack arrest
elastodynamic analysis B
dynamic fracture toughness @
_ Charpy V-notch specimen }( A
?-80 and HY-130 steel /
\P'\ 20. ASTRACT (Continue on reverse side !f necessary and identify by dlock number) .
. o Lower bound dynamic fracture toughness parameters for HY-80 and HY-13Q steel
N, i \__ Jpnd their weld metals are identified. Specific values of the parameters Kiq' and
J "Fim)obtained from direct measurements are reported together with estimates in-
) red from the large body of Charpy energy, nil ductility transition temperature
nd dynamic tear energy measurements, The emphasis is on reasonable lowetr bound
. alues at 30 F, the lowest anticipated service temperature, for use in elasto-
ynamic analyses of crack growth initiation, propagation, and arrest ship
tructures. For these conditions, it has been found that the ratio (fl /oy)is
FORM )
DD [an3s 1473  zoimion oF 1 nOV es 1S cBsOLETE Unclassified ﬂ}bb"-"

$/N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THis PAGE [When Data Bntere)

Y2 /5 en e

e S Dok e s A EARSA AN A o B oo Ce— - e e

Y X L




pg ,ﬁetf 53 i - d
N // 1
v SECURITY CLASSIFIC ‘u_n;.x.m\s PAGE (When Nets Entered)
5 approximately ?\m—f’bimlﬂ-/l Consequently, HU-80 plate appears to be substantlals. |
more resistant racture under dynamic loading than are the other three grades
examined.
Kr .

=

ST S T S

|
[ ]
““ S
AcceLcic. aor
! D - [
‘ Ve w8
t T ! ——-—
P -
o —
| by N e
b R
|
i ‘, A - pas—
‘pigt boerociul
) 4
_____
S/N 0102 LF. 0146601
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




INTRODUCTION . . . . . . .
BACKGROUND DISCUSSION. . .
DYNAMIC FRACTURE TOUGHNESS
HY-80 Base Plate. . .
HY-130 Base Plate . .
Weld Metals . . . .
DISCUSSION OF FINDINGS . .
CONCLUSIONS. . « . . . « &

REFERENCES . . . . . . . .

TABLE OF CONTENTS

e & & o 4 & o o

PROPERTIES. . . .

APPENDIX A

CORRELATIONS BETWEEN FRACTURE TOUGHNESS PARAMETERS AND DTE,

NDT, ANDCVN , . . . . .

WELD STRUCTURE . . « .+ « .

APPENDIX B

LIST OF TABLES

Table 1. Summary of Toughness Correlations. . .

Table 2. Toughness Specifications for Hy-Grade Steel

and Weldmetal.

e & & o o o o+ o .

Table 3. Summary of Estimates of Typical and Lower Bound

Toughness Parameters for Hy-80 ard Hy-130 Steel
and Weldmetals at the LAST (30° F)

* s e e

. 15

A-1

.B-1




e TN P

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.
Figure 8.

LIST OF FIGURES

Summary of Kyq Measurements for Hy-80 Steel
and Krq Estimates Based on Ki., CVN, and
DTE Measurements, Atter, Shoemaker and
Rolfe(24), Barson(25), Puzak(26), and Goode
et al(27). The Source of CVN and NDT Data
are Identified in Figure 2. . . . . ¢ + ¢ ¢ ¢« ¢« « o &

CVN Energy and NDT Values for Hy-80 Steel
after Puzak and Babecki(29), Puzak(28),
Barsom and Rolfe(l4), and Babecki and Puzak(30) . .

Summary of Kjq Measurements for Hy-130 Steel and
Kig Estimates Based on Kio, CVN and DTE
Measurements, Atter, Shoemaker and Rolfe(24),
Barsom(25) and Pense(3l), and Puzak(32) . . . . . . .

CVN Energy Values for Hy~130 Steel Plates in
the "Weak" (WR) Orientation After Puzak(32) . . . . .

