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THE CHI-SQUARED PROCESS WITH APPLICATIONS TO

HYPOTHESIS TESTING AND TIME SERIES ANALYSIS

Robert B. Davies
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Wellington, New Zealand

Currently visiting:
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ABSTRACT

We calculate the expected number of upcrossings of a fixed level by

the process

S(e)= Xl(e) + ... X(e)

where {X,(.), ... , Xs(.)} is a multivariate Gaussian process such that

for each value of 6, the random variables X ... , Xs(e) are indepen-

dent with zero means and unit variances. This enables a bound on the

probability that the maximum of the process exceeds a fixed level to be

obtained. The result is used to adapt the method of Davies (1977) to test-

ing the hypothesis that a vector = 0 when a nuisance parameter e is

present only under the alternative # 0. The method is then applied to

the problem of detecting a discrete frequency component in a Gaussian time

series.

This research was prepared using the facilities of the Statistical Laboratory,
University of California, Berkeley, with the partial support of National
Institute of Health Grant USPHS ES01299-17 and Office of Naval Research
Contract NOOO 14 75 C 0159.
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1. INT CDUrION

Davies fJ977) considered the problem of testing the hypothesis that a

single parameter - 0 against the alternative E > 0 when a single

nuisance parameter e was present only under the alternative. In this

paper we consider the problem of testing the hypothesis that all components

of an s-dimensional vector E are zero against the alternative that at

least one of them is non-zero, where, again, there is a nuisance parameter,

e, which enters into the model only when E is non-zero. As in Davies

(1977) standard asymptotic methods cannot be applied directly. However,

by using them or some other method, it may be possible, for each e, to

find a random variable S(e) which has, at least asymptotically, a chi-

squared distribution when E - 0 and which would be suitable for testing

= 0 against 0 if e were known. Then the test we consider in

this paper is to reject the hypothesis for large values of

sup {S(e):L < e < U} (1.1)

where [L,UJ is the range of possible values for e. The problem is to

find the distribution of (1.1) so that significance probabilities can be

calculated.

To simplify the discussion we suppose that = 0 and sample sizes

are so large that deviations from an exact chi-squared distribution can be

ignored. Suppose that S(e) can be represented

s(e) - X (e) (2) (1.2)



1-2 r

where the X (6) form a multivariate Gaussian process such that for each

6 the X.(6) are independent with standard normal distributions. Then we

will say that S(6) is a chi-squared process. This is a generalization of

the process considered by Sharpe (1978) since we do not require Xi(eI)

and Xj (a2) to be independent if 01 # 02 nor do we require stationarity.

As in Davies (1977) we find a bound on the probability that sup {S(e))

exceeds a given value by finding the expected number of upcrossings of a

fixed level by the process S(e). This is done in section 2; in section 3

the result is applied to the testing problem.

An important example of the test is concerned with the detection of

frequency components in a time-series. Suppose ZI, ... Zn  is a sequencp

of independent normal random variables with unit variances and

EZj l sin(je) + &2 cos(je) (1.3)

with 0 < U < 9 < L < 7r. That is, if 0, a discrete frequency component

is present in the series. This example is considered in section 4.

We use the following notation: A* denotes the transpose of a vector

or matrix, A; 1 denotes an indicator function.

.-.- - _________________________!
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2. UPCROSSINGS OF A GI-SQUARED PROCESS

We suppose that X(8):eE[L,U] is an s-dimensional Gaussian process,

with zero expectation and a continuous derivative Y(e) = dX(6)/de. We

further suppose that for each e the components of X(e) are independent

with unit variance. Then X(e) and Y(e) are jointly normally distributed,

Y(6) also having zero expectation. Suppose

Var x(e) i A(6) (2.1)

V Y(O) J A*(e) B(e)

Then A(6) is skew-symmetric since

A(e) + A*(e) = lir E[X(e){X(e + A) -X(e)*
A-0

+ {X(e + A) - X(e)}X*(e + A)] / A

0.

Let S(6) = X*(8)X(8) as in (1.2),

T(e) = dS(e)/de = 2x*(e)Y(e) (2.2)

and let f(-) denote the density of S(e), a chi-squared variable with s

degrees of freedom.

