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ABSTRACT

The conversion efficiency of parametric amplification
in fluids is 1low because of the 1low dispersivity. A
discontinuous change in phase velocity at the boundary of a
waveguide 1introduces dispersion, which in turn affects
conversion efficiency. It is the purpose of this thesis to
develop from first principles an analytical model which may
be used to numerically predict the conversion efficiency of
a flat-plate, acoustic waveguide given the physical
parameters of the system.

To quantify weak, finite-amplitude 1nteractions in the
guide, the linear behavior of the system is analyzed using
Green’s functions. Once the linear characteristics. have
been determined, nonlinear phenomena are investigated, both
analytically and numerically via digital computer graphics.
The physical parameters in the numerical examples are chosen
to correspond with materials wused in previously published

experimental work using cylinders rather than flat plates.
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Chapter I

INTRODUCTION

The interaction

1.1 Parametric Arrays

Rl At

According to linear acoustic theory,

a disturbance in an isotropic,

governed by the linear wave equation:

2
__a__2_)¢ = (
ot

2 -2

(1-1) (V2 = ¢y

of finite-amplitude acoustic

parametric and conventional linear transducers.

homogeneous

waves 1in

layered media differs significantly from free-field
behavior. In order to 1Investigate these differences, the
properties of nonlinear acoustic wave interactions in
unbounded media must first be considered. In order to
) address this issue, therefore, the thesis begins by
comparing the relative advantages and disa&vantages of

the propagation of

medium 1is




2

2

2 -2 3
where the Laplacian V° and the term o 3eZ operate linearly
on the the velocity potential ¢+ Hence, the spectrum of any

wave mwmust remain constant as the disturbance propagates
through the acoustic mediume In order to obtain Equation
(1-1), all second- and higher-order terms of the velocity
potential have been neglected. Whether this 1is a "safe"
assumption or not depends on the value of the acoustic mach
number € and the absorption characteristics of the medium.1
In an inviscid fluid, nonlinearity plays a role at any value
of €. Moreover, in a viscous £fluid, €=0.1 1is the 1limit
above which second-order theory begins to fail.

The governing finite-amplitude wave equation with
second-order terms included is given in Chapter IIl. It is
sufficient to note here, that the distortion of a
propagating waveform and a consequent change in its spectrum
as a function of range are described by these terms. For
example, an initially monotonic, finite-amplitude
disturbance of frequency U)l in a 1lossless medium will
eventually become a sawtooth wave, the spectrum of which

contains all harmonics of the sinusoid. The growth of these

le=3, where u is the particle velocity, and ¢ 1is the
small signal speed of sound.

2A more viable measure of the manifestation of
nonlinear behaviour 1in a lossy medium 41is provided by the
acoustic Reynolds nunber which, for plane waves, assumes the
form T=8ck/a which gives a ratio of nonlinearity to
absorption (viscosity) 1loss per wavelength. If T >1, then
nonlinear effects become dominant. See also Rudenko and
Soluyan, p. 11.
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nonlinearly generated components i{s at the expense of the
amplitude of the fundamental (energy 1is, of course,
conserved in a inviscid fluid) as shown in Figure 1 for the
case of an initially monotonic wave in an inviscid
dispersionless fluid.

For the <case of an initially bifrequency waveform
(frequencies tul and wz), not only are harmonics of each
fundamental generated, but interaction between the two
fundamentals produces intermodulation components as well.
Figure 2 schematically depicts the growth and decay of
several <components with range. Increased absorption at
higher frequencies is reflected in the sketch where the
lowest possible spectral component, the difference frequency
w_, continues to propagate after the higher frequencies have
been absorbed. Thus, the medium has the effect of a low-
pass filter.3

The term '"parametric array” refers to the finite-
amplitude generation of these 1intermodulation frequency
components by a bifrequency source. The ™length" of the
array refers to the region of interaction within which
energy 18 transferred from the primary waves to the
nonlinearly generated components.

Parametric arrays are highly directional. For example,

the half-power beamwidth of a nonlinearly generated
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6
difference frequency 1s considerably narrower than 1f
generated directly by a conventional piston projector

radiating at the same frequency; i1.e., in order to produce
the same beamwidth conventionally, a much larger transducer
aperture would be required.

However, a major factor inhibiting more extensive use
of parametric arrays 1s their 1low conversion efficiency.
"Conversion efficiency" refers to the ratio of energy
transferred to the difference-frequency component versus the
amount of energy 1initially entering the system via the
primary waves. In a nondispersive fluid, transferred energy
is divided among all nonlinearly generated components, only
a small fraction being supplied to the difference frequency.
However in a dispersive medium where phase velocity 1is a
function of frequency, some components will dinteract
resonantly, thus increasing in amplitude with range, while
others will be exclted asynchronously producing the spatial
beating effect described in Chapter 1IV. Under such
circumstances, a limited amount of energy will be
transmitted to those components which are nonresonantly
excited, since thelr amplitudes never exceed a maximum value
where synchronous 1interactions are limited only by the

initial strength of the primary fields.

IS St
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l.2 Statement of Problem

As stated above, a dispersive medium is one in which
the phase velocity of a monotonic disturbance is a function
of frequency. Dispersion may be "medium-induced" (e.g., via
internal relaxation mechanisms or inhomogeneities such as
air bubbles in water or embedded in rubber) or "boundary-
induced", the latter resulting from discontinuities in
density and bulk speed of sound at the interfaces between
two media.

Figure 3 depicts a three-layered acoustic medium where
the discontinuities at x=a and x=0 represent the boundaries
of a flat-plate waveguide (medium II). Some of the energy
entering medium II will be internally reflected at the upper
and lower interfaces as it propagates in the positive z-
direction. It will be shown that the speed at which this
trapped energy propagates through the guide depends not only
upon which mode it is in, but also upon the frequency of the
disturbance. Therefore, if parametric interaction occurs 1in
a waveguide, where dispersion is 1induced by the boundaries,
certain spectral components will interact resonantly while
others will be asynchronously excited.

It 1is the purpose of this 1investigation to develop
expressions which may be used to analytically determine the

extent to which the boundary-induced dispersion of a

waveguide can enhance the conversion efficiency of certain
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9
nonlinearly generated frequency components, namely, the sum
and difference frequencies. The {investigation is conducted
in two distinct parts., First, exact analytic expressions
are derived to clearly define the dispersive relationships
of an acoustic, slow waveguide sandwiched between two semi-
infinite media of arbitrary characteristic d{impedances.
Second, once these relationships are established, the
effects of dispersion on specific nonlinearly generated
intermodulation components can then be evaluated for various
physical systems. To make this evaluation, expressions for
the sum and difference frequency velocity potentials of an
initially bifrequency wave are found via the derivation of
Green’s functions.

It should be noted that the equations representing the
velocity potential for the sum and difference frequencies
inside the guide (see Chapter 1III) contain terms which grow
linearly without bounds as the wave propagates through the‘
waveguide. These components, which are referred to as
"secular terms", occur for the case of resonant interaction
in a lossless medium. This physical 1inconsistency 1is
heuristically explained in Chapter IV. However, to define
the bounds of resonantly excited components, constrained
perturbation theory may be applied to the problem (e.g., the
method of strained parameters),6 a task that remains a
future research objective.

- - - - - - - - - - - -

6A.H. Nayfeh, Perturbation Methods (New York: Wiley-
Interscience, 1973), Section 3.1.




1.3 Theoretical Framework

The sketch shown in Figure 3 represents a flat-plate,

"a"

acoustic, slow waveguide (medium II) of finite thickness
sandwiched between two semi-infinite, homogeneous, fluid

half-spaces of arbitrary characteristic 1impedances p and

1°1
P3Cq» where p denotes density and ¢ denotes phase velocity.
The fluid-fluid interfaces at x=0 and x=a extend infinitely
in the positive and negative y-directions and seni-~
infinitely in the positive z-direction. The term "fluid" is
used in this context to describe a medium having a shear
modulus low enough to neglect the effect of shear waves,
thus permitting only compressional wave propagation to be
considered. Gases, most liquids, and some silastic rubbers
exhibit this property. It is also assumed that the free-
field phase velocity 1in medium 1II, i.e., the sandwiched
layer, is less than that in either medium I or III. Without
loss of generality, it is assumed that

(1-2) c,>c,>c 5

3-"1" "2

where ¢y (i=1,2,3) represents phase velocity in medium "i".

As shown in Figure 3, the wavenumber vector Ei normal

to the plane wavefront is decomposed into transverse and

axial components (Ki and Xy respectively) such that

= 12 w2 2 2
(1”3) |ki| (ci) Ki + xi ’
R T
2 4




where w represents angular frequency (w=27f) » The
horizontal y-component 1s assumed to be zero; hence, the
investigation is a two-dimensional problem. The governing
Helmholtz equation for a harmonic field exp(-iwt) in medium

II is

2 ¢ = 0 s

2

where the Laplacian V 2 in rectangular coordinates 1is given

by:
2 2 3

(1-5) 2.8 W8 -
9x 9z ' 3y

and the velocity potential in the frequency domain ¢, is

(1-6) v = §¢w(x,z) exp(-iwt)

or

(1-7) v, = Vo, (x,2)
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Notice that the unit vector in the z-direction 1 in Equation

(1-8) is not related to the free~space wavenumber vector k

in Equations (1-3) and (1-4).

1.4 Literature Review

Nonlinear wave interactions in a dispersive medium have
been investigated by Nayfeh and Tsai7 in order to evaluate
the nonlinear effects of the gas and lining material in a
duct. They determined a third-order uniform expansion using
the method of multiple scales8 to analyze the nonlinear
effects on the propagation and attenuation of all existing
modes in a two~dimensional, hard-walled duct lined with an
acoustical material. Vaidya and Wang9 utilized a second-
order expansion to determine the spectral energy transfer in
a lined hard- or soft-walled duct. Both of the above
investigations were primarily concerned with nonlinear

effects on attenuation of a fundamental wave.

£
7A.H. Nayfeh and M. Tsai, "Nonlinear Acoustic
i Propagation 1in Two-Dimensional Ducts," Journal of the
Acoustical Society of America, 55 (1974), 1166-1172.

8A.H. Nayfeh, Perturbation Methods (New York: Wiley-~
Interscience, 1973), Chapter 6.

‘ 9P.G. Vaidya and K.S. Wang, "Nonlinear Propagation of

Complex Sound Fields 1in Rectangular Ducts, Part I: The
‘ Self-Excitation Phenomenon," Journal of Sound and Vibration,
4 50 (1977), 29-42.
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Acoustic parametric amplification has been suggested by
Ostrovskil and Papilova,lo who investigated the
amplification of a fundamental wave in an acoustic waveguide
by 1injecting the second harmonic and utilizing the
dispersivity of the guide to prevent higher-order
interactions. This work was again limited to rigid or free
boundaries.

For linear sound propagation, directivity enhancement
of a conventional Eircular aperture transducer via an
acoustic slow waveguide (e.g., silicone rubber immersed in
water) has been observed experimentally by Rogers and
Trott11 and investigated numerically by King.1

Ryder, Rogers, and Jarzynski13 experimentally and
numerically investigated the radiation of a nonlinearly

generated difference frequency in a silicone rubber cylinder

of finite length. However, their results are so completely

- e - . - - -

10L.A. Ostrovskii aund 1.A. Papilova, "Nonlinear Mode
Interaction and Parametric Amplification in Acoustic
Waveguides,™ Soviet Physics-Acoustics, 19 (1973), 45-50.

11

P.H. Rogers and W.J. Trott, "Acoustic Slow Waveguide
Antenna," Journal of the Acoustical Society of America, 56
(1974), 1111-1117.

