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sets, and a proposed Automatic Program Translator provides 
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second year.  In addition, the common hardware could result 
in an estimated cost avoidance of approximately $2.6M in 
component purchases during production and initial sparing. 

The Economic/Trade-Off analysis recommends the implementa- 
tion of approach (3) as soon as possible. 
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EXECUTIVE SUMMARY 

Introduction (Section I) 

The Economic/T 
was prepared by R. J 
with the Scope of Work 
required the design co 
development concept fo 
reduce the large numbe 
present in the AAH Fir 
is to reduce the antic 
expected when the AAH 

rade-off Analysis presented in this report 
Brachman Associates, Inc., in accordance 
(SOW) Contract DAAK10-79-C-0329. The SOW 

ncept of a common microprocessor and the 
r a common language and software system to 
r of different MP's and assembly languages 
e Control System. The purpose of the study 
ipated very high software maintenance cost 
is fielded. 

The totality of coverage of the many regulations relating 
to management of computer resources in military systems causes 
unintended confusion when applied to microprocessors.  The micro- 
processor is usually employed in a dedicated role, "deeply 
embedded," physically integrated with other circuitry, and uses 
applications software with less than 32 K lines of code.  It is 
suggested that the term "Integral Processor" be used with appro- 
priate definitions and boundry conditions to provide clear 
guidance to Development, Test and Procurement Personnel. 

Data Base (GFM) (Section II) 

The GFM data base was limited due to the complexities 
of the Advanced Attack Helicopter Contract and the competition 
sensitive nature of many subcontracts.  The subsystems are identi- 
fied by letter.  The data base used in this study was derived 
from Reports 79-104 (10) and 79-105 (5) by R. J. Brachman 
Associates, Inc.  These reports compile available hardware and 
software data derived from questionnaires, direct contact with 
Prime and subcontractors and commercial sources.  The AAH Fire 
Control System is composed of seventeen different microprocessors 
implemented in ten different hardware configurations and twelve 
different languages are used to write the application software. 
A new microprocessor, the Z-80 was recently added to subsystem 
K which also contains a 16 bit microprocessor using four 2901A 
4 bit devices.  The total application software is in excess of 
150,000 lines of code. 

n 
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Technical Approach (Section III) 

The present multiple processors and their associated 
languages were used as the base for comparison of three basic 
approaches to achieving commonality of hardware and/or software. 
The three areas explored in this Economic/Trade-off analysis are: 

1. Common hardware based upon full emulation of all the 
instruction sets.  This would not affect any of the currently 
developed software.  The detailed discussion of the emulator 
design is in Appendix A. 

2. Common software based upon a common assembly language 
using a Master Instruction Set, CMIS) described in Appendix C and an 
Automatic Program Translator described in Appendix B.  The Auto- 
matic Program Translator is self-documenting and would generate 
object code for the currently developed MP hardware.  This would 
require 11 code generators.  This would not affect any of the 
current hardware designs. 

3. Common hardware based upon microcoding the Master Instruc- 
tion Set as the common language.  The Automatic Program Translator 
would be the same as 2 above except that only the code generators 
would be required. 

Hardware—A Common Microprocessor (Section IV) 

The proposed common microprocessor is based upon the American 
Micro Devices Am29116 single device microprogrammed microprocessor. 
The detailed study is contained in Appendix A.  A potential problem 
involving PC board area and power dissipation may exist when 
attempting to replace the 8 bit microprocessors with the 16 bit 
Am29116.  The recent disclosure that an 8 bit Z-80 MP was added 
to one of the subsystems may represent the potential solution to 
the 8 bit packaging problem.  Thus, there would be two common 
MP's, the Z-80 and the Am29116.  The repackaging of the current 
MP hardware designs can be easily handled using design tools such 
as the Algorex Corporation Automated, Integrated Design and 
Engineering—"AIDE" (9) system.  This system will produce full 
documentation for production as well as highlighting the design 
changes, power dissipation MOP, signal tracing between PC boards 
within the subsystem, logic loading analysis and original to 
current data mapping as well as other documentation. 

Software—A Common Language (Section V) 

The proposed common language is based upon a Master In- 
struction Set (Appendix C) which will permit direct translation 

iii s 
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between the current 11 assembly language and the MIS.  This 
enhances traceability and would reduce testing of modified soft- 
ware using the MIS.  Training, documentation and development 
costs would be significantly reduced.  The existing software 
would be translated to the MIS using the proposed Automatic 
Translation of Programs from one computer to another (alternative 
I).  The Automatic Program Translator is also self-documenting. 
A DoD High Level Language such as ADA could be used to develop 
an optimizing compiler (Appendix D) which produces MIS as its 
object code, then MIS would generate microprocessor object code. 
This procedure actually provides more efficient machine language 
code  (Figure 5). 

Economic/Trade-off Analysis (Section VI) 

This sect 
in other sections 
by a Matrix, Tabl 
hardware/software 
to $9.5M the firs 
year after fieldi 
approximately $2 
of MP components 
ing. 

ion consolidates the various cost data presented 
The Economic/Trade-off analysis is summarized 

e I.  The implementation of the proposed common 
system will also yield cost avoidance of $5M 

t year and between $1.7M to $3.4M the second 
ng of AAH.  In addition, a cost avoidance of 
6M could be achieved due to quantity purchases 
during production and initial spares provision- 

Summary and Recommendations (Section VII) 

The proposed common hardware and software system for the 
AAH Fire Control System is technically feasible and extremely 
cost effective, even though the AAH has been in development for 
over 3 years.  The proposed program would be non-developmental 
Product Improvement Program.  It is therefore recommended that: 

1. The Master Instruction Set be finalized as soon as 
possible to include all microprocessors. 

2. The Automatic Program Translator, System Alternative 
I be initiated immediately. 

3. Initiate the design and brass-boarding of the proposed 
common MP which implements the MIS as soon as possible. 

4. Expand the application of the proposed MP to all fire 
control applications requiring a microprocessor. 

iv 
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SECTION I 

INTRODUCTION 

w«  v       ^   ThiS  rePort  is  Prepared  in  accordance  with  the  Scope  of 
anS e/S  ^^^^  DAAK10-79-C-0329  entitled   "An  Economic 
tvS^M7       de~0ff  StUdy 0f  a11 Advan^d Attack  Helicopter   (AAH) 
fy^Kioroprocessors   and Associated  Devices.      The   SOW  states 
this task is to make a detailed analysis/trade-off of all system 

microprocessors and associated devices and their functions  their 

celsorfa^r^Mff iSS'-and  Packa^g.     A   standarS miSopro- cessor  family will  be  designed within  the   system physical  and 

llTeTl^TTl™1^3-.     The  eXtent  0f  standardizLKn"chSv- aoie  will  be  determined. 

A detailed  analysis  will  be  made  of  the  existing  soft- 
fofienfSt?^ of  ?oc^ntationf   special purpose  tools,   needed 
for  generation  of  applications   software,   language  requirements 
and procedures will be  developed for documentation p?epa?at?on.'" 

contract 
Work to be completed ninety (90) days after start of 

^m   J;he AAH h^s been in development for approximately three 
hlTn'a .IZt^  f0Urteen sub syst^s under consideration, each 
having at least one microprocessor (MP).  The microprocessors 
thefSn rVen diff-^t physical types of hardware  So^Sr 
qnw^VSn   rePresent ten different programming languages.  The 
Associates^no     a ^l  formidable challenge.  R. J. Brachman 
rllnlllnV. ?r0:,ect tetm  Was able to achieve the unique 
set which wil!^^^?0^011 h*fdware design MP' a master instruction set wnich will permit the software system to perform automatic 
code conversion from the present twelve assembly languages to the 
Master Instruction Set, an optimizing high level language compiler 
and an automatic documentation generatio? system.  S addit?X 
wJth ^T1  e? aPP^ach will be completely cost effective aS3 
with early implementation could be phased into the AAH nroaram 
without affecting the fielding date of the system!    Pro5ram 

This report is organized as follows: 

Purpose of the study. 

This will be covered in the introduction and will dis- 
cuss policy, proliferation of embedded computers, and 
definitions. 

a 
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Data Base (GFM) 

This will be discussed in detail in Section II. 
Data Base will cover types and make of processor 
hardware and software involved and the data avail- 
able for performing the cost or economic/trade-off 
analysis. 

Technical approach 

This will be covered in detail in Section III. 
Basically the technical approach addresses 
the three options available when attempting 
to redesign portions of a given system. 
These are a) redesign the hardware without 
affecting the software, b) redesign the 
software without affecting the hardware, 
c) redesign both with minimal impact on 
the overall system. 

Hardware, design and packaging 

This will be covered in detail in Section IV. 
This section will cover the packaging of the 
proposed common MP and the space available 
based on the information provided by the 
GFM and analysis of the performance of 
the sub-system. 

Software 

This will be covered in detail in Section V. 
This section will discuss software, how it 
is handled in the military, how the industry 
handles it, documentation and its value and 
the approach proposed for implementation of 
a common or standard high level language. 

Economic/trade-off analysis 

This will be covered in detail in Section VI. 

a 
ASSOCIATES. INC. 



This section is the compilation of all the data 
provided in the other sections and the cost of the 
various approaches as compared to having the system 
progress as currently designed. 

Summary and recommendations 

This will be covered in Section VII.  The content 
of this section is self-explanatory. 

A.  Purpose of the study 

The Advanced Attack Helicopter is a major weapons system 
having a Project Manager.  The program is scheduled for both Army 
and Department of Defense reviews entitled ASARC and DSARC. 
During previous reviews it became known that the AAH contained a 
large number of microprocessors.  In addition to the different 
hardware, a number of different languages are also involved. 
This caused considerable concern especially in light of DoD poli- 
cy.  DoD policy directed toward reducing proliferation of 
computer resources and reducing the high cost of computer software 
(development and in particular maintenance) are well-defined. 
Automatic Data Processing Regulation (ADPR) covered by the Army 
Regulation AR18-1 series provides thorough, detailed management 
procedures in use to implement DoD policy in this area.  The man- 
agement of tactical computers, including embedded computers, 
acquisition and fielding are to be covered by AR70-XX (draft): 
Management of Computer Resources in Army Defense Systems.  More 
specific and detailed management policy is covered by DARCOM in 
its DARCOM Test and Evaluation Guideline (draft) and DARCOM-R 
70-16 entitled "Management of Computer Resources in Battlefield 
Automated Systems." All these and many other supporting reg- 
ulations use adjectives such as "embedded," "real-time,'" and/or 
"closed-loop" when describing both hardware and software computer 
resources.  However when examples are provided, the embedded, real- 
time, closed-loop computer is substantially large, expensive and 
is well-definable as a major sub system.  The area occupied by 
embedded, real-time, closed-loop processors which cost several 
hundred dollars and utilize only several thousand words of pro- 
gramming and are an integral part of the circuitry of the 
sub-system are not as well-defined and thus many systems and 
sub-systems will be developed having these microprocessors inter- 
mixed throughout the circuity.  A means must be established to 
provide some control and reduce proliferation but not to the 
prior extent since the cost of implementing the regula- 
tion would exceed the cost of the microprocessors by at least an 
order of magnitude   (10 times) 

0 
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The motivation for producing the policy statement as 
well as implementing regulations is simply cost.  The policy 
statements of DoD 5000.29(1) and DoD 5000.31(2) specifically 
state that cost is the basis for the DoD directive/instruction. 
The complexity of managing computer resources is highlighted by 
the large number of regulations/instructions covering this area. 
The problem with implementing a large number of detailed 
regulations/instructions is the cost and personnel resources. 
In some current weapon systems, the cost of implementing the 
regulations/instructions would exceed the cost of developing and 
fielding the computer resources by at least an order of magnitude. 
This apparent negative cost ratio should not be a surprise, if 
one examines the examples and basis for developing the current 
regulations/instructions.  While not specifically addressed, it 
appears that the processors costing several hundred dollars and 
requiring one to two thousand lines of instructions does tech- 
nically come under the regulations/instructions.  The cost and 
human resources required often result in these devices "not 
being managed."  On a case-by-case basis, this may not be a 
problem.  However, a case in point is the current AAH program 
which has seven different hardware microprocessor configurations 
and ten different software languages used with these processors. 

Today's weapon fire control systems utilize an extensive 
array of sensing devices in the form of radar, electro-optical, 
and infra-red devices, laser rangefinder/designators, and arrays 
on atmospheric, platform, and weapon sensors.  Weapons mounted 
in moving platforms require gyro stabilized platforms with fast 
response, precision controls as well as control of targeting 
sensors.  The maneuverability required of today's weapon systems 
require maximum use of the system's physical envelope.  Sensors 
and operating personnel are placed in the most tactically effec- 
tive position possible.  This leads to additonal requirements in 
the form of data transmission and operational displays.  The 
tactical requirement for combat effectiveness and survivability 
dictate the need to decentralize the processing of fire control 
data.  Further, there are a number of techniques for processing 
this data which permit lower cost and more effective use of digital 
processing technology. 

The data processing industry, by nature of the devices 
used, is a digital industry.  Weapon system controls dealing with 
physical movement of devices and components, operating in a dy- 
namic environment, have been principally an analog industry.  The 
improvement of digital techniques and digital devices has resulted 
in a transition of weapon systems control and in particular Fire 
Control to more digital techniques.  The end product of almost all 
fire control functions still is an analog function, i.e., some 
physical element, a gun, a platform, a sight moved from one 
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position to another.  The movement while initially controlled 
digitally must end up being converted to an analog control sig- 
nal.  The digital technique including microprocessors are totally 
dedicated to this function.  Therefore, the identity of these 
devices must be defined properly in order to provide their spe- 
cific place in the management structure of computer resources. 

Further, many of the sub-systems involved in a fire 
control system do not necessarily require processors, much less 
microprocessors or digital computers.  However, after the design 
and interface requirements have been established, it is generally 
cost effective to use a microprocessor to reduce the total parts 
count and number of devices in the sub-system.  Therefore, many 
microprocessors evolve into a sub-system after development has 
been initiated.  Management procedures must recognize this 
phenomenon. 

The current management approach to insure control of a 
given area of technology or given discipline is to provide all- 
encompassing and total inclusion of every conceivable facet of 
that area.  In attempting to cover the total spectrum, many con- 
trol elements, while in the regulation, are actually unmanageable, 
principally through the lack of proper definition and personnel 
resources.  As an example, the following definitions are extracted 
from DARCOM-R 70-16: 

A-l  ARMY BATTLEFIELD AUTOMATED SYSTEM--A system employ- 
ing computer resources that operates or has components 
that operates within the boundaries of the battlefield 
regardless of the function, mission, or battle 
involvement.  The system may be an offensive, defen- 
sive or direct/indirect support system.  Examples of 
such systems are weapons, communications, command and 
control, intelligence, avionics, missiles, combat 
support, and combat service support systems. 

A-4  COMPUTER—Electronic machinery, which by means of 
stored instructions and data perform rapid complex 
calculations or compiles, correlates and selects 
data.  Examples are analog and digital processors, 
information processors, real-time control processors, 
electronic calculators, hybrid computers, communica- 
tion processors and microprocessors. 

A-10  COMPUTER RESOURCES~The totality of computer equip- 
ment, computer programs, computer data, associated 
computer documentation, contractual services, per- 
sonnel and computer supplies. 
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A-13  COMPUTER SYSTEMS—An interacting assembly consisting 
of computer equipment, computer programs and com- 
puter data. 

A-16  EMBEDDED COMPUTER RESOURCES—The totality of com- 
puter resources that form a sub-system or part of 
any Army Battlefield Automated System, e.g., 
intelligence collection system, target acquisition 
system, or weapon system.  (For the purpose of this 
regulation the term "embedded computer resource" 
is replaced by "Army Battlefield Automated System" 
as defined in paragraph A-l.) 

As can be seen from the above definitions, the total all- 
encompassing nature of the definitions results in an inherent 
weakness in the real world management of computer resources in 
Battlefield Automated Systems.  A new definition or additional 
definition is probably not required in view of all those that 
exist.  However, in order to properly associate the microproces- 
sor and its role in the overall Battlefield Automated Systems, 
a definition more specifically related to this device is required. 
The following definition is suggested: 

A-X   INTEGRAL MICROPROCESSORS:  An integral micropro- 
cessor is the device and its associated compon- 
ents which provides completeness to a sub-system 
function.  It is dedicated in nature and generally 
does not have the peripherals and internal operating 
system normally associated with larger computers. 
The Integral Processor is physically and electron- 
ically integrated into the sub-system design and 
package.  It is usually not separable in a physical 
sense, its role and modifications of its role are 
dictated by the overall performance of the sub- 
system within its environment rather than due to 
outside or external influences. 

The Advanced Attack Helicopter program is considered 
"Competition Sensitive."  Therefore the sub-systems are identified 
by letters.  These letters do not have any relationship to the 
actual function of the sub-system.  Throughout this report we 
will be referring to the various processors and the sub-systems 
by these letters.  This is shown in Figure 1. 
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SECTION II 

DATA BASE 

A.     The Economic/Trade-off analysis required by the SOW in- 
cludes a proposed redesign of the microprocessors which will 
result in a standard or common MP, a common high level language, 
common software, software aids and documentation system, and the 
life-cycle cost associated with this effort as compared to the 
life-cycle cost of the present design.  The combination of several 
factors such as the 14 (or 15) microprocessors used in the same 
weapon system, the weapon system having been in development for 
almost three years, and the concept of re-designing the micro- 
processors and supporting software to achieve the commonality and 
reduce proliferation makes this study quite unique.  The unique- 
ness of this study effort is further enhanced by the lack of a 
well-defined and easily acquired data base with which to perform 
the analysis.  The life-cycle cost of a system design is treated 
differently within the data processing industry and the U.S. Army. 
The lack of certain technical data relative to the microprocessors 
also creates a data base problem.  The data presented ap- 
pears to be quite heterogeneous in its composition.  This is due 
to the many varied sources investigated in order to obtain use- 
ful data for this study.  The data base is not intended to be 
total or complete but rather to provide sufficient information to 
support the Economic/Trade-off analysis.  In most cases, the data 
was available from a single source.  Where multiple sources pro- 
vided data and the data differed, the difference was used to 
provide a "tolerance band."  The hardware data is acceptability 
defined, however, the software data is lacking in a number of 
areas.  Under the current AAH contract, the software and the 
documentation for the applications program for all but one sub- 
system is not a deliverable item.  Thus the details of the soft- 
ware were lacking.  To overcome the lack of detailed data, the 
algorithms used in the various sub-systems were analyzed and the 
level of complexity as well  as the number of instructions were 
estimated.  This coupled with the data that was available was 
determined to be sufficient for the purpose of this analysis. 
The data used in the analysis is described as well as its 
source. 

B.  Hardware Data Base 

1.  Microprocessor Data 

The proposed design of a common (standard) MP must solve 
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the most complex as well as the simplest algorithms.  Further, 
the proposed design must be physically packaged within the 
same unit or sub-system currently mounted in the AAH.  The most 
complex sub-system computational requirement is met by the Fire 
Control Computer.  The specification for this computer is des- 
cribed in CRITICAL ITEM DEVELOPMENT SPECIFICATION FOR FIRE 
CONTROL COMPUTER, AMC-DC-AAH-H3003B, dated 31 October 1978 (4). 
This document described the required instruction set and execu- 
tion times.  In addition, it provides a physical envelope for 
packaging of the computer.  Additional hardware data was ex- 
tracted from the Report 7 9-10 5 entitled "Commonality Study of 
Computer Hardware Resources in the Advanced Attack Helicopter 
(YAH-64) Fire Control System" (5).  This report compiled data 
contained in questionnaires answered by almost all the Prime 
Contractor/subcontractors on the AAH. 

2. Proposed MP Design 

The proposed design of the common microprocessor is based 
upon the American Micro Devices Am29116.  This device is des- 
cribed in a paper entitled "A High Performance 16 Bit Bipolar 
Microprocessor—The Am29116" (6).  Design data and design tech- 
niques for microprogrammed microprocessors were obtained from 
a series of manuals entitled "Build a Microcomputer Distributed 
by Advanced Micro Devices" (7).  These two documents provide 
excellent design guidance as well as an understanding of the 
Am29116 microprogrammed microprocessor (MPMP).  The supporting 
devices such as ROM and RAM data were updated using information 
provided in two parts of a series published in Computer Design, 
December 1979 and January 1980 (8).  This information augments 
that data presented in the previous report 79-105  C5). 

3. Packaging 

The physical size of the boards used with the MPs are 
generally described in report 79-105 (5).  The redesign of the 
boards is not considered a problem with today's technology, as 
there are a number of automatic circuit design and layout pro- 
grams available.  In particular, Algorex Corporation has a sys- 
tem for Automated, Integrated Design and Engineering called 
"AIDE" (9) which will permit automatic layout of the PC board 
along complete documentation complying with military specs such 
as  MIL-STD-275B, MIL-P-55110C and MIL-STD-1495.  The Algorex 
"AIDE" system can provide full manufacturing data and in most 
cases permit layout of the board without significantly changing 
most of the components already mounted on the PC board.  In ad- 
dition, special analysis is provided by the Algorex System Map 
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which presents a cumulative analysis of all design changes to 
insure current up-to-date data in the final drawings.  Further, 
Algorex can generate a Signal Trace Report.  This per- 
mits the tracing of signals through a number of PC boards. 
This is important when re-packaging the system and a number of 
the MP components may be distributed over several PC^ boards to 
meet the physical envelope design constraint.  This insures 
a fully operational system prior to being manufactured thus 
avoiding costly rework. 

C.  Software 

1.  Current Microprocessors 

The software data available for the current micropro- 
cessors is quite limited.  Most of the available data has been 
compiled in a report 7 9-104 entitled "Commonality Study of Com- 
puter Software Resources in the Advanced Attack Helicopter 
(YAH-64) Fire Control System" (10).  The software requirement in 
the form of solution or algorithm solution times and the number 
of instructions were deduced from review of two reports published 
by Hughes Helicopters. 

The reports are YAH-64 Phase II advanced Attack Heli- 
copter, Substantiating Technical Data Fire Control Report.  These 
reports are marked "Competition Sensitive."  Therefore specific 
references to the data will not be made in this report, al- 
though the information was used to generate software estimates. 

2.  Development Aids 

All sub-systems' software was developed using some 
development aids.  In most cases, the subcontractor utilized 
the development aids available from the device manufacturer. 
However, a number of the subcontractors, in particular those 
using microprogrammed microprocessors, developed their own soft- 
ware aids.  If the current design is to be supported by other 
than the current subcontractors, it would appear that all the 
development aids would have to be purchased for this purpose. 
This implies extensive training to be able to utilize the ten 
different software development systems possible.  In developing 
the cost data, the development aids or systems available from 
the microprocessor manufacturer will be used.  The software 
aids or development systems vary in cost from $10,000 to $60,000. 
Custom design software development systems are estimated to be 
double this cost.  All but one sub-system were programmed in 
assembly language.  The one system had 65% of its software 
programmed in the PL/M (high level) language.  The remainder was 
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programmed in assembly language.  Some of the development sys- 
tems produce documentation suitable for a third person to use 
for maintenance purposes.  However, in all cases except one, 
the documentation produced is proprietary. 

3.  Development Costs 

The cost of developing the current software for the 
various AAH MP microprocessors is treated as sunk cost.  However, 
the development costs for the new common software will be shown. 
Determining the maintenance costs per lines of code (or any 
other unit of measure) is more complex than any other factor in 
the software maintenance area.  A paper presented at a symposium 
on Computer Software Engineering in 1976 by Gansler (11) indi- 
cated the cost to develop software was in the order of $7 5 per 
instruction.  Another more current paper dated January 1980 (12) 
indicated the DoD cost of line of executable machine level 
instruction varies between $40 and $60 per line.  Another paper 
(13) indicates programmer's production capability at approxi- 
mately 1000 lines of code per year.  The figure of $60 per 
executable line of code would be more comparable to the AAH due 
to the almost complete use of assembly language programming.  A 
number of software papers attempting to explain development 
costs, divide the activity into three categories.  These are 
program design, coding, and testing.  While most of the papers 
agree on this breakdown, they disagree on the ratio of effort. 
For example, a paper published in 1979 (14) shows the ratio of 
3:1:3; another paper published in 1973 shows the ratio as 
46:20:23, (15); another paper published in 1978 (16) shows the 
ratio as 40:20:40; a report covering a slightly different area 
but somewhat related showed the ratio 35:15:45 (17).  These 
variations of cost/time estimates highlight the difficulty in 
defining the data base.  A composite of these numbers will be 
used to derive the base-line cost estimates for the proposed 
common microprocessor design of its software.  This will be 
compared to the estimated cost for additional changes of the 
existing software and an estimated cost to generate similar 
software using the automatic translator described in Appendix 
B. 

D.  Maintenance 

1.  Hardware 

Hardware maintenance in the data processing industry is 
reasonably straightforward, however, in the military, there are 
a number of complexities which add significantly to the cost. 
For example, training and technical manuals become a significant 
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cost when supporting ten different microprocessors as compared 
to one.  The reason ten is indicated here is because the hard- 
ware maintenance personnel will require a knowledge of the in- 
struction set and must be taught some software.  Military main- 
tenance personnel perform maintenance on the entire subsystem 
and thus must know how the MP functions as part of the subsystem. 
Another area to be considered is testing of the microprocessor. 
The current plan is to provide Automatic Test Equipment (ATE) to 
support the AAH.  Application program for testing a micropro- 
cessor and its related components can vary from $80,000 to 
$200,000 per microprocessor system.  Thus it is evident that a 
single processor is much more cost effective in this area. 
Other cost areas to be considered are supply pipeline, supply 
direct exchange items, and maintenance float.  The Weapon Sys- 
tem availability is another factor which must be considered in 
the military since the aircraft is of little value if it is not 
capable of completing its mission.  Another maintenance function 
to be considered is overhaul.  All systems go through overhaul 
at least once during their life cycle.  This would require the 
depots or the overhaul facility to have proper test equipment, 
training and documentation as well as the material to support 
the various subsystem microprocessors. 

Software 

Data on software maintenance are more vague than the de- 
velopment costs.  Military maintenance personnel are trained to 
maintain the subsystem.  This requires knowledge of the micro- 
processor and its operational software.  While the individual 
is not permitted to change existing software, that person must 
be sufficiently knowledgeable as to report back the changes and 
why they are required if a "software bug" is discovered in the 
field.  Determining the cost of software maintenance is vague in 
the data processing industry.  Most papers on the subject use 
percentages or ratios of a development cost.  For example, one 
paper (14) quotes an IBM study which states the cost of software 
modification after the software is fielded is over one hundred 
times the development cost; another paper (17) indicates that 
the software maintenance costs 40% higher than the development 
costs should be expected; another paper (11) indicates the cost 
of maintaining or modifying a line of code can be as high as 
$4,000 per instruction.  Several other papers indicate the way 
to reduce the software maintenance costs is to provide the 
proper documentation during the development phase.  The Second 
Software Life Cycle Management Workshop (13) had as one of its 
areas of investigation software maintenance.  Review of the 
summary of the findings and results of the workshop showed no 
discussion of the maintenance problem.  Fortunately, the 
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software maintenance cost can be reduced by the same tools that 
are used to develop the software.  Several reports (18) (2) and a 
paper (19) indicate that maintenance costs can be significantly- 
reduced through the introduction of a number of software aids 
and tools during the development cycle.  In particular, the 
ability to document the software and to produce object code from 
documentation represents a significant advantage toward reducing 
the cost of software maintenance.  A paper presented during the 
workshop (13) entitled "Life Cycle Cost Analysis of Instruction 
Set Architecture Standardization for Military Computer Base Sys- 
tems" by Stone and Coleman showed that the GYK-41 (PDP-11) in- 
struction set permitted significant cost reductions in life 
cycle costs of software.  The proposed master instruction set 
is quite similar to the GYK-41 instruction set.  Therefore, con- 
siderable cost savings should result. 

E.  Methodology 

The varied nature of the data in the data base and the many 
sources highlight the problems associated with this Economic/ 
Trade-off analysis for commonality of hardware and software in 
a complex weapons system.  The section covering the cost analysis 
will utilize this data base.  In each case the numbers developed 
will be explained as the to source and weighting factor and how 
it is applied to the Economic/Trade-off analysis. 

13 

^ 
ASSOCIATES. INC. 



SECTION III 

TECHNICAL APPROACH 

General 

The requirements of the Statement of Work and the short 
time allocated for this study necessitated R, J. Brachman Asso- 
ciates, Inc. to implement a very direct plan which covers 
three principal technical approaches to achieve commonality 
(standardization) of MP hardware and/or software.  The three 
principal technical approaches are: 

1. Common Hardware 

This approach considers the redesign of the hardware 
without changing the software.  This would result in 
reduced supply costs, reduced training costs of main- 
tenance technicians, and possibly reduced personnel 
requirements as well as other associated cost reduc- 
tions.  The software would not be changed, thus any 
software problems and related costs would be the same 
as in the current on-going program. 