Then for u > 0 one can check that the conditions of Marcus (1977),

section S, are satisfied. Following Sharpe (1978), the expected number of

upcrossings of the level u is given by
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'4'

JIL (2.3)

where p(e) = E(T(e)lT(e),0 I S(6) = u)f(u). (2.4)

In (2.2) Y(O) can be replaced by Y(6) - A*(e)X(e) in which case

(2.1) must be replaced by

Va [(e) - A*(e)X e) 0 B(a) -A*(e)A e)(25

Now choose U(9) orthogonal so that

U(e){B(e) - A*(e)A(e))U*(6) =A(6) (2.6)

where A(6) is diagonal. Premultiplying X(e), Y(e) by U(6) will not

affect (1.2) and (2.2) and so, in these equations, we can assume that the

components of X(e), Y(O) are independent, those of X(e) having unit

variance and those of Y(8) having variances given by the elements of

A(6), the eigenvalues of B(e) - A*(O)A(e).

Before proceeding with the evaluation of (2.4) we note how A(e) may

be found from the covariance function of X(e). Let

R eA= E{X(e + A)X*(e)} (2.7)

Then

-,9 I =E({X(e +4 A) - X(e)}X*(e)I = AA*(e) + 0(A)

21 -ReA = E{X(e A) - X(e)}{X(e + A) - X(6)}*] =A
2Be o 2)
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Now

R, exp{ -1% ( R e* I

-L(A-Refl)+ (RA + 7~-I)}

- (RA - Rq) + - Re*)2} + 0(A 2)

2 2I - A{B(O) - A*(e)A(e)} + o(A )

A

But exp{ - (R- R,*)} is orthogonal. Hence a singular value decomposi-GA G
tion of R A can be expressed as

I - 2,AA(6) + o(A ) (2.8)

This provides the alternative way of finding A(8).

Returning to (2.4), dropping references to e and supposing

Var 1~' 01 (2.9)

we have

E(TIT>0 IS = u)f(u)

2E{E(X*Ylx*y>OIX*X,Y) lX*X u}f(u)

Now

E(X*Ylxy>olx*x,Y) - cy(X*X)

for some c which may depend on Y but not on X*X since X and Y

are independent and the conditional distribution of X given X*X is just
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uniform on the surface of the sphere of radius (X*X) . To evaluate Cy

take expectations:

E(X*Ylx*y>o fY) = cE(X*X)

On the left hand side, rotate X so that X lies in the direction of Y

to obtain

E (X1 1 X>0)  (Y*Y) = (2 Tr) (Y*Y)

Combining these results and substituting

f(u) = us/2"le U/2 / {r(s/2)2 s / 21

E(X*X) = 21 r{(s + 1)/2} / r(s/2)

we find

(s-l)/2 e-u/2
()= E(Y*(e)Y(e)} U (.0

7 2s/2 f{(s + 1)/21 (2.10)

where Y(e) is a vector of independent centered normal random variables

with variances given by the elements of A(e).

Hence we have

Theorem 2.1 If the s-dimensional Gaussian process X(6) has continuously

differentiable sanple paths for L 4 6 < U and E{X(6)} = 0, Var{X(e)} = I

for each 8 then the expected number of upcrossings of the level u in the

range OE[L,U] is given by (2.3) where tp(e) is defined by (2.10) and Y(e)
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is composed of s independent centered normal random variables with variances

Xl(e), ... Xs(a) being the eigenvalues of B(e) - A*(e) A(e); A(8) and

B(6) being as in (2.1).

:rolry,-, 2.2.

pr[sup{X(e):L < e < U} > u] ip(e)de + pr(x2 > u) (2.11)
L

where denotes a chi-squared random variable with s degrees of freedom.

The corollary is proved in the same way as formula (3.6) in Davies

(1977). Sharpe (1978) has shown that the number of high level upcrossings

in the stationary independent case is approximately Poisson and we would

expect this to be true more generally. Hence, as in Davies (1977), we would

expect the bound (2.11) to be reasonably sharp.

It remains to consider the calculation of E{(Y*Y) }. Harvey (1965)

gives the general formula

E{(y*y. }  1 i p(t) + sin F(t) - cos F(t) dt
2T} JO t 3 / p(t)

where
s

F(t) = I arctan (Ait)
1

s 2 2)
P(t) = + (1 + Xi1 1

Formula (2.12) can also be expressed

(I s _ t3/2dt

E{(Y*Y) } = (27) [1 - IT (1 X jt) }t dt.
JO j=l
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Alternatively, Harvey (1965) gives a variety of approximate expressions.

