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1. Introcduc+ticn.

-

In the single-server gueueing model with uniformly bcunded

virtual waiting times studied here,the server never permits the
aﬁount of work still to be handled by him at any moment to exceed 1
a constant D. This means that the total time srent by each
customer in the system is limited by D. If this time exceeds D, 1
then the customer has to cut short his assigned service time. ‘
This model is alsc the model for the dam with finite capacity,
instantaneous water supply and constant release rule. The content
of the dam is equivalent to the virtual waiting time of the gueueing
system. If at some input moment, the supply is so large that the
content exceeds the capacity, then overflow occurs.
The Ej/D/l model has been investigated by Ghosal [9] and
Prabhu [15]; the M/G/l1 model by Kovalenko [1ll], Takécs (23] and
Cohen [5]. Cohen [4] also obtained several results for the model
in which the inter-arrival times and service times have rational
Laplace-Stieljes transforms. Daley [7,8]) studied the distribution
of the stationary waiting time of the GI/G/1 model. (See also [1]
and [2]). 1In this paper, we shall obtain a fairly complete
solution for the GI/G/l model. Explicit results will be obtained
for the M/G/1 model.
The key to our analysis of the system is that many of its

processes are regenerative; that is, they restart probabilistically

whenever o customer initiates a busy period. Regenerative processes

in this sense were introduced by Smith (17,18] and have been used
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cv many authers to study the staticnary rzenavicur o many
queueing svstems. ( See, for example, [3}, 13}, g1, [12:, ‘13,
[16] and [19])). By using the regenerative crccerties along with

analytical methods in this paper, we shall show that not only
the stationary behaviour cf the system can be studied but its
transient characteristics can also be obtained. These methods
alsc give us insight into the probabilistic structure of the
system. In Section 3, the mathematical description of the
transient behaviour of the system is obtained from its behaviour
within a busy cycle. 1In Section 4, the mathematical description
of its stationary behaviour is also obtained from its behaviour
within a busy cycle. The behaviour of the system within a busy

cycle and the stochastic laws for the busy cycle are then

studied in Section 5. In Section 6, due to the special structure

of the M/G/1 gueue, we shall obtain explicit results for the
behaviour within a busy cycle and the stochastic laws for the

busy cycle of this system.




2. The formal model and notation.

We are given
(D.1) a real, positive number D, D < =;
(D.2) an integer-valued, non-ncgative random variable m,, E{m,}<=;
(D.3) a real, non-negative random variable Wor Pfyog D} = 1;
(D.4) Two independent sequences of independent and identically
distributed, real, positive random variables {gk,k; 1} and
{s s k» 1}. We assume that each of s, and t, has a finite first
moment .

m, 1s the number of customers in the system at time t=0-

and W, is the virtual waiting time at time t=0-. Let customers

(my+1), (my+2), ..., k ,.... arrive at the time epochs 3@0+ 1’
I+ 27 oo Tpr o oee where 0 = 1 +1 S Tm g et I < el

-0 -0 -0
Let T, - Iy = ty v for all k>go.

. . . th
Let the assigned service time of the k customer be Sy -

We assume that no customer can stay in the system longer than the
time interval of length D. If the total actual waiting time and
service time of a customer exceeds D, then he shall cut short his

assigned service time.

We write
(D.5) ¥(z) = Elexp(-28,)} for Re(z) 3 O:
(D.6) Q(z)- = Elexp(-2t,)} for Re(z) 3 O.

The customers are served in order of their arrivals and there is no

limit on the size of the waiting room.




(D.8)

(D.9)

(D.10)
(D.1.)
(D.12)
(D.13)
(D.14)
(D.15)
(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

Besides Iy we want to study the following random variables:

a(t)

The results

o . th . .
the actual waitin- time of the k customer (k>m,;;
limit in distribution of W), when k-x, if this exists;

h

the lost service time of the k™ customer (k>my),

i.e. i, = max (w, + s.,D) - D ;

limit in distribution of | when k-, 1f this exists;

the duration of the initial busy period;
the duration of the vth busy peried, vz 2;

the duration of the first idle period:;

th

the duration of the v idle period, v 2;

P + ;l = the duration of the initial busy cycle;

B, * i, the duration of the vth busy cycle, vz 2;

the number of customers served during the initial busy
period, including the o, customers in the system at

time t=0-;

the number of customers served during the vth busy period,

v 2:

]

the virtual waiting time at time t, t3 0;

= limit in distribution of v(t) when t»=, if this exists;

