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I. INTRODUCTION

Kinetic energy projectiles and shaped charge jet warheads require
direct hits to inflict target damage. A warhead carrying a self-forg-
ing fragment need not hit the target, but its orientation and fuzing
must be exactly controlled for its lethal mechanism to hit the target.
When direct hits by the warhead are unlikely (as in long range engage-
ments or for partially concealed targets) or not required (as in the
case of a collection of widely distributed targets) fragmentation
warheads are employed. Since direct hits are not contemplated, the
flight and fuzing requirements of such warheads are less stringent.
However, the design of the warhead itself requires great care if its
effect on the target is to be nearly optimum. The best design for a
fragmentation warhead obviously depends on a knowledge of target
vulnerability as well as on the engagement conditions and the various
options that are available regarding fragment number, size and launch
characteristics. The problem of designing such a warhead for optimum
effect is rather complicated and is made more difficult by the uncer-
tainty of our knowledge about target vulnerability and fragment
characteristics. If each warhead is required to address more than
one type of target (as is often the case), the problem is still more
difficult. In spite of these difficulties, the problem of optimizing
or at least of estimating the effectiveness of a design has received
considerable attention over the last half century. However, for a
variety of reasons, the trend has been toward the inclusion of more
and more detail in model descriptions of effectiveness and away from
design optimization.

In current design practice for fragmentation warheads, the focus
is usually on the delivery system. Of course, this system is impor-
tant and inevitably places weight and/or volume constraints on the
warhead designer. However, there is a tendency to incorporate tradi-
tional warhead designs into new delivery systems, with warhead effec-
tiveness studies performed only after the overall design has been fixed.
This tendency is understandable but regrettable. It seems obvious
that the goal of optimal warhead effectiveness should drive the overall
design of a system, especially when direct hits are not contemplated.
The warhead designer should in fact propose configurations of metal
and explosive armed at maximizing target kill probability even if
they tax the ingenuity of his colleagues to deliver them to the target.
In this way significant improvements might result from compromises
between an optimum warhead and an optimum delivery system. However,
our methods of describing warhead effectiveness need to be simplified
first before attention can be re-directed toward those factors which
most influence effectiveness. The eventual object of this report
series is to employ simplified descriptions as an aid to design
optimization. The object of this report is to review the development
of our present methods as a prelude to suggesting improvements.



II. EFFECTIVENESS STUDIES UNTIL THE END OF WWII
A. Methodology Prior to WWII

There seems to be little extant literature on this subject written
prior to the second world war. Of course, devices which explosively
launched pieces of metal were in use, but early treatises on ballistics
emphasized launch and flight techniques. Relatively little attention
was paid to measures of effectiveness, either absolute or relative.
This was reflected in the organizational structure of the Ballistics
Research Laboratory when it was established in 1938. There were
Interior and Exterior Ballistics Sections, but no Terminal Ballistics
Section until 1943. Instead, a small Effect of Fire Unit within the
Interior Ballistics Section conducted fragmentation and penetration
studies. Eventually the Terminal Ballistics Section was entitled a
Laboratory and gave birth to the Vulnerability/Lethality Division.
The need for an overview of all aspects of cost/effectiveness led to
the establishment of a Weapons Systems Laboratory within BRL and
eventually to the Army Materiel Systems Analysis Activity1.

The earliest paper on the subject of fragmentation effectiveness
appears to be Kent's report in 19332. Kent .took as a measure of
effectiveness the number of casualties produced (personnel put out
of action). He commented on the desirability of measuring effectiveness
by the extent of damage produced, especially for materiel targets like
aircraft where the number of man-hours needed to repair the damage
might be a useful criterion. However, for footsoldiers he choose a
simple threshold criterion to distinguish between a casualty and a
survivor. He directed his attention to the simple case of a vertical
cylindrical shell bursting at ground level in an effectively infinite
field of uniformly distributed, unshielded, standing personnel targets.
He wrote an expression for the.number of casualties, C, namely,

00

C = TA ir r^ TA f Nfi (Ap/r
2) (2* rdr) (i)

rl

where T is the constant number of targets per unit area of ground.
2The radius, r.., defines an area (irr.J on the ground, centered at the

burst point, within which a target will receive at least one lethal hit.
All targets in this area will be casualties, but there is a loss in
efficiency since multiple lethal hits are wasteful. Consequently,
the distance r was called the radius of overhitting.

•̂Ballisticians in War and Peaoe. A History of the United States
Army Ballistic Research Laboratories, Vol. I3 1914-1956 , Edited
by John Schmidt, Aberdeen Proving Ground; MD3 pp 123 213 47 and 98-102.
2R. H. Kent3 "Considerations on the Effect of the Size of the Projectile
on the Efficiency of its Fragmentation", BRL RX-583 Feb 1933.
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A target standing a distance r from the burst point was replaced by
an average cross-sectional area normal to r which we call the presented
area, A^. Kent did not discuss this area in detail and merely remarked

that each target subtends a solid angle (A /r ) at the burst point.
This is equivalent to replacing each target by a spherical cap centered
at the burst point of area

Ap= I I r2 sin 9 d 6 d <j> = 2irr2 (1-cos 6) = 4irr2 sin2(6/2)

= fir2 (2)

where 6 is the co-latitude measured from the pole r and <j> is the
equatorial angle. Thus, the solid angle subtended by this area is

U = Ap/r
2 = 4ir sin 2 (6/2).
2

If A « r , the spherical cap can be thought of as practically flat,

leading to the "poker chip" approximation for the target area. No
distinction was made between the presented area and that part of this
area which might be vulnerable, since Kent was able to eliminate A

from Equation 0) by using his definition of r . The symbol N stands
J. ifi

for the number of lethal fragments emitted per unit solid angle, so
that N ti is the number of lethal hits expected on A^. In other

words, the number of lethal hits on a single target is expected to be

NL = V2 = \ Vr w
which is unity for r<r , by hypothesis and less than unity for r>r .

The number of targets in a ring of radius r and width dr is T
A.

(2irrdr) and N times this number is the number of casualties expected
L 7

in this differential area. If we integrate and add T (irr ) we
/\ X

obtain Equation (1).

In order to carry out the integration we must make some assump-
tion about the r-dependence of N . This number is expected to be a

au

decreasing function of r since it is observed that for two fragments
of the same shape launched at the same speed, a less massive one will
lose speed more rapidly as r increases because of air drag. If both
are above some lethality threshold (mass and speed combination) initially,
the less massive fragment will fall below this threshold at a smaller



In

value of r. Kent considered only the case in which all fragments are

identical (same mass, shape and launch speed) so that all are lethal
out to a radius r and ineffective for r>r . To represent this

situation he let N be equal to its value at r=r , namely, letting
2

N =1 in Equation (3), ̂  =T./Ap for r, < r < r2 with N =0 for r>r .

This eliminates Ap from Equation (1), which becomes

C = TA TT rj
2 [n-2 In Ĉ /r̂ J . (4)

Kent used Equation (4) to compare the effectiveness of two shells
with the same geometry, scaled so that the maximum range of the
larger is greater than that of the smaller, that is, r = r > rc

Z,Lt Lt O

= r „. The value of r, was taken to be the same for both since the
^o 1

fragment density is the same. Then a measure of their relative
effectiveness is the ratio of Equation (4) for each, namely,

CL/CS = [l+2 in (rL/ri)J / [l+2 in

= 1 + [2 In (rL/rs)J / [l+2

< 1 + 2 In (rL/rs) (5)

for r >r, . For example, if the larger shell has twice the diameter
o J.

and twice the height of the smaller, it will weigh about eight times
as much. For this case Kent estimated r /rc = 3.67, provided bothL o
launch speeds = 3,500 ft/sec. Then C /Cc < 3.6 in Equation (5),L o
and on a weight basis (C /W ) / (CC/WC) < 3.6/8 = 0.45 where W is the

Lt u O O

"^ , so the larger shell is less than half as efficient per unit
weight for r > r0 > r, . If r, > r > rc, then N0 = 0 in Equation (1)

Ll b _I 1_ L O it

and CL/CS = (
r
1L/

r
ls) = (3.67) = 13.47 and on a weight basis the

larger is more efficient by a factor 13,47/8 = 1.68. The larger will
be less efficient only if C < 8CC or r, < >/8~rlc.L o Xi-i J.o

In the case just considered, the assumption was made that r > r „
£u ^O

since the fragments of the larger shell are more massive but not more
numerous. Kent further considered the case in which r = roc = rc><£L ^o c
that is, the case in which both shells emit fragments of the same mass
so that the larger emits more fragments. Kent explicitly assumed that
the larger would emit eight times as many fragments and implicitly
assumed as before that the launch speeds would be the same. Consequently

10



N will be eight times bigger for the larger shell and its radius of

overhitting will be r = ̂ r from Equation (3) with N = 1.

Now in Equation (4) r = rp for both shells while r = /§ r = /8 r, so
£ LI ,1 Li .Lo L

CT/C<;Li O
= 8

= 8

1+2 In j r£ / (/T

1 - In 8/ ) 1+2 In

l+2 In (r̂ r

. (6)

The relative efficiency per unit weight is one eighth of this and is
necessarily less than unity if r > r, . If rc < r , Nn = 0 and

E 1 E 1 it

C./CL = 1 instead of 8 in Equation (1), since hitting each target more
i_i o
often with lethal fragments does not increase the number of casualties.

2
For each shell the number of casualties will be T (irr_) . Thus on

A E

a weight basis the relative efficiency is 1/8.

In general then, Kent concluded that smaller shells are more
efficient on a. weight basis, provided the fragments are not so small
that the effective length of the fragment trajectory is less than
the radius of overhitting. Kent realized he was considering a highly
idealized case and did not concern himself with the absolute accuracy
of his estimates. Implicitly he assumed that his errors were about
the same for homologous shells so that significant statements could
be made about relative efficiencies, at least in the size range
considered in practice.

In 1937 Tolch3 discussed the data available at Aberdeen Proving
Ground in terms used at the time, namely, the effective area or
effective radius of a burst. The effective area was defined as an
area within which each target on average received at least one lethal
hit while the effective radius was that of a circle of equivalent
area., For a vertical cylinder burst at ground level, the effective
radius is the same as Kent's radius of overhitting in Equation (1) above.
More generally, this area will be more or less elliptical when the
axis .of the shell is inclined toward the horizontal because of the
dominance of the side spray over nose and base sprays. This remains
true when account is taken of the remaining velocity of the shell when
it strikes the ground. The main effect of this added velocity component
is to throw the side spray forward and render the base spray even less
effective. Tolch remarked that the attitude of the target (horizontal
or vertical, face or side on) will influence effective areas, but he
contented himself with an average value for Ap. For various munitions

%. A. Tolchj "Effective Area of Burst and Fragmentation Efficiency of
Hand Grenades., and 37 and 81 MM Projectiles"3 BRL R90, 22 Dec 1937.
(AD#493519)

11



he estimated effective areas from the number of perforations through
wood panels in "silhouette fields". Finally, he compared the number
of shells required to neutralize a target field as predicted by the
effective area method with that predicted by Kent's method, using
C/(T Ap) in Equation (1) above as a measure of efficiency with Ap
chosen to be one square yard. Multiplying this measure by other
values of T or Ap would then give values for particular target

configurations. Obviously the effective area method predicts that more
rounds will be required than Kent's method predicts since it considers
only the region of 100% effectiveness, the first term in Equation (1).

A year later Tolch published a report4 giving details of more
elaborate fragmentation and penetration experiments. He used
horizontal gun firings of 75MM shells bursting in the center of
semi-circular arrays of one-inch thick wood panels placed at various
radial distances to measure the number of fragments per unit solid
angle as a function of co-latitude, 0 (measured from the nose) and
distance from the burst point, r. This quantity, N (r,,8), was

ti 1

studied as a function of remaining velocity of the shell at the
moment of burst. Fragments were classified into nose spray (fuze
pieces), side spray (about 30 degree angular width) and base spray as
well as into perforating, penetrating and denting (< 1/16 inch pene-
tration) categories. From these panel tests and the axial symmetry
of the shell it was estimated that about 5,000 fragments were produced.
These could be roughly divided into 700 perforating, 900 penetrating
and 3,400 denting fragments. As the remaining velocity increased,
the nose spray panel effects became more pronounced (more perforations),
the center of the side spray moved forward from 6 = 95° (static firing)
to 9=60° (for a remaining velocity of 1,100 f/s), and base spray effects
decreased, since the remaining velocity reduced the net fragment launch
velocity in this direction. Complementary sand pit tests, in which
fragments above a certain size were collected and graded by sieves,
produced about 780 fragments which accounted for 95% of the metal
weight, indicating that most of the metal ends up in the perforating
category if one-inch thick spruce boards are used as witness panels.
Quarter-inch thick steel plates were found to be much tougher targets
allowing only 1/6 the number of perforations at 15 feet and only one
perforation at 36 feet, Tolch also published reports on the effective-
ness of shrapnel munitions5*6.

*N. A. Tolch, "Fragmentation Effects of the 75MM H. E. Shell T3 (M48)
as Determined by Panel and Pit Fragmentation Tests", BRL R126, 2 Dec 38.
5N. A. Tolch, "Effective Heights of Burst and Patterns of 75MM M37
Schrapnel fired from the 75MM Pack Howitzer Ml", BRL R100, 1 Apr 38.
&N. A. Tolch, "Patterns of Pack Howitzer Schrapnel at the Optimum
Heights of Burst", BRL R102, 16 May 38. (AD#492929)

12



Two years later Tolch published another report7 in which he noted
a number of differences between the test results of his 1938 report,
obtained under symmetrical conditions with particular efforts to avoid
the influence of the ground, and the results which obtain under field
conditions where asymmetries exist and the ground has a large influence.
For example, when a shell bursts close to the ground, many of the
fragments are deflected upward by the ground and do not follow straight
trajectories even over relatively short distances or they are buried
in the ground. In addition, fragments which start on straight
trajectories are in flight because of gravity, pass over targets close
by and hit targets farther away. Lewy° later discussed such fragment
trajectories, using the traditional methods of exterior ballistics.
He pointed out that the supersonic portion of a trajectory is essen-
tially straight since the gravitational force is negligible compared

2
to the drag force which depends on v . He also gave methods for
calculating the point of impact and terminal speed for all fragments
projected from a burst a height h above the ground. However, he
pointed out that fragments initially projected upward will reach a
terminal speed in air on the downward part of their flight which is
low enough to render them non-lethal for common fragment masses. The•
situation may differ for very high altitude bursts and targets.

Tolch also mentioned the natural unevenness of. terrain which might
intercept some parts of a fragment pattern as well as man-made shield-
ing like that afforded by fox-holes. Such shielding has been included
in later models. In general, Tolch pointed out that model estimates
of fragmentation effectiveness based on idealized panel tests will not
accurately represent effectiveness under service conditions. However,
valuable insight into at least relative efficiencies of various shell
designs under different engagement conditions should be obtainable
from such models.

In discussing angle of fall, Tolch distinguished between the shell
axis and the tangent to the trajectory at the moment of burst. However,
he made no use of this distinction and assumed that they were co-linear
for all practical purposes. By using an x, y, z = h coordinate system
with origin at the burst point, Tolch wrote an expression for the
slant distance from the burst point to a point on the ground, namely,

R =Vx2 + y2 + h2 = Vr2 + h2 (7)

7N. A. Tolch, "Auxiliary Curves for use in the Computation of Fragment
Density as a Function of the Angle of Fall and Height of Burst",
BRL R178, 29 Feb 40. (AD#491803)
QH. Lewy, "Asymptotic Integration of Fragment Trajectories",
BRL RS59, 13 Jul 45.

13



where h is the height of the burst above the ground. Unlike Tolch, we
will take the z axis postive in the upward direction for convenience in
later comparisons, so that the ground point directly below the burst
point is z = -h. Tolch defined the angle of fall, w, in the x, h plane
between the shell axis and the horizontal x-axis, so that the projec-
tion of R on the shell axis can be written in terms of the angle 8
between R and the shell axis as follows

R cos 6 = x cos w -h cos (jr/2-w) = x cos w -h sin w, (8)

by using the relation for the angle between two lines in terms of
their direction cosines. Given h .and..<j>,we may compute R and 6 for
any x, y pair. If we plot curves of .constant R, we obtain circles in
the ground plane. Tolch also plotted curves of constant 6, but did
not point out their general character, although this is easily done.
If we eliminate R between Equations (7) and (.8) we obtain the
quadratic form

which has the discriminant

- lj, (10)

If 6 < 0, the curve is an ellipse, if 6 = 0, it is a parabola and if
<S > o, it is a hyperbola.

If the target area vector X makes an angle <j> with R, then the
area normal to R is A = A Cos <f> and the total number of lethal hits

expected on a target is

where N (R, 9) is known from Tolch1s controlled experiments, choosing

perforations or some other criterion as evidence of lethality. Equa-
tion (11)is the three-dimensional analog of Equation (3) and includes
a dependence on angle as well.

14



In 1938 and 1939 Kent published four reports concerning the
effectiveness of fragmentation shell against aircraft9"12. In these
reports he considered costs and interior and exterior ballistic
factors as well as terminal effectiveness in comparing proposed anti-
aircraft artillery shells of 90mm, 105mm, 4.7 inch and 6 inch. He
readily admitted that the weakest point in his analysis was the nature
of the assumptions he .was forced to make about the effectiveness of
fragment hits on the target. In general, he pointed out, small
fragments could be lethal to personnel and fuel cells, although large
fragments would be required to damage engines or other less vulnerable
structural components. As a plausible compromise measure of effective-
ness he initially used the average of two numbers for given shells,
namely, their fragment number ratio (as determined by pit tests) and
their weight ratio (since larger shells should have more larger frag-
ments) . However, he soon substituted another criterion, namely, the
product of the number of fragments emitted by a shell and their aver-
age effective range. He argued that this would be a reasonable
measure of shell effectiveness by considering the target to be composed
of a large number, n, of small (differential) areas of mean size, a,
such that the total presented area of the aircraft could be written as
A = na. , If N is the fractional number of hits on area a such that

• 2 a

N = (N0/R ) a < < 1, analogous to Equation (11) above, then the
3- u6

probability of not hitting the area a is, by the binomial theorem

/1-N V = 1 - nN + *i£il N 2..... „ -nNa _/N /R2\ .
I ay a 21 a e = e I w I P (12)

since n > > 1 , N <<1 and AD = na. Then to a good approximation,
3. t

provided the target is in the fragment spray, the chance of at least
one lethal hit is

P = 1 - a - P - R A (13)

so that -Equation (13) reduces to Equation (3) for A N~ < < R .

