A MATHEMATICAL ANALYSIS OF POLARIMETRIC PHASE AND AMPLITUDE WITH FREQUENCY AGILITY FOR RADAR TARGET ACQUISITION

P. Martin Alexander
Technology Laboratory

24 September 1979
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
Target models have been used to generate a mathematical analysis of the output voltage from a frequency agile radar with polarimetric processing. The purpose of the investigation was to determine the usefulness of such a system for target acquisition. It is shown that frequency agility provides a frequency spectrum at the output which is characteristic of the major reflecting centers illuminated by the radar. Polarimetric processing is not required to obtain this information. It is shown that each pair of individual reflectors contributes a frequency to the Fourier transformed signal. For a linearly frequency modulated...
ed waveform, this frequency depends on the difference in radar range between
the two reflectors, the bandwidth of the transmitter, and the repetition
period of the LFM waveform.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. Circular Polarization</td>
<td>4</td>
</tr>
<tr>
<td>3. The Polarization Matrix</td>
<td>6</td>
</tr>
<tr>
<td>4. Simple Reflectors</td>
<td>11</td>
</tr>
<tr>
<td>5. Target Model</td>
<td>13</td>
</tr>
<tr>
<td>6. Depolarizing Targets</td>
<td>23</td>
</tr>
<tr>
<td>7. Linearly Polarized Radar</td>
<td>27</td>
</tr>
<tr>
<td>8. Conclusions</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Transmitter - Receiver System</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Right Circularly Polarized Wave (RCP)</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>RCP Incident on Flat Plate</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>RCP Incident at Angle with Respect to Flat Plate</td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>Linear Frequency Modulation</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Frequency Spectrum for Target Clutter Model</td>
<td>22</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Recent interest has been shown in using a technique referred to as polarimetric phase processing (or simply, polarimetric processing) for clutter rejection and target discrimination in acquisition and fire control radars [1], [2], [3], [4]. The technique has also been called pseudo-coherent detection (discrimination). A circularly polarized wave is transmitted, and separate horizontal and vertical channels receive the return simultaneously. These two signals are then mixed, using one channel as the local oscillator (hence, “pseudo-coherent”). The resulting signal depends on the relative phase between the horizontal and vertical channels, and this phase difference is called the polarimetric phase.

The underlying assumption of the discrimination technique is that, for any given radar range cell, the resulting polarimetric phase is a function of the transmitted frequency. For example, if a frequency agile radar is linearly frequency modulated (LFM), then the measured signal voltage at the mixer output is a function of time. If this time varying voltage is Fourier analyzed, then the resulting spectrum contains frequencies which are characteristic of the target clutter.

In the present work, target models are used to generate a mathematical analysis of the output signal expected from polarimetric phase processing in an effort to determine the utility of the technique for target acquisition. The general thrust of this effort is toward tactical land combat operations, where discrimination between threat targets (such as tanks) and non-threat targets (jeeps for example) is desired.

In Section 2, a simplistic transmitter receiver system model is described, and the sign convention for a circularly polarized wave is established. In Section 3, the polarization matrix is introduced, and the matrix elements are related to the radar cross section.

Simple targets, consisting of flat plate type reflectors, are described in Section 4, and it is shown that odd bounce reflectors, such as a flat plate or a trihedral corner reflector, reverse the rotational sense of the circularly polarized wave.

A target model, in which the target is assumed to consist of a collection of even bounce and odd bounce type reflectors, is developed in Section 5. An equation is derived which contains the various contributions to the dc signal expected at the mixer output. Some of the terms show a sinusoidal dependence on frequency, while others are frequency independent. It is shown that the interference effect between each pair of individual reflectors contributes a
frequency to the Fourier transformed signal. For LFM, this frequency depends only on:
- The difference in radar range between the two reflectors.
- The bandwidth of the frequency agile transmitter.
- The repetition period of the frequency span (the time during which the transmitter spans the bandwidth). Thus, targets can be characterized on the basis of difference in distances between major reflectors.

In the model developed in Section 5, the targets were assumed to cause no depolarization. That is, if circular polarization were transmitted, then any given reflector would return circular polarization. In Section 6, dipole-like targets are considered as reflectors which return elliptical polarization (depolarized returns). It is shown that such reflectors do not contribute frequency independent dc terms to the mixer output. Thus, to the extent that clutter can be characterized as dipoles, the model predicts clutter rejection.

For comparison, an analysis of a system transmitting and receiving linear polarization is developed in Section 7. It is shown that the frequencies obtained in the Fourier transformed signal are the same as those obtained with polarimetric processing.

In Section 8, conclusions drawn from the analyses are given, and the usefulness of polarimetric processing for target acquisition is evaluated.

2. CIRCULAR POLARIZATION

A simplified representation of the transmitter-receiver system used in polarimetric phase processing is shown in Figure 1. The output from a frequency agile oscillator is divided and sent to horizontal (H) and vertical (V) channels. The phase of the horizontal channel is delayed by a 90 degree phase shift. It is assumed that the target is in the far-field of the antennas and that the electric fields are plane waves. Using the right-hand coordinate system shown in Figure 1, the vertical component of the electric field incident on the target can be written

\[E_x = E_0 \cos (kz - \omega t). \] \hspace{1cm} (1)
Figure 1. Transmitter-receiver system.
Eo is the electric field amplitude, \(\omega \) is the carrier angular frequency, and \(k \) is the wave number, which depends on the carrier wavelength, \(\lambda \), according to

\[
k = \frac{2\pi}{\lambda}.
\]

(2)

The horizontal component is

\[
E_x^t = E_0 \cos (kz - \omega t - \frac{\pi}{2})
\]

(3)

\[
= E_0 \sin (kz - \omega t).
\]

(4)

In vector form, the transmitted electric field is

\[
E^t = E_0 \cos (kz - \omega t) \hat{x} + E_0 \sin (kz - \omega t) \hat{y}
\]

(5)

where \(\hat{x} \) and \(\hat{y} \) are unit vectors along the \(x \) and \(y \) axes, respectively. Figure 2a shows the individual components of the electric field, and Figure 2b traces the tip of the total rotating electric field vector about the \(z \) axis. This polarization, with the wave propagating in the positive \(z \) direction, is defined here as right circular polarization (RCP).

For left circular polarization (LCP), the \(y \) component of the electric field leads the \(x \) component, viz.,

\[
E_x^t = E_0 \cos (kz - \omega t)
\]

(6)

\[
E_y^t = E_0 \cos (kz - \omega t + \frac{\pi}{2})
\]

(7)

\[
= -E_0 \sin (kz - \omega t).
\]

(8)

3. THE POLARIZATION MATRIX

In order to relate the electric field incident on the target to the field returned to the antennas, the polarization matrix is introduced. The "received field", \(\vec{E}^r \) is the plane wave impinging on the antennas, assuming that the antennas are in the far-field of the target. If only the vertical component \(\vec{E}_y^r \) is transmitted, the received electric field can be written

\[
\vec{E}^r = a_{xx} E_x^t \hat{x} + a_{xy} E_x^t \hat{y}
\]

(9)
Ili

Electric field components.

