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SECTION I

INTRODUCTION

This research involved the development and testing of a computer
simulation of motor skill learning. The work was unique in at least
three respects. First, the simulation was designed to be consistent
with psychological theory and data in its structure and processes.
Second, the simulation includes representation of a construct called
control strategy which is believed to affect motor learning and perfor-
mance. Third, the simulation was used to measure control strategy
in humans.

Control strategy was defined as a set of parameters selected by
the human operator that determine the style of learning and perform-
ance in manual control tasks. The parameter set consists of:

1. The criteria for behavior in various aspects of the task.

2. The stimulus cues to guide performance.

3. The sequence for performance of decision-making processes
important in manual control.

Why is control strategy a worthwhile subject for measurement?
An extensive literature indicates that control strategy, if measurable,
should provide a valuable supplement to conventional learning measures
such as tracking error or time-on-target. This supplement is particularly
necessary for the measurement of pilots' progress in training. Frequently,
conventional measures fail to detect the effects of different cues
provided to trainees, or fail to distinguish between trainees at different
levels of skill (see Section I1IA). Equipment and procedures for pilot
training are expensive, and failure to provide adequate training can
be life-threatening. Thus, the development of additional measures
of human learning of manual control tasks such as flying has the potential
for making a major impact on the cost-effectiveness of pilot training
and on pilot safety. How, then, might measurement of control strategy
provide useful information?

One reason that control strategy measurement may be informative
is that the control strategy developed during training is believed
to affect performance in the actual task setting. Further, it is believed
that while different control strategies may result in quite similar
per formances during training, they may result in quite different perform-
ance levels in the actual task setting (see Section IIIE). Thus, direct
measurement of control strategy and understanding of its relation to
performance in tasks other than the training task could be quite valu-
able in the design of effective training programs.




A second potential contribution of control strategy measurement
is for the training of individuals in the use of effective control stra-
tegies. The literature indicates that control strategy learning is
influenced by several factors - previous experience with tasks similar
to one currently being trained, direct experience in the task being
trained, and the functioning of attentional processes related to the
general performance of the operator. Since control strategy is learned
not only through present experiences, but also from past experiences
unique to the operator, it follows that the control strategy which devel-
ops for a given task will vary between individuals. The strategy that
develops may or may not be the most effective one for a task. There-
fore, the possibility exists that there can be explicit training for
good control strategies--good, in the sense that the control style devel-
oped is effective not only for training, but also for actual perform-
ance. Flight training might then be accomplished in a shorter time
than is now possible or with fewer, better selected cues. Flight simu-
lator design might be considerably aided by detailed knowledge of neces-
sary cues. Thus, there are a variety of reasons for believing that
control strategy is important and a worthwhile object for measurement.

Measurement of the time-varying control strategies of human oper-
ators was accomplished in this project by use of a computer simulation.
The simulation contained a representation of control strategy as defined
previously, permitted control strategy to be varied, and reflected
psychological evidence about human information processing in motor
skill learning. A major part of the work involved the development
of the simulation. This required the synthesis of a theory of strategy-
controlled learning in manual control tasks (see Section III). The
theory was based on a review of the existing literature but also includes
several novel ideas which merit testing in themselves.

The theory guided the development of the computer program called
the Human Operator Performance Emulator, or HOPE (see Section 1IV).
Given a numerical representation of a track, HOPE predicts control
stick positions that a human operator would use to align a cursor in
a preview tracking task. The operation of the HOPE program is modulated
by a set of three variable value control strategy parameters, which
represent the ways that different control strategies affect human information
processing and performance.

Measurement of control strategy in humans is accomplished by a
three step procedure. First, different sets of values of the control
strategy parameters are specified for HOPE. Second, the modulation
of HOPE by each set of parameter values results in multiple HOPE models
of human learning and behavior. Each model predicts human behavior
guided by a particular control strategy. Finally, the predictions
of the different models are compared to human behavior in a particular
training condition. The values of the control strategy parameters
of the model which best predict the individual's behavior in a specified
time frame are used to infer human control strategy (see Section VBS).

14




HOPE has received preliminary demonstration and validation tests,
the methods and outcomes of which are described in Section V. The re-
sults of these efforts are most encouraging, and support the HOPE repre-
sentation of human control behavior and control strategy. HOPE is able
to predict human behavior to a considerable extent. Human control stra-
tegy, as identifed by HOPE, varies as is predicted by psychological
theory--it changes with learning, reflects differences between training
conditions, and varies between individuals. The results suggest that
HOPE has considerable potential for providing valuable information about ]
human control strategy and about the progress of human learning.
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SECTION 11I

THE MEASUREMENT PROBLEM IN FLIGHT TRAINING
AND RATIONALE FOR THE RESEARCH APPROACH

This section includes (a) a description of the primary problem
which stimulated this research, (b) a rationale for selecting control
strategy as a subject for measurement, {(c) a rationale for rejection
of mathematical modeling approaches to the measurement of control strat-
egy, (d) a description of the psychological modeling approach taken
in this project, and (e) a summary of the major points made in the
section.

A. The Problem

Continuous manual control is of fundamental importance to a number
of human activities. Vehicular control, in particular, involves con-
tinuous manual control in the form of tracking. This requires the
execution of a smooth sequence of accurate movements in response to
a presented pattern, such as a road or flight maneuver profile. Because
of the importance of this class of perceptual-motor skills, tracking
has been the subject of many studies, particularly in the area of flight
simulation research.

Flight simulation research should include identification of the
necessary and sufficient cues to be included in simulators used in
flight train‘ng. Development of simulators can aim at full physical
fidelity with the actual flight environment. However, this may not
be a cost-effective approach if pilots do not, in fact, use all the
cues present in their environment. A more cost-effective approach
would be to identify and include in simulators only those cues which
actually affect learning and transfer to real flight behavior. This
requires accurate and sensitive measures of the effects of various
cues or combinations of cues on human learning in order to identify
a minimum set of cues.

However, as Knoop (1978, p.8) points out, existing measures of
human performance in continuous control tasks '"do not have the necessary
characteristics to support the type of flight simulation research that
entails accounting for the perception and utilization of cues." Tradi-
tional measures, such as average absolute error, root mean square error,
or time on target are sometimes inconsistent in the ways they change
in response to experimental manipulations (Obermayer, Swartz, & Muckler,
1962). Several commonly used measures are not Gaussian in their distri-
butions, and thus frequently used parametric statistics are not appro-
priate (Poulton, 1974).

Most importantly, traditional measures tend to obscure differences
in details of behavior of persons at different skill levels. Two indi-
viduals may appear to be at the same level of skill at the end of train-
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ing, yet one may perform much better than the other under the stresses
of actual flight. Furthermore, traditional measures do not specify

the differences in the outcomes of different training conditions, yet
these subtle differences may be most important, particularly for trans-
fer to actual flight performance. Traditional measures assess mainly
overt performance, and do not provide information about important cog-
nitive changes in individuals that may occur during training.

Thus, it is important to develop better measures of performance
during flight simulation and other types of training for at least three
purposes:

1. To better describe the effects of different training cues.

2. To better distinguish between individuals in different levels
of skill.

3. To better predict the transferability of skills attained under
different training conditions.

B. Control Strategy as a Subject for Measurement

The preceding discussion highlights the need for a new approach
to measuring continuous control task performance. For application to
flight simulation training, the new approach should describe cue utili-
zation, should highlight differences between persons at different skill
levels, and should aid in the prediction of actual flight performance.
The present investigation is based on the assumption that measurement
of the control strategy developed during training might provide an in-
formative description of the outcomes of training, one which could sub-
stantially add to the information provided by conventional performance
measures.

