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THE CHI-SQUARED PROCESS WITH APPLICATIONS TO
HYPOTHESIS TESTING AND TIME SERIES ANALYSIS

Robert B. Davies

Applied Maths Division, DSIR,
Wellington, New Zealand

Currently visiting:

Statistical Laboratory
University of California, Berkeley 94720

ABSTRACT

We calculate the expected number of upcrossings of a fixed level by

the process
S(e) = X)) + ... + Xio)

where {Xl(-), cee s Xs(-)} is a multivariate Gaussian process such that
for each value of 8, the random variables Xl(e), cee Xs(e) are indepen-
dent with zero means and unit variances. This enables a bound on the
probability that the maximum of the process exceeds a fixed level to be
obtained. The result is used to adapt the method of Davies (1977) to test-
ing the hypothesis that a vector & = 0 when a nuisance parameter 6§ is
present only under the alternative & # 0. The method is then applied to
the problem of detecting a discrete frequency component in a Gaussian time

series.

This research was prepared using the facilities of the Statistical Laboratory,
University of California, Berkeley, with the partial support of National
Institute of Health Grant USPHS ES01299-17 and Office of Naval Research
Contract N0OO 14 75 C 0159,




1. INTRODUCTION

Davies (1977) considered the problem of testing the hypothesis that a
single parameter £ = 0 against the alternative £ > 0 when a single
nuisance parameter 6 was present only under the alternative. In this
paper we consider the problem of testing the hypothesis that all components
of an s-dimensional vector £ are zero against the alternative that at
least one of them is non-zero, where, again, there is a nuisance parameter,
8, which enters into the model only when & is non-zero. As in Davies
(1977) standard asymptotic methods cannot be applied directly. However,
by using them or some other method, it may be possible, for each 8, to
find a random variable S(8) which has, at least asymptotically, a chi-
squared distribution when £ = 0 and which would be suitable for testing
£=0 against £ # 0 if o were known. Then the test we consider in

this paper is to reject the hypothesis for large values of

sup {S(8):L <9 < U} (1.1)

where ({L,U] 1is the range of possible values for 5. The problem is to
find the distribution of (1.1) so that significance probabilities can be
calculated.

To simplify the discussion we suppose that ¢ = 0 and sample sizes
are so large that deviations from an exact chi-squared distribution can be

ignored. Suppose that S(8) can be represented

s(8) = Xo(e) + ... + X2(o) (1.2)
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where the xj(e) form a multivariate Gaussian process such that for each
§ the xj(e) are independent with standard normal distributions. Then we
will say that S(6) 1is a chi-squared process. This is a generalization of
the process considered by Sharpe (1978) since we do not require Xi(el)
and Xj(ez) to be independent if 81 # 6, nor do we require stationarity.
As in Davies (1977) we find a bound on the probability that sup {S(8)}
exceeds a given value by finding the expected number of upcrossings of a
fixed level by the process S(8). This is done in section 2; in section 3
the result is applied to the testing problem.
An important example of the test is concerned with the detection of

frequency components in a time-series. Suppose Zl’ ... ,2_ 1s a sequence

n
of independent normal random variables with unit variances and

EZJ. = & sin(j8) + g, cos(je) (1.3)
with OsU<s@8<L<mn That is, if £ # 0, a discrete frequency component
is present in the series. This example is considered in section 4.

We use the following notation: A* denotes the transpose of a vector

or matrix, A; 1 denotes an indicator function.

— s
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2. UPCROSSINGS OF A CHI-SQUARED PROCESS

We suppose that X(8):6€[L,U] is an s-dimensional Gaussian process,
with zero expectation and a continuous derivative Y(6) = dX(8)/de. We
further suppose that for each 6 the components of X(8) are independent

with unit variance. Then X(8) and Y(8) are jointly normally distributed,

Y(8) also having zero expectation. Suppose

wr (8] - L 42
Then A(8) 1is skew-symmetric since
A(e) + A*(e) = iig E[X(8) {X(8 + A) - X(8)}*
+ {X(8 + &) - X(8)}X*(® + A)] / A
= 0,
Let S(8) = X*(8)X(8) as in (1.2),
T(8) = dS(8)/d8 = 2X*(8)Y(8) (2.2)

and let f(-) denote the density of S(8), a chi-squared variable with s
degrees of freedom.
Then for u > 0 one can check that the conditions of Marcus (1977),

section 5, are satisfied. Following Sharpe (1978), the expected number of

upcrossings of the level u 1is given by
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{U
y(8)de (2.3)
L
where p(e) = E(T(e)lT(e)>0 [ S(8) = Wf(). (2.4)