Tip of resultant electric field vector.

Figure 2. Right circularly polarized wave (RCP).
where the a's are the electric field coefficients. The a, coefficient is a measure of depolarization since it represents the horizontal reflection obtained from a vertical transmission. A simple example of a depolarizing target is a long thin wire in the x-y plane, but tilted at some angle with respect to the vertical.

Similarly, if only the horizontal component is transmitted, the return can be written

\[E^r = a_{yx} E_y^t x + a_{yy} E_y^t y. \]

(10)

If both components are transmitted, the return is

\[E^r = E_x^r x + E_y^r y \]

= (a_{xx} E_x^t + a_{yx} E_y^t) x + (a_{xy} E_x^t + a_{yy} E_y^t) y. \]

(12)

In matrix representation, this is

\[
\begin{pmatrix}
E_x^r \\
E_y^r
\end{pmatrix} = \begin{pmatrix}
a_{xx} & a_{yx} \\
a_{xy} & a_{yy}
\end{pmatrix}
\begin{pmatrix}
E_x^t \\
E_y^t
\end{pmatrix},
\]

(13)

where the two-by-two matrix is called the scattering cross section matrix. It can be shown that, for the case where the receiving antennas and transmitting antennas are at the same location (monostatic radar), the matrix is symmetrical: \(a_{xy} = a_{yx} \) [5]. Setting \(a_{xx} = a_x, a_{yy} = a_y, \) and \(a_{xy} = a_{yx} = a_d \) (where d implies depolarization), the polarization matrix is

\[
\begin{pmatrix}
a_x & a_d \\
ad & a_y
\end{pmatrix}.
\]

(14)

In general, the matrix elements not only contain amplitude information, but also phase information. For example, consider the case of two long thin wires, one horizontal and the other vertical, but separated in range by a distance D. One received component will be shifted in phase with respect to the other by \(\omega \frac{2D}{c} \).

It is clear that the electric field coefficients of the polarization matrix (a's) are related to the target radar cross section (RCS). The RCS is defined by

\[
\sigma = \lim_{R \to \infty} \frac{4\pi R^2}{\frac{|\mathbf{E}^r|^2}{|\mathbf{E}^t|^2}}.
\]

(15)
where:

- $R =$ radar range.
- $\vec{E} =$ electric field strength at the receiving antenna, and
- $\vec{E}' =$ electric field strength incident on the target [6].

The infinite limit on the range R assures that the electric fields impinging on the target and on the receiving antenna are plane waves. If the target is in the far-field of the radar and vice versa, then, to a good approximation, Equation (15) becomes

\[
\sigma = 4\pi R^2 \left| \frac{\vec{E} \cdot r}{\vec{E} \cdot t} \right|^2
\]

or

\[
\left| \frac{\vec{E} \cdot r}{\vec{E} \cdot t} \right| = \frac{\sqrt{\sigma}}{\sqrt{4\pi R}} \left| \vec{E} \cdot t \right|
\]

(17)

Note that there is no phase information in Equation (17).

The above definition of RCS assumes that the receiving antenna can receive whatever polarization that the scattered wave possesses. If one breaks the plane waves into components as before, then an “RCS matrix” similar to the scattering matrix can be defined,

\[
\begin{pmatrix}
E_x^r \\
E_y^r
\end{pmatrix} = \frac{1}{\sqrt{4\pi R}} \begin{pmatrix}
\sqrt{\sigma_{xx}} & \sqrt{\sigma_{yx}} \\
\sqrt{\sigma_{xy}} & \sqrt{\sigma_{yy}}
\end{pmatrix} \begin{pmatrix}
E_x^t \\
E_y^t
\end{pmatrix}
\]

(18)

where no phase information is retained. Thus, the magnitudes of the scattering matrix elements are given by

\[
|a_{ij}| = \frac{\sqrt{\sigma_{ij}}}{\sqrt{4\pi R}}
\]

(19)

For the monostatic case, the above notation can be simplified as follows:

\[
|a_x| = \frac{\sqrt{\sigma_x}}{\sqrt{4\pi R}}
\]

(20)

\[
|a_y| = \frac{\sqrt{\sigma_y}}{\sqrt{4\pi R}}
\]

(21)

\[
|a_d| = \frac{\sqrt{\sigma_d}}{\sqrt{4\pi R}}
\]

(22)
The electric fields can be expressed in complex notation to facilitate the manipulation of phase shifts. Let transmitted RCP be

\[\tilde{E}^t = \text{Re} \{ \tilde{e}^t \} \]

\[= \text{Re} \{ e^{j(kz - \omega t)} \hat{x} + e^{j(kz - \omega t - \pi/2)} \hat{y} \} \]

where \(E_0 = 1 \) for simplicity. Also for simplicity, the \(e^{j\omega t} \) time dependence will be implied but not expressed, so

\[\tilde{e}^t = e^{jkz} \{ \hat{x} + e^{-j\pi/2} \hat{y} \} \]

Then

\[
\begin{pmatrix}
\mathcal{E}_x^r \\
\mathcal{E}_y^r
\end{pmatrix}
= \begin{pmatrix}
a_x e^{-j\theta_x} & a_d e^{-j\theta_d} \\
\bar{a}_d e^{-j\theta_d} & \bar{a}_y e^{-j\theta_y}
\end{pmatrix}
\begin{pmatrix}
1 \\
e^{-j\pi/2}
\end{pmatrix}
\cdot e^{j2kR}
\]

where the \(a \)'s are now amplitudes only, \(\theta_x, \theta_d, \theta_y \) are the corresponding phase shifts, and \(R \) is the radar range to some reference point on the target. The phases have been related to that of the transmitted signal at the antennas, so that \(z = 2R \).

Equation (26) holds for all targets, no matter how complex. The polarimetric processing involves frequency agility, however, and it is apparent that the \(a \)'s and \(\theta \)'s of the polarization matrix depend on frequency, and hence on time, in a complicated way. The analysis is simplified if the complex target can be considered as a collection of simple, independent reflectors. Then, the resultant phase shift can be found from superposing the returned electric fields from all reflectors. For the \(i^{th} \) reflector in a given range cell,

\[
\begin{pmatrix}
\mathcal{E}_{x_i}^r \\
\mathcal{E}_{y_i}^r
\end{pmatrix}
= \begin{pmatrix}
a_{x_i} & a_{d_i} \\
a_{d_i} & a_{y_i}
\end{pmatrix}
\begin{pmatrix}
1 \\
e^{-j\pi/2}
\end{pmatrix}
\cdot e^{j2kR_i}.
\]
where R_i is the range to the i^{th} reflector.