DTE Energy Values for the Hy-130 Steel Plates
of Different Thicknesses after Puzak(32). The
1 In., 1.5 In., 2 In., and 2.5In. DTE Values
Have Been Reduced by Factors of 8, 15, 22.6,
and 29 to make Them Comparable to 5/8 In. DTE
Values. The Fstimated NDT Temperature are
Obtained by Relating it to the Temperature
Corresponding to a 5/8 In. DTE of 100 Ft Lbs(19). .

Correlation between Corresponding CVN and 5/8 In.
DTE Values Measured on the Ductile shelf for the
Hy-130 Steels [Data of Figures 4 and 5 after
Puzak(32)]. The Scatterband Reflects the Approxi-
mate Nature of the CVN DTE Correlation and Indicates
that a DTE Value as Low as 300 Ft Lbs is Possible
for a CVN of 60 FE LbS., « ¢« o« o « ¢ ¢ ¢ o o o o o o

Lower Bound (in Terms of Toughness) 1 In., DTE
Curves from a Limited Sampling of Mil-11018
Welds Produced by the Portsmouth and NSRDC-A
Facilities after Pellini(33). The NDT Estimates
are Based on Correlation 8 (Table 1). . . . . . . .

CVN Curves for Hy-80 Weld D Metal for (A) Mil-B-88
Automatic Inert-Gas-Shielded Metal Arc Weld and
(B) M11-11018 Manual Weld Deposits. . . . . . . + . .

<11

12

13

14

16

17

o o enae = o~ e




v Aol o 5 i = Stk . .

{f LIST OF FIGURES
3 (Continued)

R
| Page

Figure 9. Envelope of 2 In. DTE Values for Hy-130 Type
GMA Welds After Lange(34,35). The NDT
Estimate is Based on Correlation 8 in Table 1 . . . . . 18

Figure A-1l. Summary of Data Comparing the NRL DTE Kic¢
Correlation(10-13). Results for A533B Are
From Reference 7 and 37 . . « ¢« ¢+ ¢ o « o« o o o o +» o« JA=2

Figure A-2. Proposed "Reference" Curves Relating Kiq and
Ky to the Temperature Relative to the NDT
After Pellini(20) and Hahn et al(7) . . . . « «. . . . .A-3

Figure A-3. Correlation of DWIT and Cy Data for All High
Strength Steels Tested. The Data is for
"Shelf Energies" i.e., at Test Temperatures
Where the Fractures are Fully Ductile, after
Goode, et @l(27). v . v ¢« 4 4 o 4 o o s 4 o e o o o » JA=5 .

Figure B-1. Schematic of the Structure of a Butt Weld
After Pellini and Puzak(35) . . . . . ¢« v ¢« ¢ « « « + .B=2

Figure B-2. Explosion Test of Model Simulating Restraint

of External Framing: Specimens and Weld Joint

Design (Left); Configuration of Explosion Test

Die (Right), and Observed Fracture Paths are

Identified in the Lower Section by the Letter

A and B. The explosive was Detonated on the

T-Frame Side of the Model. After Babecki and

Puzak(36) . . . &« & ¢ ¢ 4 v 4 ¢ s e 4 s s e s s s o « «B=3




ABSTRACT

Lower bound dynamic fracture toughness parameters for HY-80 and
HY-130 steel and their weld metals are identified. Specific values of the

parameters K_. and KIm obtained from direct measurements are reported to-

gether with 2gtimates inferred from the large body of Charpy energy, nil
ductility transition temperature and dynamic tear energy measurements. The
emphasis is on resonable lower bound values at 30° F, the lowest anticipated
service temperature, for use in elastodynamic analyses of crack growth
initiation, propagation, and arrest in ship structures. For these conditionms,
it has been found that the ratio KId/oY is approximately equal to 2 inchesl/2
for HY-80 steel. For HY-130 steel and the HY-80 and Hy-130 weld metals under
these same conditions, KId/oY 1s approximately 1 inchllz. Consequently, HY-

80 plate appears to be substantially more resistant to fracture under dynamic

loading than are the other three grades examined.