9#. H. Kent, "A Comparison of Antiaircraft Guns of Various Calibers ",
BRL R125, 1 Deo 38. (AD#492691L)
10.ff. H. Kent 3 "The Probability of Hitting an Airplane as Dependent
upon Errors in the Height Finder and Director", BRL R127, 14 Dec 2S.(AD#701865)
11 ?̂. H. Kent; "The Probability of Hitting Various Parts of an Airplane
as Dependent on the Fragmentation Characteristics of the Projectile",
BRL R132, 6 Mar 39. (AD#491787)

H. Kent, "The Probability of Disabling an Airplane", BRL R155,
5 Sep 39. (AD#491799)

15



This argument of Kent's certainly captures the spirit of the
argument generally presented today for the Poisson distribution as an
approximation to the binomial distribution. If we consider a (space
or time) interval A divided into n parts of size a = A/n with N

equal to the constant average rate of occurrence of a random event in
the interval A, then the probability of one event occurring in the
sub-interval A/n is N A/n = p, and the probability of no events

/\

occurring is 1 - N.A/n. If these events are randomly distributed,
/V

the probability of finding exactly s of them in n intervals (or trials)
is given by the binomial distribution

g (S; n) = -sifr-s)! (NAA/n)
S (1 - NAA/n)

n's (14)

for s = 0, 1, 2... n and g = 0 for all other s. In the limit as n ->• »

and p •> 0 but np = N A «n remains finite, we have
A.

lim g = ̂ L- f lim — - ] ["lira (1-N A/n) n] [lim ( l - N A / n ) S l
(n-s)! nsJ Ln-H» A J |_iv*>° A J

CNAA)S -N A= .-A - e V = P(S) (15)
o *

which is the Poisson distribution. The third limit in Equation (15)
is obviously unity while the first can be shown to be unity as
follows. Divide the numerator and denominator by (n-s) J and obtain

n(n-l)(n-2)...(n-sfl)
= lim 1(1- -) (1- -)... 1- C5"1) = 1.
n~» n n L n J

lim ns = lim 1(1- i) (1- ±)... | 1- Ĵ -|- 1- (16)

If we let z = - N.A/n, the second limit in Equation (15) becomes the

(-N.A) power of the limit which defines the base of the natural

logarithm, namely,

T r / ' i . L i l / z l (-N.A) -N.A . (17)l i m I (1+z) v A ^ = e A v

Finally, the probability that one or more events will occur in the
interval is

16



2-f P(S) = / ̂  NAPCS) - PCO) = 1 - e A . (18)
5=1 5=0

since

pr<n / * A 'NAA +NAA ~NAA

"ŝ o L J " " s! e A = e A e A = l . (19)
2

Equation (18) is the same as Equation.(13) if we identify N = N /R
A M

and A = Ap, and gives the probability of at least one lethal hit if

N. is the number of effective or lethal fragments per unit area of
2

fragment front, such that NT = N.A = Nn AD/R is the expected number
Lt A io P

of lethal hits and is much smaller than the number of trials (total
fragment number).

2
Kent went on to let GR dR represent the probability that the

aircraft lies in an elementary volume of the fragment spray. Here G
is a function expressing the aiming errors of a particular gun versus
aircraft encounter. Then the probability that a shell burst will be
effective can be written as

-(N/R2)A
P = / * (1 - e )GR^ d R (20)

where R is the effective range of a fragment (a single value if all

fragments are alike or an average value in the case of natural

fragmentation). When A N < < R , then Equation (20) becomes

P = G Ap (Nfl R2) (21)

provided G Ap N0 is independent of R. For comparable aiming systems

against the same target, G AD will be the same, so that (Nn R~) or
1 !kb ^

even N fl R = (NR_) can be used to compare the relative effectiveness
^6 Z Z

of different size shells. Kent expanded the exponential in Equation
(20) and retained the first few terms in order to estimate P for the
shells being considered. He also suggested that G have the form of an
error function, but did not carry out any calculations employing this
suggestion. Finally, he estimated that the probability of a direct
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hit on the aircraft by a shell was as great as the probability of
killing an unprotected essential component like the pilot. In
order to do this he replaced the aircraft by two intersecting cylinders,
one representing the fuselage and the other representing the wings.
He concluded that prompt point detonating fuzes should be considered
in addition to time fuzes, especially if aiming techniques were improved.

In the fourth report of this series, Kent analyzed the results of a
Navy report13 which gave estimates of two types of disability or "kill"
based on experimental firings. Type A was expected to cause mission
abandonment and an immediate forced landing, while type B should cause
an eventual forced landing short of base without mission abort. These
two types of kill were given for hits on the engine, lubricating
system, fuel system, engine controls, engine bearers, pilot and
surface controls. Kent suggested that these disability estimates be
treated as conditional probabilities of kill (type A or B) given a
hit on the Jlth component, namely, (PK/H)jj • If each component had a
presented area, (Â),, , and pui is the probability of hitting a unit

r *• ni

area of the aircraft, then (Ap) p is the probability of hitting

the &th component. The product of this probability with CPK/H^i
then gives the probability of disabling the airplane by a hit on a
given essential part. Since all these probabilities are small, an
approximation for the net probability of killing an aircraft hit by
a single burst is

PK/H = £ &WA CV*PHI =? V pHi - \ PHI
 (22)

Here we have used the symbols A 0 and A to represent the component
VA* V

and total vulnerable areas of the target. Kent did not use the symbols
or the phrase vulnerable area, but he computed the sums for both kill
types using the Navy data. The Navy report gave the number of frag-
ments hitting each part and the number of estimated A and B kills.
As an estimate of (Pi//uDn one might use the ratio number of kills K.I

K/n x, K
divided by number of hits NH. Instead, Kent considered it better
practice to apply Bayes' rule and take pv/u = (Nv + 1)/(N.. + 2).K/n K. n

Since the Navy airplane had one engine and one pilot, Kent could
not directly transfer these results to multi-engined Army bombers
with pilot and bombardier. He recommended that the best method of
obtaining estimates of kill probabilities would be to subject such
an airplane to fragment attack. Because the Navy tests did not
involve a large number of hits on vital parts, Kent estimated that
the Pk/H values he calculated could easily be in error by 50% or

Report .25, "A. A. Gunnery, Damage Effect as Determined by tests
against XF 7B-1 Airplane Navy".
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more. Since no tests had been made on a multi-engined bomber,
estimates based on the Navy report would be even less reliable. Of
course the (PK/H)£ values used by Kent were for an average over all
fragments emitted by a particular shell at a particular location
relative to the target.

About the same time in England Cunningham and coworkers14 considered
a similar problem in which they analyzed the effectiveness, of machine
gun fire by an RAF defender attacking a twin-engined bomber. In their
report they gave an admirable summary description of the goal they
were trying to achieve:

"The volume of data required to describe with complete fidelity
all the changing conditions which occur in any one actual combat is
clearly too large to admit either of specification, or of useful
analysis. This difficulty seems, at first sight, to preclude the
possibility of a mathematical theory of combat for which much realism
can be claimed. It has nevertheless been proved that the statistical
results of a large population of similar combats, on which strategical
interest is mainly centered, must depend only on mean values of the
varying influences..."

In this report reference is made to a previously published
"Mathematical Theory of Air Combat" by L. B. C. Cunningham without
date or report number. This report is now unavailable, but modifica-
tions to it appear in Appendix I of the report we are now considering.
This appendix speaks of "the whole potentially vulnerable area", S,
of a bomber, and the set of fractions, 9., contributed by th«
Hth vital component to this area as determined by firing trials
such that the actual total vulnerable area, A, is

(23)

The pilot, gunner and fuel tanks were considered "singly - vulnerable"
components, while each engine consisted of a "duplicated pair, whose
contribution to the bomber's vulnerability may be analyzed by the
standard method". Such components are now called multiply - vulnerable.
Unfortunately, Cunningham's other reports are now unavailable so we
are unable to explain how he used Equation (23) . However, he seems to
have influenced a number of later writers as we shall see.

B. C. Cunningham, E. C. Cornfords W. Rudoe and J. Knox, "An
Analysis of the Performance of a Fixed-gun Fighter Armed with Guns
of Different Calibres in Single Home-defence Combat with a twin-
engined Bomber "j Feb 40.
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B. THE VARIABLE TIME PROXIMITY FUSE

In 1942, the U. S. Office of Scientific Research and Development
issued a significant report,OSRD 738, authored by a group consisting
of Professor Garrett Birkhoff, Dr. Ward F. Davidson, Dr. David R.
Inglis, Professor Marston Morse, Professor J. Von Neumann and
Dr. Warren Weaver113. In Appendix I of the present report brief summaries
are given of the background of some of these men and some others who
were involved in this type of work in England and the United States.
The OSRD report we are now considering compared the effectiveness of
time and proximity fuzing for shells fired by guns on ships at sea
defending themselves against high level bomber attack. It is worth
quoting part of the introduction to this report since what is said is
still true today in many cases, although sometimes not so clearly
recognized:

"It was well understood that many items of experimental knowledge
are now lacking; and that it would therefore be necessary, at various
points in the discussion, to use estimates based not on established
fact, but based rather on judgment or even guesswork. A serious
attempt has been made to call attention to all such soft spots in
the argument; bracketing figures are frequently used to indicate the
possible range from "average1 estimates down to 'low' estimates and
up to 'high' estimates; and in the cases of major importance, there
is some indication of the sensitivity with which the final results
respond to changes in estimated quantities".

Proximity fuzes were relatively new and the aim was to find the
ratio of kill probabilities for the same shell with two different
fuzes. Even large absolute errors should not seriously influence
estimates of relative effectiveness. As these authors remarked, the
advantage of the proximity fuze was found not to be affected impor-
tantly by assumptions made concerning target vulnerable area, initial
fragment velocity or the nature of velocity loss due to air drag.
Their general method was to multiply the probability that a burst occur
at a certain point relative to the target by the conditional probability
that a burst at that point would inflict specified damage and to sum
these products for all possible locations of the burst to obtain the
total probability that a given round inflict the specified damage.
The ratio of these probabilities for proximity and time fuzes was
called the advantage ratio.

A cartesian coordinate system was located with origin at the
effectively stationary target which is being attacked in its forward
hemisphere while in level flight. The z axis was chosen anti parallel
to the shell trajectory at burst and the x-axis was chosen horizontal.
A Gaussian distribution with circular transverse (x, y) error 0 and

15 G. Birkhoff, W. F. Davidson, Dr. R. Inglis, M. Morse, J. Von Neumann
and W. Weaver, "The Probability of Damage to Aircraft through Anti-
aircraft Fire. A Comparison of Fuzes When Used against High Level
Bombers Attacking a Concentrated Target", OSRD 738, 16 Jul 42.
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range error a was used to describe the probability that a burst occur
in a volume near the target, that is, for a time fuze

dz (24)
z

2 f 22 2 1or simply (2ira ) exp - (x +y )/(2a )J dxdy for a proximity fuze

which possesses, a burst surface described by z = z (x, y) . If R =
2 2 2(x + y + z ) and i|> is the latitude measured from the x, y plane

toward the z-axis (i|> = ir/2 - 6 where 6 is the co-latitude), then the
expected number of lethal hits on the target will be a function
N (R, ifi) because of symmetry about the z-axis. These authors used

the poisson distribution to represent the conditional probability that

at least one hit be lethal to the target, that is U =(l-e~ L) , as in
Equation (18) above, following the practice of Pearson and Welch in
a British report now unavailable. They also used the usual air-drag
law

m dv/dt = m v dv/dR = -Cn p A v2 (25)
U 3.

where m is the fragment mass, C is the drag coefficient, p is theL) a
air density and A is the average area presented by the fragment in
flight. Following Pearson and Bishop1^ they represented this area for
a randomly rotating fragment by

A = k m2/3 (26)

where k is a constant shape factor. If we integrate Equation (25) and
use Equation (26), we obtain for straight trajectories

v = v ea = v e-CD pao o
We discuss the derivation of Equation (26) in Appendix II. For the
number of lethal hits they wrote

lb E. S. Pearson and D. J. Bishopf "The Derivation of a Retardation Law
for Shell Fragments", A. C. 2478, 5 Aug 42.
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NA (0)
A (R) = --. K(*> -— (28)
v

which is of the form N = —=— used in Equations (18) , (13) and (3)
L z

above with N« = N .^T and A = A (R) rather than Ap. Here K(ij>) is the

ratio of the number of fragments per unit solid angle to the average
number per unit solid angle over the hemisphere forward of the shell's
equatorial plane. T'he function K(iJ>) was determined for 2 ,5 ° interv als from
experimental shell firings and depends on altitude because of decreasing
remaining velocity of the shell. Here N is the total number of
fragments larger than some minimum size (.04 oz) and A (R) is "a sort

of vulnerable area" which the target presents to the burst and is defined
by Equation (28) . In order to estimate this area, its value was/ assumed
to be divided into three component areas, A = A /2, representing the

crew (pilot and bombardier), and \ = Ap = A /4, representing the

motors and fuel cells respectively. As they remarked, there was "some
evidence that two fragments hitting a fuel tank at the same point (or
near together) at short intervals of time are especially effective in
starting fires". Threshold lethality criteria were chosen for the
three component areas, namely, 120 foot - pounds of fragment energy
for A , the ability to perforate 3/16 inch of mild steel for A^^ and

the ability to perforate 1/8 inch of mild steel for A . The fragments
were divided into fairly homogeneous groups with the i-th group
containing n. fragments of average mass m. , residual speed v (m., R)
from Equation' (27) and vulnerable area A.1 .̂, v(m. , R) ] . Here1

A. = A . = A . + A... + Ap. = £ A., for all groups on the assumption
-L V -L \f> 1 I 1J. r j. n X» J.

A/

that they all have some sufficiently high launch speed and mass. However,
as R increases, one or more of the component vulnerable areas will
drop out of the sum for (A. = A . (R) because of loss in velocity, so

that a plot of each A. versus R will be a step function approaching

zero. Consequently, the total vulnerable area

i

Ay(R) = .(£ n. A.) / C £ n.) = £ £ n. £ A£. (29)

i i i H

will also be a step function. Figure 1 reproduces their figure for
effectiveness versus R for a Navy 5 inch shell with initial fragment
speed v = 3500 ft/sec. Near the target for example the contribution

from 1/2 oz. fragments is given by a vertical line segment between
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Subdivided According to Fragment Weights
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Figure 1. Fall-off in Effectiveness Subdivided According to Fragment Weights
(from OSRD 738)



the 1/2 oz. and the 1 oz. curves. These 1/2 oz. fragments show losses
in effectiveness near 150 feet and 300 feet. Their vertical scale is
arbitrary, but if they had plotted A (R) /A (0) the curve would approach

unity as R ->• 0 . One also sees why they could approximate the cumulative
effectiveness curve by an exponential, namely,

Ay(R) = Av(o) e'LK • (30)

where C depends on p , Cn and k as well as fragment mass. The ratioa LI
A (R) / A (0) was introduced into Equation (28) for convenience, since

it could be computed for any A (0) , assuming the same division into

component areas. Then the value of A (o) could be chosen later to

fit a particular size target of the same type. The above scheme for
estimating A (R) and N. (R,i(0 is straightforward and similar schemes

have been widely used since. It is interesting to note the authors'
remarks on this scheme since they are often .true even today:

"It must be confessed that the computation of N (R,40 is a some-
L

what shaky affair. But it is comforting to note that the final results
of the whole study are rather surprisingly resistant to alterations in
the method of computing N M.17

L

If we recall that their study was of relative calculated kill probabi-
lities rather than of absolute values, then this result is not too
surprising. However, they also noted close agreement between the kill
probabilities, p , for time fuzes which they calculated and those

calculated by the British:

"Taking into account the variety and complexity of the different
assumptions and the different methods of calculation, the above
comparisons of p seem almost miraculously close; while the essential

coincidence of the ranges of value for the advantage ratios, as just
stated, is also reassuring".18

If we put Equation (30) int'o Equation (28) , we find

NA (0) -~ ' - -
(31)

i7Reference l53 p. B-7.
18Reference 15> p. 46.
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which for large R is approximately equal to the damage function, that

is, D = 1 - e"NL » N . It is clear that R2D * R2NT •* 0 as R -»• 0
2and that R D -»• 0 as R ->• 0 . For a proximity fuze we can express D£R,^)

2 2in cylindrical coordinates, namely, D(r,z) where r = (# + y ).
Their calculations showed that D(r,z) has its principal maximum for
z=z(r), a surface of revolution which is the optimum burst surface for
a proximity fuzed shell. From their tables it is apparent that this
surface is approximately a cone.with the target near the apex. Such
a burst surface would place the target in the center of the side spray.
In general they concluded that proximity fuzes were anywhere from
twice as effective to an order of magnitude more effective than time
fuzes, depending on circumstances. The advantage ratios were found by
evaluating numerically or by power series integrals over the product
probability distribution of D and the Gaussian error function, namely,

z

for the time fuze and

dx dy dz (32)

P(<0 = —̂ Y-JJe ~2 D [x, y, z(x, y) ] dx dy (33)
2ircr za

for the proximity fuze. Here p1 or p (a) are the expected values of

the probability function D when x, y and z are random variables with
Gaussian probability distributions.

It is interesting to note that the concept of vulnerable area
presented in Equation (29) is more general than Kent's given by

Equation (22) where Kent's A = A. is explicity equal to — T^ n.
V* Jt M • i

A , that is, equal to the average effect of all the fragments on the SLth

component when launched from a particular location. Kent estimated
component (PK/H)n from experiments and used A . to estimate hit

probability. The association of A with t̂ K/fl-' £ to form A does

not eliminate the need to estimate PK/ti j, experimentally and certainly
does not imply that the conditional kill probability of the &th component

, = A s/A 9. can b® reduced merely by increasing A , that is,
by simply placing the sensitive components in a bigger box! As is clear



from the discussions above, A „ or A ... or A . are "sort of areas".
vi

They are perhaps better described as effectiveness parameters which are
defined to have the dimensions of an area by the role they play in
Equation (28). We can just as'well speak of total or component PK/H

as estimated from experimental firings (or in some other way) using
a threshold or some more sophisticated lethality criterion. This has
the advantage of avoiding confusion between "vulnerable areas" and
physical (spatial) areas. A similar confusion can arise concerning
so-called "lethal areas" as we shall see.

