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EXECUTIVE SUMMARY

Introduction (Section I)

The Economic/Trade-off Analysis presented in this report
was prepared by R. J. Brachman Associates, Inc., in accordance
with the Scope of Work (SOW) Contract DAAK10-79-C-0329. The SOW
required the design concept of a common microprocessor and the
development concept for a common language and software system to
reduce the large number of different MP's and assembly languages
present in the AAH Fire Control System. The purpose of the study
is to reduce the anticipated very high software maintenance cost
expected when the AAH is fielded.

The totality of coverage of the many regulations relating
to management of computer resources in military systems causes
unintended confusion when applied to microprocessors. The micro-
processor is usually employed in a dedicated role, "deeply
embedded, " physically integrated with other circuitry, and uses
applications software with less than 32 K lines of code. It is
suggested that the term "Integral Processor" be used with appro-
priate definitions and boundry conditions to provide clear
guidance to Development, Test and Procurement Personnel.

Data Base (GFM) (Section II)

The GFM data base was limited due to the complexities
of the Advanced Attack Helicopter Contract and the competition
sensitive nature of many subcontracts. The subsystems are identi-
fied by letter. The data base used in this study was derived
from Reports 79-104 (10) and 79-105 (5) by R. J. Brachman
Associates, Inc. These reports compile available hardware and
software data derived from questionnaires, direct contact with
Prime and subcontractors and commercial sources. The AAH Fire
Control System is composed of seventeen different microprocessors
implemented in ten different hardware configurations and twelve
different languages are used to write the application software.
A new microprocessor, the Z-80 was recently added to subsystem
K which also contains a 16 bit microprocessor using four 2901A
4 bit devices. The total application software is in excess of
150,000 lines of code.

ii

ASSOCIATES, INC.



Technical Approach (Section III)

The present multiple processors and their associated
languages were used as the base for comparison of three basic
approaches to achieving commonality of hardware and/or software.
The three areas explored in this Economic/Trade-off analysis are:

1. Common hardware based upon full emulation of all the
instruction sets. This would not affect any of the currently
developed software. The detailed discussion of the emulator
design is in Appendix A.

2. Common software based upon a common assembly language
using a Master Instruction Set, (MIS) described in Appendix C and an
Automatic Program Translator described in Appendix B. The Auto-
matic Program Translator is self-documenting and would generate
object code for the currently developed MP hardware. This would
require 11 code generators. This would not affect any of the
current hardware designs.

3. Common hardware based upon microcoding the Master Instruc-
tion Set as the common language. The Automatic Program Translator
would be the same as 2 above except that only the code generators
would be required.

Hardware--A Common Microprocessor (Section IV)

The proposed common microprocessor is based upon the American
Micro Devices Am29116 single device microprogrammed microprocessor.
The detailed study is contained in Appendix A. A potential problem
involving PC board area and power dissipation may exist when
attempting to replace the 8 bit microprocessors with the 16 bit
Am29116. The recent disclosure that an 8 bit Z-80 MP was added
to one of the subsystems may represent the potential solution to
the 8 bit packaging problem. Thus, there would be two common
MP's, the Z-80 and the Am29116. The repackaging of the current
MP hardware designs can be easily handled using design tools such
as the Algorex Corporation Automated, Integrated Design and
Engineering--"AIDE" (9) system. This system will produce full
documentation for production as well as highlighting the design
changes, power dissipation MOP, signal tracing between PC boards
within the subsystem, logic loading analysis and original to
current data mapping as well as other documentation.

Software--A Common Language (Section V)

The proposed common language is based upon a Master In-
struction Set (Appendix C) which will permit direct translation

iii
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betwveen the current 11 assembly language and the MIS. This
enhances traceability and would reduce testing of modified soft-
ware using the MIS. Training, documentation and development
costs would be significantly reduced. The existing software
would be translated to tae MIS using the proposed Automatic
Translation of Programs from one computer to another (alternative
I). The Automatic Program Translator is also self-documenting.
A DoD High Level Languagz such as ADA could be used to develop
an optimizing compiler (Appendix D) which produces MIS as its
object code, then MIS wouald generate microprocessor object code.
This procedure actually provides more efficient machine language
code. (Figure 5).

Economic/Trade-off Analysis (Section VI)

This section consolidates the various cost data presented
in other sections. The Economic/Trade-off analysis is summarized
by a Matrix, Table I. The implementation of the proposed common
hardware/software system will also yield cost avoidance of $5M
to $9.5M the first year and between $1.7M to $3.4M the second
year after fielding of AAH. 1In addition, a cost avoidance of
approximately $2.6M could be achieved due to quantity purchases
of MP components during production and initial spares provision-
ing.

Summary and Recommendations (Section VII)

The proposed common hardware and software system for the
AAH Fire Control System is technically feasible and extremely
cost effective, even though the AAH has been in development for
over 3 years. The proposed program would be non-developmental
Product Improvement Program. It is therefore recommended that:

1. The Master Instruction Set be finalized as soon as
possible to include all microprocessors.

2. The Automatic Program Translator, System Alternative
I be initiated immediately.

3. Initiate the design and brass-boarding of the proposed
common MP which implements the MIS as soon as possible.

4, Expand the application of the proposed MP to all fire
control applications requiring a microprocessor.

iv
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SECTION I

INTRODUCTION

This report is prepared in accordance with the Scope of
Work under contract DAAK10-79-C-0329 entitled "An Economic
Analysis/Trade-Off Study of all Advanced Attack Helicopter (AAH)
System Microprocessors and Associated Devices. The SOW states
"this task is to make a detailed analysis/trade-off of all system
microprocessors and associated devices and their functions, their
physical characteristics, and packaging. A standard micropro-
cessor family will be designed within the system physical and

functional constraints. The extent of standardization achiev-
able will be determined.

A detailed analysis will be made of the existing soft-
ware, adequacy of documentation, special purpose tools, needed
for generation of applications software, language requirements,
and procedures will be developed for documentation preparation."

Work to be completed ninety (90) days after start of
contract.

The AAH has been in development for approximately three
Years. There are fourteen sub systems under consideration, each
having at least one microprocessor (MP). The microprocessors
represent seven different physical types of hardware, however
they also represent ten different programming languages. The
SOW thus represents a very formidable challenge. R. J. Brachman
Associates, Inc. project team was able to achieve the unique
results of a single common hardware design MP, a master instruction
set which will permit the software system to perform automatic
code conversion from the present twelve assembly languages to the
Master Instruction Set, an optimizing high level language compiler
and an automatic documentation generation system. In addition,
the recommended approach will be completely cost effective and
with early implementation could be phased into the AAH program
without affecting the fielding date of the system.

This report is organized as follows:

Purpose of the study.

This will be covered in the introduction and will dis-

cuss policy, proliferation of embedded computers, and
definitions.

1
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Data Base (GFM)

This will be discussed in detail in Section II.
Data Base will cover types and make of processor
hardware and software involved and the data avail-
able for performing the cost or economic/trade-off
analysis.

Technical approach

This will be covered in detail in Section III.
Basically the technical approach addresses
the three options available when attempting
to redesign portions of a given system.

These are a) redesign the hardware without
affecting the software, b) redesign the
software without affecting the hardware,

c) redesign both with minimal impact on

the overall system.

Hardware, design and packaging

This will be covered in detail in Section IV.
This section will cover the packaging of the
proposed common MP and the space available
based on the information provided by the

GFM and analysis of the performance of

the sub-system.

Software

This will be covered in detail in Section V.
This section will discuss software, how it
is handled in the military, how the industry
handles it, documentation and its value and
the approach proposed for implementation of
a common or standard high level language.

Economic/trade-off analysis

This will be covered in detail in Section VI.
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This section is the compilation of all the data
provided in the other sections and the cost of the
various approaches as compared to having the system
progress as currently designed.

Summary and recommendations

This will be covered in Section VII. The content
of this section is self-explanatory.

A. Purpose of the study

The Advanced Attack Helicopter is a major weapons system
having a Project Manager. The program is scheduled for both Army
and Department of Defense reviews entitled ASARC and DSARC.
During previous reviews it became known that the AAH contained a
large number of microprocessors. In addition to the different
hardware, a number of different languages are also involved.

This caused considerable concern especially in light of DoD poli-
cy. DoD policy directed toward reducing proliferation of
computer resources and reducing the high cost of computer software
(development and in particular maintenance) are well-defined.
Automatic Data Processing Regulation (ADPR) covered by the Army
Regulation AR18-1 series provides thorough, detailed management
procedures in use to implement DoD policy in this area. The man-
agement of tactical computers, including embedded computers,
acquisition and fielding are to be covered by AR70-XX (draft):
Management of Computer Resources in Army Defense Systems. More
specific and detailed management policy is covered by DARCOM in
its DARCOM Test and Evaluation Guideline (draft) and DARCOM-R
70-16 entitled "Management of Computer Resources in Battlefield
Automated Systems." All these and many other supporting reg-
ulations use adjectives such as "embedded," "real-time,™ and/or
"closed-loop" when describing both hardware and software computer
resources. However when examples are provided, the embedded, real-
time, closed-loop computer is substantially large, expensive and
is well-definable as a major sub system. The area occupied by
embedded, real-time, closed-loop processors which cost several
hundred dollars and utilize only several thousand words of pro-
gramming and are an integral part of the circuitry of the
sub-system are not as well-defined and thus many systems and
sub-systems will be developed having these microprocessors inter-
mixed throughout the circuity. A means must be established to
provide some control and reduce proliferation but not to the
Prior extent since the cost of implementing the regqula-

tion would exceed the cost of the microprocessors by at Least an
order of magnitude (10 times).
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The motivation for producing the policy statement as
well as implementing regulations is simply cost. The policy
statements of DoD 5000.29(1) and DoD 5000.31(2) specifically
state that cost is the basis for the DoD directive/instruction.
The complexity of managing computer resources is highlighted by
the large number of regulations/instructions covering this area.
The problem with implementing a large number of detailed
regulations/instructions is the cost and personnel resources.

In some current weapon systems, the cost of implementing the
regulations/instructions would exceed the cost of developing and
fielding the computer resources by at least an order of magnitude.
This apparent negative cost ratio should not be a surprise, if
one examines the examples and basis for developing the current
regulations/instructions. While not specifically addressed, it
appears that the processors costing several hundred dollars and
requiring one to two thousand lines of instructions does tech-
nically come under the regulations/instructions. The cost and
human resources required often result in these devices "not
being managed." On a case-by-case basis, this may not be a
problem. However, a case in point is the current AAH program
which has seven different hardware microprocessor configurations
and ten different software languages used with these processors.

Today's weapon fire control systems utilize an extensive
array of sensing devices in the form of radar, electro-optical,
and infra-red devices, laser rangefinder/designators, and arrays
on atmospheric, platform, and weapon sensors. Weapons mounted
in moving platforms require gyro stabilized platforms with fast
response, precision controls as well as control of targeting
sensors. The maneuverability required of today's weapon systems
require maximum use of the system's physical envelope. Sensors
and operating personnel are placed in the most tactically effec-
tive position possible. This leads to additonal requirements in
the form of data transmission and operational displays. The
tactical requirement for combat effectiveness and survivability
dictate the need to decentralize the processing of fire control
data. Further, there are a number of techniques for processing
this data which permit lower cost and more effective use of digital
processing technology.

The data processing industry, by nature of the devices
used, is a digital industry. Weapon system controls dealing with
physical movement of devices and components, operating in a dy-
namic environment, have been principally an analog industry. The
improvement of digital techniques and digital devices has resulted
in a transition of weapon systems control and in particular Fire
Control to more digital techniques. The end product of almost all
fire control functions still is an analog function, i.e., some
physical element, a gun, a platform, a sight moved from one
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position to another. The movement while initially controlled
digitally must end up being converted to an analog control sig-
nal. The digital technique including microprocessors are totally
dedicated to this function. Therefore, the identity of these
devices must be defined properly in order to provide their spe-
cific place in the management structure of computer resources.

Further, many of the sub-systems involved in a fire
control system do not necessarily require processors, much less
microprocessors or digital computers. However, after the design
and interface requirements have been established, it is generally
cost effective to use a microprocessor to reduce the total parts
count and number of devices in the sub-system. Therefore, many
microprocessors evolve into a sub-system after development has

been initiated. Management procedures must recognize this
phenomenon.

The current management approach to insure control of a
given area of technology or given discipline is to provide all-
encompassing and total inclusion of every conceivable facet of
that area. 1In attempting to cover the total spectrum, many con-
trol elements, while in the regulation, are actually unmanageable,
principally through the lack of proper definition and personnel

resources. As an example, the following definitions are extracted
from DARCOM-R 70-16:

A-1 ARMY BATTLEFIELD AUTOMATED SYSTEM--A system employ-
ing computer resources that operates or has components
that operates within the boundaries of the battlefield
regardless of the function, mission, or battle
involvement. The system may be an offensive, defen-
sive or direct/indirect support system. Examples of
such systems are weapons, communications, command and
control, intelligence, avionics, missiles, combat
support, and combat service support systems.

A-4 COMPUTER~~Electronic machinery, which by means of
stored instructions and data perform rapid complex
calculations or compiles, correlates and selects
data. Examples are analog and digital processors,
information processors, real-time control processors,
electronic calculators, hybrid computers, communica-
tion processors and microprocessors.

A-10 COMPUTER RESOURCES--The totality of computer equip-
ment, computer programs, computer data, associated
computer documentation, contractual services, per-
sonnel and computer supplies.
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A-13 COMPUTER SYSTEMS--An interacting assembly consisting
of computer equipment, computer programs and com-
puter data.

A-16 EMBEDDED COMPUTER RESOURCES--The totality of com-
puter resources that form a sub-system or part of
any Army Battlefield Automated System, e.g.,
intelligence collection system, target acquisition
system, or weapon system. (For the purpose of this
regulation the term "embedded computer resource"
is replaced by "Army Battlefield Automated System"
as defined in paragraph A-1.)

As can be seen from the above definitions, the total all-
encompassing nature of the definitions results in an inherent
weakness in the real world management of computer resources in
Battlefield Automated Systems. A new definition or additional
definition is probably not required in view of all those that
exist. However, in order to properly associate the microproces-—
sor and its role in the overall Battlefield Automated Systems,

a definition more specifically related to this device is required.
The following definition is suggested:

A-X INTEGRAL MICROPROCESSORS: An integral micropro-
cessor is the device and its associated compon-
ents which provides completeness to a sub-system
function. It is dedicated in nature and generally
does not have the peripherals and internal operating
system normally associated with larger computers.
The Integral Processor is physically and electron-
ically integrated into the sub-system design and
package. It is usually not separable in a physical
sense, its role and modifications of its role are
dictated by the overall performance of the sub-
system within its environment rather than due to
outside or external influences.

The Advanced Attack Helicopter program is considered
"Competition Sensitive." Therefore the sub-systems are identified
by letters. These letters do not have any relationship to the
actual function of the sub-system. Throughout this report we
will be referring to the various processors and the sub-systems
by these letters. This is shown in Figure 1.
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SECTION II

DATA BASE

A, The Economic/Trade-off analysis required by the SOW in-
cludes a proposed redesign of the microprocessors which will
result in a standard or common MP, a common high level language,
common software, software aids and documentation system, and the
life-cycle cost associated with this effort as compared to the
life-cycle cost of the present design. The combination of several
factors such as the 14 (or 15) microprocessors used in the same
weapon system, the weapon system having been in development for
almost three years, and the concept of re-designing the micro-
processors and supporting software to achieve the commonality and
reduce proliferation makes this study quite unique. The unique-
ness of this study effort is further enhanced by the lack of a
well-defined and easily acquired data base with which to perform
the analysis. The life-cycle cost of a system design is treated
differently within the data processing industry and the U.S. Army.
The lack of certain technical data relative to the microprocessors
also creates a data base problem. The data presented ap-

pears to be quite heterogeneous in its composition. This is due
to the many varied sources investigated in order to obtain use-
ful data for this study. The data base is not intended to be
total or complete but rather to provide sufficient information to
support the Economic/Trade-off analysis. In most cases, the data
was available from a single source. Where multiple sources pro-
vided data and the data differed, the difference was used to
provide a "tolerance band." The hardware data is acceptability
defined, however, the software data is lacking in a number of
areas. Under the current AAH contract, the software and the
documentation for the applications program for all but one sub-
system is not a deliverable item. Thus the details of the soft-
ware were lacking. To overcome the lack of detailed data, the
algorithms used in the various sub-systems were analyzed and the
level of complexity as well as the number of instructions were
estimated. This coupled with the data that was available was
determined to be sufficient for the purpose of this analysis.

The data used in the analysis is described as well as its

source.

B. Hardware Data Base
1. Microprocessor Data

The proposed design of a common (standard) MP must solve
8
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the most complex as well as the simplest algorithms. Further,
the proposed design must be physically packaged within the

same unit or sub-system currently mounted in the AAH. The most
complex sub-system computational requirement is met by the Fire
Control Computer. The specification for this computer is des-
cribed in CRITICAL ITEM DEVELOPMENT SPECIFICATION FOR FIRE
CONTROL COMPUTER, AMC-DC-AAH-H3003B, dated 31 October 1978 (4).
This document described the required instruction set and execu-
tion times. 1In addition, it provides a physical envelope for
packaging of the computer. Additional hardware data was ex-
tracted from the Report 79-105 entitled "Commonality Study of
Computer Hardware Resources in the Advanced Attack Helicopter
(YAH-64) Fire Control System" (5). This report compiled data
contained in questionnaires answered by almost all the Prime
Contractor/subcontractors on the AAH.

2. Proposed MP Design

The proposed design of the common microprocessor is based
upon the American Micro Devices Am29116. This device is des-
cribed in a paper entitled "A High Performance 16 Bit Bipolar
Microprocessor--The Am29116" (6). Design data and design tech-
niques for microprogrammed microprocessors were obtained from
a series of manuals entitled "Build a Microcomputer Distributed

by Advanced Micro Devices" (7). These two documents provide
excellent design guidance as well as an understanding of the
Am29116 microprogrammed microprocessor (MPMP). The supporting

devices such as ROM and RAM data were updated using information
provided in two parts of a series published in Computer Design,
December 1979 and January 1980 (8). This information augments

that data presented in the previous report 79-105 (5).

3. Packaging

The physical size of the boards used with the MPs are
generally described in report 79-105 (5). The redesign of the
boards is not considered a problem with today's technology, as
there are a number of automatic circuit design and layout pro-
grams available. 1In particular, Algorex Corporation has a sys-
tem for Automated, Integrated Design and Engineering called
"AIDE" (9) which will permit automatic layout of the PC board
along complete documentation complying with military specs such
as MIL-STD-275B, MIL-P-55110C and MIL-STD-1495. The Algorex
"AIDE" system can provide full manufacturing data and in most
cases permit layout of the board without significantly changing
most of the components already mounted on the PC board. In ad-
dition, special analysis is provided by the Algorex System Map

9
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which presents a cumulative analysis of all design changes to
insure current up-to-date data in the final drawings. Further,
Algorex can generate a Signal Trace Report. This per-

mits the tracing of signals through a number of PC boards.