We consider two special cases. Suppose all the X i are equal with

common value X. Then

E{(Y*Y) } = (2X) F{(s + 1)/21 / r(s/2)

leading to a result in agreement with Sharpe's (1978) formula (3.2). If

s = 2 then E{(Y*Y) 21 can be evaluated directly (Harvey, 1965) as

E{(Y*Y) = (2x1/) E(l - A2/Xl) if X1 > X2

= (2X2/7) E(1 - X1/X2) if X2 > X1  (2.13)

where, on the right hand side, E denotes a complete elliptic integral of

the second kind; see Abramowitz and Stegun (1970), formula 17.3.3.

4
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3. HYPOTHESIS TESTING

Suppose that the outcome of an experiment is represented by a (vector)

random variable Z, the distribution of which depends on parameters

' .... and e where 0 is known to lie in the closed interval

[L,UI, and that we wish to test the hypothesis that all the C. are zero

against the alternative that at least one of them is non-zero. Now

suppose that the distribution of Z does not depend on e when

= i "" s * = 0 so that, for example, standard asymptotic methods

cannot be applied directly. However, if e was known, it might be possible

to find a test which rejected the hypothesis = 0 for large values of the

statistic

2 2S(e) = X oe) + + x() (3.1)

where the X.(e) were, for each 9, at least approximately independently

normally distributed with unit variances and zero means when = 0. For

example, if i(e) represented the maximum likelihood estimator for

when a was given and E(e) its asymptotic variance matrix one might take

X(e) = z- (e) (e)

Alternatively one might derive a similar formula from formula (55) of Biihler

and Puri (1966).

The test suggested here is to reject the hypothesis E = 0 if

sup {S(e):L e < U} > u. (3.2)
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Formula (2.11) can then be used to give an upper bound on the probability

of type I error or on the significance probability.

One can also find a lower bound on the power using the formula

pr.,e [{sup S(e):L < e <U} > ul <pr 8  {S(eo) > u} (3.3)
0 0

which we would be able to evaluate using a non-central chi-squared distribu-

tion. The analogous bound of Davies (1977) was found to provide an adequate

approximation; however no studies have been carried out in the present

instance.

We now consider a particular non-asymptotic situation in which it is

possible to simplify the finding of the eigenvalues required by Theorem 2.1.

Suppose we observe Z = (ZI, ... , Zn)* where the Z are indepen-

dently normally distributed with unit variances and with

EZ = W*(e) (3.4)

where W(e) is an s x n dimensional matrix of rank s. Then if e

were known the most stringent test for testing E = 0 against , 0

rejects the hypothesis for large values of

S(8) = Z*Q(e)Z (3.5)

where

Q(e) =W*(6){W()W*(6) w(G)•

Factorize
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Q(e) =L*(e)U(O) (3.6)

where U(e) is an s x n matrix with U(O)TJ*(O) - I. Then let-Ling

X(O) u(e)Z puts the problem in the form already discussed. Then

Y = {du(O)/de}Z and so

A(e) = U(e)t[dI*(e)Ide}

B(e) ={dU(8)/de}{dU*(e)/de}.

It will be convenient to write F =_G if matrices F and G have

the same non-zero eigenvalues. In particular if the products FG and GF

are defined FG EGF. We need to find the eigenvalues of

B - A*A = B + A + (A*)2 + A

=* du du* dU* dU* dU dUJ dU* dU U+a* U U a 11 d6 +a~ de j*T-U

Q [Te) Q -(3.7)

If we write

R(e) = W*(e){W(e)W*(e)}l (dW(e)/de)

one can check that

Q[P)Q= R(I - Q)R (3.8)

W*(WW*)-l dW (I- *( W*) dW*Te- I W* qaw (ww*)l

EW*) W dW* dW 1 W (WW*)dw (3.9)WW*-} (**)
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Thus the non-zero elements of A(6) can be found as the non-zero eigen-

values of (3.7), (3.8) or (3.9). Formula (3.9) is particularly convenient

if

WW*, (dW/de)(dW*/de) and (dWV/de)W* (3.10)

are all diagonal because we can set

A (WW*) - dW*) (IN*) -2{dW W*)2 (3.11)
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4. DETECTION OF A DISCRETE FREQUENCY COMONENT