For a given range cell with n reflectors.

\[
\mathbf{\varepsilon}_x^r = \sum_{i=1}^{n} \mathbf{\varepsilon}_x^r \]
\[
\mathbf{\varepsilon}_y^r = \sum_{i=1}^{n} \mathbf{\varepsilon}_y^r
\]

\[
(28) \quad (29)
\]

4. SIMPLE REFLECTORS

Consider now the polarization matrix for a few simple reflectors, beginning with a flat metal plate perpendicular to the incident RCP wave (see Figure 3a). The vertical component is reflected totally vertical (i.e., there is no depolarization) but with a phase shift of 180 degrees at the plate surface. This phase shift is the result of the requirement that the electric field inside a perfect conductor is always zero. The horizontal component also experiences a 180 degree phase shift, and one would be led to believe that there is no net phase change between vertical and horizontal components. This is not the case, however, because the propagational direction has changed. In order to understand the phases seen by the antennas, consider the primed coordinate system in Figure 3b. With respect to this "antenna" coordinate system, it is easy to see that the reflected wave is LCP. The net effect of the reflection, from the viewpoint of the antennas, is that one component has been shifted in phase by 180 degrees relative to the other component. RCP will be changed to LCP, and vice versa. So, the phases of the polarization matrix can be written

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\]

\[
(30)
\]

Now, in prelude to analyzing returns from multiple bounce reflectors, consider reflection from an infinite plate at an angle with respect to the plane of the incident wave (see Figure 4). The vertical component of the transmitted wave is reflected as before with a 180 degree phase shift. The horizontal component is broken down into two further components:

- A component perpendicular to the plate, which experiences no phase shift

- A component parallel to the plate, which is shifted by 180 degrees

As can be seen from Figure 4, the reflected wave is still the opposite polarization from that transmitted.
Figure 3. RCP incident on flat plate.
The above result shows that at every bounce from a surface, the sense of the polarization is changed. For a dihedral corner reflector, the wave is returned in its original polarization. In general, an odd bounce target changes the polarization sense; an even bounce target does not.

The polarization matrices (phases only) are:

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\] for odd bounce targets. \hspace{1cm} (31)

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\] for even bounce targets. \hspace{1cm} (32)

5. TARGET MODEL.

For a target model consisting of flat plates only (dihedral, trihedral corners, etc.), from Equations (19), (26), (28), and (29), the reflected wave is given by
\[\ell x = \sum_{i=1}^{\text{odd bounce reflectors}} \frac{\sqrt{\sigma x_i}}{\sqrt[4]{4 \pi R_i}} (-1)^i e^{j2kR_i} \]

\[+ \sum_{\ell=1}^{m} \frac{\sqrt{\sigma x_{\ell}}}{\sqrt[4]{4 \pi R_{\ell}}} e^{j2kR_{\ell}} \]

\[\ell y = \sum_{i=1}^{\text{odd bounce reflectors}} \frac{\sqrt{\sigma y_i}}{\sqrt[4]{4 \pi R_i}} e^{-j\frac{\pi}{2}} e^{j2kR_i} \]

\[+ \sum_{\ell=1}^{m} \frac{\sqrt{\sigma y_{\ell}}}{\sqrt[4]{4 \pi R_{\ell}}} e^{-j\frac{\pi}{2}} e^{j2kR_{\ell}} \]

The -1 in the first term of equation (33) is the only effect of phase shifts due to reflection. In Equations (33) and (34) above, the subscript "i" is used to denote odd bounce reflectors only, while the subscript "\ell" indicates even bounce reflectors. The RCS matrix elements, \(\sigma \), now have two subscripts, the first indicating \(x \) or \(y \) direction, and the second indicating the particular reflector.

The voltages at the mixer must now be related to the electric fields at the antennas. Referring to Figure 1, the terminal voltages at the antennas are related to the electric field vector at the antennas by

\[V = \hat{n} \cdot \hat{E} \cdot r. \]

(35)
The vector \(\mathbf{h} \) is defined as the effective height of a given antenna, i.e., the effective distance along the antenna over which the field acts. The complex voltages for identical ideal horizontal and vertical horns are

\[
V_V = \mathbf{h} \varepsilon_x\quad ,
\]

\[
V_H = \mathbf{h} \varepsilon_y\quad .
\]

The horizontal component is delayed by 90 degrees, so at the mixer,

\[
V_H = \mathbf{h} \varepsilon_y e^{-j \frac{\pi}{2}}\quad .
\]

The output of the mixer is proportional to the product of the two voltages (neglecting attenuation losses):

\[
V_m = V_V V_H\quad ,
\]

where the constant of proportionality has been set to 1. Using Equations (33), (34), and (38), Equation (39) becomes

\[
V_m = \frac{h^2}{4\pi} \left[\sum_{\text{odd}} \frac{n \sqrt{\sigma x_i}}{R_i} (-1)^{j2kR_i} + \sum_{\text{even}} \frac{m \sqrt{\sigma x_l}}{R_l} e^{j2kR_l} \right]\quad .
\]

15
\[
\left[\frac{n}{\sum_{i=1}^{m} \frac{\sqrt{\sigma_{yi}}}{R_i}} e^{-j\pi j2kR_i} \right]_{\text{odd}}
\]

\[
+ \left[\frac{m}{\sum_{i=1}^{\ell} \frac{\sqrt{\sigma_{y\ell}}}{R_\ell}} e^{-j\pi j2kR_\ell} \right]_{\text{even}}
\]

\[
= -\frac{\hbar^2}{4\pi} \left[\sum_{i=1}^{n} \frac{\sqrt{\sigma_{xi}}}{R_i} e^{j2kR_i} + \Sigma_{i=1}^{\ell} \frac{\sqrt{\sigma_{x\ell}}}{R_\ell} e^{j2kR_\ell} \right]
\]

where in Equation (41) \(e^{j\omega t} \) has been set equal to -1.