1. Definitions of Strategy

A variety of aspects of perceptual and motor skills have been termed
strategy. For example, Welford (1968) considers strategy to be a learned
skill which develops with practice and which varies between individuals
far more than do conventional error measures. More specifically, the
term strategy has been said to determine the way in which people choose
to use information during task performance, and is reflected in behaviors
such as the following:

a. the use of warning signal information in choice reaction
time tasks (Alegria, 1975).

b. the pattern of sampling auditory information (Moray,
1975).

c. the use of preview information to reduce reaction time
(Welford, 1968).
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d. the pattern of memory search (Welford, 1968).

e. the ability to systematically seek task information (Wel-
ford, 1968).

f. the speed-accuracy tradeoff that results from a partic-
ular set of instructions or pay-offs (Ollman, 1977).

In summary, strategy is viewed by many researchers as a construct
which determines what environmental information gets used, and what
control actions are taken.

Of particular interest to the present discussion are suggestions
that strategies for performance develop during training and affect the
quality of later performance. As was mentioned, Welford (1968) consid-
ers strategy to be a learned skill, which varies among individuals.

He believes that the specific strategy used by an individual depends

on the timing and location of cues for performance. Poulton (1974)
suggests that different training conditions produce different strate-
gies. Although he does not define what he means by strategy, he says
that the diversity of the experimental tracking literature can be under-
stood with the aid of this concept. For example, the effects of dif-
ferent strategies are manifested in asymmetrical transfer, a phenomenon
whereby the effect of a given training condition may differ depending
on whether it comes before or after another different training condi-
tion. The appearance of asymmetrical transfer suggests that the per-
formance transfer to a task depends upon the strategies devel.oped in
prior training. Welford's ideas bolster the argument that measurement
of control strategy in flight simulation training may be useful for
predicting real flight behavior.

2. Strategy During Tracking

How might control strategy affect tracking? First of all, it must
be recognized that although tracking appears as a unified behavior,
a variety of information processing activities are involved, each of
which might be modulated by an individual's control strategy. For example,
although performance monitoring occurs continuously, an individual's
control strategy might determine how much error is allowed before special
effort is devoted to correcting errors. In conditions of flight, strategy
might determine how often the "track" (i.e., desired path of flight)
is sampled, and how attention is divided between the numerous informa-
tion sources which must be monitored. Strategy might affect the frequency
and direction of motor commands, thus determining whether movements
appear as short and ballistic, or longer and smoother in quality. Strat-
egy might affect whether excessive error is responded to in a conser-
vative way, in the form of small motor movements, or in a bolder, more
aggressive fashion. These ideas lead us to define control strategy
as a set of decisions affecting human cognitive control processes.
This definition is detailed in Section III.




In summary, it appears that tracking is a behavior which is a like-
ly candidate to be affected by an individual's control strategy. The
characteristics of control strategy are that it is learned, differs
between individuals, and affects performance on other tasks. Because
of these characteristics, the measurement of control strategy may be
a useful approach for predicting the results of different conditions
in flight simulation training.

C. Weakness of Existing Modeling Approaches to Strategy Measurement

Measuring the development of control strategy in continuous control
tasks poses a significant challenge. In order for the measures to be
useful, they should be valid, reliable, objective, descriptive of the
psychological effects of various training procedures, and predictive
of human behavior in transfer to related tasks. Furthermore, the con-
cept of control strategy must be defined precisely enough so that it
can be measured.

One approach to measurement is to develop a model of the human
behavior of interest. As Knoop (1978, p. 12) points out, "often the
most concise way to represent a set of data...is to model the process
that generated it. If modeling techniques were applied to human perform-
ance measurement, it is conceivable that an optimally concise set of
measures could be derived from the model itself." A variety of research-
ers (McRuer & Krendel, 1974; Pew & Rupp, 1971; Hess, 1977) have argued
for the use of mathematical models to provide insight into the effect
of various cues on skill acquisition. These writers consider the parame-
ters of the mathematical models as possible candidates for measurement
of human response to cues.

However, the usefulness of applying current mathematical models
to the measurement of human control strategy and cue utilization is
questionable. Knoop (1978) provides an extensive review of these models
and concludes that most do not reflect certain important characteristics
of the psychological make-up of the human operator and therefore may
not be valid for the purpose of measuring human performance. To quote
Knoop (p. 65):

"Existing models were categorized by type as follows:
(1) Describing Functions; (2) Optimal Control Model; (3) Discrete
and Finite State Methods; (4) Adaptive Techniques; (5) Preview
Models; (6) Other Nonlinear Approaches. A survey was made of models
in each category by reviewing the literature and summarizing the
various modeling studies. Particular attention was devoted to
modeling assumptions and whether or not any specific human operator
characteristics were incorporated.

"Models in each category were evaluated based on the extent
to which they represent the identified human operator character-
istics as well as other aspects of their general validity for per-
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formance measurement applications. It was found that none of the
models reviewed implement more than a few of the operator character-
istics; and those which do are either based on other assumptions
which are unacceptable for measurement applications or have not

been far enough developed to justify their use as a point of depar-
ture. The major reason for this is that existing models were not
developed with measurement as an objective; and the attempt has
been to emulate human output rather than simulate or otherwise
account for the intricacies of human behavior.

"It is concluded that existing human operator models are not
sufficiently representative of known characteristics of human be-
havior to be useful for general performance measurement applica-
tions. It appears, too, that modeling studies of the past have
emphasized matching the response of the average human operator
at the expense of modeling the behavior of the individual."

The psychological characteristics which Knoop (1978, p. 28) believed
important to include or otherwise account for in models were operator
intermittency, the psychological refractory period, the range effect,
inadvertent cross-coupling, bang-bang control, and varying cue utili-
zation. Other characteristics that should be considered, according
to Knoop, are "the existence of observation and control errors, time
variations in control strategy, threshold and saturation effects, pre-
view and precognitive functions, variations in performance due to changes
in attention and fatigue, and, generally, man's ability to remember,
predict, reduce information, and make decisions."

Another important characteristic of human beings is the ability
to learn, an ability which is of major interest in the measurement of
the effects on control strategy of variations in training conditions.
To learn is to gain knowledge or mastery through experience; to learn
is to exhibit a change in behavior because of exposure to experience,
a change not due to maturation, fatigue, motivation, illness or injury.
Some attempts have been made to model the learning process through the
use of mathematical models which store the results of past control ac-
tions and use the information to determine current actions. For example,
Preyss and Meiry (1967) and Meiry (1968) developed a model to control
a two-position switch to drive an initial displacement in one dimension
to zero. Bayesian statistics were used to update the control memory
after the result of a switching action is observed. Thomas and Tou
(1966) proposed a model that 'learns' to reach some pre-specified final
state, under cost constraints, by remembering the costs associated with
each move in the environment. The models are interesting because they
exhibit intelligent behavior. Models of this type are not designed,
however, to be psychologically valid; and thus the possibility of repre-
senting human control strategy in any of these models appears very re-
mote. They are not suitable for application to measurement of strate-
gles developed by humans in the learning process.
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Kelley (1967) made three summary criticisms of mathematical models
of the human controller. They are:

(1) Input to the model is severely impoverished compared with
input to an actual human operator. Input is often restricted
. to a one-dimensional, oint-in-time error measure assumed
i to be obtained visually. In fact, human operators use mul-
tiple cues obtained through a variety of sensory channels.