DYNAMIC FRACTURE TOUGHNESS PARAMETEKS FOR
HY-80 AND HY-130 STEELS AND THEIR WELDMENTS

by

G. T. Hahn and M. F. Kanninen

INTRODUCTION

Applications of dynamic fracture mechanics to treat crack growth
initiation, unstable propagation, and arrest can now only be made in conditions
where an elastodynamic analysis is applicable. Successful analyses have al-
ready been made of impact experiments [1, 2], nuclear pressure vessels under
thermal shock conditions [3, 4] and gas transmission pipelines [5, 6]. How-
ever, the ability to perform an elastodynamic analysis alone is not enough
to obtain results of practical interest. Values of the materials's resistance
to crack propagation--the dynamic fracture toughness parameters--must also be
available. Unfortunately, for the tough ductile materials used in most
engineering structures, these values are not easy to obtain.

The work reported here is part of a larger effort aimed at providing
a basis for crack propagation analyses in flawed ship hulls subjected to shock
loading. Previous work in this program has shown that elastodynamically de-
rived stress intensity factors can be used to predict crack growth initiation
and propagation under impact loads [l1]}. Hence, while further development of
the approach is still needed--e.g., to take direct account of crack tip plas-
ticity--it is possible to provide preliminary estimates to evaluate ship hull
performance by coupling these analyses with the material toughness parameters
for the HY-grade steels. This report takes a first step toward the acquisition
of suitable values for such analyses by means of a literature survey of the

fracture properties of HY-80 and HY-130 and their weld metals.
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BACKGROUND DISCUSSION

The analysis of crack growth initiation from a preexisting crack
in a structure and its subsequent rapid unstable propagation and arrest can
now only be effectively treated using elastodynamically determined stress
intensity factors. The stress intensity factor arises in the computed stress
field attending a crack tip. In general, it depends on time, the crack propa-
gation speed, the crack length, the external geometry of the cracked body, and
the applied loads. For a crack propagating in opening made conditions under
fixed external loading, an elastodynamic solution can generally be made, albeit
numerically, to determine the stress intensity factor in the form KI = KI (t,a)
where 2 denotes the instantaneous crack speed and t is time.

The criteria governing crack growth initiation and propagation can

be expressed in terms of K. and experimentally determined critical values that

I
are taken as material properties. First, for the onset of growth for a rapidly

loaded stationary crack
K; (t, 0) = Kig x) @)

where & denotes the time rate of change of the applied loading through the
consequent variation in the stress intensity factor. Like KIc’ the conventional
fracture toughness, KId will also be a function of temperature. Of course, for

quasi-static loading, K., is identical with KIc'

Id
The deformation state ahead of a propagating crack is generally dif-

ferent from that of a stationary crack. Consequently, the fracture property
associlated with a moving crack will differ from one that is not. The criterion

for a rapidly propagating crack takes the form

K, (¢, &) = KI a) (2)

D

where K in addition to being a function of temperature, is assigned a crack

1D’
speed-dependence to take account of the rate dependence. It is of some impor-

tance to recognize that the entire K (a) need not be known to perform

m " %
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an effective calculation. The minimum value of this function at a given

temperature - conventionally designated as K ~ will suffice in many instances.