We observe Z = (Z1, ... , Zn)* where the Z. are independently nor-

mally distributed with unit variances and with

EZ. = sin[{j - (n+l)/2}e] + cos[{j - (n+l)/2}e]. (4.1)
J I 2coll

That is Z, ... Zn is a sequence of independent standard normal variables

on to which has been superimposed a cyclic effect with period 2rr/e. Formula

(4.1) is just a change of parameterization of (1.3). Now suppose we wish to

test the hypothesis, E =0, that is there is no frequency component, against

the alternative that E # 0. Traditionally, see Hannan (1960), pages 76-83,

this problem has been handled by looking at only values of e of the form

Zirk/n:k = i, ... [ n/2 1. For these values of e the corresponding values of

(3.5) will be independent and so significance levels can be readily calcula-

ted. However a loss of power occurs if the true value of 6 falls between

these values. We should emphasize that we are concerned with discrete fre-

quency components. The method considered here has little relevance to the

problem of detecting peaks in the frequency spectrum which have a bandwidth

greater than 2n/n cycles per sampling interval.

Now apply the theory of the previous section. The matrices (3.10) are

derived in the appendix and all turn out to be diagonal so (3.11) applies.

Applying (3.5) and (4.1) we find

1*
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S~e) Z sinjj{j -(n+1)/2}e]1 V

+EZcos[{j -(n+1)/2}eJJ /v 2  (4.2)

where

=, {n - sin(ne) /sin(e)} /2

v 2  f n + sin(no) /sin(e)} 2

For the moment we suppose 0 < L < e < U < Tr so that S(e) is defined.

Then it is shown in the appendix that the eigenvalues X1  and can be

expressed

(n2 _ 1)/(3G) - n2/4 +(1 - F2/G2)/(4 sin2 e)(4.3)

where

F = cos(ne) - a cos e

G = 1 - a sin(ne)/(n sin o)

a +lI to give x 1 -1 to give X2.

For each 0 the value of E{(Y*Y) } =a~e), say, can be found from

(2.13) and so the bound (2.11) is equal to

fUa (6) doe. u &U e T + e (4.4)

L_ _ _ _ _ _ _ _ _ _ _ __ _
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In fact (4.3) tends to zero as e tends to 0 or n so, provided (4.2)

and (4.3) are defined by continuity at 6 = 0 or 7r, we can allow 6 to take

any value in the range [0,7]. For n large and e not near 0 or IT

formula (4.3) can be approximated by n2/12 leading to a(6) in (4.4) being

approximated by n(iT/24) which in turn leads to (4.4) being approximated by

n u" e - u/ (U-L) / (247r)h + e-u/2 (4.5)

The approximation of a(6) by n(iT/24) turns out to be adequate if n > 4

and 21t/n < 0 < T - 21T/n. This approximation is also good for moderate and

large values of n when e covers the whole range 0 < e < it. In Table I

the values of f 7a(6) de / 7T and its approximation n(Tr/24) are listed

for various values of n. It will be noted that the approximation is espe-

cially good if the approximate value is reduced by .S.

To test the sharpness of the bound (4.4) on the significance probability

a simulation was carried out with n = 16. One thousand simulations were

performed. The function S(6) was examined at 255 points and the number

of times the hypothesis, =0, was rejected at the .2, .1, .05, .02 and .01

levels counted together with the total number of upcrossings. The results

are listed in Table II. In each case the number of upcrossings was only

slightly above the number of significant results indicating that the nominal

significance level was close to the actual significance level. Other simu-

lations with n = 4 and n = 64 yielded similar results. The simulations

were carried out on the CDC 6400 computer on the Berkeley campus of the

University of California and used the IM1L subroutines G(N4L and FFTRC.
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Formula (4.5) can be compared with the formula one obtains when one

considers the test based on the maximum of Sk = S(2irk/n) where k is an

integer. Assuming U and L to be of the for (2k+l)w/n

P {sup(Sk:L 2?rk/n < U) > u}

= - (1 e- U/2 )n(U-L)/(27T)

"ne -U/2 (U-L) / (2nr). (4.6)

In fact, there is relatively little difference between the values of u re-

quired to give the same value to formulas (4.5) and (4.6) and thus there is

only a small loss of sensitivity when the test based on the maximum of the

Sk  is replaced by the test considered in this paper and e is of the form

27rk/n. On the other hand for values of 6 of the form (2k+l)n/n our

test has a substantial advantage.