= the total number of customers arriving during the time
interval [0,t], including the m, customers in the
system at time t=0-;

= the time difference between t and the time of the first

arrival during the interval (t,«).

will be expressed in the following forms:

T Py




{D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

{D.29)

W
m,

L
m,

\Y%

w

w

m,w

m

W, (2)
Lo(z)

Ve (2)

- = x k i - - i = =W
(x,2,2) = Zk=m+lx E-.exp( 5% Zﬁk)‘mo ™, W =W,

for 0<!x|<l, Re(3)30, 'z <», m30, w20;

- i k .

r = [ - - = =W
(x,%,2) Zk=m+1x Elexp (=51, -2%,) [my=m, Wy=w)
for 0<|x|<l, Re(Z)30, Re(z)30, m30, w30;

t)

(x,5,2,8) = foexp(-it)e{xz( exp(-zv(t)-sa(t))|m =mw -w)dt

for 0<|x|<l, Re(g)20, lz|<=,Re(s)30, mz0, w30;

n

- -1 —z : - -
C,w(Xr8s-2) = Elx Texp( fey+ziy) Img=m, wy=w)

for 0<|x|<l, Re(&)30, Re(z)g0, mz0, w30;

glexp(-zw)} for J|z|<= ;

glexp(-2z2_)} for Rel(z)320 ;

Elexp(-zy (=)} for |z|<=

We shall need the following intermediate Laplace-Stieljes

transforms:

(D.30)

(D.31)

(D.32)

(D.33)

~

~

~

m

[521

= k - - = =
wm'w(x,i,z) = E{zk=m+1 x"exp (-§1, zyk)[go m, W, w}

for 0<|x|gl, Re(£)30, |z|<®, m30, w30;

n
Lo, w(Xrér2) = E{Zkim+1 xkeXp('glk-Z&k)lﬁo=m’ﬁ0=w}

for 0<|x|gl, Re(£)30, Re(z)30, m30, w30;

re
Vi w(Xr6:2,8) = E{J 1 xz(t)exp(-gt-zz(t)-sg(t))dt|go=m,yo=w}

for 0<|x|gl, Re(§)30, |z|<», Re(s)30, m30, w30;

n

P wiXrgr8) = E{x’lexm-am'si_l)mo=m"-'o=W}

for 0<|x|gl, Re(g) 0, Re(s)30, m30, w30.




It is important to point out here
of busy periods which Cohen [ 4,p.284]
periods. While two consecutive strong

with probability one by an idle period

busy period may be followed by an idle

that there are two types
calls strong and weak Lbusy
busy periods are separated

of non-zero duration; a weax

period of zero duration.

In other words, if the (k+l)th customer arrives at the instant
the kth customer departs, the strong busy period continues while
the weak busy period terminates and a new weak busy period starts.
We consider both types of busy periods in this paper. If the
result is applicable for both, no notational distinctions are
made. If a result is applicable to the strong busy period only,
then a superscript "s" is added to the notation. If a result is

applicable to the weak busy period only, then the superscript "w"

is added.

Remarks:

(R.1) From (D.20) and (D.31), we have

(2.1) E{n;Im =m,wo=w} = &m'w(l,0,0)+m = £m,w(l,0,0)+m ;
(2.2) E{gz} %0’0(1,0,0) = £0’0(l,0,0) .
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3. Regenerative results for the transient behaviour.

In this secticn, we shall show that the study of the actual
waiting time of each customer, the lost service time ©f each
customer and the virtual waiting time at each epoch can be
reduced to the study of the lost servive times within one busy
cvcle alone; that is, for 0<|x|<l, Re(%)z Re(s)20, m20, w20,

Wm’w(x,i,z) (|z!<w),Lm,w(x,£,z) (Re(z)20) and Vm,w(x,i,z,s) (12! <)

can be obtained from Lm'w(x,g,z) (Re(z) 20) and Cm w(X,S,O).

’

The arguments are based mainly on the regenerative property
that the continuations of many processes in this system beyond
the end of a busy cycle are the probabilistic replicas of these
processes commencing at the beginning of that busy cvcle.

THEOREM 1 For 0<|x|<l, Re(£)30, |z|<» , m>0, w>0,

~

(3.1) Wolo(x,i,z) Wolo(x,a,z) / (1 (x,£,0)1

~

Wm,w(x,i,z) + Cm

~Co,0

(3.2) wm,w(x’g’z) w(xlglo)wo'o(xlglz)

14

PROOF : We have , from (D.23) and (D.30), for mx»0, w30,
= 14
(3.3) Wm’w(xrglz) Wm,w(x”'z)

- _r_1_l+k l
+ E{zk=lx eXp(—EEEl_Fk_Z_VZBl_'_k) ll'_n.():m,EO:w } .