2. Common High Level Language (HLL) 

The SOW requires the identification of a common HLL, 
software development tools and a documentation system. 
The technical approach pursued was to consider the 
hardware as currently being developed (i.e., 10 soft- 
ware languages) and determine the technology software 
aids, and documentation system required to achieve 
the common HLL capability.  The software study 
included investigations into automatic "de-compiling" 
of the separate assembly languages to the common HLL, 
then providing a software development system that 
would be self documenting and produce object code for 
all of the various HP's.  This approach would reduce 
software life-cycle costs significantly, however, the 
hardware problems would be the same as the current 
on-going program. 

3. Common Hardware/Software 

This approach was to develop a Master Instruction Set 
(MIS) capable of solving all the required algorithms 
and functions of the Fire Control System.  The common 
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hardware would implement this MIS and the software 
would consider translating all the present assembly 
languages to MIS, then produce the software aids and 
documentation system for the MIS and a possible HLL. 
The existing assembly languages would be "mapped" 
into the MIS, thus showing traceability and reducing 
the validation costs of the new software.  This 
approach would provide the advantages of both common 
hardware as well software. 

The economics/trade-off analysis of the above approaches 
is supported by several detailed technical study tasks.  The 
supporting data required to determine the feasibility of devel- 
oping a common microprocessor, automatic translation of programs, 
master instruction set, and other software aids, are considered 
too detailed technically, and of a specific technical nature to 
be included in the body of this report.  Therefore each of these 
separate studies are included as appendices.  Appendix A is the 
Feasibility Design Study of the Common Microprocessor Hardware. 
Appendix B is the study of Automatic Translation of Programs from 
One Computer to Another.  Appendix C is the study of the Master 
Instruction Set.  Appendix D is the study of Software Development 
Aids. 

B.  Hardware 

The hardware aspects of this study cover several areas. 
These include the physical configuration or packaging of the sub- 
system and the processor capability for solving the algorithms of 
the sub systems.  Ironically, it is the hardware mechanization of 
the instruction set that is critical to the solution of the 
algorithms.  Yet the instruction set is involved in the generation 
of software.  This highlights the intimacy between hardware and 
software in microprocessor and especially in microprogrammable 
microprocessors (MPMP).  A review of the various sub-systems and 
their associated microprocessors is as follows: 

A-6802-8 bit CPU 
B, C, I, N-8080A/8085A, 8 bit CPU 
D, L-2901A, 4 bit slice microprogrammable microprocessor- 

16 bits 
E-SKC3020, 4 bit slice proprietary CPU-16 bits 
F-54LS181, 4 bit slice microprogrammed logic controller- 

12 bits 
G-MECA- 43, fire control computer microprogrammed-hybrid 

technology, 16 bits 
H-2901A, 4 bit slice microprogrammed microprocessor- 

16 bits 
J-SBP9900,16 bits CPU 
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K-2901A, 4 bit slice microprogrammed microprocessor- 
16 bits 

M-SBP9900 (2), 16 bits CPU 
O-2901A, 4 bit slice microprogrammed microprocessor- 

16 bits 

In summary,there are five 8 bit CPU's, 1 or 3 16 bit CPU's, 
and 7 microprogrammed microprocessors.  The capability of an 
8 bit version of microprogram device to solve the 8 bit CPU 
problems was not in question.  The principal concern was ability 
to solve the fire control computer requirements with the 
speed required as well as within the total program storage requirements. 
The fire control computer is the MECA-43 with appropriate 
input/output capabilities.  The back-up fire control computer is 
a 2901A 16 bit configuration.  These two instruction sets were exam- 
ined in detail, as well as other available instruction sets, 
also studied.  The current technology available to permit emula- 
tion of all the microprocessors is microprogramming.  A new 
device to be released the third or fourth quarter of 1980 is the 
American Micro Devices AM29116.  This is a 16 bit microprogrammed 
device in a single 52 pin DIP package.  The device capabilities 
and the design are discussed in detail in Appendix A.  The 
AM29116 in its single 52 pin DIP package and 100 nanoseconds exe- 
cution time for a microcode instruction means that there should 
be very low technical risk in emulating the fire control computer 
with its hybrid packaging technique and the back up fire control 
computer using the 2901A.  The packaging problems relating to the 
8 bit CPU's will be discussed in more detail in Section V.  From 
the initial microcode count and analysis of the MIS, it appears 
that the 29116 emulation of the fire control computer will permit 
execution of the application software instructions in the same 
time or less than the current processors. 

Basically, a microprogrammed machine is one in which a 
coherent sequence of micro-instructions is used to execute various 
commands required by the machine.  If the machine is a computer, 
each sequence of micro-instructions can be made to execute a com- 
puter instruction.  All of the little elemental tasks performed 
by the machine in executing the computer instruction are called 
micro-instructions.  The storage area for these micro-instructions 
is usually called the microprogram (microcode) memory.  A micro- 
instruction usually has two primary parts.  These are: (1) the 
definition and control of all elemental micro-operations to be 
carried out and (2) the definition and control of the address of 
the next micro-instruction to be executed. 

Microprogrammed machines are usually distinguished from 
non-microprogrammed machines because they are normally considered 
highly ordered and more organized with regard to the control 
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function field.  In its simplest definition, a microprogram con- 
trol unit consists of the microprogram memory and the structure 
required to determine the address of its next micro-instruction. 
Whereas, older, non-microprogrammed machines implemented the con- 
trol function by using combinations of gates and flip-flops 
connected in a somewhat random fashion in order to generate the 
required timing and control signal for the machine.  A machine 
instruction is defined by the number of operational codes to be 
executed, the number of memory locations to be addressed and the 
word size of the machine, i.e., 8 bits, 12 bits, 16 bits.  In 8 
bit machines, if one word will not permit execution of an instruc- 
tion, then two words must be used.  A microprogrammed machine has 
machine level instructions comparable to the non-microprogrammed 
machine, however, it also microprograms instructions.  These are 
not dependent upon the work size of the machine level instruction, 
but on number of control and definition functions to be implemented. 
Figure 2 is a comparison of machine level instruction and the 
micro-instruction. 

The above description highlights the fact that block dia- 
grams of MPMP's such as shown in Figure 3 and Figure 4 often show 
the microcode memory as a single block.  This block has the same 
number of input and output lines as the number of bits in the 
microcode instruction word.  The full system shown in Figure 4 and 
described in Appendix A uses an 80 bit microcode instruction word. 
The minimal system shown in Figure 3 uses a 56 bit microcode 
instruction word.  A detailed design study (beyond the scope of 
this contract) should result in a smaller microcode instruction 
word in both cases. 

C.  Software 

The present MP's in the AAH use ten different assembly 
languages, depending on the final Fire Control System Configura- 
tion.  The current software for all the MP's combined amounts to 
between 150,000 and 200,000 lines of code.  The cost to convert 
this code to a common language would probably equal the original 
cost to write the code and require several years or a large staff. 
The initial investigations into the State-of-the-Art of "de-compiling" 
techniques revealed a few special cases where this had been accom- 
plished.  However, further investigations resulted in the conclusion 
that this approach was beyond the State-of-the-Art and would require 
extensive research with a very high technical risk.  This approach 
was therefore abandoned. 

The next most effective approach investigated was the 
automatic translation of programs from one computer to another. 
This proved quite feasible and resulted in several additional 
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benefits.  In addition, the translation system would be self- 
documenting . 

A common HLL was not specifically considered due to 
possible availability of ADA.  In addition, HLL's have a number 
of limitations, especially when execution time and memory space 
are critical.  Other limitations were the reason "de-compiling" 
or reverse compiling was considered not possible.  These limita- 
tions are described in detail in Appendix B.  This does not mean 
that an efficient HLL and its compiler cannot be provided.  The 
schematic diagram of the translator information flow, figure 5, 
shows two alternative approaches, these being the MIS or form of 
MACRO Assembly Language and a HLL with reverse compiler and com- 
piler.  Both alternatives are based upon the development of a 
translator from the source assembly languages of a particular MP 
into a uniform-tabular-representation of the program.  The assem- 
bly language translation process analyzes the syntax and local 
semantics of the individual statements in an assembly language 
program of any one of the ten source microprocessors and produces 
a uniform-tabular-representation of the program.  It is based 
upon advanced state-of-the-art syntax analysis techniques which 
have proved to be invaluable.  Specifically, a translator program 
for these assembly languages will be generated automatically.  In 
addition to checking the statements for syntactic and some semantic 
errors, the generated program will also store the statements in a 
tabular form for later processing. 

D.  Master Instruction Set 

The development of a common intermediate or assembly 
language was pursued due to problems of a HLL and reverse com- 
piling.  All the available instruction sets were studied to deter- 
mine if one could be the candidate common language.  The many 
microprogrammed MP's and the wide variety of instructions led to 
the conclusion that a Master Instruction Set would be more effec- 
tive than selecting any one of the MP instruction sets.  The MIS 
described in Appendix C is based upon all the available instruc- 
tion sets.  Subsystems E, H, & K, instructions sets were not 
available.  Further, the entire instruction set of each MP was 
studied rather than only the instructions used.  The resulting MIS 
provides a very powerful software capability.  Thus, it becomes 
an optimizing common focal point for the development of the MPMP 
and automatic program translator. 

21 s 
ASSOCIATES, INC 



0) 
> 

•H 

c 
M 

rH 

H 

0) 
> 

-H 
4J 

C 

DJ 
-P 
rH 

•z 
o 

2 
Ui 
T 
3 

in 
S 
< i 

o I 

U 

Q    10 

X 

ca 

o 

^ si 
<n o E 

J     CO c 
rfP< UJ 

. to T < 

^ ^ in 2 

u 
3 

22 

m < < 

SO Z o of , 

< -JO. a 

M 
O 
+J 
ID 
--i 
m 
c 
ru 
M 

EH 

B 
ro 
VH 
tn 
O 

ft 
o 

•H 
+J 
ra 
e 
o 

■p 
p 

-P 

U 

o 
H 



E.  Software Development Aids 

A number of software development aids are discussed in 
Appendix D.  Also included is a discussion of HLL and optimizing 
compilers. 
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SECTION IV 

HARDWARE-DESIGN PACKAGING 

A.  General 

The Statement of Work requires a packaging and design 
(redesign) analysis to be performed for the proposed common 
microprocessor (MP),  Redesign of the current PC boards are 
permitted however, the overall sub-system package cannot be 
changed.  While not specifically stated, the proposed intro- 
duction of a common MP for the Fire Control Sub-Systems must 
not require more total electrical power than is currently pro- 
vided. 

B.  Microprocessors, Current Design 

The principle source of data relating to the current 
hardware configurations is Report 79-105, Commonality of Hard- 
ware Computer Resources (5).  The name "Microprocessor" when 
used in this Economic/Trade-Off Analysis also includes RAM, 
ROM, Micro-code memory, and I/O parts.  In addition to the 
mix of microprocessor units (MPU) described in Section III 
paragraph B, twelve (12) different type RAM devices, eleven 
(11) different type ROM devices, four (4) different type 
microprogram sequences (including a proprietary discrete com- 
ponent design), and four (4) different type micro-code memory 
devices are used in the various sub-systems.  The MPU's vary 
from 40 pin DIP's to 64 pin DIP's plus one MPU configured 
from four (4) hybrid packages.  The memory devices vary from 
16 pin DIP's to 24 pin DIP's and are organized from 1024 x 1 
bit to 256 x 4 bit devices.  Several of the microprocessors 
have EPROM write circuitry packaged on the PC board.  The pro- 
duction version of these PC boards will not contain this circuitry, 
thus indicating  a PC board redesign. 

The packaging of the MP's and related components was 
dictated by the space (volume) available for the particular 
sub-system in the AAH airframe.  The PC boards vary from 4" x 
4.5" to 9" x 12" including multilayers and irregular shapes. 
In addition, the power dissipation requirements, especially the 
microprogrammed MP's, strongly influenced the PC board and sub- 
system package design.  Unfortunately, MP assembly drawings were 
not available for this analysis, thus the packaging discussion 
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is somewhat general 

C.  Common Microprocessors, Proposed Design 

The proposed common MP design had to be capable of 
solving all the sub-system algorithms, from the simplest to 
most complex, packaged within the available sub-system, and not 
increase the total power requirements.  The proposed common 
MP^design is based upon the American Micro Devices Am291l6. 
This is a 16 bit microprogrammable device packaged in a single 
52 pin DIP.  The proposed design is described in detail in 
Appendix A,  It will interface directly with all the support 
devices including the micro-code memory used with the 2901A 
microprogrammed MP.  Thus replacing all the microprogrammed MP's 
with the Am2 9116 will not cause any repackaging problems and 
should reduce the power requirement.  The repackaging and power 
dissipation could be a problem in the sub-system using 8 bit 
MP's,  The minimal configuration (figure 3) represents a 
processor 30 to 100 times faster (depending on the algorithms 
used) than the conventional 8 bit MP's.  Thus, it represents an 
"overkill" from the application software standpoint.  This, 
of course, is not a concern if this results in hardware and 
software commonality.  Unfortunately, two potential problem 
areas may exsist which would negate the use of the minimal 
configuration in the 8 bit MP sub-systems.  These are physical 
PC board space and power dissipation.  The lack of detailed 
design data including schematics, logic diagrams and assembly 
drawings is the basis for describing the two problem areas as 
"potential" problem areas. 

The physical PC board space problem area results from 
the minimal common MP configuration requiring approximately 
21 "equivalent units" while the 8 bit MP's vary between 6 and 12 
"equivalent units."  An "equivalent unit" is an electronic 
packaging term used to represent the space (area) occupied by 
one 14/16 pin DIP.  The packaging of the proposed common MP is 
discussed in more detail below.  The power dissipation problem 
area could be sufficiently critical as to require the use of 
a "second" common MP.  The power requirements of the minimal 
configuration can vary between 3 and 5 times that of the 8 bit 
MP's to be replaced.  This would require redesign of the sub- 
system power supply which could easily exceed space available 
within the sub-system.  Detailed engineering data is required 
before a final decision can be made. 
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the 

D.  Design and Packaging 

Replacing the current sixteen (16) "Integral" processors 
in fourteen (14) sub-systems by a coimnon MP appears to be a most 
formidable task.  In fact, opinions such as unrealistic, 
economically not feasible, and unacceptable delay in fielding 
the AAH would be expected if it were not for the commonality 
studies. Reports 79-104 (10) and 79-105 (5), the Am29116, 
automated design and packaging techniques such as the ALGOREX 
AIDE, and this Economic/Trade-Off Analysis. 

The use of automated PC board design and packaging 
techniques during R & D is generally accepted.  There are 
many different design systems available today.  The quantity 
and quality of documentation provided by these automated systems 
varies from very little to comprehensive.  However, most of 
these systems are not suitable for design modifications after 
the design has been released(accepted), nor are they suitable 
for redesigning sections of the PC board while the other 
components remain fixed in their original positions.  An 
automated system meeting the requirements for design and re- 
packaging the MP PC boards in the Fire Control Sub-Systems is 
ALGOREX AIDE  (Automated Integrated Design and Engineering). 
AIDE can accept raw logic diagrams, schematics or equations and 
produce the bulk of the drawings, artwork, NC tapes and other 
required documentation.  The ALGOREX AIDER automatically checks 
the design and provides engineering diagnostics, partitions the 
system, if not specified, provides optimum assignment and place- 
ment of components, if not specified, generates assembly drawings, 
provides routing data between PC boards or hybrid LSI's, 
produces photo-ready artwork for manufacturing, provides drill 
templates and/or control tapes for automatic drilling machines, 
provides control tapes for automatic component insection and 
resting machines, generates punched tapes for a wide variety 
of numerically controlled machining operations (APT), and 
designs wired back-panels, fully methodized wiring process sheets, 
or control media for automatic or semi-automatic wiring machines. 
In addition, it generates documentation for engineering, de- 
bugging, publications, and field service such as Signal Code 
List, Reference Designation and Pin List, Signal Description List, 
Thermal Map, Temperature Map, Power Dissipation Map, Original 
to current Data Mapping, Cumulative System Analysis Map and a 
Signal Trace Report.  The drawings comply with military specif- 
ications such as MIL-STD-275D, MIL-P-55110C and MIL-STD-1495. 
Utilization of the ALGOREX AIDER would result in the first 
redesigned PC board becoming available for component population 
and test in 3-4 months after start.  The entire redesign could be 
completed in 12-18 months depending upon the available design 
data. 
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The several 8 bit MP sub-systems will require 
component and software analysis to redesign.  The software 
analysis is required to determine if a memory capacity vs. 
speed trade-off can be made.  Many application programs written 
for 8 bit MP's use tight in-line coding to meet the solution 
time of the algorithm.  This is accomplished at the cost of 
additional memory.  The actual dollar cost is low-due to advances 
in memory technology thus making this methodology acceptable. 
Utilizing the speed of the proposed common MP, memory require- 
ments may be reduced between 20% and 50%, thus increasing the 
probability of replacing the 8 bit MP's and their supporting 
devices.  The only other problem area not covered in the 
Economis/Trade-Off Analysis is the power requirements.  The only 
comment possible in this area without analysis of the current 
sub-system design is that the overall power requirements for the 
proposed common MP will be less than the current requirements. 

E.  The 17th Microprocessor 

This paragraph was added after the final draft of this 
Report was submitted for review and comment.  Information was 
provided about mid-March, 1980, that sub-system K had added a 
Z-80, 8 bit microporcessor to the 2901A-16 bit MP already in 
the sub-system.  This disclosure highlights comments relative 
to management of "Integral Processors" in Section I, Introduction. 
This late disclosure prevented the Z-80 from being discussed in 
most of this report.  Section VI was partially modified to account 
for a worst case solution requiring two common MP's.  The two 
MP's would be the Am29116 to replace all 16 bit and/or micro- 
programmed MP's and the Z-80 to replace all 8 bit MP's.  The 
Z-80 will execute the instruction set of the 8080A/8085A thus 
minimizing the impact upon software maintenance. 
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SECTION V 

SOFTWARE - A COMMON LANGUAGE 

A.  General 

This section discuss 
well as application software 
(Development and Field Maint 
ance. The literature relati 
voluminous. However, the li 
very limited. None of the 1 
maintenance (some allege to) 
systems using different proc 
This lack of other source da 
of this study. 

es the areas of software costs, as 
, development systems, training 
enance), documentation, and mainten- 
ng to large software systems is 
terature devoted to MP software is 
iterature specifically considers 
life cycle costs, multiple processor 

essors, or software production aids, 
ta further highlights the originality 

B, Common Software 

The keystone of any common software system is its 
language.  Traditionally, reference to a "common software language" 
implied a High Level Language.  A number of MP companies use a 
common assembly language for a "family" of devices.  However, 
the commonality generally was upward.  As the MP's became more 
powerful, even this form of commonality was lost.  In order to 
avoid costly software rewrites and maintain user confidence, 
the MP companies developed "cross-assemblers."  This is software 
used to translate one language to another (more powerful to less 
powerful).  The efficiency of the cross-assembled software varied 
greatly in solution speed and memory requirements when compared 
to manually programming each different MP.  This fact did not 
appear to affect commercial applications of MP's.  However, 
Military weapon  systems using "Integral" MP's could not tolerate 
these inefficiencies.  In many weapon systems microprogrammed 
MP's, with a unique (problem oriented) instruction set, are 
used to meet the system performance requirements.  This is high- 
lighted in the Fire Control System of the AAH.  Seven subsystems 
which solve very complex algorithms and/or have stringent thru- 
put time requirements use MPMP's with unique instruction sets. 

Analysis of the available instruction sets of the MP's 
resulted in the disclosure that none of the instruction sets 
had adequate addressing modes to qualify as the common assembly 
language.  A Master Instruction Set (MIS) was designed to support 
the FCS MP's.  A detailed task report describing the MIS and 
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showing the relationship and/or mapping of the available MP 
instruction sets is contained in Appendix C.  The mapping of 
the instructions sets into the MIS will enhance the traceability 
of the translated software.  The instruction sets of three (3) 
MPMP's were not available during this study.  Therefore, approx- 
imately 4 man-months would be required to finalize the MIS. 

The proposed use of the MIS is not in lieu of a HLL, 
but rather as part of a two level software development capabil- 
ity.  The HLL finally selected would compile to the MIS.  The 
MIS would then be used to generate the MP Object Code.  This 
approach overcomes the problems (Appendix B) of using a HLL 
compiler to generate the efficient object code required by the 
"Integral" MP's. 

C.  Automatic Translation of Programs 

Assembly language programs have been treated as special 
cases in the software world.  This has principally been due 
limited documentation and most of all the idiosyncrasies of 
the original programmer.  Most software engineers agree that 
modification of an assembly language program by a "third per- 
son" entails a high technical risk and an associated very high 
cost.  Many times the "third person" can show it would cost 
less to rewrite the program rather than try to modify it. 
The AAH Fire Control Subsystem MMP's currently utilize ten (10) 
different assembly languages.  Thus, it becomes obvious why 
there is considerable concern as to the potentially very high 
software support costs.  Discussions relative to development 
of a common language are contained in subparagraph B above and 
Appendix B and C.  The two software options include: a) using 
the current assembly languages, a common assembly language 
and generating the object code using cross-assemblers and b) 
using a common MP with its assembly language and rewriting 
the existing software.  The cost to completely rewrite of all 
the software manually is considered close to the original R&D 
software costs.  Realistically, there are many more variable 
and unknowns during the R&D phase.  We estimate that the 
manual rewrite would cost between 5 0% and 6 0% of the R&D 
costs.  In either case, the cost and time to manually develop 
a software system using a common language would probably 
deter its implementation.  Fortunately, R. J. Brachman Associates, 
Inc.'s Task Study Group developed a technique for Automatic 
Translation of a Program from one computer to another.  A 
schematic diagram of the proposed approach to Automatic Transla- 
tion is shown in Figure 5.  It should be noted that each step 
produces complete documentation and the end product, object 
code, is produced from the documentation.  Development of the 
Automatic Translator, including translation of all existing 
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programs to MIS (Alternative I) is estimated to require 5 man- 
years over a 1 1/2 calendar year period plus computer time. 
Implementation of the Automatic Translator using the MIS and 
generating object code for the current MP's would require a 
code generator for each assembly language.  Thus, Ten Code 
generators would be required.  Design of each code generator 
requires approximately 6 man-months. 

D. Software Development Costs 

The cost of software development for the present MP's 
is treated as a "sunk" cost.  The cost to develop the proposed 
software system is included in the overall Economic/trade-off 
Analysis. 

E. Software Development Systems 

All the current application software was developed using 
a commercial development system or a custom designed system. 
Commercial development systems cost between $10,000 and $50,000. 
Custom systems are estimated to cost twice the above.  In addi- 
tion, the custom systems are considered proprietary.  This is 
not critical since commercial development systems are available 
for all MP's used in the AAH.  The number of development systems 
required to support the AAH FCS will depend upon how many 
different facilities will support the software.  The development 
system for the proposed common MP/MIS is estimated to cost 
$30,000. 

F. Training 

Training requirements for MP support cover many areas. 
The principal areas considered for the Economic/Trade-off 
Analysis are as follows: 

1.  Assembly Language Programmers 

The transition from R & D to production may or 
may not involve the same subcontractors.  In either 
case, it is assumed that new programmers will be 
provided for production and field support.  The number 
of programmers are estimated to vary from 6 to 28 
depending upon the number of different subsystems, 
subcontractors, and languages in use.  This is a 
conservative estimate since the number of programmers 
during the R&D phase varied between 52 and 90. 
Generally, it requires 3 months for a trained pro- 
grammer to become proficient in a given language. 
For the purpose of this analysis, we will consider 
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14 subcontractors, each with 2 programmers using the 
present multiple MP's and one facility having 6 pro- 
grammers and using the MIS/Automatic Translation 
System. 

2. Software Development Systems 

The above programmer personnel will be required 
to use an appropriate software development system. 
Suppliers of these systems estimate it would require 
between 4 5 and 6 0 days of continuous use to become 
proficient.  The cost impact is directly proportional 
to the number of languages supported and the number of 
programmers. 

3. Field Maintenance 

a.  Microprocessor Testing 

Field maintenance is currently planned to be per- 
formed by use of Built-in Test Equipment (BITE) at the 
Aviation Unit Maintenance (AVUM) level and use of 
Automatic Test Equipment (ATE) at the Aviation Inter- 
mediate Maintenance (AVIM) level and depot.  The 
current maintenance concept does not require Field 
Maintenance Technicians (FMT) to be trained in MP 
logic and software since subassemblies will be 
replaced at the AVUM and PC boards at the AVIM. 
Unfortunately, the maintenance concept may be 
unrealistic at the AVIM due to the high software 
cost and thus limited diagnostic capability of the 
ATE.  MP's and their associated components are com- 
plex devices to test.  Assuming the ATE can achieve 
an acceptable level of PC board level diagnostics, 
the functional test software for the MP and its 
associated devices, could vary between $20,000 to 
$6 0,000.  However, the PC boards and subassemblies 
must be repaired at the Depot.  This requires the 
ATE at the Depot to fault isolate to the piece-part 
level.  ATE software (and hardware) costs can vary 
between $80,000 and $400,000 depending upon the 
test accessibility and degree of diagnostics 
achieved.  These cost estimates are supported by 
previous studies (18) (20) relating to ATE software. 
In addition, it is assumed that the cost of the 
Depot Maintenance Work Requirement (DMWR) is included. 
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b.  Technical Manuals (TM's)/Field Manuals (FM's) 

TM's and FM's are required for all fielded systems. 
Even though BITE and ATE are supposed to reduce the 
technical skill levels in the Field and Depot, FMT's 
and organization personnel will still be required to 
have some knowledge of the subsystem operation.  The 
TM's and FM's will have to contain functional descrip- 
tions of the hardware as well as the software.  It is 
estimated that the hardware descriptions can vary 
between 80 and 200 pages and the software descriptions 
can vary between 100 and 300 pages.  The cost per page 
to prepare these manuals varies between $150 and $225. 
Each subsystem will require its own TM and FM.  Thus, 
even though a number of MP's are the same, each differ- 
ent subcontractor will prepare a different TM and FM. 
A common MP and a common software language would result 
in the same data appearing in all the TM's and FM's. 

G.  Software Documentation 

Current information provided by the PM's staff indicates 
that the software documentation from only one subsystem is 
deliverable.  All the other subsystem contractors consider their 
documentation proprietary.  A number of papers (16) (17) (18) 
show that the quality of the documentation directly affects the 
cost of software maintenance.  A programmer's manual is required 
in addition to the application software documentation.  The 
conventional MP programmer's manuals can be obtained from the 
manufacturer, however, programmer's manuals for the seven MP's 
which are microprogrammed must be obtained from the subsystem 
contractor.  These manuals are estimated to cost between 
$20,000 and $30,000 each.  There is some question as to whether 
the U.S. Army will purchase any of the documentation or "wait" 
until the Production Phase.  It is estimated that the cost to 
purchase the software documentation will cost about the same as 
the Alternative I Automatic Program Translator (ATP).  The ATP 
should significantly reduce the cost of documentation during 
the Production Phase. 

H.  Software Maintenance Cost 

Several papers (11) (12) (14) have been written on the 
subject.  However, sections of the papers have to be combined 
to provide useful information.  The paper by Gansler (11) quotes 
a U.S. Air Force study showing the cost of Software Maintenance 
can be as high as $4,000 per line.  The paper by Schindler (12) 
states that DoD expects the cost per line of executable machine- 
level code to rise from $40 per line to $65 per line by 1984. 
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Most HLL compilers produce 8 to 20 lines of machine-level execut- 
able code per HLL statement.  Another paper by Schindler (14) 
quotes an IBM study which states that the cost to modify a line 
of code after the software has been fielded is 100 times the 
development cost.  Combining data from both Schindler papers 
(12) (14), the $4,000 per line of code maintenance cost stated 
in the Gansler paper (11) does not appear to be unreasonable. 
It is estimated that $4,000 represents between two and three 
man-weeks of effort. 

Military weapon systems are tested during the R&D 
and Production Phases.  However, these tests only approximate 
the tactical operation environmental.  Thus, these sytems 
generally require a number of changes during the first two 
years in the field.  Changes/modifications to fielded U.S. Army 
weapon systems are via Engineering Change Proposals (ECP). 
Experience indicates a system as complex as the AAH could have 
100 to 200 ECP's per month, the first year, 75 to 150 ECP's 
per month, the second year and approximately 5 0 ECP's per month 
throughout its life cycle.  It is estimated that 25% of the 
ECP's, 1st year, 15% ECP's, 2nd year and 8% ECP's, throughout 
the life cycle, will result in software changes.  This results in 
an estimated 300-600 software changes, 1st year; 135-270 changes 
2nd year; and 50 changes per year throughout the life cycle. 
The first year in the field should produce the most extensive 
changes.  It is not unreasonable to expect that each software 
change will average 25 lines of code during the life cycle. 
This results in an estimated 7,500-15,000 lines of code 1st year, 
the second year 3,37 5-6,7 50 and 1,500 lines of code throughout 
the life cycle.  Estimated costs could vary between $30 million 
and $60 million the first year to approximately $6 million per 
year throughout the life cycle.  Considering a cost as low as 
$1,000 per line, the cost can vary between $7.5 million and $15 
million the first year to $1.5 throughout the life cycle.*  A 
study by Stone and Coleman (13) shows that the Instruction Set 
Architecture can have a significant impact on the cost of soft- 
ware maintenance.  The proposed MIS is very similar to the 
Instruction Set described as resulting 49% lower maintenance 
cost as compared to other military computer instruction sets. 
Solutions to the high cost of software maintenance are being 
pursued by many organizations.  A paper by Goetz (19) provides 
"steps toward solution" of the high cost of software maintenance. 
The proposed MIS, Automatic Program Translator, Alternative I, 
the documentation system and an optimizing compiler for the HLL 
coincide with the "steps toward solution."  It is estimated that 
the proposed software systems could reduce software maintenance 

Considering the above represents changes in lines of code 
from 10% the 1st year to 1% throughout the life cycle, the estimate 
appears to be reasonable. 
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costs by 50%. 