12B.J. King, "Numerical Investigation of an Acoustic
Slow Waveguide," Journal of the Acoustical Society of
America, 62 (1977), 1389-1396.

13JLD. Ryder, P.H. Rogers, and J. Jarzynski, "Radiation
of Difference-Frequency Sound Generated by Nonlinear
Interaction in a Silicone Rubber Cylinder," Journal of the
Acoustical Society of America, 59 (1976), 1077-1086.

s
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dependent on numerical analysis that no phenomenological

predictions can be based on it.

1.5 Outline of the Analytical Approach

To derive Green’s functions for the problem under
consideration, the linear response of a three-layered medium
to a sinusoidal point source of unit strength in medium II
is deduced. The solutions thus obtained which are expressed
in wavenumber space are then transformed into frequency

space via complex 1integration techniques. The exact

integral includes contributions from complex as well as real

poles. However, as discussed 1in Chapter II, only real
poles, which represent trapped energy, are considered. It
is these discrete values of the axial wavenumber that define
the dispersion of the waveguide for guided modes.

Distortion due to nonlinear wave interactions 1in the
medium is represented by second-order terms of the acoustic
wave equation given in Chapter III. For "weak"
interactions, these second-order terms combine to form a
forcing function which may be treated as a source
distribution. The analytical form of the source
distribution 1s convolved with the GCreen’s functioms to
yield the sum- or difference-frequency velocity potential in

medium II for guided modes.

By o
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Finally, making use of the derived solution, various
characteristics of the nonlinearly generated sum and

difference frequencies are investigated via computer

graphics techniques as outlined in Chapter 1V,




[

Chapter 11

GREEN’S FUNCTIONS

2.1 Definition

In general, the Green’s function represents the
solution of a partial differential equation for a harmonic
source of unit strength satisfying specified ©boundary
conditions. As stated in the introduction, the behavior of
free, dilatational waves in an acoustic medium is governed

by the Helmholtz equation
(2-1) @ +idyy =0,

where ¢w represents the velocity potential in the frequency
domain. Consider a point source of unit strength at a point
(x“,z°) in medium II (i.e., 0<x’<a, 0<z’) oscillating with
the same frequency as above. The governing equation

describing the acoustic field at (x,z) in medium II is given

by

(2-2} P+ 6 (x,zx"2") = =6 xx")8(z-2")
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where Gw(x,zlx',z’) represents the Green’s function and the
Dirac delta functions on the right-hand side are defined to
be zero everywhere except at the point x=x", z=z" where the
amplitude becomes 1infinite but the magnitude (or the area
under the curve) 1s unity. Mathematically, this can be
expressed by the Dirac delta function:

(2-3) a) 6(x)=0 x#0

b) S(x)dx=1

-0

Likewise, it can be shown that;

<o

(2-4) f(x)8(x)dx = £(0)

The Green’s function Gw(x,zlx',z') can thus be thought of
as the normalized response at an observation point (x,z) to
a point source of unit strength at (x",z"). It is then
obvious from Equation (2-2) that the Green’s function will
be independent of a particular source distribution since the

right-hand side of Equation (2-2) represents a point source.

2.2 Velocity Potential in Terms of Green’s Functions

If a volume source distribution qu(x,z) at frequency

exists 1in medium I1, the wave -equation assumes the

inhomogeneous form

Mgty o e e X, TR
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(2-5) (72 +1%)4 (x,2) = =5 _(x,2)
W

From the theory of 1linear differential operators, the Fi

solution of Equation (2-5) 1in the guide is given by the

convolution of G, and &0:14

zZ a

(2-6) ¢, (x,2) = S (x',2') G (x,z|x',z")dx'dz" .
w w
00

The above solution is valid for guided modes only, which are

discussed later in the chapter.

The power and versatility of wutilizing Green’s
functions may Dbe seen 1in the above equation. Once
Gw(x,zlx',z') has been determined for a particular medium
with specified boundary conditions; then, the response to
any source distribution may be obtained via convolution.
] During the remainder of this chapter, expressions for ]
Gw(x,zlx',z') will be derived.

The first step 1in the analysis 1is to transform
Gw(x,zlx',z') into wavenumber space. In this manner,

Equation (2-2) becomes an ordinary differential equation

rather than a partial differential equation. The method of

b 1
; separation~of-the~variables then yields the assumed form for

the transformed Green’s function, the coefficients of which

! are obtained by matrix inversion (or, in this instance, via

.IAC. Lanczos, Linear Differential Operators (London:
D. Van Nostrand Co. Ltd., 1961), pp. 206~314.
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Cramer’s rule). An inverse transformation from wavenumber
space to real space, achieved via residue theory, then

gives the Green’s function for medium II.

2.3 Derivation of GX

As stated above, the Green’s function satisfies the

following equation:

d2 2
(2-7) (5;7 + k) Gx = =8(x-x")exp(-iXz") .
where
(2-8) G, = cx(xlx',z') = | 6,(x,z|x",z")exp(~iXz) dz
-

Equation (2-7) 1s a one-dimensional wave equation to
which the following boundary conditions characteristic of a
fluid-fluid interface are applied:

a) continuity of pressure at x=0,a,x’

b) continuity of normal velocity at x=0,a

c) discontinuity of normal velocity at x=x".
Since Equation (2-7) 1s homogeneous everywhere except at
x=x’, then GX may be treated as a velocity potential.

Hence, the boundary conditions become:




XL, X
AT Py 3¢
oG oG
i _ 2%
(2-9) b) -5x—1 = x—] ;
5. |*'*C
¢) limit °°X
>0 9x

wherep is density in medium "i",
i

implied in condition (c) is a

point source. It is assumed
medium II (i.e., Ofx'fa and
extent of the media along

assumed to propagate in the

reflected (i.e., backward-going) waves are admitted.

transverse direction, energy

the interfaces producing

represented as

positive and negative x-direction.

semi-infinite

z~axis. The appropriate

interfering plane

surrounding media

algebraic

; at x=0,a,x' for i,j=1,2,3

at x=0,a for i,j=1,2,3

= -exp(-iXz')

I

The discontinuity at x

consequence of the nature of a

that the point source lies in

0<z')'

Due to the infinite

z-axis, plane waves are

positive z~direction since no

In the

in medium 1II is reflected at
standing waves which are
waves propagating in the

Energy escaping into the

propagates away from the

sign 1is chosen to

The free-space

describe waves which decay to zero at x=+ =,

1 wavenumber may be deconmnposed into 1its horizontal and

{ vertical components using the following relationship:
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- - 2 . 2 2
(2-10) k, = 2 -\/.ci + x2 ,
i
where
K;=transverse wavenumber in medium viv,
and xi=axial wavenumber in medium "i"

Applying the method of separation-of-the-variables to
evaluate Equation (2-7) in the various regions defined in

Figure 3 produces the following solutions:

(2-11) a) x>a : GX=Alexp(iK1x)

. 1 - = = -
b) a>x>x : GX Blexp(mzx) + Bzexp( 1|<2x)

' . = : -
c) x'>x>0 : GY Clexp(lxzx)-i-czexp( 1s<2x)

"

GX = Dzexp (—ix3x)

where the coefficients Al, BI’

physical properties of the media. As stated above, the sign

BZ’ Cl’ CZ’ and D2 depend on
convention for the exponents in GX is chosen to avoid
sources at x=+ o, assuming harmonic time dependence

exp (-iwt). It should also be noted, that in order to

preserve continuity of the wavefront across the boundaries,

the axial wavenumbers, Xi , must be the same for all three

media:

-
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(2-12) xl=x2=x3"x .
k
Applying the ©boundary conditions given 1in Equation 4

(2-9) to the above system yields a set of six linear

equations:

a) plAlexp(ixla) =szlexp(ixza)4-szzexp(-ixza) !

. ' s - i
b) szlexp(lxzx )-+p2B2exp( 1x2x') pZClexp(ixzk') +

-. '
pzczexp( ik,x ) .

€} ppCyteCy=eaDy, o, d
(2-13) d) KlAlexp(iKla)==K231exp(1K2a)-<232exp(—ikza) , 4
e) iKZCl - ii<2C2 = -in<3D2 , and

x') + ik, B exp(-ix x') + ik, C exp(ik,x") -

£) —iKzBleXP(iK 28, 2 21

2 2

iKZCZexp (-i(zx' ) =exp(-ixz")

The solution may be obtained via Cramer’s rule as applied to

the matrix equation shown on the next page [Equation

(2-14) ]o




(,2XT-)dxa

r
0

(y1-7) uotrienby

A.xmyﬁlvmonyﬂl A.xmyﬂvaxwwyﬁ A.xwyﬁlvmxmwuﬂ A.xmyﬁvmxmmyﬂl 0 )
Cx- Cx 0 0 0
0 0 Ammyﬂlvaxmmu Amuyﬂvmwaul Amﬂyﬁv&xmay
¢ ¢ 0 0 0
A.xNyﬂnvaxwl A.xmyﬂvaxwl A.xmyﬂlvaxw A.xmywvaxm 0
0 0 Ammyﬂlvuxmmo..Amuyﬁvaxmma..AmHyﬁvawaa
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Expressions for the six coefficients Al’ Bl’ 32’ Cl’

involve a ratio of sixth-order determinants. A

CZ, and D2
computer program named SYMLEQ (PSU Computation Center)
performs the algebraic manipulations required for the

solution of the matrix equation AX=B, where elements of the

matrices A and B may be algebraic symbols or numeric
constants. A discussion of the algorithm and general
guidelines for the use of SYMLEQ are given in a PSU program
guide.15 Solving Equation (2-14) (via SYMLEQ) for Al’ Bl’

c and D, and substituting into Equation (2-~11)

Bys C 2

1’ 2?

leads to the following expressions for Gy in each region of

the transverse plane:
Region I, x>a:

[Eexp(ixzx')-Fexp(-ikzx')]
AKZW(X)

(2-15) GX = 2exp(-ixz')exp(iKl(x-a))

15H.D. Knoble, '"Solution of Simultaneous Linear
Equations Involving Matrices Whose Elements are Symbolic
Multivariate (Complex) Polynomials" (Program wuser’s guide,
The Pennsylvania State University Computation Center, 1971).




Region IIA, a>x>x":

[Aexp(-ixz(x—a))4-Bexp(1x2(x-a))]e#p(ixzx') +
AKZW(x)

(2-16) Gx = exp(-ixz')

[Cexp(—ikz(x-a))-+Dexp(ixz(x-a))]exp(-ixzx')
szy(x)

Region IIB, x“>x>0:

{[Aexp(-iKz(x'-a))-+Bexp(irz(x'-a))]exp(ixzx)-+

(2-17) G =
X 4k, ¥ (x)

exp(~-ixz")

[Cexp(-iKz(x'-a))-+Dexp(iK2(x'-a))]exp(-ixzx)}
AKZW(x)

Region III, x<0:

(2-18) ¢ x)[GexP('iKz(x"a))'-Hexp(ixz(x'—a))]

= 2exp(-ixz')exp(-ik
X P T, ¥ 00

where the following substitutions have been made in order to

simplify the functional form of the coefficients:

Let
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(2-19) a=p, K1¥3 e=p, K2K3
= 2 2 2
b=p Py ko3 £=p,y05%,
c= 2 K =p 3
P2 P3%1%2 8Py X1
- 2 _ 2 2
4=01P2P3%) h=ppyxy .
Then
A = -a+b+c~d E = e~f
B = a+b-c-d F = e+f
(2~20) C = a-b+c-d G = g-h
D = -a-b-c~d H = g+h
Hence, the function Y(X) is given by:
i
(2-21) ¥(x) = (i/2)(Aexp(iK2a)- Dexp(—ixza))

= (a+d)sin(nza)4-i(b+c)cos(mza)

’

Note that when

thickness of

al

occurs in

the exponent,

it refers to the

the waveguide,

not

the variable

in Equations

(2-19) and (2-20).