In (2.2) Y(8) can be replaced by Y(8) - A*(8)X(6) in which case

(2.1) must be replaced by

Var |X(®) ] ) 1 o

Y(6) - A*(g)X(8) {0 B(8) - A*(g)A(e) (2.5)

Now choose U(8) orthogonal so that
U(8) {B(e) - A*(B)A(9) }U*(B) = A(8) (2.6)

where A(6) 1is diagonal. Premultiplying X(e8), Y(e) by uU(e) will not
affect (1.2) and (2.2) and so, in these equations, we can assume that the
components of X(8), Y(8) are independent, those of X(8) having unit
variance and those of Y(8) having variances given by the elements of
A(8), the eigenvalues of B(8) - A*(8)A(8).

Before proceeding with the evaluation of (2.4) we note how A(§) may

be found from the covariance function of X(8). Let

ReA = E{X(8 + A)X*(8)} (2.7)

Then
Rgp - T = E[{X(8 + &) - X(8) }X*(8)] = aA*(g) + o(a)

21 - Ry, - Ryt = E{{X(6 + &) - X(8)HX(6 + o) - X(8)}*] = a’B(6) + 0(a?)




Now

Ryy @@l - (Rg, - Ro)}

T - Ry, = Ryl) + 5(Rg, - R + o)

I - 50%{B(6) - A*(8)A(8)} + o(a%)

(5= 4Ry = Rf) * Ry, * Rf - 2D}

But exp{ - lE(Re A Rep} is orthogonal. Hence a singular value decomposi-

tion of Re can be expressed as

A

I - 2%a(8) + o(ad)

This provides the alternative way of finding A(s).

Returning to (2.4), dropping references to 8 and supposing

Var

By

¥ = E(Tlp,olS = wEw)

we have

= ZE{(E(XM1yay, o |X¥X,Y) [ XX = u}£(W)

Now

E(X*le*Y>0!X*X,Y) = cY(x*XJLi

(2.8)

(2.9)

for some ¢y which may depend on Y but not on X*X since X and Y

are independent and the conditional distribution of X given X*X 1is just
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uniform on the surface of the sphere of radius (X*X)%. To evaluate cy

take expectations:
L
E(X*le*Y>0|Y) = cYE(X*X)2

On the left hand side, rotate X so that X1 lies in the direction of Y

to obtain

1 b a s
By Ly 5) *(10) = 20 73

Combining these results and substituting

£ = u/¥ e W2 ) (ps/2)25/%

E(X*X)% = Z%p{(s + 1)/2} / 1(s/2)

we find

u(s-l)/Z e-u/2

»(8) = EQY*(@)Y(e)}® (2.10)
7% 2572 pics + 1)/2}

where Y(8) 1is a vector of independent centered normal random variables
with variances given by the elements of A(6).

Hence we have
Theorem 2.1 1f the s-dimensional Gaussian process X(®) has continuously
differentiable sample paths for L<6 <U and E{X(8)} =0, Var{X(8)} =1

for each 8 then the expected number of upcrossings of the level u in the

range O€([L,U] 1is given by (2.3) where ¢(8) is defined by (2.10) and Y(8)

e ey
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is composed of s independent centered normal random variables with variances
Al(e), ces As(e) being the eigenvalues of B(8) - A*(8) A(8); A(e) and
¥ B(6) being as in (2.1).

Corollary 2.2.
U
prisup{X(8):L <6 < U} > u] <J p(e)de + pr(xg > u) (2.11)
L

where xg denotes a chi-squared random variable with s degrees of freedom.

The corollary is proved in the same way as formula (3.6) in Davies ;
(1977). Sharpe (1978) has shown that the number of high level upcrossings
in the stationary independent case is approximately Poisson and we would :
expect this to be true more generally. Hence, as in Davies (1977), we would
expect the bound (2.11) to be reasonably sharp.

It remains to consider the calculation of E{(Y*Y) %}. Harvey (1965)

1 gives the general formula

r p(t) + sin F(t) - cos F(t)

E((Y*Y)) =
f L™ /% o(t)

dt (2.12)

[ty

i JO

where

s
F(t) = % Z arctan (;\it)
1
S 1
o(t) = g (1 +25 tH*
1

Formula (2.12) can also be expressed

[+ -]

-1 S IV
HWWﬁ}=UﬂfI H-_%U+Af)ﬁty%t
0 J=




(3]
]
o

Alternatively, Harvey (1965) gives a variety of approximate expressions.
We consider two special cases. Suppose all the A; are equal with

commeon value A. Then
E{(Y*) %} = (20)% T{(s + 1)/2} / T(s/2)

leading to a result in agreement with Sharpe's (1978) formula (3.2). If

s = 2 then E{(Y*Y)%} can be evaluated directly (Harvey, 1965) as

ECCY) ) = (2A/m) 7 EQL - Ap/Ap) if 4 2,

(20,/m)F E(L - A/Ap) if Ay 20 (2.13)

where, on the right hand side, E denotes a complete elliptic integral of

the second kind; see Abramowitz and Stegun (1970), formula 17.3.3.




