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A NEW ALGORITHM FOR THE TUNING OF
ANALOG FILTERS
Charles John Alajajian, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering
- University of Illinois at Urbana-Champaign, 1979
Typically, in the manufacture of electrical filters it is not

practical to specify component tolerances in order to achkieve one-hundred
percent yield. Rather it is more cost-effective to have less stringent
tolerances on the component values and to tune those filters which do not
meet the design specifications by adjusting a subset of the component
values. For example, in the manufacture of hybrid thin or thick film
active filters, the capacitors are not normally trimmed, so that oanly the

resistors in the circuit can be used to tune the filter., Furthermore,

resistor trimming increases the resistance so that a carefully designed

oy

tuning scheme is required. In addition, tuning can be a very expensive

process, so that it is important to have a tuning algorithm which is

gty

efficient and which maximizes the yield.

In this thesis a new algorithm is proposed for the tuning of analog
filters. Tellegen's theorem and the adjoint network concept are used to
relate large changes in a set of tuning elements to desired voltage changes
in the manufactured filter., The component values in the manufactured
circuit are measured and the deviation of the voltages in the manufactured
¢ircuit from the corresponding voltages in the nomiaal clrcuit design are
computed at a set of critical frequencies. A set of tuning resistors is
chosen and this information is entered into the large-change sensitivity
expression. The changes in the tuning elements needed to reduce these
voltages deviations to zero are computed by solviang a set of linear

algebraic equations whose rank is equal to the number of tuning elements
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plus one. It is shown that the method converges much faster to the
desired solution than first-order sensitivity and optimization methods.
Furthermore, the transfer function does not have to be computed in
symbolic form, nor do the coefficient sensitivities need to be computed.
In addition, the method has been found to be especially useful in the

tuning of multiple-feedback filter structures.
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1. INTRODUCTION

In the manufacture of high performance filters, it is often necessary
to adjust some or all of the components of the filter in order to meeﬁ
certain specifications, which are normally given in terms of the variation
in gain with frequency. The process of adjusting component values to
correct for deviations from the specified gain response is known as
tuning.

Deviations from the specified gain response are due to two basic
sources. The first of these is that the model assumed for the filter
does not account for parasitic effects, such as losses in the capacitors,
or the finite gain-bandwidth of the actual operational amplifier (op amp)
being used. The second is that the components themselves will be
perturbed from their nominal values due to the initial production
tolerances,

Tuning is an important problem in industry, and considerable effort
has been expended within industry and in research to develop algorithms
that can be automated, and which maximize the yield. Another basic reason
for the importance of tuning is the trade-off between component costs and
tuning costs. Because the accuracy of the component values is inversely
related to cost, it is usually more cost-effective to employ an efficient
tuning algorithm, thereby significantly reducing manufacturing costs.

In general the problem of minimizing component and tuning costs is complex,
requiring the use of sophisticated computer aids for its solution [1,2,3].
Usually, practical considerations limit the tolerances that can be

specif’'~d for the filter components so that some amount of tuning is
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needed. In addition, tuning can be a very expensive process, so that
it is important to have a tuning algorithm that is efficient.

At the time of this writing, active components, such as op amps,
are best fabricated by the silicon technology, while passive components
over a wide range of values and with high precision are best fabricated
by the thin and thick film technologies. A popular method of designing
active filters is to use a combination of the thin or thick film
technology and the silicon technology. In this hybrid approach, the
silicon integrated circuit op amp chips are bonded to thin or thick film
passive networks. While there are many trade-offs between the use of
thin and thick films, thick films usually require less expensive produc-
tion equipment, and for small quantities are less expensive to produce,
whereas thin films are economically justifiable only for high production
runs. In general thin films occupy less space than thick films and can
be manufactured to tighter initial tolerances. Presently, thin and thick
£film resistors can be manufactured with initial production tolerances of
+ 5 percent, and + 20 percent, respectively, and can be adjusted with
trimmed tolerances of + .l percent, and + 1 percent, respectively, where
these figures represent conservative values [4]. The value of a resistor
R is determined by the sheet resistance Rs’ in ohms/square, and the
geometry, where 1 is the length and w is the width of the resistor. Then

the value of the resistor R is given by

R-Rs(ﬁ) .

In trimming, only the width w of the resistor is adjusted. This is done
by removing material from the width of the resistor by anodization,

etchants, or abrasives, or by a laser beam (4]. Reducing the width of
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the resistor can only increase its value, so that the sheet resistance
Rs is initially produced below its desired value so that the resistors
may be trimmed up to their tuned values at the time of manufacture "37.

Thin film capacitors can be manufactured with an initial production
tolerance of + 5 percent at the time of this writing [6]. While thick
film capacitors can be made, it is usually more economical to use
discrete éapacitors unless a large number is required [4]. The tolerances
of thin film capacitors are determined by the accuracy of the film
properties, such as thickness and dielectric constant, and also by the
geometry. Thin film capacitors usually consists of a substrate, a layer
of metal (commonly called the base electrode), a dielectric layer, and a
top layer of metal (commonly called the counterelectrode). It is not
feasible to adjust capacitors [6] perhaps due to the additional expendi-
ture of effort required to cut through three layers of material as opposed
to a single cut for resistor adjustment [7]. Also, automatic resistor
app?'  tus is available which makes resistor trimming adjustments in a.
single operation thus making resistor adjustment more practical than
capacitor adjustment on an assembly line [7].

A filter will be said to be tuned if it exhibits the same gain
characteristic as the nominal (to within a constant) at its output. Thus,
the purpose of the tuning resistors is solely to locate the poles and
zeros of the transfer function of the manufactured filter in their
nominal positions. Deviations in the dc level can usually be corrected
by some other resistors in the circuit without affecting the pole-zero

locations.
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1.2 First-Order Sensitivity Methods

1.2.1 Transfer Function Sensitivity

First-order transfer function sensitivity methods use the
differential [8] to relate small changes in the tuning elements to desired
output voltage changes in the manufactured filter at a set of critical
frequencies. The partial derivatives of the output voltage of the manu-

factured filter circuit with respect to each of the tuning elements can

. be efficiently and accurately obtained at each iteration via the adjoint

s
circuit concept [9,10]. The solution of a set of linear algebraic

equations gives the tuning element values at each iteration. The main
difference between this method and the new method to be described in
Section 1.2.8 is that the former method approximates the voltages in the
tuned filter by the manufactured filter voltages (AV set equal to zero in
equation (2.9)), whereas the latter method approximates the voltages in
the tuned filter by the nominal filter voltages, which experience has
shown, is a superior approximation. First-order transfer function
sensitivity methods are useful if sufficiently small changes in the tuning
elements will bring about the desired voltage changes in the manufactured
filter. Otherwise, the method is slow to converge, or divergent.

1.2.2 Root Sensitivity Methods

First-order root sensitivity methods use the differential to relate
small changes in the tuning elements to desired pole-zero (and possibly
dc level) changes in the manufactured filter. The partial derivatives of
the poles and zeros (and possibly dc¢ level) of the manufactured filter
¢ircuit with respect to each tuning element are approximated by computing

the changes in the pole-zero locations due to small variations ia the
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tuning elements [11]. If the forward difference quotient [12] is used
to approximéte the derivatives and there are T tuning elements, then
T+l computations must be made. The central difference quotient [12]
requires 2T computations.

In order to compute the desired pole-zero changes (and hence these
partial derivatives) the pole-zero locations of both the nominal and
manufactured filters must be found. To find the pole-zero locations of
the manufactured filter, magnitude (or phase) measurements are made at a
set of critical frequencies. This information is then used to compute
the transfer function coefficients of the manufactured filter by solving
a set of linear algebraic equations. Once these coefficients have been
determined, a root solving subroutine is used to determine the pole-zero
locations of the manufactured filter, and then of the nominal filter,
whose transfer function coefficients are assumed to be known, Finally,
the forward difference quotient or the central difference quotient is used
to approximate the derivatives and this information is substituted into
the differential expression resulting in another set of linear algebraic
equations which is solved to give the changes in the tuning elements
required to tune the filter. Of course, these steps would be iterated if
the first pass calculations did not adequately tune the filter.

The usefulness of the technique is limited in practice to the tuning
of simple, second or third-order filter stages, or such stages in cascade,
as & result of computational and measurement inaccuracies. In particular,
because the method requires calculation of the transfer fuanction co-
efficients of the manufactured circuit (from which the roots of the wmanu-
factured circuit are computed) the roots are extremely sensitive to the

accuracy with which the transfer coefficients are computed. The problem




becomes acute when higher-order, narrow-band filter types are to be tuned
{11,13]. There is little that can be done to overcome this problem
except to use double precision in the computer calculations [13], or a
frequency transformation which generates a new polynomial whose roots

are further apart [13]. Also, some care should be taken in the selection
of a root finding subroutine [11].