Notice
transformed
4 assumed tha
have been
Equations
3 P

l= QZ- p3=1.

-

published work in the field of

that Equations (2-15)-(2-18) represent the
Green’s functions for medium II since it was

t 0<x"<a. Green’s functions for media I and III

similarly derived and are given in Appendix C.

(2-15)~(2-18) are 1In agreement with previously

optics 1if it is assumed that
16
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2.4 Inverse Transformation of G

X

The Green’s functions in the frequency domain
qu(x,zlx',z') are now found by taking the inverse Fourier
transform of G

X H

(2-22) Gw(x,zlx',z') =-§; GX(x|x',z')exp(in) dx

Due to the complex nature of X, the integration extends over
the entire complex plane. The residue of GX at all of its
poles must be determined in order to evaluate Equation
(2-22) via Cauchy’s Residue Theorem. However, as will be
discussed, the contributions from certain poles are
neglected.

The poles of GX form a discrete spectrum of values of
the axial wavenumber X. Real poles are associated with
propagating modes. It 1is these modes which transport most
of the energy through the waveguide. Complex poles give
rise to leaky wave modes which are more thoroughly discussed

by Kapany and Burke,l7 and by Marcuse.18 Leaky modes are

- - - — - — -

16C.C. Ghizoni, J.M. Ballantyne and C.L. Tang, "Theory
of Optical-Waveguide Distributed Feedback Lasers: A Green’'s
Functions Approach,”" IEEE Journal of Quantum Electronics, 13
(1977), 843-848.

17N.S. Kapany and J.J. Burke, Optical Wavezuides, (New
York: Academic Press, 1972), pp. 24-34.

18y, Marcuse, Theory of Dielectric Optical Wavepuides,
(New York: Academic Press, 1974), pp. 41-46.
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those which continually radiate power from the guide as they
propagate down the duct thus being rapidly attenuated.
Finally, in the &extreme case, imaginary poles represent

evanescent modes whose amplitudes decrease exponentially

with range. The effects of evanescent modes and leaky wave
modes are thus confined to ranges very near the source.
Hence, considering only propagating modes (or those for
which X 1is real) and ignoring nearfield effects permits the
integral (Equation (2-22)] to be approximated as a sum of
residues of poles on the real axes only.

The real; ;xial wavenumber X may range anywhere from
zero to infinity for each frequency. Since it 1is assuned

that ¢ ch>c2, then the free-space wavenumbers are related

3

<k,<k,. Also, from Equation (2-10), the magnitude of

by k 1 2

3

the transverse wavenumber in medium “1i° is given by:

(2-23) k= fk.-x2 5 1=1,2,3

For X in the range O0<X<k all transverse wavenumbers Ki

3!

are real and it can readily be seen from Equation (2-11)

that this represents a radiation mode. For x 1in the range
k3§x5kl, the transverse wavenumbers K1 and Ky are real,
whereas Ky is pure imaginary. Hence, this mode, which is

confined to media I and I1 with energy decaying
exponentially in medium 111, is therefore called a substrate

mode. For k1§ka2, as seen from Equation (2-23), Kl and K3

Y RO
ENA TN

P
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are imaginary and X, is real so that all eaergy propagating
under these conditions is restricted to medium 1II, hence,

the term guided mode. Propagation of guided modes 1is

characterized by total internal reflection at both upper and
lower interfaces. Finally, for kaz’ all transverse
wavenumbers are imaginary so that no propagating wave can

existe. The term evanescent mode is used to describe this

condition under which all energy decays exponentially in the
direction of wave propagation. Regions for each mode type
are deéicted in Figure 4 which shows the relationship

between angular frequency w and axial wavenumber X.

2.5 Discussion of Poles of GX

In order to evaluate the integral defined by Equation
(2-22), it is necessary to locate the poles of the integrand
and evaluate the residues. Since GX= F(x)/¥(x) the roots of
the equation ¥Y(x)=0 define the poles of GX. Setting the
function Y(x)=0 results in the following transcendental
equation:

... -i
(2-24) o Can(xza) = 1(9293K1K2 i ZIOZKZKB
~ &GPP3 TR MR

where the transverse wavenumbers are given in Equation

(2-23). Equation (2-24) has two possible solutions for real

ppees L. s < s ——— i e - et e o

S e e T TR R i T 8
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X: either g K and «

1’ 2 3

and K3are imaginary.

does not

are
real and Kl

former case permit a propagating wave

1 and K3

that is, X is in the range kISXSkz.

Hence, for real X%, K

only guided modes may propagate

shown in Figure 4. The transverse

redefined to satisfy the above conditions:

(2-25) K= 1K1m
“27 “im
Ky=ika
where the subscript "m" denotes mode number

indicating a positive, real quantity.

magnitude of the argument of the tangent

(i.e., Kza), Equation (2-24) has '"m" roots

frequency, where the nth pole, +X ,

transcendental equation obtained by substituting

(2-25) into Equation (2-24):

PP K, K +P.P,K, K
(2-26) 23 Im2m "1 2 2m 3m

tan(xzma) =

2
Dlp3K2m ) K’lmK3m

all pure imaginary, or K

As discussed earlier,

are imaginary with «

wavenunmbers

Depending on

for any

31

9 is

the

to exist.

2 real;

Under these conditions,

as previously discussed and

may be

as well as

the
function

given

satisfies the following

Equation
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It is possible, when dealing with a ratio of functions, for
a zero to cancel a pole and thus eliminate the apparent
singularity. This is the case for one root of Equation
(2~26); in particular xm=k2, which is discussed in Appendix
B (see Plane-Wave Mode).

Now, the integrand of Equation (2~22) is more simply

expressed in the following form:

(
(2-27) Gw(x,zlx',z') =§%- J Gx(x?x',z')exp(in) dyx
(cn
= FXx) P
J Y (x) exp(i(z-z')x)dx

where the function F(x) may be deduced from expressions for

GX given in Equations (2-15)-(2-18) and VY¥(x) is defined in

Equation (2-21).

2.6 Contour Integration

As previously stated, the poles of interest lie on the
real axis. By <convention, the time factor has been chosen

to be exp(-iwt). Therefore, real poles greater than zero
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correspond to waves propagating in the positive z-direction.

All physical problems involve at least a small amount of
damping which 1is accounted for by including an i{imaginary
term, of appropriate algebraic sign, in the axial
wavenumber. It 1is apparent that for waves propagating in
the positive z-direction (i.e., for 2z>z"), the imaginary
part of Xm must be greater than zero to satisfy the
condition that, as time increases, the amplitude will
decrease to zero as 2z ==> o Similarly, for z<z’, the
imaginary part must be less than zero. The 1inclusion of
damping, therefore, shifts the positive poles into the upper
half, and the negative poles into the lower half of the
complex X plane.

A section of the contour of integration for Equation
(2-27) is depicted in Figure 5. Branch cuts must be made
due to the multivalued functions involved (i.e., X='422‘K;%.
Contributions to the integral along these cuts have been
neglected for the current investigation. To obtain
exponential decay of the semicircular contribution to

Equation (2-27), the following must be true:

(2-28) limit | exp(i(z—z')x)] =0
[x]+0

This says that the path of integration 1in the wupper half

plane applies to z>z° and includes the poles Xn 8reater than
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Zero. Then, by Cauchy’s Residue Theorem, the Green’s

function Gm [Equation (2-27)] for forward-guided modes is

. given by a sum of residues at the positive real poles Xm:
«©
1
- [ R .
(2-29) Gm(x,zlx »2') 77 Gxexp(lxz)dx

® G_exp(ixz)
=2ri I RES[—LT; X=xm>0]

=1

5 c;
m=1

. . th
where G: represents the Green’s function for the m

forwvard-guided mode.

2.7 Evaluation of Residues

The residue of a quotient of functions which has a

first order pole at X=Xm is given by:

_ FOO o oy y21s F(x)
(2 30) RES['I’(X) y X Xm] llmit[\yl(x)] ’
X*Xm

vhere W'(&Q has been differentiated with respect to X .«

+
Expressions for Gm are obtained via Equations (2-30) and
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(2-29) together with Equations (2-15)-(2-22) which

originally defined Gy.

Region I, x>a:

[Emexp(ixzmg')-Fmexp(—ixzmx')]

(2-31) G+.=Ziexp(ixm(z—z'))exp(-xlm(x-a))

m AKZmW'(xm)

Region IIA, a>x>x’
{[Amexp(-1K2m(x—a))

Y +
AKva (xm)

(2-32) c: = iexp(ix_(z-2'))

Bmexp(izzm(x—;))]exp(ixzmx')+[Cmexp(—iK2m(x—a))

+
] -
6K2mW (xm)

Dmexp(ixzm(x-a))]exp(-imzm;’)

o }
QKZmY (xm)

Region I1B, x’ZxZO
-. '—
{[A _exp( ik, (x'-a))

+
2-33 G =i i -z
( ) o iexp(ix_(z-z')) b, ¥ () +

Bmexp(irzm(x'_a))]exp(ixzmx)+[cmexp(_iKZm(xv_a))
Asz?'(xm)
Dmexp(ixzm(x'-a))]exp(—inzmx)}
AKZmW'(xm)

Region III, xSO

(G exp(—inzm(x'-a)) _
AKZmW'(xm)
Hmexp(ixzm(x'-a))]

["czmw' (Xm)

_ + e .
(2-34) Gm Ziexp(ixm(z z ))exp(KBmx,
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where the following expressions are obtained by substituting

Equation (2-25) into Equations (2-19) and (2~20):

Let
(2-35) a =- 3 K =1 3
' m P2 “1n"3m ®n ) “2m"3m
2 _ 2 2
bn = 101P) Kop¥ag £2=P2 P3¥on
c =1ip Zp Ky K g =1p 3s< K
m 2 "371lmn 2m m 2 "1m 2m
_ 2 2 2
dp = P1P2P 350 hp=0109 %on .
Then,
A = -3 +b +c¢ =d and E = e ~-f
m m m m m m m m
(2-36) B = a +b -¢c -d F = e +f
m m m m m m m m
C = a -b +c ~-d G =g =-h
m m m m m m m m
D = -a ~b -¢c -4 H =g +h ,
m m m m m m m m
where
2 2
(2-37) I<lm= Xm _kl
2 2
K2m k2 -Xm

The expression for W'(Xm) is derived in Appendix A, the

results of which are restated here:
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(2-38) ¥ () = ¥
ax =+
—Xm
3" 2+K3m2 2 :
=) [(py T + 20,0,05%0, Pakynd +

2 . 2 %o
P1Py Kypd)sin(ky )+ (p10o04k, a+o, P3e

2 3 2
(P Py * Py K KB ¥ P Py Kap) o 2"

2m 172 3m

K

By inspection, it <can be seen that, for x=x’, G; in region

IIA is equal to G; in region IIB.

2.8 Boundary-Induced Dispersion

It is evident from the form of Equation (2-29) that the
Green’s function is expressed as an eigenfunction expansion
of guided modes where the poles of Gx(xlx',z'), namely Xm’
are also eigenvalues of the system. Numerical methods used
to evaluate these eigenvalues will be discussed in Chapter
1v.

Once the physical parameters of the system are known
(i.e., density and bulk phase velocity of media I, II, and
II1 and thickness of medium 1I1), the variation of axial
wavenumber Xm with frequency for each mode may be

determined. For example, Figure 6 shows frequency as a

a AR in

;Zghcos(nzma)]
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function of axial wavenumber for the first few modes of an
infinite flat-plate of silicone rubber 10 centimeters thick
immersed in water.