3. HYPOTHESIS TESTING

Suppose that the outcome of an experiment is represented by a (vector)
random variable Z, the distribution of which depends on parameters
s <o+ » &g and o where 6 1is known to lie in the closed interval
[L,U], and that we wish to test the hypothesis that all the gj are zero
against the alternative that at least one of them is non-zero. Now
suppose that the distribution of Z does not depend on 6 when
g = (El, vee gs)* = 0 so that, for example, standard asymptotic methods
cannot be applied directly. However, if ¢ was known, it might be possible
to find a test which rejected the hypothesis ¢ = 0 for large values of the

statistic

S(e) = X%(e) AR xi(e) (3.1)

where the Xj(e) were, for each ¢, at least approximately independently
normally distributed with unit variances and zero means when ¢ = 0. For
example, if E(e) represented the maximum likelihood estimator for ¢

when 6 was given and :(9) its asymptotic variance matrix one might take
= v 5 r
X(8) =z *(8)g(e).

Alternatively one might derive a similar formula from formula (55) of Biihler
and Puri (1966).

The test suggested here is to reject the hypothesis ¢ = 0 if

sup {S(@):L <8 <U} > u.
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Formula (2.11) can then be used to give an upper bound on the probability
of type I error or on the significance probability.

One can also find a lower bound on the power using the formula

[{sup S(8):L <9 <U} >u] <pr {S(eo) > u} (3.3)

pT
£:8, £,8,

which we would be able to evaluate using a non-central chi-squared distribu-
tion. The analogous bound of Davies (1977) was found to provide an adequate
approximation; however no studies have been carried out in the present
instance.

We now consider a particular non-asymptotic situation in which it is

possible to simplify the finding of the eigenvalues required by Theorem 2.1.

Suppose we observe Z = (Zy, .-« » Z))* where the Z1 are indepen-
dently normally distributed with unit variances and with
EZ = W*(8)g (3.4)

where W(8) is an s x n dimensional matrix of rank s. Then if ¢
were known the most stringent test for testing £ = 0 against g # 0

rejects the hypothesis for large values of

S(8) = z2*Q(8)Z (3.5)

where

Q(8) = W*(8) {(W(g)W*()} 1W(a).

Factorize
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Q(8) = U*(e)U(a) (3.6)

where U(8) is an s x n matrix with U(8)U*(s) = I. Then letting
X(8) = U(8)Z puts the problem in the form already discussed. Then
= {du(@)/de}Z and so

A(e) = U(e) {dU*(e)/de}

{dU(e)/de}{dU*(p)/de}.

B(8)

It will be convenient to write F =G if matrices F and G have
the same non-zero eigenvalues. In particular if the products FG and GF

are defined FG = GF. We need to find the eigenvalues of

- A%A = B + A%+ (am? + par

o3

efdu dur , dURdUt U o dUF U
[M&E*Ua@ (EARE LS LT & Rl

2
- o[%)%. (3.7
If we write
R(6) = W*(8) (W(e)W*(g)} L (dW(g)/de)

one can check that

o) - rat - v (3.8)

weomws) " GE - weonn) ey JE5 oy

o)t (GE I Moiin oms)™L w S ey (3.9)
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Thus the non-zero elements of A(8) can be found as the non-zero eigen-
values of (3.7), (3.8) or (3.9).
if

Formula (3.9) is particularly convenient

WW*, (dW/de) (dW*/de) and (dW/de)w*

(3.10)
are all diagonal because we can set
- ® -
A= (W) 1[%%} - (W) 2[% w*]z. (3.11)




4. DETECTION OF A DISCRETE FREQUENCY COMPONENT

We observe Z = (Zl, cee Zn)* where the Zj are independently nor-

mally distributed with unit variances and with
EZJ. = § sin[{j - (n+*1)/2}6] + &, cos [{j - (n+1)/2}e]. (4.1)