In addition to the large améunt of computational effort required to
find the approximate partial derivatives, the procedure is unsuccessful
in tuning a simple second-order bandpass example when the capacitance
values are 5 percent high and resistors are at their design values [11].

1.2.3 The Wy

First-order ub

relate small changes in the tuning elements to desired changes in the

and Q Sensitivity Methods

and Q sensitivity methods use the differential to

parameters u, and Q. Because these parameters are defined only for
second-order systems, their use is limited to the tuning of simple second-
order filters, or such filter stages in cascade.

The partial derivatives of the parameters @, and Q of the manu-
factured circuit with respect to the tuning elements may be approximated
by using either the forward or central difference quotient. The desired
changes in the parameter values are calculated and the resulting infor-
mation is substituted into the differential expression. The solution of
a set of linear algebraic equations gives the values of the tuning
elements required to tune the filter. Such parameter sensitivity methods

lend some theoretical insight into the tuning problem but are not used

in practice (14].
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1.2.4 Functional Tuning

Functional tuning is a '"seat of the pants" approach to filter tuning.
At the time of manufacture the filter is powered up, or made functional,
while a sinusoidal excitation is applied and measurements are made at a
set of critical frequencies. The tuning elements are adjusted one at a
time until required gain or phase specifications at these critical
frequencies are met.

Functional tuning is straightforward enough in tuning second-order
filter sections where there are simple relationships between the desired
parameters and the circuit elements. However, because of interaction
between the circuit elements it is often unclear which resistors to adjust
and their order of adjustment. It is also possible to overshoot the
tuned resistance values, since they are not known. Thus, an experienced
technician is usually required to handle the tuning and testing. The
method is a slow process; the obtainable accuracy is proportional to the
number of iterations of the tuning steps [14].

It 1s not necessary to measure the component values or the parasitic
elements of the filter when it is functionally tuned. As an added benefit,
parasitics are automatically taken into account and effectively tuned out
which makes it attractive to use in practice.

1.2.5 Deterministic Tuning (Coefficient Matching)

To be deterministically tuned, a thin or thick film filter is designed

so that any passive element or parasitic element may be measured by
connection to two appropriate pins on the side of the substrate. Thus,
in the manufacturing process, the circuit elements are not all inter-
connected on the substrate. After tuning, certain pins are bridged and

the filter is powered up and ready for service [6].




The solution of a set of nonlinear equations gives the required
values of tuning resistance needed to tune the filter. To generate this
set of equations, the symbolic transfer function including parasitic
elements is found. The nonlinear equations are generated by matching the
transfer function coefficients of the nominal filter with those of the
manufactured filter. A set of tuning resistors is chosen and these
resistors are solved for in terms of the measured capacitors, parasitic
elements, remaining resistors, and the (known) nominal coefficients.

If the filter is to work properly when powered up, parasitic effects
must be taken into account. This usually means including all first-order
parasitic effects, and possibly second-order effects in the circuit model
of the filter [14]. The degree and complexity of the resulting transfer
function and the tuning resistor expressions increase markedly, making the
tuning resistor expressions difficult to derive, and necessitating the
use of powerful computer programs for their solution [6].

It is not known beforehand which set of resistors to choose for

tuning the filter, or whether or not a solution to the deterministic

tuning problem for the selected set of tuning resistors exists. There
may be more than one set of tuning resistors which yields a solution,
exactly one set which yields a unique solution, or there may not be a
set which yields a solution, depending on the circuit topology and the
component values. Even if a solution exists, there might be algebraic
or numerical problems in finding it [6].

The main advantage of deterministic tuning over functional tuning
is that tuning is accomplished by a non-interacting series of tuning 1

steps.
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1.2.6 Hybrid Tuning

In practice it is often most efficient to use a combination of
functional and deterministic tuning. The filter is first determinisically
tuned assuming ideal elements and then proceeded by a '"functional touch-
up'" which is used to tune out undesirable parasitic effects [14].

1.2.7 oOptimization

The';eneral iterative circuit optimization process [12] consists of
specifications, an initial approximation, and error evaluation. The
specifications might be the nominal gain at a set of critical frequencies,
for example. The allowable deviations from these specified values is
also given. An initial circuit provided by the designer starts the
process up. This circuit is the initial approximation and might be the
gain of the first guess tuned circuit (measured at the same set of
critical frequencies as the nominal) of one of the before mentioned
methods. The initial approximation must be a good one or the optimization
process may fail to converge, or converge to an inferior final tuned
circuit.

The error is defined as the difference between the nominal response,
and the tuned response, which changes, along with the tuning resistance,
from iteration to iteration. Usually a single number called the per-
formance 1ndgx is used as a measure of the circuit performance at the ith
iteration. [12].

To determine whether or not the ith circuit is acceptable, it is
compared to the nominal circuit and the (i-1)th circuit. If the deviation
of the ith circuit from the nominal circuit is within acceptable limits
the iteration stops. The iteration also stops if the tuning element

values and/or the performance index does not change appreciably from oane
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iteration to the next. 1In addition, the program should limit the maximum
number of iterations by coming to a halt after a fixed number of iterations
to avoid excessive computational costs, regardless of the circuit per-
formance [12].

If the iteration continues, the tuning resistors are readjusted |
according to some rule which results in a decrease in the error at the
next iteration [12].

Any of the before mentioned tuning methods (with the exception of
functional tuning) may be improved upon using optimization. An example
of this which casts the deterministic tuning problem as an optimization
problem can be found in the literature [6]. To begin the process, the
transfer function coefficient deviation vector Az is found [6]. This is

given by

Lz = £G + 6, C + [, &G) - £6, €, O) .

The first term on the right-hand side of the equation is the vector of
coefficients of the manufactured transfer function; the second term is the
vector of coefficients of the nominal transfer function. The transfer
function coefficients are nonlinear functions of the resistors and
capacitors in the circuit. In the manufactured circuit the jth resistor
and capacitor are perturbed from their nominal conductance G, and

3

capacitance Cj by amounts AG, and ch, respectively. 1In addition, there

3

are parasitic elements AGP which are not present in the nominal circuit.

3
Since it is not feasible to tune capacitors, the manufactured capacitors \

C + /C and the parasitic elements Agp are fixed, so that only the con- v,
ductances )G may be tuned. The objective of deterministic tuning is to

' solve for a subset of the conductances )G (leaving the remaining - "
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conductances fixed) that drives the difference vector Az to zero. By
approximating Az by the differential vector dz, and then expressing it
as a recursion relation and defining a performance index, the deter-
ministic tuning problem is cast as an optimization problem [6,15].

The main advantage of optimization in this example is that problems
of existence and uniqueness of a solution that occur in conventional
deterministic tuning are overcome. It should be noted that all of the
resistors are adjusted in this scheme.

There are several drawbacks to be considered here, however. Perhaps
the most serious of these is the excessive computational cost of computing
the partial derivatives of each numerator and denominator coefficient of
the transfer function with respect to each passive and parasitic element
for each filter stage. These costs are intensified when all first-order
and some second-order parasitic effects are included in the circuit model
of the filter, especially those of bigher-order.

Multistage filters are tuned a stage at a time by this method. The
algorithm has not been applied to the tuning of a multiple feedback
structure [16,17], so that it is not known how successfully it tunes
filters of this variety. As in deterministic tuning, the transfer
function in symbolic form including parasitic elements is needed for each
filter stage.

Moreover, individual tuning rules must be derived and programmed for
each filter stage, which does not readily lend itself to tuning new
filter products, and results in additional programming costs.

1.2.8 A New Tuning Algorithm for Amalog Filters

This thesis presents a new algorithm for tuning analog filters.

Tellegen's theorem (18] and the adjoint circuit concept [9] are used to

i

N

VPP




12

develop a large-change sensitivity expression which relates large changes
in the tuning elements to desired voltage changes in the manufactured
filter at a set of critical frequencies. The partial derivatives are
computed efficiently and accurately via the adjoint method [9,10]. The
desired voltage changes are unknown, because the tuned circuit voltages
are not known. However, the nominal voltages are known and are used to
approximaée the desired voltage changes., Experience has shown that this
approximation yields an excellent first guess for the component values
needed to tune the filter. The component values of the manufactured
circuit are measured, and a set of tuning resistors are chosen. The
voltages of the manufactured filter are either measured or simulated via
the computer, along with the voltages of the (simulated) nominal filter
at the critical frequencies, and this information is substituted into the
large-change sensitivity expression. The solution of a set of linear
algebraic equations of rank T+l (where T is tiie number of tuning elements)
gives a first guess for the tuned values of the filter. The process is
iterated by simulating the first guess tuned circuit and substituting its
voltages and the new approximation for the desired voltage changes into
the large-change sensitivity expression. The resulting set of linear
algebraic equations is solved to give the new tuned values. This process
is continued uatil the specified error and stopping criteria are met. 1In
most cases, the method converges very quickly, as will be seen in the
forthcoming examples. 1In fact, one can obtain results that are almost

identical to the nominal response in only two or three iterations.