Another area of maintenance unique to the military is 
Overhaul.  During this activity, the weapon system is completely 
rebuilt so it is the equivalent of a new system.  Software also 
is Overhauled, although the term "program rewrite" is used to 
describe this activity.  This activity is somewhat random as to 
its occurrence.  A weapon system undergoes many changes during 
its life cycle.  These changes may affect the software.  Further, 
weapons, subsystems and tactics will change.  Experience has 
shown that a weapon system such as the AAH could have two com- 
plete program rewrites during its life cycle.  The number of 
personnel involved with the system rewrite will depend upon the 
number of different MP's, subcontractors, and different assembly 
languages being used.  The level of effort is estimated to vary 
between 22 and 150 man-years.  Thus, the two rewrites would 
required between 44 and 300 man-years of effort.  The range of 
personnel to perform the rewrite is derived from data presented 
by Putnam (13), Thibodeau and Dobson (13) and Parr (13). 
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SECTION VI 

ECONOMIC/TRADE-OFF ANALYSIS 

A. General 

This section consolidates the data presented in the 
other sections of this report.  The final cost summary will 
contain estimated MP hardware and software development and support 
for the current AAH, the Common MP (no software changes), Common 
Software (no hardware changes), and Common Hardware and Software 
based upon the MIS and the Automatic Program Translator. 

B. Current AAH MP Life Cycle Cost Estimates 

1. Hardware 

The data presented in report 79-105 (5) indicates that 
the MP's would add 3 00-400 new line items to the supply system. 
At an extimated cost of $6,000 per line item, this becomes $1.8 
million to $2.4 million per year, or $18 million to $24 million 
over the 10 year life cycle.  (This does not include cost of 
the parts.)  One MP using the 54 LS181 logic controller will 
probably have to be replaced due to impending obsolescence. The 
redesign should cost approximately $200,000-$300,000.  The MECA- 
43 uses hybrid packages which are proprietary.  In addition, 
the Doppler system uses a proprietary bit-slice MP.  These 
should be replaced to maintain ease of replacement, and supply. 
Thru  competitive procurement current MP technology as shown 
in the proposed common MP design could easily replace these 
proprietary devices with a significant cost avoidance during 
the AAH life cycle.  The cost summary does not include the cost 
of redesigning the MP using the 54 LS181. 

2. Technical Manuals and Field Manuals 

The MP hardware sections of the TM's and FM's are estim- 
ated to require between 8 0 and 200 pages each.  At an average 
cost of $200 per page, this becomes $32,000 to $80,000 per MP or 
$512,000 to $1,280,000 for the 16 microprocessors. 

3. Training--Depot Personnel 

The MP's will be repaired at the Depot.  Even though it 
is planned to use ATE, the repair technicians will require train- 
ing for each of the MP's and how they function in the subsystem. 
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The training cost includes the course as well as the technician's 
salary.  Based upon data compiled in the ATSS Economic/Trade-off 
study (20), six to ten technicians over the life cycle will be 
trained for six weeks on each MP.  This is 288 to 48 0 man-weeks 
@ $16.00/hr.= $184,320 to $307,200. 

4. Automatic Test Equipment (ATE) 

Automatic Test Equipment will be used in the field at 
the AVIM and at the Depot.  The ATE used at the Depot will fault 
isolate to the piece-part level.  It is not known whether the 
AVIM ATE software will be a subset of the Depot software.  For 
this analysis, the AVIM ATE software will be considered a subset 
of the Depot ATE software.  The degree or amount of "probing" 
(manually touching a test point with a probe under ATE direc- 
tion) to be used in testing the MP's is unknown.  Extensive 
probing can double the cost of the ATE software.  The Fire Con- 
trol Computer has the most complex testing requirements whereas 
subsystem N using an 8 08 5A MP probably has the least complex 
testing requirements.  ATE software costs discussed in ATSS 
Economic Study (20) were as high as $700,000 for a mini-computer 
not much more complex than the Fire Control Computer used in the 
AAH. 

Prior ATE software estimates based upon (18) (20) pro- 
vided the range of $80,000 to $400,000 for MP's.  The complexity 
of the Fire Control Computer places it at the top of this range. 
It is estimated that the ATE software for the FC computer could 
easily exceed $400,000.  For this analysis, estimated ATE test 
software costs for the MP's in each subsystem are as follows: 

A 8 $80,000 
B, C, I, & N @ $80,000 
J & M (2) @ $95,000 
E, F, & H @ $180,000 
D, L, & O @ $250,000 
K, (2 different MP's)@ $260,000 
G 0 $400,000 

The total ATE software costs can vary by a large amount, 
depending upon whether one company develops all the software or 
whether each subcontractor develops the software for their own 
subsystem.  For this analysis, the ATE software will be developed 
by one company.  Additional cost complexities arise due to the 
unknown level of testability.  For example. Subsystem B has the 
MP and memory plus I/O mounted on two PC boards with excellent 
test accessibility, whereas subsystem I has the MP, memory and 
I/O integrated with the other electronic components on the same 
PC board thus providing poor test accessibility.  The probing 
requirements could easily double the software costs of I as 
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compared to B even though most of the MP test software is identi- 
cal.  The ATE software cost estimates are based upon each MP test 
program being developed separately and all common MP test programs 
being developed together.  The common development should result 
in 50% less software costs for each additional MP of the same 
type.  The ATE software cost estimates for the MP's by subsystem 
then become: 

Individual Software Common Software 
(K=$1,000) 

A = 80K A = 80K 
B, C, I & N = 320K B, C, I & N = 200K 
J & M (2) = 190K J & M (2) = 145K 
E, F & H = 560K E, F & H = 360K 
D, L & O = 750K D, L & 0 = 500K 
K (2 different MP's) = 260K K (2 different MP's) = 260K 
G = 40CK G = 400K 

$2,540K $1,945K 

Note:  The above ATE software costs are estimated for 
the microprocessors, memory and related I/O only. 
ATE software costs to test the entire subsystem, PC 
board, or assembly will be more extensive and are 
beyond the scope of this study.  Subsystem K has 
both a 2901A, 16 bit MP and a Z 80, 8 bit MP. 
Subsystem M has 2 identical MP's. 

5. Software Development Systems 

Software Development Systems are discussed in Section V, 
Para. E. For the purposes of this analysis, the average cost of 
a system for conventional MP's is estimated to be $20,000. 
Therefore, six subsystems developed by six subcontractors would 
cost $120,000. Custom development systems are estimated to cost 
$40,000. Therefore, ten subsystems developed by ten subcontrac- 
tors are estimated to cost $400,000. The development system for 
the common MP design is estimated to cost $30,000. 

6. Software Maintenance 

a.  Experience has shown that the AAH software will be 
completely rewritten twice over the projected 10 year life cycle 
of the system.  These changes may be caused by major changes in 
subsystems, weapons and ammo, and tactical use of the AAH.  The 
level of effort for this activity can vary between 44 and 300 
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man-years for the two rewrites.  This results from using methods 
for estimating software costs discussed in papers referenced 
in Para. H, Section V.  Thus, it is estimated that approximately 
56 man-years per rewrite would be required if each subcontractor 
made the rewrite individually.  A central organization performing 
the rewrites would reduce this to approximately 3 5 man-years 
per rewrite and a central organization using the proposed MIS 
and Automatic Program Translator would reduce the level to 22 
man-years per rewrite.  The two program rewrites are estimated 
as follows: 

Individual Rewrite 

Central Rewrite with 
Automatic Code Gener- 
ators 

Central Rewrite using 
Automatic Translator 
and MIS Language 

112 M-years @ $100,000 = $11.2 million 

70 M-years @ $100,000 = $   7 million 

44 M-years @ $100,000 = $ 4.4 million 

b.  Software maintenance costs based upon ECP's (Section 
V) and $1,000 per line of code are estimated as follows: 

(Costs in Millions of Dollars) 
Central 
Maintenance 

Individual        Central Common 
Maintenance       Maintenance       Software 
Present Software  Common Software   Common 
Present Hardware  Present Hardware  Hardware 

1st yr. (avg.) 7.5 - 1.5 

2nd yr. (avg.) 3.4 - 6.8 

Each yr. (avg.) x 8        12 

5.6 - 11.2 

2.6 -  5.1 

9 

4 - 7.5 

1.7 - 3.4 

6 

Total 10 yr. ECP 
Life Cycle Cost: 22.9 - 33.8 17.2 - 25.3 11.7 - 16.9 

The common software, present hardware would require the 
development of the Automatic Program Translator and 11 separate 
code generators in addition to and development of an optimizing 
compiler completion of the MIS.  This effort is estimated to 
cost: 
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APT $  450,000 

11 Code Generators 
(11 x $36,000/code)   396,000 

MIS 50,000 

Compiler 500,000 

$1,396,000= $1.4 million 

C.  Proposed Common MP Life Cycle Cost Estimate 

1.  Hardware 

a. Full System Emulator 

The design described in Appendix A indicates that develop- 
ment of the microcode for the six MP's analyzed would cost 
approximately $350,000. Using a conservative cost estimate, the 
three additional MP's would cost $150,000.  The development and 
debugging of the hardware is estimated to cost $200,000.  There- 
fore, the development costs for the Full System Emulator is 
estimated to be $700,000.  The proposed design would add approx- 
imately 100 new line items to the supply system.  Thus,at an 
estimated cost of $6,000 per line item, the supply system costs 
become $600,000 per year or $6 million over the 10 year life 
cycle. 

b. Master Instruction Set Implementation 

The design of the common MP using microcode to implement 
the MIS would be similar to the Full System Emulator.  The 
principal difference is the reduced amount of microcode.  Thus, 
the implementation of the MIS and common MP is estimated to be 
$200,000 for the hardware design, $50,000 for the MIS microcode 
and $100,000 development costs for a total cost of $350,000. 
The number of line items introduced into the supply system is 
the same as the Full System Emulator.  Thus, the cost is estimated 
to be $600,000 per year. 

2.  Technical Manuals and Field Manuals 

The MP software sections of the TM's and FM's are 
estimated to require between 100 and 300 pages each.  At an 
average cost of $200 per page, this becomes $40,000 to $120,000 
(per TM and FM), 
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3. Training-Depot Personnel 

The MP's will be repaired at the Depot.  Even though it 
is planned to use ATE, the repair technicians will require 
training on the MP's and how they function in the subsystem. 
The use of a common MP and MIS should make the technicians 
more proficient.  Based upon data compiled in the ATSS Economics 
Study (20), six to ten technicians would be trained for six 
weeks over the life cycle.  This then becomes 3 6 to 6 0 man weeks 
@ $16.00/hour or $23,000 to $38,400. 

4. Automatic Test Equipment 

From the discussion in Para. B-4 above, it is assumed 
that the proposed common MP design would be as complex as the 
Fire Control Computer (subsystems D, L & 0 are a more realistic 
comparison) to test. This, then, results in an estimated soft- 
ware cost of $4 00,000. Considering the probing will be differ- 
ent, for each subsystem, the additional cost is estimated to be 
12 subsystems x 15,000 per program or $180,000. 

5. Software 

a. Full System Emulator 

The implementation of the Full System Emulator does not 
affect the software currently used in the AAH MP's.  Therfore, 
the software discussions contained in Para. B-5 above applies 
to this design. 

b. Automatic Program Translation 

The use of the MIS requires translation or rewrite of 
all the existing software.  The Proposed Automatic Program Trans- 
lator is considered essential to this option.  The Automatic 
Program Translator is discussed in Appendix B and the MIS in 
Appendix C.  Design of the Automatic Translator is estimated at 
$450,000 plus $36,000 code generator for the Z-80 and $25,000 
computer time.  Updating the MIS to include all the current MP 
instruction sets would cost $50,000.  Thus, this option (Alterna- 
tive I) costs $561,000.  The addition of a HLL optimizing compiler 
can be added when the language is selected.  The compiler cost is 
estimated to be $500,000. 

C. Maintenance 

Software maintenance for the AAH covers two principal 
categories.  These are complete rewrite due to mission and other 
changes and software changes required by ECP's.  The data for 
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the proposed system is extracted from Para. B-5 above. 

ECP 

1st yr. 

2nd yr. 

Total 8 yrs. 

$4M -$7.5M 

1.7M - 3.4M 

6M 

ECP sub Total $11.7M - 16.9M 

Rewrite Software (2x) 4.4M -  4.4M 

Total 10 yr 
Bif:e. Cycle Cost $16.1M - 21.3M 

E.  Packaging 

The SOW. requires a degree 3of repackaging as long as the 
overall configuration is not changed.  Even though the Am 29116 
is a single 52 pin :DIPp a MPMP requires a number of supporting 
devices such as microcode memory, naicrocode sequencer and control 
logic.  In addition to a. physicaliPC board area limitation, the 
MPMP's require a iconsidaarable amount of power.  Therefore, sub- 
systems A, B, C, ; I, & N-cwould require redesign of the power 
supply as well as the MP PC board.  There is insufficient data 
to. properly assess this problem, anea.  Fortunately (or unfortun- . 
ately), a technical meeting at US ARRADCOM, on 17 March 1980 
provide information that subsystem K added a Z 80, 8 bit MP to 
the 2901A, 16 bit MPMP "already iiiathe subsystem.  It thus appears 
that the Z 80 can be used^in A, B, C, I & N with very little 
packaging problems.  The: use of an automatic circuit design 
aids such as,the Algorex "AIDE" <S) will produce a new PC board 
layout plus.extensive documentation at an estimated average cost 
of $3,0,000 per systenu _JIhi.s results in an estimated repackaging 
cost of $480,000 for the 16 microprocessors. 

F.  Common Component Economics 

The proposed comiaon'MP plus Z 80 design will provide 
other life cycle cost avoidance in area of component purchases. 
Based upon the new information disclosing the Z 80, the AAH now 
has 16 MP's and 12 assembly languages.  It is assumed that all 
the present MP's in subsystems D, E, F, G, H, J, K, L, M, & O 
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can be replaced by the Am 29116 and the MP's in subsystems 
A, B, C, I, N & K can be replaced by the Z 80.  This then results 
in 11 Am 29116 MP's and 6 Z 80 MP's per system.  Based upon 3000 
systems plus 20% spares, the potential quantities to be purchased 
are 36,000 Am 29116^ and 21,600 Z BO'S,  In addition, RAM, ROM 
and PROM memories will exceed 200,000 devices.*  It is estimated 
that a 20%-25% reduction in parts cost would result.  At an 
average of $50 per device, the current AAH Fire Control System 
for 3000 systems plus 20% spares are estimated to cost approx- 
imately 257,600 x   $50 = $12.88 million.  The proposed common 
hardware is estimated to cost $10.3 million. 

G.  Economic/Trade-off Analysis 

The Economic/Trade-off Analysis is presented as a 
Matrix in Table I. 

H.  Cost Avoidance 

1. First year cost avoidance thru full implementation of the 
proposed common MP, MIS, Automatic Translator, and optimizing 
HLL compiler is estimated between $3.5M and $7.5M with a 
potential additional cost avoidance for ATE software between 
$1.5M and $2M for a total of $5M to $9.5M. 

2. Second Year cost avoidance thru full implementation 
as above is estimated between $1.7M and $3.4M. 

3. Common MP hardware purchases should result in a cost 
avoidance of approximately $2.6M for production and initial 
spares provisioning. 

*The component count is considered the same even though 
one 29116 will replace 4-290^^.  Thus the total MP related 
component count is in excess of 250,000 devices. 
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SECTION VII 

SUMMARY AND RECOMMENDATIONS 

The economic/trade-off analysis was based upon the com- 
parison of the life cycle costs of the current heterogeneous mix 
of seventeen microprocessors composed of ten different hardware 
configurations and twelve (12) different assembly languages pro- 
ceeding thru production and into the field and (1) common hard- 
ware (one type MP) with the current twelve different assembly 
languages and (2) the current ten different hardware configura- 
tions with a common assembly language and Automatic Program 
Translator and (3) a proposed common hardware design (one type 
MP) with a common assembly language and Automatic Program Trans- 
lator.  The detailed technical design concepts for the common 
Hardware, Automatic Program Translator, common assembly lan- 
guage (Master Instruction Set) and Software Aids are presented 
in Appendices A thru D, 

Table I, Section VI is a matrix showing the above com- 
parison.  The proposed common Hardware with a common assembly 
language and Automatic Program Translator will result in a cost 
avoidance in excess of $40 million over the 10 year life cycle 
of the AAH.  Cost avoidance between $5 million and $9.5 million 
could be realized during the first two years after fielding the 
AAH. 

It is therefore recommended that: 

1. The term "Integral Processor" be adopted as an 
approved description for microprocessors integrated 
into the PC board packaging with other components. 
Provide appropriate means for specifying deliverable 
hardware and software documentation during develop- 
ment and production. 

2. Initiate the development of the Automatic Program 
Translator with the Master Instruction Set im- 
mediately.  This will result in significant soft- 
ware maintenance cost avoidance regardless of which 
configuration AAH Fire Control System is fielded. 

3. Initiate the design of the proposed common MP 
implementing the Master Instruction Set, using the 
Am29116 and ALGOREX AIDER.  This will permit dem- 
onstration of the power of the common MP design as 
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well as the ability to repackage typical sub- 
system MP's, 

Establish a program and schedule to phase-in the 
common MP into each sub-system. 
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APPENDIX A: 

REPORT OF A TASK STUDY ON 

FEASIBILITY OF DEVELOPING A 

COMMON MICROPROCESSOR  (MICROPROGRAMMED EMULATOR) 

WITH COST ESTIMATES 

FOR THE 

U.S. ARMY ADVANCED ATTACK HELICOPTER 

FIRE CONTROL SYSTEM 
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INTRODUCTION 

The purpose of this task group study is to demonstrate the technical 
feasibility of developing a common microprocessor to replace the various 
microprocessors (MP) used in the 14 subsystems of the Advanced Attack Heli- 
copter (AAH) Fire Control System.  It was determined that the current MP's 
could be emulated using microprogramming techniques.  There are 14 separate 
subsystems composed of seven different hardware microprocessor configurations, 
which also result in ten different software MP configurations. (1,2)  The 
government-furnished data provides sufficient software information for six MP's, 
The six MP's cover the range from the simplest to most complex MP requirements, 
therefore, the design developed in this task group study is considered valid 
as the common MP for all AAH Fire Control subsystems. 

The Fire Control Computer instruction set and instruction execution times 
were specified in the government document entitled, "Critical Item Development 
Specification for Fire Control Computer," YAH-64, No. AMC-DC-AAH-H3003B, 
Date 31 October 1978.  It is therefore determined that the Fire Control Computer 
and the back-up Fire Control Computer represent the most critical performance 
requirements.  Thus, the principal design effort described in this study is 
directed toward equaling or improving the specified performance requirements. 
The simplest configuration of the common MP is described briefly just to 
demonstrate that the parts count and capability can be reduced as required by 
particular subsystems. 

The emulator design is based on the new (not yet released) Advanced Micro 
Devices (AMD) Am29116 CPU device.  This microprogram controlled device has a 
16-bit wide data path, 32 general purpose registers, a barrel shifter, and a 
16-bit arithmetic logic unit (ALU) with a wide range of arithmetic and logical 
operations. 

In addition to the design of the emulator hardware which is based upon a 
selection of AMD chips, an estimate has been made of the number of micro-instruc- 
tions required to interpret the machine instruction set of the six microprocessors 
being emulated.  A cost estimate of generating the microprogrammed emulators and 
a discussion of the feasibility of using a high-level language (HLL) to 
microcode compiler to generate the emulators concludes the report. 

The approach taken to design the emulators was to first define a hard- 
ware system that contained all the primitive operational functions required to 
represent each of the six microprocessors.  Using the bit slice approach 
developed by AMD permits great flexibility in defining data paths, register 
sizes, and levels of hardware control.  The next step was to define the micro- 
instruction control word format which supports the execution of the primitive 
functions contained in the microprocessors to be emulated.  Each microprocessor 
internal architecture is mapped onto the proposed hardware system including ALU 
operations, memory management, register connections, interrupt processing, data 
paths, and shift and status bit manipulations. 

The design of the microprogrammed interpreters for each of the six micro- 
processors is based upon the available internal operations of the Am291l6 along 
with the other supporting chips. Such capabilities as interrupts, direct 
memory access, and microsequencing must be factored in at this stage to account 
for their interaction with the micro-instruction control functions. 
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control flow consists of first an instruction fetch cycle which utilizes an 
instruction address stored in a program status word (PSW) or a register referred 
to as a program counter (PC).  The next operation is to determine the addressing 
mode used to define the address of the operand to be fetched from storage (if 
required).  Finally, the required arithmetic, logical, or shift operation is 
performed to complete the machine instruction interpretation cycle. 

The cost estimate for the generation of the six emulators is based upon 
the number of micro-instructions  categorized in terms of difficulty of genera- 
tion.  In general, the cost of generating microprograms is much higher than the 
cost of conventional programming.  Systems programming is generally regarded 
as the most difficult type of conventional programming and microprogramming is 
more complicated and will cost proportionately more.  This topic will be dealt 
with below in more detail. 

In view of the high cost of generating microprograms, the use of tools to 
reduce this cost is highly desirable.  There have been some recent developments 
in generating microprograms directly from the PASCAL high-level programming 
language.  The use of this tool to generate either emulators or microprocessor 
machine language will be described.  A particularly interesting approach is 
to generate versions of the present software programs for the six microprocessors 
in terms of the "Master Instruction Set" (MIS) language (3) proposed by R. J. 
Brachman Associates, Inc.  A simple one-time translation would then convert 
this standard representation into each microprocessor's machine language.  Pro- 
gram maintenance could be either at the HLL or MIS level. 
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EMULATOR HARDWARE DESIGN 

The design of an emulator capable of replacing six existing microprocessors 
must begin with the selection of hardware components.  The six microprocessors 
being replaced are: 

1. Motorola 6802 

2. Intel 8080/85 

3. TI SBP 9900 

4. Am2901A - Back-up Fire Control Computer* 

5. MECA 43 Fire Control Computer 

6. 54LS 181 Special Chip 

^There are four other microprocessors configured using the Am2901A 
four-bit slice device.  These have equal or lesser capability than 
the back-up Fire Control Computer. 

These units cover a wide spectrum of hardware design including eight and 16 
bit data paths, up to 16 levels of interrupt capability, direct memory access, 
and up to 16 general purpose registers. 

In order to replace this wide range of microprocessor capabilities the 
new (3rd/4th quarter 1980) Am29116 CPU chip was selected.  This 52-pin device 
features up to 32 general purpose 16-bit registers, 16-bit data paths, arith- 
metic and logical operations, and a barrel shifter.  An internal control line 
decoder supports a wide range of internal functions based upon 16 input control 
lines driven by an external control word storage unit. 

In addition to the CPU, a wide range of other emulator support functions 
must be provided to meet the Fire Control Computer requirements.  The Am2910 
chip provides microprogram sequencing and branch control, control of the 
instruction and control word registers, and input to mapping PROMs for condition 
codes and device priority.  Interrupt processing requires two Am2914 and one 
Am2913 device to accomodate up to 16 levels of interrupt priority while an 
Am2940 provides direct memory access (DMA) functions.  The chips noted above 
provide control within the emulator and another group of chips provide such 
functions as instruction register, data bus interface, variable cycle system 
clock, and multiplexors providing data path control. 

A hardware functional block diagram of the emulator design is shown in 
Figure 1.  This shows the principal data flow paths along with the control 
lines.  It is assumed in this design that the random access memory (RAM), read 
only memory (ROM), and the 1/0 system controls are accessed via a data bus 
and address bus and appear external to the emulator.  A more detailed block 
diagram of the emulator is shown in Figure 2a and the I/O and memory management 
system is shown in Figure 2b.  At this level all the data paths and control 
lines are clearly shown along with the AMD device numbers for all the hardware 
components.  A list of AMD devices and their functions is shown in Table I. 
A' minimal configuration would use the devices marked with an asterisk.  The 
block diagram of this configuration is shown as Figure 2c. 
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A major concern in the emulator design is the exact capabilities of the 
Am29116 CPU device.  Our information (4,5) spells out in considerable detail 
the various functions performed by this device along with its use in several 
representative applications.  A block diagram of the device is shown in Figure 
3 and from this, along with the applications examples, the functional assign- 
ment of the 52 pins as shown in Figure 4 was deduced.  These assignments are 
intended simply to be representative and won't correspond to the actual 
assignments to be specified by AMD when the chip specifications are made avail- 
able. 

Some further discussion of the 16 Am29116 control word inputs is required. 
Five of these inputs are required to select one of the 32 general purpose 
registers.  At least five control inputs are required to specify the ALU and 
barrel shifter functions.  The balance of five to six pins is required to 
control the three muliplexors  controlling the input to the ALU along with the 
carry, zero detect, status, test, and conditional test multiplexors.  Another 
input is assumed to select the byte or word mode.  This assumes that the 
Am29116 has an internal decoder which converts the signals on the four to five 
signal pins available into the required number of lines to control the multi- 
plexors noted above.  In summary, a number of assumptions had to be made 
regarding the internal operation of the Am29116.  It is believed, however, that 
these assumptions are conservative and that the impact on the design of the 
emulator microprograms of misconceptions about the control of the Am291I5 will 
be minimal.  (This has been confirmed by AMD since the completion of this 
report.) 

Another version of the emulator hardware was designed to incorporate the 
Am9511 floating point arithmetic device.  This unit provides floating point 
and trigonometric calculations to be executed off line.  This insures that the 
solution of the Fire Control Computer algorithms can be provided equal to or 
faster than the present design.  Future detailed studies may show that the 
solutions do not require the separate Am95Il device.  The data is supplied via 
the I/O system and the results are returned via the same path and will require 
control inputs from the microprocessor control word. 

The first phase in the design of the microprocessor emulator was to 
specify the bit assignments for the micro control word.  Most of the chips 
used in the hardware implementation require inputs from the micro control word. 
As can be seen from Figure 4, the Am29116 requires 25 control lines; however, 
if the register-to-register transfer capability is to be implemented, then 
five more control bits must be added to the micro control word, bringing the 
total number of control bits assigned to the Am29116 up to 30. 

Figure 5 (a and b) shows the format of the micro-instruction control 
word, which indicates that 80 bits are required to control the seven major 
chip types along with register, multiplexor, and storage read write controls, 
and the optional arithmetic unit.  It is possible that some economies in the 
number of control word bits required could be achieved by use of decoders to 
drive the individual control line assignments.  Because of restrictions on 
the number of chips that can be accomodated on the printed circuit board 
containing the emulator, it was decided to not seek economy in micro-instruc- 
tion bit counts in favor of reducing the number of chips required to imple- 
ment the emulator. 
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FIGURE 4:  Assumed Am29116 Pin Assignments 
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MICROPROCESSOR ARCHITECTURE MAPPING 

The next phase in the design of an emulator for the six microprocessors 
consists of mapping these architectures onto the emulator hardware.  Before 
describing this procedure a slight digression is in order to introduce the 
concept of the target and host machine as described by Davies (6).  The 
emulators for the six microprocessors are implemented on the host machine 
described in the previous section.  The target machines are the six micro- 
processors.  The machine language instruction set for each microprocessor 
along with addressing modes are interpreted on the host machine, i.e. 
Am29116, through microprogramming.  This can be accomplished through the 
generation of microprogrammed interpreters for each of the six target micro- 
processor machine instruction sets.  These may be simultaneously resident in 
the control storage of the host machine or can be individually resident. 
Figure 6 pictorially illustrates  the target-host machine relationship. 

For the hardware architectures of each target machine to be easily 
emulated on the host machine requires that certain hardware features be 
available in the host machine.  The data paths, register sizes and number, in- 
ternal data formats, addressing modes, ALU functional operations, and handling 
of flag and status conditions must be implementable within the host machine 
hardware for all the target machines.  Other considerations include execution 
times for the ALU and storage units, register transfer rates, and other 
functions which take place in the micro-instruction cycle. 

Fortunately the Am29116 CPU meets a wide range of hardware requirements 
and features a 100 nanosecond micro-instruction cycle along with 32 general 
purpose registers and 16-bit data paths.  The associated AMD bit slice LSI 
components provide great flexibility in meeting a wide range of required host 
machine architectures. 