Consider now the two simple cases of a single odd bounce target and a single even bounce target. For an odd bounce target,

\[
V_m = -\frac{\hbar^2}{4\pi} \frac{\sqrt{\sigma x \sigma y}}{R^2} \cos^2 (2kR - \omega t)
\]

and for an even bounce target

\[
V_m = \frac{\hbar^2}{4\pi} \frac{\sqrt{\sigma x \sigma y}}{R^2} \cos^2 (2kR - \omega t)
\]

where the voltages are now real, and the time dependence is given explicitly. Since

\[
\cos^2 (2kR - \omega t) = \frac{1}{2} + \frac{1}{2} \cos [2(2kR - \omega t)]
\]
the dc voltage component at the mixer output is

\[
V_{dc} = \begin{cases}
\frac{h^2}{8\pi} \frac{\sqrt{\sigma_x \sigma_y}}{R^2} & \text{for single odd bounce target} \\
\frac{h^2}{8\pi} \frac{\sqrt{\sigma_x \sigma_y}}{R^2} & \text{for single even bounce target.}
\end{cases}
\]

(45)

(46)

For a complex target consisting of a collection of \(m \) even and \(n \) odd bounce reflectors (using "i" and "p" for odd bounce reflector subscripts and "\ell" and "q" to denote even bounce reflectors) Equation (41) becomes

\[
V_m = -\frac{h^2}{4\pi} \sum_{i=1}^{n} \sum_{p=1}^{m} \frac{\sqrt{x_i y_p}}{R_i R_p} \cos(2kR_i - \omega t) + \sum_{i=1}^{n} \sum_{p=1}^{m} \frac{\sqrt{x_i y_p}}{R_i R_p} \cos(2kR_i - \omega t)
\]

(47)
Using the formula
\[
\cos A \cos B = \frac{1}{2} \cos (A - B) + \frac{1}{2} (A + B),
\]
keeping only the dc terms, and combining the two middle terms gives

\[
V_{dc} = -\frac{\hbar^2}{8\pi} \left\{ \sum_{i=1}^{\text{odd}} \frac{\sqrt{\sigma_{xi}} \sigma_{yi}}{R_i^2} \right\} + \sum_{i=1}^{\text{odd}} \sum_{p=1}^{\text{odd}} \frac{\sqrt{\sigma_{xi} \sigma_{yp}}}{R_i R_p} \cos \left[2k(R_i - R_p) \right] + \sum_{i=1}^{\text{odd}} \sum_{l=1}^{\text{even}} \frac{\sqrt{\sigma_{yli} \sigma_{yl}}}{R_i R_l} \cos \left[2k(R_i - R_l) \right] \right.
\]

\[
-\sum_{l=1}^{\text{even}} \sum_{q=1}^{\text{odd}} \frac{\sqrt{\sigma_{yl} \sigma_{xq}}}{R_l R_q} \cos \left[2k(R_l - R_q) \right] \right\}.
\]

Upon examining Equation (48) term by term, one finds two terms with no cosine factors:

\[
-\frac{\hbar^2}{8\pi} \sum_{i=1}^{\text{odd}} \frac{\sqrt{\sigma_{xi}} \sigma_{yi}}{R_i^2} \quad \text{and} \quad \frac{\hbar^2}{8\pi} \sum_{l=1}^{\text{even}} \frac{\sqrt{\sigma_{yli} \sigma_{yl}}}{R_l^2}.
\]

These terms represent the "self-interference" effects for each individual reflector in the complex target. These terms are the same as found in Equations (45) and (46) for single reflectors. The term

\[
-\frac{\hbar^2}{8\pi} \sum_{i=1}^{\text{odd}} \sum_{p=1}^{\text{odd}} \frac{\sqrt{\sigma_{xi} \sigma_{yp}}}{R_i R_p} \cos \left[2k(R_i - R_p) \right] \]

\[
-\sum_{i=1}^{\text{odd}} \sum_{l=1}^{\text{even}} \frac{\sqrt{\sigma_{yli} \sigma_{yl}}}{R_i R_l} \cos \left[2k(R_i - R_l) \right] \right\}.
\]
represents the odd bounce reflectors interfering with each other. For the case of only two odd bounce reflectors, this term becomes

\[-\frac{h^2}{8\pi} \frac{\sqrt{\sigma x_1 \sigma y_2} + \sqrt{\sigma x_2 \sigma y_1}}{R_1 R_2} \cos \left[2k \left(R_1 - R_2 \right) \right]. \]

Similarly, the term

\[\frac{h^2}{8\pi} \sum_{\ell=1}^{m} \sum_{q=1}^{m} \frac{\sqrt{\sigma y_\ell \sigma x_q}}{R_\ell R_q} \cos \left[2k \left(R_\ell - R_q \right) \right] \]

represents the interference effects between even bounce reflectors.

The remaining term.

\[-\frac{h^2}{8\pi} \sum_{i=1}^{n} \sum_{\ell=1}^{m} \frac{\sqrt{\sigma x_i \sigma y_\ell}}{R_i R_\ell} - \sqrt{\sigma y_i \sigma x_\ell} \cos \left[2k \left(R_i - R_\ell \right) \right], \]

represents the interference between each even bounce reflector and each odd bounce reflector. Note that if each reflector is symmetric with respect to RCS, i.e., if \(\sigma_o = \sigma \) for all reflectors, then this term is zero.

Recall that the wave number \(k \) is related to the angular frequency of the radar \(\omega \) by \(\omega = kc \), where \(c \) is the propagation velocity. From the above terms it is clear that, if the frequency is varied or stepped as a function of time, the "dc" signal also varies as a function of time. This time variation, however, is not only due to the fact that the cosine arguments are a function of time, but also is due to the dependence of RCS on wavelength. For the flat plate type targets (including corner reflectors) assumed in this analysis, the RCS for normal incidence is given by

\[\sigma_x = \sigma_y = \frac{4\pi A^2}{\lambda^2}, \quad (49) \]
where \(A \) is the area of the aperture [7]. Using Equation (48) for two odd bounce scatterers with aperture areas \(A_1 \) and \(A_2 \) gives

\[
V_{dc} = -\frac{\hbar^2}{2\lambda^2} \left[\frac{A_1^2}{R_1^2} + \frac{A_2^2}{R_2^2} \right] + \frac{2}{R_1 R_2} \frac{A_1 A_2}{R_1 R_2} \cos \left[2k (R_1 - R_2) \right] \cos \left[2k (R_1 - R_2) \right].
\] (50)

Assume now that the frequency increases linearly with time, (see Figure 5), so that

\[
f = f_0 + \frac{f_B}{T} t, \quad t < T,
\] (51)

where:

- \(f_0 \) = starting frequency,
- \(f_B \) = bandwidth of frequency agile transmitter, and
- \(T \) = repetition period of frequency span.
Note that a linearly stepped frequency is equivalent, as long as the signal is sampled once for each step. The \(1, x \) gives a nonlinear decrease of the overall signal level during \(T \). For \(f_o = 35 \) GHz and \(f_n = 500 \) MHz, this variation amounts to 2.8 percent. The information of interest, i.e., the frequency spectra characteristic of the target, is contained in

\[
V_f = \cos \left[2k (R_1 - R_2) \right].
\]

Using \(k = \frac{\omega}{c} = 2\pi \frac{f}{c} \) gives

\[
V_f = \cos \left[\frac{4\pi (R_1 - R_2)}{c} \left(f_o + \frac{f_n t}{T} \right) \right].
\]

which can be written

\[
V_f = \cos \left(2\pi f_{12} t + \phi \right)
\]

where \(\phi \) is a constant phase angle.

\[
\phi = \frac{4\pi (R_1 - R_2)}{c} f_o,
\]

and \(f_{12} \) is the target characteristic frequency given by

\[
f_{12} = \frac{2 |R_1 - R_2| f_n}{c T}.
\]

Note that this frequency is independent of the starting frequency \(f_o \). For example, if \(|R_1 - R_2| = 1 \) m, \(f_n = 500 \) MHz, and \(T = 3 \) ms, then \(f_{12} = 1 \) KHz.