13

2. DERIVATION AND TMPLEMENTATION OF THE ALGORITHM

2.1 Derivation of the Algorithm

In this section the tuning algorithm described in Section 1.2.8 will
be derived and steps for its implementation will be given. The foundation

of the derivation is the differential Tellegen's theorem [18), which is

b . m
'1 I - = - s = .“ .
. k§1 (BVihy = ALY jfl (AvpjipJ A55Vpy)

The terms on the right-hand side of equation (2.1) represent independeat
source branch voltages and currents including output port branch coan-
straints, while the voltages and currents on the left-hand side of the
equation represent the remaining branch constraints. Equation (2.1) was
derived under the assumption that there are three topologically identical
networks, N, ﬁ, and NA' The component values in the NA network have been
perturbed from those in N such that the voltages and currents in the NA
network are Vk + Avk, and Ik + AIk, respectively. Equation (2.1) relates
changes in voltages and currents in the N network to the voltages and
currents in the N network {19,20,21].

Since only resistors will be used as tuning elements, the conductance

branch constraints in the manufactured network N are
(2.2) Ik = Gka
and in the tuned network NA

. .
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Subtracting (2.2) from (2.3) gives

(2.4) AL, = G 4V, + G (V, + &V,) .

If the branch constraints of N are chosen such that N is the ad joint

circuit of the network N [9], for example,

»~

=G,V

(2.5) L KWk

then upon substitution of these adjoint network branch coastraints and

the differential branch constraints of equation (2.4) into equation (2.1)

gives
.6 + v - v - ALV
(2.6) kfl (Ve + VIV 86, _151 (&5 5To5 = 8Lp5Yp5)

where T is the number of tuning elements and where a single input port
and a single output port is assumed on the right-hand side of
equation (2.6). Let port 1 denote the input port and port 2 denote the
output port, and assume that the input port has a voltage source
connected across its terminal pair. Since the purpose of tuning is to
correct for deviations in gain at the output port (to within a coanstant),
the quantities of interest are the output voltage VO’ or its change Avo.
On this basis, choose Gpl = OV and ipz = 1A so that equation (2.6) becomes
T

(2.7) Tt WOV 6 =

kel p2

Requiring the output voltage of the tuned filter to be within a constant !

of the nominal value over the frequency spectrum results in

(2.8) Avgz - .:v(-')d - vgm
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o and VOd

design circuits, respectively, the superscript j denotes the frequency

where V are the output voltages of the manufactured and nominal

at which the deviation is computed, and ¢ is an unknown coastant. Let n
represent the number of critical frequencies at which the measurements

are made. Then equation (2.7) becomes

r 1al lal 1 r 7 [ 1
(Vg + V) V] e (U + V)TV SV, o6, “Vou
(2.9) : . . . . = M .
“n LN N ] ‘n n n
L v, + av)N] vy + )N Vg, 4Gy ~Von
- c
- - - .

The number of tuning elements and the number of frequencies must be chosen
so that the rank of equation (2.9) is equal to the number of unknowns.
Since the number of unknowns is T+l and equation (2.9) is complex, this
requires that 2n > T+l.

The voltages Vk are the branch voltages in the manufactured circuit
and the 5vk are the voltage changes which occur when the circuit is tuned.
Usually, the term AVk is neglected in equation (2.9) and the resulting

expression is used to compute the first-order transfer function sensitivity

0 ~
®y |y Kk

where the derivatives are evaluated about the manufactured circuit. How-
ever, below it is shown how to estimate the branch voltages AVk which is
the key to the new algorithm, Clearly the Avk terms cannot be determined
without a knowledge of the AGk terms. However, since the tuned circuit
will have essentially the same poles as the nominal circuit design, and

since the zeros of the transfer functions for the internal branches will




’ typically lie outside of the passband of the filter, thean the branch

voltages in the tuned circuit may be approximated as

j I~
(2.10) v+ )Y =V ’

where the de are the branch voltages in the nominal circuit design.
\ Thus, the»tuning algorithm may be implemented as follows:
‘ 1) Select the number of tuning resistors such that T is less
) than or equal to the number of poles and zeros of the
desired transfer function.
2) Select the number of frequencies n such that 2n = T+l, or
if T+l is odd, 2n = t+2. Select frequencies in the neighborhood
of the band-edge of the filter, where the phase is changing
most rapidly.

3) Analyze the circuit with its component values equal to

their nominal design values at each of the critical frequencies
in step 2, and substitute these branch and output voltages
into equation (2.9) for cvk + AVk) and Voa'

4) Measure the component values in the manufactured circuit.

5) Compute or measure Vom at the critical frequencies in
step 2.

6) Solve the adjoint circuit with its component values equal to
those of the manufactured circuit at the critical frequencies
in step 2 in order to obtain Gk'

7. Solve equation (2.9) to obtain the Ack terms, and the

constant c.

4
S i

i
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8. Compute the error using the error criteria of Section 2.2.
If the error is too large, proceed to step 9. Otherwise,
stop the iteration.

9. If the maximum number of iterations specified has not been
exceeded, generate a new manufactured circuit in the computer
by replacing Gk by Gk + Ack, where the AGk terms are obtained

Erom step 7.

2.2 Error and Stopping Criteria

0f primary importance in the realization of the algorithm is a
satisfactory means of halting the program when an acceptable tuned
response is obtained. While a visual display or a hard copy graph could
be made at each iteration, such an approach is time-consuming and un-
economical, although it does give an unmistakeably clear picture of
whether or not the circuit at each iteration meets specifications. In
lieu of this approach, the program examines up to three frequency bands
specified by the user and halts execution when the program error criteria
are met. In addition, the program limits the maximum number of iterations
by coming to a halt after a fixed number of iterations (specified by the
user) to avoid excessive computational costs, regardless of the tuned
circuit performance. The error and stopping criteria for the various
filter types will now be examined.

2.2.1 Criteria for a Lowpass Filter

In the design of a given filter type, the maximum gain deviation in
the passband and the minimum attenuation in the stopband are parameters
which are important to the circuit designer., Since these parameters are

indicative of the gain response, they are a useful measure of the tuned

R et - - -
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circuit performance at each iteration. For the following discussion,

refer to Figure 2.1. Let M. be the maximum gain in the passband (defined

1

between wp and wp ) and M2 the minimum gain in the passband. Then
1 2
define the maximum gain deviation in the passband D to be D = Ml - M2 dB.

Let M, be the maximum gain in the stopband (defined between w and w_ ).

3 sy Sy
Then define A = MZ - M3 dB to be the minimum attenuation in the stopband
as measured about the reference gain M2.

The passband and stopband limits are specified by the user, along
with the number of frequency points to be included in each band. The
gain deviation that can be tolerated in the passband Dmax is specified as
well as the minimum attenuation acceptable in the stopband Amin' If
these quantities are not specified, the program defaults to their
(computed) nominal values. At each iteration the passband gain deviation
D and the minimum attenuation A are calculated and compared to Dma and

X

Amin’ respectively. If these specifications are met, or if the change in
tuning resistance from the previous iteration is less than one percent
then the iteration is stopped.

It should be noced that for the special case of a Butterworth or
Chebyshev filter, the maximum gain in the stopband occurs at the band-
edge (at dél in Figure 2.1). This is a result of the monotonic property
of Butterworth and Chebyshev polynomials in the stopband. Therefore in
order to find the maximum gain in the stopband it is only necessary to
compute the gain at the band-edge frequency for filters of this type.

2.2.2 (riteria for a Highpass Filter

The error and stopping criteria for a highpass filter is defined in

the same manner as the lowpass filter criteria, and thus will not be

repeated.
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2.2.3 Criteria for a Bandpass Filter

The error and stopping criteria for a bandpass filter is similar to
the lowpass filter criteria except for an additional stopband. For the

following discussion, refer to Figure 2.2. Let Ml and Mz be the maximum

and minimum gain in the passband, respectively, M, the maximum gain in

3
the first stopband (defined between wg and wg ) and MA the maximum gain
- 1 2
in the second stopband (defined between wg and w ). Then define the
3 4

maximum deviation in the passband D to be D = M1 - Mz dB. Another
quantity of interest is the minimum attenuation in the first stopband,

or the minimum attenuation in the second stopband, whichever is smaller
(as measured about the reference gain MZ)' Define the minimum attenuation

A tobe A=M, - max(M3,M4) dB where max(M3,M4) denotes whichever is

2

greater, M3 or Mh' The maximum gain deviation that can be tolerated in
the passbank Dmax and the minimum attenuation acceptable in the stopbands
Amin are specified by the user and compared with D and A at each iteration.
If these specifications are met, or if the change in tuning resistance
from the previous iteration is less than one percent, then the iteration
is stopped.