The internal architecture, addressing modes, interrupt levels, instruction 
repertoire, and I/O characteristics of the six microprocessors to be emulated 
are shown in Table II.  To map the target machine architecture to the host 
machine, it is necessary to assign the registers of the target machine to the 
registers of the host machine.  In carrying out this procedure an attempt was 
made to assign common register function to one register in the Am29116.  Speci- 
fically, the program counter, stack pointer, index, accumulator, and status 
register assignments were made to specific Am29116 registers.  Other register 
assignments were arbitrary.  Since the Am29116 has 32 general purpose registers, 
no difficulty was encountered in making the assignments as shown in Table III. 
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ESTIMATE OF EMULATOR MICRO-INSTRUCTION REQUIREMENTS 

The design of emulators can be broken down into  three major phases 
corresponding to the machine language instruction processing procedure.  The 
procedures followed for each target machine instruction are collectively re- 
ferred to as an interpreter which executes on the host machine and makes it 
look like the target machine to the user.  Each machine instruction interpreta- 
tion cycle consists of an instruction fetch phase, an operand fetch cycle, if 
required, and an execution phase. 

The instruction fetch phase simply issues the address of the next machine 
language instruction to be executed to the memory address register and requests a 
memory read cycle.  Along with this operation the instruction control counter is 
incremented by some amount proportional to the length of the machine language 
instruction that has been fetched.  For variable length instruction formats 
this may involve decoding the instruction OPCODE to determine if additional seg- 
ments of the machine language instructions must be accessed from memory.  The 
instruction fetch phase is completed by entering the machine language instruction 
into the instruction register (IR). 

The data operand access phase is only necessary for those machine language 
instructions calling for a memory reference.  The entry into this phase is deter- 
mined by the fetched instruction OPCODE.  For most OPCODES specifying register- 
to-register, stack, branch, test, and shift operations, no memory operand fetch 
operation is required.  The memory access phase is often referred to as the 
addressability mode and a wide variety of possibilities exist as shown in Table 
II.  Direct addressability simply uses an operand address specified in the fetched 
machine language instruction to access a data word.  Indirect addressing implies 
that the operand being accessed is an operand address and this may be repeated 
many times.  Indexed addressing involves adding a constant contained in a register 
to the address specified in the machine language instruction and a relative 
address is simply an offset of constant value added to the machine language 
instruction address operand. 

Registers are often referred to as containing data operand addresses and 
these are used along with increment and decrement operations to cycle through 
sequences of data intermixed with instructions.  Each target machine emulator 
must provide an implementation of the addressability modes of the target machine. 
If these involve many possiblities the corresponding emulator micro-instruction 
count can be substantial. 

The final phase of interpreting a machine language instruction is the 
execution of the functions specified by the OPCODE.  It is assumed at this point 
that all operand data required is stored in registers and some arithmetic or 
logical function is to be executed on this data.  The result of this execution 
is stored in a specified destination register or an accumulator or stack as 
dictated by the machine internal architecture.  Typically for simple binary infix 
operators, e.g. ADD, SUBT, AND, OR, XOR, this operational phase requires from 
three to four micro-instruction systems. Thus for a target machine with fewer 
than 100 different machine language instructions the number of micro-instructions 
to implement an interpreter lies in the 150 to 300 range.  Adding the micro-in- 
structions required to implement the data operand addressability and instruction 
fetch functions brings the total micro-instruction count and corresponding PROM 
capacity requirements to the 300 to 400 80-bit control words. 
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The overall emulator operational flow is shown in Figure 7.  As can be 
seen the instruction fetch and operand access cycle is common to each machine 
language instruction.  The selection of the approporiate micro-instruction se- 
quence corresponding to the 8-bit OPCODE is accomplished via an 8X32 mapping 
PROM (see Figure 2a).  The output of the PROM gives the ROM address of the micro- 
instruction sequence.  Each of these sequences is terminated with a branch micro- 
operation back to the beginning of the instruction fetch phase. 

The specific estimate of number of micro-instructions required for the 
six emulators is shown in Table IV.  The approach in making these estimates was 
conservative to allow for the many assumptions that were made in this design 
effort.  The Am29116 CPU chip has many powerful internal features including the 
capability of executing internal register-to-register operations in one micro- 
instruction cycle (100 nanoseconds).  While this feature was exploited in the 
emulator design, a more conservative approach was taken on other functional 
procedures. 

A major problem with the design of the emulators is the lack of knowledge 
of the exact internal operation of the Am29116.  This is reflected frequently 
in assuming two micro-instruction cycles instead of one. For example, an added 
cycle is assumed for shift operations although these are very likely executable 
in conjunction with ALU operations. 

To illustrate the emulator design in more detail, detailed micro-instruc- 
tion sequences for the Intel 8080(85) and Motorola 6802 are shown in Figures 8 
and 9, respectively for the fetch, addressability mode, and a sample set of 
functional operations. 
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EMULATOR DESIGN COST ESTIMATES 

Accurate cost estimation procedures have long been a major obstacle to 
management of software development projects.  The uncertainties associated with 
conventional software cost estimation are at least as prevalent in the estimation 
of microprogramming costs.  Writing of microprograms is generally considered one 
of the most tedious and error-prone procedures in the development of computer 
systems.  There is little or no data available in making such a cost estimate 
and computer manufacturers, who might have such data, regard it as highly 
proprietary. 

The closest analogy to conventional software generation for use as a 
measure of the cost of microprogramming would be systems programming.  This 
category of software generation is generally considered from three to five times 
more difficult than conventional programming.  Further, it is frequently required 
that assembly language rather than a high-level programming language be used to 
carry out systems programming which further complicates the task.  System pro- 
gramming production rates (7,8) have been estimated to be one-third instruction 
per programmer hour.  This includes design, coding, implementation, validation 
and documentation.  In this estimate, microprogrammer productivity will be 
assumed to range from one-third to one-sixth micro-instruction per hour.  The 
former rate will be associated with portions of the emulator that are straight- 
forward to generate.  The latter rate will be assumed for the more difficult 
portions of the emulator.  Three catagories of difficulty are defined: easy, 
medium and hard.  Based on an hourly cost of a microprogrammer of $33.00/hr., 
this gives a cost of each micro-instruction as: easy — $100.00, medium — 
$150.00, and hard — $200.00.  Each emulator is broken down into nine categories 
and a difficulty assignment is made to each category.  In Table V, the cost 
estimate for each emulator is shown along with a breakdown of costs by each of 
the nine categories as shown in Table V. 

In addition to the generation of the microprograms for each emulator, it 
is also necessary to consider the support tools which will be required.  These 
include a micro-assembler program, a micro-simulator program, and the documenta- 
tion support system.  Such systems are relatively straightforward to design and 
it will be assumed that they are written in a high-level programming language 
and execute on commercially available computers, e.g. IBM 370.  A cost estimate 
for both a micro-assembler and simulator is included in the cost estimates 
shown in Table V.  This leads to a cost of generating all emulators including 
support tools of $350,000. 

If the MIS language were to be used as the only target machine language, 
as proposed elsewhere in this study, a single but more complex interpreter would 
be required.  Referring to Figure 6, the six target machine instruction sets 
shown on the left would coalesce into the MIS language and the six interpreters 
shown in the middle could be replaced by one.  This would reduce the size of 
ROM required to store the interpreters by as much as 70 to 80 percent and re- 
quire less space on the ROM chip carrier. 

The feasibility of designing a single microprogrammed interpreter to 
execute on the host machine shown in Figure 6 for the MIS language wasn't part 
of our study effort.  Only preliminary cost estimates could be made and these 
indicate that this interpreter would be more complex than any of the six inter- 
preters covered in this study.  A conservative estimate would be from $60,000 to 
$80,000 and with the support software would lead to a total design cost for ^+ 
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emulator as less than $200,000.  The principle concern here is the requirement 
to provide interpretation capability for a set of special operation codes re- 
quired to adapt the MIS language to each of the MP systems. 

A final comment pertains to the design process of emulators.  The first 
phase deals with the design of the emulator.  Part of this activity, in a 
preliminary way, has been carried out in the preparation of this report. 

The next step is to actually generate the microcode required for each 
emulator.  This assumes the prior availability of a micro-assembler and some 
means of recording design levels, changes thereto, and release of final designs 
to a manufacturing organization. 

As portions of the emulator are generated, a sequence of more encompass- 
ing simulations are required to verify the performance of the emulator and provide 
a means to detect and correct errors in design. 

Finally, the installation and check-out of the emulator provides the 
verification of operational performance.  This requires the replacement of the 
target machine by the host machine and its emulator and the software generated 
for the target machine is used to exercise the emulator system.  These are 
complicated procedures and require highly qualified personnel to carry out the 
necessary verification steps.  The cost estimates for generating each micro-in- 
struction required for each emulator are assumed to contain allowances for all 
these steps in the design, generation, and installation of the emulator.  To be 
conservative, it would be wise to add a 25 percent contingency factor to account 
for the complexity of generating microprograms and the complicated procedures 
required to verify their performance as replacements for the target machine. 

One of the leading contributors to the cost of emulators is the tedious 
procedure required to generate individual micro-instructions.  A tool in common 
use in generally conventional  software is the high-level programming language. 
The increased number of machine language instructions required to represent a 
given algorithm as opposed to the same algorithm expressed in assembly language 
for a given target machine is felt to be a small sacrifice to achieve greatly 
improved programmer productivity.  The same argument could hold for generating 
microprograms and this possibility is the topic of the next section of this report. 
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USE OF HIGH LEVEL PROGRAMMING LANGUAGE TO GENERATE EMULATORS 

Through a series of research contract efforts (9, 10), it has been 
demonstrated that a high level language (HLL), such as PASCAL, can be compiled 
into a non-machine dependent intermediate language format and subsequently 
translated into either machine language to execute on a target machine or micro- 
code to emulate the target machine on a universal host machine.  Both of these 
capabilities have applications to simplifying the software and hardware 
structure of the set of microprocessors currently installed in the AAH Fire 
Control System. 

By use of modern compiler development techniques referred to as 
translator writing systems (TWS), it is relatively straightforward and inex- 
pensive to develop prototype compilers for a wide range of HLL input languages 
and to produce intermediate or machine language representations of algorithms 
expressed in the HLL. .Several compilers have been developed which produce an 
intermediate instruction stream representation referred to as a QUADRUPLE. 
This machine independent instruction format consists of an operation part, two 
source operand addresses, and a result operand address.  It is a relatively 
straightforward procedure to translate this format  into various machine 
language representations or directly into microcode.  The latter representation 
must be loaded into a special writable micro-control word storage and accessed 
through procedures within the host machine's control circuitry.  Many modern 
day minicomputers, e.g. DEC VAX 11/780, HP 1000, Interdata 8/32, support the 
"user microprogram" concept (11, 12) and provide extra writable control 
storage, micro-assemblers, and simulators to assist in developing microcode. 
In spite of the fact that microprogramming critical software kernals, i.e. 
program segments executed frequently, can improve system performance by 
factors of up to 10, "user microprogramming" facilities aren't used very often. 
The primary obstacle is the difficulty encountered in writing and debugging 
microprograms. 

With the advent of the HLL compilers that can generate microprograms as 
output, much of the manual difficulty of generating microprograms is eliminated. 
This escape from the tedium of writing microprograms is not accomplished without 
some loss in the efficiency of microcode produced by a compiler as opposed to 
hand generated microcode.  To date, a detailed study of HLL to microcode com- 
piler performance hasn't been tested against hand generated microcode.  Research 
exploring this question is currently underway. 

A further question arises as to the utility of using an HLL microcode 
compiler to generate emulators.  A major question concerns the ability of an 
HLL to concisely express the type of actions described by an interpreter at 
the register transfer level.  It is quite possible that a special HLL may be 
required and this issue certainly commands some in-depth investigation as a 
fundamental research issue in emulator design. 

To further consider how the techniques described above could be applied 
to the activity described in this report, two approaches are suggested.  The 
first would be to use the HLL to generate a machine independent representation of 
the algorithms required by the various weapons and avionics control systems. 
Either the QUADRUPLE as noted above or the MIS language would be candidate 
machine independent representations.  In either case this intermediate represen- 
tation would then be translated directly into microcoHed interoreters to run^Qn 
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the host emulator hardware. 

The second approach would be to generate the target machine language 
programs from the machine independent representation of the operational 
algorithm.  This would preserve the existing microprocessor hardware.  Again 
a translator for each target machine would be necessary and would still re- 
quire maintenance of each target machine language although it would eliminate 
having to maintain programmers who were competent to program in these languages. 

The impact of the HLL compiler alternative on the cost of generating 
emulators is difficult  to assess.  The cost impact comes in two areas.  The 
first is a reduction in the cost of generating the emulators while the second, 
and perhaps the most important, is the impact on the maintenance cost of the 
emulators.  These maintenance costs weren't addressed in this study.  In terms 
of the initial cost estimates of generating the six emulators, which was esti- 
mated above to be $350,000.00, the use of a HLL compiler would probably not 
reduce this figure by much.  This is because the costs of developing the HLL 
compiler and evaluating its performance have large R&D components.  Since 
these costs are hard to estimate, the overall costs of emulator development 
are not easily derived.  Again, as noted above, the long-range impact of this 
design alternative could be very significant.  Further research and life 
cycle cost studies must be carried out to demonstrate this conclusion. 

In comparing the two approaches, several issues must be considered. 
Using a single HLL to express all the weapons system functions would be 
extremely desirable especially in the software maintenance phase because 
programmers would only have to be skilled in one language instead of six or 
so much more complex machine languages.  The output of the compiler, whether 
target machine languages or microcode for a universal emulator, would only 
have to be understood by a few "expert" programmers who would deal with 
compiler "bugs" and target machine problems.  The choice of an intermediate 
format, i.e. QUADRUPLES or MIS, must be carefully explored.  Again, only one 
language definition is required to be documented and maintained and the main 
issue would be efficiency of translation of this intermediate format into 
the host machine microcode or machine language.  As presently constituted} 
the support of software and hardware for the AAH Fire Control System is 
going to require many parallel activities involving documentation and main- 
tenance of skills in several machine language and hardware systems.  Re- 
placement of these multiple software-hardware maintenance systems by one 
universal emulator and HLL support software system seems far preferable both 
in terms of life cycle costs and training and retention of the necessary 
skilled personnel.  Clearly a one-time cost of switching to this new approach 
would have to be written off but the longer-term economic and personnel 
requirements appear to more than compensate for the short-term conversion 
costs. 
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CONCLUSIONS AND SUMMARY 

This section will present a number of conclusions derived from the 
emulator feasibility and cost estimate study along with some comments and 
suggestions for future investigations.  The feasibility study was of short 
duration and there was a serious lack of information on one of the target 
machines, 54LS 181, as is evidenced by the gap in Tables II, III, IV, and V. 
It is believed, however, that the central theme of the study, i.e., can 
emulators be designed for the six target machines using AMD bit slice LSI 
components, has clearly been answered in the affirmative. 

The specific conclusions of the emulator feasibility study are listed 
below: 

A. A host machine can be designed using AMD bit slice 
components along with the Am29116 CPU which can support 
emulators of the six target machines. 

B. Emulators for the six target machines can be designed 
employing an 80-bit (approximately) micro-control word. 
The emulators have been estimated to require from 300 to 
400 micro-instructions. 

C. The micro-instructions for the six emulators could be 
stored in a ROM of from 2000 to 4000 words (80-bit). 

D. The generation of the micro-instructions to interpret 
the MIS language on the host machine could lead to a 50% 
reduction in the cost of emulating the six types of 
target machines.  Further study is required to refine 
this estimate. 

E. The cost of generating the emulators would be $250,000.00 
plus the cost of developing a micro-assembler and simula- 
tion support tools.  These are estimated to cost 
$100,000.00. 

F. The cost of generating and maintaining the emulators could 
be reduced significantly if they were expressed in terms 
of a high level language and then compiled into the 
micro-instructions required to interpret the target 
machine language instructions. 

The findings of this study are preliminary in nature and much more 
detailed information about the machine language instruction sets and internal 
register layouts (especially for target machines D, K, and F) will be required 
to insure that adequate facilities are available in the proposed emulator 
hardware to accomodate this equipment. 

While it is believed that the 100-nanosecond internal processing speed 
of the Am29116 is ample to provide target machine language instruction execu- 
tion times equal to or shorter than the equivalent times associated with the 
six microprocessors, this must be firmly established by timing studies.  It 
also may be possible to reduce the width of the control word from the present 
80-bit size.  This would require careful analysis of what control lines are 
in the same compatability class, i.e., are never energized in the same control 
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word, and introduce decoding switches to reduce the number of control word 

bits required to drive these lines. 
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APPENDIX B 

REPORT OF A TASK STUDY 
ON 

AUTOMATIC TRANSLATION OF PROGRAMS FROM ONE COMPUTER TO ANOTHER 
IN 

U.S. ARMY ADVANCED ATTACK HELICOPTER (AAH) FIRE CONTROL SYSTEMS 

1. SUMMARY OF PROBLEM AND ALTERNATIVE APPROACHES 

This study of automatic translation of computer programs 
from one computer to another was conducted in the context of the 
Advanced Attack Helicopter (AAH) Fire Control Subsystem.  Pres- 
ently the Fire Control System is designed using 14 embedded 
microprocessors of 9 different types, each programmed to perform 
an individual task.  These programs have been developed in the 
assembly languages for the respective microprocessors.  They 
amount cumulatively to approximately 200,000 lines of assembly 
language code.  The large number of computer types and computing 
languages would make future maintenance, modifications and im- 
provements very difficult and expensive.  The U.S. Army is con- 
sidering replacement of these embedded microprocessors by a 
single microprocessor.  We refer to it in the following as the 
standard-microprocessor.  Its instruction set is referred to as 
the master-instruction-set.  Reprogramming of the respective 
programs, manually, using the master instruction set, would also 
require extensive testing for verification of the operation of 
the entire system, as very likely there will be differences due 
to the reprogramming effort. 

Two approaches have been envisaged to solving this prob- 
lem. The first approach, which is a subject of a separate study- 
task, is that of emulation; namely incorporating in the standard 
microprocessor micro code for the instructions of the respective 
microprocessors, and then dirfectly executing the original prog- 
rams. We will not refer to this approach as it is the subject 
of a separate study task. 

The other approach consists of creating a software sys- 
tem which will automatically translate the source assembly 
language programs of the respective microprocessors into the 
standard-microprocessor master-instruction-set language. 
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The present study is concerned with using an automatic 
translation system to generate programs, in the language of the 
master-instruction-set, based on the assembly language programs 
of the original respective microprocessors. 

The requirements of such translation are quite severe, 
as follows: 

1) An all automatic translation process should apply to 
the overwhelming majority of the source programs (say about 90%). 
Otherwise if extensive manual intervention is required then the 
possibility of introducing errors arises and a thorough verifi- 
cation of the system will still be needed. 

2) The automatically generated object programs must be 
highly efficient in use of memory space as well as in execution 
time so that the replacement does not contradict real-time rules. 

It is assumed however that the standard-microprocessor 
is considerably more powerful than the microprocessors that it 
replaces. 

3) In the process of translation it would be necessary 
to generate also documentation for the programs, to facilitate 
future maintenance activity.  It is assumed that the source 
programs are presently not adequately documented. 

Figure 1 is a schematic diagram of the information flow 
in the translation of a source assembly language program, for 
a respective microprocessor, into an object standard- 
microprocessor machine language program, with program documenta- 
tion being generated as a by-product.  Figure 1 portrays two 
alternative approaches. 

The input to the translation process is an individual 
source assembly language program for a respective microprocessor 
shown on the left of Figure 1.  The first step is common to both 
alternatives.  It consists of a translator that accepts the 
source assembly language, program for any one of the nine dif- 
ferent microprocessor types, and produces a uni form-tabular- 
representation for the respective program.  For each source 
code statement there would be an entry in the table indentifying 
the operation, the operands and their addressing modes, the 
locations of instructions and data in the original microprocessor 
and the registers that are effected by the operation (e.g. over- 
flow etc.).  As shown in Figure 1, the translator would reference 
a specification of each of the respective source assembly 
languages in the translation process. 

Alternative I consists of translation of the uniform- 
tabular-representation of the program into a program using the 
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the master-instruction-set language.  Alternative II consists of 
a "reverse complex" to translate the uniform-tabular-representa- 
tion into a High Level Language, such as Fortran.  Both 
alternatives require employing complex software methods.  Alter- 
native II would generate superior documentation of the program 
and will be completely machine independent.  However Alternative 
II is more difficult to achieve due to the machine independence 
related restrictions existing in a High Level Language.  In both 
alternatives, the programs that are generated by the translators 
must be further processed by additional language processors, an 
assembler in Alternative I and a compiler in Alternative II. to 
produce the standard micro-computer language program. 

The conclusions and recommendation of the study are 
briefly stated in Section 2.  The remainder of the report dis- 
cusses the process of Alternative I in Figure 1.  Section 3 
describes the translator from the source assembly language to 
a uniform-tabular-representation.  Section 4 concludes with the 
discussion of the translator from the uniform-tabular- 
representation to the master-instruction-set language.   To 
illustrate the operation of the translator, we have designed a 
translator for a  subset of the instruction set of the M6 800 
microprocessor into the Z80 microprocessor.  The assembler for 
the standard-microprocessor shown in Figure 1 is not discussed 
here as it is assumed to be available from the manufacturer of 
the standard microprocessor.  As will be indicated the design 
of an Alternative II system poses several very difficult prob- 
lems , in addition to the problem areas inherent in Alternative 
I which are common to both alternatives.  This is one of the 
reasons why we recommend postponing Alternative II and why it 
is not discussed in detail in this report. 

2. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS 

This section discusses the advantages, disadvantages and 
risks associated with the two alternatives and the individual 
processes portrayed in Figure 1.  While advantages and disad- 
vantages can be stated in terms of the functions of the respect- 
ive processes, risks are associated with major problems that 
much be solved and with limitations that may have to be imposed 
on the ability of the system to translate certain classes of 
assembly programs.  As already indicated previously, at best 
we expect that the system would be able to translate the great 
majority of assembly programs.  There will however, always be 
some programs that it would be impossible to translate fully 
automatically.  The risks are also associated with estimates for 
the technical manpower that would be required for solving cer- 
tain problems. 

We foresee two advantages of Alternative II over 
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Alternative I as follows: 

1) The High Level Language would represent a better 
documentation of the program then would be possible to achieve 
based on the master-instruction-set assembly-language.  This is 
conditional however on success in generating a High Level Lan- 
guage program that is considerably shorter than the equivalent 
source assembly program, which is indeed a very difficult task. 
The advantage in documentation is derived from the fact that, 
a program is described in a High Level Language on a much higher 
level, omitting much detail that is concerned with machine level 
implementation of the program.  Therefore it would be easier to 
understand and also to modify it. 

2) The representation of the assembly language program 
by a High Level Language program eliminates all the machine de- 
pendent aspects of the implementation.  Therefore it would be 
readily possible to transport the respective program to run on 
other machines in the future.  While this is not an immediate 
requirement it may prove valueable in the long run. 

The machine independence achieved in the High Level 
Language is also the source of major difficulties in accomplish- 
ing the translation.  It is likely that only a greatly restrict- 
ed class of programs can be "reversed compiled" as compared with 
Alternative I.  The designers of High Level Languages have inten- 
tionally eliminated all features in the languages that would 
allow specification of physical implementation of the respective 
computations.  For instance, the following operations, which 
are used by assembly language programmers, cannot be stated in a 
High Level Language. 

1) High Level Language programming distinguishes between 
the program and the data areas in the memory and does not allow 
the specifying of execution of program instructions in the data 
area. 

2) It is not possible to specify in a High Level Lan- 
guage computing physical addresses, of the instructions or the 
data.  Indexing is allowed in the data area only.  Thus in many 
instances the use of index registers, indirect addressing and 
other computing of addresses, widely used in an assembly lan- 
guage, cannot be expressed in a High Level Language. 

3) The methodology used in the arithmetic unit of a 
specific computer and the conditions and flags used in arithmetic 
operations cannot be referenced in a High Level Language (except 
through interpretation of these operations). 

4) A High Level Language imposes limitations on 
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operations on variables with different data types, while an 
assembly language programmer frequently can get around such 
restrictions. 

5) Relative position of variables cannot be stated in a 
High Level Language. Therefore memory in the standard-computer 
cannot be allocated similar to the source microprocessor. 

The problems posed by these restrictions are quite 
severe.  It would require that the translator extract the high 
level concept of the computation from the source assembly pro- 
gram.  Additional information, may be required, which would have 
to be prepared manually and submitted to the reverse compiler. 

In addition to the above problem areas the design of an 
Alternative II system includes all the envisaged problems in 
Alternative I.  Alternative I therefore is far less risky than 
Alternative II. 

We recommend implementing Alternative I first.  Based 
on the experience gained in the development of an Alternative I 
system it would be possible to assess whether an Alternative II 
system should be further explored.  We will focus here, there- 
fore, on Alternative I only. 

In order to further reduce the risks in Alternative I we 
recommend that the design of the system utilize to the fullest 
possible extent the similarities in arithmetic operations and 
in memory allocation between each of the nine microprocessors 
used in the AAH Fire Control System and the standard- 
microprocessor that would replace them.  The arithmetic opera- 
tions and number systems of each source microprocessor will be 
modelled in the standard-microprocessor.  Further, similar 
structures of the memory program and data areas, of the source 
and object programs, would be retained as closely as possible, 
even  if this would reduce the efficiency of the object program. 
Otherwise the task of translation would be far more difficult 
and may involve much larger inefficiencies.  This would, how- 
ever, be facilitated by the greater power of the standard- 
microprocessor and its master-instruction-set. 

Further, we will exclude from the 
grams, that would be translatable, those 
porate operations on locations, either in 
areas, where these locations serve as ope 
execute instructions. However we will al 
limited following case. The execute or j 
tions located in the data area will be ac 
assembly language representation of these 
by the user, in addition to the source as 
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Referring again to Figure 1, Alternative I is divided 
into two processes: 

1) A translator from the source assembly language of a 
particular microprocessor into a uniform-tabular-representation 
of the program. 

2) A translator from the uniform tabular presentation of 
the source program into an assembly language program utilizing 
the master-instruction-sets. 

The first of these processes represents well known 
methodology.  It can be based on similar systems developed to 
date with which there has been considerable experience.^1'2) 
Thus the design and implementation of this process involves 
very little risk, if any at all.  Systems of this type exist 
presently and can be readily adapted.  One system of this type,^1) 
developed and used for several years at the University of 
Pennsylvania, is described in Section 3 and an example of design 
of a translator form M6800 to the Z80 microprocessors is given 
in an appendix.  The work in implementing the process would con- 
sist primarily of specifying the syntax and some semantics of 
the nine microprocessors.  We estimate that this effort would 
require approximately 2 man years of attention by senior computer 
software specialists over a period of six to nine months, plus 
computer time. 

The second process described above represents greater 
risks.  We have surveyed the published technical literature in 
this area(1 through 77and have found relatively little directly 
relevant previous experience.  Based on the problems that we 
have studied, our conclusion is that the corresponding process 
is practical and can be implemented.  To locate and investigate 
the problems that may arise we designed in detail a system that 
translates a subset of the instructions at the M6 800 micropro- 
cessor into Z80 instructions, which is reported in the appendix. 
The documentation produced by this process would be similar to 
that produced by several commercial assembly language automated 
flowcharting systems.^ 

Finally, in real-time sensitive programs, the execution 
time of the program by the standard-microprocessor will be 
modelled to verify that execution time will not exceed the time 
required by the source microprocessor.  The standard- 
microprocessor will be generally faster than the source micro- 
processors.  It is assumed that the system may be sensitive to 
exceeding maximum execution times but not sensitive to minimum 
execution times.'8) 

The development period is estimated at 9-12 months.  It 
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will require 3 man years of effort plus the needed computer time 
A major portion of this effort will be devoted to defining the 
correspondence of the hardware between each one of the source 
microprocessors and the standard microprocessor.  These defini- 
tions will be referenced in the translation process (see Figure 
1) . 

Assuming that these two processes are implemented one 
following the other, the total required development time would 
be between 1-1/4 to 1-3/4 years at the cost of approximately 5 
man years of effort plus the needed computer time. 

3. TRANSLATION OF ASSEMBLY LANGUAGE PROGRAMS OF 9 MICROPROCESSORS 
INTO A UNIFORM-TABULAR-REPRESENTATION 

The first translation process analyzes the syntax and 
local semantics of individual statements in an assembly language 
program of any one of the nine source microprocessors and pro- 
duces a uniform-tabular representation of the program.  It is 
based on advanced state-of-the-art syntax analysis techniques 
which have proved to be invaluable.  Specifically, a parser pro- 
gram for these assembly languages will be generated automatical- 
ly.  In addition to checking the statements for syntactic and 
some semantic errors, the generated program will also store the 
statements in a tabular form for later processing. 