Shortly after, a British report by Kendall19 gave a similar comparison
of time and proximity fuze effectiveness versus aircraft, but for
rockets instead of gun projectiles. Since launch stresses on rocket
missiles are not as great as those on gun-launched shells, pre-formed
fragments can be used instead of relying on natural fragmentation. This
forces the designer to choose one or more fragment sizes and shapes.
Kendall also included systematic bias in the aiming error and introduced
an important approximation for the chance of at least one lethal hit.
He adopted the coordinate systems of Equations (32) and (33) above
and assumed that a proximity fuze would burst approximately on the cone
specified by the co-latitude 9=9 (z = R cos 9). He included a

transverse bias error a by rotating the system about the z axis until
the projection of the burst point on the x, y plane lay on the x-axis
with mean position (-a, 0) instead of (0,0) as for no bias. Since
x = R sin 9 cos 4> and y = R sin 9 sin <j), then Equation (33) becomes

p(a,a) = —2-/Ro/Hxp - --— j R2sin29 + a2-2 a sin 0 , R cos
2iTO Jo J0 I 2o ( sin 2° .a

2/2a2 & Fsin20o
D (R,9 ) sin 6 R dR dd> = — — e

o *"> o 02

D(R,9Q) IQ (bR) RdR (34)

where I (bR) = ~ fa ebR cos * d<fr is a Bessel function with
0 2 27r-'0

b = a sin 9 /a . For I) in Equation C33) he proposed the approximation

l̂ zi /•»• T* / f OD *\ D o-in O / f OD "^

D l i\C I L —J. / I £I\- I — K bill O / I^I\^J f ~.- •*= 1 - e « e 2 =e o 2 . (35)

Kendall called the adjustable constant R the probability radius and

pointed out that for N. = K e~CT/T = l

Lt

G. Kendall, "Ihe Chanaes of Damage to Aircraft from A. A. Rockets
Fitted with Time or Proximity Fuzes", A. C. 2435, 28 Jul 42.
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e-r 2 = 1-e- = >632 (36)

so

R2 = 1.044 r * r (37)

Thus R can be thought of as defining a circle in the *> y, plane

centered on the target within which we expect at least one lethal hit.
This is comparable to Kent's radius of overhitting in Equation (1)
above, so that irR is a 100% "lethal area" in a. probability sense. If

we use Equation (35) in Equation (34) with no bias error (a = 0), we

2 2 2 2since r = R sin 0 gives r dr = sin 0 RdR. Equation (34) with

Equation (35) can also be integrated in closed form for a & 0, provided
we neglect the integral from r to °°. In this case we find

rdr

(38a)
2 .. 2 e or 2^2,a +R2 2(a +R2 )

Kendall did not choose R. on the basis of how closely Equation (35)
~'cR/R icould match the original function 1-exp (-Ke ' -'for given K and c.

Rather he chose R_ on the basis of how well Equation (38) for given a
and r could be matched to p(a) computed numerically using the original

function. Kendall also considered the problem of optimizing o in
Equation (38a) to compensate for an unavoidable a, as well as the
probability of damage from a salvo of rockets equipped with proximity
fuzes. His treatment of the subject was later repeated by Carlton20

and his approximation for D in Equation (35) above came to be called
the Carlton approximation.

For a time - fuzed warhead without bias errors but with equal range
and transverse random errors (a = a), Kendall used symmetry to
integrate over <j> and assumed thlt taking 0 = 0 would describe the

side spray well enough, so Equation (32) above becomes

G. Carlton, "The VT Fuze in Anti-Aircraft Gunfire", TM122, Aug 45,
the Johns Hopkins Applied Physios Laboratory.
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- 3
21 2 _ 2 I _ R_

3 / R2dR - sin 6 3 , ,,, (39)

neglecting the integral from R to °° and using the approximation

D = e-R
2/(2R3

2). ' (40)

TT
analogous to Equation (35). The factor — sin 0 can be buried in

the probability radius R which defines a kind of "lethal volume".

Kendall also briefly considered the cases in which a =£ a and in which

non-zero bias occur. In a later report21 he applied these ideas to the
prediction of an optimum size and shape fragment in a pre-formed fragment
warhead attacking a high altitude bomber. He concluded that the frag-
ment should be square on the two faces which intially form part of the
shell wall and should weigh from 1/8 oz to 3/8 oz, assuming no change
in fragment launch, speed from shells in service. He and his co-workers
pointed out that this conclusion was quite sensitive to the threshold
criterion used to define the perforating power of a lethal fragment
and recommended that much more experimental information was needed to
relate perforating power to aircraft damage before much confidence
could be placed in these conclusions.

A little after Kendall's paper appeared in 1942 Professor N. F. Mott
published a report on this subject22 in which he discussed methods of
choosing the optimum size fragment to be used in a controlled fragmen-
tation warhead attacking aircraft. For example, against dive bombers,
damage to controls or one engine may stop the attack even though the air-
craft can return to base. If attrition of a high altitude bomber fleet
is desired, then damage to all engines or hits on the fuel may cause
a crash short of base. To achieve these different objectives, different
numbers and sizes of fragments might be desired. Since adequate
estimates of the vulnerability of vital components to fragment attack
were required but not available, Mott contented himself with an outline
of a method while pointing out the weakness of the experimental base on
which it rested. The proof that available vulnerability estimates
based on controlled firings against aircraft were inadequate he took
to be the fact that predictions based on these component vulnerability
estimates did not agree with the results of combat data:

ZiA. G. Walters, D.G. Kendall and L. Rosenhead, "Controlled Fragmentation
of the 3" (Parallel Sided) Rocket Shell, Fitted with a Time Fuze, in the
H. A. A. Role, T-he Optimum Mass and Shape of the Fragments when they
are all of Equal Size", A. C. 4467, 26 Jul 43.
Z2N. F. Mott, "Damage to Aircraft by -H. A. A. Fire", A. C. 2480, Aug 42.

28



'Estimates of the vulnerability of two engined bombers obtained
by adding these components do not agree with results obtained in combat.
These can be deduced from the results of H. A. A. shooting in this
country, where casualties can be compared with the estimated accuracy,
and from a comparison between the number of hits on Bomber Command
aircraft which return and the estimated number shot down by (German)
H. A. A. In both cases the numbers shot down are at least three times
as great as they should be on the assumption that damage to controls,
pilot or both engines is normally necessary to cause a crash".

Mott devoted half of his report to a discussion of the shortcomings of
estimated component vulnerable areas in the light of combat data. Of
course he was aware of the limitations of combat data, but he also
knew the limitations of predictive models based on inadequate experiments.
It is not surprising that a man of Mott's ability (see Appendix I)
showed a healthy skepticism toward his own computational estimates and
measured the degree of their predictive ability by comparisons with
real-world combat data.

In section six of his report, Mott assumed that a shell burst
projected a uniform random distribution of N identical fragments each
travelling the same straight line distance Rp before it became ineffec-

tive. Each aircraft in a fleet of T aircraft was looked upon as a
sphere which presents a vulnerable area A and the poisson probability

-N 2(1-e L) with NT = N,, A/R was used as the probability of at least one
Ll d6

lethal hit. This estimate for N is more like Kent's Equation (3)
L

above since it does not include the angular dependence of the fragment
spray as described in Equation (28). The use of the poisson
approximation he attributed to Cunningham without citing a reference.
The number of casualties or aircraft which receive at least one lethal
hit from a burst somewhere in the fleet is

r = T*-• • • i A — w u i , n 4. i n A ' I' I « «J f _ M *-> ~ IT „ rv/ i\ n i* i T-. l f /I 1 **

the number of targets per unit volume of

air space. Equation (41} is a three dimensional analog of Equation (1)
above, but differs from it in that the use of the poisson expression
for at least one lethal hit avoids the necessity of introducing the
idea of an overkill radius.

For vulnerable components Mott used the symbol A with

tl-e"NL ) <* N£ = Nfi A
1/R2 < < I, so that the fraction of target

components of a given type (say an engine) which receive at least one
lethal hit becomes

29
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(yy " R 4*dR - 3

since N and A were not taken to be functions of R. In the case of

redundant components as in a two-engine bomber, Mott recommended using2 - M2-
In section seven of his report Mott discussed the question of

optimum fragment size. He adopted Equation (27) above and solved it
for R, obtaining,

R = .CCD Pa k)"
1 m1/3 In (VQ/V) . (43)

Next he adopted a threshold lethality criterion based on the momentum
needed to perforate a given thickness, T, of wood

mv = GTA = GTk m2/3 . (44)

where G is a constant and the average presented area was adopted from
Pearson as in Equation (26) above. Mott used Equation (44) to define
a minimum mass, mm '

m1/3v = m 1/3 v = GTk (45)m o ^ J

which depends on the launch speed, v , as well as the target thickness,

T, and the shape factor, k. He then used Equation (45) to eliminate
v /v in Equation (43) to obtain an expression for the effective range

RE = (CD Pa k)'
1 m1/3 In (m/mm)

1/3 (46)

a form he attributed to Welch without reference. Finally he noted
that if M is the mass of the shell, then the number of fragments will
be N = M/m, while the chance of a lethal hit on a target component will
be proportional to the product NR^ as in Equation (21) above,

NRC = i M (Cn p k)"1 m"2/3 In (m/m ) (47)c «5 u a m

from Equation (46) . This function of m has a maximum for
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m/m = e3/2 =4.48 . (48)ra

so that all fragments should have this mass. If there are two vulnerable
components, one of area AI vulnerable to fragments of minimum mass m1
and a second of area A , vulnerable to a minimum mass m > m ,

& f £* J.

then the chance of a lethal hit will be proportional to

m"2/3 [A, In (m/mj + A. In (m/rajl (49)

by analogy with Equation (47) above. This expression has a maximum
with respect to m when

1A2
e3/2 (A1 + A l/ + A) . (50)

as

Finally, Mott returned to the evaluation of Equation (41) in the
2

case where N_ A/R is not negligible compared to unity and plotted

C/(T-.A) versus (m/m ) since the upper limit of the integral in

Equation (41) depends on this ratio by Equation (46) . He evaluated
the integrals numerically both for a singly vulnerable component using

\l-e~ £/ and for a multiply vulnerable component, using \l-e~ £/
explained above. As expected, these measures of effectiveness exhibited
maxima as a function of (m/m ) with a broader maximum near 10 to 15 for

singly vulnerable component and with a narrower lower maximum near 4 to
6 for two redundant components.

In an appendix Mott briefly considered the case of natural shell
fragmentation. Adopting a suggestion of Welch which he described in
more detail in a later report2*, Mott wrote for the number of fragments
with masses between m and m + dm

dN = N(m) dm = N -(m/IV d [(m/m )1/3| (51)
O 6 L O -J

where N and m are chosen to fit experimental mass distributions.o o
Instead of using the value R^ in Equation (41) , he used an average

value, RE, computed by weighting Rp according to the distribution

. F. Mott and E. H. Linfoot, "A Theory of Fragmentation", A. C. 2348,
11 Jan 42.
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given in Equation (51), namely,

= / R E d(N/NQ) = i (Cn PQ k/mm
1/3y /: y(ln y) e'ydy (52)

where y = (m/m ) = (m/m ) , if we design our naturally fragmenting

shell so that m = m . The infinite upper limit of Equation (52) is

an adequate approximation when almost all of the fragments are very
small compared to the original shell mass. Since R is also a function
of (m/m ), Mott could have plotted C/(T A) versus (m/m ) for naturally

fragmenting shell examples also, but he did not.

In a later report24 Mott compared the effectiveness of natural and
controlled fragmentation and concluded that "the optimum average size
with natural fragmentation is so small that if all fragments had this
size they would scarcely be large enough to damage the target". In
addition he remarked, "the chance of damage is very insensitive to
mean fragment size, and cannot be improved by more than 20 per cent by
finer uncontrolled fragmentation". In his calculations he assumed an
aircraft to have a vulnerable area of ten square feet with resistance
to damage equivalent to the resistance to perforation offered by two
inches of wood. As before he used an average over all aspects of the
target. As we can see from Equation (41) above, the vulnerable area
was taken to be a fixed number for a given target and shell which
entered into the estimation of the number of lethal hits N = N A/R „

Lj U"

Of course N. = N. (R)_while fragment size and speed entered through R
in Equation (46) or R in Equation (52). Again his treatment of

vulnerable area is more like Kent's than that given in OSRD 738.

Meanwhile, at the Ordnance Office in Washington,D.C. similar studies
were being carried out by Prof. Marston Morse and his associates.
Prof. Morse had already collaborated in OSRD 738 and continued his
interest as revealed by a series of reports from 1943 to 1945. For
damage to materiel targets Morse preferred an energy threshold criterion

mv 2 = K2 T A = constant (53)

instead of Equation (44) above. Here again T is the target thickness
(wood or steel plate equivalence). However, Morse did not simply use
the average area presented by a fragment in flight as the striking

F. Mott, "Optimum Fragment Size for A. A. Shell", A. C. 3366,
15 Jan 43.

32



area. Instead he preferred the maximum area or some quantity related
to it, at least when deliberately trying to overestimate the protection
needed by an aircraft from its own bomb-fragments in very low-level
runs25. If we solve Equation (53) for v (given m) then we have an
expression for the minimum striking speed needed to perforate the
target thickness, T, namely, the limit speed

v. = K (TA)1/2 m"1/2 (54)LI

which, as Morse points out, is a particular case of the De Marre
formula

VL = K (TA)
 1 m"1/2 (55)

This later served as the basis for the formula

C a (J Y
VL = 10 (TA) A m (sec 0) (56)

used in Project Thor26 where C.., o^, 3, and Y . are empirical constants.

Morse proposed che£king the British hypothesis of random rotation in
flight leading to A in Equation (26) above by using photography. He
also discussed a method of determining the mass distribution of a
naturally fragmenting bomb or shell from observations of the frequency
distribution of fragment hole areas in witness panels.

Since proximity fuzes had become available by 1943 a number of
reports appeared which discussed the optimum height of burst for a
shell or bomb used against personnel on the ground. Birkhoff and
Lewy27 compared the results of three such reports with experimental
data and found satisfactory agreement on the preferred height. The
first report they cited was by Mott28 for the British 3.7 inch shell,
but it is now unavailable. The second was by Chandrasekhar29 and
treated a 105mm shell. Chandrasekhar used a coordinate system with

Morse, R. Baldwin and E. Kolchin, "Report on the Uniform Orienta-
tion and Related Hypotheses for Bomb Fragments, with Applications to
Retardation and Penetration Problems", T. D. B. S. 3, SO Jan 43.
26
Project Thor, TR47, "The Resistance of Various Metallic Materials to

Perforation by Steel Fragments; Empirical Relationships for Fragment
Residual Velocity and Residual Weight", Ballistic Analysis Laboratory,
The Johns Hopkins University, Apr 61. (AD# 322781)

°f
28 N. F. Mott, Army Operations Research Group Memo No. 18, 18 Feb 43.
29S-. Chandrasekhar, "Optimum Height for the Bursting of a 105mm Shell,
BRL MR 139, 15 Apr 43. (AD#492801)
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the x, y plane defining the ground plane and z = h representing the
height of burst. For a horizontal shell with its axis parallel to
the x axis he took the equatorial side spray of fragments to be
symmetric about the y, z plane with an angular width of 2A (A « 7.5°).
For prone ("poker chip") men of area A the area presented normal to
the slant range R is Ah/R so the expected number of hits is

N, = NJJ Ah/R . Chandrasekhar used Equation (51), which he also

attributed to Welch, for the mass distribution of fragments, but
he implicitly assumed a uniform spatial distribution within the
narrow side spray so that N is an angular step function which

da

depends on average effective range as determined by the mass distri-
bution, average shape, air drag and lethality threshold parameters
expressed in Equation (52) above. His expression for the number of
casualties was similar to Kent's Equation (1)

JS-dxdy + T A d x d y N(m)dm Ah/R (57)T // Hvrlv I —L I °° flf-mlrlm I AV,/D^

min -1II
where region I was a rectangular area of overhitting instead of Kent's
circular area and T is the number of targets per unit area of ground.

One side of the target area was defined by the extent of the side spray
while the other was defined by the average effective range. The mass
integral in Equation (57) was divided by the angular width 2A » 2 sin A
as well as by a factor of two because only half the fragments were
projected at the ground. Chandrasekhar smoothed and extrapolated
experimental fragment mass data in order to tabulate/"00 N(m)dm versus m.

Jm _
He then used Equation (45) as his lethality criterion and tabulated R

in Equation (52) versus m. Next he tabulated the integrand in region
II of Equation (57) for various values of h (50 ft < h < 120 ft) and

*% +Y > the radial distance on the ground measured from directly below
the burst point. Since A was taken to be a constant it did not enter
into the tabulation of the integral, so that C/(AT ) could be found as a
function of h by summing over values tabulated for various distances

/
2 2 / 2 2 2c +y since R = /h +jc +y . He concluded that the optimum value for

2 2
h was about 75 feet with little sensitivity to A = 2.5 ft or 5 ft or
A = 7.5° or 15°. At this height he estimated that each shell burst
would cover an area about 20 ft by 150 ft, indicating that such bursts
should be placed in a grid pattern with these dimensions for optimum
effect. Obviously Equation (57) predicts zero casualties for h = 0
since prone "poker chip" men are safe from a burst at ground level in
this model, so this formula does not reduce to Kent's Equation (1) which
envisions standing targets. It does however include a mass distribution
of fragments as well as air drag effects which vary with mass and an
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average shape, although, like Kent's formula, it is limited to a partic-
ular shell orientation.