From Equation (56), it is clear that the frequency spectrum of the received signal for a complex target contains frequencies given by

\[
f_{ij} = \frac{2 |R_i - R_j| f_n}{c T},
\]

so that a given target can be characterized by the difference in range

\[
d_{ij} = |R_i - R_j|
\]
between individual reflectors. For example, a man-made target (vehicle) might consist of two major reflectors separated in range by ~ 1 m. The clutter might consist of a large number of randomly distributed reflectors whose d_n and hence f_n, could be described by a gaussian probability density,

$$p(f_{ij}) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(f_{ij} - \mu)^2}{2\sigma^2}} \tag{59}$$

where μ is the mean frequency and σ is the standard deviation of the distribution. Suppose the clutter can be characterized as reflectors separated by a mean distance of 2m with a standard deviation of 0.25m. Using the same numbers as before for the target ($d_1 = 1$ m) and the radar ($f_0 = 500$ MHz, $T = 3$ms), then the frequency spectrum will resemble Figure 6. The target can be distinguished from the clutter if the difference between the target characteristic frequency and the mean clutter frequency is large compared to the clutter frequency spread.

Similarly, if two different targets have sufficiently different reflector range characteristics, then target classification, based on measured data at various target aspect angles, may be possible.

![Figure 6. Frequency spectrum for target/clutter model.](image)
6. DEPOLARIZING TARGETS

Up to now, no targets which depolarize have been considered; metal edges and thin wires (dipoles) are targets giving depolarized returns. If the radius of curvature of the wire (or edge) is small compared to the transmitted wavelength, then the RCS for normal incidence and electric field vector parallel to the wire is

$$\sigma \approx \frac{L^2}{\pi}$$

where L is the length of the wire [5]. If the wire is at an angle θ relative to the vertical, the polarization matrix is given by

$$\begin{pmatrix} r x_i \cr r y_i \end{pmatrix} = \frac{L_i}{2\pi R_i} \begin{pmatrix} -\cos^2 \theta_i & -\cos \theta_i \sin \theta_i \\ \cos \theta_i \sin \theta_i & \sin^2 \theta_i \end{pmatrix} \begin{pmatrix} E_x^t \\ E_y^t \end{pmatrix}$$

(61)

for an odd bounce reflector; the minus signs go out for an even bounce reflector. It is expected that, since the RCS of a wire is much less than that of a plate, the returns from multiple bounces between wires, and between wires and plates, can be neglected.

For a collection of n wires,

$$\begin{align*}
\mathbf{r}_x &= -\sum_{i=1}^{n} \frac{L_i}{2\pi R_i} \cos^2 \theta_i e^{j2kR_i} \\
&\quad - \sum_{i=1}^{n} \frac{L_i}{2\pi R_i} \cos \theta_i \sin \theta_i e^{-j\frac{\pi}{2}} e^{j2kR_i}.
\end{align*}$$

(62)

$$\begin{align*}
\mathbf{r}_y &= \sum_{i=1}^{n} \frac{L_i}{2\pi R_i} \cos \theta_i \sin \theta_i e^{j2kR_i} \\
&\quad + \sum_{i=1}^{n} \frac{L_i}{2\pi R_i} \sin^2 \theta_i e^{-j\frac{\pi}{2}} e^{j2kR_i}.
\end{align*}$$

(63)
The voltage appearing at the output of the mixer is

\[
V_m = \frac{n^2}{4\pi^2} \left[\sum_{i=1}^{n} \frac{L_i}{R_i} e^{\frac{2kR_i}{n}} \left(\cos^2 \theta_i + \cos \theta_i \sin \theta_i e^{-j\pi/2} \right) \right]
\]

\[
\left[\sum_{i=1}^{n} \frac{L_i}{R_i} e^{\frac{2kR_i}{n}} \left(\sin^2 \theta_i - \cos \theta_i \sin \theta_i e^{-j\pi/2} \right) \right]
\]

\[
= \frac{n^2}{4\pi^2} \left[\sum_{i=1}^{n} \frac{L_i^2}{R_i} \cos^2 \theta_i \sin^2 \theta_i \cos^2 (2kR_i - \omega t) \right.
\]

\[
+ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{L_i L_j}{R_i R_j} \cos^2 \theta_i \sin^2 \theta_j \cos(2kR_i - \omega t) \sin(2kR_j - \omega t) - \sum_{i=1}^{n} \frac{L_i^2}{R_i} \cos^3 \theta_i \sin \theta_i \cos(2kR_i - \omega t) \sin(2kR_i - \omega t)
\]

\[
\cos^2 \theta_i \cos \theta_j \sin \theta_j \cos(2kR_i - \omega t) \sin(2kR_j - \omega t)
\]

\[
+ \sum_{i=1}^{n} \frac{L_i^2}{R_i} \cos \theta_i \sin^3 \theta_i \sin(2kR_i - \omega t) \cos(2kR_i - \omega t)
\]

24
+ \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{L_i L_j}{R_i R_j} \cos \theta_i \sin \theta_i \sin^2 \theta_j \sin(2kR_i - \omega t)

\cos(2kR_j - \omega t) - \sum_{i=1}^{n} \frac{L_i^2}{R_i^2} \cos^2 \theta_i \sin^2 \theta_i \sin^2(2kR_i - \omega t)

- \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{L_i L_j}{R_i R_j} \cos \theta_i \sin \theta_i \cos \theta_j \sin \theta_j \sin(2kR_i - \omega t)

\sin(2kR_j - \omega t)] \right) . \quad (65)