2.2.4 (Criteria for a Band Reject Filter

In arriving at a suitable error and stopping criteria for a band

reject filter, refer to Figure 2.3. Let Ml be the minimum gain in the

first passband (defined between wp and wp ), Mz the minimum gain in the
2

1
second passband (defined between mp and wp ) and M3 the maximum gain in
3 4
the stopband (defined between wg and Wy )+ The quantity of interest is
1 2

the minimum attenuation in the stopband as measured about the reference
gain Hl or Mz, whichever is smaller. Then define the minimum attenuation

AtobeA= miuonl.nz) - H3 dB where min(Ml,Hz) is the smaller of Ml

— ——
‘ D o tincris o~ -
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and M2' The designer only specifies the minimum attenuation acceptable
in the stopband Amin’ which is compared to A at each iteration. If the
specifications are met, or if the change in tuning resistance from the
previous iteration is less than one percent, then the iteration is

stopped.

2.2.5. Computer Program

A computer program written by the author which efficiently implements
the tuning algorithm of Section 2.1 is available from the author. The ac
steady state circuit analysis program (contained within and also written
by the author) is used to simulate the manufactured, adjoint and nominal
circuits, The circuit analysis program uses the modified nodal approach
(23] to formulate the circuit equations, and the popular Decompose and
Solve subroutines [24] to perform the Gaussian elimination. The adjoint
branch voltages and currents are efficiently found from the LU factor-

ization of the manufactured circuit [10].
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3. TESTING THE ALGORITHM

In Section 1.2.8 a new algorithm was presented for the tuning of
analog filters, which was subsequently derived in Chapter 2. It remaias
to test the algorithm on a number of filter samples which are representa-
tive of the manufacturing process. Before this can be done, the character-
istics of the manufacturing process must be understood. As hybrid thin
or thick f£ilm integrated circuits are a popular means of designing analog
filters, in what follows a brief overview of some of the characteristics

of the manufacturing process will be given.

3.1 cCharacteristics of the Thin Film Process

The initial production tolerance of a thin film resistor is + 5 per-
cent of its nominal value, This is primarily due to the sheet resistance
of a thin film circuit, which can be controlled to + 5 percent tolerances.
The tolerances of the length or width of a resistor depend on the masking
technique used, and can be made to within a range of + .1 mil to + .5 mil.
The inaccuracy of the longer dimension is usually negligible with the
length of the smaller one. Thus, if all the resistors on the substrate
have the same smaller dimension (whichever is smaller, length or width)
their values will all deviate from their nominal values by the same
percentage. Furthermore, it is primarily the smaller dimension which
determines the tolerance of the resistors (4].

All resistors can be routinely trimmed at the same time (by monitoring
a single resistor) to within + 1 percent if properly designed, and
individually trimmed to an accuracy of + .l perceat although at increased

manufacturing cost. In the manufacturing process, the sheet resistance

| QD7 e TSR
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is initially produced below its desired value, the resistance values are
measured and then the resistors are trimmed up to their desired values [4].
Parasitic effects of thin film resistors are quite small., These
resistors usually perform better at high frequencies than their discrete
counterparts. However, at frequencies in the megahertz range they can be
modeled as shown in Figure 3.1. Typically the value of the shunt parasitic

capacitadze Cp is on the order of a few tenths of a picofarad [4].

Figure 3.1 Model of a Thin Film Resistor Including
Parasitic Effects

Normally, there is good tracking between resistors, especially
those closest together on the substrate [4].

The initial production tolerance of a thin film capacitor is + 5 per-
cent of its nomiqal value [6]. The only parasitic effect to be considered
in properly designed thin film capacitors is the series resistance RPs
which results from the finite conductivity of the two electrodes. This
resistance usually varies from a few ohms in larger capacitors (on the
order of .01 yF) to a few hundred ohms in very small capacitors. The
shunt or leakage resistance Rpp is normally greater than 107 in which case
its effects are negligible. A model for the thin £ilm capacitor which

includes parasitic effects is shown in Figure 3.2 [4].
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Figure 3.2 Model of a Thin Film Capacitor Including
Parasitic Effects
Because conductors which interconnect the elements are usually very
short, parasitic capacitance and parasitic inductance effects between
conductors are usually less than their discrete circuit counterparts, and
can be neglected. However, the resistance of the conductors can range
from .1 to 1 ohm/square so that this effect must be included in the

circuit model in cases where the circuit performance is critical (4].

3.2 Characteristics of the Thick Film Process

The initial production tolerance of a thick film resistor is + 20
peréent of its nominal value, and with trimming, resistor tolerances can
be kept beiow 1 percent. As with thin films, it is the smaller dimension
that primarily determines the tolerance of the resistors [4].

After screening and firing, the thick film resistance values are
within + 25 percent of the nominal values. Thus, in the manufacturing
process, a good approach is to initially produce the sheet resistance 25
percent below the needed value, and then trim the resistors up to their
desired values [4].

Although thick film capacitors can be made it is more economical to

use discrete capacitors unless a large number is needed. It is more
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common to use thick films only for resistors and for conductors to inter-
connect the elements. Resistance of thick film conductors ranges from

.1 to .0l ohms/square but this range can be decreased by a factor of ten
less by solder coatings. In some instances it may be necessary to include

this resistance in the circuit model [4].

3.3 Op Amp Characteristics

Discrete op amp chips are usually bonded to the thin or thick film
circuits to form a hybrid thin or thick film filter. While an ideal op
amp model facilitates the design of an active filter, a more accurate
model might include parasitic elements which account for the finite input

and output resistance and finite gain-bandwidth product of real op amps.

3.4 Generating a Sample Circuit

Armed with a knowledge of the Pybrid thin or thick film manufacturing
characteristics, it is now possible to generate some sample filters repre-
sentative of the manufacturing process. In succeeding chapters the
algorithm will be tested on a number of filter samples of various type,
order and topology, and the yield of the simulated manufacturing process
will be found.

Consider now the generation of a single sample circuit in which
parasitic effects are omitted for simplicity. In order to simulate
resistors in the sample filter circuit, it is assumed that in the manu-
facturing process the initial sheet resistivity is produced 25 percent
below its desired value for example, that all resistors have been measured,
and that tuning resistors have been individually trimmed 10 perceat below

their nominal value and the other resistors trimmed to their nominal value.

- Shecenth sttt —
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In light of the previous discussion the capacitors are modeled as
follows., The first capacitor is assumed to be triangularly distributed
in a five percent band about its nominal design value. Subsequent
capacitors are assumed to be triangularly distributed in a two percent
band about their'nominal value plus the product of the nominal value and
the percentage deviation of the first capacitor, and are not to exceed
+5 perceﬂt of their nominal value (in which case they are truncated at
+ 5 percent or - 5 percent, whichever is closer).

To generate a single sample circuit, a random number generator is
used to give uniformly distributed numbers in the interval [0,1]. There
are a number of subroutines with this capability in the literature
{25,26], and many computer systems include subroutines of this type in
their libraries. A single sample circuit is generated as follows:

1) Set all tuning resistors 10 percent below their nominal

value and all other resistors at their nominal value.

2) Assume a symmetric triangularly distributed probability
density function p(x) defined on some interval (xl,xh) with
center x, = (x1 + xh)/Z. Find an expression for the
probability distribution function P(x) in terms of x, X,

X and x by integrating
x
P(x) = J‘ p(§)dg X, Sx5x
x
2
and using the property of probability density functions that

[ p@rag =1,

P(x) is known to be a monotonically increasing function with

maximum value of 1.




3) Find an expression for x in terms of X1 Xgs Xy and P by

solving for the inverse of P(x). That is
x = X(%,,%2,% ,P) = B L(P(x))
X xll oixh) .

4) Call the random number generator subroutine to give a real
number aq, a € [0,1].

5) Since P(x) € [0,1], set P = q.

6) If the first capacitance value has been generated go to
step 7. Let C01 denote the nominal value of the first
capacitor. Set xl = .95C01, x0 = C01’ and x.h = l.OSCOI.
Substitute these quantities and the value for a found in
step &4 into the expression in step 3 and solve for x.
Then x is the value of the first capacitor in the sample
circuit. Define k = (x - COl)/COI to be the percentage

. deviation of the first capacitor.

7) Let C,. denote the nominal value of the jth capacitor.

03

To generate the jth capacitor in the sample circuit, repeat

steps 4 and 5. Then set Xy = (1+k)coj, X = .98x0, and

; x, = 1.02x,. Substitute these quantities as well as the

- nevw value for g found in step 4 into the expression in

? step 3, and solve for x. Check to make certain that x

3 lies in the interval [.9SCoj,l.OSCoj], and if not truncate
x at .950oj or at 1.OSCOj, whichever is closer. Then x

{ is the value of the jth capacitor in the sample circuit.

8) Repeat step 7 until all of the capacitors in the sample

- circuit have been generated.