That is Zl’ oo Zn is a sequence of independent standard normal variables
on to which has been superimposed a cyclic effect with period 2n/6. Formula
(4.1) is just a change of parameterization of (1.3). Now suppose we wish to
test the hypothesis, £ =0, that is there is no frequency component, against
the alternative that £ # 0. Traditionally, see Hannan (1960), pages 76-83,
this problem has been handled by looking at only values of 6 of the form
2nk/n:k = 1, ... {n/2]. For these values of & the corresponding values of
(3.5) will be independent and so significance levels can be readily calcula-
ted. However a loss of power occurs if the true value of 6 falls between
these values. We should emphasize that we are concerned with discrete fre-

quency components. The method considered here has little relevance to the

problem of detecting peaks in the frequency spectrum which have a bandwidth ]
greater than 2m/n cycles per sampling interval.

Now apply the theory of the previous section. The matrices (3.10) are

derived in the appendix and all turn out to be diagonal so (3.11) applies.

Applying (3.5) and (4.1) we find
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(n 12 P
S(e) = % Zj sin{{j - (n*1)/2}6]| / vy !
g :
rn 12 ‘
+ |z 2. cos[{j - (n+1)/2}e)| / v (4.2) :
kl J 2

where

v, = {n - sin(ng) / sin(e)} / 2

v, = {n + sin(ng) / sin(e)} / 2

For the moment we suppose 0 <L <6 <U<T so that S(8) is defined.
Then it is shown in the appendix that the eigenvalues Al and Ay can be

expressed
(n? - 1)/(36) - n%/4 + (1 - F%/G%)/(4 sin’ g) (4.3)

where

L2 2]
L}

cos(ng) - g cos @
G=1 - ¢ sin(ne)/(n sin g)
0=+ 1 togive A o -1 to give Age

For each 8 the value of E{(Y*Y)%} = a(e), say, can be found from

(2.13) and so the bound (2.11) is equal to

U
JL a(e) de ., ule Wl 4 e W2, (4.4)
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In fact (4.3) tends to zero as 6 tends to 0 or 7 so, provided (4.2)
and (4.3) are defined by continuity at 6 = 0 or 7, we can allow 6 to take
any value in the range [0,7]. For n large and 6 not near 0 or =
formula (4.3) can be approximated by n2/12 leading to a(®) in (4.4) being

approximated by n(w/24)’1 which in turn leads to (4.4) being approximated by
nufe W2 (L) / (24m’t + o W2 (4.5)

The approximation of a(8) by n(v/24)15 turns out to be adequate if n >4
and 2m/n <8 <w - 2n/n. This approximation is also good for moderate and
large values of n when 6 covers the whole range 0 <6 <w, In Table I
the values of [ g a(e)dé/ v and its approximation n(n/24)li are listed
for various values of n. It will be noted that the approximation is espe-
cially good if the approximate value is reduced by .S.

To test the sharpness of the bound (4.4) on the significance probability
a simulation was carried out with n = 16. One thousand simulations were
performed. The function $(6) was examined at 255 points and the number
of times the hypothesis, £ =0, was rejected at the .2, .1, .05, .02 and .01
levels counted together with the total number of upcrossings. The results
are listed in Table II. In each case the number of upcrossings was only
slightly above the number of significant results indicating that the nominal
significance level was close to the actual significance level. Other simu-
lations with n=4 and n = 64 yielded similar resu}ts. The simulations
were carried out on the CDC 6400 computer on the Berkeley campus of the
University of California and used the IMSL subroutines GGNML and FFTRC.




Formula (4.5) can be compared with the formula one obtains when one
considers the test based on the maximum of .Sk = $(2nk/n) where k 1is an

integer. Assuming U and L to be of the form (2k+1)n/n

P{ sup(Sk:L < 2rk/n < U) > u}

=1-(1- e‘U/Z)n(U-L)/(Z'rr)

~ne W -y / 2m. (4.6)

In fact, there is relatively little difference between the values of u re-
quired to give the same value to formulas (4.5) and (4.6) and thus there is
only a small loss of sensitivity when the test based on the maximum of the
Sk is replaced by the test considered in this paper and 6 1is of the form
2tk/n. On the other hand for values of 8 of the form (2k+1)w/n our
test has a substantial advantage.