This is important when re-packaging the system and a number of
the MP components may be distributed over several PC boards to
meet the physical envelope design constraint. This insures

a fully operational system prior to being manufactured thus
avoiding costly rework.

C. Software
1. Current Microprocessors

The software data available for the current micropro-
cessors is quite limited. Most of the available data has been
compiled in a report 79-104 entitled "Commonality Study of Com-
puter Software Resources in the Advanced Attack Helicopter
(YAH-64) Fire Control System" (10). The software requirement in
the form of solution or algorithm solution times and the number
of instructions were deduced from review of two reports published
by Hughes Helicopters.

The reports are YAH-64 Phase II advanced Attack Heli-
copter, Substantiating Technical Data Fire Control Report. These
reports are marked "Competition Sensitive." Therefore specific
references to the data will not be made in this report, al-
though the information was used to generate software estimates.

2. Development Aids

All sub-systems' software was developed using same
development aids. In most cases, the subcontractor utilized
the development aids available from the device manufacturer.
However, a number of the subcontractors, in particular those
using microprogrammed microprocessors, developed their own soft-
ware aids. If the current design is to be supported by other
than the current subcontractors, it would appear that all the
development aids would have to be purchased for this purpose.
This implies extensive training to be able to utilize the ten
different software development systems possible. In developing
the cost data, the development aids or systems available from
the microprocessor manufacturer will be used. The software
aids or development systems vary in cost from $10,000 to $60,000.
Custom design software development systems are estimated to be
double this cost. All but one sub-system were programmed in
assembly language. The one system had 65% of its software
programmed in the PL/M (high level) language. The remainder was

10
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programmed in assembly language. Some of the development sys-
tems produce documentation suitable for a third person to use
for maintenance purposes. However, in all cases except one,
the documentation produced is proprietary.

3. Development Costs

The cost of developing the current software for the
various AAH MP microprocessors 1s treated as sunk cost. However,
the development costs for the new common software will be shown.
Determining the maintenance costs per lines of code (or any
other unit of measure) is more complex than any other factor in
the software maintenance area. A paper presented at a symposium
on Computer Software Engineering in 1976 by Gansler (11) indi-
cated the cost to develop software was in the order of $75 per
instruction. Another more current paper dated January 1980 (12)
indicated the DoD cost of line of executable machine level
instruction varies between $40 and $60 per line. Another paper
(13) indicates programmer's production capability at approxi-
mately 1000 lines of code per year. The figure of $60 per
executable line of code would be more comparable to the AAH due
to the almost complete use of assembly language programming. A
nurber of software papers attempting to explain development
costs, divide the activity into three categories. These are
prcgram design, coding, and testing. While most of the papers
agree on this breakdown, they disagree on the ratio of effort.
For example, a paper published in 1979 (14) shows the ratio of
3:1:3; another paper published in 1973 shows the ratio as
46:20:23, (15); another paper published in 1978 (16) shows the
ratio as 40:20:40; a report covering a slightly different area
but somewhat related showed the ratio 35:15:45 (17). These
variations of cost/time estimates highlight the difficulty in
defining the data base. A composite of these numbers will be
used to derive the base-line cost estimates for the proposed
common microprocessor design of its software. This will be
compared to the estimated cost for additional changes of the
existing software and an estimated cost to generate similar
software using the automatic translator described in Appendix
B.

D. Maintenance
1. Hardware

Hardware maintenance in the data processing industry is
reasonably straightforward, however, in the military, there are
a number of complexities which add significantly to the cost.
For example, training and technical manuals become a significant

11
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cost when supporting ten different microprocessors as compared
to one. The reason ten is indicated here is because the hard-
ware maintenance personnel will require a knowledge of the in-
struction set and must be taught some software. Military main-
tenance personnel perform mairtenance on the entire subsystem
and thus must know how the MP functions as part of the subsystem.
Another area to be considered is testing of the microprocessor.
The current plan is to provide Automatic Test Equipment (ATE) to
support the AAH. Application program for testing a micropro-
cessor and its related components can vary from $80,000 to
$200,000 per microprocessor system. Thus it is evident that a
single processor is much more cost effective in this area.

Other cost areas to be considered are supply pipeline, supply
direct exchange items, and maintenance float. The Weapon Sys-
tem availability is another factor which must be considered in
the military since the aircraft is of little value if it is not
capable of completing its mission. Another maintenance function
to be considered is overhaul. All systems go through overhaul
at least once during their life cycle. This would require the
depots or the overhaul facility to have proper test equipment,
training and documentation as well as the material to support
the various subsystem microprocessors.

2. Software

Data on software maintenance are more vague than the de-
velopment costs. Military maintenance personnel are trained to
maintain the subsystem. This requires knowledge of the micro-
processor and its operational software. While the individual
is not permitted to change existing software, that person must
be sufficiently knowledgeable as to report back the changes and
why they are required if a "software bug" is discovered in the
field. Determining the cost of software maintenance is vague in
the data processing industry. Most papers on the subject use
percentages or ratios of a development cost. For example, one
paper (1l4) quotes an IBM study which states the cost of software
modification after the software is fielded is over one hundred
times the development cost; another paper (17) indicates that
the software maintenance costs 40% higher than the development
costs should be expected; another paper (11l) indicates the cost
of maintaining or modifying a line of code can be as high as
$4,000 per instruction. Several other papers indicate the way
to reduce the software maintenance costs is to provide the
proper documentation during the development phase. The Second
Software Life Cycle Management Workshop (13) had as one of its
areas of investigation software maintenance. Review of the
summary of the findings and results of the workshop showed no
discussion of the maintenance problem. Fortunately, the

12
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software maintenance cost can be reduced by the same tools that
are used to develop the software. Several reports (18) (2) and a
paper (19) indicate that maintenance costs can be significantly
reduced through the introduction of a number of software aids
and tools during the development cycle. 1In particular, the
ability to document the software and to produce object code from
documentation represents a significant advantage toward reducing
the cost of software maintenance. A paper presented during the
workshop (13) entitled "Life Cycle Cost Analysis of Instruction
Set Architecture Standardization for Military Computer Base Sys-
tems" by Stone and Coleman showed that the GYK-41 (PDP-11) in-
struction set permitted significant cost reductions in life
cycle costs of software. The proposed master instruction set

is quite similar to the GYK-41 instruction set. Therefore, con-
siderable cost savings should result.

E. Methodology

The varied nature of the data in the data base and the many
sources highlight the problems associated with this Economic/
Trade-off analysis for commonality of hardware and software in
a complex weapons system. The section covering the cost analysis
will utilize this data base. In each case the numbers developed
will be explained as the to source and weighting factor and how
it is applied to the Economic/Trade-off analysis.

13
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A. General

SECTION IIT

TECHNICAL APPROACH

The requirements of the Statement of Work and the short
time allocated for this study necessitated R. J. Brachman Asso-
ciates, Inc. to implement a very direct plan which covers
three principal technical approaches to achieve commonality
(standardization) of MP hardware and/or software. The three
principal technical approaches are:

1.

Common Hardware

This approach considers the redesign of the hardware
without changing the software. This would result in

-reduced supply costs, reduced training costs of main-

tenance technicians, and possibly reduced personnel
requirements as well as other associated cost reduc-
tions. The software would not be changed, thus any
software problems and related costs would be the same
as in the current on-going program.

Common High Level Language (HLL)

The SOW requires the identification of a common HLL,
software development tools and a documentation system.
The technical approach pursued was to consider the
hardware as currently being developed (i.e., 10 soft-
ware languages) and determine the technology software
aids, and documentation system required to achieve
the common HLL capability. The software study
included investigations into automatic "de-compiling"
of the separate assembly languages to the common HLL,
then providing a software development system that
would be self documenting and produce object code for
all of the various MP's. This approach would reduce
software life-cycle costs significantly, however, the
hardware problems would be the same as the current
on-going program.

Common Hardware/Software

This approach was to develop a Master Instruction Set
(MIS) capable of solving all the required algorithms
and functions of the Fire Control System. The common
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hardware would implement this MIS and the software
would consider translating all the present assembly
languages to MIS, then produce the software aids and
documentation system for the MIS and a possible HLL.
The existing assembly languages would be "mapped"”
into the MIS, thus showing traceability and reducing
the validation costs of the new software. This
approach would provide the advantages of both common
hardware as well software.

The economics/trade-off analysis of the above approaches
is supported by several detailed technical study tasks. The
supportlng data required to determine the feasibility of devel-
oping a common microprocessor, automatic translation of programs,
master instruction set, and other software aids, are considered
too detailed technically, and of a specific technical nature to
be included in the body of this report. Therefore each of these
separate studies are included as appendices. Appendix A is the
Feasibility Design Study of the Common Microprocessor Hardware.
Appendix B is the study of Automatic Translation of Programs from
One Computer to Another. Appendix C is the study of the Master
Instruction Set. Appendix D is the study of Software Development
Aids.

B. Hardware

The hardware aspects of this study cover several areas.
These include the physical configuration or packaging of the sub-
system and the processor capability for solving the algorithms of
the sub systems. Ironically, it is the hardware mechanization of
the instruction set that is critical to the solution of the
algorithms. Yet the instruction set is involved in the generation
of software. This highlights the intimacy between hardware and
software in microprocessor and especially in microprogrammable
microprocessors (MPMP). A review of the various sub-systems and
their associated microprocessors is as follows:

A-6802-8 bit CPU

B, C, I, N-8080A/8085A, 8 bit CPU

D, L-2901A, 4 bit slice microprogrammable microprocessor-
16 bits

E-SKC3020, 4 bit slice proprietary CPU-16 bits

F-54LS181, 4 bit slice microprogrammed logic controller-
12 bits

G-MECA - 43, fire control computer microprogrammed-hybrid
technology, 16 bits

H-2901A, 4 bit slice microprogrammed microprocessor-
16 bits

J-SBP9900, 16 bits CPU

15
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K-2901a, 4 bit slice microprogrammed microprocessor-
16 bits

M-SBP9900 (2), 16 bits CPU

0-2901A, 4 bit slice microprogrammed microprocessor-
16 bits

In summary, there are five 8 bit CPU's, 1 or 3 16 bit CPU's,
and 7 microprcgrammed microprocessors. The capability of an
8 bit version of microprogram device to solve the 8 bit CPU
problems was not in question. The principal concern was ability
to solve the fire control computer requirements With the
speed required as well as within the total program storage requirements.
The fire control computer is the MECA-43 with appropriate
input/output capabilities. The back-up fire control computer is
a 2901A 16 bit configuration. These two instruction sets were exam-
ined in detail, as.well as otheravailable instruction sets,
also studied. The current technology available to permit emula-
tion of all the microprocessors is microprogramming. A new
device to be released the third or fourth gquarter of 1980 is the
American Micro Devices AM29116. This is a 16 bit microprogrammed
device in a single 52 pin DIP package. The device capabilities
and the design are discussed in detail in Appendix A. The
AM29116 in its single 52 pin DIP package and 100 nanoseconds exe-
cution time for a microcode instruction means that there should
be very low technical risk in emulating the fire control computer
with its hybrid packaging technique and the back up fire control
computer using the 2901A. The packaging problems relating to the
8 bit CPU's will be discussed in more detail in Section V. From
the initial microcode count and analysis of the MIS, it appears
that the 29116 emulation of the fire control computer will permit
execution of the application software instructions in the same
time or less than the current processors.

Basically, a microprogrammed machine is one in which a
coherent sequence of micro-instructions is used to execute various
commands reguired by the machine. If the machine is a computer,
each sequence of micro-instructions can be made to execute a com-
puter instruction. All of the little elemental tasks performed
by the machine in executing the computer instruction are called

micro-instructions. The storage area for these micro-instructions
is usually called the microprogram (microcode) memory. A micro-
instruction usually has two primary parts. These are: (1) the

definition and control of all elemental micro-operations to be
carried out and (2) the definition and control of the address of
the next micro-instruction to be executed.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines because they are normally considered
highly ordered and more organized with regard to the control

16
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function field. 1In its simplest definition, a microprogram con-
trol unit consists of the microprogram memory and the structure
required to determine the address of its next micro-instruction.
Whereas, older, non-microprogrammed machines implemented the con-
trol function by using combinations of gates and flip-flops
connected in a somewhat random fashion in order to generate the
required timing and control signal for the machine. A machine
instruction is defined by the number of operational codes to be
executed, the number of memory locations to be addressed and the
word size of the machine, i.e., 8 bits, 12 bits, 16 bits. 1In 8
bit machines, if one word will not permit execution of an instruc-
tion, then two words must be used. A microprogrammed machine has
machine level instructions comparable to the non-microprogrammed
machine, however, it also microprograms instructions. These are
not dependent upon the work size of the machine level instruction,
but on number of control and definition functions to be implemented.
Figure 2 is a comparison of machine level instruction and the
micro-instruction.

The above description highlights the fact that block dia-
grams of MPMP's such as shown in Figure 3 and Figure 4 often show
the microcode memory as a single block. This block has the same
number of input and output lines as the number of bits in the
microcode instruction word. The full system shown in Figure 4 and
described in Appendix A uses an 80 bit microcode instruction word.
The minimal system shown in Figure 3 uses a 56 bit microcode
instruction word. A detailed design study (beyond the scope of
this contract) should result in a smaller microcode instruction
word in both cases.

C. Software

The present MP's in the AAH use ten different assembly
languages, depending on the final Fire Control System Configura-
tion. The current software for all the MP's combined amounts to
between 150,000 and 200,000 lines of code. The cost to convert
this code to a common language would probably equal the original
cost to write the code and require several years or a large staff.
The initial investigations into the State-of-the-Art of "de-compiling"
techniques revealed a few special cases where this had been accom-
plished. However, further investigations resulted in the conclusion
that this approach was beyond the State-of-the-Art and would require
extensive research with a very high technical risk. This approach
was therefore abandoned.

The next most effective approach investigated was the
automatic translation of programs from one computer to another.
This proved quite feasible and resulted in several additional
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benefits. In addition, the translation system would be self-
documenting.

A common HLL was not specifically considered due to
possible availability of ADA. 1In addition, HLL's have a number
of limitations, especially when execution time and memory space
are critical. Other limitations were the reason "de-compiling"
or reverse compiling was considered not possible. These limita-
tions are described in detail in Appendix B. This does not mean
that an efficient HLL and its compiler cannot be provided. The
schematic diagram of the translator information flow, figure 5,
shows two alternative approaches, these being the MIS or form of
MACRO Assembly Language and a HLL with reverse compiler and com-
piler. Both alternatives are based upon the development of a
translator from the source assembly languages of a particular MP
into a uniform-tabular-representation of the program. The assem-
bly language translation process analyzes the syntax and local
semantics of the individual statements in an assembly language
program of any one of the ten source microprocessors and produces
a uniform-tabular-representation of the program. It is based
upon advanced state-of-the-art syntax analysis techniques which
have proved to be invaluable. Specifically, a translator program
for these assembly languages will be generated automatically. 1In
addition to checking the statements for syntactic and some semantic
errors, the generated program will also store the statements in a
tabular form for later processing.

D. Master Instruction Set

The development of a common intermediate or assembly
language was pursued due to problems of a HLL and reverse com-
piling. All the available instruction sets were studied to deter-
mine if one could be the candidate common language. The many
microprogrammed MP's and the wide variety of instructions led to
the conclusion that a Master Instruction Set would be more effec-

tive than selecting any one of the MP instruction sets. The MIS
described in Appendix C is based upon all the available instruc-
tion sets. Subsystems E, H, & K, instructions sets were not

available. Further, the entire instruction set of each MP was
studied rather than only the instructions used. The resulting MIS
provides a very powerful software capability. Thus, it becomes

an optimizing common focal point for the development of the MPMP
and automatic program translator.
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E. Software Development Aids
A number of software development aids are discussed in

Appendix D. Also included is a discussion of HLL and optimizing
compilers.
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SECTION IV

HARDWARE-DESIGN PACKAGING

A. General

The Statement of Work requires a packaging and design
(redesign) analysis to be performed for the proposed common
microprocessor (MP). Redesign of the current PC boards are
permitted however, the overall sub-system package cannot be
changed. While not specifically stated, the proposed intro-
duction of a common MP for the Fire Control Sub-Systems must
not require more total electrical power than is currently pro-
vided.

B. Microprocessors, Current Design

The principle source of data relating to the current
hardware configurations is Report 79-105, Commonality of Hard-
ware Computer Resources (5). The name "Microprocessor" when
used in this Economic/Trade-Off Analysis also includes RAM,
ROM, Micro-code memory, and I/O parts. In addition to the
mix of microprocessor units (MPU) described in Section III
paragraph B, twelve (12) different type RAM devices, eleven
(11) different type ROM devices, four (4) different type
microprogram sequences (including a proprietary discrete com-
ponent design), and four (4) different type micro-code memory
devices are used in the various sub-systems. The MPU's vary
from 40 pin DIP's to 64 pin DIP's plus one MPU configured
from four (4) hybrid packages. The memory devices vary from
16 pin DIP's to 24 pin DIP's and are organized from 1024 x 1
bit to 256 x 4 bit devices. Several of the microprocessors
have EPROM write circuitry packaged on the PC board. The pro-

duction version of these PC boards will not contain this circuitry,

thus indicating a PC board redesign.

The packaging of the MP's and related components was
dictated by the space (volume) available for the particular
sub-system in the AAH airframe. The PC boards vary from 4" x
4.5" to 9" x 12" including multilayers and irregular shapes.

In addition, the power dissipation reguirements, especially the
microprogrammed MP's, strongly influenced the PC board and sub-

system package design. Unfortunately, MP assembly drawings were

not available for this analysis, thus the packaging discussion
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is somewhat general

C. Common Microprocessors, Proposed Design

The proposed common MP design had to be capable of
solving all the sub-system algorithms, from the simplest to
most complex, packaged within the available sub-system, and not
increase the total power requirements. The proposed common
MP design is based upon the American Micro Devices Am29116.
This is a 16 bit microprogrammable device packaged in a single
52 pin DIP. The proposed design is described in detail in
Appendix A. It will interface directly with all the support
devices including the micro-code memory used with the 2901A
microprogrammed MP. Thus replacing all the microprogrammed MP's
with the Am29116 will not cause any repackaging problems and
should reduce the power requirement. The repackaging and power
dissipation could be a problem in the sub-system using 8 bit
MP's. The minimal configuration (figure 3) represents a
processor 30 to 100 times faster (depending on the algorithms
used) than the conventional 8 bit MP's. Thus, it represents an
"overkill" from the application software standpoint. This,
of course, is not a concern if this results in hardware and
software commonality. Unfortunately, two potential problem
areas may exsist which would negate the use of the minimal
configuration in the 8 bit MP sub-systems. These are physical
PC board space and power dissipation. The lack of detailed
design data including schematics, logic diagrams and assembly
drawings is the basis for describing the two problem areas as
"potential" problem areas.