Im
Equations (1) and (2), respectively, give quantitative criteria for

crack growth initiation and subsequent unstable propagation. A third such

relation is sometimes used for crack arrest which involves a statically com-

puted value of K; and an "arrest toughness" parameter K. . However, while

this approach can be useful as an approximation in someI:onditions, it is not
logically correct. Within the context of an elastodynamic approach, crack
arrest will occur when Equation (2) can no longer be satisfied. That is, a
propagating crack will arrest at a time ta when KI > KIm for all t > ta.
While it is true that under some conditions KIa is about equal to KIm’
it does not follow that such an approach is widely applicable. Rather, crack
arrest is properly viewed as the termination point of a general dymamic crack

propagation event for which the relevant fracture property is K

Im
Methods of measuring KId x), KID (a), and KIm have been devised

and efforts to produce ASTM standards for these tests are underway[gl. How-
ever, very few measurements of this type have so far been performed on the
HY-80, HY-100 and HY-130 grades of steel and their weldments. The main reason
for this is that the high toughness values displayed by these materials at

*
service temperatures call for prohibitively large LEFM~type test pieces .
The bulk of the evaluations performed by the NRL (Naval Research

Laboratory) and by industry rely on less costly measures of toughness: CVN-
(Charpy V-notch) energy, NDT-(Nil Ductility Transition) temperature and DTE
(Dynamic Tear Energy). These relative measures of toughness can be used to

obtain more-or-less approximate estimates of K , and KIm by way of a

Ic’ I(Id
number of empirical correlations identified in Table 1 and Appendix A. Of
these, the NRL DTE-KIc correlation, (Correlation No. 1 in Table 1) is probably
the most important because NRL relies on it to establish material toughness

requirements.

*

The logical extension of the ASTM E-399 fracture toughness test standard
size requirements to dynamic loading would call for the crack length and
thickness requirement a, B > 2.5 (KId/oyd)z, where oyq 1s the dynamic yield
stress. Accordingly, a test piece about 20 in. x 20 in. x 10 in. is needed
to measure shelf level toughness values, i.e., Kig = 200 ksi vIn of HY-80
steel (Jyq = 100 ksi /in).
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This report takes a first step toward defining the KId and KIm
values for the HY-80 and HY-130 steels and their weld metals appropriate
for dynamic LEFM analyses of submerged hull structures. The relative im-
portance of base metal, weld metal and HAZ (heat affected zone) is touched
oﬁ in Appendix B. The report surveys the limited number KId values obtained
from direct measurements, but draws the bulk of its KId and KIm estimates
from the larger body of CVN-, NDT-, and DTE-measurements. Since LEFM cal-
culations are likely to be concerned with "worst-case" conditions, the
emphasis is plased on reasonable, lower bound toughness values at the LAST
(lowest anticipated service temperature) which is 30° F for submerged shiphull
structure. These lower bound values are based on the specified minimum CVN-
and DTE~values listed in Table 2, and the trends displayed by representative
heats. 1In addition, the need for JIc and KIm measurements for base and weld

metals and further verification of the NRL-DTE-KIC correlation are identified.
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DYNAMIC FRACTURE TOUGHNESS PROPERTIES

. HY-80 Base Plate

Existing direct measurements and estimates of KId (KI - 105 ksi

vin. sec-l) derived from KIC-’
Figure 1. The CVN curves in Figure 2 illustrate that the NDT temperature

CVN-, and DTE-measurements are summarized in

for this grade corresponds roughly with the midpoint of the CVN energy trans-
ition. An estimate of the lower bound, the curve LB, just satisfies the
specified minimum CVN value (50 ft lbs at -120° F) and reflects the likely
temperature variation,
The CVN curves and the KId values inferred form them in Figure 1
(of the Correlations 4 and 5 in Table 1), illustrate that HY-80 displays
ductile, upper shelf-level behavior at the LAST. The KId estimates at the
LAST are derived from CVN and DTE measurements (Correlations 3, 1, and 5 in
Table 1). No crack arrest toughness (KIm) measurements have so far been
performed on HY-80; the estimates in Table 3 are based on the highest NDT
temperature and thetfgg reference curve in Figure A-2.
%vq
HY-130 Base Plate

Direct measurements of KId are produced in Figure 3, together with

KId estimates based on KIc (Correlation 2), CVN (Correlation 4) and DTE

3 (Correlation 1). Representative CVN and DTE transition curves are reproduced

» in Figures 4 and 5. These curves illustrate that HY-130 grade, like the
HY-80, displays ductile shelf behavior at the LAST.