This capability exists i 
systems. (-1-'2) Following is a de 
Syntax Analysis Program Generate 
University of Pennsylvania.^ 
for the source assembly language 
by the SAPG. As shown in Figure 
Analysis Program (SAP) for analy 
ments, based on a specification 
pressed in the EBNF/WSC (Extende 
Subroutine Calls) meta language. 

n a number of state-of-the-art 
scription of such a system, the 
r (SAPG)  developed at the 
The Syntax Analysis Program (SAP) 
s will be generated automatically 
2, the SAPG produces the Syntax 

zing assembly language state- 
of each assembly language ex- 
d Backus Normal Form with 

The EBNF/WSC includes the traditional cone 
BNF uses sequences of characters enclosed in angle 
called non-terminals to give names to grammatical 
which substitutions may be made.  BNF consists of 
production rules of the form "A::=B".  "A" is a si 
terminal symbol and "B" is one or more alternative 
terminal or non-terminal symbols that can be subst 
The alternatives are separated by the meta-symbol 
facilitate language description, BNF was extended 
two well-known meta-symbols: [ ] representing opti 
[ ]* representing zero or more repetitions. 

epts of BNF. 
-brackets < > 
units, for 
a series of 
ngle non- 
sequences of 

ituted for A. 
" | " .  To 
to EBNF with 
onality and 

The specification of the source assembly language that 
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Repetition zero or more times is effected by generating a GO TO 
to the statement testing for recognition.  Subroutine names em- 
bedded in the EBNF/WSC get a CALL generated for them in place. 
Calls to other subroutines not explicit in the EBNF/WSC are 
also generated.  These include calls on "housekeeping" subrou- 
tines of the SAPG and calls to LEX, a subroutine to scan and 
return the next token in the object language.  The code genera- 
ted by the SAPG would become one procedure in the SAP.  Note 
that the keywords and delimeters that the language definer uses 
in the production rules are preserved in the generated SAP. 

A refined system flowchart of the SAPG and SAP showing 
the types of supporting routines appears in Figure 3.  The 
manually-written syntactical supporting routines are of one of 
several types: 

(1) a lexical analyzer which returns tokens of syntactic 
units to the SAP for analysis; 

(2) statement semantics checking routines; 

(3) error message handling routines; 

(4) encoding routines to compact information for further 
efficient processing; and 

(5) statement storage routines. 

The purpose of the lexical analyzer is to scan for syn- 
tactic units or "tokens," using such delimeters as blanks and 
certain punctuation marks, and to return tokens to the Syntax 
Analysis Program (SAP) for syntactic checking.  The 
automatically-generated SAP calls upon the lexical analyzer 
(LEX) whenever it needs the next token.  The lexical analyzer 
is based on the finite state machine concept.  Each state of 
the machine corresponds to a condition in the lexical processing 
of a character string.  At each state, a character is read, an 
action is taken based on the character read (such as concatena- 
ting the current character to previous ones or returning the 
entire token to the SAP), and the machine changes to a new state. 
The entire character set is divided into categories such as 
illegal characters, delimeters, "normal" characters, etc.  A 
state transition matrix is used.  The rows of the matrix repre- 
sent the character classes of the previous character, while the 
columns represent those classes of the current character.  The 
entries in the matrix indicate the action to be taken and the 
next state.  The actions involve such steps as concatenating of 
a character, ignoring a character, detecting an illegal charac- 
ter, returning a complete token to the SAP, etc., and setting a 
"next state." 
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is input to the SAPG consists not only of the syntax soecifica- 
tion but also of subroutine names embedded within the EBNF; 
therefore the name "EBNF with Subroutine Calls" (EBNF/WSC).  The 
SAPG provides a capability to branch to these subroutines upon 
successful recognition of a syntactic unit.  Thus, they complete 
the SAP to enable it to check statement semantics, to encode, 
to produce error messages, and to store statements for later 
processing.  The invocations of these subroutines are generated 
automatically by the SAPG, while the supporting subroutines 
themselves are written manually.  The definition of a subset 
of M6800 microprocessors assembly language in EBNF/WSC appears 
in the appendix.  The subroutines to be invoked are indicated 
between slashes (/.../).  Note that subroutine calls are made 
after the successful recognition of syntactic units up to that 
point. 

The SAP generated by the SAPG according to the EBNF/WSC 
is supplemented and linked with the routines.  The SAP accepts 
statements in the assembly language and checks them for syntac- 
tical correctness, and local semantics.  It produces a listing 
of the statements, syntax diagnostics, an encoded stored ver- 
sion of the statements, and a cross-reference report. 

The SAPG is a small compiler in itself in that it pro- 
cesses a specification in the language EBNF/WSC and produces a 
program (SAP).  It performs in three passes. 

In pass 1. each production is scanned, and its components 
are encoded into a set of tables.  Non-terminal symbols appear- 
ing on the left-hand-side of a production (new production names) 
are put into a symbol table, while non-terminals appearing on 
the right-hand-side of a production are put into a work table. 
Terminal symbols in a production are put into a terminal symbol 
table.  Subroutine calls are put into yet another table. 

In pass 2, the symbolic references in the work table 
(i.e. non-terminals on the right-hand side of the original 
production) are resolved.  Pass 2 checks that each right-hand- 
side non-terminal symbol in the work,  table is defined, and links 
it to the corresponding entry in the symbol table.  Undefined 
non-terminals as well as circularly-defined non-terminals can 
be detected in these table searches. 

Pass 3 of the SAPG is the code-generation phase that 
produces the SAP in PL/1.  It is only entered if no errors were 
encountered in the previous phases.  For each EBNF/WSC produc- 
tion, a PL/1 procedure is generated.  Each one returns a bit: 
1 if the recognition was successful; 0 if it was unsuccessful. 
The exclusive nature of EBNF production rules and alternatives 
is effected by generating nested PL/1 IF-THEN-ELSE statements. 
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Some of the semantics of the specification statements 
can be checked by the routines.  An example of a local semantics 
checking routine is one which checks the memory locations. 
These manually-written routines are invoked automatically by the 
SAP by virtue of their specification in the EBNF/WSC. 

Error subroutines stack error diagnostics to print out 
upon recognition of a syntactically-incorrect statement.  Upon 
reaching an incorrect syntactic unit, the automatically genera- 
ted SAP does not print its own messages, but expects the 
corresponding diagnostics to be on an "error stack."  For this 
purpose, subroutines have to be written to give a user effec- 
tive information when statements are incorrect.  Specifically, 
an error message has to be stacked for each expected terminal 
symbol in the assembly language in case the token is missing 
or incorrect.  Upon reaching incorrect syntactic units, the 
automatically generated SAP does not print its own messages, but 
expects the corresponding diagnostics to be on an "error stack." 
For this purpose, subroutines have to be written to give a user 
effective information when statements are incorrect.  Specifical- 
ly, an error message has to be stacked for each expected 
terminal symbol in the assembly language in case the token is 
missing or incorrect.  If the expected token is found, the SAP 
simply pops the corresponding error message and continues; if 
the expected token is missing or incorrect, the SAP pops the 
corresponding error message, prints the statement number and 
message, scans for the end of the statement delimeter, and con- 
tinues . 

One product of the process is the Error Diagnostics 
Report containing the messages.  Each message gives the diagnos- 
tics provided by the error routine and provides the exact 
location of the error so that it can be corrected and resubmit- 
ted by the user easily.  If no syntax errors are found during 
the syntax analysis phase, a message will be sent that "NO 
ERRORS OR WARNINGS DETECTED."  But if error diagnostics are 
produced, a flag is set to disable continuation of analysis 
beyond the syntax checking. 

Encoding routines encode statements into the attributes 
in the uniform tabular representation.  All of the names or 
addresses when provided in the source assembly program are kept 
intact in internal form for use by the object program.  Many 
of the descriptions and attributes are however encoded for more 
compact and efficient processing later.  One encoding routine 
is written for each encoded attribute.  Each routine is invoked 
automatically after recognition of the syntactic unit by the 
SAP.  The invocation is automatically generated as part of the 
SAP (by the SAPG) by virtue of its specification in the EBNF/WSC, 
The attributes of the tables consist of an operation, it's 
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arithmetic function, registers effected, operand addresses with 
modes of addressing, location of instructions, etc. 

Storage routines collect the strings of names and other 
encoded information for each assembly language statement, and 
pass them to the STORE system, which is a sub-system in itself 
to store the statements in a uniform-tabular-representation 
for later processing.  Such storage-invoking routines are called 
at the end of scanning each statement.  The storage subsystem 
which is called by these routines, stores the statements in the 
output table. 

At the end of the syntax pass, we have the entire set of 
statements stored in a manner convenient for further analysis. 
The storing subroutines which invoke the use of the STORE system 
act as an interface between the automatically generated SAP and 
the second process described in Section 4.  The storage system 
is an extension to the capabilities of the SAPG since it is 
general purpose in nature and is independent of the nature of 
the language specified, and could be used for processing other 
languages. 

Finally, there are just a few "housekeeping" type sub- 
routines which need not be written by the language definer 
because they are provided by the SAPG, but which need to be in- 
cluded in the EBNF/WSC. 

4. GENERATION OF A PROGRAM IN THE MASTER-INSTRUCTION-SET ASSEMBLY 
LANGUAGE 

This section discusses the second translation process 
shown in Figure 1, which transforms a uniform-tabular-presentation 
of the source assembly program into an object program in the 
master-instruction-set assembly language. 

Our approach to this translation process can be visualized 
as modelling the source microprocessor, with its source assembly 
language program and data, in the standard-microprocessor and 
its master-instruction-set assembly language and data.  The model- 
ling can be further envisaged in three parts: hardware, program 
and data. 

The modelling of the hardware is completely independent 
of the individual source assembly program that is being trans- 
lated.  This modelling activity defines corresponding arithmetic 
operations, registers, numbering systems, memory and input/ 
output in the two microprocessors.  This correspondence will have 
to be defined manually for each source and standard micropro- 
cessor pair.  It will be stated in a tabular form and will be 
referenced by the translating process in the course of 
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translating the program. 

The correspondence between the source assembly language 
and data and the standard-microprocessor assembly language and 
data would be based on the individual program that is being 
translated. 

The degree of correspondence in the modelling would also 
depend on certain characteristics in the source assembly lan- 
guage.  We can basically distinguish three cases.  The most 
severe case is where the source assembly language contains ab- 
solute addresses in the program area as operands of jump or 
execute instructions.  In this case we will have to model the 
program area in the standard microprocessor to correspond to the 
program area in the memory in the source microprocessor.  Wher- 
ever the space required for corresponding instructions in the 
standard microprocessor exceeds the space required for the cor- 
responding instructions in the source microprocessor, it will be 
necessary to utilize an overflow program memory area in the 
standard-microprocessor memory, and insert there instructions 
which require more space.  Also correspondence would have to be 
established between the data area in the source microprocessor 
and the data area in the standard microprocess. 

A less severe case is where symbolic labels are used 
throughout the source assembly language programs as operands 
of jump instructions.  In this case it is not necessary to re- 
tain a one to one correspondence between the two program areas. 

The simplest case is where also the operands are re- 
ferred to exclusively in symbolic form and no absolute addresses 
are used.  In this case there is also much flexibility in 
allocating data areas. 

This process can be visualized as consisting of five 
sequential phases: model definition, preliminary code transla- 
tion, optimization, comparison of execution times and documen- 
tation.  These phases are briefly described below. 

The first phase consists of scanning and analysis of 
the entries in the uniform-tabular-presentation of the source 
program, to determine which of the above three cases applies; 
namely examine the addressing scheme-whether it is symbolic or 
requires also the computing of address values, and whether the 
operands are all in the data area or also in the program area. 
Based on this, the program and data memory areas of the source 
microprocessors may have to be mapped into the memory of the 
standard microprocessor. 

The second phase consists of preliminary code generation 
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in the master-instruction-set assembly-language.  The transla- 
tion is performed on eacn source assembly language statement 
(now in the uniform tabular representation).  If possible, the 
object language instruction(s) is (are) placed in" the area in 
memory^corresponding to the respective source language instruc- 
tion, if the object language instructions require more space 
(especially where there are micros) then a jump instruction is 
inserted in the appropriate location and the corresponding 
object code is placed in a overflow area as a subroutine with a 
return to the next instruction.  This process scans the entire 
source program presentation a second time.  It results in a pre- 
liminary program in the master-instruction-set language.  Note 
that generally the instructions for the source microprocessor 
(excluding the micros) constitute a subset of the master- 
instruction-sets.  Also -he instructions in the standard- 
microprocessor are on the whole more compact and perform faster 
then in the respective equivalent instructions of the source 
microprocessor.  Therefore in the great majority of cases it 
should be possible to translate each instruction in the source 
program into a single instruction  in the object program. 

The third phase is concerned with optimization of the 
program obtained in the previous phase.  The basic notion here 
is that the standard microprocessor has in most cases more mem- 
ory and working registers then there are in the source micro- 
processor.  The additional memory and registers can be traded 
for reducing the computation time.  The basic notion here is to 
try wherever possible to utilize registers in place of memory 
addresses.  This phase requires a third scan of the program 
in order to create a graph representation that is used to 
identify the scope of each iteration, each subroutine and each 
program branch.  These subparts of the programs, constitute 
subprograms which will be individually optimized.  The global 
variables of the program which are used to communicate between 
the above mentioned subprograms should be retained in main 
memory.  Variables which are local to the subprograms can be 
moved to the register and thereby reduce the needed memory area. 
Also sequences of instructions in the source program may be re- 
placed by a single of fev more powerful instructions of"the 
master-instruction-set.  This may reduce both the number of 
instructions (and execution time) and the program memory area. 

Note that the correspondence of individual subprograms 
in the source program and the object program must be retained. 

Based on this graph, it will be possible in the next 
phase to scan the subprograms in the source and object programs 
and compute execution times for these subprograms.  The" compari- 
son of overall execution times would be possible in some 
instances giving a clear indication whether maximum execution 
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time requirements for a real time system will be met by the 
replacement standard microprocessor.  In other cases where 
execution times are data dependent it will be possible to pre- 
sent to the user only comparisons of performance times for the 
subprograms.  Further analysis would then be required by the 
user to determine whether the replacement-microprocessor will 
meet real time requirements. 

The final phase is concerned with generating a documen- 
tation of the program.  As already indicated the approach that 
we propose is essentially to use the techniques that are in- 
corporated in a number of commercial assembly language auto- 
matic flowcharting systems.  The experience to date is primarily 
in flowcharting assembly language programs for the IBM system 
370.^  The documentation will also include cross reference 
listings and data field analysis which will aid in program 
maintenance and modification.  To obtain a more readible flow- 
chart the individual assembly language operation      may be 
expanded to equivalent English words.  Vectors of data which 
are scanned in iterations may be also identified by respective 
iteration instances.  The user would also have an option to 
obtain a full flowchart showing each instruction, or ultimately 
grouping the instructions in each of the subprograms (identified 
in phase 2) as a single entry in the flowchart.  An edited list- 
ing of the assembly language program will also be produced with 
comments identifying each of the subprograms. 

APPENDIX 

In the following example, a SAPG generated program will 
be used for the assembly language translation from the M6 800 to 
Z80 microprocessor.  This is an automatic translator for the 
cases where the references to real addresses do not effect the 
translation. 

The principle of translation is parsing each source as- 
sembly instruction and calling appropriate semantic routines to 
generate corresponding object assembly language instructions for 
it. 

The SAPG program will accept a set of syntax rules which 
describes the syntax of the source assembly language (including 
macros). The syntax rules include semantic routine calls. The 
output of SAPG will be a driver program which parses the source 
assembly program and calls on a set of manually prepared seman- 
tics routines to generate object assembly instruction sequences. 

We have to write a set of syntax rules for source as- 
sembly language using EBNF/WSC and prepare a set of semantic 
routines. 
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The source machine is M6 80 0. 

The target machine is Z80. 

For the sake of simplicity we chose a subset of the 
M6 800 instruction repertoire. 
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follows: 

ADDA 

ADDB 

INC 

INC A 

INCB 

DEC 

DECA 

DECB 

LDAA 

LDAB 

STAA 

STAB 

SUBA 

SUBB 

CMPA 

CMPB 

BCC 

BCS 

BEQ 

BMI 

BVS 

JMP 

JSR 

RTS 

The instructions subset for the M6 800 is listed as 

A+IVH-A 

B+M-H3 

M+l^-M 

A+l-»-A 

B+1->B 

M-1->M 

A-l^A 

B-l-»-B 

M-^-A 

M^-B 

A+M 

B-*M 

A-WN-A 

B-M->B 

A-M 

B-M 

C=0 

0=1 

Z=l 

N=l 

V=l 
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The   syntax  rules   for this   instruction  subset  are  as 
follows: 

< assembly-program >    ::=   [   <instruction    ]* 

< instruction  >    ::=  /RESET_LABEL/    [<   label_check   ><   NAME   > 

/SAVEJLABEL/] 

BODY        /ENDJLINE/ 

< label_check  >    ::=   /ANY_LABEL/ 

< BODY   >    : :=   <ADD>   |  < INO | <DEC> | <LDA> | < STA> | <SUB> 

|<CMP>   |   <BRA> | <JMP> | < JSR> | <RTS> 

< ADD   >    ::=     ADD   <   TWO_OPERAND  >   /GADD/ 

< two_operand  >   : :=     /SAVE_OP/     <   A_OR_B>, < OPERA.ND> 

< A_OR_B   >    ::=   A/SAVE_REGA/   |    B/SAVE_REGB/ 

< LDA  >    ::=   LDA  <   TWOJDPERAND  >   /GLDA/ 

< STA  >    ::=   STA  <   TWOOPERAND   >   /GSTA/ 

< SUB   >    ::=   SUB   <   TWO_OPERAND   >   /GSUB/ 

< CMP   >    ::=   CMP   <   TWO_OPERAND   >   /GCMP/ 

< INC   >    ::=   INC   <   ONEJDPERAND  >   /GINC/ 

< ONEJDPERAND   >    ::=   /SAVE_OP/   /RESET   _AB/   <   ONLY_OPERAND   > 

< ONLY_OPERAND   S    ::=     <A_OR_B>j<OPERAND> 

< DEC   >    ::=   DEC   <   ONEJDPERAND   >   /GDEC/ 

< BRA   >    ::=<BRA_CODE>      /SAVE_OP/   <   OPERAND   >   /ASSBRA/ 

< BRA_CODE   >    ::=   BCC|BCS[BEQ|BMI|BVS 

< JMP   >    ::=   JMP   <   OPERAND   >   /ASSJMP/ 

< JSR  >    ::=   JSR  <   OPERAND   >   /ASSJSR/ 

< RTS   >    ::=   RTS   /ASSRTS/ 

< OPERAND > ::= < NAME >/SAVE_OPD_NAME/|< NUMBER >/SAVE_OPD_NUM/ 
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There are nine global variables: 

1) DCL   HAS_LABEL BIT(i);  /* 0=1*10, 1=HAS */ 

2) DCL LABEL CHAR(6);  /* STORE LABEL */ 

3) DCL 0P_C0DE CHAR(3);  /* STORE OP_CODE */ 

4) DCL HAS_REG BIT(l); /* 0=NO, 1=HAS */ 

5) DCL REG CHAR(l); /* A OR B */ 

6) DCL KINDJDPD   FIXED  BIN;    /*      1=NAME/    2=NUMBER   */ 

7) DCL OPD__NAME   CHAR(6) :   /*   SYMBOL   */ 

8) DCL OPD_NUM  FIXED  BIN;   /*   IMMEDIATE   DATA   */ 

9) DCL INDEXJJSE   CHAR(l);    /*    'X'    OR   'b'    */ 

All the semantic routine can be defined as follows: 

1) RESET_LABEL:  PROC; 

HAS_LABEL = 'jZf'B; 

END RESET_LABEL; 

2) ANY_LABEL:      PROC   RETURNS    (BIT(l)); 

RETURN (LINEBUF(l)      -j^b'); 

END  ANY_LABEL; 

3) SAVE_LABEL:      PROC; 

LABEL = LEXBUFF; 

END SAVE_LABEL; 

4) SAVE_OP:  PROC; 

OP_CODE = LEXBUFF; 

END SAVE OP; 
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5) SAVE_REGA:      PROG; 

HAS_REG   =    'I'B; 

REG   =    'A1; 

END_SAVE   REGA; 

6) SAVE_REGB:      PROG; 

HAS_REG   =    'I'B; 

REG   =    'B' ; 

END   SAVE_REGB; 

7) RESET_AB:      PROG; 

HAS_REG='jr   B; 

END   RESET_AB; 

8) SAVE_OPD_NAME:  PROG; 

KIND_OPD = 1; 

OPD_NAME=LEXBUFF; 

END SAVE_OPD_NAME; 

9) SAVE_OPD_NUM:  PROG; 

KIND_OPD = 2; 

OPD_NUM = GONVERT (LEXBUFF); 

END SAVE_OPD_NUM; 

Since Z80 has only one accumulator (REG A), all the arith- 
metic and logic operations have to be done in it.  But in M6800, 
there are two general purpose registers (AGCA and AGGB).  We can- 
not assign the only accumulator in Z80 to either AGGA or AGGB. 
So we will assign the REG B and REG G in Z80 to store the value 
of ACGA and AGGB respectively. 

In Z80 there are two index registers (IX and IY), we can 
arbitrarily assign IX to store the value of IX in M6800. 

In M6800, there are five different addressing modes, we 
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will define the corresponding instruction sequence in Z80 for 
each of these addressing modes. 

1) Immediate mode:  In Z80, this is also an implemented 
addressing mode, so there is no problem to simulate. 

2) Direct & Extended mode:  In Z80, only LD instruction 
allows direct addressing mode.  So for all other 
instruction we have to load the address into HG 
register pair, then use HL as pointer which points 
to the operand stored in memory. 

3) Index mode:  In Z80, it is also implemented. 

4) Relative  mode:  In Z80, it is implemented, but not 
complete so we will use direct addressing mode to 
replace it and then treat it as Direct & Extended 
mode. 
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GADD:   PROC; 

IF REG = "A" THEN GENERATE ('LD A^'); 

ELSE GENERATE ('LD A^1); 

IF INDEX_USE = 'X' THEN 

DO: /* INDEX MODE */ 

GENERATE('ADD A,(IX '||OPD_ADDR||')'); 

END; 

ELSE DO; 

IF KIND_OPD=2 THEN GENERATE('ADD A, '||OPD_NUM); 

ELSE DO; /*NOT IMMEDIATE MODE */ 

GENERATE('LD  HL,    '||OPD_NAME); 

GENERATE('ADD A,(HL)'); 

END; 

END; 

IF REG='AI THEN GENERATE('LD B, A'); 

ELSE GENERATE('LD C, A'); 

END GADD; 

Simimlarly, we can implement GSUB, GCMP. 
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GLDA:        PROC; 

IF   INDEX_USE  =    'X'   THEN 

DO:   /*   INDEX MODE   */ 

GENERATE('LD A, (IX 'I |OPD_ADDR I I') ') ; 

END; 

ELSE DO: 

IF KIND_OPD=2 THEN /* IMMEDIATE MODE */ 

GENERATE('LD A, | | OPD_NUM) ; 

ELSE /* DIRECT OR EXTENDED MODE */ 

GENERATE('LD A, (' | | OPD_NAME | | ') ') ; 

END; 

IF_REG = 'A' THEN GENERATE('LD B,A'); 

ELSE GENERATE('LD CfA'); 

END GLDA; 

Similarly GSTA can be implemented. 
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ASSBRA:   PROC; 

DCL COND CHAR(2); 

IF OP_CODE = 'BCC THEN COND = 'NC; 

ELSE IF OP_CODE = 'BCS' THEN COND = 'C'; 

ELSE IF OP_CODE = 'BEQ' THEN COND = 'Z1; 

ELSE IF OP_CODE = 'BMI' THEN COND = 'M1; 

ELSE IF OP_CODE = 'B VS' THEN COND = 'PE'; 

GENERATE ( ' JP ' | | COND | | ' , ' | | OPD__ADDR) ; 

END ASSBRA; 

ASSJMP:   PROC; 

GENERATE('JP    '||OPD_ADDR); 

END ASSJMP; 

ASSJSR:        PROC; 

GENERATE('CALL 'CALL '||OPD_ADDR); 

END ASSJSR; 

ASSRTS:   P ROC- 

GENE RATE ( 'RET') ; 

END ASSRTS; 
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GINC:   PROC; 

IF INDEXJJSE = 'X' THEN 

GENE RATE('INC (IX +'OP D_ADDR ') ') ; 

ELSE IF  HAS_REG THEN 

DO; 

GENERATE('LD HL, '||OPD_NAME); 

GENERATE('INC (HL)'); 

END; 

ELSE IF REG = 'A1 THEN 

GENERATE('INC B'); 

ELSE GENERATE('INC C'); 

END GINC; 

Similarly GDEC can be implemented. 
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SECTION 1 

MASTER INSTRUCTION SET 

1.1 INTRODUCTION 

The AAH has many microprocessor-based systems which basically utilize 
nine different microprocessors. Each microprocessor requires its own 
development and support systems. It would be better if this redundancy 
was eliminated by concatenating the nine different instruction sets 
into a superset. Unfortunately, the microprocessor which executes this 
super instruction set does not exist. A simpler solution would be to 
consolidate the various instruction sets, thereby eliminating redundancy, 
and resulting in a Master Instruction Set (MIS). This report describes 
the theoretical requirements for a microprocessor which executes the 
MIS. In addition a machine by machine translation from the native in- 
struction set to MIS is provided. 

1.2 ASSEMBLER REQUIREMENTS 

To accomplish the goal of consolidating the various instruction sets, a 
cross-assembler is required which takes the original source code and 
translates it into coding for the MIS. This assembler would have to be 
a macroassembler since some instructions may be more economically trans- 
lated as a sequence of instructions rather than microcoding involved 
commands. The need for macro capability is also dictated by the fact 
that the source code may also contain macros. 

The operation of this theoretical macroassembler is in two stages. First, 
the source machine is specified and a line by line translation is pro- 
duced. Second, the new translated code will be assembled into machine 
code. 

In addition to the "ordinary" commands in the MIS there is a separate 
class, called the operate or OP-class. In essence, these are just mis- 
cellaneous instructions. They are unique to individual microprocessors 
and therefore did not warrant separate instructions in the MIS. This 
report provides the macro coding for each of the OP-class instructions. 
When the actual microcoding of this heretofore theoretical machine is 
performed, it is entirely feasible that these instructions might also 
be microcoded, but in any event, the OP-class instructions must be pro- 
vided for. 

Finally, if an advanced arithmetic chip (such as the 9511A) is used in 
conjunction with the microprocessor (29116) then certain instructions 
such as SIN, EXP, and SQRT, may become available to speed processing even 
though they are not presently included in the Master Instruction Set. 
In this case there will have to be an intervention by a software engineer 
to hand-substitute these commands for the blocks of code accomplishing 
the same functions. 
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SECTION 2 

PROGRAMMING MODEL 

2.1  INTERNAL ARCHITECTURE 

The 29116 is a 16 bit machine with 32 internal registers. For the MIS, 
the lower 16 registers Rn through R-ir are unassigned and are available 
as general purpose registers. In the instance where individual micro- 
processors have registers with specific names, they are assigned to 
registers RQ through R-jg as required. For example, many microprocessors 

a register called an accumulator. This might be assigned register 
All assignments are given for each individual machine.in sections 4- 

have 
Rr 'G' 11 

The upper 16 registers have specific assignments. The following is a 
list of these registers and their assignment according to the MIS. 

egister Abbreviation Assignment 
16 PC Program Counter 
17 PSW Processor Status Word 
18 IM Interrupt Mask 
19 SP Stack Pointer 
20 CRU Communications Register 
28 ER Extension Register 
30 Q Quotient Register 

Both RAM and ROM are assumed to be 16 bits wide. All addresses will 
be 16 bits long obviating the need for modes of addressing such as direct 
or zero-page. 

2.2 FLAGS 

The PSW is considered to be an aggregate of 16 different flag bits as 
illustrated in Figure 1. When the flag bit is 1, the condition that flag 
represents is considered true as of the last operation. It is assumed 
that the processor will set or clear flags as required. The definition 
of each bit is described below. 

Bit 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 

Abbreviation 
C 
i 
7 

N 
D 
1 

H 
/X0 
>0 
A> 
L> 
1 

Definition 
8 bit carry 
8 bit overflow 
8 bit zero or equal 
8 bit negative bit 
Even parity check 
8 bit half-carry 
Greater than zero 
Greater than or equal  to zero 
Arithmetically greater than 
Logically greater than 
Always set to 1 
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Bit Abbreviation         Definition 
B AZ . Upper 8 bit zero 
C .  TN           12 bit negative 
D As          Arithmetically less than 
E AV           16 bit overflow 
F AN           16 bit negative 

Carry Bit (C) - Bit 0 is modified as a result of specific operations, 
such as ADCw and SBCw, or directly with commands such as SETJ3 and RES0. 
This bit serves as either 8 or 16 bit carry depending on w. 

Overflow Bit (V) - Bit 1 is set or cleared as a result of byte arithmetic 
operations. It will be modified during add and subtract operations when 
the least significant 8 bits result in a value which cannot be contained 
in those 8 bits. Similarly, bit E is set whenever the least significant 
16 bits cannot accommodate the result of an arithmetic operation. 

Zero Bit (Z) - Bit 2 is automatically set to one whenever the result 
of an operation equals zero. Therefore bit 2 is set to one whenever 
all the bits of the result are zero, and reset whenever any of the bits 
are not zero. Bit B performs the identical function for the upper byte. 

Negative Bit (N) - Bit 3 contains the value of the sign bit (bit 7) pro- 
duced by all arithmetic instructions operating upon 8 bit words. Bit C 
is set whenever a 12 bit result of an arithmetic instruction produces a 
negative result. Similarly bit F is set whenever a 16 bit result of an 
arithmetic instruction is negative. 