I e R e — I
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In the actual manufacturing process, the actual trimmed resistance
in step 1 may be measured and entered into the tuning algorithm, thus
reducing the tolerance requirements on the resistor trimming equipment
(6]. Also, any important parasitic effects can easily be included in

the circuit model.
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4. STATISTICAL ANALYSIS OF A SECOND-ORDER FRIEND
HIGHPASS NOTCH FILTER

In order to test the tuning algorithm of Section 2.1, a second-order
Friend circuit [27] was designed to realize the highpass notch transfer

function given by

2 6
s + 8x10
T(s) = 2.0 > : -

s + 500s + 16x10

The three frequency bands of the filter are defined as follows. The
stopband ranges from 2814.97 to 2839.99 rad./sec., the first passband
ranges from dec to 1600.0 rad./sec., and the second passband ranges from
4000.0 to 6283.19 rad./sec. The component values for the nominal design
are given in Table 4.1 and the circuit diagram of the filter is shown in
Figure 4.1. A minimum attenuation 2f 30 dB in the stopband is attainable
with this design.

In order to simulate untuned filters of this type coming off the
production line, five sample circuits were generated via the sequence of
steps in Section 3.4. The percentage deviation in the component values
of these sample circuits from the nominal are recorded in Table 4.1, along
with the average value of the absolute percentage deviation in the
capacitance values which will be referred to later. While the thin or
thick film manufacturing process is not justified for such a small

production volume as this, the number of sample circuits generated was

restricted because of the rather high cost of simulating a large production

volume.




Table 4.1 Componeat Values
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% Deviation in the Component Values

Sample Circuit

Nominal

Component Value 1 2 3 4 5
R1 13.260 kQ 0.00 0.00 0.00 0.00 0.00
R2 93.0 kQ 0.00 0.00 0.00 0.00 0.00
R3 214.0 kQ -10,00 ~10.00 ~10.00 -10.00 -10.00
R4 2.0 kO 0.00 0.00 0.00 0.00 0.00
R5 2.0 kQ -10,00 -~10.00 -10,00 -10.00 -10.00
R6 12.467 kQ -10,00 -10.00 -10.00 -10.00 -10.00
R7 10.00 kQ -10.00 ~10.00 -~10.00 -10.00 -10.00
C1 01 pf -1.88 .58 -2.67 -3.24 .75
02 .01 uf -1.35 .18 -3.42 =2.77 -.64
" 10000.0 0.00 0.00 0.00 0.00 0.00

Average value

of the Absolute

% Dev. in the

Capacitance

Values 1.62 .38 3.05 3.01 .70
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The transfer function of an untuned filter is of the form
52 + bls + bo
T(s) = K 2

+ a.s + a
s 1 0

b and a. can be

1’ Pgr A1 0

expressed in terms of the circuit components by using standard circuit

where the traansfer function coefficients K, b

analysis techniques. The resulting expressicns (not required by the

proposed large-change tuning algorithm) are complicated nonlinear functions

of the resistors and capacitors in the circuit., Since it is not feasible

to adjust capacitors, only resistors adjustments can be made to locate

the poles and zeros of the manufactured circuit in their nominal locations.
6

This can be done by driving the coefficients b1 -0, bo - 8x10°, a - 500

and a; - 16x106. To this end four resistors, R3, RS’ R6 and R7 are
selected to tune the filter, one for each coefficieat. This requires that
equation (2.9) be evaluated at three frequencies. These frequencies are
chosen at 2828.4, 4000.0 and 4250.0 rad./sec. where the phase changes
most rapidly. The coefficient K only effects the dc gain and has no
effect on the pole-zero locations. However, deviations in the dc gain
may easily be corrected within the filter if the symbolic transfer function
is known. Otherwise it is a simple matter to append a single amplifier
stage with gain (2/K) (or (1/C) in equation (2.9)) to correct for dc gain
deviations.

Table 4.2 records the results of tuning the sample circuits. For
each of the sample circuits the first iteration demonstrated a marked
improvement in the minimum stopband attenuation, very nearly meeting the

nominal specifications. All of the circuits met specifications in two

iterations, at which time the algorithm converged to its final element

e

| S




Table 4.2 Statistical Analysis of Friend HPN Filter
Using Large-Change Transfer Function

Sensitivity
Min. Attenuation in
Sample Circuit Circuit Description Stopband (dB)
Nominal 31.95
1 - Manufactured 2.48
1 Iteration 1 31.53
Iteration 2 v 32.06
Manufactured .74
2 Iteration 1 31.48
Iteration 2 31.96
l Manufactured 3.69
. 3 Iteration 1 27.50
- Iteration 2 32.41
‘ Manufactured 3.72
4 Iteration 1 27.96
l Iteration 2 32.41
Manufactured .98
l 5 Iteration 1 31.62
Iteration 2 31.95
| |
B
b _ —
- —— R
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values. (In this chapter and in subsequent chapters, the last iteration
recorded is the iteration where convergence occurs.) Finally, in each
case the tuning resistors increased in value from their manufactured
values.

The gain and phase response of the '"worst case'" sample circuit is
depicted in Figures 4.2 and 4.3 respectively. The nominal respoase in
this and in subsequent plots is always represented by a solid line, while
a broken line may either represent the manufactured response or the tuned
response depending on the context. By '"'worst case'" circuit it is meant
that circuit whose gain and phase response is the most distorted from the
nominal. This is somewhat difficult to determine from just a knowledge
of the minimum stopband attenuation so that the following measure will be
used in this chapter and in the chapters to follow, Since the overall
response (both gain and phase response) generally deteriorates as the s
circuit components are widely perturbed from the nominal (although some
cancellations are possible), and because all of the sample circuits have
the same resistance values, the percentage deviation in the capacitors
gives some measure of how severely distorted the overall respomse will be.
Therefore, the worst case circuit is fouand by averaging the absolute value
of the percentage deviation in the capacitor values for each of the sample
circuits and then designating the circuit with the highest average value
as the worst case circuit. These averages (which were mentioned earlier) '
are recorded in Table 4.1, where the worst case circuit {s seen to be
circuit 3.

In just one iteration, the filter is very nearly tuned as the gain

and phase plots of Figures 4.4 and 4.5 indicate. Here the brokea lines

PP

represent the tuned response. (The tuned response plots in this chapter
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and in the chapters to follow are shown with their corrected dc levels.)
In one additional iteration the gain and phase response of the tuned
circuit is virtually indistinguishable from the nominal gain and phase
as shown in Figures 4.6 and 4.7. The final tuning element values at the
iteration where convergence occurred are recorded in Table 4.3.

Finally, a first-order transfer function sensitivity method (AV
terms set-equal to zero in equation (2.9)) was tested using these same
five sample circuits. The tuning results using this method are recorded
in Table 4.4. It is interesting to note that the first-order method
succeeded in tuning only those sample circuits whose average value of
the absolute percentage deviation in the capacitance values was
sufficiently small (sample circui;s 2 and 5). Furthermore, a comparison
of Tables 4.2 and 4.4 indicates that when the first-order sensgitivity
method worked it took twice as long to converge to the final element
values as the large-change sensitivity method.

Although the circuits which could not be tuned by this first-order
method exhibited a substantial improvement in the filter performance on
the first iteration, in successive iterations the tuned circuit per-
formance deteriorated substantially, eventually yielding one or more
negative tuning element values, without converging to a final set of
element values.

The first-order sensitivity method demonstrated 40 percent tuning
reliability, although the circuits which it succeeded in tuning had only
very minute changes in their capacitance values. This is to be compared
to the 100 percent tuning reliability attained with the large-change
sensitivity method which succeeded in tuning circuits with both small and

large changes in their capacitance values. One might anticipate that in
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Table 4.4 Statistical Analysis of Friend HPN Filter
Using First-Order Transfer Fuaction

Sensitivity
Min. Attenuation in
Sample Circuit Circuit Description Stopband (dB)
Nominal 31.95
Manufactured 2.48
- Iteration 1 25.64
Iteration 2 29.57
1 Iteration 3 16.52%
Iteration & -18.74%
Iteration 5 - J.18%
Manufactured .74
Iteration 1 29.70
2 Iteraticn 2 31.56
Iteration 3 31.95
Iteration & 31.95
Manufactured 3.69
Iteration 1 22.79
3 Iteration 2 18.47
Iteration 3 20.22*
Iteration & 13.16%
Iteration 5 8.36%
Manufactured 3.72
Iteration 1 22.92
4 Iteration 2 17.74
Iteration 3 16.91*
Iteration 4 -11.16*
Iteration 5 -16.08*
Maaufactured .98
Iteration 1 29.01
5 Iteration 2 31.40
Iteration 3 31.93
Iteration &4 31.95

*
Iteration yielded negative element values.




higher-order filters, the AV terms in equation (2.9) become increasingly
more important, so that the large-change estimate of the AV terms, given

by equation (2.10) of the same secticn, becomes almost a necessity.
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5. STATISTICAL ANALYSIS OF A FOURTH-ORDER BUTTERWORTH
FREQUENCY-DEPENDENT NEGATIVE RESISTANCE (FDNR)
FILTER

As another test of the proposed tuning algorithm a fourth-order
Butterworth FDNR [28] lowpass filter was designed from a doubly-terminated
passive prototype [29]. The admittances of the prototype filter are
scaled by_the complex frequency variable s to give a topologically
equivalent network consisting of resistors, capacitors and frequency-
dependent negative resistors [28]. The network is scaled to a new cutoff
frequency of 6283.19 rad./sec. and the FDNR elements are realized by an
active circuit due to Bruton [28] resulting in the circuit diagram of
Figure 5.1,

The two frequency bands of the filter are defined as follows. The
passband ranges from dc to 6283.19 rad./sec. and the stopband ranges from
12566.37 to 62831.85 rad./sec. The component values for the nominal
design are given in Table 5.1. A maximum passband deviation of 2.98 dB
and a minimum stopband attenuation of 21.04 dB is attainable with this
design.