The specified minimum CVN for this material (60 ft 1bs at 30° F)
provides one basis for estimating the lower bound KIc and KId values. The
corresponding DTE provides another. Since the correlation between CVN and
DTE is approximate, it further reduces the lower bound value of DTE associated
with the LAST to 300 ft lbs., This is illustrated in Figure 6. No crack arrest

- toughness measurements have so far been performed on HY-130 steel. The estimate '

of KIm quoted in Table 3 are based on the KIm reference curve in Figure A-2.
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TABLE 3. SUMMARY OF ESTIMATES OF TYPICAL AND
LOWER BOUND TOUGHNESS PARAMETERS FOR
HY-80 AND HY-130 STEEL AND WELDMETALS
AT THE LAST (30°F)

racertai Touganass Tplel  Loverbous
HY-80 NDT, °F -150 ~100
CVN, ft 1bs 110 90
5/8 in. DTE, ft 1bs ~ 800 420
Kp» kst in. 200-250 160(®
Kp4s ksi in. > 200-250 > 160®
Kp» ksi in. ~174 -143
MIL-11018 Type NDT, °F - ~-20
HY-80 Weldmetal CUN, ft 1bs - 42
5/8 in. DTE, ft lbs - 450 260
Koo ksi in. ~ 160 120
KId’ ksi in. - ~ 80
Kp» ksi in. - '~ 92
HY-130  NDT, °F -120 -60
CVN, ft 1bs : 60
5/8 in. DTE, ft 1bs 550 330
Ky » kst in. ~185§:; 135::;
Kp,» ksi in. ~185 > 135
Ky » ksi in. -229 L o-174
MIL-1405, GMA NDT, °F ~110 -60
Type HY-130
Weldmetal CUN, ft 1lbs - -
5/8 in. DTE, ft 1bs - 550 340
K. ksi in. - 175 140@
K g kst in. -175 140
KIm’ ksi 1in. ~220 ~ 174

A T 041 AT NS AT ol YL R T AL b

(a) based on DTE
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!

PUZAK(32). THE 1 IN., 1.5 IN., 2 IN., AND 2.5 IN. DTE VALUES HAVE BEEN
REDUCED BY FACTORS OF 8, 15, 22.6, AND 29 TO MAKE THEM COMPARABLE TO 5/8
IN. DTE VALUES. THE ESTIMATED NDT TEMPERATURES ARE OBTAINED BY RELATING
IT TO THE TEMPERATURE CORRESPONDING TO A 5/8 IN. DTE OF 100 FT LBS(19).
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FIGURE 6. CORRELATION BETWEEN CORRESPONDING CVN AND 5/8 IN. DTE

VALUES MEASURED ON THE DUCTILE SHELF FOR THE HY-130
STEELS [DATA OF FIGURES &4 AND 5 AFTER PUZAK(32)]. THE
SCATTERBAND REFLECTS THE APPROXIMATE NATURE OF THE CVN
DTE CORRELATION AND INDICATES THAT A DTE VALUE MAYBE AS

LOW AS 300 FT LBS FOR A CVN OF 60 FT LBS
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Weld Metals

The most telling toughness evaluations of HY grade weld metal--

weld metal and HAZ--are obtained using the explosion bulge test[28’29’36’37].

While this is a very severe test of performance, it has not been correlated

with absolute measures of toughness like KIc or KId' The only direct LEFM-
type tests are the few measurements of the COD for a HY-130 plate and HAZ
that have recently been reported by Pense(3l). These are converted to KId

estimates in Figure 3 (Correlation 13). Estimates of KId must be drawn
from the body of CVN and DTE measurements of weld metal which have been
developed by NRL. These studies show that, while HY-80 and HY-130 display
near ductile shelf-level behavior on the average, some lower bound values
fall in the transition range.