The physical PC board space problem area results from
the minimal common MP configuration requiring approximately
21 "equivalent units" while the 8 bit MP's vary between 6 and 12
"equivalent units." An "equivalent unit" is an electronic
packaging term used to represent the space (area) occupied by
one 14/16 pin DIP. The packaging of the proposed common MP is
discussed in more detail below. The power dissipation problem
area could be sufficiently critical as to require the use of
a "second" common MP. The power requirements of the minimal
configuration can vary between 3 and 5 times that of the 8 bit
MP's to be replaced. This would require redesign of the sub-
system power supply which could easily exceed space available
within the sub-system. Detailed engineering data is required
before a final decision can be made.
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D. Design and Packaging

Replacing the current sixteen (16) "Integral" processors
in fourteen (14) sub-systems by a common MP appears to be a most
formidable task. In fact, opinions such as unrealistic,

economically not feasible, and unacceptable delay in fielding
the AAH would be expected if it were not for the commonality
studies, Reports 79-104 (10) and 79-105 (5), the Am29116,
automated design and packaging techniques such as the ALGOREX
AIDE, and this Economic/Trade-Off Analysis.

The use of automated PC board design and packaging
techniques during R & D is generally accepted. There are
many different design systems available today. The qguantity
and quality of documentation provided by these automated systems
varies from very little to comprehensive. However, most of
these systems are not suitable for design modifications after
the design has been released(accepted), nor are they suitable
for redesigning sections of the PC board while the other
components remain fixed in their original positions. An
automated system meeting the requirements for design and re-

packaging thﬁ MP PC boards in the Fire Control Sub—Systems is the
ALGOREX AIDEY (Automated Integrated Design and Engineering).

AIDE can accept raw logic diagrams, schematics or equations and
produce the bulk of the drawings, artworké NC tapes and other

required documentation. The ALGOREX AIDER automatically checks
the design and provides engineering diagnostics, partitions the

system, if not specified, provides optimum assignment and place-
ment of components, if not specified, generates assembly drawings,
provides routing data between PC boards or hybrid LSI's,

produces photo-ready artwork for manufacturing, provides drill
templates and/or control tapes for automatic drilling machines,
provides control tapes for automatic component insection and
resting machines, generates punched tapes for a wide variety

of numerically controlled machining operations (APT), and

designs wired back-panels, fully methodized wiring process sheets,
or control media for automatic or semi-automatic wiring machines.
In addition, it generates documentation for engineering, de-
bugging, publications, and field service such as Signal Code

List, Reference Designation and Pin List, Signal Description List,
Thermal Map, Temperature Map, Power Dissipation Map, Original

to current Data Mapping, Cumulative System Analysis Map and a
Signal Trace Report. The drawings comply with military specif-
ications such as MIL-STL-275D, MIL-P-55110C and MIL-STD-1495.
Utilization of the ALGOKEX AIDER would result in the first
redesigned PC board beccming available for component population
and test in 3-4 months after start. The entire redesign could be
completed in 12-18 monthks depending upon the available design
data.
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The several 8 bit MP sub-systems will require
component and software analysis to redesign. The software
analysis is required to determine if a memory capacity vs.
speed trade-off can be made. Many application programs written
for 8 bit MP's use tight in-line coding to meet the solution
time of the algorithm. This is accomplished at the cost of
additional memory. The actual dollar cost is low-due to advances
in memory technology thus making this methodology acceptable.
Utilizing the speed of the proposed common MP, memory require-
ments may be reduced between 20% and 50%, thus increasing the
probability of replacing the 8 bit MP's and their supporting
devices. The only other problem area not covered in the
Economis/Trade-Off Analysis is the power requirements. The only
comment possible in this area without analysis of the current
sub-system design is that the overall power requirements for the
proposed common MP will be less than the current requirements.

E. The 17th Microprocessor

This paragraph was added after the final draft of this
Report was submitted for review and comment. Information was
provided about mid-March, 1980, that sub-system K had added a
Z-80, 8 bit microporcessor to the 29012-16 bit MP already in
the sub-system. This disclosure highlights comments relative
to management of "Integral Processors" in Section I, Introduction.
This late disclosure prevented the 2Z-80 from being discussed in
most of this report. Section VI was partially modified to account
for a worst case solution requiring two common MP's. The two
MP's would be the Am29116 to replace all 16 bit and/or micro-
programmed MP's and the Z-80 to replace all 8 bit MP's. The
Z2-80 will execute the instruction set of the 8080A/8085A thus
minimizing the impact upon software maintenance.
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SECTION V

SOFTWARE - A COMMON LANGUAGE

A. General

This section discusses the areas of software costs, as
well as application software, development systems, training
(Development and Field Maintenance), documentation, and mainten-
ance. The literature relating to large software systems is
voluminous. However, the literature devoted to MP software is
very limited. None of the literature specifically considers
maintenance (some allege to) life cycle costs, multiple processor
systems using different processors, or software production aids.
This lack of other source data further highlights the originality
of this study.

B. Common Software

The keystone of any common software system is its .
language. Traditionally, reference to a "common software language"
implied a High Level Language. A number of MP companies use a
common assembly language for a "family" of devices. However,
the commonality generally was upward. As the MP's became more
powerful, even this form of commonality was lost. In order to
avoid costly software rewrites and maintain user confidence,
the MP companies developed "cross-assemblers." This is software
used to translate one language to another (more powerful to less
powerful). The efficiency of the cross-~assembled software varied
greatly in solution speed and memory requirements when compared
to manually programming each different MP. This fact did not
appear to affect commercial applications of MP's. However,
Military weapon systems using "Integral" MP's could not tolerate
these inefficiencies. 1In many weapon systems microprogrammed
MP's, with a unique (problem oriented) instruction set, are
used to meet the system performance requirements. This is high-~
lighted in the Fire Control System of the AAH. Seven subsystems
which solve very complex algorithms and/or have stringent thru-
put time requirements use MPMP's with unique instruction sets.

Analysis of the available instruction sets of the MP's
resulted in the disclosure that none of the instruction sets
had adequate addressing modes to qualify as the common assembly
language. A Master Instruction Set (MIS) was designed to support
the FCS MP's. A detailed task report describing the MIS and

28

ASSOCIATES, INC.



showing the relationship and/or mapping of the available MP
instruction sets is contained in Appendix C. The mapping of

the instructions sets into the MIS will enhance the traceability
of the translated software. The instruction sets of three (3)
MPMP's were not available during this study. Therefore, approx-
imately 4 man-months would be required to finalize the MIS.

The proposed use of the MIS is not in lieu of a HLL,
but rather as part of a two level software development capabil-
ity. The HLL finally selected would compile to the MIS. The
MIS would then be used to generate the MP Object Code. This
approach overcomes the problems (Appendix B) of using a HLL
compiler to generate the efficient object code required by the
"Integral” MP's.

C. Automatic Translation of Programs

Assembly language programs have been treated as special
cases in the software world. This has principally been due
limited documentation and most of all the idiosyncrasies of
the original programmer. Most software engineers agree that
modification of an assembly language program by a "third per-
son" entails a high technical risk and an associated very high
cost. Many times the "third person" can show it would cost
less to rewrite the program rather than try to modify it.

The AAH Fire Control Subsystem MMP's currently utilize ten (10)
different assembly languages. Thus, it becomes obvious why
there is considerable concern as to the potentially very high
software support costs. Discussions relative to development
of a common language are contained in subparagraph B above and
Appendix B and C. The two software options include: a) using
the current assembly languages, a common assembly language
and generating the object code using cross-assemblers and b)
using a common MP with its assembly language and rewriting
the existing software. The cost to completely rewrite of all
the software manually is considered close to the original R & D
software costs. Realistically, there are many more variable
and unknowns during the R & D phase. We estimate that the
manual rewrite would cost between 50% and 60% of the R & D
costs. In either case, the cost and time to manually develop
a software system using a common language would probably
deter its implementation. Fortunately, R. J. Brachman Associates,
Inc.'s Task Study Group developed a technique for Automatic
Translation of a Program from one computer to another. A
schematic diagram of the proposed approach to Automatic Transla-
tion is shown in Figure 5. It should be noted that each step
produces complete documentation and the end product, object
code, is produced from the documentation. Development of the
Automatic Translator, including translation of all existing
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programs to MIS (Alternative I) is estimated to require 5 man-
years over a 1 1/2 calendar year period plus computer time.
Implementation of the Automatic Translator using the MIS and
generating object code for the current MP's would require a
code generator for each assembly language. Thus, Ten Code
generators would be required. Design of each code generator
requires approximately 6 man-months.

D. Software Development Costs

The cost of software development for the present MP's
is treated as a "sunk" cost. The cost to develop the proposed
software system is included in the overall Economic/trade-off
Analysis.

E. Software Development Systems

All the current application software was developed using
a commercial development system or a custom designed system.
Commercial development systems cost between $10,000 and $50,000.
Custom systems are estimated to cost twice the above. In addi-
tion, the custom systems are considered proprietary. This is
not critical since commercial development systems are available
for all MP's used in the AAH. The number of development systems
required to support the AAH FCS will depend upon how many
different facilities will support the software. The development
system for the proposed common MP/MIS is estimated to cost
$30,000.

F. Training

Training requirements for MP support cover many areas.
The principal areas considered for the Economic/Trade-off
Analysis are as follows:

1. Assembly Language Programmers

The transition from R & D to production may or
may not involve the same subcontractors. In either
case, it is assumed that new programmers will be
provided for production and field support. The number
of programmers are estimated to vary from 6 to 28
depending upon the number of different subsystems,
subcontractors, and languages in use. This is a
conservative estimate since the number of programmers
during the R & D phase varied between 52 and 90.
Generally, it requires 3 months for a trained pro-
grammer to become proficient in a given language.

For the purpose of this analysis, we will consider
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14 subcontractors, each with 2 programmers using the
present multiple MP's and one facility having 6 pro-
grammers and using the MIS/Automatic Translation
System.

2. Software Development Systems

The above programmer personnel will be required
to use an appropriate software development system.
Suppliers of these systems estimate it would require
between 45 and 60 days of continuous use to become
proficient. The cost impact is directly proportional
to the number of languages supported and the number of
programmers.

3. Field Maintenance
a. Microprocessor Testing

Field maintenance is currently planned to be per-
formed by use of Built-in Test Equipment (BITE) at the
Aviation Unit Maintenance (AVUM) level and use of
Automatic Test Equipment (ATE) at the Aviation Inter-
mediate Maintenance (AVIM) level and depot. The
current maintenance concept does not require Field
Maintenance Technicians (FMT) to be trained in MP
logic and software since subassemblies will be
replaced at the AVUM and PC boards at the AVIM.
Unfortunately, the maintenance concept may be
unrealistic at the AVIM due to the high software
cost and thus limited diagnostic capability of the
ATE. MP's and their associated components are com-
plex devices to test. Assuming the ATE can achieve
an acceptable level of PC board level diagnostics,
the functional test software for the MP and its
associated devices, could vary between $20,000 to
$60,000. However, the PC boards and subassemblies
must be repaired at the Depot. This requires the
ATE at the Depot to fault isolate to the piece-part
level. ATE software (and hardware) costs can vary
between $80,000 and $400,000 depending upon the
test accessibility and degree of diagnostics
achieved. These cost estimates are supported by
previous studies (18) (20) relating to ATE software.
In addition, it is assumed that the cost of the
Depot Maintenance Work Requirement (DMWR) is included.
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b. Technical Manuals (TM's)/Field Manuals (FM's)

T™'s and FM's are required for all fielded systems.
Even though BITE and ATE are supposed to reduce the
technical skill levels in the Field and Depot, FMT's
and organization personnel will still be required to
have some knowledge of the subsystem operation. The
TM's and FM's will have to contain functional descrip-
tions of the hardware as well as the software. It is
estimated that the hardware descriptions can vary
between 80 and 200 pages and the software descriptions
can vary between 100 and 300 pages. The cost per page
to prepare these manuals varies between $150 and $225.
Each subsystem will require its own TM and FM. Thus,
even though a number of MP's are the same, each differ-
ent subcontractor will prepare a different TM and FM.

A common MP and a common software language would result
in the same data appearing in all the TM's and FM's.

G. Software Documentation
Current information provided by the PM's staff indicates

that the software documentation from only one subsystem is
deliverable. All the other subsystem contractors consider their

documentation proprietary. A number of papers (16) (17) (18)
show that the quality of the documentation directly affects the
cost of software maintenance. A programmer's manual is required

in addition to the application software documentation. The
conventional MP programmer's manuals can be obtained from the
manufacturer, however, programmer's manuals for the seven MP's
which are microprogrammed must be obtained from the subsystem
contractor. These manuals are estimated to cost between
$20,000 and $30,000 each. There is some question as to whether
the U.S. Army will purchase any of the documentation or "wait"
until the Production Phase. It is estimated that the cost to
purchase the software documentation will cost about the same as
the Alternative I Automatic Program Translator (ATP). The ATP
should significantly reduce the cost of documentation during
the Production Phase.

H. Software Maintenance Cost
Several papers (11) (12) (14) have been written on the
subject. However, sections of the papers have to be combined

to provide useful information. The paper by Gansler (11) quotes
a U.S. Air Force study showing the cost of Software Maintenance

can be as high as $4,000 per line. The paper by Schindler (12)

states that DoD expects the cost per line of executable machine-
level code to rise from $40 per line to $65 per line by 1984.
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Most HLL compilers produce 8 to 20 lines of machine-level execut-
able code per HLL statement. Another paper by Schindler (14)
quotes an IBM study which states that the cost to modify a line
of code after the software has been fielded is 100 times the
development cost. Combining data from both Schindler papers

(12) (14), the $4,000 per line of code maintenance cost stated

in the Gansler paper (1ll) does not appear to be unreasonable.

It is estimated that $4,000 represents between two and three
man-weeks of effort.

Military weapon systems are tested during the R & D
and Production Phases. However, these tests only approximate
the tactical operation environmental. Thus, these sytems
generally require a number of changes during the first two
years in the field. Changes/modifications to fielded U.S. Army
weapon systems are via Engineering Change Proposals (ECP).
Experience indicates a system as complex as the AAH could have
100 to 200 ECP's per month, the first year, 75 to 150 ECP's
per month, the second year and approximately 50 ECP's per month
throughout its life cycle. It is estimated that 25% of the
ECP's, lst year, 15% ECP's, 2nd year and 8% ECP's, throughout
the life cycle, will result in software changes. This results in
an estimated 300-600 software changes, 1lst year; 135-270 changes
2nd year; and 50 changes per year throughout the life cycle.
The first year in the field should produce the most extensive
changes. It is not unreasonable to expect that each software
change will average 25 lines of code during the life cycle.
This results in an estimated 7,500-15,000 lines of code lst year,
the second year 3,375-6,750 and 1,500 lines of code throughout
the life cycle. Estimated costs could vary between $30 million
and $60 million the first year to approximately $6 million per
year throughout the life cycle. Considering a cost as low as
$1.000 per line, the cost can vary between $7.5 million and $15
million the first year to $1.5 throughout the life cycle.* A
study by Stone and Coleman (13) shows that the Instruction Set
Architecture can have a significant impact on the cost of soft-
ware maintenance. The proposed MIS is very similar to the
Instruction Set described as resulting 49% lower maintenance
cost as compared to other military computer instruction sets.
Solutions to the high cost of software maintenance are being
pursued by many organizations. A paper by Goetz (19) provides
"steps toward solution" of the high cost of software maintenance.
The proposed MIS, Automatic Program Translator, Alternative I,
the documentation system and an optimizing compiler for the HLL
coincide with the "steps toward solution." It is estimated that
the proposed software systems could reduce software maintenance

*Considering the above represents changes in lines of code
from 10% the lst year to 1% throughout the life cycle, the estimate
appears to be reasonable.
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costs by 50%.

Another area of maintenance unique to the military is
Overhaul. During this activity, the weapon system is completely
rebuilt so it is the equivalent of a new system. Software also
is Overhauled, although the term "program rewrite" is used to
describe this activity. This activity is somewhat random as to
its occurrence. A weapon system undergoes many changes during
its life cycle. These changes may affect the software. Further,
weapons, subsystems and tactics will change. Experience has
shown that a weapon system such as the AAH could have two com-
plete program rewrites during its life cycle. The number of
personnel involved with the system rewrite will depend upon the
number of different MP's, subcontractors, and different assembly
languages being used. The level of effort is estimated to vary
between 22 and 150 man-years. Thus, the two rewrites would
required between 44 and 300 man-years of effort. The range of
personnel to perform the rewrite is derived from data presented
by Putnam (13), Thibodeau and Dobson (13) and Parr (13).
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SECTION VI

ECONOMIC/TRADE-OFF ANALYSIS

A. General

This section consolidates the data presented in the
other sections of this report. The final cost summary will
contain estimated MP hardware and software development and support
for the current AAH, the Common MP (no software changes), Common
Software (no hardware changes), and Common Hardware and Software
based upon the MIS and the Automatic Program Translator.

B. Current AAH MP Life Cycle Cost Estimates
1. Hardware

The data presented in report 79-105 (5) indicates that
the MP's would add 300-400 new line items to the supply system.
At an extimated cost of $6,000 per line item, this becomes $1.8
million to $2.4 million per year, or $18 million to $24 million
over the 10 year life cycle. (This does not include cost of
the parts.) One MP using the 54 LS181 logic controller will
probably have to be replaced due to impending obsolescence. The
redesign should cost approximately $200,000-$300,000. The MECA-
43 uses hybrid packages which are proprietary. In addition,
the Doppler system uses a proprietary bit-slice MP. These
should be replaced to maintain ease of replacement, and supply.
Thru = competitive procurement current MP technology as shown
in the proposed common MP design could easily replace these
proprietary devices with a significant cost avoidance during
the AAH life cycle. The cost summary does not include the cost
of redesigning the MP using the 54 LS181.

2. Technical Manuals and Field Manuals

The MP hardware sections of the TM's and FM's are estim-
ated to require between 80 and 200 pages each. At an average
cost of $200 per page, this becomes $32,000 to $80,000 per MP or
$512,000 to $1,280,000 for the 16 microprocessors.