Several aspects of this graph will be discussed later
in Chapter IV. However, one important point should be made
at this time. In a nondispersive medium, that is one in
which phase velocity is independent of frequency, wavenumber
and frequency are linearly related. Figure 6 illustrates
the fact that for any given mode, low-frequency disturbances
tend to propagate at the higher phase velocity of the
external media (i.e., I and III). Contrariwise, the speed
of higher frequency components asymptotically approaches
that of the waveguide (medium 1II). This phenomenon is:
referred to as "boundary-induced dispersion" and will be

discussed in greater detail in Chapter 1V.
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MODE CUTOFF(kHz)

1 1500.0 1000.0 o 1 0.00
11 1000.0 1000.0 0.10 2 6.70
I1I 1500.0 1000.0 o 3 13.41
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Figure 6. Dispersion relationship for first few guided modes in a

0.1 m.-thick slab of silicone rubber immersed in water.

Isospeed lines at y = kl’ k2
trapped energy.

for modes m=2,3,

represent bounds for
Dashed lines indicate cutoff irequencies
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Chapter III

NONLINEAR WAVE INTERACTIONS IN LAYERED MEDIA

3.1 Introduction

The homogeneous wave Equation (2-1) dis a 1linear,
partial differential equation obtained by neglecting all
terms of second- or higher-order. If, however, convective
and medium nonlinearities are taken into consideration,
inclusion of second~order terms leads to the following
nonlinear wave equation, where viscoelastic and other loss

mechanisms have been neglected:

2 X 2
(3-1) Aoy - g he = Slie)? + 2L 387

at
3t
2c0

with
. B 19
Y=ratio of specific heat in gases (1+K in liquids)

¢ =the velocity potential.

- . - - - . - e s e = — - -

' 19R.T. Beyer, "Parameter of Nonlinearity in Fluids,"
! Journal of the Acoustical Society of America, 9 (1960},
719-721.
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Equation (3-1) 1is the second-~order, mnonlinear wave
equation. The source term, or right-hand side of this
equation, contains the square of first-order acoustic
fields. Hence, an originally monotonic sound field will

result in a second-harmonic source term over distances which

are considerably smaller than the <critical range at which
shock formation occurs. The new field, no longer being
monotonic, is again squared over the next incremental
distance giving rise to interaction between the fundamental
and second harmonic, which in turn produces a third-harmonic
field component. In an inviscid wedium, this continuous
process eventually leads to the formation of a shock wave,
the spectrum of which contains all harmonics of the
fundamental.

Similarly, bifrequency excitation leads not only to the
generation of harmonics of each primary frequency, but also
to intermodulation frequency components which result from
{ interaction between the primary fields. Hence, the
! principle of 1linear superposition no longer holds. of
particular interest are the sum and difference frequencies
(denoted by wt=m1iw2’ for wl>u§)'

] In general, various loss mechanisms inhibit the
formation of weak shock waves 1in viscoelastic fluids. Such
loss mechanisms are included via complex wavenumbers in the

current investigation. It 1is assumed that the nonlinear

interaction is weak enough to allow the velocity potential -
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on the right-hand side of Equation (3-1) to be approximated
by a linear superposition of the primary fields. This
approximation, commonly made 1in weak finite-amplitude
acoustics, has been more thoroughly discussed by Fenlon.20

Using the following Fourier transform relationship,

(-]

(3—2) ¢(X,Z,t) = ¢w(x,2)exp(—imt)dw R
where
(3-3) ¢m(x,2)= g; $(x,z,t)exp(iwt)de s

-0

the primary fields <can then be expressed +via the eigenmode

expansion at the two frequencies w, and w,:

(3-4) 0, (x:2)= I C¥l exp(i(x“lz +®1x))
1 q=-= q q q

(3-5) ¢ (x,z)= ¢ szexp(i(x§22+'<22x')).

Thus for weak, bifrequency wave interactions in medium II,

if Equation (3-2) is substituted 1into Equation (3-1), and

only those terms involved 1in sum- or difference-frequency
20 "

F.H. Fenlon, "On the Performance of a Dual Frequency

Parametric Source Via Matched Asymptotic Solutions of

Burgers’ Equation," Journal of the Acoustical Society of

America, 55 (1974), 35-46.
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generation are retained, the resulting inhomogeneous

Helmholtz equation at these frequencies is given by:

1o GO (*)
AR LN

(3-6) (v

where ¢ represents the "linearized" velocity potential in

W,
1

medium II, and ki represents the free-space wavenumbers in

medium II for primary frequency w,, W, being the sum or

difference frequency (i.e., m+=“ﬁt“§)‘21 The superscript

"x" in parentheses which appears in the velocity potential

in Equation (3-6) implies that the complex conjugate only

applies to the difference frequency.

That 1is,
¢;*) = ¢w for Sw (x,2)
2 2 +
and
o = " for s, (x,2)
= or X,2
W,y w, w_
3.2 Frequency-Domain Solution
The second—order, mnonlinear wave equation in the

frequency domain is given by Equation (3-6). It may be

seen, by comparing this equation with the general form of

- - - em wm e e
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the inhomogeneous Helwholtz equation given 1in Equation
(2-5), that the nonlinear terms which are grouped on the
right-hand side of the equation <can be thought of as a
forcing function, or volume source distribution 1in the
guide. This being the case, the velocity potential in
medium II for a particular frequency is given by Equation
(2-6):

a

(2-6) ¢w(x,z) =

O Y~Y—N

J S (x',z'") G (x,zlx',z')dx'dz'
) w
0

Hence, in order to evaluate Equation (2-6) for the sum- or
difference-frequency comnonent, the source distribution
S (x,z) must be determined. By 1inspection of Equation

*
(3-6), the latter can be expressed as

-7) s (o)~ imi [6¢ . 5¢(*) . (I;l) s ¢(*)]
ei :;7 wy Wy < 172 wy W,
[see Equation (3-6) for definition of terms]).
The first step in determining ¢ therefore, is to
cvaluate the source distribution in Eiuation (3-7). The
next 1is to convolve the resulting function with the

appropriate Green’s function and perform the integration

over x° and z’ for a typical mode.




|

-

3.3 Source Distribution

The sum- or difference-frequency source distribution
for weak finite-amplitude interaction in wedium II is given
in Equation (3--7).22 The primary waves are represented as
eigenmode expansions [see Equation (3-6)] and hence, the
scalar product of the primary velocity vectors is given by

the double summation:
) S e (%) . w
(3-8) V6 V6 =+ I L c¥1c%2 [leKNZ +x 1x 2] x
Wy wy q,s=- q s q s q s

w w w w
; 1 2 1 2
exp{:l.[(xq i.xs Yz + (Kq t.KS Yx1} .

Likewise, the product of the primary wave velocity

potentials is simply

(*) ® w, w,(¥) w w w w
(3-9) o, +o =t ot clc? lemptilietax Dzt et ax Pxl)

1 w2 q,s=—-=

Substituting Equations (3-8) and (3-9) into Equation (3-7)
thus gives the following form for the sum- and difference-

frequency source distribution at the source point (x",z°):

221t is assumed that all nonlinear wave interactions
occur within the guide (i.e., 0<x<a and z>0); therefore, the
velocity potentials and wavenumbers for the primary fields
correspond to wmedium II. With this in mind, the notation
becomes slightly less laborious.

R\AL PRoAsge -
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iw ® w, w,(*) W, w w
+ —_
(3-10) S (x',z") = —5 LI ¢ 1c 2 (+(x lx 2, 1
w s q ‘s q
i C2 q’ss—m
exp{i[(xwl-fxwz)z' + (Kml-brmz)x']}
q — s q —— s 9’
where
w, =W,
ki =uk/c2 (i=1,2)

’ 4

K:m=transverse wavenumber for mode ‘q°,

frequency wy, s medium II, m=1,2.

’ ’

X?“=axial wavenumber for mode ‘q°,

frequency Wy * medium II, m=1,2.

’ ’

C$m=weighting coefficient for mode ‘q°,

frequency w3 determined by actual source
distribution at face of waveguide (i.e., z=0)
y=ratio of specific heat in gases (1+§ in liquids).23
Equation (3-10) defines the distribution of source

points which contribute to the growth of the nonlinearly

generated sum- and difference-frequency fields inside the
waveguide. These points are referred to as "virtual"
sources because they act as point sources scattered

throughout the region of interaction generating the harmonic

and intermodulation frequency componentse.

- e " - — . —— — - - - -

23g. 1. Beyer, "Parameter of Nonlinearity in Fluids,"
Journal of the Acoustical Society of America, 9 (1960),

24See e.gey, H.O0. Berktay and C.A. Al-Temimi, "Virtual
Arrays for Underwater Reception," Journal of Sound and

Y2, =L
JRRICTRNE




3.4 Evaluation of ¢,
+
Recall that the Green’s functions for forward-guided
modes in each region are given by a sum of residues at real

poles, which is analogous to an eigenmode expansion:
(2-29) Gm(x,zlx',z') = LG

Expressions for G: are given in Chapter II [Equations
(2-31)-(2-34)1]. Multiplying the Green’s functions for
region IIA [Equationm (2-32)] by the source distribution
given by Equation (3-10) thus 1leads to the following
expression for the velocity potential 1in medium II as per

Equation (2-6):

w © © W. W (:!)
+ 1 72
(3-11) ¢m(x,2)=-(—) z I Cc°¢C RXZ ,
+ 4e m=1 q,s=- I
- 2
where
W, w w, W
y-1 - 1 72 1 72
g = CFkk, + (xq Xg tK K ) ’
w w
+0 .+
K ¥ (xm)
wt
xm— = transverse wavenumber in medium II (see text)

at frequency w, for mode m

and

Vibration, 9 (1969), 295-307.
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(3-12) X = transverse component
a

= (A (-'th “+ ey dx!
p&XP (=ix (x-a))-+3mexp(ikﬁ—(x-a)ﬂ exp(iAxx Ydx

0
a

Cw .
+ [Cmexp(-ikm-t(x-a))+Dmexp(i.<mi(x-a))] exp (18 x")dx'

0

(3-13) Z = axial component
z
“4
=exp(ixh- ) exp(iAzz')dz'

where 0
w W, w
A+ =n<l +k -+ T
b4 q — s m
w w w
- )
A = Kl +x X
X qQ — s m
w w w
1 2 +
= . + - —_—
Az Xqg * Xg Xg

and A, B, C, D are all defined 1in Equation (2-36),
m m m m

W'(x:i) being given by Equation (2-38).

The velocity potential is thus represented as a triple
summation over m, q, and s, where m represents the mode in
which the sum or difference frequency propagates, and q and
s are the modes excited by the primary field sources w) and
w, at z=0.