Figure 7 reproduces lower bound 1 inch DTE curves from a limited
sampling of welds produced by the Portsmouth and NSRDC-A facilities. This
set of results shows that the lowest value at the LAST is 260 ft 1lbs (5/8
inch DTE) for a vertical position weld. The CVN curves for this class of
weld metal, shown in Figure 8, indicate a lower bound CVN value of 42 ft 1bs
at the LAST for weldment just meeting the 20 ft 1lbs at -60° F minimum speci-
ficatio Figure A-3 indicates that 42 ft 1lbs (CVN) corresponds with about
2000 ft o inches, 1 inch DTE, or 250 ft 1lbs -5/8 inch DTE. This is in agree-
ment with the 260 ft 1b value mentioned above. Corresponding KId estimates
are listed in Table 3. The KIm value is based on the NDT estimate of Figure
7 and the KIm/cYd reference curve of Figure A-2.

Results for a large number of HY-130 welds of the Mil-140S weld
metal GMA type are summarized in Figure 9. The lower bound is an indication
of the poorest quality encountered in practice. These results are for 2 inch
DT specimens. Estimates of the corresponding 5/8 inch DT behavior are obtained

F(33) and reducing the energy by a factor of

by shifting the curve about 40°
22.6, These results suggest a lower bound of 340 ft 1lbs 5/8 inch DTE at the
LAST and a maximum NDT temperature of about -60° F. The 340 ft lbs value is
significantly lower than 500 ft 1lbs @ 30° F specified minimum for this type

of weld metal (see Table 2). The corresponding K. ., estimate (Correlation 1)

Id
and KIm estimate (Figure A-2) are listed in Table 3.
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FIGURE 9. ENVELOPE OF 2 IN. DTE VALUES FOR HY-130 TYPE GMA WELDS
AFTER LANGE(34,35). THE NDT ESTIMATE IS BASED ON
CORRELATION 8 IN TABLE 1
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DISCUSSION OF FINDINGS

The lower bound KI values for the HY-20 and HY-130 steel and weild

d
metals, listed in Table 3, tend to fall short of the toughness levels of
200 MPamllz ~ 300 MI’aml/2 that are usually associated with ductile, shelf-

level performance. This may be a consequence of the lack of direct measure-
ments for these materials near the LAST, which forces reliance on approximate
(and possibly conservative) DTE and CVN correlations, whose precision for HY-
grades and steels under high toughness levels is not well established. Some \
indication of the uncertainty connected with the NRL—DTE—KIc correlation can
be found in Appendix A.

Where minimum toughness levels are specified in terms of CVN-values,

the approximate nature of the CVN-DTE correlation tends to reduce lower bound

estimates of KId via DTE even further. The KIm estimates in Table 3 are !

particularly uncertain and speculative. No KIm measurements are available
for HY-grades that can be used to test the reference curve procedure. In

addition, the KI estimates do not reflect the rising resistance to fracture

with crack exten:ion (R-curve behavior). The positive K-dependence, which

adds significantly to load carrying capacity when such extension proceeds

with shelf-level toughness values, is also not included. Finally, the present |

lower bound estimates were obtained without: (i) the precise criteria, (ii) i

the statistical treatments of the data, and, in some cases, (iii) the sufficiently

large data base, which is essential for critical structural analyses. |
Bearing those limitations in mind, it is still instructive to note

that approximate lower bound values of K_,/o, are 2/in. for HY-80 steel and

1d" 7Y
1/1in. for HY-130 steel and the two weld metals. The 2¥in. K /o, value indi-

cates that a 4 inch thick plate of HY-80 satisfies the (YC) zgitzrion (essen- |
tially, leak-before-break at general yield), while a 1/in. value indicates
this criterion is only satisfied by HY-130 and the two weldments for 1 inch
thick plate. It would therefore appear that the HY-80 plate is substantially

more resistant to fracture under dynamic loading than the other three material

grades.
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i
i

The reliability of future calculatiions of hull-structure fracture
behavior under dynamic loading will be enha&ced by a better resolution of

the KId and KIm toughness parameters. Thiséwill require direct measures of
3
]

KId and KIm that can be used to calibrate DQE and CVN values at the LAST.

