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INTRODUCTION

The self-mixing Gunn oscillator has been of considerable interest in
recent yearsl" »3 because of the fact that this device embodies simplifi-
cations for the circuitry of electronic receiving systems. Schottky barrier
and other rectifier diodes suffer from the disadvantage of fragility and low
burn-out power levels. Bulk effect self-oscillating mixers using the non-
linearity of transferred electron (Gunn) devices offer competitive sensiti-
vities and the attractive alternative of a high power handling capability.
In conventional mixers, there usually exist a signal frequency, a mixer diode
of the rectifier type, and a separate local oscillator. In the self-
oscillating mixer, the mixer diode is eliminated. The Gunn diode will serve
both as a local oscillator, and because nonlinearities are always present
in an oscillator, as a mixing element. With the Gunn diode oscillator
serving both these functions, a receiver front-end becomes extremely
simplified and compact, especially when the dielectric image line approach is
used. In the latter arrangement, the signal is fed directly into the
oscillator and a suitable IF (intermediate frequency) probe will remove the IF
power for use in subsequent amplifier stages. What makes self-mixing
oscillators different intrinsically from the conventional mixing process with
passive devices such as the Schottky junction diode is that self-mixing can
occur with conversion gain (rather than loss) similar to parametric
amplification®.

Gl it

One of the objectives of this report was the design of self-mixing
oscillators with considerable simplication and hence reduction in cost. In ;
the quest for lower cost, the image line technology was applied using a Gunn :
diode in a simply constructed cavity, in a self-excited oscillator-mixer $
mode of operation. Both GaAs and InP Gunn diodes were imbedded in an aper- §
ture which was cut in high resistivity Al,03; ceramic waveguide. Metal wave-
guide cavity self-mixing oscillators were also evaluated for comparison. The
significance of the dielectric waveguide technology is that active devices,
as well as passive components, can be developed in-situ in circuit modules to
construct functional integrated sub-systems.

DEVICE DESIGN k

The metal waveguide self-mixing oscillators utilized a coax-waveguide
hybrid circuit as shown in Fig. 1. The packaged diode is imbedded in a
copper heat sink at the end of a coaxial line section. A large portion of the
outer conductor is removed with the removed section facing the waveguide
opening to form a broadband coaxial-to-waveguide transition. A wide-band
choke is used to terminate the opposite end of the line. The dc bias to the
Gunn diode and extraction of the IF power is also provided at this end. 1

The dielectric image line oscillator cavity design is based on an image
line concept first formulated by Marcatili® and later modified for milli- 1
meter waves °» 7. The fundamental electromagnetic wave propagating in an

:
(I
;
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image line is the EY1 mode, a hybrid mode which prcpagates when correctly

launched. Applicat}on of theoretical consideraticns indicated that the

image guide, which exhibits low propagation loss at millimeter-wave frequencies,

for proper operation should be on the order of one wavelength in the medium

in width, and less than one-half wavelength in height. The cross-sectional

dimensions of alumina at 60 GHz which has a dielectric constant of approx-

imately 9.0, were slightly greater than 1 millimeter in height and about 2 l%
milli9eters in width. Experiments indicated that in this oversized condition,

the E1 mode dominated. The resonant length of the dielectric section in

back o% the diode was chosen for optimum power. This was approximated to be

(2n+l) ')/2 in length.

A simplified schematic of the self-mixing oscillator is shown in Fig. 2.
This indicates the manner of coupling to the metal waveguide showing one end
of the resonant cavity being taperea. The dielectric image guide taper can
effect a low loss waveguide to image guide transition by simply inserting
into the full height waveguide opening and adjusting the protrusion for max-
imum power transfer. This matched condition also yielded optimum IF output
when an RF input signal was introduced. Figure 3 gives a more detailed cut-
away view of the image guide device investigated. As can be seen, the IF
exits out of the top of the structure with a metal disc being utilized as a
matching element from Gunn diode to image guide. Figure 4 shows an exploded
view of the self-mixing oscillator which utilized a tuneable short as an
impedance matching device and Fig. 5 shows the same unit ready for operation.
Referring to Fig. 4,the metal diode housing was designed for minimum
radiation leakage with dimensions that were oversized with respect to WR-15
waveguide. The Gunn diode is mounted flush with the bottom of the metal
structure. The aluminum oxide (Al, 03) dielectric waveguide with tapered
front end was bonded to the metal housing in such a way that the Gunn diode
tip protruded up into the dielectric. A .045" hole in the dielectric wave-
guide allowed the IF and bias voltage post to make a pressure contact with
the top of the Gunn diode. This made it possible to mount a sliding short
behind the image guide for impedance matching and tuning.