Now since the gueueing process starts again probabilistically

when the (gx_l+1)th customer initiates the second busy period at

time 121+1 =¢ s &; and n, are independent of yﬁl+k for all
k21l. Also, for all k21, Eﬂl+k are independent of I, and LAD

Thus we can write




THEOREM 2:

(3.4) N‘,w(x,i,z) = Wm, (x,2,2)
- |"7°° X e - ‘ _ e — }
+ C w(k"’0)51¢k=lx exp ( Sk zﬁgl+kiﬁo_o’i0_0f
Furthermore, if §O=0 and H0=0'then E31+k will have the
same distribution as L Thus (3.2) is proved. As (3.2)
is also applicable when 90=0, 30=O, (3.1) follows.C

For 0<;x,<l, Re(Z)30, Re(z)30, m>9, w>0,

(305) LO,O(x,g'Z) LD,O(X'g’Z) / E—CO,O(XIS’O)] ;

i
>

(3.6) L

m.w (Xe5,2)
14

z +
m’w(xl‘vlz) Cm

w(xrgrO)Lo'o(xrirz)

4

PROQF: The proof is omitted because it is analogous to that of

Theorem 1.7

g v £
theorems 1 and 2 relate Nm'w(x,i,z) and Lm,w(x,ﬁ,z) to

W X,5,2 L
m'w( r> )I m'

w(x,c,,z) and Cm,w(x,E,O). We shall now show
that Vm,w(x,i,z,s) can be obtained from Wm’w(x,g,z) and

L. w(x,E,z). This is an important relation which is of interest
r

by itself because it enablesus to find the mathematical description

of the behaviour of a queue in continuous time if we know its

behaviour at a certain set of discrete-time epochs.

LEMMA 1: For 0<[x[<l, Re(%)30, [z[<® , m>0, w>0,
(3.7) Volo(x,g,z,s) \;Olo(x,i,z,s) / [l—co,o(x,i,oa
(3.8) Vm'w(x,g,z,s) = Gm,w(x,g,z,s)
+ Cm,w(x,E,O)Vo’o(x,g,z,s)
PROOF: The proof of this lemma is omitted because it is analogous

t/,/’




./ - -
te that “f Theorom 1. lisre, we usoe th rvoperty thoatoifoi 7o,
rhen Zcr all t©30, f"!"w_.z,) PVt 1 1 S B >
same Jdistributicns :s ultten, o vottoandt et S LS A D
ILEMMA 2: For 0-ix'<l, Re(Z)z Re(s)s, U , "z o4v, om0, w0,
(3.9) (2+S-‘J,)Vm’w(:<,i,z,s)
= -xMexr (~zw) - zxmexp((s—i)w) Js=-%)
- | -
+ \_l x+(z)ﬂ(s)‘lwm'w(x,i,z)/x
. 1 N -
+ z l—x%‘(g-s);’l(s)jwm ,.J(x,» ,E-8) /x(s-7)
e r>
+ exp(-zD)Q(s)[Lm’w(x,i,z)—Lml‘_I(x,{,ﬂ)J
+ zexp((s-5)D)L(s) [Lm G XeZe TS Ly w(x,:',,D)J /{s=%)
o 1]
+ (z+s—£)cm’w(x,5,0)/(S~S)
PROOF: For 0<!x|<l, Re(g£)20, Re(s)z0, |zl<» , Ogm<in -1}, w30,
(3.10) Vm'w(x,-i,z,s) =
n -1 T ‘;
- k[~k+1 : -t - - = =,
E{Ekim+l P JTk exp(~£t-z(1k+mm(y_k+gk,D) t)=slzp 4y t))dtl\mo m, W=,
ny Ry . - =
+ E{x [ e)(p(~t,t'.—z(1n tmin(w_+S, ,D)--t)-s(_r_n +l—t))dt M) =M, Wy =W
In =1 =1 -1 -1
o) (%) - }
+ E{x fgl exp(~€t—s(1ﬂl+l-t))dt\go-—m,_vio—w
= i - f < and
A W,y T L ¢ min(wts, D) < Ty FOF KCL An
p, =1+ minlw +s D), (3.10) becomes
' 1 oL
T~
-"L"" I e e e e -




_ln-

~

1 : -
(3.11) v (x,7,2,8)
R -~
1 =1 ki - s
7757 E{lk=me1 X (=i T Egy)