Parity Bit - Bit 4 is set whenever the result of a parity check is even. 
Bit 4 is reset when the result of a parity check is odd. 

H Bit - Bit 5 is set when a carry occurs during an ADNB or SBNB operation. 
The carry can then be transferred from the least significant nybble (4 bits) 
to the most significant nybble. 

Greater Than Zero Bit - Bit 6 is set whenever a data movement or arithmetic 
operation produces a result> zero. Bit 6 is reset to zero whenever the 
result is£. zero. 

Greater Than Or Equal To Zero Bit - Bit 7 is set whenever a data movement 
or arithmetic operation produce a result greater than or equal to zero. 
Bit 7 is reset to zero whenever the result is less than zero. 

Arithmetically Greater Than - Bit 8 is set when the result is arithmetically 
greater than the source with which it is being compared. 

Logically Greater Than - Bit 9 is set whenever the result of a Boolean oper- 
ation is greater than the source with which it is being compared. 

Bit A - This bit is always one to allow an unconditional program transfer 
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when the following instructions are executed: JMAS, RTAS, JLAS, 

Arithmetically Less Thar - Bit D is set when the result is arithmetically 
less than the source to which it is being corrpared. 

2.3 INTERRUPTS 

Interrupts provide a microprocessor with the means of detecting external 
asynchronous events. Generally an interrupt request is transmitted to 
the microprocessor via a voltage level or transition. An interrupt request 
may be ignored in certain instances or if it is non-maskable then it must 
always be serviced. A special register IM, is available for specifying 
whether or not an interrupt is to be serviced. 

There are two philosophies in dealing with interrupts. The first speci- 
fies that if an interrupt is to be serviced, then the processor transfers 
control to a specific location in memory. This is a vectored interrupt. 
If the processor goes to a specific location and then fetches the location 
to which control will be transferred, it is called vector fetch. A simple 
way of reconciling the two types is to make this theoretical processor 
a vector fetch type. Then to execute instructions for a vectored type, 
just place the normal vectored location in the memory fetch addresses and 
operation will proceed as expected. 

Unfortunately, the precise nature of interrupt instructions are idiosyncratic 
to each machine. Therefore, special instructions are required to enable 
the MIS processor to perform all types of interrupt service. These are the 
IN and RI instructions. It is assumed these will be microprogrammed for 
each machine appropriately. 

2.4 I/O CONTROL 

Communication with the external environment is generally done via input/ 
output (I/O) ports. Some processors have specific I/O commands which 
transfer contents between register and I/O ports. This type of I/O oper- 
ation is referred to as direct I/O. Other processors bring the full power 
of their instruction sets to I/O operations by treating I/O ports as mem- 
ory locations. These machines have no specific I/O operations. This type 
of I/O processing is called memory-mapped. 

It is assumed that the MIS processor will use memory-mapped I/O. When 
translating instructions from direct I/O machines, the MIS macroassembler 
will simply substitute MOV instructions to the address assigned the I/O ports. 

2.5 ADDRESSING MODES 

Each of the processors has a series of addressing modes associated with it. 
The MIS incorporates all of these addressing modes. Table 1 lists the 
addressing modes and the notation associated with them. Also included is 
a symbolic description of how the effective address is formed. Following 
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Table 1 is a more detailed description of the various addressing modes, 

TABLE 1 

SUMMARY OF ADDRESSING MODES 

Symbols Abbreviations 

.( )  Contents of I  Operand 

[ ]  Effective address M  Memory address 

«—  "Is transferred to i R  Register 

@   Indexed UR Upper-half register 

#   Immediate address Off Offset 

Addressing Mode Notation Interpretation Of EA 

Immediate #1 I 
Absolute M [M] 
Indirect (M) [(M)] 

Register R (R) 
Upper Half Register UR (R)8-15 
Indirect via Register (R) [(R)] 

Pre-decrement R -R (R)MR)-1 
Post-increment R R+ (R), (R)*-(R)+1 

Indirect via Register 

a. Pre-increment +(R) [(RK-(R)+1] 

b. Post-increment (R)+ [(R)],(R)«-(R)+1 

c. Pre-decrement -(R) [(R)*-(R)-1] 

d. Post-decrement (R)- [(R)],(R)<-(R)-1 
Indexed 

a. Indexed absolute M(3R [M+(R)3 

b. Indexed indirect {Mm) [(M+(R))] 

c. Indexed indirect 
Post-increment (M@R)+ 

Extended M(3R* [M+(R*)] 

Offset 

a. Relative (R)-K)ff [(R)-K)ff] 
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Addressing Mode        Notation 

b. Indirect via R      (R+Off) 

c. (b)+ Post-incre- 
ment offset       (R+0ff)+ 

d. Index, indirect 
offset M@(R+0ff) 

Assembler Directive 

Interpretation Of EA 

[((R)+0ff)] 

[((R)+0ff)]. (R)*-(R)+1 

[M+ ((R)+0ff)] 

Absolute (Direct) - In this mode, the address following the opcode is 
used as a pointer to the operand which is then fetched from memory. 
Generally the full 16 bit address of any memory location is specified. 
The 16 bit address obviates the need for paged addressing, particularly 
zero paged addressing. That is, there is no advantage in assuming the 
upper byte to be zero, since the upper byte is always included in a 16 
bit address. 

Indirect - In this mode the contents of the address contained in the in- 
struction serves as a pointer to the operand. 

Register - This addressing mode is similar to the absolute mode described 
above except that the operand is specified as the content of a Register (R) 

Upper-Half Register - the operand, in this mode, is the content of the 
upper-half (UR) of a given Register, R. 

Indirect Via Registers - In this mode the address of the operand is 
specified by the contents of the Register (R). 

Register Modify 
a. Pre-decrement register - In this mode the address of the operand 

is found by decrementing the contents of Register R, then using the up- 
dated contents of Register R as  the operand. 

b. Post-increment register - This mode is similar to the Register mode 
described above in that the operand is specified by contents of a given 
Register but then the contents of Register R are incremented by one. 

Indirect Via Register 
a. Pre-increment - The contents of Register R are incremented one. 

The address of the operand is then specified by the contents of the 
address pointed to by Register R. 

b. Post-increment register - The effective address of the operand is 
specified as the content of the address pointed to by Register R. The 
content of Register R is then incremented by one. 

c. Pre-decrement register - The content of Register R is decremented, 
the operand is then pointed to by the content of Register R. 

d. Post-increment register - The operand is pointed to by the content 
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of Register R. The content of Register R is then incremented by one. 

Indexed 
a. Indexed absolute - In this mode the effective address of the 

operand is found as follows: The address field accompanying the op- 
code is added to the contents of the specified Index Register. 

b. Indexed indirect - This mode is similar to Indexed absolute ex- 
cept two operations are required. First the contents of Register R 
are added to the address field accompanying the opcode. This value 
points to a location which in turn points to the address containing 
the operand. 

c. Indexed indirect post-increment - This is identical to Indexed 
indirect except that after the effective address is formed. Register 
R is incremented by one. 

Extended - In this mode it is assumed that the status of the extended 
register specifies the field (each field contains 64K) that contains 
the address of the current instruction. 

Offset 
a. Relative - In this mode the effective address containing the 

operand is calculated by adding an offset value to the contents of 
Register R. 

b. Indirect via register offset - The contents of Register R are 
added to the offset. This value then specifies the address which points 
to the address containing the operand. 

c. Indirect via register offset; post-increment - This mode is iden- 
tical to b, except that the contents of Register R are incremented after 
the effective address has been computed. 

d. Indexed indirect offset - The effective address is calculated by 
first adding the contents of Register R to the offset. This value is 
then used to point to an address which is added to the address accompany- 
ing the opcode. This final value points to the address which contains 
the operand. 

Assembler Directive 

Strictly speaking, this is not an addressing mode. However, some in- 
structions require an additional parameter for correct operation and 
the second operand field is utilized for this specification. 
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SECTION 3 

MASTER INSTRUCTION SET 

After consolidating all 8 instruction sets, a Master Instruction Set 
was produced containing 31  basic instructions. Three classes, OP, 
IN, RI are somewhat less defined, in that each is specific to one processor. 
The precise description of each of these three types is included in the 
machine by machine translation. 

Table 2 presents a list of the symbols and abbreviations utilized by the 
MIS. Table 3 lists the 31 instructions of the MIS. Following this table 
is a detailed description of the operation of each instruction. 

TABLE 2 

SYMBOLS AND ABBREVIATIONS 

Symbo' s 
—^ Transfer to _7V_ Logical and 

^ Exchange contents ^^ Logical or 
* Multiply ^vr Logical exclusive or 

■ 
Divide ( ) Contents of 

SD Complement [ ] Effective address 

Abbreviations 

A Arithmetic 

BCD Binary coded decimal 

b Bit number 

C With carry 

D Destination 

L Logical 

m Mode 

MP I/O port address 

N No carry 

n Number of times 

P Place 

PSW Processor status word 

R Register 

s Bit condition , S = set, C = clear 
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s 
SD 

UR 

w 

Abbreviations 

Source 

Operand serves as both S and D 

Upper-half of 16 bit register 

Word size 

B   8 bit word 

T   12 bit word 

W   16 bit word 

D   32 bit word 

Mnemonic 

1. ADmw 

2. ANDw 

3. ANRw 

4. CLRw 

5. CMPw 

6. COMw 

7. CONT 

8. DAJw 

9. DECw 

10. DIVw 

11. EXRw 

12. INCw 

13. INij 

K. JLbs 

15. JMbs 

16. JRbs 

17. MOVw 

18. MPYw 

TABLE 3 

MASTER INSTRUCTION SET 

Operand(s) 

S, R 

s, R 

s, R 

D 

Sl 
SD 

,S2 
,  k 

SD 

SD 

s. SD 
s, R 

SD 

R, P 

P 

R, P 

S,  D 

S,  SD 

Operation 
S + R[«h C]—>R 

S^v_R 

s, -s2 

3nD->SD + k, k = 0 or 1 

No operation 

BCD  (SD)—>SD 

(SD)  -  1->SD 

SD -j- S—>SD, Q (remainder) 

S~\rR—^R 

(SD) + 1-^SD 

Interrupt command 

Jump and link with R, con- 
ditional 

Jump, conditional (bit b of 
PSW) 

Test register and jump, con- 
ditional 

(S)->D 

S * SD-^SD, Q 
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Mnemonic 

19. OPij 

20. RESb 

21. ORRw 

22. Rlij 

23. RLnw 

24. RRnw 

25. RTbs 

26. SBmw 

27. SETb 

28. SLnw 

29. SRnw 

30. XCRw 

31. XEQw 

Operand(s) 

5, SD 

ED 

S,  R 

SD, N or C 

SD, N or C 

R 

R, s 
SD 

SD 

SD,  L or A 

SD-,,  SD2 

Operation 
Operate class 

9j\J>Db-*SD 

S-V-R~4R 

Return from interrupt 

Rotate left n times 

Rotate right n times 

Return, conditional 

R - S[- C]—4R 

l^y-SDb—>SD 

Shift left n times 

Shift right n times 

SD1<-^SD2 

Execute contents of register 
specified 

ADmw 

Operation: 

Description: 

ANDw 

Operation: 

Description: 

Add 

S + R [+C] -^-R 

The contents of S are added to the contents of 
R. The result is placed in R. The content of 
the carry bit can be included or omitted depend- 
ing upon the mode (m); ADCw refers to addition 
with carry; ADNw refers to addition without carry. 

Logical and 

S_7V-R 
The contents of S and R are logically ANDed. 
The contents of S and R remain unchanged. This 
instruction sets the flags of the PSW. 

ANRw 

Operation: 

Description: 

Logical and with replacement 

S^VR-^R 

The contents of R are logically ANDed with the 
contents of S. The result is placed in R. 

CLRw 

Operation: 

Description: 

Clear word 

0->D 

Tne contents of D are set to zero. 
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CMPw 

Operation: 

Description: 

Compare 

Sl " S2 
The contents of S 
contents of Si an 

are subtracted S 
S- are unchanged 1 

operation sets the flags of PSW 

The 
This 

COMw 

Operation: 

Description: 

Complement a word 

SD—^SD + k 

The contents of SD are complemented when k = 0 
(zero bits become one, one bits become zero). 
The contents of SD are negated when k = 1 (The 
number becomes negative by the use of a two's 
complement procedure. 

CONT 

Operation: 

Description: 

Continue 

No operation 

No operation is performed. The registers and 
flags are unaffected by this command. 

DAJw 

Operation: 

Description: 

DECw 

Operation: 

Description: 

Decimal adjust 

BCD (SD)—^SD 

The content of the word located in SD is adjusted 
to form a binary coded decimal (BCD) by adding a 
00, 06, 60, or 66 as required by each byte. 

Decrement a word 

(SD) - 1-^SD 

The contents of SD are decremented by one. 

DIV 

Operation: 

Description: 

EXRw 

Operation: 

Description: 

Divide 

SD -f- S—^SD, Q 

The dividend (SD) is divided by the contents of 
S. The quotient is stored in SD. The remainder 
is stored in Rg (Quotient register). 

Exclusive or with replacement 

S-^-R—>R 

The contents of R exclusively ORed with the con- 
tents of the address specified by S. The result 
is placed in R. 
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INCw 

Operation: 

Description; 

Increment a word 

(SD) + 1—^SD 

The contents of SD are incremented by one, 

INij 

Operation: 

Description: 

Interrupt command 

Interrupt command (#j) of microprocessor i 

Each of the 9 microprocessors included in the 
Master Instruction Set require specific instruc- 
tions in order to provide an interrupt routine. 
Since they are all idiosyncratic a general command 
cannot adequately incorporate them all (see gen- 
eral comments). 

JLbs 

Operation: 

Description: 

Jjmp and link 

Jump and link with the contents of R, conditional 

JLbS, if bit b of PSW is set, transfer control to 
the subroutine beginning at location P store the 
current contents of the PC in R. JLbC, jump and 
link if bit b is clear. 

JMbs 

Operation: 

Description: 

JRbs 

Operation: 

Description: 

J jmp 

Jjmp, conditional, unconditional 

JMbs (conditional jump); test bit b of PSW. Jump 
to location specified by P if bit is set or clear. 
For example, JMbC jumps if bit b is clear and JMbS 
jjmps if bit b is set. Use JMAS for unconditional jump. 

Test register, conditional jump 

Test register R, conditional jump 

This instruction allows the contents of R to be 
tested. Equivalent to adding zero to the contents 
of R, then testing bit b of the PSW. The contents 
of R are unchanged but the flags of the PSW are set. 

MOVw Move a word 

Operation: (S)-*D 

Description: The contents of S are transferred to D. 

MPY Multiply 

Operation: S * SD—>SD, Q 
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Description: The contents of S are multiplied by a second 
source (SD), which also stores the product, 
least significant word is stored in Rn. 

The 

OPij 

Operation: 

Description; 

Operate class 

Miscellaneous 

Some commands are unique to a particular micro- 
processor and therefore cannot be incorporated 
under a general command. While these commands 
will of course be included in any complete MIS, 
they are at this time classified as an Operate 
Class Instruction (see specific processors for 
specific examples). 

RESb 

Operation: 

Description: 

Reset bit b 

0-A_SDb—>SD 

Bit b of word SD is cleared by logically ANDing 
it with zero. The result is placed in SD. 

ORRw 

Operation: 

Description: 

Logical or with replacement 

S-VR-^R 

The contents of R are logically ORed with the con- 
tents of the address specified by S. The result is 
placed in R. 

Rlij 

Operation: 

Description; 

Return from interrupt 

Return from interrupt 

Since the call to service an interrupt is unique 
to each microprocessor, the return from an interrupt 
is equally unique, and cannot be specified explicitly 
(see general comments). 

RLnw 

Operation: 

Description: 

Rotate left 

Rotate left n times 

The contents of the address specified by SD are 
rotated n times to the left. The carry bit can 
be included, (SD, C) or omitted (SD, N). 

RRnw 

Operation: 

Description: 

Rotate right 

Rotate right n times 

The contents of the address specified by SP are 
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RTbs 

Operation: 

Description; 

SBmw 

Operation: 

Description: 

rotated to the carry bit can be included, (SD, C) 
or omitted from one rotating process (SD, N). 

Return from subroutine 

Return, conditional 

RTbs; test bit b of PSW, Jump to location stored 
in R if tested bit is set. RTbC; return if bit b 
of PSW is clear. RTAS, unconditional return. 

Subtract 

R - S [-C]- -R 

The contents of S are subtracted from one contents 
of R. The contents of the carry bit can be included 
or omitted depending upon the mode, SBCw refers to 
binary subtraction with carry, SBNw refers to binary 
subtraction without carry. 

SETb 

Operation: 

Description: 

Set bit b 

l"V_SDb—^SD 

The bit b of word SD is 
with a one. The result 

set by logically ORing it 
is placed in SD. 

SLnw 

Operation: 

Description: 

Shift left 

Shift left n times 

Shift the contents of location SD n 
left. A 0 is placed in the LSB and 
shifted into the carry bit. 

times to the 
the MSB is 

SRnw 

Operation: 

Description: 

151 

-> 

Shift right 

Shi ft right n times 

The contents of the address specified by SD are 
rotated n times to the right. The shift can be 
arithmetic (SD, A) where is sign bit SD is preserved, 
or logical (SD, L), where a zero is put into the 
most significant bit (see diagram below. 

15 
—■ 'BS 

±1 
-> —> 

XCRw 

Operation: 

Exchange words 

SD1f->SD2 
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Description: The contents of the word specified by SD-, 
"swapped" with the contents of SD,,. 

are 

XEQw 

Operation: 

Description: 

Execute contents of register R 

Execute contents of register R 

Execute contents of register R. 
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SECTION 4 

MICROPROCESSOR 1/8080/8085 

4.1  INTRODUCTION 

The 8080/8085 is byte oriented, having a word length of 8 bits. It 
has three addressing modes and a 16 bit stack pointer. It also con- 
tains six working registers which can be handled individually, or as 
register pairs. The 8 bit accumulator accumulates the results of arith- 
metic and logical operations, and there is also an 8 bit flag register. 
Input/output (I/O) control is achieved via I/O ports rather than regu- 
lar memory space. The S080/8085 utilizes direct control of I/O ports. 

4.2 PROGRAMMING MODEL 

Regi sters 

A 

BC 

DE 

HL 

Prog ram Counter 

Flag Register 

Carry 
Parity 
Auxiliary 
Zero 

Carry 

Sign 

Inte rrupt Mask 

Stac < Pointer 

Designation (MIS) 

Rl 

R 

R 

16 
17 
bit 0 
bit 4 
bit 5 
bit 2 
bit 3 

18 

h9 
4.3 INTERRUPT STRUCTURE 

The 8080 has a vectored type of interrupt structure with one level of 
interrupt. The 8085 is also vectored, with three levels of maskable 
interrupt and one non-maskable level. 

4.4 EXAMPLES OF ADDRESSING MODES 

a. Register 

ADC  r* 

b. Register Indirect 

ADC  m** 

c. Immediate 

ADC  i*** 

ADCB 

ADCB 

ADCB 
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f. 

g- 

Conditional 

CALL 

CZ 

CNZ 

CC 

CNC 

CP 

CM 

CPE 

CPO 

Double Register 

INX  B 

INX  D 

INX  H 

INX  SP 

Absolute 

LDA 

Implied 

CMA 

JLAS 

JL2S 

JL2C 

JL0S 

JL0C 

JL3C 

JL3S 

JL4S 

JL4C 

INCW- 

INCW 

INCW 

INCW 

MOVB 

COMB 

(R 

(R 

(R 

(R 

(R 

(R 

(R 

(R 

(R 

19 

19 

19 

19 

19 

19 

19 

19 

19 

P 

P 

P 

P 

P 

P 

P 

P 

P 

k19 

M, Rr 

R0' R0 

** 

*** 

r = A, B, C, D, E, H, L 

m = memory location contained in HL 
: immediate 

4.5 TRANSLATION INTO MIS 

Table 4.5.2 presents a list of the 8080/8085 instruction set and the 
associated MIS translations. In order to facilitate specification of 
the operand(s). Table 4.5.1 has been devised. 

TABLE 4.5.1 

KEY TO OPERAND(S) (OP) 

Op 1 

Op 2 

Register 
Register Indirect 
Immediate 

Conditional 
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Op 3 Impl ied 

Op 4 Regi 
Regi 

ster 
ster Indirect 

Op 5 Imme diate 

Op 5 Register 

Op 7 Absolute 

TABLE 4.5. 2 

TRANSLATION INTO MIS - 8080/8085 

Mnemonic Operand(s ) MIS Mnemonic Operand 1 Operand 2 
ADC Op 1 ADCB S R0 
ADD Op 1 ADNB S R0 
ANA Op 1 ANRB S R0 
CALL Op 2 JUS (R19)- p 
C-- Op 2 JLbs (R19)- p 
CMA Op 3 COMB R0 0 
CMC Op 3 EXRB #0001 R17 
CMP Op 1 CMPB Ro R 
DAA Op 3 DWB Ro 
DAD Op 6 ADCW R R3 
DCR Op 4 DECB S 

DCX Op 6 DECW R 
DI Op 5 SET0 R18 
El Op 5 RES0 R18 
HLT 

IN 

Op 

Op 

5 

5 

IN10 

MOVB Mp Ro 
INR Op 4 INCB S 
INX Op 6 INCW R 
JMP Op 2 JMAS P 
J — Op 2 JMbs P 
LDA Op 7 MOVB M Ro 
LDAX Op 6 MOVB (R) Ro 
LHLD Op 6 MOVB M R, 
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Mnemonic Operar id(s) MIS Mnemonic Operand 1 Operand 2 

LXI Op 6 MOVW #1 R 
MOV Op 1 MOVB R/UR (R3) 

MOV Op 1 MOVB S R/UR 

MVI Op 5 MOVB #1 (R3) 

MVI Op 5 MOVB #1 R/UR 

NOP Op 3 CONT 

ORA Op 1 ORRB s Ro 
OUT Op 3 MOVB R0 Mp 
PCHL Op 3 MOVW R3 R16 
POP Op 6 OP10, n 

PUSH Op 6 OP12, 13 

RAL Op 3 RL1B R0 c 
RAR Op 3 RR1B R0 C 
R— Op 2 RTbs (R19K 
RLC Op 2 RUB R0 c 
RRC Op 3 RR1B Ro c 
RST imi 
SBB Op 1 SBCB Ro s 
SUB Op 1 SBNB Ro s 
SHLD Op 7 MOVW R3 M 
SPHL Op 3 MOVW R3 R19 
STA Op 7 MOVB R0 M 
STAX Op 6 MOVB R0 (R) 
STC Op 3 SET0 R17 
XCHG Op 3 XCRW R2 R3 
XRA Op 1 EXRB (R3) R0 
XTHL Op 3 XCRW 

8085 ONLY 

(R19) R3 

SET SETb R18 
CLR RESb R18 

**** 
1p = memory location specifying I/O port 
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4.6 OP CLASS INSTRUCTIONS 

OP class instructions irclude those commands that are unique to one or 
two of the eight microprocessors contained in the MIS. As explained 
in the Introduction those commands will be macro-assembled when possi- 
ble. The 8080/8085 contains two such commands; POP and PUSH. 

nemonic MIS Mnemonic 

POP  rp OP10 

POP PSW OPll 

PUSH 0P12 

PUSH rp 0P13 

4.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic 

HLT 

RST 

Mac ro Coding 

MOVW 
(R19>+ R 

MOVW 
MOVB 
MOVB 

(R19)+ 

K25 

Roc 
R17 
R0 

MOVW R -(R19) 

MOVB 
MOVB K17 ^5 
MOVW K25 -^9> 

MIS Mnemonic Description 

IN10 The processor is stop 
ped. Registers and 
flags are unaffected. 

IN11 Restart 
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SECTION 5 

MICROPROCESSOR 2/6800 

5.1 INTRODUCTION 

The 6800 microprocessor is a byte oriented processor with two general 
purpose registers, a Stack Pointer, two interrupt levels and six address- 
ing modes. Negative numbers are processed by two's complement arith- 
metic. Those instructions requiring macro-assembly are described in Sec- 
tion 5.6. I/O control is memory mapped in the 6800. 

5.2 PROGRAMMING MODEL 

Registers Designation (MIS) 

Accumulator A Rn 

Accumulator B R, 

Index Register X R„ 

Program Counter R-.^. 

Processor Status Register R-,7 

Carry bit 0 
Overflow bit 1 
Zero bit 2 
Negative bit 3 
Interrupt Mask Bit bit 0, R,o 
Half-carry bit 5       lb 

Stack Pointer R 
19 

5.3 INTERRUPT STRUCTURE 

The 6800 employs a vector fetch type of interrupt structure with two 
levels of interrupt request; maskable and non-maskable. 

5.4 EXAMPLES OF ADDRESSING MODES 

a. Immediate 

ADC ADCB 

b. Absolute 

AND ANRB 

c. Relative 

BRA JMAS 

BMI JM3S 

BNE JM2C 

#1, R 

M, R 

(R16)+0ff 

(R16)+0ff 

(R16)+0ff 
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BPL JM3C 

BVC JM1C 

BVS JM2S 

BCC JM0C 

BCS JM0S 

BEQ JM2S 

Zero Page 

AND ANRB 

Z, Page, I ndexed 

AND ANRB 

Implied 

ABA ADNC 

5.5 TRANSLATION INTO MIS 

(R16)+Off 

(R16)+0ff 

(R16)+0ff 

(R16)+0ff 

(R16)+Off 

(R16)+0ff 

M, R 

M@R, R 

RT R0 

Table 5.5.2 presents an alphabetical listing of the 6800 instruction 
set along with the associated MIS translation. In order to facilitate 
the specification of the operand(s). Table 5.5.1 has been included. 

TABLE 5.5.1 

KEY TO OPERAND(S) (OP) 

Op 1 

Op 2 

Op 3 

Op 4 

Op 5 

Op 6 

Implied 

Immediate 
Absolute 
Zero Page 
2, Page, X 

Absolute 
2, Page, X 
Implied 

Relative 

Absolute 
2, Page, X 

Absolute 
Zero Page 
2, Page', X 
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TABLE 5.5.2 

TRANSLATION INTO MIS - ■ 6800 

Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

ABA Op 1 ADNB Rl R0 
ADC Op 2 ADCB M R 

ADD Op 2 ADNB M R 

AND Op 2 ANRB M R 

ASL Op 3 SLIB SD 

ASR Op 3 SR1B SD A 

BCC Op 4 JM0C (R16)+0ff 

BCS Op 4 JM0S (R16)+0ff 

BEQ Op 4 JM2S (R16)+Off 

BGE Op 4 JM7S (R16)+Off 

BGT Op 4 JM6S (R16)+0ff 

BHI Op 4 JM8S (R16)+0ff 

BIT Op 2 ANDB R0/Rl M 

BLE Op 4 JM6C (R16)+0ff 

BLS Op 4 JM8C (R16)+0ff 

BLT Op 4 - JM7C (R16)+0ff 

BMI Op 4 JM3S CR16)+Off 
BNE Op 4 JM2C (R16)+0ff 

BPL Op 4 JM3C (R16)+Off 

BRA Op 4 JMAS (R16)+Off 

BSR Op 4 JLAS (R19)- (R16)+0ff 

BVC Op 4 JM1C (R16)+0ff 

BVS Op 4 JM1S (R16)+0ff 

CBA Op 1 CMPB Ro Rl 
CLC Op 1 RES0 R17 
CLI Op 1 RES0 R18 
CLR Op 3 CLRB SD 

CLV Op 2 RES1 R17 
CMP Op 3 CMPB VRi M 

COM Op 3 COMB SD 0 
CPX Op 2 CMPB R9 M 
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Mnemonic Operar id(s) MIS Mnemonic Operand 1 Opera 

DAA Op 1 DAJB SD 

DEC Op 3 DECB SD 

DES Op 1 DECW R19 
DEX Op 1 DECW R2 
EOR Op 2 EXRB M R0/R1 
INC Op 3 INCB SD R0/Rl 
INS Op 1 INCH R19 
INX Op 1 INCW R2 
JMP Op 5 JMAS P 
JSR Op 5 JLAS (R19)- P 
LDA Op 2 MOVW M Ro 
LDS Op 2 MOVW M R19 
LDX Op 2 MOVW M R2 
LSR Op 3 SR1B SD L 
NEG Op 3 COMB SD 1 

NOP Op 1 CONT 

ORA Op 2 ORRB S VRi 
PSH Op 1 MOVB R (R19) 

PUL Op 1 MOVB +(R19) R0/R1 

ROL Op 3 RUB SD c 
ROR Op 3 RR1B SD c 
RTI Op 1 RI20 

RTS Op 1 RTAS +(R19) 

SBA Op 1 SBNB % Rl 
SBC Op 2 SBCB RQ/RT M 
SEC Op 1 SET0 R17 
SEI Op 1 SET0 R18 
SEV Op 1 SETT R17 
STA Op 6 MOVB VR1 M 

STS Op 6 MOVW R19 M 

STX Op 5 MOVW R2 M 

SUB Op 2 SBNB VR1 M 

SWI Op 1 IN20 
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Mnemonic   Operand(s)   MIS Mnemonic   Operand 1   Operand 2 

TAB 

TAP 

TBA 

TPA 

TST 

TSX 

TXS 

WAI 

Op 1 

Op 1 

Op 1 

Op 1 

Op 3 

Op 1 

Op 1 

Op 1 

MOVB 

MOVB 

MOVB 

MOVB 

SUB 

MOVW 

MOVW 

IN21 

1 

"17 
SD 

R 19 

5.6 OP CLASS INSTRUCTIONS 

17 

v19 

The 6800 does not contain any commands which require macro-assembly 
by the MIS. 