(2) The model is limited to control action based on input at a
| point in time. Actual human operators, however, may base
their control actions on remembered results and expected re-
sults as well as on instantaneous error.

(3) The model contains no internal representation of the task,
only a rule for acting on the input. The human operator is
aware of the task and free to redefine the task if, by doing
so, the objective may be better accomplished.

As Knoop (1978) points out, certain forms of the optimal control
models, finite state models, or other probabilistic models do not suffer
from the first or second of these objections. However, all existing
models have weaknesses that make infeasible their application to measure-
ment of control strategy. In view of the weaknesses of these models,
the decision was made to seek another approach to modeling the important
aspects of control strategy.

D. Psychological Simulation Approach to Control Strategy Measurement

The literature discussed previously suggested that the following
characteristics of control strategy were worthy of understanding: its
dependence upon training, its variation between individuals, its effects
on the learning and performance of continuous motor control, and its
| predictive value. The processes that generate human control behavior
are largely unobservable processes, governed in large part by control
strategy. As observed previously, Knoop (1978, p. 12) pointed out,
"often the most concise way to characterize a set of data...is to model
the process that generated it." 1In view of the potential value of under-
standing the construct of control strategy, the decision was made to
attempt to simulate the processes involved in continuous manual control
behaviors, including the effects of control strategy.

The approach was to develop a computer simulation of the learning
of continuous control behavior that embodied psychological constructs,
and which could represent, through parametric manipulation, a variety
of control strategies. The model was designed to reflect the organi-
zation, structures, and processes that are currently believed to be
characteristic of human motor control learning and performance. This
approach provides a precise, objective representation of control strat-
egy, embedded in a psychologically plausible simulation. A major por-
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tion of the research effort consisted of the design of preliminary tests
of the validity of the simulation and its representation of control
strategy. In testing, the control strategy employed in the simulation
which best predicted human control output was used to make inferences
about human control strategy. The initial validation procedures includ-
ed comparing the characteristics of the inferred control strategies

with those that would be expected on the basis of the original defini-
tions. of control strategy and examining the quality of the match between
model predictions and human behaviors. If the inferred human control
strategy varied in a sensible way with reference to the testing condi-
tions, then this would testify to the validity of the simulation and

its representation and measurement of control strategy.

The validation of the approach used here obviously involves complex
questions of both construct and predictive validity. A construct, as
Cronbach & Meehl (1955) have pointed out, cannot be validated by any
single test, but rather must be empirically validated through a variety
of tests in the situations irn which the construct is believed to be
influential. Predictive validity is important to this research because
its ultimate goal is to permit the prediction of the effects of various
cue configurations in training on strategy and performance in work set-
tings. That is, the simulation would be used to measure developing
control strategies during training, so as to tailor training conditions
to result in optimal control strategies--effective not only in training
but in on-the-job performance. This precise predictive ability can
only be achieved by a thorough understanding of the construct control
strategy. Thus the validation procedures have included first attempts
at both types of validity.

The initial testing procedures used to validate the approach in-
volved a simplified stimulus environment in a laboratory situation.
Even though the ultimate utility of the simulation should be in a com-
plex flight training environment, the simplified setting was selected
due to the complexity of the problem being examined, and due to the
difficulty of defining and measuring a mental construct such as control
strategy. The simplicity of the test setting is not, therefore, an
indication of long-term goals for application of this approach but rath-
er is a reflection of the difficulty of the inference problems involved.

E. Summary

Flight simulation research should include identification of the
necessary and sufficient cues to be provided in simulators used in flight
training. High quality measures of the effects of cues on learning
are needed to determine the most cost-effective ways to design and use
simulators. Traditional measures of progress of training -- the various
time and accuracy measures -- have weaknesses which make them inadequate
as the sole representatives of the effects on training of various cues
and cueing techniques. These measures are also of limited usefulness
for making critical, fine distinctions between individuals at different
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skill levels, or for predicting the transferability of training to real
flight conditions. The present investigation addressed the problem

of developing a measure of continuous manual control learning which
could strongly supplement the information provided by traditional per-
formance measures.

The approach taken was to try to measure the changing control stra-
tegies developed by people in the course of training. Strategies are
v.ewed as parameters which determine how the information in the environ-
m.nt is used to make decisions about manual control actions. Existing
mathematical modeling approaches for the measurement of strategy were
considered but were rejected. Instead, we developed a psychologically
based computer simulation of human operator learning in a preview tracking
task. The simulation was designed so that it could represent a variety
of control strategies which might be important to tracking performance.

The simulation could predict a variety of patterns of control behavior,
depending on the control strategy specified for it. Inferences about

the control strategy used by an individual were made by determining

the control strategy used by the simulation which best predicted human

control behavior. Preliminary validation efforts included examining

the quality of the simulation's predictions of human behavior and comparing

the characteristics of the inferred control strategies with the characteristics
control strategy is believed to have.




SECTION IIIX

A THEORY OF CONTINUOUS MANUAL CONTROL
LEARNING AND PERFORMANCE

A. Introduction

This section presents a theory of how high-level mental processes,
parameters, and memory structures influence learning and performance
in continuous manual control tasks. The mental processes to be discus-
sed include both decision-making and automatic processes. The parame-
ters define what will be called control strategy. The memory structures
are organizations of task-related information in human long-term memory.
These three aspects of continuous manual control learning will be de-
scribed in detail and then unified in a summary discussion of their
implications.

The theory was developed to provide an explicit basis for computer
modeling of human learning and behavior in a manual control task. The
computer program was designed to be used as a new, sensitive method
for measurement of learning and performanc: in continuous manual control
tasks. The ideas presented here also provide a basis for a unified
program of training research independent of the success or failure of
the computer program developed on the basis of these ideas. The theory
provides a basis for research because of its detailed nature. That
is, in order for the theory to be explicit enough for testing via a
computer program, positions on several controversial issues were taken
by the research team. The necessity for such definition has pinpointed
a number of areas where additional research is much needed.

For the remainder of the section, the word task is defined as the
collection of control behaviors used to achieve a specified goal. For
example, one of the tasks of a pilot might be flying straight and level.
Another task might be landing the aircraft in clear weather. Each of
these tasks, defined in terms of the specified goals of "straight and
level flying," or of "non-destructive landing," includes several sub-
tasks. Controlling the pitch of the aircraft, for example, is a subtask
in flying straight and level. Controlling the yaw and roll of the air-

craft are also subtasks of the overall task of flying straight and level.

Controlling velocity is still another subtask. This latter subtask

is highly correlated with control of pitch, yaw and roll, in that con-
trol of pitch, yaw and roll manipulate the surface area of the aircraft
relative to the airstream, resulting in changes in velocity. Part of

the overall task of flying straight and level will be maintaining veloc-
ity in the face of changes in other subtasks caused by varying environ-
mental demands. Because of interdependencies like this one, all the
control behaviors (i.e., subtasks) involved in flying straight and ;EVEI
are considered to make up one task.
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B. Mental Processes Important to Continuous Manual Control Learning
and Performance

1. Decision-making Processes and Attention

Two categories of mental processes are very important to manual
control learning: decision-making and automatic processes. Decision-
making processes are defined in the following way. A decision-making
process is a series of operations leading to a conclusion or to a report
of a conclusion. A conclusion is a reasoned judgement or the necessary
consequence of two or more propositions taken as premises.