The task of measuring the very large KId ani KIm values is now greatly re-

duced because K, values can be derived frongIc measurements. These measure-

i

ments use small test pi:ces under an ASTM pr?cedure which is close to stand-

ardization. Since shelf level KId values arg likely to be 15-25% larger than

K. *, J_. values also offer lower bound esti%aces of K
Ic Ic ' . 1d.
More research is needed to define the KI dependence of these values,
i

but this should not be a formidable problem.! Crack arrest toughness values
can also be obtained from JIc since KIm = KI% on the shelf. Finally, J

¢ Ic

determinations can be combined with measuremeénts of the R-curve which offer
i

the possibility of describing stable growth &nd instability in addition to
1

the onset of crack extension. For weld metal% the existing test procedures

make it possible to measure 100 ksi in.ll2 < éIm < 150 ksi i.n.]'/2 in the
i

transition range. Such measurements are needeld to establish the reliability

b
of a KIm reference curve based on NDT or other%procedures for estimating K

Im
from more easily measured properties. %

i
¢

- e

%*

Compare shelf-level CVN values for staltistically and dynamically loaded '
specimens in Reference (14).
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CONCLUSIONS

A survey of dynamic fracture toughness properties suitable for
analyses of crack propagation in submerged ship hulls has been conducted.
This survey has concentrated on HY-80 and HY-130 steels and their weld metals
at 30° F, the lowest anticipated service temperature (LAST) for these materials.
The key findings of the survey are: ;
1. The HY-80 and HY-130 grades satisfying specified minimum
toughness requirements display ductile, shelf-level behavior i
at the LAST. Weld metals of these grades satisfying minimum

toughness requirements operate closer to the lower part of the

transition region.

2. A lower bound value of the ratio KId/oY is estimated to be
2 inchesll2 for HY-80 at the LAST. For HY-130 and both the
HY-80 and HY-130 weld metals, a lower bound value of this
ratio is about 1 inchllz*. It appears from these figures that
HY-80 steel is substantially more resistant to fracture under
dynamic loading than are the other three grades examined.

3. Lower bound KId estimates in Table 3 may underestimate the
toughness of the HY-steels and weld metals because of the
dearth of direct measurements of these quantities and comsequent
uncertainties in the correlations on which the estimates are
based. Lower bound estimates of the crack arrest toughness,
KIm in Table 3 are particularly uncertain and speculative be-

cause no measurements of this quantity are available for any

HY-grades. Direct measurements of KId and KIm are .

teasible and should be attempted. ‘

It can be concluded that criteria for "worst-case' lower bound toughness valdgs

should be established. These should be applied to statistical treatments of

the measurements to improve the definition of lower bound toughness values.

* This value is based upon plate purchase to a CVN-60 ft-1b requirement
and the CVN-DT Correlation in Figures 6 and A3. 1If the optional DTE
500 ft-1b at 0°F requirement is used, the minimum Ky4/0y ratio for the
plate would be 1.6 which 1is close to a general yield condition for
2 in.-plate.

< _ _ BRI SR o A~ L




Also, measurements of shelf value JIC and JR curves should be performed with

the aim of improving and validacting the NRL DTE-KIC correlation and to provide
more reliable, lower bound estimates of KId and KIm' Finally, the crack arrest
toughness properties of weld metals with toughness levels close to the specified

minimum should be measured at the LAST with the aim of establishing a suitable
estimation scheme.
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APPENDIX A

CORRELATIONS BETWEEN FRACTURE TOUGHNESS
PARAMETERS AND DTE, NDT, AND CVN

The reliability of different correlations between LEFM fracture
toughness parameters and DTE, NDT, and CVN values is examined in detail in
Reference 10. Some points, which are not treated in that reference, but

are important in the context of this report are discussed below.