Soon after, Morse and co-workers30 discussed the same problem but
included foxhole protection. In this model a man is considered barely
safe if the slant height R = h/sin £ where £ is measured in the R, h
plane between R and the ground plane. If £ = 30° we have a so-called
"30 degree" foxhole with the maximum effective distance on the ground
measured from a point directly below the burst r = 7?> h. Like Mott,
Morse used the poisson expression for the probability of at least one
lethal hit. For the 500 pound general purpose bomb he constructed
detailed contour plots of this probability on the ground plane for
two angles of fall (45° and 60°), four burst heights (0, 30, 50 and
100 feet) and two types of target. For personnel targets he used the
energy threshold criterion of 58 foot pounds, while for truck targets
his threshold criterion for lethal fragments was their ability to
perforate 1/8 inch of mild steel plate. For personnel he introduced a
terrain cover function (1-r/r ) multiplied by the presented area. He

computed the expected number of casualties by placing men or trucks at
grid points in a square target area, for example, 400 men ten feet
apart, evaluating the probability of at least one lethal hit, 1- exp

[-Nj,(x»)0] > at each grid point and summing over all grid points.
This eliminated the need to evaluate integrals. He concluded
that a burst height of about 50 feet would be optimum against shielded
personnel or trucks (shielding each other).

Morse soon followed this report with another on the effectiveness
of the 105mm shell31. He used the same methodology and concluded that
the optimum burst height varied from 30 feet to 65 feet as shielding
increased from natural terrain only to terrain plus 45° foxholes.
Morse compared his results with those of Chandrasekhar mentioned above
and enumerated the following differences between the two models:
(1) Chandrasekhar assigned a vulnerable area to a prone man (in the
ground plane) while Morse represented a man by a sphere which always
presents the same area to the radius vector K. Morse also added a
representation of terrain shielding; (2) Chandrasekhar smoothed and
extended experimental pit results for the mass distribution, while
Morse used the results without modification; (3) Morse used the
experimental angular distribution of fragments32 while Chandrasekhar used
a uniform distribution over a narrow equatorial spray; (4) Morse used

30Af. Morse, W. Transue and R. Kuebler, "The Optimum Point of Burst of a
600 Ib. G. P. Bomb Equipped with a Proximity Fuse", T. D. B. S. 7,
22 Apr 43.
31M. Morse, W. Transue and R. Kuebler, "On the Optimum Height of Burst
of a 105mm H. E. Shell, Ml, Used against Personnel", T. D. B. S.
11, 1 Jun 43.

. A. Toloh, "Number, Angular Distribution, and Velocity of Fragments
from 105mm H. E. Shell Ml", BRL R386, 28 Jul 43. (AD#491869)
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an energy threshold of 58 foot pounds for his lethality criterion while

Chandrasekhar used m v = 210 (pound) ' ft/sec; and (5) Morse used
a summation technique over a grid while Chandrasekhar integrated with
an assumed constant target density, T In addition it might be men-

t\

tioned that Morse included non-zero angles of fall.

As mentioned above, Birkhoff and Lewy pointed out that,the con-
clusions of Morse and Chandrasekhar concerning optimum burst height
were in reasonable agreement with each other and with the results of
experiments performed for the Field Artillery Board at Fort Bragg, all
employing the 105mm shell. In addition, Mott's conclusions concerning
the British 3.7 inch shell were also about the same.

"All studies agree that a variation of ± 20% from optimum in the
height of burst will decrease the effectiveness by at most 10%. Within
these limits, the results of the four studies are in agreement with
each other, in spite of numerous differences in the mathematical
formulations used"27

The underlining of the words quoted above by Birkhoff and Lewy seems
to indicate their pleasant surprise that a variety of simple models
could lead to the prediction of the same useful result, confirmed by
experiment. The experimental result was about 45 feet for optimum
burst height (Appendix to Chandrasekhar's report) while, model estimates
ranged above and below this by as much as 78%. However, the particular
point of agreement noted above was of a relative rather than of an
absolute nature, namely, that effectiveness for h values on either side
of the optimum height of burst did not change very much from the maxi-
mum value of effectiveness. Encouraged by this result, Lewy later
published a report on the optimum burst height for demolition bombs
which employ a blast rather than fragment lethal mechanism33. Lewy also
made suggestions on how to handle terrain shielding34. In addition, he
published a report on the effectiveness of a 300 pound bomb against
personnel, following the methods of Kent and Chandrasekhar35, Soon
after, Huntoon36 remarked that a dispersion in height of burst which
is inevitable for a proximity fuze, could actually be an advantage in
view of the variety of target conditions actually encountered.

3 3fl. Lewy, "On the Optimum Height of Explosion of Demolition Bombs",
BRL MR185, 29 Jun 43. (AD#493725)

Lewy, "On the Shielding Effect of Small Elevations of Terrain
from Explosions of Small but Variable Height", BRL MR1953 14 Jul 43. (AD#493415)
35#. Lewy, "Determination of the Number of Casualties Caused by the
Explosion of a 300 Ib. Bomb", ,BRL R403, 11 Sep 43. (AD#491874)

D. Huntoon, "Effects on Bomb Damage of Dispersion in Height of
Burst", 0. S. R. D. 1867, 27 Sep 43.
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C. Further Development.
During the next year or so a number of reports appeared which

provided additional background for the further development of our
subject. Here we will mention some examples. Thomas^7 pointed out

1/2that Equation (51) above, or its analog involving (m) , can be
obtained by simple general arguments and need not be based on fracture
models involving cubes, planes or lines. This implies that the ability
to fit data with a formula of this type is not an argument in favor of
a particular breakup mechanism. For example, there is no need to
assume simultaneous fracturing in any regular manner, since any kind
of random sequential breakup leading to a decrease in average size
and an increase in total fragment number will do quite as well as
any other.

Gurney38 used an energy balance to derive expressions for the launch
speed of fragments from cylindrical or spherical shells filled with
high explosive. When the metal casing breaks it has expanded about
50% or so to a radius r = a and allowed the detonation products to
drop in density to a value p. If we assume that the radial speed of
expansion of these products is a linear function of r, namely,
v = (r/a)v , with the products in contact with the case having the

launch speed of the case fragments, v , then, if we neglect all other

energy sinks such as metal or gas heating, we can partition the detona-
tion energy into two parts, shared by the case and the detonation
product gases as follows

E C = i Mv 2 •»c 2 o i "c (V)2 (4" r' dr) ' C58)

where E is the energy per unit mass released by a spherical explosive
A f

charge of mass C = p (— rca ), detonated at its center. Here M is the
d- O

mass of the spherical shell encasing the charge. If we carry out the
integration in Equation (58) and solve for v we obtain

VQ = K (2E) / [(M/C) + .6] (59)

If we carry out the same sort of analysis for an infinitely long
2

cylindrical charge of mass per unit length C = p (rra ) detonated along
its axis with M equal to the mass per unit lengtn of the cylindrical

metal shell, using volume element (2irr dr) instead of (4ir r dr) in
Equation (58), we obtain Equation (59) with .5 instead of .6 in the

371,. H. Thomasj"Comments on Mott's Theory of the Fragmentation of
Shells and Bombs", BRL R398, 4 Sep 43. (AD#36152)
38#. W. Gurney, "The Initial Velocities of Fragments from Bombs,
Shells, Grenades", BRL R405, 14 Sep 43.(AD#36218)
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brackets. In this case v approaches /4E for a bare cylindrical charge

(M/C •»• o) or slightly less than this for a bare spherical charge. If
this approximation were correct in this limit, we would expect to be
able to use measured values for the heat of detonation for E (cal/gm).

t

Gurney noted that for TNT filled shells with .18 < M/C < 16.67 an
appropriate value for E was 715 cal/gm, leading to /2E = 8,000 ft/sec,c c
which is considerably less than the measured heat of detonation.
Similarly he noted that we cannot expect such an approximate formula to
agree with observation in the limit as M/C becomes arbitrarily large.
Experimentally v ->• 0 well before M/C -»• °° since a heavy walled vessel
will completely Sontain the detonation of a small amount of explosive
inside it. Still, over the range of military interest Equation (59)
and its analog for a cylinder can serve as a useful approximation.
Gurney also noted G. I. Taylor's discussion of the expansion velocity
of a thin walled cylindrical bomb detonated at one end rather than
axially, but did not compare the two models39.

Thomas'10 applied the cylindrical analog of Equation (59) to a 90mm
shell divided for computational purposes into ten cross sectional parts
perpendicular to its axis. In this way the actual variations of the
M/C ratio along the length of the shell could be approximated by using
Gurney's formula with a different M/C for each section. Thomas also
attempted to account for the lack of parallelism between the axis and
individual sections of the wall by simply doubling the actual angles,
since he assumed that the shell would expand to about twice its diameter
before it fragmented. However, in order to obtain agreement with
panel data, he was forced to assume a distribution about each angle
(normal distribution with standard deviation ± 7 degrees). In addition,
he fitted Equation (51) to panel and pit data, using the half power
form. He was obviously not satisfied with this angular analysis,
since about six months later he published a report showing the
relation between the Taylor and Gurney models of a cylindrical
H. E. filled shell41. By using an asymptotic solution method to take
account of the transverse velocity of the detonation products in Taylor's
theory he was able to derive Gurney's formula in the final expanded
state. Taylor's prediction of the angle of departure of the fragments
in this limit remained the same, so that this angle could be added to

I. Taylor* R. C. 193. Also see "Analysis of the Explosion of a
Long Cylindrical Borrib Detonated at One End", Paper No. 30 (1941) in
The Scientific Papers of Sir Geoffrey Ingram Tay lor, Vol. Ill, Aero-
dynamics and the Mechanics of Projectiles and Explosions, Ed. by
G. K. Batchelor, Cambridge University Press, 1963.
1|UL. H. Thomas, "Analysis of the Distribution in Mass, in Speed and in
Direction of Motion of the Fragments of the M71 (90mm) A. A. Shell,
when Filled with TNT, and when Filled with Ednatol", BRL R434, 3 Dec 43.

H. Thomas, "Theory of the Explosion of Cased Charges of Simple
Shape", BRL R475, 18 Jul 44. (AD#491945)
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the original angle of the shell's double ogive shape to obtain a
better estimate of the net angle of departure for each section. This
type of approximation is still in use today.

A more exact theory which retains the radial component of casing
velocity and leads to results similar to Taylor's has been published by
Allison and Schriempf**2.

Late in 1943, Kent and co-workers'*3 used the methods so far developed
to compare the standard 90mm A. A. shell effectiveness with that of
several proposed modifications involving time plus contact fuzing as
well as filling with shapnel balls or eight ounce cubes. The advantage
of using balls or cubes dispersed by spin and air blast rather than by
a large explosive charge would be their filling of the region forward
of the shell where the target was likely to be in contrast to the
expanding annular pattern characteristic of standard shell design.
The disadvantage was the smaller number and slower speed of the frag-
ments. They concluded that none of the proposed designs would rival
the potential of a proximity fuzed shell. This report is also note-
worthy for its nine appendices in which the model assumptions then
current were reviewed. In their Appendix VII they summarized the
available vulnerable area estimates for aircraft and estimated that
their ratios for various fragments and aircraft were correct to about
± 50%, while they might be absolutely correct to within a factor of
two. In their final appendix they repeated Mott's derivation of an
optimum size fragment mass given in Equations (47) and (48) above,
apparently without being aware of Mott's work over a year before their
own. Shortly after, Thomas and Birkhoff4'1' employed similar methods to
conclude that a 10% to 30% advantage could be gained by filling the 90mm
A. A. shell with ednatol explosive instead of TNT.

The personnel area target problem continued to receive attention in
the years from 1943 to 1945. Morse and co-workers45 compared the
effectiveness of the 500 pound bomb loaded with explosive in ten
different ways and subjected to pit, panel and velocity tests at
Aberdeen Proving Ground. In order to do this they employed two indices,
a space index, I, describing effectiveness against a collection of
targets surrounding a burst in mid air (A. A. Shell versus bomber

E. Allison and J. T. Schriempf, "Explosively Loaded Metallic
Cylinders, II"3 J. Appl. Phys. 21_ (5), 846 (1960).
tt3ff. Bwkhoff, R. H. Kent and D. R. Inglis, "Comparative Effectiveness
of Different 90mm Shell Against Aircraft", BRL R310, 27 Oct 43.
44L. H. Thomas and G. Burkhoff, "Use of Ednatol or TNT in A. A. Shell",
BRL R441, 23 Dec 43.

^5M. Morse, W. Transue and R. Kuebler, "Fragment Damage Indices. A
Comparison of Fragment Effects of Different Loadings of the 500 Ib.
G. P. Bomb, AN-M64, and the 20 Ib. Fragmentation Bomb, AM-M41",
T. D. B. S. 16, 27 Sep 43.
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squadron), and a plane index J, describing effectiveness against targets
distributed in a plane (bomb or artillery shell versus troops on the
ground). Both indices were computed by summing the trajectory lengths
over which each fragment is considered to be effective according to
various threshold criteria. For the index J each element in the sum

2
was weighted as r rather than r to account for the slower increase
in number of targets in a plane than in a sphere. Both indices were
evaluated for effective trajectory lengths greater than some radius
of overhitting and a more complete index, K, was obtained by adding
the number of targets inside the circle or sphere of overhitting^6»1*7.
Morse's ideas of using fragmentation data, postulating threshold
criteria for effectiveness, accounting for air drag losses, and so
forth were little different from those of his contemporaries. He
differed from them mostly in the quantities he chose to sum together.
Later in 1945, Morse's method of making his conclusions about the
superiority of one or another type of shell was criticized by Scheffe48.
Scheffe admitted that he was in the uncomfortable position of raising
difficulties without having anything better to offer. Still his
criticisms are worth considering since some of them apply to all
writers on this subject, including those working in the field today.
He pointed out that assuming that the possession of a certain energy
or power to perforate a given thickness of steel or wood implies the
ability to inflict a certain type of damage on a man or materiel
target requires a leap in our chain of reasoning. How are we to
justify, for example, our assumption that ability to perforate 1/8 inch
of mild steel correlates with the complex phenomenon of damaging a
plane or truck in a certain way? To attempt to do this by calculation
seems not only very complicated but also highly uncertain. To accom-
plish it experimentally would seem to involve prohibitive expenditures
of time and materiel. Even apart from these uncertainties Scheffe
pointed out that uncertainties in the experimental fragmentation data
upon which all such calculations are based carry over into any
conclusions which are drawn. He advanced some general considerations
which indicated that a difference in the Morse indices should not be
regarded as statistically significant unless it exceeded 30 per cent.
Since the differences calculated by Morse were almost always smaller

Morse, W. Transue and R. Kuebler, "The Choice of Bombs According
to the Type of Fragment Damage Required. New Methods for Comparison
of Different Missiles as Well as the Same Missile with Different
Loadings", T. D. B. S. 18 3 22 Dec 43.
k7M. Morse, W.Transue and M. Reins, "The Expected Number of Effective
Fragment Hits from Ground Bursts of Bombs Taking Account of the Angle
of Fall and Remaining Velocity of the Bomb, and the Average Height of
Targets", T. D. B. S. 49, 5 Jan 45.

**QH. Saheffd,- "Some Comments on the Morse Theory of Fragment Damage",
OSRD 6426, 3 Dec 45.
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than this, the implication was that the conclusions drawn concerning
the superiority of one shell type over another were not meaningful.
For example, the most widely fluctuating measurement which entered
into the calculations was the number of fragments observed in the pit
experiments which led to a standard deviation of 13%. If at least two
standard deviations were required to distinguish the effectiveness
of one explosive fill compared to another, we see that the calculated
differences were not usually statistically significant.

!

Sheffe. pointed out how experimental uncertainties,namely, a lack
of reproducibility in a certain measurement technique, lead to uncer-
tainties in calculated effectiveness parameters. He also noted that
the sand pit technique itself might contain a built in bias because
of secondary break-up and referenced a report by Gurney and Lewy1*9.
These authors remarked that the fragmentation of bombs had been re-
investigated using a set up in which the sand-pit was covered with
four inches of celotex or with fourteen inches of sawdust since it was
feared that in earlier experiments many of the high velocity fragments
had been further broken up by impact on sand. The results indicated
that for the 500 pound bomb the fragments were more than twice as
heavy and less than half as numerous as in the earlier sand pit
experiments, while for the smaller 100 pound bomb the fragments were
about twice as heavy and half as numerous as before. Again the
question of secondary breakup in celotex or sawdust could be raised,
but these authors did not do so. Instead they commented that the
observed changes in fragmentation did not seem to affect calculations
of effectiveness very much since the reduction in the number of frag-
ments is compensated by an increase in their range. For example,
for the 100 Ib bomb, separate calculations showed that doubling the
average mass and halving the number of fragments produced a change
of fifteen per cent in the effectiveness index. The question of
breakup in softer recovery media was studied later by Bentz50 who
concluded that pit data gives a number of fragments at least several
times the true value.

The British also continued an active interest in estimating the
the effectiveness of anti-personnel weapons. In 1944, Pearson and
co-workers51 introduced the name "lethal area" and pioneered the use

W. Gurney and E. Lewy, "On the Comparison of the Efficiency of
the 20 Ib. Fragmentation Bomb, the 23 Ib. Parachute Bomb, the WO Ib.
G. P. Bomb, and the 500 Ib. G. P. Bomb Singly and in Clusters for
Attack by Ground Bursts-on Aircraft Dispersed on Open Ground", BRL
ME289, 24 Apr 44. (AD#492802)
5QW. H. Bentz, "Secondary Fragment Break-up in Cane Fiber, Cardboard,
and Sand, " BEL E704, 3 Aug 49. (AD#492317)
51#. S. Pearson, N. L. Johnson and D. F. Mills, "The Calculations of
Lethal Areas for Anti-personnel Weapons, with Special Reference to
the 25-pr. Shell", A. C. 5885, 9 Mar 44.
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of a lethality criterion which was not a simple step function like
possession of 58 ft-lbs of energy or ability to perforate a one-inch
thick board. The lethal area, A , they interpreted as follows. If

T targets are distributed on average uniformly over an area S»A ,
L

such that T = T/S is the target density, then on average it is to be

expected that A T. = A T/S targets will be incapacitated. The
L A L

lethal area was computed by integrating the damage function D(x, y)
over all possible ground positions. Thus

AL =77*D(x, y) dx dy = Jj [l-e'V* 'y)J dx dy (60)

using the poisson distribution as explained above. We see that this
notion is similar to Kent's Equation (1) above if we rewrite
Equation (1) in the form C = T. AT. The major conceptual difference

"NLis the use of (l̂ e ) for the damage function instead of adding an
area integral to a circle of 100% effectiveness as in Equation (1).
We have seen that Kent himself eventually adopted the poisson form
(see Equation (13) above). From Equation (60) and the assigned
interpretation C = A T. , it is clear that a "lethal area" may have

the dimensions of an area, but it is not a spatial region on the
ground which can be paced off or staked out. Rather it is an
effectiveness parameter or casualty index which when multiplied by
the number of targets per unit area gives the number of casualties to
be expected on average.