- exp(-il ~z(min(w, +s, ,D))-st

——l—? E{ X [%xp(-sgl-s(gl-gl))

Now observe that for ksn

(3.12)

- - -2 'm3 - = =
exp ( 5321 ?\mln(y£l+§gl,D)) sggl{]!go—m,yo w }

1 o1 . .
5-F E{ X Lexp(-;gl) - exp(—;Bl-S(El-El))] 'Eom,zoﬂd }

1’ ik.= max(yk+§k,D)—D and hence

exp(-ilk-z(mln(yk+§k,0))-sgk)
= - - - [ -
exp (-L1y z2(w *s, ) -st, ) + exp( SIy-zD-st,)
- exp(-E1, -z (max (w, +s, ,D)) -st, )
= exp(-zgk)exp(-sgk)exp(-ilk-zyk)

- exp(-zD)exp(-sEk) exp(~£1k-z&k)—exp(-£1k;]

Thus (3.11) can now be written as

(3.13)

A

Vm,w(X,E,z,s)=-xmexp(—zw)/(z+s-5)
¥ (1—x?(z)n(s)]§vm JX,5,2) / x(z+s-E)
+ exp(—zD)Q(s)[%m w Xr8s2) = im’w(x,g,O) / (z+s-¢)

+ Pm’w(x,g,s) / (2+s-£)

+ 'Lcm’wm,g,o) - Pm,w‘x'E'S’J/ (s-£)

T A

e ket e




It is easy to prove that ERh is also applicanie

when =n, = m+l. Ncw since ¥ (x,2,2,8),P_ _{x,%,s) and
—~a ave y ol w

C, .. (%,3,0) are aralyzic %r 8 X <2 Re(3) 3 Rels)20, z <=,

oy

[

etting z=3-s in (3.13) vields

(3.14) 2 (x,%,8) = xTexp ((s=I)w)
- L}-x?(;-s)“(s{jwm'w(x,z,i-s)/x
- exp((s=Z o * 5 ror- -1 r
o (( _)D>.(s)L_ m'w(x,,,, s) Lm,w(x,,,O)__

If we substitute this equation back into (3.13), we obtain (3.9 )._

THEOREM 3: For 0<!x!<l, Re(3)2zRe(s)30, |zi<=, m30, w30,

{3.15) (z+s-E)Vm w(x,E,,z,s) = -xmexp(-zw) - zxmexp((s-—;)W)/(s-i~

- E--X‘P(Z)Q(s) W

n w(x,S,z)/x
4

w(x,i,i-s)/x(s-i)

-
+ z(i-xW(i-s)Q(s)lW
— _tm,

+ exp(-zD)Q(s)[Lm w(x,é,’,z)-Lm w(x,i,d?W

—

+ zexp((s-i)D)Q(s)[E (x,i,i-s)-Lm w(x,i,o;I/(s-i)

m,w

PROOF: The proof is straightforward from Theorems 1,2 and

Lemmas 1,2.C

~

It remains to show that Wﬁ w(x,:’,,z) can ke obtained from

’

~

Lm'w(x,;,z) and Cm,w(x,;,-z).

THEOREM 4: For 0<{x|gl, Re(Z)3Re(z)320,m20, w20,
(3.16) [l-xW(z)Q(i-z)]wm,w(x.i,z)

m+1l - _ r -
= X exp (-2w) xcm,w(x,,, z)
- xexp(-zD)Q(i-z)CLm,w(x,s,z)-Lm,w(x,i,O)_

BRaa o




PRCOF: Since Vm'w(x,{,z,s), Cm’w(x,{,O‘ znd ?m,w(x,',s'
are aralytic for 0-.x (1, Re(I)uReiz),3, mul, wid, 3.15)

is obtained b uttin s = I~z in (3.13).
Y P g

RemarXks:

(R.2) (3.1) and (3.7) are the generalizations of (3.3} ard
{4.6) in (5,pps. 6,13] respectively.

{R.3) When D—-x , then Theorem 3 becomes Theorem 2 in {21).
While Takgcs derived the 'latter directly, the former 1s obtained

via Lemma 2, which will dlso be useful in the derivation of

Theorem 6 later.
(R.4) If we let x»1 , z-+0, s»0 in (3.14) and (3.16) and then
use l'Hospital's Rule to obtain the limit when -0, we shall
obtain the following Generalized Wald's Lerma:

. . e PSR
(3.17) Elp,r = Elwyd + (elnji-eimyilefs)® “E{lkemelik?
(3.18) Eicyt = [(Einyi-EimytlElE,

——t .