5.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic MIS Mnemonic 

SWI IN20 

WAI IN21 

RTI RI20 

Description 

Software interrupt 

Wait for interrupt 

Return from interrupt 
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SECTION 6 

MICROPROCESSOR 3/TMS-9900 

6.1  INTRODUCTION 

The TMS-9900 has a 16 bit word length, a 32-kword address space and 
a set of 69 instructions. The internal architecture of the 9900 
allows for 16 general purpose registers and 15 index registers. A 
unique feature of this microprocessor is its "workspace register file" 
capability. This file occupies 16 contiguous memory words in the gen- 
eral memory area. The workspace register points to the first of the 
general purpose registers set up in the RAM space. I/O control is 
direct in the 9900. 

6.2 PROGRAMMING MODEL 

Registers Designation (MIS) 

Program Counter 

Status Register 

Equal 
Arithmetically> 
Log i call yi> 

Arithmetical ly< 
Parity 
Carry 
Overflow 
Unconditional 

Interrupt Register 

Workspace Register 

Communications Register Unit (CRU) 

6.3 INTERRUPT STRUCTURE 

R 

R 

16 

<17 
bit 2 
bit 8 
bit 9 
bit 7 
bit B 
bit 4 
bit 0 
bit E 
bit A 

18 

!19 

l28 

The TMS-9900 has a vector-type interrupt structure with 16 levels and each 
is maskable. 

6.4 EXAMPLES OF ADDRESSING MODELS 

Immediate 

LWPI 

LI 

LIMI 

LDCR 

MOVW 

MOVW 

MOVW 

MOVW 

#1, R19 

#1, (Rlg)+0ff 

#1, R18 

#1, R, x28 
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b. Workspace Register 

CLR  r CLRW (Rig)+0ff 

c. Workspace Register Indirect 

CLR *r CLRW (R19+0ff) 

d. Register Indirect With Autoincrement 

CLR *r+ CLRW (R1g+0ff)+ 

e. Indexed 

CLR @TABLE(r) CLRW M@(Rig+Off) 

f. Program Counter Relative 

JEQ JM2S P 

JGT JM8S P 

JH JM6S P 

JHE JM7S P 

JL JM7C P 

JLE JM6C P 

JLT JMDS P 

JOP JM4C P 

JOC JM0S P 

JNE JM1C P 

JNO JM2C P 

JNC JM!3C P 

JMP JMAS P 

g. Direct 

CLR @m CLRW M 

h. Communications Register Unit Relative 

SBO SETb (R28)+0ff 

6.5 TRANSLATION INTO MIS 

Table 6.5.2 lists the instruction set of the TMS-9900 and the associated 
translations. The operand(s) used by the 9900 have been recoded as de- 
fined in Table 6.5.1. 
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TABLE 6.5.1 

KEY TO OPERAND(S) (OP) 

Op 1 (Dual) 

Op 2 (Single) 

Workspace Register 
Workspace Register Indirect 
Di rect 
Indexed 
Workspace Register Indirect Auto- 
increment 

Workspace Register 
Workspace Register Indirect 
Di rect 
Indexed 
Workspace Register Indirect Auto- 
increment 

Op 3 Immediate 

Op 4 Workspace Register 

Op 5 CRU Relative Addres sing 

Op 6 Program Counter Relative Addn 

Op 7 Internal Register Store 

TABLE 6.5. 2 

TRANSLATION INTO MIS - TMS-9900 

Mnemonic Operand(s) MIS Mnemonic   Operand 1 Operand 2 

A Op 1 ADNW S SD 

AB Op 1 ADNB S SD 

ABS Op 1 OP30 

AI Op 3 ADNW #1 (R19)+0ff 

ANDI Op 3 ANRW #1 (R19)+Off 
B Op 1 JMAS p 

BL Op 1 JLAS (f^gHl P 

BLWP Op 1 0P31 P 
C Op 1 CMPW Sl s2 
CB Op 1 CMPB Sl S2 
CI Op 3 CMPW n s? 
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Mnemonic Operar d(s) MIS Mnemonic Operand 1 Operand 2 

CKOF IN30 

CKON IN31 

CLR Op 1 CLRW SD 

COC Op 2 OP32 

CZC Op 2 OP33 

DEC Op 1 DECW SD 

DECT Op 1 0P38 

DIV Op 2 DIVW S SD 

IDLE IN32 

INC Op 1 INCW SD 

INCT Op 1 0P37 

INV Op 1 COMW SD 0 
JEQ Op 6 JM2S P 
JGT Op 6 JM8S P 
JH Op 6 JM6S P 

JHE Op 6 JM7S P 
JL Op 6 JM7C P 

OLE Op 6 JM6C P 

JLT Op 6 JMDS P 

JOP Op 6 JM4C P 

JOC Op 6 JM0S P 
ONE Op 6 JM1C P 
JNO Op 6 JM2C P 

JNC Op 6 JM0S P 
JMP Op 6 JMAS P 

LDCR Op 1 MOVW S R28 
LI Op 3 MOVW #1 (R19)+0ff 

LIMI Op 3 MOVW #1 R18 
LREX IN33 

LWPI Op 3 MOVW #1 R19 
MOV Op 1 MOVW s D 
MOVB Op 1 MOVB s D 
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Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

MPY Op 2 MPYW S SD 
NEG Op 1 COMW (R19)+0ff 1 
ORI Op 3 ORRW #1 " (R19)+Off 

RSET IN34 

RTWP 0P34 

S Op 1 SBNW SD S 
SB Op 1 SBNB SD s 
SBO Op 5 SETb R28 
SBZ Op 5 RESb R28 
SETO Op 1 MOVW #FFFF (R19)+Off 

SLA Op 4 SL1W SD 
SOC Op 1 ORRW S SD 
SOCB Op 1 ORRB S SD 
SRA Op 4 SR1W (R19)+Off A 
SRC Op 4 RR1W (R19)+0ff • N 
SRL Op 4 SR1W (R19)+0ff L 
STCR Op 1 MOVW R28 (R19)+0ff 

STST Op 7 MOVW R17 (R19)+Off 

STWP Op 7 MOVW R19 (R19)+Off 

SWPB Op 1 XCRB SD1 SD2 
SZC Op 1 OP35 

SZCB Op 1 0P36 

TB Op 5 ANDW S R28 
X Op 1 XEQW {R19)+0ff 

XOP Op 1 IN35 

XOR Op 2 EXRW s (R19)+Off 

6.6 OP CLASS INSTRUCTIONS 

Mnemonic MIS Mnemoni: Macro Coding 

ABS OP30 JRFC 
COMW 

SD 
SD 

R1C+SKIP* 
I16 
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Mnemonic MIS Mnemonic Macro Coding 
BLWP OP31 MOVW 

s19 R0 

R'
9 

R19 ,R19 

MOVW 
MOVW Ro RV.+SKIP 

)+13 
MOVW )+14 
MOVW 
JMAS 

)+15 

coc 0P32 MOVW 

4 
ANRW 
CMPW 

czc OP33 MOVW 

s2 
> COMW 

ANRW 
R0 K0 

CMPW 

RTWP 0P34 MOVW (R1Q)+15 

(RQ)+14 
(R]|)+13 

R17 

R'
6 K
19 

MOVW 
MOVW 

szc 0P35 MOVW MASK 
> COMW k * ANRW S 

SZCB OP 36 MOVB MASK 
> COMB 

R0 R0 
ANRB s 

INCT 0P37 INCW 
INCW 

SD 
SD 

DECT 0P38 DECW 
DECW 

SD 
SD 

*Offset required to skip past macro code.. 
**c . 

i>+-j = effective address formed by S, plus one 

6.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic 

CKOF 

CKON 

MIS Mnemonic 

IN30 

IN31 

Description 

Address lines A. 
set: HHL 

Address lines A 
set: HLH 

0 

0 
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Mnemonic 

IDLE 

LREX 

RSET 

XOP 

MIS Mnemonic 

IN32 

IN33 

IN34 

IN35 

Description 

Suspend instruction 
execution until an 
interrupt, load or 
reset occurs. 

Load or restart ex- 
ecution. 

Computer reset 

Extended operation 
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SECTION 7 

MICROPROCESSOR 4 - LITTON HARS 

7.1  INTRODUCTION 

The Litton HARS microprocessor utilizes a 16/32 word size (instructions, 
16 bits, data, 32 bits). HARS processes negative numbers by two's comp- 
lement arithmetic. Unfortunately, due to insufficient documentation, the 
type of I/O control cannot be determined with certainty. However, the 
inclusion of the BMV command (Block move of memory or I/O) suggests that 
I/O control is the direct type. 

7.2 PROGRAMMING MODEL 

Registers 

Accumulator 

Program Counter 

Processor Status Word 

Interrupt Mask 

Stack Pointer 

Extension Register 

7.3 INTERRUPT STRUCTURE 

Designation (MIS) 

R0 
R16 
R17 
R18 
R19 
R28 

Again, due to insufficient documentation on the HARS, the type of in- 
terrupt structure is not known. However, it appears to have one level 
of interrupt, which is maskable. 

7.4 EXAMPLES OF ADDRESSING MODES 

Register 

AN ANRW 

Extended 

ANE ANRW 

Extended, Indirect 

ANE* ANRW 

Address 

ANY ANRW 

Address, Indirect 

ANY* ANRW 

Immediate 

ANM ANRW 
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S, R0 

M@R*, R0 

(MOR*), F 

M, R0 

(M), R0 

#1, R0 
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7.5 TRANSLATION INTO MIS 

Table 7.5.1 lists the instruction set of the HARS microprocessor along 
with the associated MIS translations. Due to a lack of sufficient doc- 
umentation, the operands used by HARS are unknown, hence unspecified. 

Mnemonic 

R 

IR 

RTN 

ASM 

SSM 

SF 

RF 

II 

CR 

LR 

EX 

AR 

SR 

DN 

DIS 

SLL 

SRL 

SRA 

SLD 

SRD 

NOT 

NEG 

BMV 

BT 

L 

DL 

TABLE 7.5.1 

TRANSLATION INTO MIS- LITTON HARS 

Operand(s) MIS Mnemonic 

IN40 

RI40 

RTAS 

ADNB 

SBNB 

OP40 

0P41 

SET0 

CMPW 

MOVW 

XCRW 

ADNW 

SBNW 

Operand 1 

^19 
#1 

#1 

^18 
51 
S 

SD 

R 

R0 

1 

Operand 2 

R 

SD, 

R. 0 
R 

SL1W SD 
SR1W SD L 
SR1W SD A 
SLID SD 
SR1D SD A 
COMW SD 0 
COMW SD 1 
0P42 

ANDW S R 
MOVW M R 

MOVD M R 
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Mnemonic 

ST 

DT 

AN 

OR 

T 

TP 

TM 

TZ 

DAC 

DEX 

A 

S 

M 
D 

DA 

DS 

TR 

TI 

Operand(s) MIS Mnemonic Operand 1 Operand 2 

MOVW R0 M 

MOVD R0 M 

ANRW S R0 
ORRW S Ro 
JMAS p 

JM7S p 

JM7C p 

JM2S p 

ADCD R R0 
XCRD R0 R2 
ADNW S R0 
SBNW Ro S 

MPYW S SD 

DIVW S SD 

ADND S SD 

SBND SD S 

0P4j R 

JLAS R-in (M) 19 

Insufficient documentation to determine the meaning of the command, 

7.6 OP CLASS INSTRUCTIONS 

Mnemonic MIS Mnemonic 

SF OP40 

RF 0P41 

BMV 0P42 

TR 
** 

0P4i 

Macro Coding 

Save register file 

Restore register file 

Block move of memory or I/O 

INCW 
JM3S 

R 
P 

** 
J = 3 - 7, where the numbers 3-7 refer to addressing modes a - e 

listed in Section 7.4. 

7.7 IN/RL CLASS INSTRUCTIONS 

Mnemonic 

R 

IR 

MIS Mnemonic 

IN40 
RI40 
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Description 
Restart 

Return from Intacswi 
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SECTION 8 

MICROPROCESSOR 5 - SDP 175 

8.1 INTRODUCTION 

The SDP 175 microprocessor utilizes a 16 bit word. Due to sparse 
documentation, other characteristics of the SDP 175 are not known. 
It is assumed that there are 16 general purpose registers, and two 
index registers. I/O control is memory mapped in the SDP 175. 

8.2 PROGRAMMING MODEL 

Registers 

A Register 

B Register 

Program Counter 

Processor Status Register 

Overflew 
Zero 
Negative 

Designat- "on (MIS) 

R0 
Rl 
R16 
R17 
bit 1 
bit 2 
bit F 
bit 6 
bit 7 

R18 
R20 
R21 
R22 

Interrupt Mask 

Index Register, X 

Index Register, V 

Error Register 

8.3 INTERRUPT STRUCTURE 

The type of interrupt structure utilized by the SDP 175 cannot be 
determined due to insufficient information. 

8.4 EXAMPLES OF ADDRESSING I^ODE 

Examples of addressing modes cannot be provided, due to insufficient 
information. 

8.5 TRANSLATION INTO MIS 

Table 8.5.1 presents the list of the SDP 175 instruction set along 
with the associated MIS translations. Due to insufficient information 
the operands used by the SDP 175 are not known. 
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TABLE 8.5.1 

TRANSLATION INTO MIS - SDP 175 

Mnemonic   Operand(s)   MIS Mnemonic   Operand 1   Operand 2 

Memory Ref With 
Indexing 

LDR 

STR 

CMR 

ADDM 

SUBM 

MPYM 

AN DM 

ORM 

INCM 

LORD 

STRD 

ADDB 

SUBD 

Memory Reference- 
Pre-Indexed Indi- 

rect 

LRI 

SRI 

LRIX 

SRIX 

Unconditional 
Jump 

JMP 

JSR 

JMPI 

JSRI 

Conditional Jump 

JZ 

JN 

JP 

JM 

MOVW 

MOVW 

CMPW 

ADNW 

SBNW 

MPYW 

ANRW 

ORRW 

INCW 

MOVD 

MOVD 

ADND 

SBND 

MOVW (M{3R20) R 
MOVW R (M@R20) 

MOVW (M@R20)+ R 
MOVW (M@R20)+ R 

JMAS P 

JLAS (R19K P 

JMAS (P) 
JLAS (R]9)+ (P) 

JM2S P 

JM2C P 
JMFC P 
JMFS P 
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Mnemonic   Operand(s)   MIS Mnemonic   Operand 1   Operand 2 

JOT 

JLE 

JGE 

JLT 

JGT 

IJX 

IJY 

Register/Register 

RTR MOVW       R R 

ADD ADNW       R R 

SUB SBNW       R R 

MPY ,  MPYW       R R 

AND ANRW       R R 

OR ORRW       R R 

XOR EXRW       R R 

ADDL 

SUBL 

SWAP XCRW       R R 

SUBC CMPW       R R 

ANDC ANDW       R R 

XORC 

DIV 

BIT 

TBIT 

SBIT 

RBIT 

TBITI 

SBITI 

RBITI 

Register Operate 

ABS 

INCR 

DECR 

CMPL 

156 

MIS Mnemonic Operand 1 

JMES P 
JM6C P 
JM7S P 
JM7C P 
JM6S P 
0P5C 

dP5D 

MOVW R 
ADNW R 
SBNW R 
MPYW R 
ANRW R 
ORRW R 
EXRW R 
OP50 

OP51 

XCRW R 
CMPW R 
ANDW R 
OP52 

DIVD. R 

ANDW #MASK 

SETb R 
RESb R 
ANDW (M) 
SETb (R) 
RESb (R) 

OP53 

INCW R 
DECW R 
COMW R 
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Mnemonic 

NEG 

ZERO 

ZLBY 

ZRBY 

XEC 

LMDT 

RTRN 

Literal 

Operand(s) 

INE 

INH 

WAIT 

NOP 

LMSK 

CPLSE 

MIS Mnemonic 

COMW 

CLRW 

CLRB 

CLRB 

XEQW 

0P54 

RTAS 

RES0 

SET0 

IN50 

CONT 

MOVB 

0P58 

Operand 1 

R 

R 

UR 

R 

R 

v18 
{18 

Operand 2 

1 

LDVS MOVB #1 R 
ADDVS ADNB #1 R 
LDV MOVW #1 R 
ADDV ADNW #1 R 
ANDV ANRW #1 R 
ORV ORRW #1 R 
OXRV EXRW #1 R 
SUBVC CMPW #1 R 
ANDVC ANDW #1 R 
XORVC 0P55 

Shift 

SRA R, n SRnW R A 
LSRA n SRnD R0 A 
SRC R, n RRnW R N 
SLSF n OP56 

SLIM n OP57 

SLA R, n SLnW R 
LSLA n SLnD R0 

Control 
w 

"18 
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Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

Stack Operations 

PUSH MOVW R (R19H 
PULL MOVW -(R19) R 
TSKR MOVW R19 R 
TRSK MOVW R R19 
TMSK a MOVW M R19 
PUSHS MOVW R17 (R19)+ 

PULLS MOVW -{R19) R17 
RTRNS RTAS -(R19) 

Test Operations 

TPLSE 0P59 

CKSUM OP5A 

FBIT K, R SETb R 
FBIT K, R SETb (R) 
RESET IN51 

ERIN R MOVW R22 R 

DIN R MOVW MP 
R 

OUT K, R OP5B 

8.6 OP CLASS INSTRUCTIONS 

Mnemonic MIS Mnemonic Macro Coding 

ADDL OP50 Add and limit overflow 

SUBL OP51 Subtract and limit overfl ow 

XORC OP52 MOVW 
EXRW k R23 

K23 

ABS 

LMOT 

OP53 

0P54 

JRFC       R 
COMW       R 

Limit if overflow true 

(R16)+SKIP* 

XORVC OP55 MOVW 
EXRW 

n 
R 

R23 
K23 

SLSF 0P56 Shift left scale facto r 

SLIM OP57 Scaled limit 

CPLSE 0P58 Output 
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Mnemonic MIS Mnemonic 

TPLSE OP59 

CKSUM OP5A 

OUT K, R OP5B Ther 
desc 

IJX 0P5C JR6C 
DECW 
JMAS 

IJY OP5D JR6C 
DECW 
JMAS 

Macro Coding 

Test pulse 

Check sum 

There is insufficient information to 
describe this I/O command. 

R20 (R19KSKIP 

p20 

R21 (R19)+SKIP 
R?1 

SKIP = Offset required to skip past macro coding. 

8.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic MIS Mnemonic Description 

WAIT  d IN50 Wait for interrupt 

RESET IN51 Reset 
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SECTION 9 

MICROPROCESSOR 6 - MECA-43 

9.1 INTRODUCTION 

The MECA-43 is a word-oriented processor (16 bits) with 16 general 
registers and six addressing modes.    It processes negative numbers 
by two's complement aritimetic and has a 32 or 48 bit floating point. 
The MECA-43 employs  16 vectored interrupts that are maskable and ex- 
pandable.     I/O control   in the MECA-43 is direct. 

9.2 PROGRAMMING MODEL 

Registers Desi gnation (MIS) 

Processors 1 Processor 2 Processor 1 Processor 2 

Accumulator (A) Accumulator (A) R0 R8 
Quotient (B) Quotient (B) Rl Rg 
MR 

Base/Return (BR) 

MR 

Base/Return (BR) 

R2 
R3 

R10 
Rll 

MSP 

X 

Y 

Z 

Program Counter 

MSP 

X 

Y 

Z 

R4 
R5 
R6 
R7 
R16 

R12 
R13 
R14 
R15 

Processor Status Word (PSW) R17 
Interrupt Mask (IM) R18 
Alternate Program Counter R19 
Extension Register R28 R29 

INTERRUPT STRUCTURE 9.3 

The MECA-43 employs 15 vectored interrupts that are maskable and ex- 
pandable. 

9.4 EXAMPLES OF ADDRESSING MODES 

a. Common 

LDA MOVW M,  R0/R8 

b. Di rect 

LDA MOVW M@fVRll 

c. Indirect 

LDA MOVW (M@R3/R11) 
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Immediate 

LDA MOVW 

Program Counter Relative 

LDA MOVW 

Index Register Relative 

LDA MOVW 

LAXi* MOVW 

#1, R0/R8 

(R16)+0ff,  R0/R8 

(R5/R13)+0ff,  R0/R8 

(Ri+4/
R12+i

)+0ff'  R0/R8 

i  = 1,  2,  3 

9.5 TRANSLATION INTO MIS 

The instruction set of the MECA-43 is listed in Table 9.5.2 along with 
the associated MIS translations. The operands utilized by the MECA-43 
are specified according to Table 9.5.1. 

TABLE 9.5.1 

KEY TO OPERAND(S)   (OP) 

Op 1 

Op 2 

Op 3 

Op 4 

Op 5 

Op 6 

Op 7 

Op 8 

Op 9 

Op 10 

Common 
Indirect 
Direct 
Immediate 
(P)  Relative 
(X) Relative 

Inter-register 

Immediate 

Direct 

Common 

Immediate 
(X)  Relative 

Common 
Indirect 
Di rect 
(P)  Relative 
(X)  Relative 

Indirect 

P-relative 

(X)  Relative 
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Mnemonic 

Data Transfer 

Operand(s) MIS Mnemonic Operand 1 Operand 2 

(A) 

LDA Op 1 MOVW S R0/R8 
LAXi Op 2 MOVW R R0/R8 
LAFB Op 2 MOVW Rl R0/R8 
LABR Op 2 MOVW R3 R0/R8 
IBAR Op 3 MOVE #1 R0/R8 
EXBA Op 2 XCRB RQ/R8 UR0/UR8 

STA Op 1 MOVW Ro D 

Data Transfer (B) 

LDB Op 1 MOVW s VRg 
LBFA Op 2 MOVW Ro VRg 
IBBR Op 3 MOVE #1 IVRg 
EXBB Op 2 XCRB VR9 utyuRg 
STB Op 1 MOVW VRg D 

Data Transfer (X) 
LXD Op 4 MOVW M R5 
LXI Op 3 MOVW #1 R5 
LXiA Op 2 MOVW Ri+4 R0 
SXC Op 5 MOVW R5 M 

SXD Op 4 MOVW R5 M 

Data Transfer (BR) 

LBRD Op 4 MOVW M R3 
LBRI Op 3 MOVW #1 R3 
LBRA Op 2 MOVW R0 R3 
IBBA Op 3 MOVB #1 R3 
SBRC Op 5 MOVW R3 M 

SBRD Op 4 MOVW R3 M 

Add (A) 

ADD Op 1 ADCW s R0/R8 
ADBA Op 2 ADCW Rl R0/R8 
AXiA Op 2 ADCW Ri+4 

R0/R8 
Add (B) 

ADB 

ADAB 

Op 1 

Op 2 

ADCW 

ADCW 
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Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

Add (X) 

AXD Op 4 ADCW M R5 
AXI Op 6 ADCW #1 R5 

Add (BR) 

ABRD Op 4 ADCW M R3 
ABRI Op 3 ADCW #1 R3 

Subtract (A) 

SUB Op 1 SBCW R0/R8 S 

RSA Op 1 OP60 

SBFA Op 2 SBCW ¥*8 VRg 
Subtract (B) 

SBB Op 1 SBCW VR9 s 
Multiply/Divide 

MPY Op 1 MPYW S R0/R8 
DIV Op 1 DIVW S R0/R8 

Loqical (A) 

AND Op 1 ANRW S R0/R8 
LDR Op 1 ORRW S R0/R8 
XDR Op 1 EXRW s RQ/RQ 

Shift (A) 

SARn Op 6 SRnW RQ/R8 A 

SALn Op 6 SLnW R0/R8 
Shift (B) 

SBR Op 6 SRnW R-j/Rg A 

SBL Op 6 SLnW VR9 
Shift (A) and (B) 

SDR Op 6 SR1D R0/R8 A 
SDL Op 6 SLID Rg/Rg 

NRM Op 6 OP61 

Transfer Uncondi- 
tional 

TRA 

TRS 

TTR 

Op 1 

Op 7 

Op 8 

JMAS 

JLAS 

RTAS 

163 

(R3) + 

-(R3) 

^ 
ASSOCIATES. IMC 



Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

Transfer (A) 

TRZ Op 1 JR2S R0/R8 P 

TRN Op 1 JR3S R0/R8 P 
Transfer (X) 

TXI 

TXP 

Op 1 

Op 9 

JRBC 

JRBC 
-Ri+4 

-Ri+4 

(W 
(R16)+Off 

Transfer (BR) 

TBRI Op 8 JRBC -R3 (R3) 

TBRP Op 9 JRBC -R3 (R16)+Off 

Skip 

SMP Op 1 CMPW S R0 
DS0 Op 6 JR2S MP 

(R16)+0ff 

DS1 Op 6 JR2C MP (R16)+0ff 

Input/Output 
f 

INA Op 6 MOVW MP 
R0/R8 

INB Op 6 MOVW MP R^Rg 

OTA 

OTB 

Op 6 

Op 6 

MOVW 

MOVW 

RQ/RQ 

VR9 
MP 
MP 

Double Precision 

DAD Op 1 ADCD s R0/R8 

DSU Op 1 SBCD VR8 S 

DLD Op 1 MOVD M R 

DST Op 1 MOVD R M 

DML Op 1 MPYD S R0/R8 
DDV Op 1 DIVD S R0/R8 

Floatinq Point 

FLD Op 10 0P52 

FXD Op 10 0P63 

FAD Op 1 0P64 

FSD Op 1 0P65 

FMD Op 1 0P66 

FDO OP 1 0P67 

FLS Op 10 0P68 

FXS Op 10 0P69 
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Mnemonic   Operand(s) MIS Mnemonic Operand 1 Operand 2 

FAS 

FSS 

FMS 

FDS 

Op 1 

Op 1 

Op 1 

Op 1 

9.6 OP CLASS INSTRUCTIONS 

Mnemonic   MIS Mnemonic 

RSA        OP6!3 

NRM 

FLD 

FXD 

FAD 

FSD 

FMD 

FDD 

FLS 

FXS 

FAS 

FSS 

FMS 

FDS 

0P61 

0P62 

.0P63 

0P64 

OP65 

0P66 

0P67 

0P68 

0P69 

0P6A 

OP6B 

0P6C 

0P6D 

0P6A 

0P6B 

0P6C 

0P6D 

MOVW 
SBCW 
MOVW 

Macro Coding 

S, 1 
20 
20 

R20 

ft 
See MECA manual Section 3.6. 

Fix to float conversion. See MECA 
manual Section 3.7.3. 

Fix to float conversion. See MECA 
manual Section 3.7.1. 

Floating point add, double precision. 
See MECA manual Section 3.7.5. 

Floating point subtract, double pre- 
cision. See MECA manual Section 3.7.7. 

Floating point multiply, double pre- 
cision. See MECA manual Section 3.7.9. 

Floating point divide, double precision, 
See MECA manual Section 3.7.11. 

Fix to float conversion. See MECA 
manual Section 3.7.4. 

Fix to float conversion. See MECA 
manual section 3.7.2. 

Floating point add, single precision. 
See MECA manual Section 3.7.6. 

Floating point subtract, single pre- 
cision. See MECA manual Section 3.7.8. 

Floating point multiply, single pre- 
cision. See MECA manual Section 3.7.10, 

Floating point divide, single precision. 
See MECA manual Section 3.7.12. 

9.7 IN/RI CLASS INSTRUCTIONS 

The MECA-43 does not contain any IN/RI instructions. 
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9.8 FINAL NOTE 

As seen from Section 9.2, the MECA contains two sets of general 
purpose registers. One set (designated Processor 1) is assigned 
to the Executive Processor, intended for general processing, where- 
as the second set (designated Processor 2) is assigned to the I/O 
Processor. Since the MECA-43 is described as 2 processors, a sec- 
ond PC (R,Q - Alternate Program Counter) was included. It is possible 
that a second PSW may be required to facilitate correct switch-back 
to the alternate processor. 
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SECTION 10 

MICROPROCESSOR 7 - SYMGEN 

10.1 INTRODUCTION 

The SYMGEN (Symbol Generator) microprocessor is a 16 bit machine 
with 16 general purpose registers. It processes negative numbers 
via two's complement arithmetic. The SYMGEN has a vectored interrupt 
structure with two high priority non-maskable interrupts and four 
maskable interrupts. I/O control in the SYMGEN is of the direct type. 

10.2 PROGRAMMING MODEL 

Registers Designation  (MIS) 

Rx, x = 0, 1, 2, ...15 R0-R15 

Ry, y = 0, 1, 2, ...15 R0-R15 

Program Counter R 

Processor Status Word R 

Zero bit 2 
Negative bit F 
k. bit 7 

Interrupt Register R 

Stack Pointer R N19 
General Purpose Register R 

External Status Register R 
28 

10.3 INTERRUPT STRUCTURE 

The SYMGEN employs a vectored interrupt system with two high-priority 
non-maskable interrupts and four maskable interrupts. 