3. Training--Depot Personnel

The MP's will be repaired at the Depot. Even though it
is planned to use ATE, the repair technicians will require train-
ing for each of the MP's and how they function in the subsystem.
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The training cost includes the course as well as the technician's
salary. Based upon data compiled in the ATSS Economic/Trade-off
study (20), six to ten technicians over the life cycle will be
trained for six weeks on each MP. This is 288 to 480 man-weeks

@ $16.00/hr.= $184,320 to $307,200.

4, Automatic Test Equipment (ATE)

Automatic Test Equipment will be used in the field at
the AVIM and at the Depot. The ATE used at the Depot will fault
isolate to the piece-part level. It is not known whether the
AVIM ATE software will be a subset of the Depot software. For
this analysis, the AVIM ATE software will be considered a subset
of the Depot ATE software. The degree or amount of "probing"
(manually touching a test point with a probe under ATE direc-
tion) to be used in testing the MP's is unknown. Extensive
probing can double the cost of the ATE software. The Fire Con-
trol Computer has the most complex testing requirements whereas
subsystem N using an 8085A MP probably has the least complex
testing requirements. ATE software costs discussed in ATSS
Economic Study (20) were as high as $700,000 for a mini-computer
not much more complex than the Fire Control Computer used in the
AAH,

Prior ATE software estimates based upon (18) (20) pro-
vided the range of $80,000 to $400,000 for MP's. The complexity
of the Fire Control Computer places it at the top of this range.
It is estimated that the ATE software for the FC computer could
easily exceed $400,000. For this analysis, estimated ATE test
software costs for the MP's in each subsystem are as follows:

A @ $80,000

, C, I, & N @ $80,000

& M (2) @ $95,000

, F, & H @ $180,000

, L, & 0 @ $250,000

, (2 different MP's)@ $260,000
G @ $400,000

B
J
E
D
K

The total ATE software costs can vary by a large amount,
depending upon whether one company develops all the software or
whether each subcontractor develops the software for their own
subsystem. For this analysis, the ATE software will be developed
by one company. Additional cost complexities arise due to the
unknown level of testability. For example, Subsystem B has the
MP and memory plus I/O mounted on two PC boards with excellent
test accessibility, whereas subsystem I has the MP, memory and
I/0 integrated with the other electronic components on the same
PC board thus providing poor test accessibility. The probing
requirements could easily double the software costs of I as
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compared to B even though most of the MP test software is identi-
cal. The ATE software cost estimates are based upon each MP test
program being developed separately and all common MP test programs
being developed together. The common development should result

in 50% less software costs for each additional MP of the same
type. The ATE software cost estimates for the MP's by subsystem
then become:

Individual Software Common Software
(K=$1,000)

A = 80K A = 80K
B, C, I & N = 320K B, C, I & N = 200K
J & M (2) = 190K J & M (2) = 145K
E, F & H = 560K E, F & H = 360K
D, L & O = 750K D, L & O = 500K
K (2 different MP's) = 260K K (2 different MP's) = 260K
G = 40CK G = 400K

$2,540K $1,945K

Note: The above ATE software costs are estimated for
the microprocessors, memory and related I/O only.

ATE software costs to test the entire subsystem, PC
board, or assembly will be more extensive and are
beyond the scope of this study. Subsystem K has

both a 29012, 16 bit MP and a Z 80, 8 bit MP.
Subsystem M has 2 identical MP's.

5. Software Development Systems

Software Development Systems are discussed in Section V,
Para. E. For the purposes of this analysis, the average cost of
a system for conventional MP's is estimated to be $20,000.
Therefore, six subsystems developed by six subcontractors would
cost $120,000. Custom development systems are estimated to cost
$40,000. Therefore, ten subsystems developed by ten subcontrac-
tors are estimated to cost $400,000. The development system for
the common MP design is estimated to cost $30,000.

6. Software Maintenance

a. Experience has shown that the AAH software will be
completely rewritten twice over the projected 10 year life cycle
of the system. These changes may be caused by major changes in
subsystems, weapons and ammo, and tactical use of the AAH. The
level of effort for this activity can vary between 44 and 300
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man-years for the two rewrites. This results from using methods
for estimating software costs discussed in papers referenced

in Para. H, Section V. Thus, it is estimated that approximately
56 man-years per rewrite would be required if each subcontractor
made the rewrite individually. A central organization performing
the rewrites would reduce this to approximately 35 man-years

per rewrite and a central organization using the proposed MIS

and Automatic Program Translator would reduce the level to 22
man-years per rewrite. The two program rewrites are estimated

as follows:

Individual Rewrite 112 M-years @ $100,000 $11.2 million

Central Rewrite with
Automatic Code Gener-

ators 70 M-years @ $100,000 7 million

il
v

Central Rewrite using
Automatic Translator

and MIS Language 44 M-years @ $100,000 $ 4.4 million

b. Software maintenance costs based upon ECP's (Section
V) and $1,000 per line of code are estimated as follows:

(Costs in Millions of Dollars)

Central

Maintenance
Individual Central Common
Maintenance Maintenance Software

Present Software Common Software Common
Present Hardware Present Hardware Hardware

lst yr. (avg.) 7.8 = 1:55 5:6 = b2 4 - 7.5
2nd yr. (avg.) A 3.4 - 6.8 2.6 - 5.1 1.7 - 3.4
Each yr. (avg.) x 8 12 9 6

Total 10 yr. ECP
Life Cycle Cost: 22,9 - 33.8 17.2 - 25.3 11.7 - 16.9

The common software, present hardware would require the
development of the Automatic Program Translator and 1l separate
code generators in addition to and development of an optimizing
compiler completion of the MIS. This effort is estimated to
cost:
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APT $ 450,000

11 Code Generators
(11 x $36,000/code) 396,000

MIS 50,000
Compiler 500,000

$1,396,000= $1.4 million

C. Proposed Common MP Life Cycle Cost Estimate
1. Hardware
a. Full System Emulator

The design described in Appendix A indicates that develop-
ment of the microcode for the six MP's analyzed would cost
approximately $350,000. Using a conservative cost estimate, the
three additional MP's would cost $150,000. The development and
debugging of the hardware is estimated to cost $200,000. There-
fore, the development costs for the Full System Emulator is
estimated to be $700,000. The proposed design would add approx-
imately 100 new line items to the supply system. Thus,;at an
estimated cost of $6,000 per line item, the supply system costs
become $600,000 per year or $6 million over the 10 year life
cycle.

b. Master Instruction Set Implementation

The design of the common MP using microcode to implement
the MIS would be similar to the Full System Emulator. The
principal difference is the reduced amount of microcode. Thus,
the implementation of the MIS and common MP is estimated to be
$200,000 for the hardware design, $50,000 for the MIS microcode
and $100,000 development costs for a total cost of $350,000.

The number of line items introduced into the supply system is
the same as the Full System Emulator. Thus, the cost is estimated
to be $600,000 per year.

2. Technical Manuals and Field Manuals
The MP software sections of the TM's and FM's are
estimated to require between 100 and 300 pages each. At an

average cost of $200 per page, this becomes $40,000 to $120,000
(per TM and FM).
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3. Training-Depot Personnel

The MP's will be repaired at the Depot. Even though it
is planned to use ATE, the repair technicians will require
training on the MP's and how they function in the subsystem.

The use of a common MP and MIS should make the technicians

more proficient. Based upon data compiled in the ATSS Economics
Study (20), six to ten technicians would be trained for six
weexs over the life cycle. This then becomes 36 to 60 man weeks
@ $16.00/hour or $23,000 to $38,400.

4, Automatic Test Equipment

From the discussion in Para. B-4 above, it is assumed
that the proposed common MP design would be as complex as the
Fire Control Computer (subsystems D, L & O are a more realistic
comparison) to test. This, then, results in an estimated soft-
ware cost of $400,000. Considering the probing will be differ-
ent, for each subsystem, the additional cost is estimated to be
12 subsystems x 15,000 per program or $180,000.

5. Software
a. Full System Emulator

The implementation of the Full System Emulator does not
affect the software currently used in the AAH MP's. Therfore,
the software discussions contained in Para. B-5 above applies
to this design.

b. Automatic Program Translation

The use of the MIS requires translation or rewrite of
all the existing software. The Proposed Automatic Program Trans-
lator is considered essential to this option. The Automatic
Program Translator is discussed in Appendix B and the MIS in
Appendix C. Design of the Automatic Translator is estimated at
$450,000 plus $36,000 code generator for the Z-80 and $25,000
computer time. Updating the MIS to include all the current MP
instruction sets would cost $50,000. Thus, this option (Alterna-
tive I) costs $561,000. The addition of a HLL optimizing compiler
can be added when the language is selected. The compiler cost is
estimated to be $500,000.

C. Maintenance

Software maintenance for the AAH covers two principal
categories. These are complete rewrite due to mission and other
changes and software changes required by ECP's. The data for
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the proposed system is extracted from Para. B-5 above. 3

L
roe

ECP

1st yr. $4M -$7.5M

Z2nd YT« 1.7M - 3.4M 0
'“Total 8 yrs. 6M
) EC? Sub Total $11.7M - 16.9M 0
- Rewrite Software (2x) 4,4M - 4.4M ;

Total 10 yr
;..Life. Cycle Cost $l6.1M - 21.3M

E. Packaging

The SOW:redquires a degree 20f repackaging as long as the
overall configuration=is . not changed. Even though the Am 29116
is a single 52 -pin:DIP,»a MPMP requires a number of supporting
devices: such. as microcode ‘memory, microcode sequencer and control
logic. 1In addition to @ physical :PC board area limitation, the
MPMP's ‘require.a-considerable amount of power. Therefore, sub-
systems A, B, C,.I1, & Mawould require redesign of the power
supply as well -as the:MP PC board. There is insufficient data
to properly assess this problem-anea. Fortunately (or unfortun- .
ately), a technical meeting at US ARRADCOM, on 17 March 1980
provide information that subsystem K added a Z 80, 8 bit MP to
the 2901A, 16 bit MPMP falready .inaithe subsystem. It thus appears
that the-Z 80 can be used:-im A, B, C, I & N with very little
packaging problems. The use of an automatic circuit design
aids such as.the Algorex’ "AIDE" {9) will produce a new PC board
layout plus.extensive documentatian at an estimated average cost
of $30,000 per system. -.This .results in an estimated repackaging
cost of $480,000 for the 16 microprocessors.

F. Common Component Economics 4

The proposed common’ MP plus Z 80 design will provide
other life cycle cost avoidance in area of component purchases.
Based upon the new information disclosing the Z 80, the AAH now
has 16 MP's and 12 assembly languages. It is assumed that all
the present MP's in subsystems D, E, F, G, H, J, K, L, M, & O
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can be replaced by the Am 29116 and the MP's in subsystems

A, B, C, I, N & K can be replaced by the Z 80. This then results
in 11 Am 29116 MP's and 6 Z 80 MP's per system. Based upon 3000
systems plus 20% spares, the potential quantities to be purchased
are 36,000 Am 29116's and 21,600 Z 80's. In addition, RAM, ROM
and PROM memories will exceed 200,000 devices.* It is estimated
that a 20%-25% reduction in parts cost would result. At an
average of $50 per device, the current AAH Fire Control System
for 3000 systems plus 20% spares are estimated to cost approx-
imately 257,600 x $50 = $12.88 million. The proposed common
hardware is estimated to cost $10.3 million.

G. Economic/Trade-off Analysis

The Economic/Trade-off Analysis is presented as a
Matrix in Table I.

H. Cost Avoidance

1. First year cost avoidance thru full implementation ©f the
proposed common MP, MIS, Automatic Translator, and optimizing
HLL compiler is estimated between $3.5M and $7.5M with a
potential additional cost avoidance for ATE software between
$1.5M and $2M for a total of $5M to $9.5M.

2. Second Year cost avoidance thru full implementation
as above is estimated between $1.7M and $3.4M.

3. Common MP hardware purchases should result in a cost
avoidance of approximately $2.6M for production and initial
spares provisioning.

*The component count is considered the same even though
one 29116 will replace 4-2901A's. Thus the total MP related
component count is in excess of 250,000 devices.
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SECTION VII

SUMMARY AND RECOMMENDATIONS

The economic/trade-off analysis was based upon the com-
parison of the life cycle costs of the current heterogeneous mix
of seventeen microprocessors composed of ten different hardware
configurations and twelve (12) different assembly languages pro-
ceeding thru production and into the field and (1) common hard-
ware (one type MP) with the current twelve different assembly
languages and (2) the current ten different hardware configura-
tions with a common assembly language and Automatic Program
Translator and (3) a proposed common hardware design (one type
MP) with a common assembly language and Automatic Program Trans-
lator. The detailed technical design concepts for the common
Hardware, Automatic Program Translator, common assembly lan-
guage (Master Instruction Set) and Software Aids are presented
in Appendices A thru D.

Table I, Section VI is a matrix showing the above com-
parison. The proposed common Hardware with a common assembly
language and Automatic Program Translator will result in a cost
avoidance in excess of $40 million over the 10 year life cycle
of the AAH. Cost avoidance between $5 million and $9.5 million
could be realized during the first two years after fielding the
AAH.

It is therefore recommended that:

1. The term "Integral Processor" be adopted as an
approved description for microprocessors integrated
into the PC board packaging with other components.
Provide appropriate means for specifying deliverable
hardware and software documentation during develop-
ment and production.

2. Initiate the development of the Automatic Program
Translator with the Master Instruction Set im-
mediately. This will result in significant soft-
ware maintenance cost avoidance regardless of which
configuration AAH Fire Control System is fielded.

3. Initiate the design of the proposed common MP
implementing the Master Instruction Set, using the
Am29116 and ALGOREX AIDER. This will permit dem-
onstration of the power of the common MP design as
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well as the ability to repackage typical sub-
system MP's.

Establish a program and schedule to phase-in the
common MP into each sub-system.
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INTRODUCTION

The purpose of this task group study is to demonstrate the technical
feasibility of developing a common microprocessor to replace the various
microprocessors (MP) used in the 14 subsystems of the Advanced Attack Heli-
copter (AAH) Fire Control System. It was determined that the current MP's
could be emulated using microprogramming techniques. There are 14 separate
subsystems composed of seven different hardware microprocessor configurations,
which also result in ten different software MP configurations. (1,2) The
government-furnished data provides sufficient software information for six MP's.
The six MP's cover the range from the simplest to most complex MP requirements,
therefore, the design developed in this task group study is considered valid
as the common MP for all AAH Fire Control subsystems.

The Fire Control Computer instruction set and instruction execution times
were specified in the government document entitled, "Critical Item Development
Specification for Fire Control Computer,’ YAH-64, No. AMC-DC-AAH-H3003B,

Date 31 October 1978. It is therefore determined that the Fire Control Computer
and the back-up Fire Control Computer represent the most critical performance
requirements. Thus, the principal design effort described in this study is
directed toward equaling or improving the specified performance requirements.
The simplest configuration of the common MP is described briefly just to
demonstrate that the parts count and capability can be reduced as required by
particular subsystems.

The emulator design is based on the new (not yet released) Advanced Micro
Devices (AMD) Am29116 CPU device. This microprogram controlled device has a
16-bit wide data path, 32 general purpose registers, a barrel shifter, and a
16-bit arithmetic logic unit (ALU) with a wide range of arithmetic and logical
operations.

In addition to the design of the emulator hardware which is based upon a
selection of AMD chips, an estimate has been made of the number of micro-instruc-—
tions required to interpret the machine instruction set of the six microprocessors
being emulated. A cost estimate of generating the microprogrammed emulators and
a discussion of the feasibility of using a high-level language (HLL) to
microcode compiler to generate the emulators concludes the report.

The approach taken to design the emulators was to first define a hard-
ware system that contained all the primitive operational functions required to
represent each of the six microprocessors. Using the bit slice approach
developed by AMD permits great flexibility in defining data paths, register
sizes, and levels of hardware control. The next step was to define the micro-
instruction control word format which supports the execution of the primitive
functions contained in the microprocessors to be emulated. Each microprocessor
internal architecture is mapped onto the proposed hardware system including ALU
operations, memory management, register ccnnections, interrupt processing, data
paths, and shift and status bit manipulations.

The design of the microprogrammed interpreters for each of the six micro-
processors is based upon the-available internal operations of the Am29116 along
with the other supporting chips. Such capabilities as interrupts, direct
memory access, and microsequencing must be factored in at this stage to account
for their interaction with the micro-instruction control functions. The basic
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control flow comnsists of first an instruction fetch cycle which utilizes an
instruction address stored in a program status word (PSW) or a register referred
to as a program counter (PC). The next operation is to determine the addressing
mode used to define the address of the operand to be fetched from storage (if
required). Finally, the required arithmetic, logical, or shift operation is
performed to complete the machine instruction interpretation cycle.

The cost estimate for the generation of the six emulators is based upon
the number of micro-instructions categorized in terms of difficulty of genera-
tion. 1In general, the cost of generating microprograms is much higher than the
cost of conventional programming. Systems programming is generally regarded
as the most difficult type of conventional programming and microprogramming is
more complicated and will cost proportionately more. This topic will be dealt
with below in more detail.

In view of the high cost of generating microprograms, the use of tools to
reduce this cost is highly desirable. There have been some recent developments
in generating microprograms directly from the PASCAL high-level programming
language. The use of this tool to generate either emulators or microprocessor
machine language will be described. A particularly interesting approach is
to generate versions of the present software programs for the six microprocessors
in terms of the "Master Instruction Set' (MIS) language (3) proposed by R. J.
Brachman Associates, Inc. A simple one-time translation would then convert
this standard representation into each microprocessor's machine language. Pro-
gram maintenance could be either at the HLL or MIS level.
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EMULATOR HARDWARE DESIGN

The design of an emulator capable of replacing six existing microprocessors
must begin with the selection of hardware components. The six microprocessors
being replaced are:

1. Motorola 6802

2. Intel 8080/85

3. TI SBP 9900

4. Am2901A - Back-up Fire Control Computer*
5. MECA 43 Fire Control Computer

6. 54LS 181 Special Chip

*There are four other microprocessors configured using the Am2901A
four-bit slice device. These have equal or lesser capability than
the back-up Fire Control Computer.

These units cover a wide spectrum of hardware design including eight and 16
bit data paths, up to 16 levels of interrupt capability, direct memory access,
and up to 16 general purpose registers.

In order to replace this wide range of microprocessor capabilities the
new (3rd/4th quarter 1980) Am29116 CPU chip was selected. This 52-pin device
features up to 32 general purpose 16-bit registers, l6-bit data paths, arith-
metic and logical operations, and a barrel shifter. An internal control line
decoder supports a wide range of internal functions based upon 16 input control
lines driven by an external control word storage unit.