In practice, of course, one would need to normalize the time-series

(Z1 , ... Zn) by subtracting off the sample mean and dividing by the sample

standard deviation. It may also be necessary to compensate for serial corre-

lation by fitting a simple autoregressive or moving average process. Sub-

tracting the sample mean would have a major effect only at the very low fre-

quency end of the spectrum and hence for large n formula (4.5) would

still be applicable. On the other hand if we denote (4.5) by a(u) and

differentiate we find da(u)/du = 0(a(u)). Also u = O(log n). Since the

standard deviation and any autoregressive or moving average parameters would

be estimated to an accuracy of O(n- ) the effect on the significance level
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would be similar to that of changing u by 0(un - ) = 0(n "  log n) which

would be asymptotically negligible. Hence, for large n, formula (4.5) would

still be applicable when applied to the suitably pre-whitened normalized, and

centered time-series.

According to Feller (1970), section 26.7, theorems 1 and 3, the central

limit theorem holds for moderate deviations of o(n I / 6) and hence we would

expect (4.3) to hold asymptotically, even if the Z. were not normally dis-

tributed. However further study is required on this point.
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TABLE I

n f a(e) do /e n (ir/24) 1

5 1.26 1.81
10 3.09 3.62
15 4.91 5.43
20 6.72 7.23
25 8.53 9.05
30 10.34 10.85
40 13.96 14.47
50 17.58 18.09
60 21.20 21.71
80 28.44 28.94

100 35.68 36.18

TABLE II

Simulation of the Test for Frequency Components

Nominal Significance Level .2 .1 .05 .02 .01

Critical level, u 8.848 10.385 11.901 13.879 15.362

Expected number of upcrossings 200 100 50 20 10

Observed number of upcrossings 221 114 57 21 10

Number of significance tests 198 107 56 20 9
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APPENDIX

Derivation of Formla (4. 3)

Using the notation of section 3 and letting m = (n+l)12

W = sin{(1-m)e} sin{(2-m)e} ... sinf(n-m)e}

cos{(1-m)o} cosf(2-m)e} ... cos{(n-m)el J
All the off-diagonal elements of the matrices (3.10) are zero since the k-th

and (n'.1-k)-th term in the sums that form these elements cancel. The dia-

gonal elements of WW* may be expressed

n 2 n 2
Z sin {(k-m)e} and z cos {(k-m)e} (A.1)
1 I

which are equal to n1G where G is as in (4.3) with a =+1 for the first

term and -1 for the second term. The diagonal elements of (dW/de)W* are

given by

n n
Z (k-rn) sin{(k-m)e} cos{(k-m)e} and -E (k-m){sin{(k-m)e} cos{(k-m)e}

1 1 (A. 2)

and may be evaluated by differentiating (A.1) and dividing by 2. Hence they

are equal to -n(G cos 6 +aF)I/(4 sine6) with F and G asin (4.3) and

o as before. The diagonal elements of (dI/de) (dW/de) are given by

n 2 co 2{- } an E(-n 2 si 2{km }(A
Z (k-rn) Cs{kme n km i (-~l(.
1I
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Suning these two terms we obtain

n (k-m) 2  n(n2 -1) / 12
1

while the difference may be found by differentiating (A. 2):

n M2[ 2 2z (k-r) [cos {(k-m)e} - sin {(k-m)e}]1

=4 an((n2-1) + (G + G cos e + 2aF cose - n 2G sin2e) / sin e

for a = +1 or -1. Thus (A.3) is equal to

n(n 2-1)/6 + n(G + G cos2 0 + 2aF cose - n 2G sin2 e) / (8 sin2e)

with a = +1 for the first term and -1 for the second term. This completes

the derivation of the matrices (3.10). Evaluation of (3.11) results in

formula (4.3).
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