Pearson also suggested using the "Zuckerman man" instead of the
"1.0-inch wood man", by which he meant a vulnerable area or kill
probability which varied continuously from a minimum to a maximum
value. However, he proposed no functional form for this variation,
remarking that it should be determined experimentally. In practice he
used the "1.0-inch wood man".

Carlton , in the report already mentioned above, introduced a
different meaning for "lethal area", considering instead an attack on
a single (aircraft) target by a proximity fuzed shell. As mentioned
before, the burst occurs on the cone 6 = 9 at a distance z. = R cos 6o o
in front of the aircraft dictated by the sensitivity of the fuze.
On the assumption of symmetry about the z axis, Carlton discussed the
conditional damage probability D(r) for fuzes with radial miss r
found by averaging D(r, z) over the values of z which occur in the
burst pattern. He then defined the "lethal area" or. 'feffective size"
of the target as the integral of D(r) in the x, y plane, namely,
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A = 2iT/n D(r) r dr . (61)
LL y°.

In addition, he discussed the probability of damaging the target,
given functioning fuzes, as

p(°) = ^ I " DC-r) e r dr . (62)

which becomes Equation (38) above if we use Equation (35) for D(r).
Here Equation (61) is Equation (62) when all miss distances are
equally probable instead of following a Gaussian distribution so that
in Equation (61) we are assuming a uniform distribution of burst point
projections on the x, y plane which contains a single target at the
origin, whereas in Equation (60) above we are assuming a uniform
distribution of targets in the x, y plane with a single burst point
projected onto the origin. Carlton's type of "lethal area" has been
labeled A to distinguish it from A. in Equation (60). The difference

LL L
is conceptual rather then computational. In either case we are dealing
with a "casualty index or "effectiveness parameter" which has a
meaning only in a probabilistic sense. Because of this, the results
of a single, real burst may differ widely from the estimate computed,
even if the encounter is modeled in great detail. Such estimates as
we are dealing with have significance only for the strategist who
considers repeated encounters of the same type. This was pointed
out by Cunningham in 1940 in the quotation we cited above . Obviously
we should not use Equation (61) when all miss distances are not equally
probable as usually occurs when a single target is being aimed at.
Only if a is much larger than some finite effectiveness limit £3 will
Equation (61) be a valid approximation, provided the upper limit is r2
instead of infinity. The Carlton type of lethal area calculation for a
single target is still widely used, sometimes without realizing that it
assumes either a single burst near an infinite plane of uniformly dis-
tributed targets or a single target near an infinite plane of uniformly
distributed bursts. At least it gives a lower bound for an estimate of
relative effectiveness.

In 1945 Lewy and Gurney52 generalized Kent's formula, Equation (1),
retaining the idea of a radius of overhitting, but considering a burst
height, hi, above the ground. In addition, they approximated the angular
distribution of fragments from a shell by an equatorial side spray of
angular width 2A superimposed on a spherical spray, each spray with its
own constant number of fragments per steradian, N_. The effective-
ness of the spherical spray is, of course, independent of the
52#. Lewy and R. W. Gurney, "Rapid Methods for the Prediction of
Damage by Fragments -in its Dependence on the Variables of the Tactical
Situation"., BRL R530, 14 Feb 45. (AD#PB165304)

43



attitude of the projectile at burst. However, the effectiveness of the
side spray depends not only on its width and the height of burst but
also on the angle of fall to as defined in Equation (8) above. A
symmetric side spray is bounded by the two nappes of a right circular
cone, each of half angle (ir/2-A), which is the co-latitude measured
from the axis of the shell (or tangent to its trajectory at burst).
The solid angle occupied by the side spray is 4ir minus twice the area
of spherical cap intercepted by one nappe of the cone. From Equation
(2) this is n = 4it - 4ir [1-cos (ir/2-A)] = 4ir sin A. If we use a result
obtained by Menaechmus and Appolonius in the fourth and third centuries
B. Co, we note that the intersection of the cone with the ground plane
forms a conic section which is an ellipse of to > ir/2 - A, a parabola
if to = iT/2 - A and a hyperbola if oo < ir/2 - A. Since the hyperbola is
a common case it is shown in Figure 2. Also shown in Figure 2 is a
circle of radius r which is the maximum radius of lethality on the

ground. Lewy and Gurney considered "30° foxhole" shielding so that
r2. = /3h~. In Figure 2 this circle is shown intersecting both branches
o'f the hyperbola and limiting the potentially lethal area of the
side spray to the region without grid lines. Of course this circle
might intersect only one branch of the hyperbola or not intersect it
at all.

Let us consider a right-handed coordinate system in Figure 2 with

origin at the burst point, z -axis pointing along the projectile ve-

locity vector at the moment of burst and y -axis pointing up from the
Figure. Then the equation of the cone is

1 9 1 9 1 ? 9 1 1 9 9
(* V + (y ) = (z ) tan (61) = (zV / tan A (63)

since the co-latitude Q = ir/2-A. If we add (z ) to both sides of
Equation (63) the cone equation becomes

1 0 1 7 I T T O 7
U ) + (y ) + CO = (O / sin A . (64)

We may express this equation in another ..coordinate system obtained by
a counterclockwise rotation about the y -axis through an angle o)+ir/2,
namely

x = - x sin to + z cos to (65)

z = - x cos to - z sin to

Now the equation of the cone is
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Figure 2. Geometry of a Burst over the Ground Plane (from BRL R530)
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2 2 2 2 2(x +7 + z ) sin A = (-X cos ui - z sin w) . (66)

In this coordinate system the equation of the ground plane is z = -h
and the equation of the conic section mentioned above is obtained by
letting z = -h in Equation (66). If we do this, divide by

2 2
(cos a) - sin A) and add

x <
o [, sin a) cos CD I 2 „_,

h z 2~ "-67-1
(cos ui-sin A) I

to both sides, the equation of the conic section is

2 2 sin2

" y 2 2(cos o)-sin A)
h •] 2sin A cos A | = a . (68)

2 2(cos to-sin A)

Equation (66) is the same as Equation (9) above since 6 = ir/2 - A so
cos 9 = sin A. The conic section of Equation (68) is centered at the point
(x ,0,-h). If we divide Equation (68) by a2, we put it into standard
form, namely

X - V - j y - 1 (69)

with b2 = h2 cos2A / (cos2 u - sin2 A) (70)

Here a, defined in Equation (68), is the semi-transverse axis and b
is the semi-conjugate axis. The eccentricity is

I 2 2
e= J a +b / a = cos u> / sin A (71)

and its2relation to the discriminant 6 of Equation (10) above is
<S = 4(e -1). As stated before, for w < (ir/2-A) we have a hyperbola
(e>l), for a) = (/r/2-A) we have a parabola (e=l), and for co>^ir/2-A) we
have an ellipse (e<l) which becomes a circle if co: = ir/2 (e=o) , the
case of a vertical fall.

For a vertical fall (o)=Tr/2), x = 0 in Equation (65), and

Equation (68) is

x2 + y2 = (h/tan A)2 (72)
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so the bounding conic section is a circle of radius h/tan A centered
directly below the burst point. No side spray fragments fall inside
this circle and no casualties are possible due to this spray unless
h/tan A < r_. If h -»• o this circle of exclusion shrinks to a point
and we return to the case considered by Kent. The circle of exclusion
also shrinks to a point as A -> ir/2 since this represents a spherical
fragment distribution. In this case it is meaningless to distinguish
between an equatorial side spray and a uniform spherical background.

For a horizontal fall (an unlikely event) , u>. = o and the
eccentricity e = I/sin A > 1 for A < ir/2, so we have a hyperbola
with XQ = 0 from Equation (57) . The side spray is concentrated

directly below the burst point. We can re-write Equation (68) as

h2 \ [" 1 "I = h2

-l / |_tan2A(csc2A-l)J e2-!

(73)

when o) = o. Now if h -»• 0, the boundary degenerates into two straight
lines given by

y = ± Vc2-l x (74)

If A ->• ir/2 (unifo™ spherical spray) for w = o, the branches of the
hyperbola move far apart since a •> °° in Equation (68), so the circle
of lethality of radius r? fixed by shielding becomes the only limiting
factor.

Lewy and Gurney introduced the approximation

Nfl(R) = exp (-b - cR) (75)

for the number of effective fragments per steradian where the constants
a and b were evaluated by fits to experimental data over the range
h < R < 2 h as discussed by Thomas53. For prone men they used the

"poker chip" approximation (Ap/R ) (h/R) for the solid angle subtended
2by each target For unshielded standing men they used (A /R )(r/R)0

In the case of a ground burst r = /R -h -> R and Kent's integral in
Equation (1) above was found to involve a tabulated function, if we
use Equation (75) for N , namely, with t = cr,

rig

53L. H. Thomasj "Computing the Effect of Distance on Damage by
Fragments", BRL R468, 18 May 44.(AD#492590)
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b/"- -t b2ir Ap e
 D / cr (e Vt) dt = 2v Ap e °EI (cr̂  (76)

where E is an exponential integral. Similarly for air bursts against

unshielded prone men, we have

h Ap e /R ( c R ) (77)

using t = cR. Again, E is an exponential integral. For shielded
prone men Equation (77) has a finite upper limit and numerical integra-
tion must be used. Clearly Equation (77) or the more general case
including shielding vanishes as h •*• 0 implying no casualties if all
targets are prone or in foxholes when a ground burst occurs. For given
u and A, the number of casualties increases as h increases, passes
through a maximum and decreases as h continues to increase since
more fragments become ineffective due to air drag and more fragments
fall outside the circle of radius P. = /3h determined by shielding.
Lewy and Gurney illustrated their modified version of Equation (1)
for a 500 Ib bomb with remaining velocity of 1000 ft/sec bursting with
angle of fall u> = 55° over men in 30° foxholes and found an optimum
burst height near h = 60 feet. They plotted the number of casualties
divided by the target density, namely, C/T versus h, a quantity

A
which they did not name, but which we have seen had already been
dubbed a "lethal area" by Pearson (see Equation (60) above) . It is
a casualty index which applies to a single burst over a plane contain-
ing a uniform distribution of targets.

We will close this section of our review with a brief account of
a report by Whitcomb51* who modified Kent's original formulation expressed
in Equation (4) above in order to broaden the discussion of optimiza-
tion. Since Equation (3) set equal to unity defines the "radius of
overhitting1,' R,» we have

R2 = NA = -A = /̂S. A f7811 Wfi AP fl AP ft AP L/aj

where the total number of fragments N is equal to the mass of the
shell case, M, divided by the mass of a fragment, m, when all fragments
are alike. From Equation (43) we have

(79)

DH5. E. Whitoomb, "Fragmentation Efficiency of Bombs", BRL R532,
5 Mar 45.(AD#492432)
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where y ••• (m/m_.J with the minimum mass, m' , able to perforate and

damage a target is given by a threshold criterion like Equation (56)

with cL = 3/4, gi = I I v = 0 and Y"
3/4 = icf1 A*1' SO the tar*et1 * * »-^ 41

steel equivalent thickness is

T . y

defining in and the corresponding maximum striking speed, v . The

parameter x is defined from Gurney's cylinder formula, the analog of
Equation (59) above, namely, with .5 instead of .6.

/M2 V
\v = 2E (81)

C+2M
iu/

I-Y M Mso -T—̂  = rr-p = rr where W is the warhead mass the sum of the

explosive charge mass, C, and the case mass, M. The number of frag-
ments can now be written

M = M / W \ jn _ _W
m m IM+C / m: m!\ I m m

W (82)

*) V

w
so -r— = M w/m. If we divide the square of Equation (79) by (78)

and use Equation (82) for — we find

2 „ 2/3 ,/% W M' r,. v. (1/2 3/41 I _ wz (83)

where z = fy In fx1/2 y3/4J 1 and P = W Ap / f̂
5/3 a2] . Whitcomb

used as his measure of efficiency Equation (4) above divided by T A
A. r

(W/ft ) which gives an efficiency

C/[TAAp

Ap M w/m
W2("}
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In this treatment he is considering ground bursts only so r = R (since
h = o) as well as vertical angle of fall only. However, by varying
the parameters w, z and P in Equation (84) he tried to discuss the
effect of size and design changes. Since P is proportional to weight
he could use it to compare the efficiency of two bombs of the same
design but different size. However, both w and z depend on both the
C/M ratio (through x) and the fragment size (through y), so his
formulation does not lend itself to a clear discussion of the effect
of changing these two design parameters even for vertical fall and
ground burst. By plotting a number of curves with only one parameter
varied at a time, he did however conclude that for an optimum bomb
weight relative to a given type of target, there should exist both
an optimum C/M ratio and an optimum fragment size.

III. EFFECTIVENESS STUDIES AFTER WORLD WAR TWO

A. The Refinement of Analytical Methods.

Soon after World War Two a large number of aircraft became
available for experimentation and hundreds were expended for this
purpose. Assessments were made of various levels of damage done
during controlled test firings and these judgments were expressed as
component vulnerable areas55760„ Much of this work was directed toward
recommending families of antiaircraft and artillery weapons61"62.

. K. Weiss and A. Stein, "Airplane Vulnerability and Overall
Armament Effectiveness," BEL MR462, May 47. (AD#9093)

M. Garmousakis, "The Effect of Blast on Aircraft, " BRL R645, 47.
(AD#37694.0)

57H. K. Weiss and A. Stein, "Vulnerability of Aircraft to 75mm Air-
burst Shell, " BRL MR 482, Sep 48. (AD#41431)
58 ''A. Stein and H. Kostiak, "Damage by Controlled Fragments to Aircraft
and Aircraft Components," BRL MR487, Feb 49. (AD#53127)
59#. K. Weiss, J. Christian and L. M. Peters, "Vulnerability of Aircraft
to 105mm and 75mm HE Shell, ff BRL R687, Mar 49. (AD#54768)
60/4. Stein and H. Kostiak, "Methods for Obtaining the Terminal Ballistic
Vulnerability of Aircraft to Impacting Projectiles with Application to
Generic Jet Fighter, Generic Jet Bomber, F-47 Piston Fighter and B-50
Piston Bomber," BRL R768, Jun 51. (AD#130730)
61e7. H. Frazer, H. P. Hitchcock, R. H. Kent, F. G. King, J. R. Lane,
T. E. Stern and H. K. Weiss, "A Study of a Family of Antiaircraft
Weapons, " BRL TN119, Sep 49. (AD#378732)
62F. E. Grubbs, R. H. Kent, J. R. Lane and H. K. Weiss, "A Family of
Field Artillery," BRL R? 71, Jul S'l. (AD#377190)
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The vulnerability of fuel and ammunition was given particular atten-
tion6 3»61*. Since similar work was being done elsewhere, a conference
on aircraft vulnerability was held in 1949.65

In 1946, Fano66 had concluded that reliable effectiveness estimates
could not be made "because of insufficient knowledge of the vulnerability
characteristics of targets". By 1949 methodology studies began to
appear once more. Weiss67 discussed the Lewy and Gurney approximation
in Equation (73) above. He used the 1/2 power form of Equation (51) to
obtain for the number of fragments with mass greater than m

N - Noj e-o d (m/mo) -• NQ e . (85)

He also assumed a threshold lethality criterion

m v* = m v * = L. (86)m o 1 . . v '

where y and L. are constants and m is the minimum mass. If y ; = 1 wei m
have a momentum threshold like Mott's in Equation (44) above, or if
Y: = 2 we have Morse's energy threshold as in Equation (53). In
addition he made the usual assumption as in Equation (27) above, that

v =v oe (87)

If we let m = m in Equation (85) , we have N = N e;~ ̂ m o andm n *• ' mo
dividing Equation (85) by N , we obtain the ratio

634. Stein and M. G. Torsch, "Effectiveness of Incendiary Ammunition
Against Aircraft Fuel Tanks," BRL MR484, Oct 48, (AD#42383)

S. Jones, "A Comparative Study of the Vulnerability of Warheads
Loaded with TNT and with Composition B3" BRL MR486, Jan 49. (AD#802306)
65 "Report on First Working Conference on Aircraft Vulnerability,"
BRL MR488, Mar 49. (AD#377164)
66 V. Fano, "Discussion of the Optimum Characteristics of Weapons for
Most Efficient Fragmentation, " BRL R594, Jan 46. (AD#492600)
67tf. K. Weiss, "Justification of an Exponential Fall-off Law for
Number of Effective Fragments," BRL R697, Feb 49. (AD#801777)



N/Nm = e
/m \1/2m \
5T
°/

1/2

ra

1/2 , .

(-}YV

1/2

-i (88)

If we put Equation (87) into Equation (86), take the square root then
vl/3

the logarithm, then multiply by/— I , we find

. 5 ayR m-1/3- _
m m

m
r - 1* r/ I m J
/ \m /

* 1.11
1/2

— j -1M
im J\ m /

(89)

where the second equality is approximately true for 1 <( — ]< 15 tom

within 10%. From Equation (89) we find I—

which we may substitute in Equation (88) to obtain

.45 -1/3
m

N = N em fer («.„.-1/3. - • (90)

where C = .45 ay m m . If we divide Equation (90) by ft to

obtain N0 = N/fi, we see that Lewy and Gurney's approximation in
ao

Equation (73) above, based on particular experimental data, should
hold approximately for any shell to which Equations (85), (86) and
(87) can be applied, at least in the range of (m/m ) specified. Thus

Weiss was able to generalize Equation (73), relating e and c to the
parameters of the problem. The same could be done using the 1/3 power
law of Equation (51) or any other power. It is interesting to note the
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expected number of lethal hits on vulnerable area A (0) according

to Equation (90) or (73), namely

Ay(0)/R̂  =
N A (0) e

R

-cR

(91)

which has the same form as Equation (31) above if we neglect the
angular dependence of K(̂ ) and take K to be constant. As we recall,

the authors of OSRD 738 arrived at this form by using Equation (30) to
approximate the behavior of A., in Figure 1 while Weiss, Lewy and
Gurney obtained it as an approximation to N or N . In either case the

-CRdependence on R is clear. The factor e involves loss of effectiveness

because of air drag (a= Cn p k) as well as a damage threshold criterionu a ^
(m ) and a fragment mass distribution (N and Pi ). The factor —_ enters

because of the assumption that the fragments emanate from a point in
space, the burst point. The solid angle ft may be 4ir for full spherical
symmetry, or 2i\ for a hemisphere a,s'in Equation (31) or some lesser
amount for a more restricted fragment spray.