In addition to the CPU, a wide range of other emulator support functions
must be provided to meet the Fire Control Computer requirements. The Am2910
chip provides microprogram sequencing and branch control, control of the
instruction and control word registers, and input to mapping PROMs for condition
codes and device priority. Interrupt processing requires two Am2914 and one
Am2913 device to accomodate up to 16 levels of interrupt priority while an
Am2940 provides direct memory access (DMA) functions. The chips noted above
provide control within the emulator and another group of chips provide such
functions as instruction register, data bus interface, variable cycle system
clock, and multiplexors providing data path control.

A hardware functional block diagram of the emulator design is shown in
Figure 1. This shows the principal data flow paths along with the control
lines. It is assumed in this design that the random access memory (RAM), read
only memory (ROM), and the I/O system controls are accessed via a data bus
and address bus and appear external to the emulator. A more detailed block
diagram of the emulator is shown in Figure 2a and the I/0 and memory management
system is shown in Figure 2b. At this level all the data paths and control
lines are clearly shown along with the AMD deviceaumbers for all the hardware
components. A list of AMD devices and their functions is shown in Table I.

A~ minimal configuration would use the devices marked with an asterisk. The

block diagram of this configuration is shown as Figure 2c.
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A major concern in the emulator design is the exact capabilities of the
Am29116 CPU device. Our information (4,5) spells out in considerable detail
the various functions performed by this device along with its use in several
representative applications. A block diagram of the device is shown in Figure
3 and from this, along with the applications examples, the functional assign-
ment of the 52 pins as shown in Figure 4 was deduced. These assignments are
intended simply to be representative and won't correspond to the actual
assignments to be specified by AMD when the chip specifications are made avail-
able.

Some further discussion of the 16 Am29116 control word inputs is required.
Five of these inputs are required to select one of the 32 general purpose
registers. At least five control inputs are required to specify the ALU and
barrel shifter functions. The balance of five to six pins is required to
control the three muliplexors controlling the input to the ALU along with the
carry, zero detect, status, test, and conditional test multiplexors. Another
input is assumed to select the byte or word mode. This assumes that the
Am29116 has an internal decoder which converts the signals on the four to five
signal pins available into the required number of lines to control the multi-
plexors noted above. In summary, a number of assumptions had to be made
regarding the internal operation of the Am29116. It is believed, however, that
these assumptions are conservative and that the impact on the design of the
emulator microprograms of misconceptions about the control of the Am29116 will
be minimal. (This has been confirmed by AMD since the completion of this
report.) '

Another version of the emulator hardware was designed to incorporate the
Am9511 floating point arithmetic device. This unit provides floating point
and trigonometric calculations to be executed off line. This insures that the
solution of the Fire Control Computer algorithms can be provided equal to or
faster than the present design. Future detailed studies may show that the
solutions do not require the separate Am9511 device. The data is supplied via
the I/0 system and the results are returned via the same path and will require
control inputs from the microprocessor control word.

The first phase in the design of the microprocessor emulator was to
specify the bit assignments for the micro control word. Most of the chips
used in the hardware implementation require inputs from the micro control word.
As can be seen from Figure 4, the Am29116 requires 25 control lines; however,
if the register—to-register transfer capability is to be implemented, then
five more control bits must be added to the micro control word, bringing the
total number of control bits assigned to the Am29116 up to 30.

Figure 5 (a and b) shows the format of the micro-instruction control
word, which indicates that 80 bits are required to control the seven major
chip types along with register, multiplexor, and storage read write controls,
and the optional arithmetic unit. It is possible that some economies in the
number of control word bits required could be achieved by use of decoders to
drive the individual control line assignments. Because of restrictions on
the number of chips that can be accomodated on the printed circuit board
containing the emulator, it was decided to not seek economy in micro-instruc-—
tion bit counts in favor of reducing the number of chips required to imple-
ment the emulator.
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FIGURE 4:

Reserved

Clock Pulse
Status Register Enable

Output Enable

Data

Output Y Bus Enable

Assumed Am29116 Pin Assignments

Pin Pin
# #
i | 52
vee 2 51
vee 3 50
GND 4 49
GND 5 48 fyo [
cp 6 47 {v1
SRE 7 46 [Y2
OET 8 45 |Y3
I15 9 44 Y4
114 |10 43 |Y5
113 {11 42 |Y6
112 |12 41 |y7
IIT 4§13 40 [Y8
110 {14 39 | Y9
19 |15 38 | Y10
18 16 37 | Y11
17 17 36 { Y12
16 18 35 | Y13
15 |19 34 | Y14
T4 20 33 | Y15
I3 21 32|11
12 22 cpl )
4] 23 30| T3
10 24 29| T4
OLE 25 281 cT
OEY  P6 27| 1EN
64

Not Defined
at Present

Y4

\. Data/10
e

Test
>> Enable

Cond. Code OQutput

Input Enable
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Bit # Chip # Pin Name Function

0 DO

1

2

3 Shared Control Lines

4 )

5 )

6 Control Memory ADDR

7 I/0 Branch ADDR

8

9

20 Am2910

11 D11

i2 I0

13 '

14 2910 Control Input

15 I3 ‘

16 PL Pipeline ADDR Fnable

17 VECT Int. VECT Promenable

18 .CCEN Cond. Code Enable

19 MAP Mapping PROM CTRL

20 CI Carry In

21 RLD Register Load

22 OE Output Enable

2 EZ

gg Eg Condition Codes

. EOVR

2 CEN Enable Micro Status Register
2 CEM Enable Machine Status Register
2 Am2904 I0 i
gg 2904 Control Input

312 13

33 IR Register Control

34 | Data Path Data Bus Transceiver Control
315 Cond. Code MUX

o Cﬁ?ﬁi‘s’l Alternate Register Addr. MUX
37 Mem. Write

38 Mem. Read

39 Fetch Cycle

FIGURE 5a: Micro-instruction Word Layout
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LBl T # _ Clilips & Pin. Name Function

40 10
Register Select
Lines

a s
= Control Inputs
49
50 29116
54
55 : 115
56 1'0 Alternate Register
57 I'1 Select Lines
58 : I'2 ’ ’
59 It%
60 1'4
61 T1
62 T2 Test Control
63 T3 Lines

- 64 T4

| 4615 1EN ITNSTR Input Enable
66 OEY Y Bus Output Enable
67 DLE Data Latch Enable
638 OET Output Test Enable
69 SRE Status Register Enable
70 10
71 _
72 Interrupt Control
73 BN, 13 Lines
74 1E Instruction Enable
75 10 '
76 2940 DMALgontrol
77 1o ines
78 OEA Output Enable
79

FIGURE 5 b: Micro-instruction Word Layout
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MICROPROCESSOR ARCHITECTURE MAPPING

The next phase in the design of an emulator for the six microprocessors
consists of mapping these architectures onto the emulator hardware. Before
describing this procedure a slight digression is in order to introduce the
concept of the target and host machine as described by Davies (6). The
emulators for the six microprocessors are implemented on the host machine
described in the previous section. The target machines are the six micro-
processors. The machine language instruction set for each microprocessor
along with addressing modes are interpreted on the host machine, i.e.
Am29116, through microprogramming. This can be accomplished through the
generation of microprogrammed interpreters for each of the six target micro-
processor machine instruction sets. These may be simultaneously resident in
the control storage of the host machine or can be individually resident.
Figure 6 pictorially illustrates the target-host machine relationship.

For the hardware architectures of each target machine to be easily
emulated on the host machine requires that certain hardware features be
available in the host machine. The data paths, register sizes and number, in-
ternal data formats, addressing modes, ALU functional operations, and handling
of flag and status conditions must be implementable within the host machine
hardware for all the target machines. Other considerations include execution
times for the ALU and storage units, register transfer rates, and other
functions which take place in the micro-instruction cycle.

Fortunately the Am29116 CPU meets a wide range of hardware requirements
and features a 100 nanosecond micro-instruction cycle along with 32 general
purpose registers and 16-bit data paths. The associated AMD bit slice LSI
components provide great flexibility in meeting a wide range of required host
machine architectures.

The internal architecture, addressing modes, interrupt levels, instruction
repertoire, and I/0 characteristics of the six microprocessors to be emulated
are shown in Table II. To map the target machine architecture to the host
machine, it is necessary to assign the registers of the target machine to the
registers of the host machine. In carrying out this procedure an attempt was
made to assign common register function to one register in the Am29116. Speci-
fically, the program counter, stack pointer, index, accumulator, and status '
register assignments were made to specific Am29116 registers. Other register
assignments were arbitrary. Since the Am29116 has 32 general purpose registers,
no difficulty was encountered in making the assignments as shown in Table III.
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ESTIMATE OF EMULATOR MICRO-INSTRUCTION REQUIREMENTS

The design of emulators can be broken down into three major phases
corresponding to the machine language instruction processing procedure. The
procedures followed for each target machine instruction are collectively re-
ferred to as an interpreter which executes on the host machine and makes it
look like the target machine to the user. Each machine instruction interpreta-
tion cycle consists of an instruction fetch phase, an operand fetch cycle, if
required, and an execution phase.

The instruction fetch phase simply issues the address of the next machine
language instruction to be executed to the memory address register and requests a
memory read cycle. Along with this operation the instruction control counter is
incremented by some amount proportional to the length of the machine language
instruction that has been fetched. For variable length instruction formats
this may involve decoding the instruction OPCODE to determine if additional seg-
ments of the machine language instructions must be accessed from memory. The
instruction fetch phase is completed by entering the machine language instruction
into the instruction register (IR).

The data operand access phase is only necessary for those machine language
instructions calling for a memory reference. The entry into this phase is deter-
mined by the fetched instruction OPCODE. For most OPCODEs specifying register-
to-register, stack, branch, test, and shift operations, no memory operand fetch
operation is required. The memory access phase is often referred to as the
addressability mode and a wide variety of possibilities exist as shown in Table
IT. Direct addressability simply uses an operand address specified in the fetched
machine language instruction to access a data word. Indirect addressing implies
that the operand being accessed is an operand address and this may be repeated
many times. Indexed addressing involves adding a constant contained in a register
to the address specified in the machine language instruction and a relative
address is simply an offset of constant value added to the machine language
instruction address operand.

Registers are often referred to as containing data operand addresses and
these are used along with increment and decrement operations to cycle through
sequences of data intermixed with instructions. Each target machine emulator
must provide an implementation of the addressability modes of the target machine.
If these involve many possiblities the corresponding emulator micro-instructicn
count can be substantial.

The final phase of interpreting a machine language instruction is the
execution of the functions specified by the OPCODE. It is assumed at this point
that all operand data required is stored in registers and some arithmetic or
logical function 1s to be executed on this data. The result of this execution
is stored in a specified destination register or an accumulator or stack as
dictated by the machine internal architecture. Typically for simple binary infix
operators, e.g. ADD, SUBT, AND, OR, XOR, this operational phase requires from
three to four micro-instruction systems. Thus for a target machine with fewer
than 100 different machine language instructions the number of micro-instructions
to implement an interpreter lies in the 150 to 300 range. Adding the micro-in-
structions required to implement the data operand addressability and instruction
fetch functions brings the total micro-instruction count and corresponding PROM
capacity requirements to the 300 to 400 80-bit control words.

=)
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The overall emulator operational flow is shown in Figure 7. As can be
seen the instruction fetch and operand access cycle is common to each machine
language instruction. The selection of the approporiate micro-instruction se-
quence corresponding to the 8-bit OPCODE is accomplished via an 8X32 mapping
PROM (see Figure 2a). The output of the PROM gives the ROM address of the micro-
instruction sequence. Each of these sequences is terminated with a branch micro-
operation back to the beginning of the instruction fetch phase.

The specific estimate of number of micro-instructions required for the
six emulators is shown in Table IV. The approach in making these estimates was
conservative to allow for the many assumptions that were made in this design
effort. The Am29116 CPU chip has many powerful internal features including the
capability of executing internal register-to-register operations in one micro-
instruction cycle (100 nanoseconds). While this feature was exploited in the
emulator design, a more conservative approach was taken on other functional
procedures.

A major problem with the design of the emulators is the lack of knowledge
of the exact internal operation of the Am29116. This is reflected frequently
in assuming two micro-instruction cycles instead of one. For example, an added
cycle is assumed for shift operations although these are very likely executable
in conjunction with ALU operationms.

To illustrate the emulator design in more d=tail, detailed micro-instruc-
tion sequences for the Intel 8080(85) and Motorola 6802 are shown in Figures 8
and 9, respectively for the fetch, addressability mode, and a sample set of
functional operations.
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EMULATOR DESIGN COST ESTIMATES

Accurate cost estimation procedures have long been a major obstacle to
management of software development projects. The uncertainties associated with
conventional software cost estimation are at least as prevalent in the estimation
of microprogramming costs. Writing of microprograms is generally considered one
of the most tedious and error-prone procedures in the development of computer
systems. There is little or no data available in making such a cost estimate
and computer manufacturers, who might have such data, regard it as highly
proprietary.

The closest analogy to conventional software generation for use as a
measure of the cost of microprogramming would be systems programming. This
category of software generation is generally considered from three to five times
more difficult than conventional programming. Further, it is frequently required
that assembly language rather than a high-level programming language be used to
carry out systems programming which further complicates the task. System pro-
gramming production rates (7,8) have been estimated to be one-third instruction
per programmer hour. This includes design, coding, implementation, validation
and documentation. 1In this estimate, microprogrammer productivity will be
assumed to range fromone~third to one-sixth micro-instruction per hour. The
former rate will be associated with portions of the emulator that are straight-
forward to generate. The latter rate will be assumed for the more difficult
portions of the emulator. Three catagories of difficulty are defined: easy,
medium and hard. Based on an hourly cost of a microprogrammer of $33.00/hr.,
this gives a cost of each micro-instruction as: easy -- $100.00, medium —-
$150.00, and hard -- $200.00. FEach emulator is broken down into nine categories
and a difficulty assignment is made to each category. 1In Table V, the cost
estimate for each emulator is shown along with a breakdown of costs by each of
the nine categories as shown in Table V.

In addition to the generation of the microprograms for each emulator, it
is also necessary to consider the support tools which will be required. These
include a micro-assembler program, a micro-simulator program, and the documenta-
tion support system. Such systems are relatively straightforward to design and
it will be assumed that they are written in a high-level programming language
and execute on commercially available computers, e.g. IBM 370. A cost estimate
for both a micro-assembler and simulator is included in the cost estimates
shown in Table V. This leads to a cost of generating all emulators including
support tools of $350,000.

If the MIS language were to be used as the only target machine language,
as proposed elsewhere in this study, a single but more complex interpreter would
be required. Referring to Figure 6, the six target machine instruction sets
shown on the left would coalesce into the MIS language and the six interpreters
shown in the middle could be replaced by one. This would reduce the size of
ROM required to store the interpreters by as much as 70 to 80 percent and re-
quire less space on the ROM chip carrier.

The feasibility of designing a single microprogrammed interpreter to
execute on the host machine shown in Figure 6 for the MIS language wasn't part
of our study effort. Only preliminary cost estimates could be made and these
indicate that this interpreter would be more complex than any of the six inter-
preters covered in this study. A conservative estimate would be from $60,00C to
$80,C00 and with the support software would lead to a total design cost for
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emulator as less than $200,000. The principle concern here is the requirement
to provide interpretation capability for a set of special operation codes re-
quired to adapt the MIS language to each of the MP systems.

A final comment pertains to the design process of emulators. The first
phase deals with the design of the emulator. Part of this activity, in a
preliminary way, has been carried out in the preparation of this report.

The next step is to actually generate the microcode required for each
emulator. This assumes the prior availability of a micro-assembler and some
means of recording design levels, changes thereto, and release of final designs
to a manufacturing organization.

As portions of the emulator are generated, a sequence of more encompass-
ing simulations are required to verify the performance of the emulator and provide
a means to detect and correct errors in design.

Finally, the installation and check-out of the emulator provides the
verification of operational performance. This requires the replacement of the
target machine by the host machine and its emulator and the software generated
for the target machine is used to exercise the emulator system. These are
complicated procedures and require highly qualified personnel to carry out the
necessary verification steps. The cost estimates for generating each micro-in-
struction required for each emulator are assumed to contain allowances for all
these steps in the design, generation, and installation of the emulator. To be
conservative, it would be wise to add a 25 percent contingency factor to account
for the complexity of generating microprograms and the complicated procedures
required to verify their performance as replacements for the target machine.

One of the leading contributors to the cost of emulators is the tedious
procedure required to generate individual micro-instructions. A tool in common
use in generally conventional software is the high-level programming language.

The increased number of machine language instructions required to represent a
given algoritilmas opposed to the same algorithm expressed in assembly language
for a given target machine is felt to be a small sacrifice to achieve greatly
imprcved programmer productivity. The same argument could hold for generating
microprograms and this possibility is the topic of the next section of this report.
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USE OF HIGH LEVEL PROGRAMMING LANGUAGE TO GENERATE EMULATORS

Through a series of research contract efforts (9, 10), it has been
demonstrated that a high level language (HLL), such as PASCAL, can be compiled
into a non-machine dependent intermediate language format and subsequently
translated into either machine language to execute on a target machine or micro-
code to emulate the target machine on a universal host machine. Both of these
capabilities have applications to simplifying the software and hardware
structure of the set of microprocessors currently installed in the AAH Fire
Control System.

By use of modern compiler development techniques referred to as
translator writing systems (TWS), it is relatively straightforward and inex-
pensive to develop prototype compilers for a wide range of HLL input languages
and to produce intermediate or machine language representations of algorithms
expressed in the HLL. .Several compilers have been developed which produce an
intermediate instruction stream representation referred to as a QUADRUPLE.

This machine independent instruction format consists of an operation part, two
source operand addresses, and a result operand address. It is a relatively
straightforward procedure to translate this format into various machine
language representations or directly into microcode. The latter representation
must be loaded into a special writable micro-control word storage and accessed
through procedures within the host machine's control circuitry. Many modern
day minicomputers, e.g. DEC VAX 11/780, HP 1000, Interdata 8/32, support the
"user microprogram' concept (11, 12) and provide extra writable control
storage, micro—assemblers, and simulators to assist in developing microcode.

In spite of the fact that microprogramming critical software kernals, 1i.e.
program segments executed frequently, can improve system performance by
factors of up to 10, "user microprogramming' facilities aren't used very often.
‘'The primary obstacle is the difficulty encountered in writing and debugging
microprograms.

With the advent of the HLL compilers that can generate microprograms as
output, much of the manual difficulty of generating microprograms is eliminated.
This escape from the tedium of writing microprograms is not accomplished without
some loss in the efficiency of microcode produced by a compiler as opposed to
hand generated microcode. To date, a detailed study of HLL to microcode com-
piler performance hasn't been tested against hand generated microcode. Research
exploring this question is currently underway.