EXPERIMENTAL RESULTS

Figure 6 shows the output power and frequency characteristics of an InP
diode in a waveguide cavity as a function of the bias voltage. It should be
noted that the frequency can be tuned over a range of 280 MHz with a change
of bias of 1.2 volts. This change in bias voltage gave a change in output
power from 19 to 23 mW. Similar characteristics were obtained with the GaAs
Gunn diode in a waveguide cavity except that the peak bias voltage was in the
order of 4.5 volts with peak powers of 6.5mW. These peak output powers are
typical of those used in the self-mixing experiments. Figure 7 shows a block
diagram of the RF circuit used in evaluating the two types of self-mixing
Gunn oscillators. A backward wave oscillator in a mechanically tuneable mode
was used as the signal source. The single frequency outputs from this source
were stablewithin +.001% with non-harmonic spurious signals that are 40dB
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down. This highly stable signal was tuned 60 MHz above or below the Gunn
oscillator frequency to produce an IF frequency. The difference signal at

60 MHz was displayed on the face of the spectrum analyzer oscilloscope. By
increasing attenuation in the signal channel, the IF energy pulse could be
made to decrease and disappear into the noise level of the spectrum analyzer.
The attenuation was then decreased until the detected IF power is 3dB above
the noise level. At this point the signal level is equal to the noise level
and this IF power is defined as the minimum detectable signal power measured
in decibels referred to 1lmW. The oscillating diode was tuned by the bias
voltage above the threshold field and also by the RF circuit to achieve the
desired operating point. Care was taken to insure that no spurious
oscillations or bias circuit instabilities were present. The amplitude of
the IF power in dBm was compared with measured values of input signal power
for conversion gain or loss measurements. Figure 8 shows the IF output

power as a function of signal power input for a GaAs Gunn diode in a wave-
guide cavity. Figure 9 shows the same variables utilizing a metal wave-
guide cavity for an InP Gunn diode. The data point at the lowest signal
power indicates the point where the IF output power disappears into the noise
level of the spectrum analyzer. As can be seen, the GaAs and InP Gunn diodes
have a minimum detectable signal (MDS) in the order of -77 and -81 dBm,
respectively. This minimum detectable power is the principal parameter for
determining the sensitivity of a self-mixing oscillator, that is, how weak

a signal the device can detect. Figure 10 shows the conversion gain
measured on the GaAs self-mixing oscillator. Figure 11 shows the same inform-—
ation for the InP device. As can be seen, the gain is in the order of 12dB
for the InP oscillator while for GaAs it is 9dB. The data also indicates that
the conversion gain increases as the signal power decreases.

In the quest for a much lower cost device, GaAs and InP Gunn diodes were
imbedded in an image guide cavity structure and their performance evaluated.
Figure 12 shows the output power and frequency characteristics of a GaAs
diode, imbedded in image guide, as a function of the bias voltage. Figure 13
shows the same variables with respect to an InP diode. The data indicate
a frequency-bias tuning range of 120 MHz for the GaAs device and 220 MHz for
the InP self-mixing oscillator. However, the frequency tuning rate is much
steeper for the InP diode as a function of the bias voltage, which is very
advantageous for certain system applications. Figures 14 and 15 show the
IF output power as a function of signal power input for both the GaAs and InP
self-mixing oscillators respectively. The sensitivities of the image guide
devices are in the same order of magnitude as that of their waveguide counter-
parts. Figures 16 & 17 show the conversion gain measured with image guide
self-mixing oscillators, which was again comparable to that measured with
waveguide devices.

DISCUSSION OF RESULTS

In terms of sensitivity the data indicates that the InP self-mixing
oscillator's performance in both image guide and metal waveguide cavities is
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better than that of the GaAs device. The reasons for superior performance nf
the InP may lie in the following factors It has a current peak-to-valley
ratio of 3.5 as opposed to 2.5 for GéAsh. This, in theory,9 will provide
higher conversion efficiencies. 1In addition, the peak-to-valley ratio in InP
degrades less rapidly with temperature changes than GaAs and the thermal
conductivity is greater, thus favoring CW operation. An inherent
characteristic indicated by the experimental data is that the sensitivity or
conversion gain increases as the signal level decreases. This characteristic
has been reported by other investigators for waveguide self-mixing

oscillators at 34 GHz !> %

The major objective for this program was to design a low cost device,
with simple construction and lightweight for application in integrated
circuit modules and sub-assemblies. The dielectric image line approach seems
well suited to accomplishing these objectives. The sensitivities of -77dBm
for GaAs and -81dBm for InP self-mixing oscillators obtained in this develop-
ment make them attractive for application in mixer devices for certain
applications.

CONCLUSIONS

It has been shown that GaAs and InP diodes. imbedded in dielectric wave-
guide cavities in a simplified design circuit will give comparable sensitiv-
ities to that of metal waveguide cavity self-mixing oscillators. Experimental
data indicates that the sensitivity of these devices are in the order of
-80dBm which made them competitive with other conventional mixers. However,
the image guide device has the advantage of having simplified construction
with a high signal power burnout level coupled with very low unit cost.

These characteristics make the image guide self-mixing oscillator, a viable
device in low cost receivers, expendable EW sensors, and short range terminal
guidance. 1In addition, the InP self-mixing device has great potential in

the higher millimeter-wave frequency region (aove 100 Ghz) due to its higher
effective transit velocity and fast intervalley scattering.
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