In order to examine the contribution of a particular
set of modes, terms for positive and negative q and s should

be included for each integer value of m, since waves travel

in both the positive and negative x-directions inside the
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guide. Therefore, for fixed values of m, q, and s, the x-
component of Equation (3-11) involves two terms designated
by a subscript (i.e., X and X_) to distinguish between g )
and s being greater or less than zero. Then since }

b

(3-14) exp(iar)dr =b exp(iab/2)sinc(ab/2)

0]
where sinc(x)=sin(x)/x, the transverse and axial components

of Equation (3-11), i.e., Equations (3-12) and (3-13),

become:
i w+ w+
(3-15) X, = (J+R)eXP(iKm—x) + (L+M) exp (-ix_—x) ,
where
3= B_a sinc(ata/2)exp(-i(c ta-at
2 <2/ Dexp(- (Knra-Axa/Z))
- wy -
K= Dma 51nc(Axa/2)exp(-i(Km—a-Axa/Z))
L+ % o+
L= A a 51nc(Axa/2)exp(i(Km—a-+Axa/2))
- W, -
M= C a sinc(Axa/Z)exp(i(Km—a-+Axa/2))
and

IR St SN




(3-16) X_= (U+V)exp(iK:ix) + (w+Y)exp(-iK:tx) .
where
- w, -
U= Bma sinc(Axa/Z)exp(-i(Kd—a4-Axa/Z))
o+ “y o+
V= D a 51nc(Axa/2)exp(-i(xm—a-+Axa/Z))
- w,
W= A a SinC(Axa/Z)exp(i(rdIa-A;a/Z))
+ Y%+
Y= Cma sinc(AxaIZ)exp(i(Kﬁ—a- Axa/Z))
and
w, exp(iAzz)-l
(3-17) Z = exp(ix —z)I i ] .

Therefore, a typical term of Equation (3-11), af

-

integrating with respect to x° and z° and fixing m, q,

s, is given by:

w w, w w.* g *
= + 1.72 1 2
¢ (xz = - —
(3-18) w, »2) > RZocge X +c e )

S -
- 4c2

where * indicates a complex conjugate.
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Chapter IV o |

NUMERICAL ANALYSIS

4.1 Determination of Axial Wavenumber

As discussed in Chapter 11, eigenvalues of the layered

waveguide system under <consideration are determined by

examining the poles of the Green’s functions, Gx(xlx',z'),
in wavenumber space. The real poles Xm, obtained by setting
¥( X )=0, are simply the real roots of Equation (2-26). As K
stated in Section 2.4, the axial wavenumber must lie in the o
range klfxmskz for guided modes to propagate. Due to the
periodicity of the tangent function, several different
values of the form [see Equation (2-26)}:
(4-1) G cos (sza)==Hsin(K2ma) ,

6 =P2P3% 1 1P 220" 3m {
where

H= K 2- 2K
P1P3%2m TP2 *1m"3m

It is then obvious from Equation (4-1) that the first real

root occurs for '3ma in the range 0<'3ma5"' the second for
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wfu&ma§2n, and so on.25 In general, then, the axial

wavenumber for guided mode m represented by the positive

real roots of Equation (4-~1), Xy» must lie in the range

2 _ [ar) 2 7 [@D
(4-2) LS iy B Y L .
Since X >k for guided modes,26 the lowest ©possible
m="1

frequency that may propagate in mode m is given by:

-3

(m-1) 1 1
(4-3) £ = — - —5 .
m 2a ¢2 cl2

where fc denotes cutoff frequency of the mth mode.
m
The asymptotes described by the left-hand side of

Equation (4-2) represent the limiting cases of "rigid" and
"soft" (pressure release) boundaries on medium II since the

eigenvalues of the systems are defined as

(4-4) n™ o m=0,1,2,3,... 2

Symmetric and asymmetric modes for each condition are

accounted for by m being even or odd (e.g., for rigid walls,

25A listing of the FORTRAN program written to

numerically determine the roots of Equation (4-1) 1is given
in Appendix D.

26See Section 2.4.

27The m=0, or plane-wave, mode can occur only for rigid

boundaries (see Appendix B).
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m even implies symmetric modes; for soft walls, m even
represents asymmetric modes). Figures 7 and 8 show the
variation of the axial wavenumber, X with frequency for
the first few modes of two, three-layer waveguides with
semi-hard (Figure 7) and semi-soft (Figure 8) boundaries.
The asymptotes given by Equation (4-2) are shown to
represent perfectly rigid or soft walls. Since it was
assumed that cqa2c,>c¢

=17 "2
is independent of the speed of sound in medium III.

the cutoff frequency [Equation (4-3)]

As shown 1in Figures 7 and 8, low frequencies tend to
propagate at or near the phase velocity of the outer medium.
With increasing frequency, the phase velocity asymptotically
approaches the bulk speed of sound 1in medium II. This is
the result of what 1is referred to 1in Section 2.8 as
boundary-induced dispersion. The dispersivity exhibited by
an acoustic, slow waveguide dramatically influences the
behavior of nonlinearly generated spectral components. A
discussion of these effects is presented following the next

section.

4.2 Mode Shapes

As with any bounded system, each mode has 1its
characteristic mode shape which 1is defined by the

eigenfunctions of the system. The eigenmode expansions of
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* * *

MEDIUM PHASE VEL. DENSITY  THICKNESS MODE CUTOFF(kHz)
I 2000.0 2000.0 © 1 0.00
II 500.0 2000.0 0.10 2 2.58
ITI 2000.0 2000.0 © 3 5.16

4 7.75

*

ST UNITS
X=k =
8 173 -4 asymptotes
o]

6.00

1

FREQ CKHZ>
4.00

2.00

®
®
“2.00 20.00 48.88 60.00 §0.00  100.00
AXIAL WAVENUMBER <1/MD
Figure 7. Dispersion relationship for first few guided modes in a

0.1 m.~thick waveguide bounded by semi-hard media. Dashed
lines indicate cutoff frequencies for modes m = 2, 3, and 4,
and curves marked "asymptotes'" are bounds for each

mode (sce Equation (4-2)).
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* * *
MEDIUM PHASE VEL. DENSITY  THICKNESS MODE CUTOFF(kHz)

1 2000.0 200.0 ® 1 0.00
II 500.0 2000.0 0.10 2 2.58
II1 2000.0 200.0 w 3 5.16
4 7.75
*
SI UNITS

X=k, =k

3 asymptotes

Q
[\
@

]

6.00
)

FREQ (KHZ)>
4.00

2.08

1

[\+]
[\]
“2.00 20.00 40.920 60.00 80.00 100.08
AXIAL WAVENUMBER (i1/M)

Figure 8. Dispersion relationship for first few guided modes in a
0.1 m.-thick waveguide bounded by semi-soft media. Dashed
lines indicate cutoff frequencies for modes m=2,3, and 4,
and curves marked "asymptotes" are bounds for cach
mode (see Equation (4-2)).
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the velocity potential given in Chapter 111, via Equations
(3-4,5), may be re-expressed 1in terms of cosine and sine

functions:

(4-5) ¢w1_= qi_m [Azlcos(mgéx)-+B:lsin(xgéx)]exp(ilez)
and
(4-6) ¢ = I [szcos(x‘zg )+Dz:sin(n<;§x)}exp(ix(:22) .

w
2 s=-=»

The velocity or pressure distribution of the source at the
face of the waveguide (i.e., at z=0) determines the extent
tc which each mode 1is excited. If, for example, the
velocity profile of a transducer_ matched that of any single
mode, then only that mode would propagate down the guide.
The series expansion of Equatiom (4-5) would then be
expressed as a single term representing the ©particular
excited mode, while the coefficients Azl and Iﬁl for all
other modes would be identically zera. If, however, the end
conditions are not perfectly matched, then several modes may
be excited, all of whose <cutoff frequencies are below the
excitation frequency.

Since the transverse pressure distribution in medium II

at a fixed range is proportional to the time derivative of

28M. Redwood, Mechanical Waveguides (New York:

Pergamon Press, 1960), pp. 77-84.
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the velocity potential, then the wvariation with x, or the
mode shape, is given by the transverse component of Equation

(4-5) for a particular mode q=m:

(4-7) Fm(x) = AmCOS(szX) + Bmsin(szx)

where coefficients Am and Bm are determined by the source
distribution. However, the ratio Bm/Am may be found through
application of boundary conditions to Equation (4-5) for

guided modes:

(4-8) By _ P2%3m
Am p3K2m

Thus, the function Fm(x), normalized to Am’ becomes:

F (x) 0.,K
i = cos{x, x) + o sin(k
A 2m

m p3K2m

(4-9) om®)

The coefficient Am outside the brackets has no effect on the
shape of individual modes and thus may be ignored.

The shape of the first three modes at various
frequencies for a two-layered medium 1is depicted in Figures
9-11. These cases correspond to a lérge flat plate of

silicone rubber immersed in water.

Tt e
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* * *
MEDIUM PHASE VEL. DENSITY  THICKNESS MODE m=1
I 1500.0 1000.0 ® CUTOFF(kHz) 0.00
11 1000.0 1000.0 0.10
ITI 1500.0 1000.0 o FREQ. (kHz) 5.0
10.0
15.0
*
SI UNITS
o
: — x=a
(]
[+ o]
Q
©
(e}
® 15.0 kHz
e
b - - - x=a/2
S 10.0
Sy
5.
N
Q
e
i
3 Q
: [\
1 < . T . -
0.00 {.00 2.80 3.00 4.080
FCXI/A,
Figpure 9. Transverse pressure distribution in medium 11 at fixed
. range for m=1 mode at 5, 10, and 15 kHz. Vertical axis
represents vertical distance from medium I1I and horizontal
axis is given by Equation (4-9). Physical paramcters
1 correspond to a 0.lm.-thick slab of silicone rubber immersed
in water. ST units used.
E
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* * *
MEDIUM PHASE VEL. DENSITY THICKNESS MODE m=2 .
1 1500.0 1000.0 ® CUTOFF(kHz) 6.70
11 1000.0 1000.0 0.10
111 1500.0 1000.0 © FREQ. (kHz) 10.0
15.0
*
ST UNITS 20.0
[\
o x=a
(e o]
o
Qq
©
[\
Q7 &
b4 -~ - x=a/2
* b
[\
e
— 20.0
o
[\
]
®
[\
Q‘ By L3 1
-2.00 ~1.00 8.020 | .00 2.80
. F.CXO/A
2 2
Figure 10, Transverse pressure distribution in medium IT at fixed

range for m=2 mode at 10, 15, and 20 kHz. Vertical axis
represents vertical distance from medium III and horizontal
axis is given by Equation (4~9). Physical parameters
correspond to a 0,.lm.-thick slab of silicone rubber immersed
in water. ST units used.
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%* * *
MEDIUM PHASE VEL. DENSITY THICKNESS MODE m=3
1 1500.0 1000.0 © CUTOFF (kHz)
11 1000.0 1000.0 0.10
I1I 1500.0 1000.0 ® FREQ. (kHz)
*
SI UNITS
[++)
(5 x=a
—325.0 kHz
[ o]
®
o 15. 20.0
/o]
[\
*
(]
> - - - x=a/2
v
()
-
N
®
o
[\
(]
Q L LN - L
_2/po {.00 .00 2.00
S FCXD/A,

~ Figure 11.
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Transverse pressure distribution in medium IT at fixed

range for m=3 mode at 15, 20, and 25 kHz.

Vertica

1 axis

represents vertical distance from medium III and horizontal

axis is given by Equation (4-9).

Physical parameters

correspond to a 0.lm.-thick slab of silicone rubber immersed
its used.

in water.

ST un
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Hence, the phase velocity and density correspond to previous
experimental work.29 It should be noted that the increase in
amplitude at higher frequencies for each mode further
demonstrates the effect of dispersion discussed above.
Finally, the variation of mode shape with changing
boundary conditions for the lowest mode (m=1l) is shown in
Figure 12. The appearance of spreading seen for 1lower
values of pc (i.e., softer boundary conditions) at a given
frequency is explained by Figures 7 and 8. The harder the
boundaries, the less influence media I and III (which in all
of the <cases depicted are identical) have on the acoustic

field in medium II.