Considerable psychological research has been directed to examina-
tion of the issue of which mental processes demand attention or a large
portion of limited mental processing capacity (Kahnemann, 1973; Kerr,
1973; Posner & Boies, 1971). This limited processing capacity or atten-
tion is assumed to be distributed across a variety of attention-demand-
ing processing activities. The types of processes normally considered
to demand attention or to occupy most of the human limited processing
resources (Kerr, 1973) are similar to those that are described here
as decision-making processes. Attention-demanding processes are fre-

quently assumed to operate serially, although alternatives (e.g., parallel

processing) have not been experimentally ruled out. Decision-making
processes, as the term is used here, are assumed to operate serially.

The specific decision-making processes believed important in contin-
uous manual control learning and performance include:

1. Performance evaluation -- The process of performance evalua-
tion involves comparison of desired or expected results with
results actually achieved. The comparison is according to
some standard or limit and is followed by one action or an-
other, depending on the results of the comparison. Desired
results might include system output, e.g., a cursor positioned
in relation to a target. The comparison would be between
cursor and target, according to an error criterion. In this
case, performance evaluation involves monitoring for error.
Performance evaluation may also include comparing the expected
and experienced sensory consequences of an executed movement.
Both Adams (1971) and Schmidt (1975) suggest that such com-
parisons are very important in motor learning. In this latter
case, performance evaluation involves behavior monitoring.

In any case, this type of comparison requires attention.

2. Association and storage of new task information in memory
--Association and storage of new information in memory involves
selection of cues for storage and the organization of inform-
ation around those cues. In the verbal memory literature
these processes are described as attention-demanding and
involve considerable decision-making. Within the present
theoretical context, however, the selection of cues for memory
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of manual control tasks is believed to be an aspect of control
strategy which modulates the association-storage process.

It is not clear whether organization-storage takes attention
in the context of manual control learning. However, since
this is a controversial issue, it will be assumed that the
association-storage process does take attention and is a
decision-making process.

Developing responses to novel situations -- When the human
operator confronts a situation in which the demands are new,
choices about the course of action most likely to be successful
must be made. Alternatives must be weighed relative to the

task goal, and relative to their probable success. These
choices involve considerable decision-making and take attention.

Developing responses in conditions of excessive error-- The
human operator evaluates performance in the task and in subtasks
according to a set of internalized standards. When that
evaluation results in a conclusion that error is excessive,
measures are taken to bring performance within acceptable
limits. Such efforts require choices among alternative actions
under the time pressure caused by perception of excessive

error.

Determining when attention may be redirected to another set

of decision-making processes -- The term set is used here

in order to emphasize the idea that each subtask within a

task is performed through the application of one or more

of the decision-making processes discussed here. In some

sense, the set of decision-making processes relevant to a
particular subtask can be said to distinguish that subtask

from others. The same decision-making processes may be active

in two subtasks but are likely to be active in different

ways due to differences in process inputs and outputs. For
example, the task information appropriate to controlling

altitude in an aircraft is distinct from the task information
appropriate to controlling pitch in the aircraft. As performance
in a given subtask improves, a decision may be made to continue
devoting attention to this subtask cr to devote attention

to the processes associated with other subtasks. This determination
is made in light of current task demands and performance

levels as well as in light of other demands on the operator

and involves decision-making.

Developing a more effective strategy for control -- The operator
must apply the processes just described in performance of

the several subtasks which constitute the task at hand.

The style o- strategy of application will be quite important

to the overall effectivenessof the task. A concept of con-




siderable importance to the research reported here and to

be described in some detail is that of control strategy.

It is assumed that the process of developing a more effective
control strategy is a process involving a multitude of decisions
- based on a variety of inputs and takes attention,

2. Automatic Processes

A second class of processes important to continuous manual control
: learning and performance are automatic or non-decision making processes.
1 Automatic processes are of the sort that the literature has suggested
' take little or no attention (Kerr, 1973). It is not necessary for
automatic processes to be performed one at a time. Unlike decision-
making processes, automatic processes are likely to be performed in
parallel with each other and with decision~making processes.

Automatic processes of special importance to continuous manual
control learning and performance include the following:

1. Perception -- This process involves detecting a preselected
subset of information present in the environment. Such selec-
tive perception occurs with well-learned or especially signifi-
cant stimuli almost in spite of human intention (LaBerge,
1973). The effort required is believed to be small relative

: to that required by the decision-making processes described

3 earlier.

2, Selection of well-learned motor commands -- This process
involves locating in long term memory a motor command appropri-
ate to a familiar environmental state.

3. Maintaining selected motor commands in short-term store -
-This process involves maintenance in memory for a period q
of a few seconds of a string of commands. It is assumed :
here that the selection or development of commands can occur
more rapidly than does the execution of motor commands.
This assumption implies the existence of such a process.

4. Execution of motor commands -- This process involves the ;
execution of already-selected motor commands, and occurs
automatically.
C. Parameters Important in Continuous Manual Control Learning jg

and Performance: Control Strategy

1. Control Strategy Defined

~ The concept of control strategy is the central theme in this research.
} Control strategy is the object of measurement by the simulation described . B
in Section IV. The methods used for application of the simulation

to measurement are detailed in Section V. Control strategy is believed
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to determine or define the functioning of the processes described pre-
| viously. Through that determination control strategy profoundly affects
the style and quality of human performance.

A parameter is a variable whose value determines the characteris-
tics or behavior of a process. Control strategy is defined as the
! set of parameter values that determine the functioning of the processes
: important in continuous manual control. There are three categories
! of control strategy parameters. These three categories are:

1. Criteria for performance in all aspects of each subtask.
2. Stimulus cues on which to base performance.
3. Sequence for decision-making processes.

Each of these types of parameters influences the mental processes impor-
tant in continuous manual control learning and performance in distinct
ways. Criteria for performance provide a basis for a variety of compar-
isons important to motor skill learning. These criteria dictate, for

3 example, standards for acceptable operator behaviors (e.g., timing,
boldness) as well as standards for the controlled system's outputs
(e.g., allowable error). Selection of stimulus cues determines which
information the operator will perceive and will use as a basis for

3 motor performance and for memory storage of newly experienced motor
commands. The sequence for decision-making processes determines the
order in which these processes may occur. Further discussion will
clarify the various aspects of control strategy and the processes it

\ affects.

As is apparent from the definition, choice of a control strategy
does not include choices of mental processes although it does influence
them. Other definitions of strategy, especially in the verbal learning
and memory literature, have defined strategy selection to be a selection
among mental processes for learning or performance. Omitting process
choice from strategy selection might be criticized on the grounds that
only a choice among processes could fully account for the flexibility
and variability in human behavior. However, the present conceptuali-
zation does allow quite a large degree of behavior variability. Even
though there is no variation in the mental processes involved, variation
A in control strategy produces considerable behavior variability and
! flexibility. For example, the parameter value set which specifies

the stimulus cues on which performance is based can result in a memory

structured about position cues in the environment. Given another parameter
‘ sec (i.e., a different strategy), the memory which develops may be

behavioral consequences of these two strategies are quite different.

Another example of the behavior variability possible through vari-
ation of parameters controlling fundamentally constant processes is

| based upon rate of change in the presented track or task goal. The

; related to the sequence among decision-making processes. One individual
!
l
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may devote considerable time to performance monitoring and very little
time to remembering the cues in the environment in relation to his own
- actions. Such a strategy will result in quite different learning from
; a strategy in which explicit effort is devoted to learning cause and

| effect relationships in the task with very little attention to evalu-
ation of performance early in learning.

! 2. Control Strategy Related to Mental Processing !

Table 1 relates control strategy to the decision-making and auto-
) matic processes discussed previously. A defined task and a motivated
1 ! operator are assumed. The construct of control strategy will be discussed
4 in its relation to each of the processes.