Later in the same year Weiss published another report68 detailing
modifications to the methods already developed in World War Two. For
a uniform side spray of half angle A thrown forward to co-latitude
6O by the remaining velocity of the shell Weiss used ft = 4ir sin A
sin 6 . For very high altitude bursts against aircraft, Weiss pointed

out that C «« 0 in Equation (91) so that Equation (32) becomes

A sin 6

/
A sin 6

FT 2 v 3/2/2ir a a K '

A sin 9

2 „ 3/2 4ir a a K '

-K,, R'
R d R

-2/K K
1 - e (1 + 2/pT (92)

68#. K. Weiss, "A Method for Computing the Probability of Killing a
Multiply Vulnerable Aircraft Target with 'N' Pounds of Fragmenting
Shell," BRL MR495, 12 Sep 49. (AD#24574)

53



for fixed fuze angle 6 , neglecting the integral from R to °°. The

final result in Equation (92) can be found in integral tables69. Here
cos O X - 2 2 „ n2 , , 2, y = K_ R and b =

*• £« l_ \ v ^ * O

Air drag was included by using a series expansion of e" and integrating
term by term.

Weiss also considered various other questions. For instance, how
are we to combine component kill probabilities in the case of duplicated
or multiply vulnerable components? A difficulty arises for example
when we consider two pilots sitting close together so that a round
bursting close to one is also near the other. Because of this lack of
position independence, the probability of killing pilots computed by
averaging over all burst positions will not be the same as that obtained
by computing the probability of killing each one independently and then
combining the probabilities. In an appendix he concluded that the
approximation of treating duplicated components as if they were independent
is good enough for practical purposes. Weiss also considered the com-
bined mechanical time and point detonating fuze for which the probability
of a direct hit should be evaluated and then combined with the probability
of fragment kill. Finally, he discussed the correlation between succes-
sive burst positions when systematic errors exceed random errors,
especially in the case of a maneuvering target.

In 1951, Taylor and Kravitz70 modified the work of Lewy and Gurney
by changing their integration variables to two angles instead of an
angle and a distance. In addition, they approximated the damage
probability function as

-Kie-
cR/R2' K

D 1 -. J- ^ J- ~ ^ - * ^ l i —LAJX y, ~ M*^ I Sr\'7\= l-e SB —- e ( 1 - e -aRe / (93)

instead of Equation (35) above. Here a and fB are purely empirical
constants obtained by fitting over an appropriate range for R. This
enabled them to integrate over one angle in terms of Bessel functions,
but numerical methods were required to integrate over the second angle.

6aJ. M. Ryshik and I. S. Gradstein, Tables of Series3 Products and
Integralsj Moscow 63.
7QW. C. Taylor and S. Kravitz^ "A Method for Computing an Estimate of the
Antipersonnel Effect of an Airburst Shell," BRL MR555, 13 Aug 51.(AD#802074)
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About the same time, Trauring71 in an appendix elaborated upon Lewy and
Gurney's numerical method of evaluating their distance integral.

The question of shaping the nose of a fragmenting bomb or shell
received some attention also at this time. Kent72 reasoned that if
personnel targets could be considered to be uniformly distributed on
the ground, then it should be advantageous to shape the warhead so that
a uniform distribution of fragments on the ground would result. Kent
considered the case of a bomb falling vertically with negligible remaining
velocity and bursting at height h. He assumed that the fragments are
projected normal to the metal case and wrote 2ir a x.ds for the number of
fragments in a ring of width ds on the bomb surface located a distance
* from the axis, where a is the constant number of fragments per unit
surface area. If 6 is the co-latitude measured from the bomb axis to
the radius from the bomb center to a point on the ground, then r = h
tan 9 is the distance on the ground to this point from directly below
the burst point. The fragments from the ring of width ds on the bomb
fall on a ground ring of area 2urdr = 2ir (h tan 6) (h sec 6 d 9), so
the number of fragments per unit area of ground is the ratio

2rr a x ds
2 9

2ir h tan 9 sec 9 d 9
= Z (94)

2
where we wish Z to be constant. Since ds = /l+(dy/dx) dx and

2tan 9" = dy/dx with d(tan 9) = sec 9 d 9, Equation (87) becomes

(95)

The first integral is

•(x2)/4 (96)

where A = h — andl^J= 0 for x = 0. The second integral gives

a curve through the origin

71M. Trauring3 "The Effectiveness of Various Weapons Used in Air Attack
on Ground Troops," BRL?543 17 May 5̂ .(AD#377188)
7ZR. H. Kent, "The Shape of a Fragmentation Bomb to Produce Uniform Frag-
ment Densities on the Ground," BRL R?623 IS Jun 51. (AD#377098)
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x^3/2 3y = (̂ T)I(̂  - ?- - 4 I 07)]
a solution which Kent attributed to a Professor Barnett. Since x and y
increase without limit in Equation (97), there obviously must be a change
in shape, perhaps to a cylinder, at some finite x value. In other words,
Equation (97) describes only a nose shape. It is somewhat of a curiosity
since it does not consider such problems as non-vertical angles of fall,
the presence of nose fuzes or the question of how to initiate the
explosive charge in order to produce the assumed normal launch direction
for the fragments. Since aerodynamic considerations impose some
requirements on the design of a bomb or shell nose shape, one might
also inquire about the flight characteristics provided by Equation (97)
as well as the effect of remaining velocity. Still, the whole idea of
shaping warheads for optimum effect embodied in Equation (97) stimulated
a number of people to pursue the topic. Using the same assumptions,
Weiss73 considered more general methods of determining optimum angular
distributions. His conclusion was that the number of fragments per
unit solid angle should increase with angle measured from the nose,
reach a maximum and then vanish as the equator is approached. Of
course, a bomb or shell with a main equatorial side spray thrown forward
by a large remaining velocity will have this type of dynamic fragment
distribution. Other workers published reports considering the same
problem74*75.

In 1952 Weiss76 published a fairly comprehensive discussion of the
methodology in use at the time. He included an explicit discussion of
the addition of the static fragment launch velocity v , and the remain-

ing velocity of the shell, v ,to obtain the resultant launch velocity v,
with components

v sin 0 = v sin 6o o

,v cos 6 = v cos 8 + v (98)o o r

'6H. K. Weiss,"Optimum Angular Fragment Distributions for Air-Ground
Warheads," BRL R829, Sep 52. (AD#377182)

7̂ "A Theoretical Basis for the Optimization of Munition Shape and Munition
Distribution Having a Generalized poisson Formulation," Aug 62, Honeywell
Ordnance Division, Hopkins, Minnesota.
75L. F. Nichols and W. R. Benson, "Optimum Fragment Distributions Using
the Calculus of Variations," Picatinny Arsenal TM121S, Jun 63.
76tf. K. Weiss, "Methods for Computing the Effectiveness of Fragmentation
Weapons Against Targets on the Ground," BRL R800, Jan 52. (AD#397181)
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from which we can obtain the dynamic launch speed

[ 2 2 " 1v + v + 2 v v cos 6o r r o o J

and launch angle

1/2 (99)

|7 v sin 9 ^ / I v cos 6 + v \ 1 (100)
l\ ° ° j \ ° ° r ) J

0 = arc tan

where 9 and 0 are measured from the shell axis which is taken to be

parallel to v .

Since effectiveness depends on both fragment number and speed,
Weiss reasoned that for a given total weight, W = M + C, there ought to
be an optimum value of C/M for a given target damage criterion since
larger C favors larger v, while larger M favors larger N. With
Equation (86) as damage criterion determining m , the number greater

than this minimum mass, N , can be written from Equation (85). If we

divide this number by the case mass, we obtain the number of potentially
lethal fragments per unit case mass, namely,

1/2 /ni .1/2

Nm/M = (NQ/M) e V C J =Tm e (STJ (101)

since the average mass can be calculated as

~\ =mol x-e"dx = in (2!). (102)

Equation (101) is a function of m which has a maximum for

m = (2 mQ) = mm/2 (103)

so choosing a design which results in natural fragmentation characterized
by m = m /4 in Equation (85) will maximize the number of lethal frag-

ments obtainable per unit case mass. Choosing an average mass equal
to half the minimum mass as in Equation (103) for natural fragmentation
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is in sharp contrast to Mott's choice for the mass of a controlled or
preformed fragment equal to 4.48 m as expressed in Equation (48)

above. If we rely on natural fragmentation, the best we can do is
make the average mass ineffectively small according to Equation (103).
If we put Equation (103) in Equation (101) we find

v Y
(N /M).. = (2/m )e = .27/m = .27 -%- (104)v m 'Max .jr ' m L,

In the case of zero air drag we should choose a controlled fragment
size of im , so that (N /N) = I/to , illustrating that natural fragmen-m m m
tation can only be 27%: as efficient by Equation (104). Of course,

if we took air drag into account as Mott did, we would choose a frag-
ment size larger still.

For zero air drag, Weiss went on to assume that fragment size
optimization had been carried out by adopting Equation (103), and
discussed the maximum number of potentially lethal fragments as a
function of the ratio M/W. In other words, he first determined an
optimum fragment size and then an optimum launch speed, v .

He realized,that the problem should strictly speaking not be
treated in a stepwise fashion since all parameters should be optimized
simultaneously. However, he hoped to gain some insight by this
simplified procedure. From Gurney's formula for a cylinder we have

(vQ
2/4EJ = I/ ft+2 M/Cj and

M - -
W - OM 1*H/C - 2 - C 1

O M

as in Equation (81) above. If we multiply Equations (104) and (105)

For the dynamic problem we should use Equation (99) above for the
launch speed instead of the static launch speed v . If we neglect v

and maximize Equation (106) with respect to v we find this occurs for
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. V1 + (2/y)2 - (2/y) (107)

which i-s 0.414 for y..= .;2..giving = 1.414 in Equation (105). Similarly,

y = 3/2 gives ̂  = 1.000 and y = 1 gives jj = .618. Strictly speaking,

this does not give us (N /W)M because of the stepwise procedure.m Max
Corrections for air drag would tend to raise the optimum value of
average mass and lower the optimum value of launch velocity.

Weiss also discussed the desirability of using a function other
than the simple step function implied by Equation (86) to express the
conditional kill probability of a target which has been hit, ?„,„.

K/ri
Equation (86) implies that for L = m v^ < L.., P..,. = 0 and for

1 K/n
L > L,, Pv/i, = 1. It would seem more reasonable for P..,,. to increase

1 K/n K/n
from zero to unity over a range of values for L. Weiss considered a
linear relation

PR/H = .(L-Lj) / (Î -L̂  (108)

for L, < L < L_, with Pv /u = 0 for L < L, and ?..,„ = 1 for L > L_.
i ^ K/n , /- — 1 K/n — <i

If we use N = N e" ^nn/EV and m = Ln v ~Y in Equation (90), wem o m l o n ^ j '
obtain

N = N exp - in — L/" v -"* + -45 ̂  L, ' v '" ° R (109)

for the number of potentially effective fragments as a function of R.
Weiss used L instead of L in Equation (109) and argued qualitatively

that the appearance of L to fractional powers in Equation (109),
especially the 1/6 power in the coefficient of R, would not change
the R dependence of N or N. very much even if a relation like Equation
(108) were used. Consequently, he convinced himself that it would not
be worthwhile to consider this additional complication in spite of the
fact that it seems reasonable to do so. However, he gave no quantitative
arguments to justify this position.

It seems that Weiss found himself in this difficulty because of his
method of arriving at Equation (90) and so Equation (91) . If he had
adopted the viewpoint of OSRD 738 as expressed in Equation (28) above
in which decrease in effectiveness due to air drag is incorporated
into A rather than N, then he would not have found himself in this
position. We can rewrite Equation (28) as
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NA (0)
\ = — V~ K (*) PK/H(R) (110)
L . 2TTR2 K/H

where the target kill probability, given a hit, is P-./u(R) = A (R) /K/n V
A (0) with A (0) <^ Ap. Now Equation (108) or some other functional

form dependent on m vY(R) can be used in Equation (110) to estimate
-NN. and the damage function D = 1 - e L . We shall see an exampleL

of another functional form for P|//H(R) i
n Equation (113) below.

In a later part of his report, Weiss suggested another approxima-
tion for the damage function, namely,

-N -CR
D = 1 - e u * N. = K e /R (111)

L

and D = 1 for R <^ R . Here R is Kent's radius of overhitting in a

three-dimensional context and with air drag and target vulnerability
contained in the argument of the exponential in the coefficient C.
This approximation not only unifies the idea of a radius of overhitting
with the poisson expression for the probability of at least one lethal
hit, but also simplifies many integrals involving the product of D
with other factors like aiming error functions or ground target cover
functions. Weiss evaluated a number of such integrals for special cases
in closed form, but required numerical integration for general cases.
He used this approximation to estimate ground lethal areas in later
reports77 e. Weiss advocated the use of integrable formulations whenever
possible since these more easily contribute to our general understanding
of a problem. In particular, he pointed out that aim error could be
neglected when calculating the effectiveness of an area weapon since
it was smaller than the extent of the target. However, he was careful
to include it when its standard deviation, a, was comparable to or larger
than either the extent of the target or the extent of the weapon's
lethal mechanism. His approach was in sharp contrast to some of the
purely empirical formulations in use at the time79. The Weiss

/7#. K. Weiss*"Description of a Lethal Area Computation Problem, "
BRL MR723, Sep 53.(AD#21133)
7BH. K. Weiss, "Methods for Computing the Effectiveness of Area Weapons,"
BRL R879, Sep 53. (AD#24478)
79L. N. Enequist, "Rapid Estimation of Lethal Areas for Mortar and
Similar Thin Walled H. E. Projectiles, "BRL MR635, Dec 52. (AD#3766)
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approximation in Equations (110) and (111) can be compared with the
Kendall-CarIton approximation in Equation (35) and the Taylor-Kravitz
approximation in Equation (93).

For many years various authors had mentioned the desirability of
improving the threshold lethality criterion for disabling personnel,

1 2usually taken to be — m v =58 ft-pounds. In 1956 Allen and

Sperrazza80 reviewed previous criteria and proposed a new criterion based
on extensive firing tests. They adopted a purely empirical formula

[-a f mv* - b)n]PK/H = 1 ' 6XP '"a lmV " b' J C113)

and found that j = 3/2 seemed to fit the data best. The other three
positive parameters, a, b and n, assumed various values (with n not far
from 0.5) when this formula was used to describe probability of
incapacitation in various military stress situations. Incapacitation
within five minutes for a defender was assigned a different probability
than for an attacker, given a random hit. If this formula is used instead
of Equation (108) or the simpler threshold criterion, then it is clear
that simply integrable expressions for lethal area become much more
difficult. Since Equation (113) is a purely empirical formula, it may
be desirable to find another formula to fit the data which allows
integrations to be carried out in closed form.

In the next decade lethal area methodology underwent various refine-
ments, but no basic changes. In 1963 Myers8* codified and updated the
basic methods discussed by Weiss to include more complicated cover
functions82 and the effects of blast. Re also used Equation (.113). for
his casualty criterion, treating each mass group separately and summing
over all groups to obtain the net PK/H for the distribution centered

at a particular polar angle 6 (or latitude i|») . In addition, he treated
fragment angular dependence by using average values of K(4») at five
degree intervals (instead of 2.5° intervals as in OSRD738). The
effects of air drag were estimated through v(R) in Equation CH3) for
which he used the usual formula. Because of these complications he
always had to use numerical integration schemes. This 1963 report of
Myers has become the standard for the industry83 and is still used
a"F. Allen and J. Sperrazza, "New Casualty Criteria for Wounding by
Fragments," BRL R996, Oat 56. (AD#137681)
81£. A. Myers, "Lethal Area Description," BRL TN1510, Jul 63. (AD#612041)
82B. W. Harris and K. A. Myers, "Cover Functions for Prone and Standing
Men Targets on Various Types of Terrain," BRL MR1203, Mar 59. (AD#309048)
Q^Reference 2 in Joint Munitions Effectiveness Manual, "Lethal Areas of
Selected U. S. Army, U. S. Navy, and U. S. Marine Corps Surface to
Surface Weapons Against Personnel and Materiel Targets," Jul 73.
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today with only minor modifications. It has the virtue of including
in some way or other all of the factors which are felt to be important.
However, like most complicated codifications it has the disadvantage
of obscuring the experimental and theoretical approximations which
are buried in the code and lull the unwary user into believing that
the answers are very accurate or that minor differences in the answers
are significant. Since complexity impedes understanding, it is not
helpful as a design tool either, and in fact is generally used merely
to evaluate designs already arrived at by other means. Myers himself
seemed to realize the approximate nature of his description and discuss-
ed in particular the use of the poisson approximation for the damage
function instead of the Binomial which some people felt to be more
correct. As he pointed out, "the Binomial itself must be considered
only as an approximation since fragments projected from the same shell
cannot really be considered as 'independent events'. He added that:

"To the author's knowledge, no extensive comparisons of lethal
areas computed using the Binomial and poisson forms for the probability
of incapacitation have been made. However, in some isolated cases
where such comparisons have been made, the difference did not appear
to be significant, particularly in light of other assumptions inherent
in the lethal areas concept".8*

B. The Adoption of .Monte Carlo Methods for Air Defense Problems.

In order to treat the complexities of the air defense problem, a
different (Monte Carlo) technique has been adopted instead of the
analytical techniques which were used until the early 1950's. In
1950, F. G. King81* described his method. Although he mentions a
previous partial formulation of the problem by Cunningham in England,
his report is clearly the ancestor of the end-game analyses which are
still in use today. Although today's analyses are very complicated
and detailed, King's original reason for using this method was
simplicity:

"The lotto method proposed in the present report seems very simple
when compared with the formulation of the problem in mathematical sym-
bolism. The basic vulnerability data is known for the most part only
to order of magnitude and at best only to ten or twenty per cent, so
that a simple method is in order. If the basic data were known within
one per cent, the lotto method would still be justified as a short cut
to an approximate answer but would be inefficient for getting the
answer to one per cent accuracy."

