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Varying conccntrations of quenching agents can cause serious errors
in analytical fluorimetry. The origin of these errors is an uncxpected
change in the quantum efficiency for the observed luminescence. In. this
paper, it is recalled that quantum efficiency can be cxpressed as the ratio
of an observed luminescence decay time to the decay time which would be
observed in the absence of quenchers. Because this latter quantity is a
constant for any particular flucrophore, quantum efficiency variations can
be compensated through mecasurement of the decay time. For such measurements,
the time-corrclated single photon technique was employed and measured
luminescence values were taken both from averaged photon count rates and
from integrated fluorescence decay plots. Division of these vaiues by
measured luminescence lifctimes produced values which were independent of
quencher concentration. Systems studied were quinine bisulfate quenched

with chloride ion and 1-pyrenebutyric acid quenched by iodide.
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INTRODUCT ION
LYV VYV VYV VYV
Fluorimetry providcs one of the most sensitive means for the detection
of many species of clinical, environmental, or forensic interest. However,

fluorimetric analysis, unlike absorption methcds, can suffer interferences

from foreign species which quench excited analyte molecules. Although a

number of mechanisms for such quenching action exist, they produce the

same result--a reduced quantum efficiency and a conscquent loss in fluores-
1 cence intensity. Because the concentration of the quenching agent is or-

dinarily unknown, correction for quenching is difficult or impossible;

consequently, strong measures are taken to exclude quenchers from the ana-

lytical medium or to control carefully their concentration.

In the present paper, an alternative approach to overcoming quenching

errors is explored. In this approach, quantum efficiency is indirectly

measured by monitoring a sample's luminescence lifetime; correction for r
quenching then simply involves division of the measured fluorescence in-
tensity by the observed lifetime.

Fundamentally, the ncw approach is quite straightforward. It is well

i known that the fluorescence intcnsity from the sample (F) is related to

sample concentration (c) through the quantum efficiency (¢) and a propor-

tionality constant K.

F = Kéc. (1)

In turn, quantum cfficicncy is simply the ratio of the intrinsic decay

rate of an excited state (ki) to the sum of the decay rates of all processes

) which depopulate the state (FK):

B

¢ = k /7K (2)
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Conveniently, the demoninator in equation 2 is simply the reciprocal
of the decay time for the sample under cxamination (T-), whereas the numer-

ator is a reciprocal of the intrinsic lifetime of the fluorophore (tp):
o= T-/TF (3)
Combining equations 1 and 3 yields
F/Tlll = k'c (4)

where k' contains both K from equation 1 and Tp

From equation 4, it should be possible to obtain a quantity which is
independent of sample quantum efficiency simply by dividing a measured
fluorescence signal (F) by the mcasured luminescence lifetime (rm). In
the present investigation, these measurements were carried out for two
different fluorophore/quencher combinations using a time-correlated single
photon technique for measurement of both luminescence lifetimes and fluor-
escence intensities. Although the precision of the resulting corrected
values was limited to approximately 4% by errors in the lifetime measure-
ment procedurc, it was found possible to correct for quenching effects in
samples whose fluorescence had been quenched by 95%. Although the procedure
is not ablc to overcomc etrors causcd by all kinds of quenching processes,
it is expectced to be important in situations involving diffusional quenching

and changes in intersystem crossing rates.
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EXPERIMENTAL
AMAVAVVVWY

Two different instrumental configurations were employed for both the
measurement of fluorescence intensities and luminescence decay curves.
These configurations will be described separately.

System 1. For the lifetime mecasurements, a commercial time-correlated
single photon fluorimeter (ORTEC model 9200), modified for high data acquisition
rates ( 1 ) was employed. The pulsed excitation source was run in air
at 20 psig at a frequency of 25 Kliz. For excitation wavelength selection,
an interference filter peaked at 334 nm and having a bandwidth of 11 nm
was used; emission was selected by a cutoff filter (Corning #0-52). The
photomultipler (RCA 8850) was uncooled and operated at a voltage of 2700 V.