.
’

T el - - s



4. Regenerative results for the staticnary behaviour.

For the gueueing system studied in this paper, 1t has bee:
proved that, unless s, = t, = constant < D, each oI the processes

Wy k>m {4y rkom r and ‘v{t),t20: has a unigue stationary

o’ 0

distribution which is independent of the initial conditions

(See [7]), In this section, we shall show that the study of the
stationary behaviour of the system can also be reduced to the

study of the lost service times within one busy cycle alone; that

is, the expressions for W_(z) (lzi<»), L_(z) (Re(z)30) and

x

~

v, (z) (]z|<®) can be obtained from Ly, g(1:0/2). Here, we shall
use a general theorem in the literature stating that the stationary
distribution of a regenerative process, if it exists, is the

'time average' or 'customer average' of the process over a regene-

rative cycle. (See [ 5])

This allows us to state the following theorem without proof:

THEOREM 5:
(4.1) W_(z) = wo’o(l,O,z)/E{gz} for |z|<w» ;
(4.2) L {(z) = L (1,0,2)/g{n,} for Re(z)30
o 0,0 2
Together with (3.16), (2.2)., the assertion for W_(z) and L_(z)

is now true. The next theorem will allow us to find the distribution
function of the stationary virtual waiting time in terms of the
distripution functions of the stationary actual waiting time and

the stationary lost service time.

T S RS e i
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THEOREM 6: For  z <x
(4.3) VvV (2) =1 - gipyi/E-Cys *+ l-¥lz) W (z)/zg gy
+ exp(-zD) [L_(z)-1]/2g{t;:
PROOF: This is because V_(z) = Vv, ,(1,0,2,0)/Eic,} . Upon

applying 1l'Hospital rule to (3.13), we prove the theorem. []

Remarks:

(R.5) When D+>, then (4.3) becomes a well-known result due to

/
Takacs (20] for the classical GI/G/1 gqueue.

©m e Sam——rm—— e et e




The stcchastic laws for the busv cycles.

i

Let

{D.34) M, = the set of all those functions of z which are analytic
in the domain Re(z)>0 and continuous, free from zerocs,
uniformly bounded in Re(z! :20;

(3.33) \_ = the set of all those functions of z which are analvtic
in the domain Re(z)<0 and continuous, free £from zeros,
uniformly bounded in Re(z) <0;

(D.35) R, = the set of all those functions #(z) which are defined

for Re(2z)=0 on the complex plane and can be represented

in the form
(5.1) ¢(z) = g{gexp(-zn)} ,

where ¢ is a complex (or real) random variable with

e{lgl}<= and - n 1is a real random variable.

Let us define the following transformations cn R,:

(D.37) T,{2(2)} = E(zexp(-zn")}

(D.38) T;{e(2)} = o¢(z) - T,(8(2)} ;

(D.39) u.{2(z)} = E{z8(n20)exp(-2zn)} ;

(D.40) u;{é(z)} = ?(z) - Uz{é(z)}= E‘Cg:‘(yO)exp(-z;)} ;
(D.41) vo{2(2)} = g3 (n>0)exp (~zn)} ;

(D.42) viid(z)} = 9(z) - v,{e(z)} = E{1%(ns0)exp(-27)} ,

+
where 1 = max(0,n) and é(A) is the indicator function of any

event A; that is, §5(d)=1 if A occurs and $(a)=0 i7f A does not occur.

A e o o



Clearly, Tziﬁ(:)}, u,{#(z)} and vy oiiT o Ze.ing =l
" na T;{¢(:‘?, U;{b(z)} and v;{:(:) belong %o Nee Alse, :t

is easy to shcw that

(5.2, {32)r = T1,00(2)) + Lim | 7r{0(2)}
(5.3)  yzir(2)} = 1332y} - lin, | o T2{%(2)] ;
(5.4) v,{2(2)} = Tz{g(z)} - lim, thQ(z)} :
(5.5) V;{;(z)} = T32)) + lim Tz{¢(z)} ;
(5.6) T,{*(2)} = y, Lo} + lim ,urie)}
(5.7 T, %)} = v (§(2)} + lim o vi{s(2)}
This means that the closed form expressions for these

transformations can be obtained if that for Tz{b(z)} is known.
The following lemma, which is due to Takdes 227, will

enable us to obtain T,{9(2)} explicitly:

LEMMA 3: If ¢(z)eRz , then for Re(z)>0, we have

~ . Zz {@(S)
(5.8) T,{e(2)} = %0(0) + Lim_,, 3% (=2 '
L
€

where the path of integration Le (e>0) consists of the imaginary

axis from z=-i= to 2=-ic¢ and again from z=ieg to z=iw,

PROOF: See Theorem 2 in [221.0

In this paper, we have shown in Sections 3 and 4 that both
the transient and stationary behaviours of the system can be studied

in term of the lost service times within one busy cycle alone.
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These equations will be expressed in terms of the transformaticns
defined in (D.37)-{(D.42).