10.4 EXAMPLES OF ADDRESSING MODES 

a. Register 

Ry = Rx MOVW Rx, Ry 
b. Storage Reference 

RXB = C MOVE #I} R 

Rx = C MOVW S, RX
X 

c. Indirect Via Registers 

LDI  Ry 0 Rx MOVW (Rx), Ry 
d. Indirect Via Registers, Pre-increment 

LDI  R
y ? Rx + 1       MOVW +(Rx), Ry 
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Offset, Indirect Via Register 

RLD 

INDIRECT 

LDI 

Rv 0 Displacement  MOVW 
A 

Indexed Absolute 

LDD  R (3 R 
y  x 

Conditional 

MOVW 

+ Address  MOVW 

JMP  Address 

JSR  Address 

JPR  R 
x 

JPR  Rv + 1 

JIF  Rx, Neg Address 

JAD  R , Address 

JAD  R , R 
y  x 

DJSR Address 

DJSR R , Address 
A 

IF R .GE. 
A 

R SKIP 

JMAS 

JLAS 

JMAS 

JMAS 

JRFS 

JR7S 

JR7S 

JLAS 

JLAS 

OP7B 

(R16+Off), Rx 

(Rx), Ry 

MOR , R 
x' y 

Ro'P 

(Rx) 
+(RX) 

Rx,
X(R16)+Off 

Rx-'P 

R -, (R ) 
y   x' 

R0, P 

Rx'P 

10.5 TRANSLATION INTO MIS 

Mnemonic 

Register to 
Register 

R = R 
y  x 

Ry = RxF 

R = R + R 
y   x   y 
R = R - R 
y  y  x 
R = R - R 
y   x   y 
Ry = Rx AND Ry 

Ry = Rx 0R Ry 
Ry = Rx XOR Ry 

R = R * R 
y   x   y 
R,, R = R\R 
V  x   v\ x 

TABLE 10.5.1 

TRANSLATION INTO MIS - 

Operand(s)   MIS Mnemonic 

SYMGEN 

Operand 1 

MOVW 

OP70 

0P71 

ADMW 

SBNW 

0P72 

ANRW 

ORRW 

EXRW 

MPYW 

0P73 
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Mnemonic   Operand(s)   MIS Mnemonic   Operand 1    Operand 2 

R , R = R\\R 0P74 
y  x  yx-x x 
R = -- Rx OP75 

Ry = Ry ++ Rx ADHD       Rx Ry 

Ry = Ry - Rx SBND       Ry Rx 

Q = Rx MOVW       Rx R30 

Ry = Q MOVW       R30        Ry 

Register Operate 

EXEC Rx XEQW Rx 
RX(N) = 1 SETb Rx 
RX(N) - 0 RESb Rx 

Register Shift 

SHL R , COUNT SLnW Rx 
SHR Rx, COUNT SRnW Rx L 

SHR Rx, COUNT, MSB SRnW Rx A 

RTL Rx, COUNT RLnW Rx N 

RTR Rx, COUNT RRnW Rx N 

DSHL Rx, COUNT SLnD Rx 
DSHR Rx, COUNT SRnD Rx L 

DSHR Rx, COUNT, MSB SRnD Rx A 

Storage Reference 

R = C MOVW       S R 

R = Rx + C 0P76 

R = Rx AND C OP77 

R = R OR C 0P78 
y  x 
LDD Rx @ C MOVW 

STD R 0 C MOVW 
x 

LDD R OR + C MOVW 
y  x 

STD R 0 Rx + C MOVW 

LDI R @ R MOVW 

STI R @ R MOVW 

RVB = C MOVB 

RXB = Rx + C ADNB 

R B = Rv - C SBND 
A A 

RLD R 0 DISPLACEMENT MOVW 

RST Rv 0 DISPLACEMENT MOVW 
A 
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S 

M@RV X Ry 
Ry 

M(aRY 
A 

(V Ry 
Rx (^ 

#1 Rx 
#1 Rx 
Rx #1 

(RI6 
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Mnemonic   Operand(s) 

LDI R 0 R +1 
y  x 

Ry = Rx " c 

Stack Operations 

PUSF 1 

PUSh 1 R @ R 
x  y 

STT R (3 R + 1 
X y 

POP Ry 
POP R @ R 

y X 
Sto raqe To Storaqe 

DJSR R , ADDRESS 
x 

DJSR ADDRESS 

DJSR 

JPR Rx 

JPR R +1 
x 

Conditional 
Transfers 
JIF R , NEG ADDRESS 

JAD R , ADDRESS 

JAD Ry, Rx 

IF R . GE. R SKIP 
x    y 

IF Rx. LT. R SKIP 

IF Rx. EQ. R SKIP 

IF R . NE. R SKIP 
x    y 

IF R , POS SKIP 

MIS Mnemonic Operand 1 Operand 2 

MOVW 

0P79 

+(V R 
y 

MOVW 

MOVW 

MOVW 

Rx 
Rx 
Rx 

+(R19) 

+(Ry) 

+(Ry) 

Ry 
Ry 

MOVW 

MOVW 

(R19)- 

(Rx)- 

MTRAN Q WORDS OP7A 

FROM R TO R 
x   y 

Unconditional 
Transfers 

JMP ADDRESS 

JSR ADDRESS 

JSR ADDRESS 

RETURN 

RETURN R 

I RET 

I RET R 
x 

JUMP ADDRESS 

JMAS P 
JLAS Ro (R16)+Off 

JLAS R0 M 

RTAS (R19)- 

RTAS 
(Rx)- 

RI70 

RI71 

JMAS P 

JLAS R0 P 

JLAS 

JMAS 

Rx 

(Rx) 

P 

JMAS +(RX) 

JRFS 

JR7S 

Rx 
Rx- 

(R16)+0ff 

(R16)+0ff 

JM7S Ry- (Rx) 
OP7B 

«/ 

OP7C 

OP7D 

OP7E 

JRFC Rx 
(R16)+SKI 
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Mnemonic   Operand(s) 

IF R . EQ. 0 SKIP 

IF R IE. 0 SKIP 

IF R (N). EQ. 1 SKIP 

IF R (N). EQ. 0 SKIP 

IF ST(N), TRUE SKIP 

IF ST(N), FALSE SKIP 

I/O Operations 

IN Rx, DV - ADDR 

OUT Rx, DV - ADDR 

MASK R 
x 

CALL DEBUGGER 

MIS Mnemonic Operand 1 Operand 2 

JR2C Rx (R16)+SKIP 

JR2S Rx (R16)+SKIP 

OP7F 

OPA0 

OPA1 

OPA2 

MOVW HP 
Rx 

MOVW Rx Mp 
MOVW Rx R18 
IN70 

SKIP = Offset required to cause next command to be skipped. 

TO.6 OP CLASS INSTRUCTIONS 

Mnemonic 

•R. y 

R F 
x 

R - R 
x  y 

R , R R R 
y > 

MIS Mnemonic Macro Coding 

OP70 MOVW 
COMW k 1> 

0P71 MOVW 
COMW 

R 
RvX > 

0P72 MOVW 
SBNW 
MOVW 

RX 
R21 R21 

R?1 
RZI 

0P73 This is a fractional divide. 
R is divided by R , then mul- 
tiplied by 2 . Tne quotient 
is loaded into R . 

R„, R y  x R.  R 0P74 This is double precision frac- 
tional divide. The numerator 
is the 32 bit quantity contained 
in R , Q. Rules of single pre- 
cision divide are followed. 

v- 
R = R + C 
y  x 

R AND C 
x 

0P75 MOVD 
COMD 

y 
?V 

0P76 MOVW 
ADNW sR* k 

0P77 MOVW 
ANRW 

R 
sx h ( ) ^\ 
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Mnemonic 

R = R OR C 
Y   x 

V Rx -c 

MTRAN Q WORDS 
FROM R TO R 

x  y 

IF R . GE. R SKIP 
x    y 

IF R . LT. R SKIP 
x    y 

IF R . EQ. R SKIP 
x  v  y 

IF Rx. NE. R SKIP 

IF R (N). EQ. 1 SKIP 
A 

IF Rv(N). EQ. 0 SKIP 
A 

IF ST(N), TRUE SKIP 

IF ST(N), FALSE SKIP 

MIS Mnemonic Ma cro Coding 

OP78 MOVW 
ORRW 

R 
Sx 

OP79 MOVW 
SBNW h ly 

OP7A    BLOCK, MOVW 
DECW 
JM2S 
JMAS 

(Rx)+ 

(Ij+SKIP 
BLOCK 

(RyH 

OP7B CMPW 
JM7S 

Rx 
(R16)+SKIP 

Ry 

OP7C CMPW 
JM7C 

Rx 
(R16)+SKIP 

Ry 

OP7D CMPW 
JM2C 

Rx 
{R16)+SKIP 

Ry 

OP7E CMPW 
JM2S 

Rx 
(R16)+SKIP 

Ry 

OP7F ANDW 
JM2C 

MASK 
(R16)+SKIP 

Rx 

OPA0 ANDW 
JM2S 

MASK 
(R16)+SKIP 

Rx 

OPA1 Test bit 
external 
equal  to 
instruct 
to 1, sk 

N of the 256 bits of 
status.    If bit N is 
0, execute the next 

ion.     If bit N is equal 
ip it. 

0PA2 

10.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic 

CALL DEBUGGER 

MIS Mnemonic 

IN70 

Test bit N of the 256 bits mon- 
itoring external status. If bit 
N is equal to 1, execute next in- 
struction.  If bit N is equal to 
0, skip it. 

Description 

Generates a software 
interrupt. 
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SECTION 11 

MICROPROCESSOR 8 - EADI 

11.1 INTRODUCTION 

Due to an extreme lack of documentation the major characteristics 
of the EADI microprocessor could only be surmised. One of its most 
apparent features is that it is closer in design to a custom bit- 
slice processor than a conventional microprocessor.  It appears that 
the EADI utilizes 12 bit data words whereas addresses are specified 
by 16 bit words. The EADI appears to have four addressing modes and 
a direct-type of I/O control. Its interrupt structure cannot be 
determined from the information presently available. 

11.2 PROGRAMMING MODEL 

Registers 

A Register 

B Register 

C Register 

Indirect Register 

Program Counter 

Processor Status Word 

Carry 
Equal 
Unconditional 
MSB 

Interrupt Register 

Stack Pointer 

Quotient Register 

11.3 INTERRUPT STRUCTURE 

The interrupt structure of the EADI can not be determined from the 
documentation presently available. 

11.4 EXAMPLES OF ADDRESSING MODES 

a. Direct 

STAR  RAM MOVT RQ, M 

b. Indirect 

STAI MOVT R0, (R3) 

Designat" on  (MIS) 

Ro 
Rl 
R2 

R3 
R16 
R17 
bit 0 
bit 2 
bit A 
bit C 

R18 
R19 
R30 
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c. Immediate 

MASKA MASK, PGM, T ANDT 

JM2C 

MASKA MASK, PGM, F ANDT 

JM2S 

d. Conditional 

FSKIP AEB CMPT 

JM2S 

FJSUB PGM, AEB CMPT 

JM2C 

MOVW 

MOVW 

JMAS 

#1, R0 

M 

#1, R0 

M 

V Ri 
(R16)+SKIP* 

(R16)+SKIP0 

R16'  R0 

** 

I/L***, 

M 
16 

11.5 TRANSLATION INTO MIS 

Table 11.5.2 presents a list of the instruction set of the EADI micro- 
processor. The operands utilized by the EADI system are listed in Table 
11.5.1. It should be noted that all instructions utilizing ALU operands 
are preceded by the macro-coding listed in Table 11.5.1. Thus the com- 
plete translation into the MIS consists of a macro code composed of the 
source instruction plus the appropriate preceding macro (****). 

TABLE 11.5.1 

ALU = ALU Code 

DEC 

NA 

NAND 

MAX 

NOR 

KEY TO OPERAND(S) (OP) 

MOVT 
DECT 
S = R4 

MOVT 
COMT 
S = R4 

MOVT 
ANRT 
COMT 
S = R4 

S = #FFF 

MOVT 
ORRT 
COMT 
S = R, 

174 

R, 

ASSOCIATES. IMC 



m 

MINUS 

PLUS 

EXOR 

BR 

OR"*" 

LEFT 

ZERO 

AN DAB 

INCA 

AR 

MOVT 
COMT 
S = R4 

MOVT 
SBNT 
S = R4 

MOVT 
ADNT 
S = R4 

MOVT 
EXRT 
S = R4 

S = R, 

MOVT 
ORRT 

MOVT 
SLIT 
S = R4 

s = mm 
MOVT 
ANRT 
S = R4 

MOVT 
INCT 
S = R4 

S = R„ 

r 

>. 

DEV = Device Code 

STAT 
CIN 
MUX4 
MUX12 
TROM 

CC1 = Cond Code 1 

U 
Carry 
Equ 
MSB 

■fS = FL 

Status Bus 
C Register 
Bit 0 to 3 of MUX Bus 
Bit 4 to 15 of MUX Bus 
Trigonometric ROM 

Unconditional, b = A 
Carry Flag, b = 0 
Equal Flag, b = 2 
MSB of A Register, b 
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CC2 = Cond Code 2 

U Unconditional, b = A 
Carry Carry Flag, b = 0 
Equ Equal Flag, b = 2 

RAM = RAM Address 

PGM = Program Address 

TABLE 11.5.2 

TRANSLATION INTO MIS - • EADI 

Mnemonic Operand(s) MIS Mnemonic Operand 1 

RAM Reference 
Instructions 

STAR RAM MOVT R0 
STAI MOVT R0 
STBR RAM MOVT Rl 
STB I MOVT Rl 
SAVE RAM OP80 

CLR RAM CLRT M 
CLRI CLRT (R3) 

PRE RAM MOVT #FFF 

PREI MOVT #FFF 

ST ALU **** ST ALU 

STI ALU 

LDAR RAM 
LDAI 

LDBR RAM 
LDBI 

I/O Instruct ions 

OUT ALU, DEV 

OUTL ALU, DEV 

Operand 2 

M 

(R3) 
M 

(R3) 

(R3) 

MOVT S M 

MOVT S (R3) 

MOVT M R0 
MOVT (R3) R 

MOVT M R-, 

MOVT (R3) R1 

MOVT       S 

MOVT       S 
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Mnemonic Operand(s) MIS Mnemonic Operand 1 Operand 2 

OUTA 

OUTB 

IN 

DEV 

DEV 

DEV 

MOVT 

MOVT 

MOVT 

Rl 

MP 
HP 
Ri 

Branch Instruc- 
1 

tions 

JSUB PGM, U 0P81 

JSUB PGM, CARRY 0P82 

JSUB PGM, EQU 0P83 

JSUB PGM, MSB 0P84 

STOP U IN80 

STOP CARRY IN81 

STOP EQU IN82 

STOP MSB IN83 

JUMP PGM, CC1 JMbs p 
JUMP 

 ***** 
PGM, CC1 JRCS R0 M 

JOC ALU, CC1 **** 

JOC 
***** 

ALU, CC1 

JMbs 
**** 

(s) 

JTP 
***** 

CC1 

JRCS 

JRCS 

R0 
R0 

(S) 

(R0) 
SKIP 

SKIP 

CC1 
***** 

CC1 

JMbs 

JRCS 

(R16)+0ff 

R0 (R16)+Off 

RTN RAM, CC2 JMbs (M) 
FJUMP PGM, AEB 0P85 

FJUMP PGM, AEZ 0P86 

FJUMP PGM, BEZ 0P87 

FJUMP PGM, AEN 0P88 

FJUMP PGM, BEN 0P89 

FJSUB PGM, AEB 0P8A 

FJSUB PGM, AEZ 0P8B 

FJSUB PGM, BEZ 0P8C 

FJSUB PGM, AEN 0P8D 

FJSUB PGM, BEN 0P8E 

JTP CC1 JMbs (Rn) 
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Mnemonic Operand(s) MIS Mnemo nic Operand 1 Operand 2 

FSKIP AEB 0P8F 

FSKIP AEZ OPB0 

FSKIP BEZ 0PB1 

FSKIP AEN OPB2 

FSKIP BEN 0PB3 

MASKA MASK 0PB4, 5 

MAS KB MASK 0PB6, 7 

Arithmetic Loqic 
Unit 

DESTA ALU **** 

MOVT S R0 
DESTB ALU **** 

w 

MOVT s Rl 
DESTC ALU **** 

MOVT s R2 
SETA Const MOVT #1 R0 
SETB Const MOVT #1 Rl 
SRT 0PB8 

1 

SLFT 0PB9 

SFLAG ALU 

SL0T so 

SKIP = Offset required to cause the next instruction to be skipped. 

SKIPO = Offset required to cause a jump out of the macro code. 

I/L = Because of insufficient documentation it was not possible to de- 
termine exactly how a jump to subroutine is accomplished. Accord- 
ing to the available documentation the content of the program 
counter (Rig) is saved in RQ. I/L is then transferred to R-|5. 
Unfortunately the meaning of I/L is not known, so it could not be 
translated into an MIS operand. 

= EADI commands utilizing ALU operands must be preceded by the appro- 
priate macro listed under ALU = ALU Code in Table 11.5.1. 

*****= The case where CC1 = MSB. 
++ 

= MOVW 
MOVW 
JMAS 

R 
}t 

R 
(0 
16 
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11.6 OP CLASS INSTRUCTIONS 

emoiric Operand(s) MIS Mnemonic Mac ro Coding 
SAVE RAM OP80 MOVT 

INCT >       M 

JSUB PGM, U 0P81 MOVW 
MOVW 
JMAS 

R-ic R 
l/l***        R 
M 

JSUB PGM, CARRY 0P82 JMOC 
++ 

(R16)+SKIPO 

JSUB PGM, EQU 0P83 JM2C 
++ 

(R16)+SKIP0 

JSUB PGM, MSB 0P84' JRCC 
++ 

Ro    (' 

FJUMP PGM, AEB 0P85 CMPT 
JM2S 

R       R 
MU 

FJUMP PGM, AEZ 0P86 JR2S R0      M 

FJUMP PGM, BEZ 0P87 JR2S R1      M 

FJUMP PGM, AEN 0P88 CMPT 
JM2S 

#FFF    R 
M 

FJUMP PGM, BEN 0P89 CMPT 
JM2S 

#FFF R 
M 

FJSUB PGM, AEB 0P8A CMPT 
JM2C 
MOVW 
MOVW 
JMAS 

Ro    R 
(Rlf-)+SKIPO 
RKT   R 
I/L     R 
M 

FJSUB PGM, AEZ 0P8B JR2C 
MOVW 
MOVW 
JMAS 

Rn        ( 
RTe    R, 
I/L R 
M 

FJSUB PGM, BEZ 0P8C JR2C 
MOVW 
MOVW 
JMAS 

Rn         ( 

Re   R 
I/L     R 
M 

16 

(R16)+SKIP0 

16 

(R16)+SKIP0 

16 

(R16)+SKIP0 

16 
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Mnemonic Operand(s) MIS Mnemonic      Macro Cod ing 

FJSUB PGM, AEN 0P8D CMPT 
JM2S 
MOVW 
MOVW 
JMAS 

#FFF 

R16 
I/L 
M 

R0 
)+SKIPO 

R0 R16 

FJSUB PGM, BEN 0P8E CMPT 
JM2S 
MOVW 
MOVW 
JMAS 

#FFF 

(R16 

M 

Rl )+SKipnl 

R0 R16 

FSKIP AEB 0P8F CMPT 
JM2S 

RO 

(R16 

R1 
)+SKIP ' 

FSKIP AEZ OPB0 JR2S R0 (R16)+SKIP 

FSKIP BEZ OPB1 JR2S Rl (R16)+SKIP 

FSKIP AEN OPB2 CMPT 
JM2S 

#FFF 

(R16 

Rn 
)+SKIP u 

FSKIP BEN OPB3 CMPT 
JM2S 

#FFF 

(R16 

Ri 
)+SKIP ' 

MASKA MASK, PGM, T 0PB4 ANDT 
JM2C 

#1 
M 

R0 

MASKA MASK, PGM, F OPB5 ANDT 
JM2S 

#1 
M 

R0 

MAS KB MASK, PGM, T 0PB6 

i 

ANDT 
JM2C 

#1 
M 

Rl 

MAS KB MASK, PGM, F 0PB7 ANDT 
JM2S 

#1 
M 

Rl 

SRT 0PB8 SRIT 
SRIT R0 R2 

L 
L 

SLFT 0PB9 SLIT 
SLIT R0 R2 

11.7 IN/RI CLASS INSTRUCTIONS 

Mnemonic Operand( s) MIS Mnemonic Description 

STOP U IM85 Unconditional stop 

STOP CARRY IN86 Conditional stop 

STOP EQU IN87 Conditional stop 

STOP MSB 
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APPENDIX D 

REPORT OF A TASK STUDY 
ON 

SOFTWARE DEVELOPMENT AIDES 
IN 

U. S. ARMY ADVANCED ATTACK HELICOPTER (AAH) FIRE CONTROL SYSTEMS 

1.  INTRODUCTION 

This study of software development aides was conducted 
in the context of the Advanced Attack Helicopter (AAH) Fire 
Control System and as required by the scope of work of the sub- 
ject contract.  Presently the fire control system is designed 
using fourteen embedded microprocessors of nine different 
types.  The large number of computer types and computing lan- 
guages make future maintenance very difficult and expensive. 
The U.S. Army is considering replacement of these embedded 
microprocessors by a single microprocessor, henceforth referred 
to as the common-microprocessor.  The evolution from the origi- 
nal microprocessors to the common-microprocessor is envisaged 
as proceeding in three phases.  In the first phase the replace- 
ment standard-microprocessor will be equipped with micropro- 
grams of the respective original microprocessors and will be 
capable of emulating the programs in the original micropro- 
cessors.  In the second phase the assembly language programs of 
the original microprocessors will be translated automatically 
into the assembly language of the standard-microprocessor. 
This will enable maintenance of the programs, originally 
created in multiplicity of assembly languages, using uniform 
assembly language of the standard microprocessor.  The mainte- 
nance of these programs will thereby require far less 
expertise and would be less costly.  Finally, the third phase 
will be oriented to future development of new or replacement 
programs.  The software development would be further simplified 
and less costly by availability of a High Level Language 
compiler for the common-microprocessor, in which the new pro- 
grams will be composed.  This study is concerned with software 
development aides such as the High Level Language compiler as 
well as an assembler, debugger, simulater and link editor, 
which will all be valuable in development of future programs. 
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These software development aides will have to be 
endowed with certain capabilities which are above and beyond 
those required in general for computer program development. 
These special capabilities originate from the real time and 
efficiency requirements of the fire control system.  In 
particular, the compiler for the High Level Language would be 
required to produce highly optimized code which provides faster 
execution time and reduced memory requirements.  Also, a simu- 
lator would be very helpful to allow development and debugging 
of programs on a larger computer system, thereby speeding the 
program development process.  The assembler and link editor 
are assumed not to pose any special problems and are not dis- 
cussed here further. 

The remainder of this appendix is devoted to discus- 
sions of two areas: 

1) Selection of a High Level Language 

2) Optimizer characteristics of the computer 

The technique for selection of a High Level Language 
and for construction of an optimizing compiler represent known 
state of the art.  Therefore, the respective development does 
not appear to represent significant risks.  Generally, five 
man-years of effort over one and one half years would be 
required. 

2.  SELECTION OF A HIGH LEVEL LANGUAGE 

Probably the foremost requirement of a High Level 
Language is that it be widely used.  Thereby there would be a 
large community of individuals proficient in the language who 
would not require specialized training to be able to maintain 
or compose programs.  The language therefore should also be 
recognized as a standard by the American National Standards 
Institute or by the Department of Defense.  A second require- 
ment concerns the availability of facilities in the language 
that will make programming easier and less costly.  However, due 
to the rapid changes in computer languages it is rather diffi- 
cult to establish a clear advantage of one language over 
another in this latter respect.  For example, FORTRAN is the 
oldest established High Level Language, however, the new 19 77 
standard of FORTRAN includes many facilities which make it 
competitive with the more recently introduced languages. 
PASCAL is a newly introduced language which recently has found 
particular favor in use for microprocessors.  PASCAL is cur- 
rently going through the process of standardization and there 
are several versions for this language with increasing 
capabilities.  ADA is a recently proposed programming language 
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intended as a standard for the Department of Defense, for which 
there has not been a compiler so far.  This dynamic situation 
with the most important High Level Language would make it 
difficult to select a High Level Language.  However, any of the 
above would be adequate. 

There are a number of other considerations which may be 
necessary to take into account in evaluating and selection of 
High Level Languages.  Some of these are listed below. 

1) Correcting programs by default:  The underlying 
philosophy in some languages is that if a user omits certain 
information in statements the compiler then introduces default 
values to complete the program statements.  In other languages, 
this is being objected to on the ground that the formalism of 
the semantics of the program is thereby undermined.  An example, 
of these opposing approaches are FORTRAN, where data types are 
assumed if not specified by the user, and PASCAL where data types 
must be specified or otherv/ise an error message is issued. 

2) Memmory allocation:  In some languages, the amount of 
memory required for data is determined in the program statements 
themselves.  An example of this type of language is FORTRAN 
where the amount of memory allocated to data is fixed at the 
time of the compilation of the program.  In other languages, 
the amount of memory needed may be determined at run time and 
acquisition or release of memory space can be performed dynami- 
cally at run time.  Certain versions of PASCAL and in the future 
ADA are examples of the latter philosophy. 

3) Size of compiler:  Generally the more powerful the 
language the larger would be the compiler.  If it is required 
to run the compiler on the same microprocessor that is used for 
the application then it will be very important that the compiler 
would be simple and have limited memory space requirements. 
For instance, FORTRAN 77 is a very large compiler and may there- 
fore be too large.  By comparison PASCAL compilers have been 
much smaller, which has made PASCAL such a favorite for program- 
ming microprocessors. 

4) Dependence on operating system features:  Some 
programming languages depend on a certain commands that are 
performed by an operating system and also require incorporating 
in the program routines which support the various statements. 
This would necessarily increase the memory requirements of the 
programs generated by such a compiler.  Again, PASCAL is an 
example where the programs generated could be independent of 
functions of operating systems or of libraries of routines that 
must be incorporated in the program. 
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5) Special programming features:  There is a variety of 
other features which are important in facilitating the program- 
ming process in some applications.  Several such features are 
listed below. 

Data S 
FORTRAN 7 7 and 
tions are aval 
PASCAL allows 
capability is 
languages have 
acter strings 
FORTRAN 77 and 
very important 
ent file organ 
FORTRAN 7 7 and 

tructure declarations are available both in 
in PASCAL.  As noted, the data type specifica- 

lable in PASCAL but not in FORTRAN.  Additionally, 
user specifications of data types.  Recursive 
available in PASCAL but not in FORTRAN.  Some 
very powerful capability for manipulating char- 

and for structured programming constructs.  Both 
PASCAL possess these features.  Finally it is 
to be able to accommodate the variety of differ- 

izations of input-output data.  Again both 
PASCAL include such facilities. 

3.  COMPILER OPTIMIZATION 

In addition to the normal compilation, it will be 
necessary to include in the compiler optimization processes 
that will reduce program memory and execution time require- 
ments.  Optimization techniques can basically be divided into 
two types.  First, where the source program statements provided 
by the user are modified with the objective of optimizing the 
program.  Second, optimal instruction sequences are selected to 
represent the various constructs in the High Level Language to 
assure efficient utilization of instructions and registers in 
the object machine. 

Modifying the source code: 
process include the following: 

The techniques used in this 

1) The order of the statement in the program may be 
modified to make the program more efficient:  For example, a 
computation statement in an iteration loop which is independent 
on the iteration parameter can be moved out of the loop and 
placed ahead of it.  Also scope of certain iteration loops may 
be optimized by merging wherever possible loops with the same 
iteration parameters. 

2) Modifying individual statements to reduce necessary 
computation:  For instance, this involves recognizing common 
sub-expressions in a statement and modifying the statement so 
that the sub-expression is computed only once.  Commutativity of 
operators can be utilized to reduce the number of operations. 
Operations which can be done during compile time could be elimi- 
nated altogether.  Sometimes., it may be effective to replace a 
multiplication with additions, and division with subtractions. 
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3) Consolidation and deletion of statement: This would 
include removing any code which is not referred.  If a proce- 
dure or a function is called only once then the call for the 
procedure or function may be eliminated. 

4) Minimizing the data storage requirements:  This 
includes determining which variables do not require space simul- 
taneously and therefore can share memory space. 

The gereration of an e 
represent High Level Language 
optimization techniques.  The 
ate high level code which take 
architecture and then to gener 
machine.  Storage savings can 
registers wherever possible, 
further may be utilized.  For 
important in computing express 
techniques is very similar to 
where the process of translati 
described.  Therefore, the opt 
described here in further deta 

fficient machine code to 
includes some global and local 
approach used is first to gener- 
s advantage of the target machine 
ate machine code for the object 
be achieved by allocating working 
Special computer architecture 
instance, stuck operations are 
ions.  This class of optimization 
those described in Appendix B 
on of assembly language code was 
imization techniques are not 
il. 
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