A further question arises as to the utility of using an HLL microcode
complier to generate emulators. A major questlon concerns the ability of an
HLL to concisely express the type of actions described by an interpreter at
the register transfer level. It is quite possible that a special HLL may be
required and this issue certainly commands some in-depth investigation as a
fundamental research issue in emulator design.

To further consider how the techniques described above could be applied
to the activity described in this report, two approaches are suggested. The
first would be to use the HLL to generate a machine independent representation of
the algorithms required by the various weapons and avionics control systems.
Either the QUADRUPLE as notecd above or the MIS language would be candidate
machine independent representations. In either case this intermediate represen-
tation would then be translated directly into microcoded interpreters to Tu
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the host emulator hardware.

The second approach would be to generate the target machine language
programs from the machine independent representation of the operational
algorithm. This would preserve the existing microprocessor hardware. Again
a translator for each target machine would be necessary and would still re-
quire maintenance of each target machine language although it would eliminate
having to maintain programmers who were competent to program in these languages.

The impact of the HLL compiler alternative on the cost of generating
emulators is difficult to assess. The cost impact comes in two areas. The
first is a reduction in the cost of generating the emulators while the second,

and perhaps the most important, is the impact on the maintenance cost of the
emulators. These maintenance costs weren't addressed in this study. In terms
of the initial cost estimates of generating the six emulators, which was esti-
mated above to be $350,000.00, the use of a HLL compiler would probably not
reduce this figure by much. This is because the costs of developing the HLL
compiler and evaluating its performance have large R&D components. Since
these costs are hard to estimate, the overall costs of emulator development
are not easily derived. Again, as noted above, the long-range impact of this
design alternative could be very significant. Further research and life

cycle cost studies must be carried out to demonstrate this conclusion.

In comparing the two approaches, several issues must be considered.
Using a single HLL to express all the weapons system functions would be
extremely desirable especially in the software maintenance phase because
programmers would only have to be skilled in one language instead of six or
so much more complex machine languages. The output of the compiler, whether
target machine languages or microcode for a universal emulator, would only
have to be understood by a few "expert' programmers who would deal with
compiler "bugs" and target machine problems. The choice of an intermediate
format, i.e. QUADRUPLES or MIS, must be carefully explored. Again, only one
language definition is required to be documented and maintained and the main
issue would be efficiency of translation of this intermediate format into
the host machine microcode or machine language. As presently constituted,
the support of software and hardware for the AAH Fire Control System is
going to require many parallel activities involving documentation and main-
tenance of skills in several machine language and hardware systems. Re-
placement of these multiple software-hardware maintenance systems by one
universal emulator and HLL support software system seems far preferable both
in terms of life cycle costs and training and retention of the necessary
skilled personnel. Clearly a one-time cost of switching to this new approach
would have to be written off but the longer-term economic and personnel
requirements appear to more than compensate for the short-term conversion
costs.
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CONCLUSIONS AND SUMMARY

This section will present a number of conclusions derived from the
emulator feasibility and cost estimate study along with some comments and
suggestions for future investigations. The feasibility study was of short
duration and there was a serious lack of information on one of the target
machines, 54LS 181, as is evidenced by the gap in Tables II, III, IV, and V.
It is believed, however, that the central theme of the study, i.e., can
emulators be designed for the six target machines using AMD bit slice LSI
components, has clearly been answered in the affirmative.

The specific conclusions of the emulator feasibility study are listed
below:

A. A host machine can be designed using AMD bit slice
components along with the Am29116 CPU which can support
emulators of the six target machines.

B. Emulators for the six target machines can be designed
employing an 80-bit (approximately) micro-control word.
The emulators have been estimated to require from 300 to
400 micro~instructions.

C. The micro-instructions for the six emulators could be
stored in a ROM of from 2000 to 4000 words (80-bit).

D. The generation of the micro-instructions to interpret
the MIS language on the host machine could lead to a 50%
reduction in the cost of emulating the six types of
target machines. Further study is required to refine
this estimate.

E. The cost of generating the emulators would be $250,000.00
plus the cost of developing a micro-assembler and simula-
tion support tools. These are estimated to cost ’
$100,000.00.

F. The cost of generating and maintaining the emulators could
be reduced significantly if they were expressed in terms
of a high level language and then compiled into the
micro-instructions required to interpret the target
machine language instructions.

The findings of this study are preliminary in nature and much more
detailed information about the machine language instruction sets and internal
register layouts (especially for target machines D, K, and F) will be required
to insure that adequate facilities are available in the proposed emulator
hardware to accomodate this equipment.

While it is believed that the 100-nanosecond internal processing speed
of the Am29116 is ample to provide target machine language instruction execu-
tion times equal to or shorter than the equivalent times associated with the
six microprocessors, this must be firmly established by timing studies. It
also may be possible to reduce the width of the control word from the present
80-bit size. This would require careful analysis of what control lines are
in the same compatability class, i.e., are never energized in the same control
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word, and introduce decoding switches to reduce the number of control word
bits required to drive these lines.
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APPENDIX B

REPORT OF A TASK STUDY
ON
AUTOMATIC TRANSLATION OF PROGRAMS FROM ONE COMPUTER TO ANOTHER
IN
U.S. ARMY ADVANCED ATTACK HELICOPTER (AAH) FIRE CONTROL SYSTEMS

l. SUMMARY OF PROBLEM AND ALTERNATIVE APPROACHES

This study of automatic translation of computer programs
from one computer to another was conducted in the context of the
Advanced Attack Helicopter (AAH) Fire Control Subsystem. Pres-
ently the Fire Control System is designed using 14 embedded
microprocessors of 9 different types, each programmed to perform
an individual task. These programs have been developed in the
assembly languages for the respective microprocessors. They
amount cumulatively to approximately 200,000 lines of assembly
language code. The large number of computer types and computing
languages would make future maintenance, modifications and im-
provements very difficult and expensive. The U.S. Army is con-
sidering replacement of these embedded mlcroprocessors by a
single microprocessor. We refer to it in the following as the
standard-microprocessor. Its instruction set is referred to as
the master-instruction-set. Reprogramming of the respective
prcgrams, manually, using the master instruction set, would also
require extensive testing for verification of the operation of
the entire system, as very likely there will be differences due
to the reprogramming effort.

Two approaches have been envisaged to solving this prob-
lem. The first approach, which is a subject of a separate study
task, is that of emulation; namely incorporating in the standard
mlcroprocessor micro code for the instructions of the respective
microprocessors, and then directly executing the original prog-

rams. We will not refer to this approach as it is the subject
of a separate study task.

The other approach consists of creating a software sys-
tem which will automatically translate the source assembly
language programs of the respective microprocessors into the
standard-microprocessor master-instruction-set language.
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The present study is concerned with using an automatic
translation system to generate programs, in the language of the
master-instruction-set, based on the assembly language programs
of the original respective microprocessors.

The requirements of such translation are quite severe,
as follows:

1) An all automatic translation process should apply to
the overwhelming majority of the source programs (say about 90%).
Otherwise if extensive manual intervention is required then the
possibility of introducing errors arises and a thorough verifi-
cation of the system will still be needed.

2) The automatically generated object programs must be
highly efficient in use of memory space as well as in execution
time so that the revlacement does not contradict real-time rules.

It is assumed however that the standard-microprocessor
is considerably more powerful than the microprocessors that it
replaces.

3) In the process of translation it would be necessary
to generate also documentation for the programs, to facilitate
future maintenance activity. It is assumed that the source
programs are presently not adequately documented.

Figure 1 is a schematic diagram of the information flow
in the translation of a source assembly language program, for
a respective microprocessor, into an object standard-
microprocessor machine language program, with program documenta-
tion being generated as a by-product. Figure 1 portrays two
alternative approaches.

The input to the translation process is an individual
source assembly language program for a respective microorocessor
shown on the left of Figure 1. The first step is common to both
alternatives. It consists of a translator that accepts the
source assembly language, program for any one of the nine dif-=
ferent microprocessor types, and oroduces a uniform-tabular-
representation for the respective program. For each source
code statement there would be an entry in the table indentifying
the operation, the operands and their addressing modes, the
locations of instructions and data in the original microprocessor
and the registers that are effected by the operation (e.g. over-
flow etc.). As shown in Figure 1, the translator would reference
a specification of each of the respective source assembly
languages in the translation process.

Alternative I consists of translation of the uniform-
tabular-representation of the program into a orogram using the
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the master-instruction-set language. Alternative II consists of
a "reverse complex" to translate the uniform-tabular-representa-
ticn into a High Level Language, such as Fortran. Both
alternatives require employing complex software methods. Alter-
native II would generate superior documentation of the program
and will be completely machine independent. However Alternative
II is more difficult to achieve due to the machine independence
related restrictions existing in a High Level Language. In both
alternatives, the programs that are generated by the translators
must be further processed by additional language processors, an
assembler in Alternative I and a compiler in Alternative II. to
produce the standard micro-computer language program.

The conclusions and recommendation of the study are
briefly stated in Section 2. The remainder of the report dis-
cusses the process of Alternative I in Figure 1. Section 3
describes the translator from the source assembly language to
a uniform-tabular-representation. Section 4 concludes with the
discussion of the translator from the uniform-tabular-
representation to the master-instruction-set language. To
illustrate the operation of the translator, we have designed a
translator for a subset of the instruction set of the M6800
microprocessor into the 780 microprocessor. The assembler for
the standard-microprocessor shown in Figure 1 is not discussed
here as it is assumed to be available from the manufacturer of
the standard microprocessor. As will be indicated the design
of an Alternative II system poses several very difficult prob-
lems, in addition to the problem areas inherent in Alternative
I which are common to both alternatives. This is one of the
reasons wny we recommend postponing Alternative II and why it
is not discussed in detail in this report.

2. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

This section discusses the advantages, disadvantages and
risks associated with the two alternatives and the individual
processes portrayed in Figure 1. While advantages and disad-
vantages can be stated in terms of the functions of the respect-
ive processes, risks are associated with major problems that
much be solved and with limitations that may have to be imposed
on the ability of the system to translate certain classes of
assembly programs. As already indicated previously, at best
we expect that the system would be able to translate the great
majority of assembly programs. There will however, always be
some programs that it would be impossible to translate fully
automatically. The risks are alsoc associated with estimates for
the technical manpower that would be required for solving cer-
tain problems.

We foresee two advantages of Alternative II over
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Alternative I as follows:

1) The High Level Language would represent a better
documentation of the program then would be possible to achieve
based on the master-instruction-set assembly-language. This is
conditional however on success in generating a High ILeével Lan-
guage program that is considerably shorter than the equivalent
source assembly program, which is indeed a very difficult task.
The advantage in documentation is derived from the fact that,

a program is described in a High Level Language on a much higher
level, omitting much detail that is concerned with machine level
implementation of the program. Therefore it would be easier to
understand and also to modify it.

2) The representation of the assembly language program
by a High Level Language program eliminates all the machine de-
pendent aspects of the implementation. Therefore it would be
readily possible to transport the respective program to run on
other machines in the future. While this is not an immediate
requirement it may prove valueable in the long run.

The machine independence achieved in the High Level
Language is also the source of major difficulties in accomplish-
ing the translation. It is likely that only a greatly restrict-
ed class of programs can be "reversed compiled" as compared with
Alternative I. The designers of High Level Languages have inten-
tionally eliminated all features in the languages that would
allow specification of physical implementation of the respective
conputations. For instance, the following operations, which

are used by assembly language programmers, cannot be stated in a
High Level Language.

1) High Level Language programming distinguishes between
the program and the data areas in the memory and does not allow

the specifying of execution of program instructions in the data
area.

2) It is not possible to specify in a High Level Lan-
guage computing physical addresses, of the instructions or the
data. Indexing is allowed in the data area only. Thus in many
instances the use of index registers, indirect addressing and
other computing of addresses, widely used in an assembly lan-
guage, cannot be expressed in a High Level Language.

3) The methodology used in the arithmetic unit of a
specific computer and the conditions and flags used in arithmetic
operations cannot be referenced in a High Level Language (except
through interpretation of these operations).

4) A High Level Language imposes limitations on
91 q
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operations on variables with different data tyves, while an
assembly language programmer frequently can get around such
restrictions.

5) Relative position of variables cannot be stated in a
High Level Language. Therefore memory in the standard-computer
cannot be allocated similar to the source microprocessor.

The problems posed by these restrictions are quite
severe. It would require that the translator extract the high
level concept of the computation from the source assembly pro-
gram. Additional information, may be required, which would have
to be prepared manually and submitted to the reverse compiler.

In addition to the above problem areas the design of an
Alternative II system includes all the envisaged problems in
Alternative I. Alternative I therefore is far less risky than
Alternative II.

We recommend implementing Alternative I first. Based
on the experience gained in the development of an Alternative I
system it would be possible to assess whether an Alternative II
system should be further explored. We will focus here, there-
fore, on Alternative I only.

In order to further reduce the risks in Alternative I we
recommend that the design of the system utilize to the fullest
possible extent the similarities in arithmetic operations and
in memory allocation between each of the nine microprocessors
used in the AAH Fire Control System and the standard-
microprocessor that would replace them. The arithmetic opera-
tions and number systems of each source microprocessor will be
modelled in the standard-microprocessor. Further, similar
structures of the memory program and data areas, of the source
and object programs, would be retained as closely as possible,
even . if this would reduce the efficiency of the object vrogram.
Otherwise the task of translation would be far more difficult
and may involve much larger inefficiencies. This would, how-
ever, be facilitated by the greater power of the standard-
microprocessor and its master-instruction-set.

Further, we will exclude from the class of assembly pro-
grams, that would be translatable, those programs which incor-
porate operations on locations, either in the odrogram or data
areas, where these locations serve as operands of other jump or
execute instructions. However we will allow the above in the
limited following case. The execute or jump overation instruc-
tions located in the data area will be accepted provided the
assembly language representation of these locations is supplied
by the user, in addition to the source assembly »rogram.
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Referring again to Figure 1, Alternative I is divided
into two processes:

1) A translator from the source assembly language of a
particular microprocessor into a uniform-tabular-representation
of the program.

2) A translator from the uniform tabular presentation of
the source program into an assembly language program utilizing
the master-instruction-sets.

The first of these processes represents well known
methodology. It can be based on similar systems develo%ed to
date with which there has been considerable experience. 1,2)

Thus the design and implementation of this process involves

very little risk, if any at all. Systems of this type exist
presently and can be readily adapted. One system of this type,(l)
developed and used for several years at the University of
Pennsylvania, is described in Section 3 and an example of design
of a translator form M6800 to the 280 microprocessors is given

in an appendix. The work in implementing the process would con-
sist primarily of specifying the syntax and some semantics of

the nine microprocessors. We estimate that this effort would
require approximately 2 man years of attention by senior computer
software specialists over a period of six to nine months, plus
computer time.

The second process described above represents greater
risks. We_have surveyed the published technical literature in
this area(l through 7)3h4 have found relatively little directly
relevant previous experience. Based on the problems that we
have studied, our conclusion is that the corresponding process
is practical and can be implemented. To locate and investigate
the problems that may arise we designed in detail a system that
translates a subset of the instructions at the M6800 micropro-
cessor into Z80 instructions, which is reported in the appendix.
The documentation produced by this process would be similar to

that produced by several commercial assembly language automated
flowcharting systems.

Finally, in real-time sensitive programs, the execution
time of the program by the standard-microprocessor will be
mocelled to verify that execution time will not exceed the time
required by the source microprocessor. The standard-
microprocessor will be generally faster than the source micro-
processors. It is assumed that the system may be sensitive to
exceeding maximum execution times but not sensitive to minimum
execution times.

The development period is estimated at 9-12 months. It
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will require 3 man years of effort plus the needed computer time.
A major portion of this effort will be devoted to defining the .
correspondence of the hardware between each one of the source
microprocessors and the standard microprocessor. These defini-

tions will be referenced in the translation process (see Figure
i) -

Assuming that these two processes are implemented one
following the other, the total required development time would
be between 1-1/4 to 1-3/4 years at the cost of approximately 5
man years of effort plus the needed computer time.

3. TRANSLATION OF ASSEMBLY LANGUAGE PROGRAMS OF 9 MICROPROCESSORS
INTO A UNIFORM-TABULAR-REPRESENTATION

The first translation process analyzes the syntax and
local semantics of individual statements in an assembly language
program of any one of the nine source microprocessors and pro-
duces a uniform-tabular representation of the program. It is
based on advanced state-of-the-art syntax analysis techniques
which have proved to be invaluable. Specifically, a parser pro-
gram for these assembly languages will be generated automatical-
ly. 1In addition to checking the statements for syntactic and
some semantic errors, the generated program will also store the
statements in a tabular form for later processing.

This capability exists in a number of state-of-the-art
systems.(l'2 Following is a description of such a system, the
Syntax Analysis Program Generator (SAPG) developed at the
University of Pennsylvania. 4 The Syntax Analysis Program (SAP)
for the source assembly languages will be generated automatically
by the SAPG. As shown in Figure 2, the SAPG produces the Syntax
Analysis Program (SAP) for analyzing assembly language state-
ments, based on a specification of each assembly language ex-
pressed in the EBNF/WSC (Extended Backus Normal Form with
Subroutine Calls) meta language.

The EBNF/WSC includes the traditional concepts of BNF.
BNF uses sequences of characters enclosed in anagle-brackets < >
called non-terminals to give names to grammatical units, for
which substitutions may be made. BNF consists of a series of
production rules of the form "A::=B". "A" is a single non-
terminal symbol and "B" is one or more alternative sequences of
terminal or non-terminal symbols that can be substituted for A.
The alternatives are separated by the meta-symbol "|". To
facilitate language description, BNF was extended to EBNF with
two well-known meta-symbols: [ ] representing optionality and
[ ]* representing zero or more repetitions.

The specification of the source assembly language that
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Repetition zero or more times is effected by generating a GO TO
to the statement testing for recognition. Subroutine names em-
bedded in the EBNF/WSC get a CALL generated for them in place.
Calls to other subroutines not explicit in the EBNF/WSC are
also generated. These include calls on "housekeeping" subrou-
tines of the SAPG and calls to LEX, a subroutine to scan and
return the next token in the object language. The code genera-
ted by the SAPG would become one procedure in the SAP. Note
that the keywords and delimeters that the language definer uses
in the production rules are preserved in the generated SAP.