4.3 Behavior of Nonlinearly Generated Components

in Dispersive Media

The lowest spectral component produced by the nonlinear

interaction of two primary waves of frequencies w, and w, is

1 2
the difference frequency “L(=“ﬁ"w2)’ The propagation

constant of the volume source produced via 1interaction of

the primary waves at this frequency 1s determined by a

- ——— - o - - -

29J.D. Ryder, P.H. Rogers and J. Jarzynski, "Radiation

of Difference-Frequency Sound Generated by Nonlinear
Interaction in a Silicone Rubber Cylinder," Journal of the
Acoustical Society of America, 59 (1976), 1077-1086; See

2= so Figure 6.
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(a) (b) (c)

MEDIUM || PHASE VEL. DENSITY | PHASE VEL. DENSITY | PHASE VEL. DENSITY
I 1500.0  1000.0 1500.0  1000.0 1500.0  1000.0
1 1000.0 200.0 1000.0  1000.0 1000.0  5000.0
111 1500.0  1000.0 1500.0  1000.0 1500.0  1000.0

MODE m=1 THICKNESS = 0.1 m. ST UNITS

FREQ. (kHz) = 8.0

®
o x=a
©
o
-
©
®
® (c)
> x=a/2
v
®
-
o~
®
<
®
®
% ¥ —T1 T ]
.80 1.00 2.00 3.00 4.00 S.80

FCXD/A,

Figure 12. Transverse pressure distribution in medium II for m=1 mode
at 8.0 kllz for a 0.lm.-thick slab of varying density
immersed in water. Axes are same as for Figure 9.
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vector combination of the primary wavenumbers. If this
vector combination does not —correspond to the natural
propagation constant of the difference frequency in the
medium, then asynchronous interaction will occur, resulting
in the "spatial beating" effect depicted in Figure 13 for
Az>0. If ,however, the primary waves which give rise to the
difference~frequency component propagate at the same phase
velocity as the 1latter, then Figure 13 shows that
synchronous interaction or "“spatial resonance" occurs
(Figure 13, Az=0). Under this condition, the amplitude of
the nonlinearly generated component will grow monotonically
with range until enough energy has been transferred from the
primary waves to significantly reduce the strength of the
volume source distribution (i.e., forcing fumction).

In general, the vector Z is wused to represent the
wavenumber difference between the primary waves and
nonlinearly generated frequency components. Thus, for the
case of the sum- or difference-frequency components

resulting from a bifrequency primary wave interaction,

(4-10) A = ok, * ok, -

In an unbounded, dispersionless medium, the resonance
condition can be satisfied only if the wavefronts of the two

waves are parallel and both propagate in the same direction.

Under these <conditions, the 1linear relationship between
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4.00

3.00

A?= 0 (resonance)

[\
-—®
N
— Az= 1
[\
®
Az= 2
= 4
A
o
[\ = 8
. L] T Ll z
%.00 1.00 2.09 3.08 4.00

Figure 13.

RANGE (M>

Magnitude of axial component of velocity potential, Z, in
medium I1 as given by Equation (3-17) for several values

of real A, (=1,2,4,8), hence damping is neglected (i.e. 0=0).
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wavenumber and frequency (k=W/c) necessitates synchronous
interaction. However, in a dispersive wmedium such as a
waveguide, resonant interaction is not so straightforward
and will be treated in Section 4.4.

As previously stated, the analytical basis for Figure
13 may be found by examining the axial component of the
velocity potential for the difference frequency in medium
II, which was derived in Chapter III [i.e., Equation
(3-17)). Moreover, since acoustic waves in medium II may be
characterized by their axial wavenumber for each wmode, the
vector A becomes a scalar quantity defined for the sum or
difference frequency by
(4-11) 8, = Xgt +x22-xE
where the integer subscripts q, s, and m refer to the modes
in which the primary frequencies ( w; and wz) and the sum or
difference frequencies are respectively under consideration.
The variation of the velocity potential with range 1is

therefore described by the following equation from Chapter

I11:
w exp(iAzz)-l
(3-17) Z = exp(ixm—z)[“”_jz:_““]
LANEEAR B
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where the magnitude of Z is plotted in Figure 13 for several
real values of Az. Notice that as Azincreases, the maximum
allowable amplitude of the sum- or difference-frequency
velocity potential decreases. In fact, the maximum
allowable amplitudes |Z|max occur at distances z_ from the

source, where

(4-12) 2l =12l o
max - z
mm
(4-13) z = K: m=1,3,5,... .

Thus, in order to transfer as much energy as possible from
the primaries into a nonlinearly generated frequency
component, such as the sum or difference frequency, Az mus t
be minimized for that frequency.

It can be seen from Equation (4-12) that the maximum
amplitude of the nonlinearly generated component can become
extremely large for small Az‘ In fact, for Az=0
(resonance), the amplitude grows linearly with range as
shown by Figure 13. This apparently wunrealistic situation
may be resolved by considering the fact that the growth of a
nonlinearly generated component is accompanied by the decay
of the fundamental waves. Eventually, the decreased
strength of the primary fields no longer permits a nonlinear

interaction.
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All real physical systems involve a certain amount of

damping, which 1is accounted for by including an imaginary

term in the axial wavenumbers.3o In this instance, Equation

(3-17) becomes:

1—exp(iAzz) exp(—aTz)

W
4-14 = exp(iX 1 -
(4-14) Z = exp(i o z) exp( am+z) oy - iAz .

where aT and aw represent damping. The magnitude of Z
+
given by Equation (4-14) versus range for fixed Az, with

absorption as the parameter, is illustrated in Figure 1l4.

4.4 Dispersion in Medium II

As established in the previous section, the waximum
amount of energy transferred to any nonlinearly generated
frequency component in a lossless, dispersive medium is
determined by the difference in axial wavenumbers Az.31 The

ternm Az as described by Equation (4-11) 1is a function of

several independent variables. The X o versus w

relationships (e.g., Figures 7 and 8) which characterize the

dispersivity of the waveguide are determined by the physical

3OValid only for "weak" nonlinear interactions.

3lgee Equations (4-11) and (4-12).
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; Figure 14, Magnitude of axial component of velocity potential, Z,
% in medium IT1 as given by Equation (4-14) for A,=4.0 with

; increasing amounts of absorption (i.e., a=.001,.05,.5,1.0).
. ST units used.
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parameters of the media (i.e., density and bulk phase
velocity of media I, II, and III, and thickness of medium
11). Once this relationship 1is defined, Az may be
determined for the sum- or difference-frequency component of
any given pair of primary waves, as long as it is known in
which modes all four frequencies propagate.

The variation of Az for the nonlinearly generated
difference frequency w_ for a fixed ratio“®Yw 1is shown in
Figure 15. Again, the physical parameters are chosen to
correspond with previous empirical data (i.e., silastic
rubber in seawater).32 The primary waves as well as the

difference frequency are assumed to propagate in the first

mode .

- - - o - - - -

325ee e.g., Ryder, Rogers, and Jarzynski, PP
1077~1086.

T
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* * *
MEDIUM PHASE VEL. DENSITY THICKNESS PRIMARY MODE q,s=1
I 1500.0 1000.0 ] DIFF. FREQ. MODE m=1
I1 1000.0 1000.0 varies
I11 1500.0 1000.0 g FREQ. RATIO f1/f_==10

*
THICKNESS =.05, .1, .2

*
ST UNITS
[\
®
mw_
)
=
N®
-_—
5o
52- thickness = .05
N
s
DQ
wQ
<LD.- .10
|.— ——
o
.20
CBGD
[\~)
.-'{ 1 T ¥ | 4 L
“%.00 2.00 4.00 6.00 8.00 19.00

Figure 15.

DIFFR FREQ <KHZD

Variation of A? with difference frequency (f_) for fixed
ratio of primary frequency (f;) to f. (i.e., f;/f_=10.0).
Phase velocities and densities correspond to silicone rubber
immersed in water. 1Tt is assumed that the difference
frequency as well as the primaries propagate in mode m=1.
The three curves are for thicknesses of .05, .10, and

.20 meters.
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Chapter V

CONCLUSIONS

A theoretical investigation of weak, nonlinear acoustic
wave 1interactions 1in a three-layered medium has been
presented in this thesis. Under the conditions explained in
Chapter I, an acoustic, slow waveguide has been analyzed
both numerically and theoretically, and various
characteristics of 1linear waveguide theory, as well as
finite-amplitude phenomena, have been treated.

The dispersivity for guided mode ©propagation in an
acoustic, slow waveguide 1is clearly defined by the

characteristic equation derived in Chapter II. With the aid

of the computer program listed in Appendix D, exact
numerical data can be calculated given the physical
parameters of the system. Once the dispersion relationship

is established, the maximum allowable amplitude for any
nonlinearly generated component may be calculated simply by
determining the corresponding value of Az.
Expressions which may be used to determine the
ronversion efficiency of weak parametric interactions 1in
.mple, layered media (i.e., 1liquid-like media) have thus
irvelopede. Moreover, a comparison of conversion-

<. v enhancement in a waveguide, relative to that in
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an unbounded medium, can now be realized. However, in order
to place an upper bound on conversion-efficiency enhancement
via boundary-induced dispersion, a complete numerical
analysis of strong wave interactions is required. Such an
analysis, which would involve implementation via digital
computer solution of many coupled partial differential
equations, is outside the scope of this investigation. It

is therefore recommended for future study.




APPENDIX A

Determination of ¥ (x)

X -
X=X

From Equation (2-21):

(A-1)

where

¥(x)

a=p

b=p

cC=p

d=p

=(a+d)sin(xza)-+i(b+c)cos(xza)

3K K

2 %153
2‘ K

1P2 %2%3

2 P3%1%2

2
17273%2

Then, the derivative is given by:

(A-2)

Also ,

(A-3)

and

(A-4)

-~ o ar—

¥ (x

oK

[

oY
K

- 9Y
m)- ax -
X Xm
C oy %1 gy ¥ gy 9%y
8K1 ax Bkz Ix 3x3 ax
= - X i=1,2,3
K,
1
= o3k sin(k.a) + 1p.2 (x.a)
2 3n n k2 02 DSKZCOS kza

FPACUIS RS

X=X
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Y 2 3 2 2
- — = +
(A-5) o, (P1PyP3<p 8 * Py7K kg3 + 40, 03Ky + 1p)p, Kk )cos(x ) +
(2 -1 2 -1 2 i
P1P2P3¥y T 1P P3K Kpa = 1010y KyKkga)sin(eia)
Y 3, . 2
(A-6) 3K3 =0, n<151n(v<2a) + ie,p, chos(xza)
Therefore ,
K2 +K2
3 3m 1m 2
- ' = _—
(A-7) ¥ (xm) xm[(p2 Kio%3m T 2010203 + 0, Pk a
2)( a)sin( a) + ( +
P1P2 K3pd/sintx,y P1P2P3¥ o2
2
p22p3 “om - P2 P3%1m P2 KipKam® t PP ¥gy .
Klm K2m
[ 2 *om
% Podild .
172 — ) COS(kZma)] ,
3m
where
K‘l = lKlm
27 “om
K3 = iK3m

o ——r . . G EERe . R JeA S




Appendix B

PLANE-WAVE MODE

As discussed in Chapter II, the Green’s functions for
the waveguide are expressed as a summation of the residues
of the transformed Green’s functions, GX, at the real poles
X m of GX. The real roots of Equation (2-26), restated here,

represent these poles:

Kim<2m”2P3 ¥ FonS3nf1P2
2 2
“2m 1737 *10°3m°2

(B-1) tan(KZma) =

One root in particular of this equation, Xm=k2 (or «

is not consistent with physical or mathematical assumptions.

2m=0)’

It is the purpose of this section to examine the behavior of
GX at the root Xm=k2 and to determine 1its physical
significance.