Basically, this method simply involves the re-arrangement o£
(3.16) into identities whose left hand sides belong to M, and
right nand sides belong to N, - By Liouville's Theorem, they are
functions independent of z. fhe integral eguaticns will be obvious
when these functicns are known.

First, for the sake of simplicity, let us write

~ ~ N

(D.43) Qm'w(xri,z) = Lm,w(x,i,Z) - Lm'w(x,i,O)

for 0<|x|gl, Re(£)20, Re(z)20, m>0, w30.

From (3.16), we have

A

(5.9) Lm'w(x,E,O) = Wm'w(XIEIOI = [x

m+l-me,w(X,£,0)]/[l-XQ(g)] .

This means that L (x,£,2) will be known if Qm w'X+&,2) and
’

m,w
£ -
Cm,w(x"’ Z) are known.
For 0<|x|gl, OgRe(z)gRe(f), we now assert that

{l=-¥(2)0(f-2)] can te factorized into the form

(5.10) [1-x¥(2)Q(E-2)] g (x,8,2) /9 (x,8,2)

where g"’(x,::,z)eMz and g (x,£,2) € N,-
Such factorization always exists as we can write

(5.11) g+(x,E,z) = exp{Tz{ln(l-xW(z)Q(i-Z))}} H

(5.12) g (x,6,2) = exp{-T;{ln(l-xW(z)Q(a-z))}} .




Rk, i,20 Rk, 5,2) where no(x,I,z) =M, and noax,I,2) %oy,
then by Liouville's Theorem g (x,3,z)/h (x,2,2) = g (x,3,2)/h (x,3,2}
= Fi(x,3). If ¢{z) or Z(z) is a rational Zfunction of 2z, then the
- . + . - . "
more useful expressionsocfg (x,3,z) and ¢ (x,%,z) have been
obtained in -21. (eguations 43, 44, 50 and 51).
(316 ) can ncw be re-arranged as

m

+ . - . - " \
(5.13) g (x,;,z)wm w Xed,2) - x *'sz{g (x,3,2z)exp(~2zw) }

’

+ xTz{ g-(x,i,z)exp(--zD)Q(g-z)Q_n w(x,-;,z)}

xm+lT;{g’<x,s,z>exp<-zw)}

A

- xT7d g—(x,:',,z)exp(-zD)fl(:’,-z)Qn W(X:8,2)}

Wy

-y (x,5,2)C (%,5,-2)

for 0<{x|<l, Re(£)2Re(z)20, m20, w20. As the left hand side of
this equation belongs to M, and its right hand side belongs to

N, s applications of Liouville's Theorem and analytic continuation
yields

(5.14) g*(x,&,z)%m L(x8,2) =

Tz{g-(x,i,z)exp(-zw) }
+ xTz{ g-(x,s,z)exp(-zD)Q(E-z)&m’w(x,i,z)} = R(x,&)

for 0<|x|gl, Re(g)30, Re(z)30 , m30, w30; and

(5.15) Pl T’z'{ g (x,E,2)exp(-zw) } -xT ;{ g (x,5,z)exp(-2D)Q (E—z)Qm'w(X.E,z) }

- xg (x,6,2)C L (x,§,-2) = R(x,8)

for O0<|x|sl, Re(§)20, Re(z) 0, m30, w30.
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Alsc, 2zserwing <hat Zfreom (3.120,
T ! - - & 20 Vet - “w T \
nm’w\x,,,z,exp(«D,.\z, Qm’w(A,s,z;
’ nl x . N
- — . I
= ) xX"exp(-%1, -2 (min{(w,_+s. ~D,0 I MATM, W =W
E{Lk=m+l _( ’—k ( (—k 2k ’ ))) _O + I_O j é N_ ’

we re-arrange (3.16) differently and then apply Liouville's

theorem and analytic continuation %o obktain

é (x,%,2) ( exp(z(D=-w))"¥ (2)
(5.16) Bl T - KTl
g (x,3,2) ; g (x,3,2) |
( ore ey )
Cn w<x,5,—z)exp(zD)V(z) ;
+ X7 L b = S{x,3)
2 +
g (x,8,2) }I
for 0<|x|€l, Re(%)30, Re(z)20, m>0, wz0; and
(5.17) - m,w(x,s,f)exp(zD)?(z) - Qm'w(x,i,z)
g (x,§,2)
( . vy )
! exp(z(D-w))W(z)] c (x,&,-2)exp(2zD) ¥ (2)
s el — - XT3 —— = s(x,8)
g (x,&,2) J g (x,£&,2)
for 0<|x|gl, Re(£)30, Re(z)gO, m20, w30.