A refined system flowchart of the SAPG and SAP showing
the types of supporting routines appears in Figure 3. The
manually-written syntactical supporting routines are of one of
several types:

(1) a lexical analyzer which returns tokens of syntactic
units to the SAP for analysis;

(2) statement semantics checking routines;
(3) error message handling routines;

(4) encoding routines to compact information for further
efficient processing; and

(5) statement storage routines.

The purpose of the lexical analyzer is to scan for syn-
tactic units or "tokens," using such delimeters as blanks and
certain punctuation marks, and to return tokens to the Syntax
Analysis Program (SAP) for syntactic checking. The
automatically-generated SAP calls upon the lexical analyzer
(LEX) whenever it needs the next token. The lexical analyzer
is based on the finite state machine concept. Each state of
the machine corresponds to a condition in the lexical processing
of a character string. At each state, a character is read, an
action is taken based on the character read (such as concatena-
ting the current character to previous ones or returning the
entire token to the SAP), and the machine changes to a new state.
The entire character set is divided into categories such as
illegal characters, delimeters, "normal" characters, etc. A
state transition matrix is used. The rows of the matrix repre-
sent the character classes of the previous character, while the
columns represent those classes of the current character. The
entries in the matrix indicate the action to be taken and the
next state. The actions involve such steps as concatenating of
a character, ignoring a character, detecting an illegal charac-
ter, returning a complete token to the SAP, etc., and setting a
"next state."
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is input to the SAPG consists not only of the syntax specifica-
tion but also of subroutine names embedded within the EBNF;
therefore the name "EBNF with Subroutine Calls" (EBNF/WSC). The
SAPG provides a capability to branch to these subroutines upon
successful recognition of a svntactic unit. Thus, they complete
the SAP to enable it to check statement semantics, to encode,

to produce error messages, and to store statements for later
processing. The invocations of these subroutines are generated
automatically by the SAPG, while the supvorting subroutines
themselves are written manuallyv. The definition of a subset

of M6800 microprocessors assembly language in EBNF/WSC abpears
in the appendix. The subroutines to be invoked are indicated
between slashes (/.../). Note that subroutine calls are made
after the successful recognition of syntactic units up to that
point.

The SAP generated by the SAPG according to the EBNF/WSC
is supplemented and linked with the routines. The SAP accepts
statements in the assembly language and checks them for syntac-
tical correctness, and local semantics. It produces a listing
of the statements, syntax diagnostics, an encoded stored ver-
sion of the statements, and a cross-reference report.

The SAPG is a small compiler in itself in that it pro-
cesses a specification in the language EBNF/WSC and produces a
program (SAP). It performs in three passes.

In pass 1. each production is scanned, and its components
are encoded into a set of tables. Non-terminal symbols apvear-
ing on the left-hand-side of a production (new production names)
are put into a symbol table, while non-terminals appearing on
the right-hand-side of a production are out into a work table.
Terminal symbols in a production are put into a terminal symbol
table. Subroutine calls are put into yet another table.

In pass 2, the symbolic references in the work table
(i.e. non-terminals on the right-hand side of the original
production) are resolved. Pass 2 checks that each right-hand-
side non-terminal symbol in the work table is defined, and links
it to the corresponding entry in the symbol table. Undefined
non-terminals as well as circularly-defined non-terminals can
be detected in these table searches.

Pass 3 of the SAPG is the code-generation phase that
produces the SAP in PL/l. It is only entered if no errors were
encountered in the previous phases. For each EBNF/WSC oroduc-
tion, a PL/1 procedure is generated. Each one returns a bit:

1l if the recognition was successful; 0 if it was unsuccessful.
The exclusive nature of EBNF production rules and alternatives
is effected by generating nested PL/1 IF-THEN-ELSE statements.
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Some of the semantics of the specification statements
can be checked by the routines. An example of a local semantics
checking routine is one which checks the memory locations.

These manually-written routines are invoked automatically by the
SAP by virtue of their specification in the EBNF/WSC.

Error subroutines stack error diagnostics to print out
upon recognition of a syntactically-incorrect statement. Upon
reaching an incorrect syntactic unit, the automatically genera-
ted SAP does not print its own messages, but expects the
corresponding diagnostics to be on an "error stack." For this
purpose, subroutines have to be written to give a user effec-
tive information when statements are incorrect. Specifically,
an error message has to be stacked for each expected terminal
symbol in the assembly language in case the token is missing
or incorrect. Upon reaching incorrect syntactic units, the
automatically generated SAP does not print its own messages, but
expects the corresponding diagnostics to be on an "error stack."
For this purpose, subroutines have to be written to give a user
effective information when statements are incorrect. Specifical-
ly, an error message has to be stacked for each expected
terminal symbol in the assembly language in case the token is
missing or incorrect. If the expected token is found, the SAP
simply pops the corresponding error message and continues; if
the expected token is missing or incorrect, the SAP pops the
corresponding error message, prints the statement number and

message, scans for the end of the statement delimeter, and con-
tinues.

One product of the process is the Error Diagnostics
Report containing the messages. Each message gives the diagnos-
tics provided by the error routine and provides the exact
location of the error so that it can be corrected and resubmit-=

ted by the user easily. If no syntax errors are found during
the syntax analysis phase, a message will be sent that "NO
ERRORS OR WARNINGS DETECTED." But if error diagnostics are

produced, a flag is set to disable continuation of analysis
beyond the syntax checking.

Encoding routines encode statements into the attributes
in the uniform tabular representation. All of the names or
addresses when provided in the source assembly program are kept
intact in internal form for use by the object program. Many
of the descriptions and attributes are however encoded for more
compact and efficient processing later. One encoding routine
is written for each encoded attribute. Each routine is invoked
automatically after recognition of the syntactic unit by the
SAP. The invocation is automatically generated as part of the
SAP (by the SAPG) by virtue of its specification in the EBNF/WSC.
The attributes of the tables consist of an operation, it's
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arithmetic function, registers effected, operand addresses with
modes of addressing, location of instructions, etc.

Storage routines collect the strings of names and other
encoded information for each assembly language statement, and
pass them to the STORE system, which is a sub-system in itself
to store the statements in a uniform-tabular-representation
for later processing. Such storage-invoking routines are called
at the end of scanning each statement. The storage subsystem
which is called by these routines, stores the statements in the
output table.

At the end of the syntax pass, we have the entire set of
statements stored in a manner convenient for further analysis.
The storing subroutines which invoke the use of the STORE system
act as an interface between the automatically generated SAP and
the second process described in Section 4. The storage system
is an extension to the capabilities of the SAPG since it is
general purpose in nature and is independent of the nature of
the language specified, and could be used for processing other
languages.

Finally, there are just a few "housekeeping" type sub-
routines which need not be written by the language definer
because they are provided by the SAPG, but which need to be in-
cluded in the EBNF/WSC.

4. GENERATION OF A PROGRAM IN THE MASTER-INSTRUCTION-SET ASSEMBLY
LANGUAGE

This section discusses the second translation process
shown in Figure 1, which transforms a uniform-tabular-presentation
of the source assembly program into an object program in the
master-instruction-set assembly language.

Our approach to this translation process can be visualized
as modelling the source microprocessor, with its source assembly
language program and data, in the standard-microprocessor and
its master-instruction-set assembly language and data. The model-
ling can be further envisaged in three parts: hardware, program
and data.

The modelling of the hardware is completely independent
of the individual source assembly program that is being trans-
lated. This modelling activity defines corresponding arithmetic
operations, registers, numbering systems, memory and input/
output in the two microprocessors. This correspondence will have
to be defined manually for each source and standard micropro-
cessor pair. It will be stated in a tabular form and will be
referenced by the translating process in the course of
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translating the program.

The correspondence between the source assembly language
and data and the standard-microprocessor assembly language and
data would be based on the individual program that is being
translated.

The degree of correspondence in the modelling would also
depend on certain characteristics in the source assembly lan-
guage. We can basically distinguish three cases. The most
severe case is where the source assembly language contains ab-
solute addresses in the program area as operands of jump or
execute instructions. In this case we will have to model the
program area in the standard microprocessor to correspond to the
program area in the memory in the source microprocessor. Wher-
ever the space required for corresponding instructions in the
standard microprocessor exceeds the space required for the cor-
responding instructions in the source microprocessor, it will be
necessary to utilize an overflow program memory area in the
standard-microprocessor memory, and insert there instructions
which require more space. Also correspondence would have to be
established between the data area in the source microprocessor
and the data area in the standard microprocess.

A less severe case is where symbolic labels are used
throughout the source assembly language programs as operands
of jump instructions. In this case it is not necessary to re-
tain a one to one correspondence between the two program areas.

The simplest case is where also the operands are re-
ferred to exclusively in symbolic form and no absolute addresses
are used. In this case there is also much flexibility in
allocating data areas.

This process can be visualized as consisting of five
sequential phases: model definition, preliminary code transla-
tion, optimization, comparison of execution times and documen-
tation. These phases are briefly described below.

The first phase consists of scanning and analysis of
the entries in the uniform-tabular-presentation of the source
program, to determine which of the above three cases applies;
namely examine the addressing scheme-whether it is symbolic or
reguires also the computing of address values, and whether the
operands are all in the data area or also in the program area.
Based on this, the program and data memory areas of the source
microprocessors may have to be mapped into the memory of the
standard microprocessor.

The second phase consists of preliminary code generation
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in the master-instructioa-set assembly-language. The transla-
tion is performed on eaca source assembly language statement
(now in the uniform tabular representation). If possible, the
object language instruction(s) is (are) placed in the area in
memory corresponding to the respective source language instruc-
tion, if the object languiage instructions require more space
(especially where there are micros) then a jump instruction is
inserted in the appropriate location and the corresvonding
object code is placed in a overflow area as a subroutine with a
return to the next instruction. This process scans the entire
source program presentation a second time. It results in a pre-
liminary program in the master-instruction-set language. Note
that generally the instructions for the source microorocessor
(excluding the micros) constitute a subset of the master-
instruction-sets. Also zhe instructions in the standard-
microprocessor are on the whole more compact and perform faster
then in the respective equivalent instructions of the source
microprocessor. Therefore in the great majority of cases it
should be possible to translate each instruction in the source
program into a single instruction in the object vrogram.

The third phase is concerned with optimization of the
program obtained in the previous phase. The basic notion here
is that the standard microprocessor has in most cases more mem-
ory and working registers then there are in the source micro-
processor. The additional memory and registers can be traded
for reducing the computation time. The basic notion here is to
try wherever possible to utilize registers in place of memory
addresses. This phase requires a third scan of the program
in order to create a graph representation that is used to
identify the scope of each iteration, each subroutine and each
program branch. These subparts of the programs, constitute
subprograms which will be individually optimized. The global
variables of the program which are used to communicate between
the above mentioned subprograms should be retained in main
memory. Variables which are local to the subprograms can be
moved to the register and thereby reduce the needed memory area.
Also sequences of instructions in the source program may be re-
placed by a single of few more powerful instructions of the
master-instruction-set. This may reduce both the number of
instructions (and execution time) and the program memory area.

Note that the correspondence of individual subprograms
in the source program anc the object program must be retained.

Based on this graph, it will be possible in the next
pPhase to scan the subprograms in the source and object programs
and compute execution times for these subprograms. The compari-
son of overall execution times would be possible in some
instances giving a clear indication whether maximum execution
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time requirements for a real time system will be met by the
replacement standard microprocessor. In other cases where
execution times are data dependent it will be possible to pre-
sent to the user only comparisons of performance times for the
subprograms. Further analysis would then be required by the
user to determine whether the replacement-microprocessor will
meet real time requirements.

The final phase is concerned with generating a documen-
tation of the program. As already indicated the approach that
we propose is essentially to use the techniques that are in-
corporated in a number of commercial assembly language auto-
matic flowcharting systems. The experience to date is primarily
in flowcharting assembly language programs for the IBM system
370. The documentation will also include cross reference
listings and data field analysis which will aid in program
maintenance and modification. To obtain a more readible flow-
chart the individual assembly language operation may be
expanded to equivalent English words. Vectors of data which
are scanned in iterations may be also identified by respective
iteration instances. The user would also have an option to
obtain a full flowchart showing each instruction, or ultimately
grouping the instructions in each of the subprograms (identified
in phase 2) as a single entry in the flowchart. An edited list-
ing of the assembly language program will also be produced with
comments identifying each of the subprograms.

APPENDIX

In the following example, a SAPG generated program will
be used for the assembly language translation from the M6800 to
280 microprocessor. This is an automatic translator for the

cases where the references to real addresses do not effect the
translation.

The principle of translation is parsing each source as-
senmbly instruction and calling appropriate semantic routines to

generate corresponding object assembly language instructions for
it.

The SAPG program will accept a set of syntax rules which
describes the syntax of the source assembly language (including
macros) . The syntax rules include semantic routine calls. The
output of SAPG will be a driver program which parses the source
assembly program and calls on a set of manually prepared seman-
tics routines to generate object assembly instruction sequences.

We have to write a set of syntax rules for source as-

sembly language using EBNF/WSC and prepare a set of semantic
routines. 103
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The source machine is M6800.
The target machine is 280.

For the sake of simplicity we chose a subset of the
M6800 instruction repertoire.
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The instructions subset for the M6800 is listed as
follows:

ADDA A+M->A
ADDB B+M-+B
INC M+1-M
INCA A+1-+A
INCB B+1-+B
DEC M-1-M
DECA A-1-+A
DECB B-1+B
LDAA ' M-A
LDAB M-B
STAA A-M
STAB B-M
SUBA A-M-+A
SUBB B-M+B
CMPA A-M
CMPB B-M
BCC Cc=0
BCS c=1
BEQ z=1
BMI LAl
BVS =1
JMP

JSR

RTS
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The syntax rules for this instruction subset are as

follows:
< assembly-program > ::= [ <instruction> ]*
< instruction > ::= /RESET LABEL/ [< label check >< NAME >
/SAVE LABEL/]
BODY  /END LINE/

< label check > ::= /ANY_LABEL/
< BODY > ::= <ADD> | <INC>|<DEC>|<LDA>|<STA>|<SUB>

| <CMP> | <BRA>|<JMP>|<JSR>|<RTS>
< ADD > ::= ADD < TWO OPERAND > /GADD/
< two_operand > ::= /SAVE_OP/ < A_OR _B>,<XOPERAND>
< A_OR_B > ::= A/SAVE_REGA/ | B/SAVE REGB/
< LDA > ::= LDA < TWO OPERAND > /GLDA/
< STA > ::= STA < TWO OPERAND > /GSTA/
< SUB > ::= SUB < TWO OPERAND > /GSUB/
< CMP > ::= CMP < TWO OPERAND > /GCMP/
< INC > ::= INC < ONE_OPERAND > /GINC/
< ONE_OPERAND > ::= /SAVE OP/ /RESET _AB/ < ONLY OPERAND >
< ONLY_OPERAND > ::= <A OR B>|<OPERAND>
< DEC > ::= DEC < ONE OPERAND > /GDEC/
< BRA > ::=<BRA_CODE> /SAVE OP/ < OPERAND > /ASSBRA/
< BRA_CODE > ::= BCC|BCS|BEQ|BMI|BVS
< JMP > ::= JMP < OPERAND > /ASSJMP/
< JSR > ::= JSR < OPERAND > /ASSJSR/
< RTS > ::= RTS /ASSRTS/
< OPERAND > ::= < NAME >/SAVE_OPD_NAME/|< NUMBER >/SAVE_ OPD_NUM/
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1)
2)
3)
4)
5)
6)
7)
8)

9)

1)

2)

3)

4)

There are nine clobal variables:

DCL  HAS_LABEL BIT(l}; /* 0=NO, 1=HAS */
DCL LABEL CHAR(6); ,/* STORE LABEL */
DCL OP_CODE CHAR(3); /* STORE OP_CODE */

DCL HAS REG BIT(1l); /* 0=NO, 1=HAS */

DCL REG CHAR(1); /* 2 OR B */

DCL KIND OPD FIXED BIN; /*

1=N&ME,

DCL OPD_NAME CHAR(6): /* SYMBOL */

2=NUMBER */

DCL OPD_NUM FIXED BIN; /* IMMEDIATE DATA */

DCL INDEX USE CHAR(1l); /* 'X' OR 'b' */

All the semantic routine can be defined as follows:

RESET LABEL: PROC;
HAS LABEL = '@'B;

END RESET_LABEL;

ANY LABEL: PROC RETURNS (BIT(1l));

RETURN (LINEBUF (1) — ='b');

END ANY LABEL;

SAVE LABEL: PROC;
LABEL = LEXBUFF;

END SAVE LABEL;

SAVE OP: PROC;
OP_CODE = LEXBUFF;

END SAVE OP;
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5) SAVE _REGA: PROC;
HAS REG = 'l'B;
REG = 'A';
END_SAVE REGA;
6) SAVE REGB: PROC;

HAS REG = 'l'B;

END SAVE REGB;

7) RESET_AB: PROC;

HAS REG='(' B;
END RESET AB;

8) SAVE_OPD NAME: PROC;
KIND OPD = 1;

OPD NAME=LEXBUFF;
END SAVE_OPD NAME;

9) SAVE OPD NUM: PROC;
KIND OPD = 2;
OPD_NUM = CONVERT (LEXBUFF) ;

END SAVE_OPD NUM;

Since Z80 has only one accumulator (REG A), all the arith-
metic and logic operations have to be done in it. But in M6800,
there are two general purpose registers (ACCA and ACCB). We can-~
not assign the only accumulator in Z80 to either ACCA or ACCB.

So we will assign the REG B and REG C in 280 to store the value

of ACCA and ACCB respectively.

In Z80 there are two index registers (IX and IY), we can
arbitrarily assign IX to store the value of IX in M6800.

In M6800, there are five different addressing modes, we

109

ASSOCIATES, INC.



will define the corresponding instruction sequence in Z80 for
each of these addressing modes.

1)

2)

3)

4)

Immediate mode: In Z80, this is also an implemented
addressing mode, so thers is no problem to simulate.

Direct & Extended mode: In Z80, only LD instruction
allows direct addressing mode. So for all other
instruction we have to load the address into HG
register pair., then use HL as pointer which points
to the operand stored in memory.