Assume, as in Equation (2-27), that GX is expressible

in the form

(8-2) 6 (x]x',2") = explix(z-2')) &

where Y(y) is given in Equation (2-21), and F(X), which
changes with each region, may be deduced from Equations

(2-15)~(2-18). For region IIA (i.e., a>x>x");

ATERARRS
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Aexp(~1(0-¢)) + Bexp(i(@+¢)) + Cexp(-1i(0+¢)) + Dexp(i(6-6))
(3‘3) F(X) = 4y ’
- 2
0= Kz(x-a)
- where
o = sz'
and coefficients A, B, C, and D are given by Equation
(2-20). Then, since
(B-4) limit %%%%]
.+ 0
2
is indeterminant, L°Hopital’s Rule may be applied with the

following results:

IF(x)
x  |x=xp=ky
(B-5) limit GX = limit T )|
3 =x_ =k
Xk, x~k, X XX 2 |
- LI v -
- Klm(x a)+K3mx Klm'<3m(x (x-a)) +1
“1m " 3m T “103m?
Thus, for guided modes, Klm and K3m are both positive real
values; therefore, the transformed Green’s function GX in
region IIA remains finite at Xm=k2. Hence, k2-X is not a
singularity of GX even though it 1is a root of Equation
(2-26). A similar process verifies that for all regions
(i.e., I, IIA, I1IB, and 111),
(B-6)° limitc [; (xlx')
Ko™ 0 X

S -

IIPIRIIS Y o e, =
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remains finite. Physically, this means that an incoming
wave propagating purely 1in the axial direction of the
waveguide (i.e., xm=k2 implies a planar wavefront) will not
propagate as a trapped wave, but will decay as energy is
radiated to the outer media. If, however, medium II had

rigid boundaries, then the plane- wave mode would propagate

as a guided mode.




Appendix C

GREEN’S FUNCTIONS FOR MEDIA I AND ITI

Expressions derived in Chapter II for G: represent
Green’s functions for medium 1II only. That 1is, it was
assumed that the point source was in the waveguide (recall
that OSX’Sa). If, however, sources occurred outside the
guide, or energy originally radiated from the guide
penetrated back into medium II via some coupling mechanism
(e.g., corregated surface structure), then Green’s functions
for media I and III would be required in order to evaluate
these effects.

As discussed in Chapter II, the transformed Green’s
functions GX, for the waveguide, were derived for each
region and are given by Equations (2-15)-(2-18). In order
to distinguish these from the following expressions which
are obtained by assuming the point source is in medium I or
III, a superscript will be wused to denote medium number
(i.e., G; and G;IIcorrespond to the point source in media I
and II1, respectively).

The matrix equations whose solutions determine the

transformed Green’s functions for media I and III are given
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by Equations (C-1) and (C-2), respectively.
Following are expressions for the transformed Green’s

functions for medium I (i.e., x">a):

Region IA, x>x°:

exp(ixza)[Cexp(iKl(x'-a)) +
¥(x)

(c-3) G 1= exp(-ixz Yexp(ix x)|

Dexp (-iKl(x‘ -a))}+ exp(-ik,a) [Eexp(ixl(x'—a)) + Fexp (—iKl(x'—a) )}
= 3 ]
¥(x)

Region IB, x’>x>a:

exp(ir,a)[Cexp(iml(x-a)) +
x"){ =

I
C-4 = -] ' i
( ) GX exp(-ixz )exp(lKl v 0x)

Dexp(-iml(x-a))]-+exp(—ix2a)[Eexp(ixl(x—a))-+Fexp(-inl(x-a))]
¥(x) ]

Region 11, a>x>0:

plp3zlxzcos(xzx)-iplpzrlK351n(K2x)
¥(x)

(C-3) GXI‘=Aexp(-ixz')exp(inlx')
Region III, x<0:

- ' s B
(C-6) ¢ L. 0102K1n24exp( ixz')exp( 1K3x)exp(ixlxv)
X ¥ (x)
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The transformed Green’s functions for medium III (i.e, x“<0)

are:

Region I, x2>a:

111 _ 4pzp3rzx3exp(—ixz')exp(-ix3x')exp(ixlx)
X . ¥(x)

(c-7) G

Region II, a>x>0:

(C-8) GXIII==Aexp(—ixz')exp(ixla)exp(—in3x')[pzpaxlx3cos(xz(x-a))+

¥ (%)

iplQ3K2K3Sin(K2(X-a))

¥(x)

]

Region IIIA, x’<x<0:

exp(iK3x)[Dexp(iK,a)+
¥(x)

- I . ,
(C-9) GX II==exp(—1xz )exp(lxla)exp(-iK3x')[

Fexp(—iKZa)]4-exp(—ix3x)[cexp(izza)4—Hexp(—iKzé)]
Y (0 ]

Region IIIB, x<x’:

exp(ikza)[Dexp(in3x')+
¥(x)

(c-10) GXIII==exp(—ixz')exp(ixla)exp(-iz3x)[

Gexp(—iK3x')]+-exp(—ix2a)[Fexp(ix3x')-+Hexp(—ix3x')]

]

¥(x)
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The Green’s functions are then obtained via an inverse
transformation involving complex integration techniques
(i.e., residue theory) as outlined in Chapter II. Following

are the results for media I and III.

Green’s functions for the mth forward-guided mode for

medium I are:

Region IA, x>x°:

exp(ix, a)[C exp(-«, (x'-a)) +
(C-11) GmI==Zniexp(ixm(z—z'))exp(-nlmx) [ 2 w-?xm) Lo

Dmexp(Klm(x'—a))] + exp(-iKZma)[Emexp(—Klm(x'-a))

+
W'(Xm)
Fmexp(xlm(x'—a))]]
¥ ()
Region IB, x’>x>a:
exp(x. (a-x))|[C exp(ix, a) +
(C-12) GmI==2niexp(ixm(z—z'))exp(—xlmx')[ lm W'(Xm? =0

Emexp(-ixzma)]-+exp(—K1m(a-x))[Dmexp(ikzma)+-Fmexp(—ikzma)]

W'(xm)

]

TUET e o n et e————— et =
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Region II, a>x>0:

P P.K, K. cOs(k, X)+
I__ ‘s P - ' 13 1m 2m 2m
(c-13) G~ = 8nexp(1xm(z z'))exp(-k  x")[ W'(xm)
DIDZKlmK3msin(K2mx)]
Y'(xm)

Region III, x<0:

> - A - 1]
(c16) s I —8nplpzklmnzmexp(1xm(z z ))exp(K3mx)exp( 1 m¥ )
W'(xm)

And the Green’s functions for medium III are:

Region I, x>a:

- . o S
(C-15) ¢ I _ 8“9293K2mK3meXP(lxm(z z ))exp(K3mx Yexp( Klmx)
" ¥r(x)
Region II, a>x>0:
(c-16) 6 T - _gniexp(iX (z-2"))exp (k. a)exp(k, x') x
m P m ‘ 1m 2 Im

pzp3K1mK3mcos(K2m(x—a)) + plp3K2mK3msin(K2m(x-a))
W'(Xm)

R T7 ot
Coe e T TN
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Region IITA, x°<x<0:
(c-17) G it =2miexp(iX (z-z'))exp(—x, a)exp(x, x') x
m : m lm 3m
‘exp(—KBmx)[Dmexp(isza)4-Fmexp(-iK2ma)] .\
m
exp(K3mx)[Gmexp(1K2ma)-+Hmexp(-iK2ma)] :
yr t
v (Xm)
Region IIIB, x<x’:
(C-18) G I, 2niexp (iX (z-z'))exp(—«, a)exp(k, x) X
- m sTRexpittg AN PR
P e [ R )
: exp(lkzma)[Dmexp( KX )+—Gmexp(K3mx )] .
¥Y(X )
m
. - Lt - t
exp(-lema)[Fmexp( Kam® )4-Hmexp(k3mx )] ]
YX )
m
where the following substitutions have been made in
Equations (C-3)- (C-10);
(c-19) Y(x) = Ziexp(ixla)[Aexp(ikza)+'Bexp(-ixza)]

(C-20) a-= pzp3<1x2

b = 2
P1P3%2
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(C-21) A=-a+b+c-d E=a-b+c-d

B=-a-b-c-~d F=a+b+c+d
C=a+b-c~-d G=-a+b-c+d x
D=a-b-c+d H=-a-b+c+d .

Equations (C-11) through (C-18) represent, as in Chapter II,

the mth guided mode in an eigenmode expansion of the Green’s

functions. The poles of Gx are found by setting Equation

(c-19), ¥(X)=0. Then, for guided modes

(c-22) SR

vy

and the terms given by Equation (C-20) become:
(C-23) ap= 102P 310 om

2
by = P1P3¥oqg

a " P2 “1n"3m
dm = ip1°2K2mK3m *

The coefficients Am,Bm,...Hm are the same functions as given
in Equation (C-21) except for the wuse of the subscripted
variables defined in Equation (C-23) in place of the a,b,c,d

found in Equation (C-20).

Notice that the determinants of the matrices of
Equations (C~1) and (C-2) are equal [Equation (C-19)]. but ¢
. & T RN TYIROR Ty, -
. o - s e Jo— = e ~ J
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differ from the determinant found in Chapter II (Equation

(2-21)]. The derivative of Equation (C-19) evaluated at the
poles X=X,

(C-24) v (x) = 3‘%"1)( x ,
m

therefore should not be confused with the expression derived
in Appendix A, Equation (A-7), which was restated in Chapter
I1I. This expression [Equation (2-38)) 1is derived by

assuming the point source lies in medium II.




Appendix D

NUMERICAL EVALUATION OF EIGENVALUES:

COMPUTER PROGRAM LISTING i

The FORTRAN program named AXIAL (Figure 16) was written
by the author for the purpose of numerically investigating
various characteristics of an acoustic, slow waveguide. The
eigenvalues of the guided modes in medium II are obtained by

evaluating the real roots of the characteristic equation

) = 2223 10" 2m " P1° 2% 20 3n
2
P1P3%20 "2 *1a°3m

G
(D-1) tan(mzma ol

In order to avoid numerical problems at the discontinuities
of the tangent function, a similar form of Equation (D-1)

was used in the program:

(D-2) F(x) = Gcos (sza) - Hsin(nzma) .

AXIAL utilizes an IMSL subroutine (ZBRENT) to-locate
the real roots of an external function F(x). These real

roots are stored in a multidimensional array TRAP(m,n) where

(43

. oo - 4n - en e -

33see also Equation (4-1).

Lo et erma g — T —
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"m" denotes mode and "n" frequency number. Since ZBRENT was
designed to locate the root x’ of a function between any two
endpoints a and b such that the product of F(a) and F(b) is
less than 2zero, care must be taken to insure that exactly
one root exists in that interval before executing ZBRENT.
It follows from the discussion in Section 4.1 that the mth
real root Xp lies between the asymptotes described in
equation (4-2). Hence, the interval containing one and only
one root of F(x) is well defined.

Once the roots have been 1located and stored, the array
TRAP is plotted via the CCS graphics system supported by The
Pennsylvania State University Computation Center.34

Examples of the graphics output may be seen in Figures 6, 7,

and 8.

34CCS i8 an abbreviation for California Computer

Products, 1Inc. (CalComp) who originally developed the
software.
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UTHOR:

DAVID M. YEAGER
ACOUSTICS DEPARTMENT
PENNSYLVANIA STATE UNIVERSITY

DATE WRITTEN:
AUGUST 22,1979

PROGRAM NAME:
AXIAL

PURPOSE:

THE PURPOSE OF THIS PROGRAM IS TO COMPUTE THE POSITIVE, REAL ROOTS
X OF AN EXTERNAL FUNCTION F(X) WHERE “F° IN THIS CASE 1S THE
CHARACTERISTIC EQUATION FOR A TWO-DIMENSIONAL FLAT-PLATE “SLOW’
WAVEGUIDE. HENCE THE PHASE VELOCITY IN MEDIUM TWO IS LESS THAN

IN MEDIA 1 OR 3. 1IN FACT IT IS ASSUMED THAT C3 > Cl > C2.