s’

Correlations with DTE

The data, which were used to construct the NRL DTE—KIc correlation

are identified in Figure A-1. Relatively few measurements were originally
performed on medium strength steels in the transition range. The KId portion

. of the curve was constructed later, and is based on DTE values at the NDT,
. - (19]
and the assumed relation KIdloYd 0.5 in.

curve for the A533B steel is based on 5/8 in.-DTE measurements performed at
NRL[37], and KIc
Reference 7. The K, wvalues predicted by the A533B curve are about 20-30%

Ic
smaller than the one obtained from the NRL curve. To be conservative, the s

» Which is approximate. The

measurements on a number of (different) heats of [533B in

A533B curve is used to estimate KIc and KId values on this report.

Correlation with NDT 1

The concept of indexing the toughness transition curve to the NDI
temperature, which has been championed by Pellini, is widely used. Recently,
Pellini has proposed a K
to the NDT[ZOI
relative temperature (T-TNDT). Since the fracture toughness at the NDT-

]

made here to make it more general by expressing the relation in terms of KId/OYd'

with the value of this ratio (KId/oYd)NDT = 0.6/in. The resulting reference

curve is shown in Figure A-2. Estimates of KI

reference curve for medium strength steels indexed

Id
. Pellini's curve relates the absolute toughness, KId’ to the

temperature is believed to vary with yield strength[l8 , an attempt has been

d based on the upper bound NDI

it atin e - I R . i Tt S A OON B
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FIGURE A2. PROPOSED "REFERENCE" CURVES RELATING K14 AND Kim TO THE
TEMPERATURE RELATIVE TO THE NDT AFTER PELLINI(20) AND
HAHN ET AL(7)
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and obtained in this way are included in Figures 1 and 3. The same reasoning
[7]. The
K. /o reference curve shown in Figure A-2 is based on K values one stan- -
Im Yd (7] Ia
. It should be noted that while this

method of estimating KIm is unproven, and speculative, it is the only approach

has been used to generalize KIa measurements performed on A533B
dard deviations below the average
currently available for estimating crack arrest toughness values.

‘ Estimates of oYd were obtained using the approximation o
‘ 25 ksi, where o

va~ %"+

is the conventional yield stress and o, , is the yield stress

1 3 -1
for rates of straining ep = 10~ sec .

Yd

Correlation with CVN

A correlation between shelf level CVN and DTE values developed at
NRL[27] is reproduced in Figure A-3.
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APPENDIX B

WELD STRUCTURE

The toughness of the HAZ (Heat Affected Zone) of a weld (B-1l) can
be lower than that of the base metal or the weld metal (see Figure B-1).
However, because the HAZ is usually narrow, and the weld tapered, a crack
initiated in the HAZ of the butt weld will tend to propagate into the base

metal or the weld metal. Examples of this for a T-frame attachment are

ke diain ki,

illustrated in Figure B-2. Explosion bulge tests provide further verification
that the HAZ does not provide an easy path for a fracture. These considerations
provide justification for focusing on the base metal and the weld metal and

neglecting the HAZ in lower bound toughness assessments of welded structure.
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FIGURE Bl. SCHEMATIC OF THE STRUCTURE OF A BUTT WELD AFTER
PELLINI AND PUZAK(35)
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FIGURE B-2. EXPLOSION TEST OF MODEL SIMULATING RESTRAINT OF EXTERNAL
FRAMING: SPECIMENS AND WELD JOINT DESIGN (LEFT); CON-
FIGURATION OF EXPLOSION TEST DIE (RIGHT), AND OBSERVED
FRACTURE PATHS ARE IDENTIFIED IN THE LOWER SECTION BY THE
LETTER A AND B. THE EXPLOSIVE WAS DETONATED ON THE T-FRAME
SIDE OF THE MODEL. AFTER BABECKI AND PUZAK(36) .