The expressions of R(x,£) and S(x,£), which are dependent
on the type of busy cycle we are interested in, will enable us
to find the expressions of lew(x,i,z) and Cm'w(x,s,—z) as in

the following theorems:

s . .
THEOREM 7 : C:,w(x,g,-z) and Qm’w(x,g,z) satisfy the following

simultaneous inteyral equations:




~—
o - . .. AS . = o I - A
T ead ; AP O R Ny 2 = < U_' - Xy p o= T - -
=, z
.- . s -
- U;g: , T, exci-22; -z e X,.2
(0~ x g1, Rel2050, Revzigl, 150, wol' s
- - m-1 S s = A
05 (x,3,2) - X + xCo %I,
- T, W — Ay
(5.19) - = — -
g !\X’;—_,Z) [=f (xl.-.lo)'
’ \ L
m+l ‘exp(z(D-w))?(z)‘ ,CT w(x,i,—z)exp(z':*:‘:
i i . Moy
+ X Tz ‘ - ‘- - ‘<T21’ e -
.9 (x,3,2) : ; g (x,3,2)
(0<'x €1, Re’3)30, Relz} 0, m3Jd, w30).
.8 ] & 1 : S ’
PROOQF : We have pii = 0} = 0 for all vzl. Hence lim C X,
—_— =v z z==="m,w
o,

Thus if we let z--=» in (5.15), we shall obtain

= S - m+l. ., . - .
(.29 R7(x,%) = x lim, __,, T;tg (x,%,2)exp(~zw) ;

- xlim . T3l g-(x,i,Z)exp(-zD)I(i-z)Q;'w(x,;,z)}

Ugon substituting this back into (5.15), on behalf of (5.3),

we obtain (5.18). Also,we have lim2*0g+(x,£,z)#0 and from (D.43),

~

lim, _ 4Qy (¥/5,2) = 0. Thus if we let 2-0 in (5.16), remembering
’
that llmz__0 TZl@(z)} = llmz*0°(2)’ we obtain
- xm+l + xC w(x,i.O)
(5.21) S{x,3) = . )
g (x,5,0)

Upon substituting this back into (5.16),

we obtain (5.19). [J

o
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' _)1..
THEOREM 8:  C7 (x,7,-2) and 0¥  (X,7,z catisfy the following
kel B A m, w m,w : - B
simultaneous integral =auiations:

A - - w - m o, - . )
(5.22) g (X.L,Z)Cm’w(x,',-Z) = X v;1g (2,  ,2)exp(~z2w)
- v*{ﬂ_(x,’,z)exp(-zD)“(’-Z)Qw (x,%,2):
z 7 N > m,w :

( 0<ixlgl, Re(£)30, Re(z)L0, m>0, w>0)

{5.23) g—(x,i,z)cg'0<x,i,-2) =g (x,5,2) - limz>,q+(x,’,z>
- . . W - )
- v;{g (x,3,z)exp(-zD) (% z)QO'O(x,i,Z),
(0<|xigl, Re(£)30, Relz)gN)
W m+1 w -
PR = E
5 24) Qm,w(x z) ] X + me'w(x.,,O)
: + -
g7 (x,3,2) gt (x,8,0)
m+1 exp(z(D~w))¥(2) C; w Xr&-zlexp(zD) ¥ (2) ]
+ X T - XT !
z g+(X'E,Z) z g+(:{lglz) J

(0<|x|§l, Re(£)30, Re(z)30, m30, w30),

PROOF : We have p{3:=0} = 0 for 0<m,<k<n;. Hence
; oW : - : R .
llmZ*m m'w(x,,,z) xom,O where oi,j is the Kronecker delta.