In practice, of course, one would need to normalize the time-series
(Zl, vee Zn) by subtracting off the sample mean and dividing by the sample
standard deviation. It may also be necessary to compensate for serial corre-
lation by fitting a simple autoregressive or moving average process. Sub-
tracting the sample mean would have a major effect only at the very low fre-
quency end of the spectrnum and hence for large n formula (4.5) would
still be applicable. On the other hand if we denote (4.5) by «(u) and
differentiate we find da(u)/du = 0(a(u)). Also u = 0(log n). Since the
standard deviation and any autoregressive or moving average parameters would

be estimated to an accuracy of O(n'l‘) the effect on the significance level

RPNV O R
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would be similar to that of changing u by O(un %) = 0(n % log n) which
would be asymptotically negligible. Hence, for large n, formula (4.5) would
still be applicable when applied to the suitably pre-whitened normalized, and
centered time-series.

According to Feller (1970), section 26.7, theorems 1 and 3, the central
limit theorem holds for moderate deviations of o(n1/6) and hence we would
expect (4.5) to hold asymptotically, even if the Zj were not normally dis-

tributed. However further study is required on this point.




TABLE 1
n /7 a(e) do /n n(n/24)" ;
5 1.26 1.81 :
10 3.09 3.62 §
15 1.91 5.43 j
20 6.72 7.23 |
25 8.53 9.05 -
30 10.34 10.85 ]
10 13.96 14.47 ;
50 17.58 18.09
60 21.20 21.71 -
80 28.44 28.94 §
100 35.68 36.18 :
|
!
TABLE 11

Simulation of the Test for Frequency Components

Nominal Significance Level
Critical level, u

Expected number of upcrossings
Observed number of upcrossings

Number of significance tests

.2 .1 .05 .02 .01
8.848 10.385 11.901 13.879 15.362

200 100 50 20 10
221 114 57 21 10 3
198 107 56 20 9 '




APPENDIX
Derivation of Formula (4.3)

Using the notation of section 3 and letting m = (n+l)/2
W= | sin{(1-m)8} sin{(2-m)8} ... sin{(n-m)g}
cos{(1-m)8} cos{(2-m)p} ... cos{(n-m)g}

All the off-diagonal elements of the matrices (3.10) are zero since the k-th
and (n+l-k)-th terms in the sums that form these elements cancel. The dia-

gonal elements of WW* may be expressed
no 2 no2
%: sin“{(k-m)s} and % cos“{(k-m)g} (A.1)

which are equal to nG where G is as in (4.3) with o = +1 for the first
term and -1 for the second term. The diagonal elements of (dW/de)W* are

given by
n n
;-: (k-m) sin{(k-m)8} cos{(k-m)8} and -1; (k-m) {sin{ (k-m)6} cos{(k-m)e}
(A.2)

and may be evaluated by differentiating (A.1l) and dividing by 2. Hence they
are equal to -n(Gcos 6 + oF) / (4 sin8) with F and G as in (4.3) and
6 as before. The diagonal elements of (dW/d9)(dW*/de) are given by

322 n 2 i 2.
i(km) cos“{(k-m)g} and i(k-m) sin“{(k-m)g} (A.3)




ry

Summing these two terms we obtain
n 2 2
£ k-m)® = n(n"-1) / 12
1
while the difference may be found by differentiating (A.2):

n 2,2 L ein
% (k-m) “[cos“{(k-m)8} - sin®{(k-m)g}]

2

= 4 cn{(nz-l) + (G+ Gcos“g + 20F cose - nzG sinze) / sinze}

for o0 =+1 or -1. Thus (A.3) is equal to

2

n(n2-1)/6 + n(G + G coss + 20F coss - n’G sin%g) / (8 sin®e)

with o = +1 for the first term and -1 for the second term. This completes

the derivation of the matrices (3.10). Evaluation of (3.11) results in

formula (4.3).

T T




REFERENCES

Abramowitz, M. and Stegun, I. A. (1970), Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, New York: U.S. Govern-
ment Printing Office.

Btihler, W. J. and Puri, Prem S. (1966), '"On optimal asymptotic tests of
composite hypotheses with several constraints,'" Zeitschrift fiir l

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5, 71-88.

Davies, R. B. (1977), "Hypothesis testing when a nuisance parameter is pre-
sent only under the alternative,' Biometrika, 64, 247-254.

Feller, W. (1971), An Introduction to Probability Theory and its Applications,
Volume II, second edition, New York: Wiley.

Hannan, E. J. (1960), Time Series Analysis, New York: Wiley.

Harvey, J. R. (1966), "Fractional moments of a quadratic form in non-central
normal random variables,' University Microfilms, 65, 14114.

Marcus, M. B. (1977), "Level crossings of a stochastic process with absolutely
continuous sample paths,'" Annals of Probability, 5, 52-71.

Sharpe, K. (1978), "Some properties of the crossing process generated by a
stationary chi-squared process,' Advances in Applied Probability, 10,
373-391.