Index mode: In Z80, it is also implemented.
Relative mode: 1In Z80, it is implemented, but not
complete so we will use direct addressing mode to

replace it and then treat it as Direct & Extended
mode .
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GADD:

PROC;
IF REG = 'A' THEN GENERATE('LD A,B');
ELSE GENERATE('LD A,C');
IF INDEX USE = 'X' THEN
DO: /* INDEX MODE */
GENERATE( 'ADD A, (IX '||OPD_ADDR||")");
END;
ELSE DO;
IF KIND OPD=2 THEN GENERATE('ADD A, '||OPD NUM) ;
ELSE DO; /*NOT IMMEDIATE MODE */
GENERATE ('LD HL, '||OPD_NAME) ;
GENERATE ( 'ADD A, (HL) ') ;
END;
END;
IF REG='A' THEN GENERATE('LD B, A');
ELSE GENERATE('LD C, A');
END GADD;

Simimlarly, we can implement GSUB, GCMP.
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GLDA: PROC;

IF INDEX USE = 'X' THEN

DO: /* INDEX MODZ */
GENERATE ('LD A, (IX '||oPD_ADDR||")");

END;

ELSE DO:
IF KIND OPD=2 THEN /* IMMEDIATE MODE */
GENERATE ('LD A, || OPD_NUM) ;

ELSE /* DIRECT OR EXTENDED MODE */

GENERATE ('LD A, (' || OPD NAME || ") ") ;
END;
IF_REG = 'A' THEN GENERATE('LD B,A');
ELSE GENERATE('LD C,A'");
END GLDA;

Similarly GSTA can be implemented.
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ASSBRA: PROC;
DCL COND CHAR(2);
IF OP_CODE = 'BCC' THEN COND = 'NC';

ELSE IF OP CODE

'BCS' THEN COND = 'C';

ELSE IF OP_CODE

'BEQ' THEN COND

I
N

ELSE IF OP_CODE = 'BMI' THEN COND = 'M';
ELSE IF OP_CODE = 'B VS' THEN COND = 'PE';
GENERATE ('JP' || cOND ||', '||OPD_ADDR);

ENC ASSBRA;

ASSJMP: PROC;

GENERATE ('JP '||OPD_ADDR) ;

END ASSJMP;

ASSJSR:  PROC;

GENERATE ( 'CALL "CALL '||OPD ADDR) ;

END ASSJSR;

ASSRTS: PROC;
GENERATE ('RET') ;

END ASSRTS;
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GINC: PROC;
IF INDEX USE = 'X' THEN
GENERATE ( 'INC (IX+'OPD ADDR ')');
ELSE IF HAS REG THEN
DO;
GENERATE ('LD HL, '||OPD_NAME);
GENERATE ( 'INC (HL) ') ;
END;
ELSE IF REG = 'A' THEN
GENERATE ( 'INC B');
_ELSE GENERATE ('INC C');
END GINC;

Similarly GDEC can be implemented.
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1.1

=2

SECTION 1
MASTER INSTRUCTION SET
INTRODUCTION

The AAH has many microprocessor-based systems which basically utilize
nine different microprocessors. Each microprocessor requires its own
development and support systems. It would be better if this redundancy
was eliminated by concatenating the nine different instruction sets
into a superset. Unfortunately, the microprocessor which executes this
super instruction set does not exist. A simpler solution would be to
consolidate the various instruction sets, thereby eliminating redundancy,
and resulting in a Master Instruction Set (MIS). This report describes
the theoretical requirements for a microprocessor which executes the
MIS. In addition a machine by machine translation from the native in-
struction set to MIS is provided.

ASSEMBLER REQUIREMENTS

To accomplish the goal of consolidating the various instruction sets, a
cross-assembler is required which takes the original source code and
translates it into coding for the MIS. This assembler would have to be
a macroassembler since some instructions may be more economically trans-
lated as a sequence of instructions rather than microcoding involved
commands. The need for macro capability is also dictated by the fact
that the source code may also contain macros.

The operation of this theoretical macroassembler is in two stages. First,
the source machine is specified and a 1ine by line translation is pro-
duced. Second, the new translated code will be assembled into machine
code.

In addition to the "ordinary" commands in the MIS there is a separate
class, called the operate or OP-class. In essence, these are just mis-
cellaneous instructions. They are unique to individual microprocessors
and therefore did not warrant separate instructions in the MIS. This
report provides the macro coding for each of the OP-class instructions.
When the actual microcoding of this heretofore theoretical machine is
performed, it is entirely feasible that these instructions might also
be microcoded, but in any event, the gp-class instructions must be pro-
vided for.

Finally, if an advanced arithmetic chip (such as the 9511A) 1is used in
conjunction with the microprocessor (29116) then certain instructions
such as SIN, EXP, and SQRT, may become available to speed processing even
though they are not presently included in the Master Instruction Set.

In this case there will have to be an intervention by a software enaineer
to hand-substitute these commands for the blocks of code accomplishing
the same functions.
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SECTION 2
PROGRAMMING MODEL
2.1 INTERNAL ARCHITECTURE

The 29116 is a 16 bit machine with 32 internal registers. For the MIS,

the lower 16 registers Ry through R, are unassianed and are available

as general purpose registers. In thé instance where individual micro-
processors have registers with specific names, they are assigned to
registers R, through R1 as required. For example, many microprocessors
have a regigter called gn accumulator. This might be assigned register

Rp- A1l assignments are given for each individual machine in sections 4-11.

The upper 16 registers have specific assignments. The following is a
list of these registers and their assignment according to the MIS.

Register Abbreviation Assignment
16 P Program Counter
17 PSW Processor Status Word
18 IM Interrupt Mask
19 SP Stack Pointer
20 CRU Communications Register
28 ER Extension Register
30 Q Quotient Register

Both RAM and ROM are assumed to be 16 bits wide. A1l addresses will
be 16 bits long obviating the need for modes of addressing such as direct
or zero-page.

2.2 FLAGS

The PSW is considered to be an aggregate of 16 different flag bits as
illustrated in Figure 1. When the flag bit is 1, the condition that flag
represents is considered true as of the last operation. It is assumed
that the processor will set or clear flags as required. The definition
of each bit is described below.

lve)
*

Abbreviztion Definition

8 bit carry

8 bit overflow

8 bit zero or equal

8 bit negative bit

Even parity check

8 bit half-carry

Greater than zero

Greater than or equal to zero
Arithmetically greater than
Logically greater than
Always set to 1
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Bit Abbreviation Definition

B AZ . Upper 8 bit zero

@ N 12 bit negative

D K Arithmetically less than
E AV 16 bit overflow

F AN 16 bit negative

Carry Bit (C) - Bit @ is modified as a result of specific operations,
such as ADCw and SBCw, or directly with commands such as SETP and RES@.
This bit serves as either 8 or 16 bit carry depending on w.

Overflow Bit (V) - Bit 1 is set or cleared as a result of byte arithmetic
operations. It will be modified during add and subtract operations when
the Teast significant 8 bits result in a value which cannot be contained
in those 8 bits. Similarly, bit E is set whenever the least significant
16 bits cannot accommodate the result of an arithmetic operation.

Zero Bit (Z) - Bit 2 is automatically set to one whenever the result
of an operation equals zero. Therefore bit 2 is set to one whenever

all the bits of the result are zero, and reset whenever any of the bits
are not zero. Bit B performs the identical function for the upper byte.

Negative Bit (N) - Bit 3 contains the value of the sign bit (bit 7) pro-
duced by all arithmetic instructions operating upon 8 bit words. Bit C
is set whenever a 12 bit result of an arithmetic instruction produces a
negative result. Similarly bit F is set whenever a 16 bit result of an
arithmetic instruction is negative.

Parity Bit - Bit 4 is set whenever the result of a parity check is even.
Bit 4 is reset when the result of a parity check is odd.

H Bit - Bit 5 is set when a carry occurs during an ADNB or SBNB operation.
The carry can then be transferred from the least significant nybble (4 bits)
to the most significant nybble.

Greater Than Zero Bit - Bit 6 is set whenever a data movement or arithmetic

operation produces a result > zero. Bit 6 is reset to zero whenever the
result is< zero.

Greater Than Or Equal To Zero Bit - Bit 7 is set whenever a data movement
or arithmetic operation produce a result greater than or equal to zero.
Bit 7 is reset to zero whenever the result is less than zero.

Arithmetically Greater Than - Bit 8 is set when the result is arithmetically
greater than the source with which it is being compared.

Logically Greater Than - Bit 9 is set whenever the result of a Boolean oper-
ation is greater than the source with which it is being compared.

Bit A - This bit is always one to allow an unconditional program transfer
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2.3

2.4

2.5

when the following instructions are executed: JMAS, RTAS, JLAS.

Arithmetically Less Thar - Bit D is set when the result is arithmetically
less than the source to which it is being corpared.

INTERRUPTS

Interrupts provide a microprocessor with the means of detecting external
asynchronous events. Generally an interrupt request is transmitted to

the microprocessor via a voltage level or transition. An interrupt request
may be ignored in certain instances or if it is non-maskable then it must
always be serviced. A special register IM, is available for specifying
whether or not an interrupt is to be serviced.

There are two philosophies in dealing with interrupts. The first speci-
fies that if an interrupt is to be serviced, then the processor transfers
control to a specific location in memory. This is a vectored interrupt.
If the processor goes tc a specific location and then fetches the location
to which control will be transferred, it is called vector fetch. A simple
way of reconciling the two types is to make this theoretical processor

a vector fetch type. Then to execute instructions for a vectored type,
just place the normal vectored location in the memory fetch addresses and
operation will proceed as expected.

Unfortunately, the precise nature of interrupt instructions are idiosyncratic
to each machine. Therefore, special instructions are required to enable

the MIS processor to perform all types of interrupt service. These are the
IN and RI instructions. It is assumed these will be microprogrammed for

each machine appropriately.

I/0 CONTROL

Communication with the external environment is generally done via input/
output (I/0) ports. Some processors have specific I/0 commands which
transfer contents between register and I/0 ports. This type of 1/0 oper-
ation is referred to as direct I/0. Other processors bring the full power
of their instruction sets to I/0 operations by treating I/0 ports as mem-
ory locations. These machines have no specific 1/0 operations. This type
of 1/0 processing is called memory-mapped.

It is assumed that the MIS processor will use memory-mapped I/0. When
translating instructions from direct I/0 machines, the MIS macroassembler
will simply substitute MOV instructions to the address assigned the I/0 ports.

ADDRESSING MODES

Each of the processors has a series of addressing modes associated with it.
The MIS incorporates all of these addressing modes. Table 1 lists the
addressing modes and the notation associated with them. Also included is
a symbolic description of how the effective address is formed. Following
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Table 1 is a more detailed description of the various addressing modes.

TABLE 1

SUMMARY OF ADDRESSING MODES

Symbols Abbreviations

() Contents of I Operand

[ 1] Effective address Memory address

«— "Is transferred to" R Register

@ Indexed UR Upper-half register

# Immediate address Off Offset
Addressing Mode Notation Interpretation Of EA
Immediate #1 I
Absolute ' M M]
Indirect (M) [(M)]
Register R (R)
Upper Half Register UR (R)8-15
Indirect via Register (R) [(R)]
Pre-decrement R - -R (R)e(R)-1
Post-increment R R+ (R), (R)e=(R)+1
Indirect via Register

a. Pre-increment +(R) [(R)«(R)+11]

b. Post-increment (R)+ [(R)1,(R) F—(R)+]

c. Pre-decrement -(R) [(R)e(R)-1

d. Post-decrement (R)- [(R)1,(R)é& )-1
Indexed

a. Indexed absolute M@R M+(R) 1

b. Indexed indirect (M@R) [(M+(R))]

c. Indexed indirect

Post-increment (MER)+

Extended M@R* [M+(R*)]
Offset

a. Relative (R)HOFF [(R)+OfF]
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Addressing Mode Notation . Interpretation Of EA

b. Indirect via R (R+0OFF) [((R)+0ff)]
c. (b)+ Post-incre-

ment offset (R+OFF)+ [((R)+0ff) ], (R)e=(R)+]
d. Index, indirect

offset M@(R+0Off) M+ ((R)+0fF)]

Assembler Directive

Absolute (Direct) - In this mode, the address following the opcode is
used as a pointer to the operand which is then fetched from memory.
Generally the full 16 bit address of any memory location is specified.
The 16 bit address obviates the need for paged addre551ng particularly
zero paged addressing. That is, there is no advantage in assum1ng the
upper byte to be zero, since the upper byte is always included in a 16
bit address.

Indirect - In this mode the contents of the address contained in the in-
struction serves as a pointer to the operand.

Register - This addressing mode is similar to the absolute mode described
above except that the operand is specified as the content of a Register (R).

Upper-Half Register - the operand, in this mode, is the content of the
upper-half (UR) of a given Register, R.

Indirect Via Registers - In this mode the address of the operand is
specified by the contents of the Register (R).

Register Modify

a. Pre-decrement register - In this mode the address of the operand
is found by decrementing the contents of Register R, then using the up-
dated contents of Register R as .the operand.

b. Post-increment register - This mode is similar to the Register mode
described above in that the operand is specified by contents of a given
Register but then the contents of Register R are incremented by one.

Indirect Via Register

a. Pre-increment - The contents of Register R are incremented one.

The address of the operand is then specified by the contents of the
address pointed to by Register R.

b. Post-increment register - The effective address of the operand is
specified as the content of the address pointed to by Register R. The
content of Register R is then incremented by one.

c. Pre-decrement register - The content of Register R is decremented,
the operand is then pointed to by the content of Register R.

d. Post-increment register - The operand is pointed to by the content
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of Register R. The content of Register R is then incremented by one.

Indexed

a. Indexed absolute - In this mode the effective address of the
operand is found as follows: The address field accompanying the op-
code is added to the contents of the specified Index Register.

b. Indexed indirect - This mode is similar to Indexed absolute ex-
cept two operations are required. First the contents of Register R
are added to the address field accompanying the opcode. This value
points to a location which in turn points to the address containing
the operand.

c. Indexed indirect post-increment - This is identical to Indexed
indirect except that after the effective address is formed, Register
R is incremented by one.

Extended - In this mode it is assumed that the status of the extended
register specifies the field (each field contains 64K) that contains
the address of the current instruction.

Offset

a. Relative - In this mode the effective address containing the
operand is calculated by adding an offset value to the contents of
Register R.

b. Indirect via register offset - The contents of Register R are
added to the offset. This value then specifies the address which points
to the address containing the operand.

c. Indirect via register offset; post-increment - This mode is iden-
tical to b, except that the contents of Register R are incremented after
the effective address has been computed.

d. Indexed indirect offset - The effective address is calculated by
first adding the contents of Register R to the offset. This value is
then used to point to an address which is added to the address- accompany-

ing the opcode. This final value points to the address which contains
the operand.

Assembler Directive

Strictly speaking, this is not an addressing mode. However, some in-
structions require an additional parameter for correct operation and
the second operand field is utilized for this specification.
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SECTION 3
MASTER INSTRUCTION SET

After consolidating all 8 instruction sets, a Master Instruction Set

was produced containing 3] basic instructions. Three classes, OP,

IN, RI are somewhat Tess defined, in that each is specific to one processor.
The precise description of each of these three types is included in the
machine by machine translation.

Table 2 presents a 1list of the symbols and abbreviations utilized by the

MIS. Table 3 lists the 31 instructions of the MIS. Following this table
is a detailed description of the operation of each instruction.

TABLE 2
SYMBOLS AND ABBREVIATIONS

Symbols
—>  Transfer to _A_ Logical and
<> Exchange contents -~/ logical or
* ‘Mu1t1p1y NE Logical exclusive or
—  Divide () Contents of
SD >Comp1ement [ 1 Effective address
Abbreviations
A Arithmetic
BCD Binary coded decimal
b Bit number
C With carry
D Destination
L Logical
m Mode
Mp I/0 port address
N No carry
n Number of times
P Place
PSW Processor status word
R Register
S Bit condition, S = set, C = clear
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15.

16k

Abbreviations

WO 00 ~N o0 1 P N —=

S Source
SD Operand serves as both S and D
UR Upper-half of 16 bit register
W Word size
B 8 bit word
T 12 bit word
W 16 bit word
D 32 bit word
TABLE 3
MASTER INSTRUCTION SET
Mnemonic Operand(s) Operation
ADmw S, R S + R[* C]—R
ANDw S, R S AR
ANRw S, R S_/\_R—>R
CLRw D p—D
CMPw S]’ Sy S] - 52
COMw SD, k SD—>SD + k, k=0 or 1
CONT No operation
DAdw SD BCD (SD)—>SD
DECw SD (SD) - 15D
DIVw S, SD SD = S—SD, Q (remainder)
EXRw S, R S AL R—R
INCw SD (SD) + 1-—SD
INij Interrupt command
Jlbs R, P Jump and link with R, con-
ditional
JMbs P Jump, conditional (bit b of
PSW)
JRbs R, P Test register and jump, con-
ditional
MOVw S, D (S)—D
MPYw S, SD S * SD—SD, Q
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19k
20.
21l
22.
28l
24.
25.
26.
27
28.
%3
30.
31.

Mnemonic Operand(s) Operation
0Pij S, SD - Operate class
RESb D _/\_SDp,—>SD
ORRw g, R SVTR—R
RIij Return from interrupt
RLnw SD, Nor C Rotate Teft n times
RRnw SD, Nor C Rotate right n times
RTbs F Return, conditional
SBmw F, S R - S[- CI—R
SETb §D 1N\/"SDp—>SD
SLnw SD Shift left n times
SRnw SD, L or A Shift right n times
XCRw SD1, SD2 SD14——§SD2
XEQw F Execute contents of register
specified
ADmw Add
Operation: S+ R [+C]T —R
Description: The contents of S are added to the contents of
R. The result is placed in R. The content of
the carry bit can be included or omitted depend-
ing upon the mode (m); ADCw refers to addition
with carry; ADNw refers to addition without carry.
ANDw Logical and
Operation: S_A_R
Description: The contents of S and R are logically ANDed.
The contents of S and R remain unchanged. This
instruction sets the flags of the PSW.
ANRw Logical and with replacement
Operation: S_/N\_R—3R
Description: The contents of R are logically ANDed with the
contents of S. The result is placed in R.
CLRw Clear word
Operation: #—>D
Description: Tne contents of D are set to zero.
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CMPw Compare
Operation: S] - 52
Description: The contents of S, are subtracted S,. The
contents of S, and S, are unchanged. This
operation setl the flags of PSW.
COMw Complement a word
Operation: SD——SD + k
Description: The contents of SD are complemented when k = §
(zero bits become one, one bits become zero).
The contents of SD are negated when k = 1 (The
number becomes negative by the use of a two's
complement procedure.
CONT Continue _
Operation: No operation
Description: No operation is performed. The registers and
flags are unaffected by this command.
DAJw Decimal adjust
Operation: BCD (SD)—>SD
Description: The content of the word located in SD is adjusted
to form a binary coded decimal (BCD) by adding a
o3, 96, 6@, or 66 as required by each byte.
. DECw Decrement a word
Operation: (SD) - 1—SD
Description: The contents of SD are decremented by one.
DIV Divide
Operation: SD = S——3SD, Q
Description: The dividend (SD) is divided by the contents of
S. The quotient is stored in SD. The remainder
is stored in RQ (Quotient register).
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