Five sample circuits were generated via the sequence of steps in
Section 3.4 to simulate untuned filters of this type coming off the
production line. The percentage deviation in the component values from
the nominal, as well as the average value of the absolute percentage
deviation in the capacitance values for each sample circuit is also given
in Table 5.1.

The three resistors RS’ R7 and R8 are selected to tune this fourth-

order filter, which requires the evaluation of equation (2.9) at two

frequencies. These frequencies are chosen at 6283.0 and 5805.0 rzi./sec.
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Table 5.1 Component Values

49

% Deviation in the Component Values

Sample Circuit

Nominal

Component Value 1 2 3 4 5
Rl 1.0 k2 0.00 0.00 0.00 0.00 0.00
Rz _ 1.0 k() 0.00 0.00 0.00 0.00 0.00
R3 1.0 kQ 0.00 0.00 0.00 0.00 0.00
R4 1.0 kQ 0.00 0.00 0.00 .00 0.00
Rs 1.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00
R6 1.0 k 0.00 0.00 0.00 0.00 0.00
R7 29.3 k(O -10.00 -10.00 -10.00 -10.00 -10.00
RB 12.1 kQ -10,00 -10.00 -10.00 -10.00 -10.00
C1 .01 uf -1.88 -3.24 -.65 -4.01 -.72
C2 01 uf -1.35 -2.77 -.57 -4.93 -1,68
C3 .03493 ,f -1.65 -2.95 .38 -3.63 -.31
Ca .03493 uf -2.27 4,57 -.83 -4.,23 -1.16
C5 .05422 f -2.93 -2.88 .08 =4 .45 -.81
C6 05422 ,f -2.64 =3.46 -.78 4,77 -1.00
M1 10000.0 0.00 0.00 0.00 0.00 0.00
o 10000.0 0.00 0.00 0.00 .00 0.00
) 10000.0 0.00 0.00 0.00 0.00 0.00
by, 10000.0 0.00 0.00 0.00 0.00 0.00

Average

Value of the

Absolute %

Dev. in the

Capacitance

Values 2.12 3.31 .55 4.34 .95

. e -
A -




where the phase is changing most rapidly. Notice that the tuning
resistors chosen consist of all of the resistors in the FDNR transformed

lowpass prototype (corresponding to R, and RS) and a single resistor in

7
either grounded FDNR (corresponding to RS)'

The results of tuning the sample circuits are recorded in Table 5.2.
In each case the filters met the specifications in a single iteration,
at which time the iteration stopped. As an added plus, all of the tuning
resistance values increased from their manufactured values.

Table 5.1 indicates that sample circuit & exhibits the worst overall
response. The gain and phase response of this worst case circuit is shown
for both the nominal and manufactured circuits in Figures 5.2 and 5.3,
respectively. Figures 5.4 and 5.5 depict the respective gain and phase
response of the tuned circuit after a single iteration. Some explanation
of the phase plots is necessary. The actual phase of the nominal filter
varies from O to -360 degrees, attaining a value of -180 degrees at fc,
-270 degrees at ch’ and -360 degrees at about 1Ofc' However, because
the built-in arctangent function on the computer is oaly capable of
supplying angles between + 180 degrees, the plots of Figures 5.3 and 5.5
result. The nominal phase is correct for frequencies up to and including
the cutoff frequency. However, at a frequency lying just to the right of
fc’ at f:, the actual phase is -(180 + ¢) degrees, where ¢ > 0, which the
built-in arctangent fuaction interprets as (180 - e) degrees, thus
resulting in the sudden discontinuity in the phase at fc' Similarly, as
the frequency approaches ch’ the adtual phase approaches -270 degrees,
which the built-in arctangent function interprets as 90 degrees. As the

frequency approaches 10fc (outside of the frequency limits of Figures 5.3

and 5.5) the actual phase approaches -360 degrees, which the built-in

24
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arctangent function interprets as O degrees. Thus, Figures 5.3 and 5.5
do not give an accurate picture of the actual phase for frequencies in
the vicinity of fc {(or for frequencies greater than fc).

Table 5.3 records the final tuning resistance values at the
iteration where convergence occurred for each of the sample circuits.

Finally, a first-order transfer functioa sensitivity method (AV
terms set equal to zero in equation (2.9)) was tested using the same
five sample circuits. Using this method, it was not possible to tune
any of the circuits. For each of the sample circuits, the first iteration
showed a deterioration in the circuit performance from the manufactured
circuit performance, and yielded one or ‘more negative elements. On sub-
seéuent iterations, the element values became increasingly smaller,
eventually giving tuning resistance values on the order of 10-10, or
less. These small resistor values sometimes resulted in a singular
matrix on the following iteration. 1In addition, the iterations never
converged to a final set of element values. It is interesting to note
that the first-order method failed even when the deviations in the

capacitance values of a given circuit were small, Thus, in higher-order

filters, the AV terms in equation (2.9) cannot evidently be neglected.

i, v
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6. STATISTICAL ANALYSIS OF A SIXTH-ORDER CHEBYSHEV
LEAPFROG BANDPASS FILTER

The circuit diagram of a sixth-order Chebyshev leapfrog bandpass
filter which was used to test the proposed tuning algorithm is shown in
Figure 6.1. The filter is designed from a doubly-terminated lowpass
Chebyshev prototype with 1 dB passband ripple [29]. The lowpass to band-
pass frequency transformatiod is used to give a bandpass filter with a
center frequency of 6283.19 rad./sec. and a bandwidth of 628.32 rad./sec.
Two negative feedback stages and a single state variable three amplifier
biquadratic stage is used to realize an active filter via the leapfrog
(16,17] concept. Multiple-feedback filters of this type are difficult
to tune in practice, because of the large amount of interaction between
‘the stages [(30].

The frequency bands of the filter are defined as follows. The
first stopband of the filter ranges from dec to 5400.0 rad./sec., the
passband ranges from 5995.0 to 6603.0 rad./sec. and the second stopband
of the filter ranges from 7289.0 to 12566.37 rad./sec. The component
values for the nominal design are given in Table 6.l1. A maximum passband
deviation of .73 dB and a minimum stopband attenuation of 32.27 dB is
attainable with this design.

Five sample circuits were generated via the sequence of stepé in
Section 3.4 to simulate untuned filters of this type coming off the
production line. The percentage deviation in the component values of
these sample circuits from the nominal, as well as the average value of
the absolute percentage deviation in the capacitance values are also

R R and R

given in Table 6.1. The five tuning resistors R 71 R9, 12 13

2!
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Table 6.1 Component Values

% Deviation in the Component Values

Sample Circuit

Nominal
Component Value 1 2 3 4 5
R, 81.9 kQ 0.00 0.00 0.00 0.00 0.00
R2 100.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00
R3 163.8 k0 0.00 0.00 0.00 0.00 0.00
R4 81.9 k(O 0.00 0.00 0.00 Q.00 0.00
R5 402.59 kQ 0.00 0.00 0.00 0.00 0.00
R6 402.59 kQ 0.00 0.00 0.00 0.00 0.00
R7 40.44 k(O -10.00 -10.00 -10.00 -10.00 -10.00
R8 40.44 kQ 0.00 0.00 0.00 0.00 0.00
R9 10.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00
R10 10.0 kQ 0.00 0.00 0.00 0.00 0.00
R11 81.9 kQ 0.00 0.00 0.00 0.00 0.00
R12 99.878 kQ -10.00 -10.00 -10.00 =-10.00 -10.00
R13 163.8 kQ -10.00 -10.00 -10.00 -10.00 -1G.00
Cl' 3930.0 pf -1.88 -3.24 -.65 -4.01 -.72
C2 3930.0 of -1.35 -2.77 -.57 =4.93 -1.68
C3 .03932 pf -1.65 -2.95 .38 -3.63 -.31
C4 .03932 yf ~2.27  =4,57 -.83 -4.23 -1l.16
C5 .03932 f -2.93 -2.88 .08  -4.45 -.81
Ce .03932 yf -2.64  -3.46 -.78 =4.77 -1.00
B 10000.0 0.00 0.00 0.00 0.00 0.00 '
by 10000.0 0.00 0.00 0.00 0.00 0.00
by 10000.0 0.00 0.00 0.00 0.00 0.00
My, 10000.0 0.00 0.00 0.00 0.00 0.00
He, 10000.0 0.00 0.00 0.00 0.00 0.00

Average Value

of the Absolute

% Dev. in the ’
Capacitance Values 2.12 3.31 .55 4.34 .95

e - "
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are selected to tune this sixth-order filter which requires the
evaluation of equation (2.9) at three frequencies. Two of these
frequencies are chosen close to the passband edge at 5975.88 and 6605.19
rad./sec. and the remaining frequency is chosen at the center frequency
of the filter, at 6283.19 rad./sec.