Control strategy includes a parameter value set that defines accept-
able performance or behavior in several aspects of the task. 1In Figure
1, two aspects are indicated: control output and control input. Con-
trol output is output from the system being controlled. Control input
is control behavior on the part of the human operator. It is assumed
that there exist criteria which determine acceptable ranges of control
output. Such criteria might be in terms of the allowable differences
between actual position compared to desired position. In a similar
fashion, the energy or velocity with which an operator manipulates a
task controller is likely to be limited by a control input criterion.
This criterion probably varies among operators. Another limit related
to control input such as stick motion has to do with the number of plan-
ned motions which must be stored in short-term memory before the oper-

‘ ator is willing to devote attention to another subtask. Some operators
may switch attention often, others may require a greater backlog of
future plans before switching. Thus, one aspect of control strategy
is the parameter value set that defines these behavior and performance
criteria or limits. As shown in Table 1, these criteria affect perform-
ance evaluation and behavior evaluation. Control strategy criteria
affect the set of commands from which responses to new or errorful situ-
] ations are selected. They also provide a criterion for the switching
of attention to another subtask, in that the operator will not switch
unless a sufficient backlog of commands has accumulated in short-term
store. Further, excessive error conditions are explicitly defined by
criteria on control output. Finally, the entire parameter value set
defines the dimensions of the overall goal of performance in the task,
and this overall goal and the degree to which the operator is attaining
it will influence the control strategy development process itself.
Further development of control strategy is stimulated when overall per-
‘ formance is unacceptable, with reference to the task goal.

r ‘ The second category of control strategy parameters determines the
subset of environmental cues avallable as a basis for control. As indi-

cated in Table 1, this parameter set affects several processes important

in continuous motor control. For example, the stimulus cues used affect

the performance evaluation process in the sense that they define what

is used by the operator as a basis for comparison. The stimulus cues
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TABLE 1

CONTROL STRATEGY INFLUENCE ON MENTAL PROCESSES IMPORTANT
IN CONTINUOUS MANUAL CONTROL LEARNING AND PERFORMANCE

PROCESSES CATEGORIES OF CONTROL STRATEGY PARAMETERS
IMPORTANT IN Criteria for Performance
CONTINUOUS Standards for Standards for Stimulus Cues Sequencing
System Output Control Inputs On Which to Among Serial
MOTOR CONTROL Base Performance Processes
\
; Performance Sets quality Sets quality Limits cues Specifies
! Evaluation standards standards used order
1
[ Association Controls the
and Storage information Specifies
of New Task stored order
Information
Developing
Responses to Limits set of Specifies
New Situations commands order
considered
Visual Limits cues
£ detected
bt Limits cues
o Audirory detected
©
I~
)
A Proprioceptive Limits cues
detected
Developing
i' Responses in Defines Specifies
Conditions of applicable order
Excessive set of
‘ Error commands
Attention Limits when Specifies
. Switching order
Selection of
Well-Learned
] Motor Commands
Maintaining Determines
Responses in when a plan
Short Term for action must
1 Store be revised
p
Execution of
Selected
i Commands
]
: Controls when
¢ Control need for Limits cues Specifies
1 Strategy modification of used order
Development control strategy
is signalled
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used define what information about the task actually gets organized
into memory. Control strategy determines which sensory modalities are
— effective in the task and within a modality it determines which cues
are actually used. For example, in the auditory modality, the operator
might detect changes of frequency or changes in piteh. Control strategy
also determines which stimulus cues are most likely to be detected by
— the control strategy development process.

A third category of control strategy parameters determines the
sequence of decision-making processes. This sequence specifies the
: allocation of attention both across and within subtasks. The sequencing
! strategy includes specification of when or if the control strategy devel-
opment process itself takes place. (Consideration of what this latter
process may involve is postponed until the last part of this section.)

D. Structures Important in Continuous Manual Control Learning
S and Performance -- Internal Models

There are three different ways in which information important to
continuous manual control tasks is organized in memory. These three
| memory organizations are termed internal models because they are mental
models of the temporal relationships among important task-related events.
The nature of these relationships is discussed below.

1. Task Controller Model

One of the ways of organizing task-related information is to relate
states of the controlled-element to states of the control input. The
controlled element may be a vehicle, a cursor on a video screen, or
a tennis ball. The control input may be a steering wheel, control stick,
or a tennis racket. The task controller model consists of learned asso-

ciations between initial state of the controlled element, the state
f of the control input and the final state of the controlled element.
The term state is used to imply the assumption that different sensory
modalities and different cues within a modality may combine to provide
a unitized basis for response selection. Separate aspects of the task
controller (such as position, velocity or acceleration) are used toge-
ther to achieve a desired state (or set of aspects) of the controlled-
| element. The functional aspects of these perceived states may include
multiple cues from multiple modalities for one task and may also include
aspects of other simultaneously performed tasks. The stimulus cue set
used is specified by control strategy.

The nature of the state used as basis for response selection can

[ strongly affect the manner in which a task is accomplished. Jordan
(1972) provides evidence for the differences in performance which result
from differences in the perceived state. Subjects were given visual
cues, visual plus proprioceptive cues, or proprioceptive cues alone

as a signal for a fencing move -- the disengage and lunge. Subjects

p given proprioceptive cues alone showed significantly faster reaction

' times than subjects in either of the other conditions. The study also
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suggested that visual cues tend to dominate, even when they are not

the best cues to use. The implication of this study is that selective
emphasis on effective cue states during training can mean improved per-
formance.

The idea of an internal task controller model is suggested by the
literature on motor skill learning. Kelley (19€7) argued for the exis-
tence of such an internal model of the task controller. Att.~ave (1974)
proposed the existence of memory for associations among acticns and
their consequences. Schmidt (1975) described a recall schema: a rule
abstracted from many instances of associating information about initial
conditions, response specifications, and consequences. The schema was
proposed as a way to account for human ability to perform in nove' situa-
tions. This theory accounts for this ability to perform well in nrve}
situations which results from orderly generalization in long term mc’ ..~
memory from experienced instances (of initial state, action, consequer
state) to related instances which have not been expericnced.

The idea of an internal model of the task controller also contrasts
with motor program notions of memory for motor skills. Keele (1968)
defined the motor program as a sequence of stored commands that is
structured before movement begins, and which is carried out in its
entirety uninfluenced by peripheral feedback. Most discussions of the
motor program imply that this sequence of commands is stored together
in long term memory. An internal model accounts for such automaticity,
if the assumption is made that command execution takes longer than
command selection. The command sequence is generated rapidly. stored
as a sequence in short term memory, and then executed as a stream of
control actions.

2. Input model

A second way in which information in memory is organized is one
which permits prediction of upcoming input states, where the input
state is defined as the desired state of the controlled-element. For
a pursuit tracking task, the form of information which makes up the
input model is quite analogous to that for the task controller model
and for the neuro-muscular model. Here, the desired states of the
controlled-element at previous instants in time are associated with
the desired state at successive instants. In preview tracking, the
displayed track is a temporal sequence of input states. In the absence
of input preview, people use a predictive model of the input states
to permit the structuring of movements and the monitoring of the correctness
of self-initiated movements. A remembered song melody is an example
of an input model which guides singing. The following discussion describes
the evidence suggested this idea.