Thus, for m>0, w>0, letting z+~ in (5.14), we obtain

(5.25) R"(x,£) = -x™"11in T,(9" (xiZ,2)exp(-zw) }

z»ao
+x1im2*mrz{ g‘(x,&,z)exp(—zD)Q(E—z)Qg'w(x,S,z)}

Upon substituting this back into (5.15), on behalf of (5.5), we

obtain (5.22). When mo=0 and go=0, we first modify (5.14) to have

the term [;g’o(x,a,z)-g} included. (5.23) can now be derived by the same
method as that for (5.22). For (5.24), the proof is similar to

that for (5.19). []
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wiXrism2z) = XTyiig (x,i,z)expi-zw): /g (x,I,2z)

Wwhizh is eqguation (198) in [24]. (3.18) now can 2e wrizten as

= S . _ o mEl L - L, -
(5.27) Wm'w(X;;,Z) = X dz‘~.‘

This equation, together with (3.1}, (3.2}, (5.6), (5.26) yields

(5.28) Wm'w(x,i,z) = xm+lrz{q-(x,£,z)exp(-zw) etix, 3, 2),

/
a well-known result due to Pollaczek {14], Xingman [10]) and Takacs

[ - e
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3. The strong MG/ L zueue.

In this secticn, we shall concentrate on the jueuelng systenm
in which the arrival Trocess .s a Poisscn 2rocess; that 1ls,

p{tlst} = l-exp(=it) for t»0. We shall oktain explicit expressich

S
T, W

fzr C 'X,3,=2). The argument 1s baseC on the proper:ty that
in this system, the idle periods are exponential distributed and

independent of the busy periods.

THEOREM 9:

(a) For O0<ix!<l, Re(£)20, Re(z)<0, m>0, w>0,

.-
I AP
m,w m,w

¢ 2
|
)
[0)]
»
oy
]
N
)

(XISIO)/('\‘:'s-Z)

() For 0<lxlg¢l, Re(3)20, m20, w20,

(6.2) BT (x,3,0) =
m,
[ 1 1 7 exp(s{D-w))¥(s)3s
m+l =3%w s -2 - - ! . ! r
¥(3) + x"‘H-le e D g (x,§,8) |————— - lim:ao -
2(A+g=2x) T 2mi)L_ [A+g-s=ix¥(s)]s |
i o

‘ 1 1 7 exp(sD) ¥(s)ds I
~-8D + . X ;
1+ rxge 3 (x,£,9) -~ lim |
12 (A+5) (A+E=ax) 2ri L [A+g-s] [A+§-s~ix¥(s)]s

i
— !
~—

where

(D.44) 3 = 8(x,&) 1is the root of the equation
(6.3) A+E-z=Ax¥ (2) = 0

in the domain Re(z)20 and

(6.4) g (x,8,2) = [A+g-z-Ax¥(z)]/[3~2] .

e S S

R

o
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PROOF : Iz p{gl<t} = i-exp{--%) for t30, then for all vzl,
i, is independent of both 2, and o and E{exp(-ziv)? = 2/ (v+z)
for Re(z)20. Thus we obtain (6.1). {3.16) can now be written as
" s .
(6.5) Wm’w(xr;rz) =
xm+l(k+i-z)exp(-zw) ~ AxP (x,2,0) - Xxexp(-zD)Qi wiXe3i,2)

S
m,w
A+i=z=ixVY(z2)

for 0<{x{gl, Re(£)30, Re(z)30, m30, w30. Now, since w; w Xe2,2)
L4

is analytic in the domain Re(z)20, letting z=5 as defined in (D.44)

yields

- - ~
(6.6) P~ (x,2,0) = x™Pe™Wy(g) o 7EDGS oo

14

for 0<|x|gl, Re(%£)30, m30, w20. Also, from (5.19), we can write

QS (x,E,2) Xt mel_ | SXP(Z(D-w))¥ (2) |
(6.7) : - - ¢ KL
g+(X'€:Z) g+(X,€,0) z g+(X.SrZ) j
1 exp(zD) V¥ (z)

+ AXPS (Xlglo) b 1
m, w g (%,£,0) (A+E) 20 gt (x,8,2) (A+E-2) j

for 0<|x|sl, Re(£)20, Re(z)30, m20, wz0. As g¥(x,2,2z) takes the

~

form of (6.4), we let z+9 in (6.7) and then eliminate Q: w(x,&,e)

from the resulting equation and (6.6) to prove (6.2). []

Remark:
(R.6) When D>= , {6.2) and (6.6) will become

a well-known result for the residual busy period of the M/G/l queue

(6.8) PR L (x,2,00 = x™1e™™y(s)  (0¢|x|<l, Re(2)30, m30, w»0).
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