The results of tuning the sample circuits are recorded in Table 6.2.
Three of ;he five sample circuits converged to their final element values
in just two iteratioams, while all of the circuits converged to their
final element values in four iterations or less. In additioa, in each
case, all of the tuning resistors increased in value from their manu-
factured values. Table 6.1 indicates that sample circuit & exhibits the
worst overall response. The gain response of the nominal and this worst
case manufactured filter is shown in Figure 6.2. Figure 6.3 is a
magnification of the galm curve in the passband. Because the gain of the
manufactured circuit is so grossly distorted from the nominal it exceeds
the grid limits of 1 dB and thus does not appear with the nominal curve
in Figure 6.3. The phase response of the nominal and manufactured circuit
is depicted ip Figure 6.4.

After a single iteration the filter response markedly improves as
Figures 6.5-6.7 indicate. 1In fact, the gain response improves so much
that both the tuned and nominal gain curves appear in the magnified pass-
band depicted in Figure 6.6. An additional iteration improves the response
still further (Figures 6.8-6.10) until at the third iteration the tuned
and nominal response curves are nearly identical, even when magnified
(Figures 6.11-6.13)! 1In examining the magnified passband curves (Figure
6.12) it should be kept in mind that the entire vertical axis corresponds

to 1 dB so that the gain deviation between the nominal and tuned circuit
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at the third iteration is very minute. The algorithm finally coanverges
at the fourth iteration resulting in a slight improvement in the passband
(Figure 6.14).

The results of Table 6.2 must be interpreted with some care. Even
though the table indicates that the maximum deviation in the passband is
.82 dB at the third iteration, the magnified picture (Figure 6.12)
indicates that there is very little difference between the results of
the third and fourth iterations (Figure 6.14) although the fourth
iteration indicates a gain deviation of .75 dB, some .07 dB less. Indeed,
the element values chahge less than 1 percent from iteration 3 to
iteration 4 so that a very small change in the overall tuned response is
anticipated. The additional .07 4B gain deviation of iteration 3 occurs
at the upper passband edge (at about 1051 hertz) and is attributed to
minute deviations in the passband edge frequencies of the tuned filter
as well as the digitized nature of the gain deviation computation. As
another example of this consider the fact that the algorithm converged at
the fourth iteration, attaining a maximum deviation in the passband of
.75 dB, .02 dB greater than the nominal deviation of .73 dB. The
additional .02 dB deviation occurs at the lower passband edge (about
954 hertz in Figure 6.14). Similar situations may occur in the stopband
as well,

The final tuning tesistance values at the iteration where convergence
occurred are recorded in Table 6.3 for each of the sample circuits.

A vord of caution needs to be said in regard to the selection of
the tuning resistors. As a first choice one might logically select the
feedback resistors R&, R6 and 88 as tuning elements. However, with this

choice of resistors, together with R3 and R13, the proposed large-change

-y
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algorithm sometimes exhibited a thrashing behavior in which the first
iteration would nearly tune the filter, but subsequent iterations would
yield typically poorer results in both the passband and the stopband,
sometimes culminating in one or more negative tuning elements. This
strange behavior is perhaps an indication that no solution exists for

the related deterministic tuning problem for the particular set of tuning
resistors chosen. In the event that this behavior is encountered, another
choice of tuning resistors must be made.

The five sample circuits were also used to test a first-order
transfer function sensitivity method (obtained by setting the AV terms
equal to zero in equation (2.9)). With this first-order method, it was
not possible to tune any of the sample circuits. The first iteration
resulted in a deterioration of the circuit performance for each of the
five circuits, often yielding one or more negative tuning elements. Also,
in subsequent iterations, the right-hand side of equation (2.9) was

driven to zero (about 10-24), yielding one or more negative tuning

element values and/or extremely large tuning element values (about 1033)
probably indicative of a very ill-conditioned system of linear algebraic
equations. 1In addition, the iterations never converged to a final set of

element values. Ostensibly then, the AV terms in equation (2.9) are

important in a higher-order filter such as this, and cannot be neglected.
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7. STATISTICAL ANALYSIS OF A SIXTH-ORDER CHEBYSHEV
FDNR BANDPASS FILTER

The circuit diagram of a sixth-order Chebyshev FDNR bandpass filter
which was used to test the proposed large-change sensitivity tuning
algorithm is shown in Figure 7.1, The circuit is designed from a doubly-
terminated lowpass Chebyshev prototype with a .5 dB passband ripple [29].
The lowpass to bandpasé transformation is used to give a b;ndpass filter
with a center frequency of 6283.19 rad./sec. and a bandwidth of 628.32
rad./sec. The admittances of the resulting filter are scaled by the
complex frequency variable s to give a topologically equivalent network
consisting of resistors, capacitors and frequency-dependent negative
resistors [28]. The grounded FDNR elements are realized by an active
circuit due to Bruton [28], and the single floating FDNR is realized by
two of these circuits connected back to back.

The three frequency bands of the filter are defined as follows. The
first stopband of the filter ranges from dc to 5400.0 rad./sec., the pass-
band ranges from 5995.0 to 6603.0 rad./sec. and the second stopband of
the filter ranges from 7289.0 to 12566.37 rad./sec. The component values
for the nominal design are given in Table 7.1. A maximum passband
deviation of .52 dB and a minimum stopband attenuation of 30.09 dB is
attainable with this design. '

Five sample circuits were generated via the sequence of steps in
Section 3.4 to simulate untuned filters coming off of the production line.
The percentage deviation in the component values of these circuits from
the nominal as well as the average value of the absolute percentage

deviation in the capacitance values are also given in Table 7.l1. The
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Table 7.1 Component Values
% Deviation in the Component Values
Sample Circuit
Nominal
Component Value 1 2 3 4 5

Ry 997.02 Q -10,00 -10.00 -10.,00 -10.00 -10.00

Rz ) 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R3 1.0 kQ 0.00 0.00 0.00 0.00 0.00

Rh 174.550 kQ -10.00 -10.00 -10.00 -10.00 -10.00

Rg 1.0 kO 0.00 0.00 0.00 0.00 0.00

R6 1.0 kQ -10.00 -10.00 -10.00 -10.00 -10.00

R7 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R8 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R9 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R10 1.0 kO -10.00 -10.00 -10.00 -10.00 -10.00

R11 1.0 kQ 0.00 0.00 0.00 0.00 0.00

R12 997.02 Q -10.00 -10.00 -10.00 -10.00 -10.00

R13 1.0 kQ 0.00 0.00 0.00 0.00 0.00

\ R14 1.0 kQ 0.00 0.00 0.00 0.00 0.00
¢y 01 pf -1.88 .94 .99 3.51 -3.62

C2 .01 puf -1.35 .71 «76 2.44 4,65

C3 .01205 pf -1.65 .68 .53 3.37 -3.47

04 .01205 uf -2.27 1.02 .19 2.96 -2.66

! C5 .01205 uf -2.93 1.99 .70 2.01 -2.62
. C6 .01205 pf -2.64 .75 .03 3.45 -3.81
} C7 .1594 pf =3.15 1.68 1.41 3.20 -3.27
B C8 #1594 i -1.40 .81 «55 3.38 <4.04
} 09 21594 uf -1.59 ~.68 .90 3.63 ~4.08
’ °10 21594 of -3.23 -.03 .71 4.11 -3.93
y W 100000.0 0.00 0.00 0.00 0.00 0.00
o 198 100000.0 0.00 0.0C 0.00 0.00 0.00

: {; by 100000.0 0.00 0.00 0.00 0.00 0.00 :
- ——
- :
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Table 7.1 (continued)
% Deviation in the Component Values
Sample Circuit
Nominal

Component Value 1 2 3 4 5

My, 100000.0 0.00 0.00 0.00 0.00 0.00

s _100000.0 0.00 0.00 0.00 0.00 0.00

Mg 100000.0 0.00 0.00 0.00 0.00 0.00

by 100000.0 0.00 0.00 0.00 0.00 0.00

™ 100000.0 0.00 0.00 0.00 0.00 0.00
Average Value
of the Absolute
% Dev. in the
Capacitance '
Values 2.21 .93 .68 3.21 3.62

t
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and R are selected to tune the

five tuning resistors Rl’ RA’ R6’ R10 12

sixth-order filter which requires the evaluation of equation (2.9) at
three frequencies. The three frequencies are chosen at 5975.88, 6605.19
and 6283.19 rad./sec.