Evidence for the existence of such input predictive abilities,
and hence, an input model, is rather strong. Many studies have shown
that in pursuit and compensatory tracking, subjects learn to use the
predictability in the input to improve performance. An especially
inter
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esting study is by Pew (1974a). Subjects were given a pseudo-random
waveform to track in the pursuit mode over a series of trials. Unknown
to the subjects, one portion of the track was repeated. Subjects im-
proved on all portions of the track, but improved significantly more

on the repeated portion than on the other portions, presumably because
of its predictability.

Another supportive study was by Keele (1975). Subjects were trained
to give discrete responses to a presented series of lights, given in
a predictable order. If subjects were then presented the predictable
light sequence, with one light out of order, reaction times to that
light and those following it were slowed. This effect could occur because
the out-of-sequence light violated the predictions of the input model.

Jagacinski, Burke, and Miller (1976) trained subjects to control
a series of visually displayed oscillations of varying arc sizes, and
then tested to see if what subjects had learned transferred to a speeded
version. Large positive transfer effects did occur, and the authors
suggested that subjects had learned state-to-state relationships of
the input, as would be the content of an input model.

The existence of an input model allows not only structuring of
movements in the absence of input preview (as in pursuit tracking),
but also accounts for skilled self-monitoring of performance when no
external standard is present. This idea is supported by major theories
of motor skill learning which posit some form of input (afferent) model,
which is used to monitor performance when an external standard is not
available. Adams (1971) argues for the existence of a 'perceptual trace,’
a form of motor recognition memory used to monitor correctness of an
ongoing movement. The 'perceptual trace' is a record of sensory conse-
quences of carrying out a correct movement. In the present theory,
input defines the desired state of the task controller, which is par-
tially described by the afferent feedback to be received from a correct
movement. Memory for the desired state(s) of the input constitutes
the input model. Thus, the input model for monitoring performance in
the absence of an external standard is comparable to the Adams (1971)
perceptual trace function and also to the function of the recognition
schema proposed by Schmidt (1975). Pew (197U4) recognized the abilities
of humans to predict not only characteristics of an input waveform (his
second level of motor performance functioning), but also to generate
and monitor the desired performance sequences independently (the third
level in his proposed hierarchy of motor skills). The input model accounts
for both of these abilities.

3. Neuromuscular Model }

A third way that task-relevant information is organized is as asso-
ciations between central nervous system states and limb states. This
is a memory representation of the neuro-muscular dynamics of the body,
and is organized like the internal model of the task controller.
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For most adults, the neuromuscular model is well-developed, as
can be realized when injury or fatigue results in sudden distortion
of the relationships stored in the model. A move which is normally
easily accomplished is attempted, but due to injury or fatigue, the
efferent signal issued is followed by unpredicted results, and the indi-
vidual feels a sense of surprise. Pew (1974a) a reports an experiment
in which he interfered with the neuromuscular model by effectively re-
ducing the mass of a subject's arm. He subsequently observed behavior
appropriate to the normal arm mass, which produced severe overshooting
in the experimental task. Subjects reacted as if on the basis of a
(temporarily) inappropriate neuromuscular model.

E. Theory and Hypotheses
1. Two Major Aspects of Control Task Learning

The three sets of assumptions about processes, parameters and struc-
tures important in human manual control learning and performance result
in the following account of the course of events in motor controcl learning.
Figure 1 displays the information flows and control relationships believed
to most heavily influence continuous manual control learning. Learning
of this type can be considered as involving two major aspects. The
first of these is the development of the organizations in memory described
previously. The task controller model and the input model and their
relationships to the neuromuscular model determine the limits on how
effectively the operator can perform the task. A second important aspect
of task learning is the learning of an effective control strategy.
How control strategy is learned is not a major focus of the research
reported here. However, the effort to measure control strategy using
a simulation has required the consideration of the characteristics of
control strategy in enough detail to permit certain inferences about
how it develops.

The following describes learning of internal models and control
strategy, and their effects on performance. Model development is the
first to be discussed.

2. Internal Model Learning

This part describes the way the processes discussed previously
operate to form the internal models necessary for skilled performance.
The individual begins learning a task with a control strategy that speci-
fies the functioning of the task-related processes considered previously,
i.e., performance evaluation, response to excessive error, storage of
information in memory, attention switching, etc. The control strategy
includes parameter values for the processes in all of the subtasks used,
as well as for the sequencing among all processes involved in the task.
These processes must occur in order for the task to be performed; some
initial parameter values are used to prescribe their execution. The
Joint functioning of these task-related processes serves to develop
the internal models important for the task.
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For example, the association and storage process is directly involved
in structuring the internal models described previously. The other
processes can interact with its functioning and thus affect the speed
of development of the memory organizations or even the content of these.
If the operator devotes a great amount of attention to processes other
than association and storage, development of memory will be slow. If
the operator attends to a particular set of cues in the process of per-
ception, the content of the memory will be different than if another
set of cues had been attended to.

The balance between decision-making and automatic processes changes
in the course of learning in order for the most effective development
of internal models to take place. Early in learning the processes most
frequently active are decision-making in nature. This stage is anal-
ogous to Adams' verbal-motor stage of task learning (Adams, 1971).
During this stage the operator must associate and store in each of the
subtask controller models the relations between output transitions and
specified command inputs. As these models develop, the operator can
begin to use them, in conjunction with the already existing neuromus-
cular model, to exert effective control. For example, if the operator
wishes to move a cursor visible on a screen from one position to another,
the task controller model (memory) of the control stick-to-cursor dynam-
ics can be accessed to provide the control stick motion necessary to
accomplish this. The neuromuscular model provides the neural signals
necessary to accomplish this motion at the correct time. As manual
control skill develops, the operator takes into account not only his
own neuromuscular dynamics (the control effector in Figure 1), but also
the dynamics of the task controller.

In some tasks, for example those that are compensatory or pursuit
in nature, the operator must develop an input model through the asso-
ciation and storage process. That is, present and immediately past
desired states of the task (such as positions of the moving marker on
a video screen) must be associated with desired future states of the
task through observation of temporal relationships among these states.
As input models develop, the operator gains the ability to anticipate
upcoming demands in the task, and can prepare motor command strings g
on the basis of that anticipation. '

Along with association and storage, performance evaluation occurs

very frequently early in internal model learning. The operator must §
frequently compare the results of his control actions with the standard ¢
specified by the control strategy. The operation of this comparison

process aids model development by triggering more or less drastic responses

(depending on the operator's control strategy) to the error that inevitably

occurs early in learning. Such responses along with their effects, .
are used as data in the models. ;

Performance monitoring and evaluation not only involves comparison
of system output states with those desired, but may also, in some tasks,

s popm

G Ty

37




' t £ At akm e e - -
o ) e s e

involve comparison of the effect of the motor command executed (e.g.,
limb and control stick position) with the intended effect of the motor
command. That is, earlyv in learring, the operator may need to 'cali-
brate' his control input responsc to account for the 'feel' of various
stick types. A third comparison that may be involved in the performarce
evaluation process is the comparison between experienced proprioceptive
feedback with proprioceptive feedback that had been expected (specified
by input models). These comparisons, too, would be defined by control
strategv. Such comparisons with input models, however, cannot occur
effectively early in learning because the necessary input model has

not yet developed.

Another process which operates to store information in the internal
models required for skilled performance is the development of responses
to new situations. Early in learning the operator frequently encounters
novel situations-~situations for which no memory exists as to the effective
action to be taken. The operator must develop these responses and
this development results in the execution of trial commands. Their
results are remembered (stored in the model) and used later. The set
of commands considered acceptable is defined by control strategy.