Using trigonometric identities and keeping only the dc terms gives

\begin{align*}
V_{dc} &= \frac{h^2}{8\pi} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{L_i L_j}{R_i R_j} \left[\cos^2 \theta_i \sin^2 \theta_j \cos 2k(R_i - R_j) \\
+ \cos^2 \theta_i \cos \theta_j \sin \theta_j \sin 2k(R_i - R_j) \\
+ \cos \theta_i \sin \theta_i \sin^2 \theta_j \sin 2k(R_i - R_j) \\
- \cos \theta_i \sin \theta_i \cos \theta_j \sin \theta_j \cos 2k(R_i - R_j) \right] , \quad (66)
\end{align*}

or

\begin{align*}
V_{dc} &= \frac{h^2}{8\pi} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{L_i L_j}{R_i R_j} \left[A_{ij} \cos 2k(R_i - R_j) + B_{ij} \sin 2k(R_i - R_j) \right] \\
&\quad \sin 2k(R_i - R_j) \right] . \quad (67)
\end{align*}
where

\[A_{ij} = \cos^2 \theta_i \sin^2 \theta_j - \cos \theta_i \sin \theta_i \cos \theta_j \sin \theta_j; \]

\[B_{ij} = \cos^2 \theta_i \cos \theta_j \sin \theta_j + \sin \theta_i \cos \theta_i \sin^2 \theta_j. \]

Notice that all of the "self interference" terms have gone out of the mixer dc output; a single wire target gives no signal in polarimetric processing. If clutter can be characterized as being more like wires (trees, long grass, etc.) and targets characterized more by flat plates and corner reflectors, then the polarimetric processing technique should provide clutter rejection for the general dc signal at any given frequency.

For the simple case of two wires, one horizontal and one vertical, the signal is

\[V_{dc} = \frac{h^2}{8\pi} \frac{L_1 L_2}{R_1 R_2} \cos 2k (R_i - R_j), \]

as one might intuitively expect. For the case of a collection of wire like reflectors which are all oriented at the same angle, \(\theta \),

\[V_{dc} = \frac{h^2}{4\pi} \sin 2\theta \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{L_i L_j}{R_i R_j} \sin 2k (R_i - R_j). \]

Thus, for \(\theta = 0 \) degrees or 90 degrees, there is no return. One can expect that for trees, weeds, and tall grass which are approximately vertical, the frequency dependent dc terms are zero, and this results in clutter rejection in frequency space. To the extent that clutter can be characterized by randomly-oriented, dipole-like reflectors which depolarize, one can expect some clutter rejection using polarimetric processing.

For an extension to the more general case of a target consisting of both wire-like and plate-like reflectors, only the additional cross terms between Equations (62), (63) and (33), (34) remain to be considered. It is obvious that the interference between each wire and each plate target contributes a frequency to the spectrum.
7. LINEARLY POLARIZED RADAR

For comparison, an analysis of a system transmitting and receiving linear polarization is developed. For vertical transmit and receive, the electric field is given by

\[
\mathbf{E}(r, \theta) = \sum_{i=1}^{n_1} \frac{\sqrt{e^{-i\theta_i}}}{\sqrt{4\pi R_i}} e^{j2kR_i} + \sum_{\ell=1}^{n_2} \frac{\sqrt{e^{-i\theta_{i+\ell}}}}{\sqrt{4\pi R_{\ell}}} e^{j2kR_{\ell}} + \sum_{m=1}^{n_3} \frac{L_m}{2\pi R_m} \sin^2 \theta_m e^{j2kR_m}.
\]

(72)

The output signal is found from squaring the voltage signal at the antenna.

\[
V_m = h^2 (\mathbf{E}(r, \theta))^2.
\]

(73)

Using the trigonometric identities, and keeping only dc terms as before, gives similar results as for polarimetric processing. There is a frequency in the spectrum resulting from the interference between each pair of reflectors, but there are now dc terms independent of frequency resulting from the “self-interference” effects of the wire-like reflectors. For a linearly frequency modulated signal, the frequency spectra of the returned signal will contain the

\[
f_{ij} = \frac{2 | R_i - R_j | f_0}{c T}
\]

(57)

as before, but the amplitudes now depend only on the \(a_{ij}\) element of the RCS matrix. It should be pointed out that the same “clutter rejection” obtained for vertical trees, grass, etc. with polarimetric processing can be achieved here by transmitting a horizontal linearly polarized wave.
8. CONCLUSIONS

For the flat plate/corner reflector target model assumed, Equation (48) shows that the resulting signal can be a bipolar response as a function of frequency. Intuitively, one might expect that a bipolar signal results from a complex target, because such a target is a collection of even bounce and odd bounce scatterers which result in a combination of those terms given in Equations (45) and (46). Equation (48) shows however, that these terms are frequency independent. In fact, the minimum condition for achieving a bipolar response requires that the target contain two even bounce scatterers and two odd bounce scatterers. Not only must these four scatterers be present, but they also must be appropriately spaced in range, i.e., the two odd bounce targets must be constructively interfering while the two even bounce targets are destructively interfering, and vice versa. This seems a rather broad assumption on which one presumes to be able to discriminate between a tank (complex target) and a decoy (single corner reflector).

It was shown, however, that polarimetric processing does in fact provide a method of obtaining a characteristic target spectrum (Fourier transform of the mixer signal) using frequency agility. The characteristic frequencies depend on the range difference between target reflectors, on the LFM bandwidth, and on the FM repetition rate (Equation (57)). If targets and clutter have sufficiently unique range distributions for individual reflectors (for example, a characteristic average inter-reflector distance), then clutter rejection and target classification in frequency space may be possible.

It was also shown that, for clutter which can be characterized as depolarizing dipoles, a reduction of the overall dc signal due to clutter results. There is evidence which does in fact indicate that clutter depolarizes more than hard targets. It has been shown that, at microwave frequencies, σ_d/σ_r is ~ 4 dB for distributed clutter (trees) and 8 - 10 dB for vehicles [3]. This clutter rejection occurs, however, in the dc terms which are frequency independent. If the desired target/clutter discriminants are the frequency spectra due to frequency agility, it is not clear to what extent this “clutter rejection” enhances the signal to noise ratio in the frequency domain.

Finally, it was shown that target/clutter discrimination based on the Fourier transform of the received signal is not indigenous to polarimetric processing; the technique can be realized using linearly polarized radar. In short, there are two entirely separate effects involved in the system model:
- Polarimetric processing which results in rejection of dipole-like clutter.