THESE ROOTS REPRESENT THE EIGENVALUES OF THE GUIDE AND ARE

GROUPED ACCORDING TO MODES BEFORE BEING PLOTTED. THE VERTICAL
AXIS IS FREQUENCY AND WAVENUMBER IN THE AXIAL DIRECTION IS
DISPLAYED ON THE HORIZONTAL AXIS.

2 l21z1z 2 sl s s s e 2 2 2 212 21212 12 12 12 12 1 n)
>

REAL*8 EPS,A,B,F
REAL MAXFR
CHARACTER*8 DA
DIMENSION GAM1(202),GAM2(202),GAM3(202),FRQ(202),TRAP(10,202),
‘ CFC(30) ALPHI}ZOZ),ALPHZ(ZOZ) ALPH3(202) ,DELTA(202),C(3) ,R(3)
A COMMON/AREA1 /JGAM1T , GAM2T , GAM3T,RO1,RO2,R03, 1, THICK

SEE LISTING OF ZBRENT FOR EXPLANATION OF °EPS,NSIG,MAXFN’
°C1,C2,C3° REPRESENT BULK PHASE VELOCITIES FOR MEDIA 1,2,3
RESPECTIVELY. °THICK’ LS TOTAL THICKNESS OF MEDIUM 2 $INCE THE
BOUNDARIES ARE AT X=0 AND X=A. ‘ROl,R02,RO3° REPRESENT DENSITIES
OF THE THREE MEDIA., “MAXFR’ IS THE MAXIMUM FREQUENCY PLOTTED.

READ(5,8000) EPS,NSIG,MAXFN
READ?S,SOOI c1,62,C3, THICK, MAXFR
READ(5,8002) Rol,Rr02 %03
MAXFN1=MAXFN

TNOPI‘Z -*30 1101 59

DUMMY 4=MAXFR* . 001

WRITE(6,9000) C1,C2,C3,THICK
WRITE(6,9005) ROl,RO2,R03
wuxrsgs,eoox) DUMMY4

r WRITE(6,9002) EPS,NSIG,MAXFN

OOOOOO0

CALCULATE CUTOFF FREQUENCY FOR MODE M, STORE IN FC(M),
AND WRITE RESULTS FOR EACH MODE TO BE PLOTTED.

oOOO0O0

M=2

FC(1)=0.

ANUM=2 ,* (M-l 3 )

DENOM=4 . *THICK*SQRT (1. /C2%%2.1./Cl**2)

N
O

Figure 16. FORTRAN listing of root-finding computer program AXIAL.

SUNE T EETRTEELY TR TN T - SNwe T ATy T TV W RS TRT e TLT AT =T TR R TR

T U S

PRTT R LS Dl it iat e e S A e LS MR e



, FC(M)=ANUM/DENOM

! . FCM=FC
; LF (FQN .GT. MAXFR) GO TO 30
» WRITE (6,5004) M

IF(M «GT. 10) GO TO 7000
GO _TO 29
7000 WRITE(6,9020)

c
¢ °FREQ’ IS THE INITIAL FREQUENCY, ‘P’ IS THE FREQUE
C  WRITE TOTAL NUMBER OF MODES TO BE PLOTTED QUENCY INCREMENT,

¢

30  FREQ=100.
x-( 1 R-FREQ) /200.
R ODE~IFIX(X)
WRITE (6,9009) NMODE

MAIN LOOP ITERATED FOR 200 FREQUENCIES.
DO 5 I=1,200
J=0

FRQ(1)=FREQ

GAM1 (1)=TWOPI*FREQ/Cl
GAMZ{ ;-TWOPI*FRE Q/C2
GAM3 (I )}=TWOPI*FREQ/C]
GAMII-GAMlg §

anon

; GAM2I=GAM2
GAM31=GAM3(L

BELOW CUTOFF FREQUENCY FC(M) THE MTH MODE IS INITIALIZED
WAVENUMBER IN MEDIUM l...GAM1I=TWOPI*FREQ/Cl. TALIZED TO THE

DO 50 N=1,NMODE
TRAP(N, I)=GAMII
CONTINUE

SELECT ENDPOINTS OF INTERVAL TO BE SENT TO ZBRENT.

0 J=J+l
A=GAMIT+.0001
=g 21-.0??1 ( ,
F(J .GT. B=SQRT (GAM2I **2-(TWOPI *(J- 2, ®
N T e R A SR AT L S
€2} 0L

QOO

SO00W
o

*
FB-F(B}
1F(FA*FB .LT. 0.) GO TO 10

IF F(A) AND F(B) HAVE THE SAME SIGN THEN NO ROOT EXISTS IN
INTERVAL. GO ON TO NEXT MODE OR FREQUENCY. 5 THAT

GO TO 4l
0 MAXFN=MAXFN1
‘ZBRENT® 1S AN IMSL SUBROUTINE WHICH LOCATE§ THE ROOT OF AN
AND

EXTERNAL FUNCTION ‘F(X)° BETWEEN ENDPOINTS “A°
THE ROOT IS RETURNED AS THE VALUE ‘B’ SUCH THAT F(B)-O'

C
c
c
C
1
C
C
C
c
C
c

Figure 16. (continued)




CALL ZBRENT(F,EPS,NSIG,A,B,MAXFN, IER)
IF(IER .EQ. 139) éo 10 20

c
g STORE ROOTS FOR MODE J, FREQUENCY I IN ‘TRAP’.
TRAP(J,I)=B
41  IF(FREQ .GT. FC(J+1)) GO TO 40
GO TO 4
20  WRITE(6,9006) MAXFN,I
& FREQ=FREQ+P
5 CONTINUE
¢
C  BEGIN PLOTTING FREQUENCY VS. AXIAL WAVENUMBER VIA ‘CALCOMP’
g GRAPHICS SUBROUTINES..cseecsee
C  PLOT GAM2 FIRST SINCE IT HAS THE LARGEST WINDOW. THEN PLOT
C  GAML AND GAM3. USE SCALE AND TRANSLATION FACTORS STORED IN
g GAM2(202) AND GAM2(201).
c
CALL PLTTYP(4662,6,7)
c CALL START
g MOVE ORIGIN 4.0 IN. OVER AND 2.0 IN. UP FROM LOWER LEFT CORNER.
CALL PLOT(4.0,2.0,-3)
CALL SCALEécAMZ 9.0,200,1)
CALL SCALE(FRQ,6.5,200,1) ,
CALL AXIS(0.0,0.0,’WAVENUMBER IN Z-DIRECTION’,-25,9.0,0.0,
CGAM2(201) ,GAM2(202)) ]
CALL AXISEO. 0., FREQUENCY’,9,6.5,90.,FRQ(201) ,FRQ(202))
CALL DATE (DA
CALL SYMBOL(-1.75,-1.75,.125,DA,0.,8)
c CALL LINE(GAM2,FRQ,200,1,0,3)
c
GAM1(201)=GAM2(201)
GAM3(201)=GAM2 (201
GAM1(202)=GAM2 (202
GAM3(202)=GAM2 (202
CALL LINE(GAMI,FRQ,200,1,0,3)
¢ CALL LINE(GAM3,FRQ,200,1,0,3)
c
DO 55 K=1,NMODE
DO 60 I=1,200
GAM2(1)=TRAP(K,I)
60  CONTINUE
c CALL NEWPEN(2) THIS STATEMENT CURRENTLY FOR COMMENT ONLY

CALL LINE(GAM2,FRQ,200,1,0,3)
55 CONTINUE

C
g ESTABLISH ARRAYS AND RECORD DATA ON PLOT.

C(1)=Cl
C(2)=C2
C(3)=C3

Figure 16. (continued)
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R(1)=RO1l
R(2)=R0O2

R{3)=RO3

YD=6.5

FLT=C (1)

CALL SYMBOL (XD, YD 1zs *Cu’ ,2)

CALL NUMBER(999.0.999.0.0. 125 FL ,0.0,1)
FLT=R(I)

XD=XD+1 - 5

CALL SYMBOL(XD,YD,0.125, RHO="

CALL NUMBER(993.01999.0.,0.125, FLT 6
YD=YD-0. 25

CONTINUE

XD-S . 0

YD-YD-OO 25

CALL SYMBOL(XD,YD,0.125, r HICKNESS (M.)=
CALL NUMBER(99%.0,999.0,0.125,THICK,0.0,2 5
CALL FINISH

CALL ENDOUT

0.0,15)

END OF GRAPHICS COMMANDS:<..s

FORMAT (F5.3,12,13)

FORMAT (SE10. 3;

ggaua% Ssé?(gl EC)=",Ell.4,” C2(M/SEC)=",Ell.4 C3(M/SEC)

S " =’ . ‘ M/SE =’

cEgpuaTS” CL Rz Eld 4 ’ ’
FORMAT(° FREQUENCY RANGE IN KHZ: 0-° .3) ,

FORMAT con ERG?NCE CRITERIA FOR zsﬁnnr‘ EPS=’,F5.3,° NSIG=",I
FbRMAr KN Mobs M=’ 13, CUTOFF FREQ=",E11.4)
FORMAT(® ROl=‘ Ell. RO2=’ ,Ell.4, RO3=" ,E11.4)

FORMAT * ZBRENT FAILéD TO CONVERGE IN MAXFN ITERATIONS. MAXFN=‘,I3

tORMAT( ! T&TAL NUMBER OF MODES M=‘,13)
E%S%AT( ERROR. . « » - EXCEEDED DIMENSION FOR TOTAL NUMBER OF MODES.’)
END

EXTERNAL FUNCTION F(X) 1S USED BY ZBRENT TO FIND A ROOT
B’ SUCH THAT ‘F(B)=0

FUNCTION F(X)

REAL*8 X,F

COMMON/AREAI/CAMII GAM21 ,GAM31,RO01,R02,R03,I,THICK
DUl=X**2-GAM]T **2

DU2=GAMZT **2-X*%2

DU3=X*%2.GAM3T *%2

IF(DUl .LT. O.) WRITE(6,4000) X,I,GAM11
IF$D02 -LT. 0.; WRITE(6, 6001; X,I,GAM21
IF(DU3 .LT. 0.) WRITE(6,4002) X,I,GAM31
ALPH1=SQRT(DU1)

Figure 16. (continued)




R ot 71 s e R el 3 Ny —

ALPH2=SORT (DU
ALPH3=SQRT(DU3
G=RO2#ROI*ALPH2*ALPH]1+RO2*RO1 *ALPH2*ALPH3
H=RO1*RO3*ALPH2#%2-R02**2*ALPH] *ALPH3
F=G#COS (ALPU2ATHICK)-S TN (ALvnz*tulgxi*a

o

4000 FORMAT(’ DUl<0. X= ,Ell.4 GAM11="Ell.4)
4001 FORMATi D02<0. X=°,Ell.4,° I-', GAM2I=", 11-4;
4002 ;g%g%ﬁ DU3<0. X=° Ell 4, I= .15, GAM3I=’ ,Ell.b

//DATA INPUT DD *
0.0 5200

8. 0 E03 0.5 EO03 8.0 EO3 0.1E0 10.1E03
5.0E03 2.0E03 5.0E03

b . I*

Figure 16. (continued)
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