King's lotto or monte carlo method is a mathematical experiment in
which the events of an anti aircraft attack are acted out. First, for
a given engagement range a burst is positioned with respect to the
target by drawing a card at random from a box which represents the
distribution of aiming errors at the range in question. King used
at*F. G. King3 "Lotto Method of Computing Kill Probability of Large
Warheads., " BRL MRS30, Deo 50. (AD#802148)
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one thousand cards as a discrete representation of a trivariate normal
distribution about the aim point. Second, the distance and angle
from the burst point to each vulnerable component was measured, using
a model airplane on a target stand and a model burst on a warhead
stand to a scale of 1:72. A component was taken to be shielded if at
least its center of mass was shielded. Third, using approximate treat-
ments of missile and target velocity, air drag at a given altitude,
warhead fragmentation characteristics and component vulnerability data,
the kill probability of each vital component was estimated as a function
of miss distance (and angle if angular data was available). Unfortun-
ately King gives no detailed description of how this crucial step was
actually carried out, but it is safe to assume that it involved the
techniques we have discussed previously. Fourth, the kill probability
of each component computed in step three for a particular miss distance
was turned into a zero or a one by reading down a list of random numbers
between zero and one. If the next random number read was less than
the computed kill probability the component was considered killed,
otherwise not. Sometimes this step was repeated several times and the
results averaged before going on. Fifth, for each burst it was decided
whether or not the aircraft was killed, subject to the requirement
that a certain number of engines or pilots must be killed or that fuel
be hit or that the burst occur within the blast kill envelope. Sixth,
steps one through five were repeated several hundred times. Seventh,
the single shot kill probability at the given engagement range was
found by averaging the single burst kill probabilities obtained in
each step six. A two-shot kill probability could be determined by
taking an average over a number of pairs of bursts, considering cumula-
tive damage, and so on. Eighth, since engagements between an aircraft
and a rapid fire gun or battery of guns consist of single or multiple
shots at successively different ranges, a new box of cards was introduced
in step one and steps one through seven were repeated for a number of
representative ranges. This eighth step can also be repeated an
appropriate number of-times to improve the accuracy of the prediction.
However, there is no point to repeating it too many times since overall
accuracy is already limited by the accuracy of the experimental frag-
mentation and vulnerability data. An application of part of this
method to a particular system was later made by Sacks and King85.

In 1953 Juncosa and Young86 computerized King's method after replacing
parts of it with mathematical idealizations. In particular, they adopted
a suggestion which they attributed to J. Von Neumann that the airplane
and its blast kill envelope be replaced by ellipsoids resembling the

Sacks and F. G. King, "Single-shot Probability of an A-Kill on the
B-29 Type Bomber by Nike I," BRL MR 553, Jul 51.(AD#377282)
86A/. L. Juncosa and D. M. Young, "A Mathematical Formulation for Ordvac
Computation of the Probability of Kill of an Airplane by a Missile,"
BRL R867, May 53. (AD#17267)
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the fuselage, wings, empennage and engines. In addition, they replaced
all vulnerable components by points to simplify shielding by the air-
craft parts represented by ellipsoids. Third, they restricted their con-
siderations to a particular angle of attack, and finally, they evaluated
three dimensional integrals over the product of aim and damage functions
by a monte carlo method or by numerical quadratures instead of averaging
over the results of several hundred randomly chosen burst points.

In 1960, Stiegler87 modified the method of Juncosa and Young. He
allowed random (monte carlo) selection of straight line approaches by
the missile toward the target for elevation angles other than zero degrees
and azimuths other than 45 degrees. He also computed a missile homing
point which is the center of the target "glitter points" (radar. reflect-
ing points) rather than the center of the aircraft. He also computed the
intersection of "glitter points" with the fuze cone and took direct hits
into account. Stiegler's method was later modified by Monks88-90 and
various versions of this technique are still in use today.

As can be seen, the development of the monte carlo method since
1950 has followed the same trend as the development of lethal area
methodology and similar remarks can be made. More and more detail has
been included so that no feature be left out of the model. Unfortunately,
the resulting complicated codes and the precision to which the final
answer is expressed tend to make the unwary user place more credence in
the answers than is justified. By and large the methodology cannot be
used as a design tool, and is only used to evaluate weapon designs
arrived at in other ways.

Although monte carlo methods have dominated the evaluation of air
defense effectiveness, there have been some reports on the development
of analytical methods in this area. For example, in 1966,
Banash91 proposed using the Kendall-Carlton approximation in Equation (40)

2
above with R = 1.25 K soo
0/A. D. Stiegler, "A Mathematical Formulation for ORDVAC Computation
of the Single-Shot Kill Probabilities of a General Missile Versus a

General Aircraft," BRL MR1306, Nov 60. (AD#249957)
QQB. G. Monks, "A Mathematical Simulation of the SA-2 Missile for Evalua-
tion of its Lethality," BRL-J4R1690, Aug 65. (AD#368987L)
89£. G. Monks, "Aberdeen Blast-Fragmentation, Fixed Angle Fuze Missile
End Game Simulation (AMEGS)," AMSAA TR66, Apr 73.
9u#. G. Monks, "A Focused Blast-Fragmentation Warhead Evaluation Model,"
AMSAA TR70, Feb 73.
91.ff. C. Banash, "An Analytic Procedure for Evaluating Blast-Fragmenta-
tion Warheads in Air Defense," BRL R1317, Apr 66. (AD#485264)
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R2_ _

D = 1 - e" * e~ 2 = e"2.5K (114)
2R3

where air drag is being neglected. Equation (114) is a fair approxi-
mation for miss distances in the range 0 < R < /Sl( and eventually
improves again as R ->• °° and D ->• 0. He compared kill probabilities cal-
culated by his analytical method with those obtained by the monte carlo
method in four examples involving three hypothetical warheads versus
missile and aircraft targets. In most cases the agreement was within 6%.

C. Current Vulnerability Methodology. Warhead Optimization.

Whatever the method used to estimate effectiveness, there is a
continuing need for vulnerable area information or kill probability,
given a hit, since targets and weapons are constantly changing. For
aircraft the current state of the art has been summarized in a recent
report92. In Section II above we quoted professor Mott22 who remarked
on the wide discrepancy between combat data and the effectiveness esti-
mates of his day. He would be encouraged to hear that matters have
improved somewhat. Combat damage data has been used to develop vul-
nerable areas for at least three helicopters.

"In all three cases, the average vulnerable areas obtained from
the combat damage data and generated in vulnerability studies are
consistent."93

While this agreement is not for overall effectiveness, still it is
encouraging in that combat data can be used to provide guidance where-
ever possible. As these authors remark, "Data on aircraft damage
which occurs in combat are very valuable since they originate in the
•real world1 conditions of military conflict.... thus the body of air-
craft combat damage data provided by the collections from Southeast
Asia serves as the main source of information on aircraft reactions to
the effects of component damage while airborne." They also remark on
use of such data for vulnerability reduction. Still in many cases not
only is combat damage data not available, but not even controlled
experimental information on specific threat performance or target
vulnerability is available.

W. Mowrer, R. E. Walther, R. D. Mayerhofer and R. N. Schumacher,
"Aircraft Vulnerability Assessment Methodology. Volume I - General,"
BRL R1796, Jul 75. See also Volumes II to XII for particular
subsystems. Volume I also appeared as JTCG/AS-76-V-004, Jul 77.(AD#B005878L)

*3Reference 923 p 72.

65



"The availability and validity of these data greatly influence the
reliability of the results of any study based on these data. It is
generally difficult to quantify this influence in terms of confidence
limits, but some general comments are germane. A completely sufficient
body of experimental data is seldom, if ever available for use in a
study.... In fact, in most studies these considerations require that
the analyst make a number of assumptions to fill the information gaps.
Thus, certain errors may be introduced into the study by the necessity
of making these assumptions. Furthermore, all of the analysis proce-
dures require certain simplifying assumptions and approximations, which
introduce additional errors...."

"The sensitivity of the complex models used in vulnerability studies
(particularly in computer programs) to the assumptions, approximations
and various data inputs is neither apparent nor readily determined."^

Still, some few sensitivity studies have been carried out in related
areas and according to these authors the final answers are highly
sensitive to all of the parameters examined, namely, fragment residual
weight, speed and shape, shotline location and grid size, and component
detail and PK/H values. Other factors obviously introducing error

whose magnitude has not yet been examined were also discussed. Some
of these are neglect of all but the largest residual fragment pieces
as well as target pieces in subsequent perforations, neglect of ricochets,
the need to use single plate results repetitively to describe
multiplate perforations, the need to estimate equivalent thicknesses
of non-plate components and the necessity of considering only a small
number of target aspects.

This report does not give details on how component PK/H values

are estimated. Often such information is kept classified. However,
some unclassified reports discuss the matter in a general way. For
example, Johnson95 'points out that for a given fragment mass striking
a particular component at a certain angle the kill probability is
represented by a multi-step function of PK/H versus striking speed, v.

There is a threshold speed below which PK/H = 0 and the various steps
reflect the cumulative damage of sub components. However, P,,/H does

not approach unity no matter how high the speed in Figure 3. This
seems to reflect the definition used, namely, P.,/,1 = A /Ap, the

vulnerable portion of the area divided by the measured presented area,

R̂eference 923 pp 80-81.
95f/. P. Johnson* "An Application of the Weibull-Gnedenko Distribution
Function for Generalising Conditional Kill Probabilities of Single
Fragment Impacts on Target Components*" BRL R17893 May 75. (AD#B004591L)
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with A < Ap because parts of the component are non-critical dead space.

This literal interpretation of A as an area whose maximum value is the

sum of a number of critical areas less than Ap can lead to unnecessary

semantic difficulties. Since PV/u is not allowed to approach unity in
K/rl

this interpretation, it can be objected that it should not be called
a probability. This is a valid objection since one requirement for
a probability distribution is that the sum of the probablities of all
its subsets be equal to unity. The objection can be avoided by calling

a Damage estimator or something similar rather than a probability.
A simple way of avoiding the problem is to deal only with A as in

the first form of Equation (28) above. We can of course multiply

A by any form of unity we desire without changing the result. We
cKuld multiply by A /Ap with (A ) < Ap, but the ratio A /Ap could

not be called a probability. Instead we could meet the objection by
multiplying by some A/A such that A = (A ) to obtain a probability

V M3.X

A /A. In Equation (28) A was chosen to be A (0) so that A (R)/A (0)

in Equation (29) would be unity for R = 0. As we recall, the assump-
tion was that only fragments capable of damaging the target at short
range (R = 0) would be considered. Since R = 0 corresponds to v = v by

Equation (27), we can write for the target conditional kill probability

PK/H =

with subscripts added if components are being considered. Another
alternative would be to let A be equal to the sum of the presented
areas of the vulnerable subcomponents (in the case of a component) or
the sum of the presented areas of all such subcomponents (for the
whole target). In this way parts of the target which are not even
potentially vulnerable to the weapon in question are excluded from con-
sideration. Thus the difficulty introduced by using an Ap which

includes both potentially vulnerable and invulnerable parts can be
eliminated.

Johnson suggests using a function of the form

PK/H = 1 ~ 6XP ["a CmV " b)U] C117)

although he multiplies it by a factor ClVm),, < ! since he accepts

Figure 3 as a probability. Here we have let (PK/U),, = 1 so P.,/M cam
K/n Max K/n
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be a probability. Equation (117) as it stands is the well-known
Weibull-Gnedenko distribution.and would be the same as Equation (113)
above if the variable were mv.Y instead of mv. There are analytical
advantages to using a form like Equations (117) or (113) instead of
a multitude of graphs like Figure 3. In addition, it can help to
unify our description of both personnel and materiel vulnerability.

Another functional form has been proposed by Capillo96, namely,

(.118)

where A, B, p and c are constants. In this formulation a separate set
of constants is required for each mass (and angle) so it is not as
succinct as Equation (117). In addition, it does not resemble
Equation (113). Later in his report Capillo gives a rather succinct
verbal summary of the state of the art:

"Vulnerability assessment, as it now stands, is an empirically
based quasi-science drawing knowledge and interpretation from historical
data, experimental tests, limited analytics, and engineering experience
and judgment."

In some of the reports w,e have considered s.o far w.e have seen that
one or another parameter like burst height or fragment mass has been
selected and varied in order to optimize effectiveness. This tradition
has continued, although, when numerical methods are used, the range of
the variable selected is usually rather narrow and only a few curves
over this range are compared. Occasionally a more general treatment
using analytical methods has appeared. In 1950 Dougherty97 discussed
optimizing the fragment angular distribution, K(i(0, and concluded
that a cone pattern was desirable for a proximity fuze. He also gave
a derivation of the damage function which started with certain assump-
tions and employed summation techniques instead of limiting processes
as in Equations (12) to (18) above. He let

N. = NP (119)
L

where p = A (R)/A (0) = Pv/u and N" = NK(.ip) A (0)/(2irR2) is the
V V K/n. V

expected number of hits so that N is the expected number of lethal

Capillo, "Fighter Aircraft Vulnerable Area Data Patterns:
, Data Reduction, and In

Dougherty, "Optimisation
Rand Corporation, RM349, Mar 50.

Modeling, Data Reduction, and Interpolation Schemes," BRL MR2648, Aug 76.
(AD#B013348L) ^

97£. B. Dougherty, "Optimization of Warhead and Fusing Parameters,"
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hits. He then assumed that the chance of a hit follows a poisson
distribution with expected value N", while the chance of a kill obeys
a binomial distribution

G (y; n) = >y (1-1 (120)

which is the chance of exactly y fragments killing the target out of
n hits (or trials). The chance of at least one fragment killing the
target is then

n
E
y=l

n

y=o
G(y;n) - G(p;n) = 1- (l-p)n (121)

n
since ]>j G(y;n) = 1. I.f the hit probability is assumed to follow a

poisson distribution, then the joint probability of at least one
fragment hitting the,target and at least one of these killing it is

-
1

-N N
-
-N

= [l - e-*

i= 1 - e = 1 - e-N

-e-N
n=o

-0
(122)

which is the usual damage function, but arrived at in a way which
brings out better its nature as a joint probability.

It may be objected that the hit probability also would be
described better by a binomial distribution especially if the number
of fragments, N, is not very large. In this case we can modify
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Dougherty's derivation by letting the probability that one fragment
hit the target be

i>H=KOJO Av(0) / (2TTR2) (.123)

such that N" = NPu as before. Now the joint probability is

-P pFK/H FH (124)

next to
N v^ /N\ nwhere we have used the identity (1+X) =2-, { )X in the

n=o \n /
last line, then rearranged the factor in brackets amd cancelled (1-PU)! n
An approximation to Equation (124) is

= 1-e N ln C1-PPH)D = 1- A-PPH)
N =

* 1 - exp [-NPHP] = 1 - exp [-NP] = l-e"
NL (125)

which is the usual damage function. The second form in Equation (125)
is merely an identity while the third form is an approximation for
PHP « 1. As we see, the result is equivalent to using the poisson
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approximation to the binomial for the hit probability in Equation (122).
(Recall Equation (15) above also) . Now however, we see that

P P _ P PPH - PH PK/H = 2
2irR v

can be satisfied by having Pu small (even if P.,,.. is close to unity)n K/ri
or by having Pv,u small (even if P.. is close to unity) or by havingK/n H
both small. Thus even burst close to a tough target can be reasonably
represented by the approximation in Equation (125) . A burst close to
a weaker target might require Equation (124) . We must remember, of
course, that any of these representations are model idealizations and
presume event independence. They also presume a model geometry which
treats the burst as a point as in Equation (2) above. Thus even if

2 9A (fO = Ap = 4ir sin (9/2) R , we see that its largest value is

A (R) = 2irR , since 6 = ir/2. That is, the burst is exterior to
V M3.X

the target. More often AV(R) < Ap.

In 1964 Sewell98 presented an interesting discussion of optimizing
the charge-to-metal ratio, x = c/M, subject to weight or volume con-
straints. He did not attempt to maximize kill probabilities, lethal
areas or other measures of effectiveness. Instead, he looked only
at the warhead, not at the target or engagement conditions and
maximized the launch function, E = M v Y, for y = 1, 3/2 and 2. In

other words he postulated that a first cut in warhead design might be
made by considering the maximum total momentum, energy (or something
in between") which could be imparted to the warhead case. Since M =
M(x), then

dE a 3E dM 3E ^o= o fl271

dx 8M dx 3v dx l J

o

will give us a condition for a maximum of E with respect to x = C/M.
For example, for a fixed weight W = C + M = M(l+x) , so M = W/(l+x) and

g- = - W / (Ux)2 (128)

We may rewrite Gurneyis cylinder formula, the analog of Equation (59)
above, as v = (2E) ' (l+.5x'j-l/2.xM2, so

?. G. S. Sewell3 "Fixed-Weight and Fixed-Volume Constraints on
Optimum Charge-to-Metal Ratios in Warhead Design^ " NOTS TP 3430}
Mar 64. ,
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= .5 ( Z E ) - (l+.5x)-
3/2 (129)

and for E = M VY we have |§ = v Y, while |^- = Y Mv Y~1. If weo 9.M o 9v o
put these relations in Equation (127) we find

= C/M = \(Y/2)2+l + (Y/2 - 1) (130)

as the optimum value. Thus, if y = 2, x=1.414 and if y = 3/2, x =
1.000 while if Y = 1, x = .618 exactly as in Equations (105) to (107)
above. It is not hard to show that putting Equation (107) into
Equation (105) and solving for C/M yields Equation (130), so the
equivalence holds for every Y. This is not surprising since optimiza-
tion of E with respect to M/W (or C/M) is theoretically independent
of fragment size in this view.

Sewell repeated the same procedure for a. sphere of fixed weight,
finding somewhat smaller values of C/M to be optimum. In addition, he
discussed both geometries subject to a fixed volume constraint, namely,
constant V = C/FE + M/pm, for which the optimum C/M values will depend
on the ratio of explosive and metal densities, pE/pm. In 1976
Zulkoski" modified Sewell's treatment by postulating various factors
to represent the experimental fact that cylinders of finite length do
not obey the Gurney formula except at one cross section, say at the
middle. Fragments launched from sections near the ends will have
different (lower) speeds because of differences in explosive gas
product confinement. His approach otherwise was that of Sewell.