Fluorescence intensities were measured using a computer-rompatible
system described previously (2 ). An excitation wavelength of 340 nm and
emission wavelengths 375 and 395 nm were employed. Analog data collection
was accomplished by chopping of the exciting radiation (4 KHz) and tuned,
lock-in amplification. A 4-polec Besscl active filter with a bandwidth
of 0.2 Hz smoothcd the output of the lock-in amplifier. The S-20 photo-
multiplier (Hamamatsu G65TUVP) was operatcd at 2060 volts.

System 1 was utilized for examining the correction of 1-pyrencbutyric
acid qucnched by potassium iodide (3).

System 2. A sccond instrumental array was employed in an attempt to
extract all necessary data for corrected lhuminescence measurcments from a
single device. Unfortunately, such capability docs not exist in conventional
timc-correlated single photon instruments because of large fluctuations in

source intensity. Atteupts were made to overcome this limitation through




counting of lamp pulses during the elapsed mcasuremcrt interval and integrating
the resulting luminescence decay curve. However, precision of these measure-
ments was far poorer than could be obtained from a conventional luminescence

spectrometer.

To overcome these difficulties, the high-pressure air-discharge lamp
was rcplaced by a much stabler source consisting of a synchronously pumped,
cavity-dumped, frequency-doubled dyec laser. The laser was a commercial

unit (models 171, 375, and 344, Spectra Physics, Mountain View, CA) operated

with rhodamine 6-G as the dye. A pump wavelength of 514.5 nm and dye emission

wavelength of 617 nm were utilized, resulting in an excitation pulse train

at 308.5 nm. The frequency doubling crystal (Cleveland Crystal Co.) was
KDP. This arrangement resulted in a primary beam having a power of approxi-
mately 17 mW and consisting of a train of 20 ps pulses at a fre-
quency of 0.8 MHz., These primary pulses are calculated to have a pcak power
of approximately 1 KW and result in the production of frequency-doubled
pulses of approximately 2 W peak power.

To serve as a trigger for the TAC of the correlation fluorimeter, a
PIN photodiode recgistered the arrival of a fraction of the primary beam

pulses. The primary and doubled beams were scparated using a simple prism

arrangement. The only other change from system 1, described above, is the

use of a diffcrent cut-off filter (Schott #KV389) for separating the fluores-
cence radiation from background. A similar arrangemcnt has been described
previously (1),

With this stable pulscd source, it became possible to measurc fluorescence

intensity dircctly from recorded decay curves. Two approaches for this mea-
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surement were examincd. The first approach involved simply measuring the
average anode pulse ratc from the photomultiplicr detector over a 10-second
time period. The second approach utilized the integral of the processed
luminescence decay curve as an indication of fluorescence intensity. This

integral was rcadily obtained and could be directly read out from the com-

mercial multichanncl pulse-height analyzer employed in these studies.

The second system was employed to study the quenching of quinine

bisulfate by chloride ion.

Reagents and chemicals. Both quenching systems have been discussed in

some detail in the literature and solutions were prupared in accordance with
instructions in that publication (3).
l-pyrencbutyric acid stock solutions were prepared in 0.01 M KOH and

combined with varying amounts of iodide ion (as KI) in Tris buffer solutions

(pH 8.0). KI was stabilized by the addition of Na;5S203. Solutions were made
to have a range of lifetimes betwecn 18 and 115 ns, the latter solution being

totally unquenched. No attempt was made to excludc oxygen from the sample

solution, since the technique should also correct for intersystem crossing
rates induced by the prescnce of dissolved 0.
Quinine bisulfate solutions werc preparcd in 0.1 N H2SO4 and were com-

bined with varying amounts of chloride ion (added as NaCl) to yield a group

; of solutions having expected lifctimes between 1.5 and 18.9 ns.

RESULTS AND DISCUSSION
MWV VWV

In general, results were similar for the studies on l-pyrenchutyric

acid and those on quinine hisulfate. However, instrumental system 2 scemed
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to perform better than system 1 and was employed for all subsequent inves-
tigations. Consequently, we will concentrate on results obtained with
this more elegant (but more complex) arrangement.