All of these activities occur more frequently early in learning
than later for the internal models to develop. The result of this
occupation of operator capacity with these decision-making processes
is that the operator has little or no spare capacity for other tasks.
Indeed, the operator may be hard-pressed to perform even the subtasks
necessary for task performance early in learning. Later in the learning
process, the decision-making processes discussed here are needed less
often. The operator normally is required to respond only to situations
for which he has developed responses which can be selected and executed
with little or no attention. Excessive error seldom occurs and attention
is not required for error correction. Such reduction in processing
capacity requirements that may occur after the internal models become
well-established permits the operator freedom to devote his capacity
to other sorts of mental processing, to other tasks or to the development
of an improved control strategv for the task at hand.

3. Control Strategy Development Aspect of Task Learning

A second important part of task learning is control strategv develop-
ment itself. The development of control strategy is a process that
has seldom been considered in the psychological literature. The defin-
ition and assumptions about control strategy developed in this research
have permitted some consideration of this apparently quite important
development process.

Control strategy development is believed to involve the learning
of certain relationships among the outputs from performance evaluation
processes and the outputs from perceptions in the various subtasks.
The significant relationships include correlations between perceptual
cues and task performance, as well as correlations between the various
perceptual cues.
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The discovery by the operator o! both these classes of relationships

is important in two wavs. Discovered relationships between performance
or behavior evaluations and the perceptual cues used provide the guid-
ance for reselection of cues that are used, i.e., the available cues
acquire meaning in terms of the task goal. A second way in which these
correlations, when discovered, are valuable to the operator results

from the fact that in many tasks, the subtasks themselves are closelv
related. The discovery of these relations may permit the operator

to use cues common to different subtasks and thus reduce the number

of cues attended to. This reduces the complexity of the control that
must be exerted. For example, an increase in pitch in an aircraft

will result, in the absence of further action, in a decrease of velocity
and/or altitude. When the operator learns this relation, those three
subtasks may be combined in the sense that control strategy can specify
common cues on which to base response. The result will be the smooth
adap-ation of those control aspects to task demands and increased ability
of the operator to perform other tasks. The latter is true since the
number of mental processes devoted to the task is now reduced by the
number of subtasks which were unitized.

A second major point about the course of control strategy develop-
ment is that in the absence of explicit attenticn devoted to training
control strategy, there are likely to be wide individual differences
in the control strategies used. These differences will be especially
apparent early in learning. This is because the initial control stra-
tegy used bv an individual is largely a function of the past task history
of the individual. Generalization from past experiences leads the
individual to use a control strategv or elements nf control strategies
used in tasks similar to the task to be learned. If individuals come
to new tasks with different task histories, the control strategies
initially used will vary widely between individuals. This variation
might be indicated by the lack of a systematic differences in the control
strategies used in different training conditions early in learning. »
(This hypothesis was tested in the experiment described in Section Q
v.)

Individual differences in control strategies used will also appear
later in learning. Sources of these are the differences that exist
in individuals' willingness or ability to devote attention to the develop-
ment of an effective control strategy. Furthermore, individuals are
likely to differ somewhat in their perceptions of task demands and
of the significant task characteristics.

The above discussion implies that control strategy is diverse
and plastic. If this is so, it suggests that control strategy can
be directly shaped by the training conditions provided. (This hypothesis
was also initially tested in the experiment described in Section V.)
If training conditions affect control strategy, and if explicit attention
is given to the training of control strategy, then control strategy
can be molded into preferred forms. The preferred, or optimal, form
for control strategy in a task might be one which is associated i
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with relatively high quality performance and low mental effort in the
task compared to other control strategies. Such a high performance,
low effort strategy would provide the operator with excellent ability
to respond in 'high-load' situations -- danger, or the sudden addition
of another task.

Optimal strategies may or may not be spontaneously developed during
training. Three factors are responsible for this: the existence of
wide individual differences in control strategy, the fact that current
training practices do not include training for strategv, and the fact
that physical differences exist between training situations (such as
simulators) and actual task environments (such as aircraft). This
latter factor seems to be important because some strategies which permit
low error in training may not be optimal for the actual task itself.

For example, trainees may base their control strategy at least in part
on task demands and characteristics unique to the training setting.

4. Control Strategy and Improved Measurement Systems

These ideas about the importance of control strategy and its susceptibility
to training influence, when considered together with the specific aim
of this research -~ the measurement of control strategy -- suggest
a new approach to the design of training for continuous manual control
tasks. The first step in the approach would be to identify the optimal
control strategy for a given task. Considerable effort would be involved
in this step since the control strategy for a single task includes
a variety of parameter values - those specifying criteria on performance,
stimulus cues used, and the sequence of decision-making tasks. Measurement
of these parameter values could be accomplished by means of conventional
empirical methods or by means of an extension of the simulation developed
in this research.

T

The effort expended to identify optimal strategies for tasks should
be well worthwhile for two primary reasons, both of which have direct
implications for design of training programs.

The first reason is that when the control strategy optimal for
a task is defined and identified, better training programs can be devel- B
oped. Training can be aimed at training optimal control strategies !
as well as at prompting the development of the internal models described
previously. #

A second reason for defining and identifying the control strategy
optimal for a given task is that these efforts will make possible much
more accurate prediction of trainee performance. Such predictions
will be possible because measurement of control strategy can provide
a much-needed supplement to conventional performance measures. Identification
of the control strategies used by individuals during training can be ;
used to describe differences in their performance that may not be ap-
parent from conventional performance measures. Transfer of training
to the actual task setting can be predicted on the basis of the simil-

.




arity in the trainee's control strategy to that most effective for the
actual task. Transfer of training to other tasks can also be predicte
by examining the similarities in the trained contrecl strategy and that
appropriate for a different task. The effects of cues which might be
used in simulators or other training settings can be predicted by mea-
suring the cue utilization aspect of control strategv. This could be
accomplished by examining the effects of particular training cues on

1 the control strategies of trained individuals already using an optimal
control strategv. Cues which do not change the control strategy when
removed are irrelevant and not necessary for training conditions.

Cues which cause a shift away from the optimal control strategv when

‘ included, are distracting and should not be included in training.

1 Cues which cause a shift in control strategy when removed and maintain
the optimal control strategy when removed are necessary to include
L in training. The potential value of this approach for the design of
cost-effective training means that control strategy measurement, by
simulation or by other means, should be a major goal for research in
experimental psychology.

This section has been devoted to a presentation of a theory of i
manual control learning and performance. The theory was developed
as part of a particular approach to the goal of providing improved
performance measurement -- measurement by simulation of an important
p aspect of performance, control strategy. The approach to measurement
by using a simulation was initially tested in a laboratory setting
in this research. The results, which are detailed in Section V, were 3
quite encouraging. Even if the results had not been encouraging, or i
4 even if their extension to a more realistic setting proves infeasible, i
the theory is important. It can guide the development of a measurement
system for continuous manual control tasks that is much more precise
(hence, much more useful) than those which presently exist.
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SECTION IV

HUMAN OPERATOR PERFORMANCE EMULATOR

A. Introduction

HOPE (Human Operator Performance Emulator) is a psychologically
based computer simulation of continuous manual control, which includes
a representation of control strategy. HOPE currently simulates tracking
behavior based on use of visual information only. However, HOPE was
developed from a broader theory of psychomotor behavior (see Section
III) which applies to a wider range of behaviors and information pro-
cessing activities. The HOPE simulation and its representation of con-
trol strategy are based on the psychological literature. The following
discussion describes the relation of the simulation to that literature.