Perhaps the most comprehensive attempt to optimize warhead charac-
teristics, at least in the case of area targets on the ground, is a
1967 report by Scherich and Kitchen100. The parameters they considered
were warhead height of burst, angle of fall and remaining velocity as
well as upper and lower limits of the side spray and up to ten fragment
classes. They used a numerical integration scheme to evaluate the
lethal area integral and the well-known method of steepest ascent to
seek out at least a local maximum. To avoid missing larger values of
the lethal area they also made provision for searches over wider ranges
of the parameters. However, because of the complexity of the method

Zulkowski, "Development of Optimum Theoretical Warhead Design
Criteria, " NWC TP5892, Aug 76.

L. Scherich and T. Kitchen, "Weapon Optimization Techniques,"
Martin Marietta, AFATl-TR-67-128, Oct 67.
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used, it appears to be difficult to gain insight into the optimization
process.

IV. CONCLUSION

In this report we have chosen to view our subject from an histori-
cal perspective because of a conviction that much can be learned in
this way. Hopefully, the repetition or continuation of mistakes and
dead ends can be avoided, while hints or suggestions for new / directions
can be gathered for the future. In addition, the meaning of what we
are now doing might be clarified by seeing how it arose from the uni-
fication of a number of different viewpoints. Unfortunately, we have
only seen the early British and the American Army (BRL) views of the
subject. More could be learned from a broader perspective, but this
report is already long enough. A certain amount of new material has
also been woven into the text to assist in clarifying our ideas and to
lay the groundwork for future advances. As was mentioned in the
introduction, a later report in this series will consider methods
of simplifying descriptions of effectiveness so that analytical tools
for optimizing warhead designs will be more accessible. Still another
report will be devoted to the origins and possible improvement of the
methodology which has evolved to describe the effectiveness of anti-
armor weapons. Since direct hits by single lethal mechanisms (massive
penetrators) are generally required, the methodology should be simpler
in some ways. However, since direct hits are required, we must always
include aiming errors in our overall effectiveness analysis. Lethal
areas will not do.' In any case, there are enough similarities to
include such a discussion in the present report series, but enough
differences to warrant a separate report.
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APPENDIX I. SOME EARLY WORKERS IN THE FIELD

Warren Weaver. Professor of Mathematics, Throop College, 1917-18;
California Institute of Technology, 1919-20; Chairman of Mathematics
Department, University of Wisconsin, 1920-32; Director of the Division
of Natural Science, General Education Board, 1932-37; Rockefeller
Foundation, 1932-55 (V. P. 1955-59); Sloan - Kettering Trustee, 1954-67;
National Science Foundation, 1956-60; Courant Institute, 1962-72.

John Von Neumann. Research Professor of Mathematics, Institute
for Advanced Study, Princeton, 1933 on.

David R. Inglis. Professor, Johns Hopkins University, 1938 on.

Ward F. Davidson. Professor of Electrical Engineering,University
of Michigan, 1916-22; Director of Research, Brooklyn and Consolidated
Edison Company, 1922-42.

Sir Nevill Francis Mott. Lecturer, University of Manchester, 1929-30;
Fellow and Lecturer, Gonville and Caius College, Cambridge, 1930-33;
Professor of Theoretical Physics and Laboratory Director, University
of Bristol, 1933-54; Cavendish Professor of Physics, Cambridge Univer-
sity, 1954-71; Senior Research Fellow, Imperial College London, 1971-3;
Nobel Laureate in Physics, 1977.

Egon S. Pearson. University College, London, 1921-60.

Marston Morse. Professor of Mathematics, Harvard University, 1926-
35; Institute for Advanced Study, Princeton, 1935-62.

Martin Schwarzschild. Professor, Columbia University, 1940-47;
Professor, Princeton University, 1947 on.

Robert G. Sachs. Instructor, Purdue University 1941-43; Ballistic
Research Laboratory, 1943-45; Director of Theoretical Physics Division,
Argonne National Laboratory, 1945-47; Professor of Physics, University
of Wisconsin, 1947-64; Assoc. Director, Argonne National Laboratory,
1964-68; Professor of Physics, University of Chicago, 1964-68; Director,
Enrico Fermi Institute, 1968-73; Director, Argonne National Laboratory,
1973 on.

Hans Lewy. Lecturer, Brown University, 1933-35; Professor,
University of California at Berkeley, 1935 on.

Subrahmanyan Chandrasekhar. Fellow of Trinity College, Cambridge,
1933-37; University of Chicago, Professor, 1937-46; Distinguished
Service Professor of Theoretical Astrophysics, 1947 on.
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Lleweillyn H. Thomas. Professor of Physics, Ohio State, 1919-43;
Ballistics Research Laboratory, 1943-45; Senior Staff, Watson Computing
Laboratory and Professor of Physics, Columbia, 1946-68; Professor,
N. Carolina State, Raleigh, 1968-76.

GarrettBirkhoff. Professor of Mathematics, Harvard, 1936 on.
National Academy of Science, V. P. American Mathematical Society, 1958-9;
President, Society of Industrial and Applied Mathematics, 1967-68.

Ronald Wilfred Gurney. Palmer Physical Laboratory, Princeton,
1928-29; University of Bristol, 1935-39; Ballistic Research Laboratory,
1940-47; Johns Hopkins University, 1948-49; University of Maryland,
Institute for Fluid Dynamics and Applied Mathematics, 1950-52.

Edgar Bright Wilson, Jr. Professor, Harvard, 1936 on.

Lewis Rosenhead. Professor of Mathematics, Liverpool 1933-73.

David George Kendall. Lecturer, Oxford, 1946-62; Professor of
Mathematical Statistics, Cambridge, 1962 on; President, London
Mathematical Society, 1972-74.

Henry Schefe^. Instructor, University of Wisconsin, 1935-37;
Oregon State, 1947-41, Princeton, 1941-44; Professor, Syracuse, 1944-46;
Professor, University of California at Los Angeles, 1946-48; Columbia,
1948-55; University of California, Berkeley, 1953-58; Princeton,
1959-60.
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APPENDIX II. FRAGMENT PRESENTATION AREA AND SHAPE FACTOR

In their paper16 mentioned above, Pearson and Bishop discussed
the results of gun firings of various sizes and shapes of simulated
fragments (square plates ranging from .02 oz to .50 oz) . They observed
that the loss in speed with distance was approximately a linear
function of speed, namely,

dv/dR = - 3 v (A-l)

so that

dv/dt = - 3 v2 (A-2)

where 3 = - Cn p A/m, if Equation (25) above holds. However, the
a -1/3experimental data indicated that 3 was proportional to m instead

of m as might be_ expected if A were independent of .mass, m. For
this to be true, A would have to be proportional to m2/3 as in Equation
(26) above. This is clearly true in the case of a sphere for which

m = p (-jr) d where p is its density and d is its diameter. The presented
/- . • .e 7- TTj2 IT , 6-. 2/3 2/3 , . , .area of a sphere is, of course, A = -kl = -~ (—) m which is

2 / 3 ' 4 4 Srp' 3
proportional to m . For a cube in face-on flight, m = pd and A =

d2 = (i)
2/3

 m
2/3, while for edge-on flight, A = /2 (-)2/3 m2/3. In 1940

Taylor101 remarked that rectangular blocks of dimensions a, b and c,
when fired from guns, would probably rotate so that all aspects of
presented area relative to the flight path would occur with about
equal frequency. If such a rectangular parallelepiped tumbled randomly
in flight, the average presentation area would be

T t u u •* + be + ca) 2/3 . 2/3 ,A _,A = (ab + be + ca) = ̂  _ - -- m = k m (A-3)
2p (abc)

when put in the form of Equation (26) . Pearson and Bishop then post-
ulated that arbitrary shapes such as occur for fragments of bombs or

— 2/3shells would also rotate randomly with A = k m . By approximating
real fragments from a 3.7 inch shell with rectangular parallelepipeds,
they estimated an average value for the shape factor, k, in the case

101£. I. Taylor, A. C. 79 (1940).
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of steel fragments. This basic approach was repeated in a number of
later British reports which employed a greater variety of fragment
sizes, shapes and initial speeds.

In this country, Schwarzschild and Sachs^02 used high speed~
cinematography of bomb detonations to determine the launch speeds and
retardation of fragments in air. However, fragment orientations in
flight were not determined because of the great distance between the
camera and the burst point. They mentioned that spark photography
experiments on real fragments launched from a gun by Charters seemed to
confirm the random rotation hypothesis. However, a report published
soon after by Charters and co-workers103 was more modest in its
conclusions. They presented their data in terms of drag coefficients
based on maximum and minimum area as well as average area calculated
by approximating fragment shapes with ellipsoids, as suggested by
Schwarzschild and Sachs. Although rotation was observed, its exact
nature (random orientation or not) was difficult to observe.
Schwarzschild and Sachs also proposed using the 1.8 power of the speed
instead of the 2.0 power on the right side of Equation (A-2) above for
subsonic speeds, in which case

v = (vQ
1/5 - 3R/5J 5 (A-4)

The question of whether or not fragments from real warheads
actually follow the random rotation hypothesis at least over distances
of tens or hundreds of meters is difficult to answer satisfactorily
in an experiment. If one is dealing with a large number of fragments
of various sizes and shapes, we might also ask whether or not it is
worth knowing a characteristic shape factor for each fragment, since
we are interested in the average effects of the whole group of fragments.
For this purpose an average shape factor characteristic of the group
should serve just as well. This has the further advantage of providing
an easy way to estimate the striking area of a fragment as it hits the
target, a factor which is needed if we are to use penetration equations
based on relations like Equation (56) above. The random orientation
hypothesis also seems to have appealed to a number of people because
of its simplicity, apart from the question of describing a large
collection of objects statistically. At the suggestion of. Mers.e .and
co-workers101* various investigators began to measure average
i(}ZM. Schwarzschild and R. G. Sachs, "Properties of Bomb Fragments, "
BRL R347, 7 Apr 43.
10%. F. Broun, L. H. Thomas and A. C. Charters, "Retardation of
Fragments," BRL R425, 15 Nov 43. (AD#PB22113)
10^M. Morse, W. Transue and M. Heins, "The Theory of the Presentation
Areas of Fragments and the loosahedron Area Gage," T.D.B.S. 44,
20 Sep 44.
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presentation areas, accepting random rotation. For example, Simpson
and Bushkovitch105 adopted Morse's suggestion and built an apparatus
to measure twenty uniformly distributed orientations by projecting
fragment shadows in directions corresponding to the twenty faces of
an icosahedron. While this was done only for a limited number of
faces and relatively small number of selected fragments, it was a
systematic way to determine experimentally an average shape factor,
k. These authors mentioned parallel efforts in England. This technique
was refined in succeeding years106"109 and the proportionality between
— 2/3A and m has been well established experimentally for fragments
recovered from a variety of weapons with steel cases. Presumably for
other metals we need only employ a ratio of densities to the 2/3 power
as indicated by Equation (A-3) to calculate, a form factor for drag or
penetration calculations, provided we have similar geometrical shapes.

It is interesting to note that Equation (A-3) states that the
average presentation area of a rectangular block is equal to one-fourth
of its surface area, namely, one-fourth of 2(ab + be + ca). This is
also clearly true for a sphere and other simple shapes. The result
can be generalized to any irregularly shaped convex body by a simple
argument. Choose cartesian and spherical coordinate systems with
a common origin such that the radius vector, R, is parallel to the
normal vector, HA^,which represents an element of surface area. The
magnitude of the projection of 3A"S on the z axis is dAs cos 6 which
is also the size of the shadow this element of area makes on the x-y
plane. If we vary the angle <|>, holding 6 constant, the size of this
shadow stays the same. If we vary 0, holding $ constant, the shadow
size varies from dAs to zero as 6 varies from 0 to ir/2. For 0 > ir/2,
the element of area is in the half-space below the x-y plane, is
obscured by the rest of the body, and its shadow size is taken to be
zero. Consequently, the average shadow size or presentation area,
giving equal weight to all aspects is

10%. H. Simpson and A. V. Bushkovitch, "Fragment Contour Projector
and the Presentation Areas of Bomb and Shell Fragments," BRL R501,
8 Nov 44. (AD#715954)
106i4. V. Bushkovitch, "Presentation Areas of Shell Fragments,"
BRL R536, Apr 45.
107J". E. Shaw, "A Measurement of the Drag Coefficient of High Velocity
Fragments," BRL R744, Oct 50. (AD#801550)
108V. R. Porter, J. L. Machamer and W. 0. Ewing, "Electro-Optic
Icosahedron Gage," BRL R877, Sep 53. (AD#21197)
109D. J. Dunn, Jr., and W. R. Porter, "Air Drag Measurements of
Fragments," BRL MR915, Aug 55. (AD#77240)
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PIT AT ft/ 2
lo I~ dA cos 9 sin 6d6dd> 2irdA I cos 6 sin 6d6J° Jo s * sj o

/2ir A

dA
__ ?-(A-5)

sin 6 d 6 d 4> 4ir 4

since the integral over 6 from ir/2 to ir is zero because dA , is obscured
o

by the rest of the body as already mentioned. This result may be
repeated for each element of surface area, although generally speaking,
a translation of the origin will be required to make the radius .vector
parallel to the element of surface area in question. Since the total
surface area is simply the sum of all its elements, we have the desired
result,

A = 1/4 AS (A-6) .

This result is sometimes attributed to Cauchy although no reference
has been found. We can use this result to derive Equation (A-3) by
noting that

A = KV2/3 = K( (A-7)
s p

where K is a dimensionless geometric ratio and V is the volume of a
body of mass, m, and density, p. If we put Equation (A-7) into
Equation (A-6) , we obtain Equation A-3) in the form

2/3 . 2/3 ,. ..
m = k m . (A-8)

Here the shape factor, k, depends only on two quantities. One is the
K-number defined by Equation (A-7) as the ratio of suitable powers of
two extensive, geometric properties of the body, its surface area and
its volume. The other is the negative two-thirds power of an inten-
sive, physical property of the body, its density. In particular,
the shape factor, k, is independent of mass. However, this does not
eliminate the possibility that certain k values may occur more
frequently for certain mass groups because of metal processing or
some other factor.

While the meaning of K in Equation (A-7) is intuitively evident
and its numerical value is easily found for simple geometrical shapes,
it is worth noting that a K-number can be defined for any convex
body no matter how complicated its shape. It may be very difficult
to calculate this number for an oddly-shaped body, but we only need
to define it in order to derive Equation (A-8) . The use of an
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icosahedron gage or some other technique will enable us to estimate its
value to the accuracy we desire. These assertions can be clarified
by the following whittling experiment. If we start with a rectangular
parallelepiped with edges A, B and C we may whittle out any convex
shape we want by a series of slices each of which produces a small
pyramid which is discarded, leaving behind new vertices where three
edges meet in addition to the old ones. A curved surface may be
produced as accurately as we please by making a large enough number
of small enough cuts (an infinite number in the geometrical limit).
Suppose, for example, we start by cutting off a corner with slant
heights a, b and c corresponding to the edges A, B and C. If we take
edge a as the pyramid height and the triangle with b and c as sides
for the base, we find the volume i (- ab) c = JL abc. The surface
area of the pyramid is the sum of the triangular areasof its four faces,
namely, i ab, i be, L ca and /s(s-a)(s-b)s-c) where s = 1. (a+b+c).

^ i 2 / 3 ^This sum divided by (i abc) ' is the K-number of the pyramid. The
surface area of the remaining mass is the original surface area minus
that part of the pyramid surface area which was exposed before the
cut plus the newly exposed surface area. The volume of the remaining
mass is simply the original volume minus the pyramid volume. Thus,
the K-number of the remaining mass is

2 [AB+BOCA] - yCab+bc+ca) + /S(s-a) (s-b) (s-c)
= - ^ - -

[ABC - ±

If we slice off a new pyramid which contains one of the newly produced
vertices, the calculation will be complicated by the fact that,
generally speaking, no right angles will be present. Still, the
calculation of a K-number for the remaining mass is analytically
possible. The same is true if we had started with a polyhedron other
than a rectangular parallelepiped. As the number of cuts increases
the analytical formulas for the K-number of the remaining mass become
increasingly cumbersome and only become simple again as some simple
geometric shape is reached. We will not pursue this matter here since
our only purpose is to illustrate the fact that a K-number can be
defined for arbitrary convex shapes like those which most often occur
in natural fragmentation.

Finally, it is interesting to note the dependence of v on the
fragment mass, m, in Equation (27) above, namely, in

v = VQ e- (A-10)
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where a = Cn pa.k varies from near zero for very high altitudes 1 ,„
(pa * 0) to about .6(.001 gm/cm3) (.38 cm2/gm2/3) * .2 x 10~3 gm ' /
cm = .02 gm l'3/meter near sea level. Here we have used k = .38 cm2/
gm2' for a cubical steel fragment, using a=b=c in Equation (A-3) .
If the c dimension were 0.1 or 10 times a=b, then k would only be about
twice as large. For natural fragmentation c is usually less than five
times a=b, giving a k variation of only about 25% from the cubical
value for a mass variation of two orders of magnitude. Because of
this it is common to choose a single representative value of k to
describe a large collection of fragments of different sizes and shapes.
Let us do this so that a is the same for all fragments in Equation
(A-10), neglecting the even smaller variation of a with altitude for
a given burst. In addition, let us assume that vo is the same for all
fragments, an approximation which is nearly true if the charge to
mass ratio is nearly constant over the length of a shell whose lethal
fragments are mostly found in a zone near the equatorial plane. Then
the ratio of the speeds of two masses, m^ and m2, at distance R is

= exp [- otR (m^ - m2"
1/3)]. (A-ll)

If m2 = 1 gm then R can be found as a function of mi and R. Table I
gives representative values of R1 for m2 = 1 gm and a = .02 gm1/3 meter
versus mj (gm) and R (meters) . If we compare various masses with
m2 = 0.1 or 10.0 gm we obtain somewhat different values of Rr. Still
Table I gives us a feeling for the variations to be expected over the
variable ranges of interest and for the size of the corrections we
might expect if we were to employ different values of k or a for
various mass groups. Generally speaking, such corrections are not
justified unless the other errors in our model are much less than they
usually are.

TABLE I. Speed ratio of various masses, m (gm) , at various distances
from the burst point, R (meters), compared to a 1 gm mass, using
a = .02 gm 1/3/meter.

\ R
m2\

.01

.1

1

10

100

0

1
1
1
1
1

10

.48

.79

1

1.11

1.18

20

.23

.63

1

1.23

1.37

40

.05

.40

1

1.54

1.89
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