The results of tuning the sample circuits are recorded in Table 7.2.
Table 7.1 indicates that sample circuit 5 exhibits the worst overall
response.— Three of the five circuits converged to their final element
values in just three iterations. Only two of the circuits (one of which
is the worst case circuit) required an additional iteration. In addition,
in each case all of the tuning elements increased in value from their
manufactured values. The gain response of the nominal and the worst case
manufactured circuits is shown in Figure 7.2. Figure 7.3 shows the
magnified curve in the passband. Because the gain of the manufactured
circuit is so grossly distorted from the nominal it exceeds the grid
limits of .6 dB and thus does not appear with the nominal curve in
Figure 7.3. The phase response of the nominal and the manufactured
circuits is shown in Figure 7.4, The response curves after one iteration
are shown in Figures 7.5-7.7. Note that in the magnified passband
(Figure 7.6) the filter response has vastly improved so that it now lies
partially withian the .6 dB grid limits. An additional iteration (Figures
7.8-7.10) improves the overall response still further so that the filter
18 nearly tuned in two iterations! The magnified passband (Figure 7.9)
indicates that the tuned gain response does not fall exactly on top of
the nominal gain response in the passband, but in light of the scale
(.1 dB per division), this error is insignificant. Also note how the
tuned gain response at the upper passband edge (about 1051 hertz) lies

just inside the nominal curve at this frequency resulting in an additional
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gain deviation error as discussed in Chapter 6, The magnified passband
at the final iteration is shown in Figure 7.ll.

As with the sixth-order leapfrog filter of Chapter 6 some care must
be exercised in the selection of the tuning resistors. For example, when
Rl’ R&’ R7, R12 and R14 are chosen as tuning resistors the thrashing
effects described in Chapter 6 result. However, when the tuning resistors
mentioned‘earlier are used to tune the filter, no thrashing effects are
evident. Notice that this set of tuning resistors coasists of all of the
resistors in the FDNR transformed bandpass filter (corresponding to Rl’
R4 and Rlz) in Figure 7.1, a single resistor in the floating FDNR
(corresponding to R6) and a single resistor in either grounded FDNR
(corresponding to RIO)'

Table 7.3 records the final tuning resistance values at the iteration

where convergence occurred for each of the sample circuits.

The same five sample circuits were used to test a first-order

transfer function sensitivity method (AV terms set equal to zero in
equation (2.9)). With this first-order sensitivity method it was not

possible to tune any of the sample circuits even though the first iteration .

showed some improvement in the performance specifications of the filter,
although by no means rivaling the improvement attainable with the large-
change sensitivity method. 1In subsequent iterations the right-hand side
of equation (2.9) was driven to zero (about 10-7) yielding one or more

aegative tuning element values and/or abnormally large (sometimes ab-

normally small) tuning element values, probably indicative of an ill-

conditioned system of linear algebraic equations. In addition, the

iterations never converged to a final set of element values.
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8. CONCLUSION

A large-charge transfer function sensitivity algorithm has been
proposed for the tuning of analog filters. Tellegen's theorem and the
adjoint network concept are used to relate large changes in a set of
tuning elements to desired voltage changes in the manufactured filter at
a set of critical frequencies [19,20,21]. Four filters of various type,
order and topology were designed and the manufacturing process of each was
simulated by generating a number of sample circuits. The sample circuits
were used to test the proposed tuning algorithm which in every case
yielded 100 percent tuning reliability. The proposed tuning algorithm
is superior to the existing tuning methods in several aspects. While all
of these methods require that the deviation in the element values at the
time of manufacture not be too great, the proposed large-change algorithm
can tolerate considerably larger element deviations and still tune the
filter. This is aptly demonstrated by comparison of the proposed algorithm
with the first-order transfer function sensitivity algorithm which yielded
zero percent tuning reliability in the test filters of Chapters 5-7 and
40 percent tuning reliability in the test filters of Chapter 3. In this
case only those sample circuits which had very small deviations in the
capacitance values were successfully tuned. In addition, it took the
first-order method twice as long to converge to the final element values
for these circuits than when the proposed tuning algorithm was used, thus
giving the latter an edge in speed of tuning and computational costs. As
another example, Shockley and Morris [11] reported that the first-order

root sensitivity method fajiled to tune a secoad-order, single amplifier

bandpass filter in practice, when the capacitance values were five percent
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above the nominal and the resistors were at their design values. Con

(4l

rast
these results with the successful tuning of a sixth-order leapfrog band-
pass filter with the large-change algorithm, when the capacitance values
were, on the average, 4.34 percent below the nominal and the tuning
resistors were 10 percent below the nominal with all other resistors at
their design values, The results are even more staggering when one con-
siders that the leapfrog filter and other multiple-feedback filters are
difficult to tune in practice [30] as compared to the relative ease of
tuning the test filter used by Shockley and Morris [11].

The proposed method is also superior to the previously cited methods
in that it overcomes problems of accuracy, especially inherent in the root
seusitivity method. Because the roots of the transfer function are cal-
culated from the (calculated) transfer function coefficients in this
method, there is a discrepancy between the accuracy of the coefficients
and the roots, which becomes especially critical in the case of higher-
order, narrow band filters [13]. The proposed tuning algorithm, on the
other hand, has no difficulty ian tuning filters of this kind, as is
evident in the examples of Chapters 6 and 7. In addition the root
sensitivity method (and the @, and Q sensitivity methods) approximate
derivatives by the forward difference quotient or the central difference
quotient which require judicious choice of the change in the parameter in
order to obtain a good approximation. In the large-change algorithm, how-
ever, the derivatives are computed accurately and efficiently via the
adjoint circuit concept.

The proposed algorithm is also much more computationally efficient
than the other algorithms, particularly than the deterministic method of

approximating transfer function deviations using optimization [6] where

Ry

—

.
B aoba

s
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the derivatives of each numerator and denominator coefficient of the

transfer function with respect to each passive and parasitic element must

be computed for each filter stage. Unlike the root sensitivity method,

or deterministic tuning, the proposed tuning algorithm does not require

powerful computer programs for the solution of equations of high degree.
The proposed tuning algorithm is also superior to the other methods

in its fléxibility. Because of problems with accuracy the root sensitivity

method is limited to the tuning of second or third-order sections [11],

which is not the case with the proposed tuning algorithm. Furthermore,

the symbolic transfer function (including parasitic elements) is not

required with the large-change tuning algorithm although it is required

with the root sensitivity method and deterministic methods [6,11,14].

Unlike deterministic methods, it is not necessary to derive expressions

for the tuning resistors in terms of the other components. Such expressions

are difficult to derive in practice and may not even exist [6]. Also,

ot

individual tuning rules are not deriv.s¢d for each new filter product with
the large-change algorithm, resulting in additional savings in programming
costs.
Because there are usually more resistors than there are transfer
i function coefficients, it is not clear which resistors to select as tuning
resistors when using the proposed tuning algorithm or deterministic tuning.
v The choice of a particular set of tuning resistors is important in both
cases, as a given set may or may not yield a solution as was emphasized in

Section 1.2.6. The poor selection of a set of tuning resistors sometimes

results in the thrashing effects described in Chapter 6. Ostensibly,
this is an indication that no solution exists to the related deterministic

problem for the particular set of tuning resistors selected and the




100

manufactured compoaeant values., Fixing the problem is a simple matter of
selecting another set of tuning resistors. However, it is desirable to
have some criteria ior selecting a set of tuning resistors which alleviates
this behavior, and the number of tuning resistors so required, thus
warranting the need for further research.

Further research is also required in the area of more elaborate
modeling of the thin or thick film components and the op amps for the
filters of Chapters 4-7. New sample circuits which incorporate more
sophisticated models (such as discussed in Chapter 3) would be used %o
test the proposed tuning algorithm. Since the new circuits containing
these models would be more representative of actual thin or thick film
hybrid filters coming off the production line, they would more accurately
depict the reliability of the tuaning algorithm in practice.

Finally, in “some filter applications the variation in phase with
frequency is of more importance than the gain response. Such applications
typically occur in communications circuits where a linear phase or a
coastaant group delay {s often specified. 1f this is the case, the stopping
and error criteria in Chapter 2 may be modified to stop the iteration when

the desired phase specifications are met.
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