- Frequency agility which creates the possibility of characterizing targets in frequency space due to interference effects.
REFERENCES

DISTRIBUTION

<table>
<thead>
<tr>
<th>Headquarters, Department of the Army</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of the DCS for Research Development</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DAMA-ARZ</td>
<td></td>
</tr>
<tr>
<td>Room 3A474, The Pentagon</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D C 20310</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of the Army</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DAMA-WMS</td>
<td></td>
</tr>
<tr>
<td>LTC Horton</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D C 20310</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>US Army Research and Standardization Group (Europe)</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: DRXSN-E-RX</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Alfred K. Nedoluha</td>
<td>1</td>
</tr>
<tr>
<td>Box 65</td>
<td></td>
</tr>
<tr>
<td>FPO New York 90510</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Foreign Science and Technology Center</td>
<td>1</td>
</tr>
<tr>
<td>Federal Office Building</td>
<td></td>
</tr>
<tr>
<td>220 7th Street, NE</td>
<td></td>
</tr>
<tr>
<td>Charlottesville, Virginia 22901</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Dr. R. Lontz</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park</td>
<td></td>
</tr>
<tr>
<td>North Carolina 27709</td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Distribution</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Commander</td>
<td>Commander</td>
</tr>
<tr>
<td>US Army Training and Doctrine Command</td>
<td>US Army Training and Doctrine Command</td>
</tr>
<tr>
<td>Fort Monroe, Virginia 23351</td>
<td>Fort Monroe, Virginia 23351</td>
</tr>
<tr>
<td>Commander</td>
<td>Commander</td>
</tr>
<tr>
<td>US Army Combined Arms Combat Development Activity</td>
<td>US Army Combined Arms Combat Development Activity</td>
</tr>
<tr>
<td>Fort Leavenworth, Kansas 66027</td>
<td>Fort Leavenworth, Kansas 66027</td>
</tr>
<tr>
<td>Commander</td>
<td>Commander</td>
</tr>
<tr>
<td>US Army Armor Center</td>
<td>US Army Armor Center</td>
</tr>
<tr>
<td>Directorate for Armor Aviation</td>
<td>Directorate for Armor Aviation</td>
</tr>
<tr>
<td>ATTN: ATSB-AAD-MS, LTC Don Smart</td>
<td>ATTN: ATSB-AAD-MS, LTC Don Smart</td>
</tr>
<tr>
<td>Fort Knox, Kentucky 40121</td>
<td>Fort Knox, Kentucky 40121</td>
</tr>
<tr>
<td>Commander</td>
<td>Commander</td>
</tr>
<tr>
<td>US Army Aviation Center</td>
<td>US Army Aviation Center</td>
</tr>
<tr>
<td>ASH Special Study Group</td>
<td>ASH Special Study Group</td>
</tr>
<tr>
<td>ATTN: ATZQ-ASH-SSG-D</td>
<td>ATTN: ATZQ-ASH-SSG-D</td>
</tr>
<tr>
<td>COL D. W. RUNDGREN</td>
<td>COL D. W. RUNDGREN</td>
</tr>
<tr>
<td>Fort Rucker, Alabama 36362</td>
<td>Fort Rucker, Alabama 36362</td>
</tr>
<tr>
<td>Commander</td>
<td>Commander</td>
</tr>
<tr>
<td>US Army Aviation Center</td>
<td>US Army Aviation Center</td>
</tr>
<tr>
<td>ATTN: AT2Q-D-C</td>
<td>ATTN: AT2Q-D-C</td>
</tr>
<tr>
<td>M. Jim Burwell</td>
<td>M. Jim Burwell</td>
</tr>
<tr>
<td>Fort Rucker, Alabama 36362</td>
<td>Fort Rucker, Alabama 36362</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Project Manager</td>
</tr>
<tr>
<td>TADS/PNVS</td>
<td>TADS/PNVS</td>
</tr>
<tr>
<td>ATTN: DRCPM-AAH-TP</td>
<td>ATTN: DRCPM-AAH-TP</td>
</tr>
<tr>
<td>COL C. Patnode</td>
<td>COL C. Patnode</td>
</tr>
<tr>
<td>P.O. Box 209</td>
<td>P.O. Box 209</td>
</tr>
<tr>
<td>St. Louis, Missouri 63166</td>
<td>St. Louis, Missouri 63166</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Project Manager</td>
</tr>
<tr>
<td>Smoke and Obscurants</td>
<td>Smoke and Obscurants</td>
</tr>
<tr>
<td>Aberdeen, Maryland 21005</td>
<td>Aberdeen, Maryland 21005</td>
</tr>
</tbody>
</table>
DISTRIBUTION (Continued)

US Army Materiel Development and Readiness Command
ATTN: Dr. Gordon Bushy
Dr. James Bender
Dr. Edward Sedlak
5001 Eisenhower Avenue
Alexandria, Virginia 22333
Commander

US Army Armament Command
Rock Island, Illinois 61202
Commander

US Army Armaments R&D Command
Picatinny Arsenal
ATTN: DRDAR-FCD-W
Dover, New Jersey 07801
Commander

US Army Armaments R&D Command
Ballistic Research Laboratories
ATTN: DRDAR-DLB, Mr. R. McGee
Aberdeen Proving Ground, Maryland 21005
Commander

US Army Electronics R&D Command
ATTN: DRSEL-TL-I, Dr. Jacobs
DRSEL-CT, Dr. R. Buser
Fort Monmouth, New Jersey 07703
Commander

US Army Electronics R&D Command
CS & TA Laboratory
ATTN: DELCS-R, Mr. D. Foiani
Fort Monmouth, New Jersey 07703
Commander

US Army Electronics Command
NV & EO Laboratories
ATTN: DELNV-SI, Mr. W. Ealy
Fort Belvoir, Virginia 22060
Commander

No. of Copies

1
1
1
1
DISTRIBUTION (Continued)

Commander
US Army Electronics R&D Command
Harry Diamond Laboratories
ATTN: DELHD-DBB, Mr. H. Edward
Dr. Stan Kuta
DELHD-R-RS—C
Mr. Greg Cirincione
DELHD-R-RSD
Mr. Tom Gleason
2800 Powder Mill Road
Adelphi, Maryland 20783

Atmospheric Sciences Laboratory
US Army Electronics Command
ATTN: Dr. Mishri L. Vatsia
White Sands Missile Range, New Mexico 88002

Director
Office of Missile Electronic Warfare
ATTN: DELEW-M-ST, Mr. Jim Hardison
White Sands Missile Range, New Mexico 88002

Commander
US Army Aviation R&D Command
ATTN: DRDAV-EV, Dr. G. Marner
 DRDAV-EOP(S), Mr. M. Jackson
P.O. Box 209
St. Louis, Missouri 63166

Commander
US Army Aviation Command
Foreign Intelligence Office
ATTN: Mr. Bert Carney
P.O. Box 209
St. Louis, Missouri 63106

Commander
US Army Mobility Equipment Research and Development Command
Fort Belvoir, Virginia 22060
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
</table>
| Director US Army Air Mobility Research and Development Laboratory
Ames Research Center
Moffett Field, California 94035 | 1 |

Commander
US Army Tank Automotive Development Command
ATTN: DRDTA-RWL
Warren, Michigan 48090 | 1 |

Director
Naval Research Laboratory
ATTN: Code 5300, Radar Division, Dr. Skolnik
Code 5370, Radar Geophysics Br
Code 5460, Electromagnetic Prop Br
Washington, DC 20390 | 1 |

Office of Naval Research/Code 221
ATTN: D. C. Lewis
800 N. Quincy Street
Arlington, Virginia 22217 | 1 |