It was verified initially that quenching in both systems occurred by
diffusion-controllied processes; Stern-Volmer plots for quinine bisulfate
are shown in Figure 1. In Figure 1 are shown the results for both the anode
pulse rate (curve a) and pulse-height spectrum integral (curve b) methods
of monitoring fluorescence intensity. Examination of these curves indicates
the slightly higher precision of the latter approach, an unsurprising
result in view of the larger number of data points utilized by the techniéue.

The influcnce of quencher (chloride ion) concentration on quinine bi-
sulfate luminescence intensity is shown in Figures 2a and 2b. Again, these
two parts correspond to the different methods for monitoring fluorescence
intensity. The lower curve in each figurc reflects the drastic change in
fluorescence which would be noted if no correction is made. In contrast,
the upper, nearly flat line shows the improvement which is obtained by
dividing the measured fluorescence intensity for cach samplec by its mea-
sured luminescencc lifetime. All curves are least-squares fit to recorded
data. For the lifetime-correzted values, rclative standard deviations of
5.9% and 4.0% werc obtained for, respectively, the anode pulse ratc and
pulse height intcgral techmiques for monitoring fluorescence intensity.
Essentially all this error can be ascribed to uncertainties in the measurc-
ment of luminescence decay times.

Ouc of the limitations in the timec-correlated single photon technique

for the weacnroment of lmineccence Tifetimes is that data acquisition times




are long, being limited by the necessity to avoid pulse pileup in the detection i
system. Although there are ways to minimize this limitation (1,4), there is '
often a tendency to push data collection limits to improve acquisition time. '

Consequently, it was decided to examine the influence of unusually high anode

pulse rates on the ability to correct for quantum efficiency changes.
The results of these investigations are shown in Figures 3a and 3b. Al-

though the Stern-Volmer plots were linear for both methods of monitoring

fluorescence intensity, even at high anode pulse rates, errors in measuring
accurate luminescence lifctimes increased dramatically. At high anode

pulse rates, fluorescence decay curves appear skewed toward shorter times;

unless anode rates are matched exactly for samples having different degrecs

of quenching, decay curves yield erroneous lifetime values. Moreover, anode
pulse overlap would result in a loss of integrated counts in the pulsc height
spectrum and in the measurement of anode pulse rate, thereby yielding incorrect

values for fluorescence intensity. 1In the present experiment, anode pulse

rates were measured with a high-frequency counter, so error in those values
was minimized. In contrast, the pulsc height spectrum integral was obtained
directly from the time-correlated single photon counting apparatus, which had
a relatively long dead time. Conscquently, data scatter in the corrected
values obtained with this latter tcchnique was much greater (relative
standard deviation = 7.9% in Figurc 3bh).

In summary, it has been shown that errors ordinarily causcd by quantum
efficiency variations in analytical f{luorimetry can be overcome through
usc of timec resolution. To perform the correction, onc nced only monitor

simpttanconatly or consecutively the Clouorescence intensity and liminescence




lifetime for cach sample. Ratioing these two values then provides a measurc
of concentration which is independent of collisional quenching processes.
Conveniently, both intensity and lifctime can be monitored using the time-

correlated single photon technique, if a source having stable pulse amplitudes

is employed. However, for conventional instruments, it will be necessary
to utilize an independent method for monitoring fluorescence signals.

In this correction procedure, as in most others using the time correlated
method, errors in measured lifetimes arise if fluorescence photons are detected
at excessively high frequencies. These errors have greatest effect in the
present measurements if fluorescence intensity is monitored through use of
the pulse height spectrum integral; their effect is minimized if the anode

pulse ra.c¢ is measured directly.
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Figure 1.

Figure 2.

Figure 3.

Figure Captions

Stern-Volmer plots for the quenching of quinine bisulfate

by chloride ion. Curve A - fluorescence intensity monitored
through average anode pulse ratc. B - fluorescence intensity
obtained by intecgration of luminescence dccay curve (pulse-

height spectrum). !

Correction of measured fluorescence by ratioing with observed
luminescence lifetime. Bottom curve in cach figure is dircctly
monitored fluorcscence; upper plot reveals corrected values.
Part A employs anode pulse ratc to indicate fluorescence

intensity; part B utilizes integral of pulse height spectrum.

Effect of high frequency of detected fluorescence photons
on validity of quenching correction method. All parameters

similar to those in Figure 2.
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