Chief of Naval Research
Department of the Navy
Washington, DC 20390 | 1 |

Commander
Naval Air Development Center
Sensors and Avionics Technology Directorate
Radar Division/Tactical Radar Branch
ATTN: Code 3024, Mr. M. Bowdren
Warminster, Pennsylvania 18974 | 1 |

Commander
US Naval Weapons Center
ATTN: Mr. Robert Moore
China Lake, California 93555 | 1 |

Commander
Code 3173
Naval Weapons Center
ATTN: Dr. Alexis Shlanta
China Lake, California 93555 | 1 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>DISTRIBUTION (Continued)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>Center for Naval Analyses</th>
<th>ATTN: Document Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1401 Wilson Boulevard</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22209</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>US Naval Surface Weapons Center</td>
<td>ATTN: Charles Phillips</td>
</tr>
<tr>
<td></td>
<td>Dahlgran, Virginia 22448</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td>US Naval Electronics Lab Center</td>
<td>ATTN: Mary Tobin</td>
</tr>
<tr>
<td></td>
<td>San Diego, California 92152</td>
<td>1</td>
</tr>
<tr>
<td>Pacific Missile Test Center</td>
<td>Code 3253</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ATTN: Charles Phillips</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Point Mugu, California 93042</td>
<td></td>
</tr>
<tr>
<td>Naval Surface</td>
<td>Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mary Tobin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WR42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White Oak, Maryland 20910</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>AFGL</td>
<td>ATTN: RADC/ETEN, Dr. E. Alshuler</td>
</tr>
<tr>
<td></td>
<td>Hanscom Air Force Base</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Massachusetts 01731</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td>Rome Air Development Center</td>
<td>ATTN: R. McMillan, OCSA</td>
</tr>
<tr>
<td></td>
<td>James Wasielewski, IRRC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Griffiss Air Force Base, New York 13440</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td>US Air Force, AFOSR/NP</td>
<td>ATTN: LT COL Gordon Wepfer</td>
</tr>
<tr>
<td></td>
<td>Boling Air Force Base</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20332</td>
<td>1</td>
</tr>
</tbody>
</table>
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander US Air Force Avionics Laboratory, ATTN: D. Rees, CPT James D. Pryce, AFAL/WE, Dr. B. L. Sowers, AFAL/RWI, Wright Patterson Air Force Base, Ohio 45433</td>
</tr>
<tr>
<td>1</td>
<td>Commander AFATL/LMT, ATTN: Charles Warren, D. Dingus, C. Brown</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Air Force Armament Laboratory, Eglin Air Force Base, Florida 32542</td>
</tr>
<tr>
<td>1</td>
<td>Commander Defense Documentation Center, ATTN: DDC—TCA, Cameron Station, Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>Director of Defense Research and Engineering, ATTN: Mr. Leonard R. Weisberg, Dr. G. Gamota, Room 3D1079, The Pentagon, Washington, DC 20301</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209</td>
</tr>
<tr>
<td>1</td>
<td>IIT Research Institute, ATTN: GACIAC, 10 West 35th Street, Chicago, Illinois 60616</td>
</tr>
<tr>
<td>1</td>
<td>Executive Chairman JTCG-MD/WP-2, ATTN: ADTC/SD 3, Mr. John Johnson, Air Force Armaments Laboratory, Eglin Air Force Base, Florida 32542</td>
</tr>
<tr>
<td>No. of Copies</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| Science and Technology Division
Institute of Defense Analysis
ATTN: Dr. Vincent J. Corcoran
400 Army-Navy Drive
Arlington, Virginia 22202 |
| Environmental Research Institute of Michigan
Radar and Optics Division
ATTN: Dr. A. Kozma
Dr. C. C. Aleksoff
P. O. Box 618
Ann Arbor, Michigan 41807 |
| Georgia Institute of Technology
Engineering Experiment Station
ATTN: James Gallager
347 Ferst Drive
Atlanta, Georgia 30332 |
| Dr. P. E. Tannenwald
Division 8
MIT Lincoln Laboratory
Lexington, Massachusetts 02173 |
| Dr. H. R. Fetterman
Division 8
MIT Lincoln Laboratory
Lexington, Massachusetts 02173 |
| Dr. D. R. Cohn
MIT National Magnet Lab
Albany Street
Cambridge, Massachusetts 02132 |
| Environmental Research Institute of Michigan
Infrared and Optics Division
ATTN: Anthony J. LaRocca
Robert L. Spellicy
P. O. Box 618
Ann Arbor, Michigan 48107 |
DISTRIBUTION (Continued)

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
</table>

Director
Calspan Corporation
ATTN: R. Kell
P.O. Box 235
Buffalo, New York 14221

US Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, Maryland 21005

Dr. J. G. Castle
Physics Department
University of Alabama
4701 University Drive, NW
Huntsville, Alabama 35807

Director
Ballistic Missile Defense Advanced Technology Center
ATTN: ATC-D
ATC-O
ATC-R
ATC-T
P.O. Box 1500
Huntsville, Alabama 35807

DRCPM-HF, Colonel Robert J. Feist
DRCPM-RK
DRSMI-YL
DRSMI-Z (F10)

DRSMI-T, Dr. Kobler
 Mr. Dobbins
 -T, Mr. W. Leonard

-TE, Mr. Lindberg
 Mr. Todd
 Mr. Pittman

-TEM, Mr. Harraway

-TEO, Mr. Ducote
DISTRIBUTION (Concluded)

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRSMI-TEO, Mr. Sitton</td>
<td>1</td>
</tr>
<tr>
<td>-TER, Mr. Low</td>
<td>1</td>
</tr>
<tr>
<td>-TES, Mr. French</td>
<td>1</td>
</tr>
<tr>
<td>-TEG, Mr. Cash</td>
<td>1</td>
</tr>
<tr>
<td>-TEL, Mr. Mangus (Mr. Green, Dr. Emmons, Dr. Alexander, Mr. Barley, Mr. Grass, Mr. Rast, Mr. Mullins)</td>
<td>25</td>
</tr>
<tr>
<td>-C, Mr. K. Evans (Mr. T. Dilworth, Mr. H. Burnam, Mr. D. Peterson, Mr. W. Griffith, Mr. J. Baumann)</td>
<td>1</td>
</tr>
<tr>
<td>-TR, Dr. Hartman (Dr. Guenther, Dr. Gamble)</td>
<td>1</td>
</tr>
<tr>
<td>-TBD</td>
<td>3</td>
</tr>
<tr>
<td>-TI (Reference Set) (Reference Copy)</td>
<td>1</td>
</tr>
<tr>
<td>DRSMI-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-E, Director</td>
<td>1</td>
</tr>
<tr>
<td>-TRADOC LNO</td>
<td>1</td>
</tr>
</tbody>
</table>