B. Psychological Constructs and Proceases Embodied in HOPE

This part introduces HOPE in general terms for the purpose of de-
scribing how its structures and processes relate to current psycholog-
ical representations of information processing and to the theory pre-
sented in Section III. HOPE is a hierarchical model in which there
is a clear distinction made between two levels of processes. Although
the psychological literature has variously labeled these levels as con-
scious-subconscious, attentive-preattentive (Neisser, 1967), controlled-
automatic, most models of information processing recognize a distinction
between processes which demand attention and must be performed one at
a time and the processes which do not demand attention and can be carried
out in parallel. In HOPE, one level of processing is represented by
a Supervisory Processor that can perform a variety of operations but
only in a serial fashion. The constraint that the Supervisory Processor
can perform only one function at a time links HOPE with single-channel
models of human information processing (Welford, 1952). 1In contrast,
the second level of processing includes a number of lower-level subsi-
diary processors, each dedicated to a single process, but which can
operate in parallel. These two levels of processes are represented
in Figure 2, an information flow diagram of HOPE. In the discussion
which follows, capital letters are used to distinguish processes that i
exist in the HOPE program. As indicated by the theory in Section III,
the Command Selection Process and the Command Execution Process in HOPE
are both subsidiary processes which can carry out their functions in
parallel without interfering with one another. In contrast, processes
such as Performance Monitoring or the Satiafactory Command Search cannot
be carried out in parallel, since each fully occupies the Supervisory
Processor when its functions occur.

2 TRARLI BT I L

Assignment of a process as a Supervisory Processor function or
Subsidiary Process function coincides with descriptions of which mental
operations make heavy processing demands on the human's limited proces-
sing capacity. Posner and others (Kahneman, 1973; Posner & Boies, 1971)
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have suggested that human information processing is constrained by the
human's limited processing capacity, which is taxed in varying amounts
by different mental operations. Their research suggests that processes
similar to the Command Selection Process which involve locating infor-
mation already stored in memory do not make heavy demands on processing
capacity and can be carried out in parallel with other processes, as
occurs in HOPE. Executing already-selected motor commands (Command
Execution) also makes a relatively low demand on processing capacity.
In contrast, processes such as monitoring the outcome of fine motor
movement (Performance Monitoring) or organizing information for memory
storage (Stimulus-Response Association Process) make heavier demands

on processing capacity. 1If these processes are performed together,
they interfere with one another (Kerr, 1973); therefore, they tend to
be performed in a serial fashion.

HOPE reflects the two-store theory of memory current in the psycho-
logical literature (Atkinson & Shiffrin, 1968; Broadbent, 1971). Two-
store theories of memory suggest that the varying characteristics of
memory are attributable to the retrieval of information from two dif-
ferent types of memory stores -- a long-term memory, which is of rela-
tively large capacity, and a short-term memory, which is of relatively
small capacity. The Command Memory (see Figure 7) is HOPE's long-term
store for learned motor commands. It is organized in an associationist
fashion whereby commands are located in memory at a point reflecting
external states (i.e., cursor positions) that have preceded and followed
a motor command. Although the content of motor memory is a topic of
dispute (see Schmidt, 1975), HOPE's Command Memory organization is con-
sistent with associationist views of long-term memory (Baddeley, 1976;
Wickelgren, 1969).

The Command Selection Process retrieves commands from the Command
Memory and loads them into the Command Buffer, HOPE's representation
of short-term motor memory. The Command Memory is theoretically unlim-
ited in size, whereas the Command Buffer stores only a limited number
of commands for a short period of time. The Command Buffer stores the
selected commands until they can be executed by the Command Execution
Process, or until the Supervisory Processor directs those commands to
be dumped.

The HOPE simulation addresses many of the criticisms aimed at math-
ematical models of control behavior (see Section IIC of this report).
Its Perception Process allows information to be input only at discrete
intervals, thus reflecting the human operator characteristic of inter- ‘
mittency. The execution of each command in HOPE is delayed until the \
previous command terminates, causing the model to exhibit behavior sim- |
ilar to that associated with the human psychological refractory period |
(Welford, 1968). The storage of commands in the Command Memory allows
it to improve performance on the basis of previous experience, and thus,
to "learn" over the course of performance. As discussed in Section
III, the theory on which HOPE is based also includes a learned input




]
!
'
i
l
t

- model which allows the simulation to use past experiences to make pre-

‘ dictions about future performance demands. Further, HOPE is an emula-
tion of individual behavior and thus can be used to measure the perfcrm-
ance of individuals as well as group or crew performance where one
individual's performance directly impacts that of another in a time-
varying, multi-task environment.

Finally, HOPE is an imperfect performer, as, of course, are human
beings. There are two major sources of error in the HOPE simulation.
The first, if encountered in a human being, is what would be termed
educated guessing. That is, until HOPE experiences a certain control
task, its Command Memory for the task is empty, and certain simplifying
default commands (educated guesses) are used. These are unlikely to
produce the exact result desired; and although their effects will be
stored at the proper location, these effects are likely to be in error
in terms of what was intended.

. T
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A second type of HOPE error is caused by the limited capacity
of its Supervisory Processor. Errors in timing occur when processes
which must be executed by the Supervisory Processor must be delayed
in a queue until the Supervisory Processor becomes available. Such
1 errors cause some inaccurate information to be stored in the Command
Memory, especially early in learning. Both of these types of errors
become less frequent as HOPE becomes more experienced at a task. Thus,
for the HOPE simulation, as for humans, practice is required for attainment
of high quality performance.

] In summary, HOPE mimics the psychological organization and proces-
\ ses which are believed to underlie human psychomotor behavior. Further

evidence of this will be presented in the detailed discussion of HOPE's
operation. It should be evident that the design of HOPE required consi-
derable development of specific ideas about processes not explicitly
described in the psychological literature. These ideas may be somewhat
controversial, and are deserving of further study in themselves.

C. Control Strategy Representation in HOPE

In Section III, control strategy was defined as the outcome of
) - a set of decisions determining an operator's distinct style of perform-
ance in manual control tasks. It is a parameter set that consists

of:
b- . - 3 .
1. Criteria for performance in various aspects of each subtask;
2. Stimulus cues on which performance is based;
‘ 3. A sequence for performance of decision-making processes.
46




It was suggested that control strategv should have the following
characteristics:

.
.

It arfects task performance.

2. The contrcl strategv of an individual influences the course
of training and thereby affects the learning of a task.

s 3. The type of control strategy used depends heavily on condi-
tions experienced during task training and on prior experience
with similar tasks and situations.

Gt gt TR Tk e

S 4. A task-specific control strategy 1is itself learned during
L training.

The definition of control strategy cited previously is represented
in the HOPE simulation in terms of three variable control strategy
parameters. The three parameters are:

\
Command Operative Time (COT) - the duration of a single motor
s command ;
1
Error Limit (ERRLIM) - the amount of error allowed before major -

error corrective measures are initiated;
ADJUST - the magnitude of control response to excessive error.

These parameters are closely associated with the definition and
characteristics of control strategy that have been described. All
three parameters define criteria for behavior. COT sets a criterion
on the duration of control movements and hence moderates the frequency
with which a control stick can vary in position. ADJUST is also a
criterion on control movements - it determines how boldly the control
stick is moved in conditions of excessive error. In contrast, ERRLIM
sets a criterion on the amount of error allowed in the controlled element's
position, i.e., the extent of cursor position error allowed before
major error correction occurs.

The representation of control strategy in HOPE currently does
not allow variation in usage of environmental cues. This is because
for the preliminary testing HOPE was designed to operate in a simplified
stimulus environment, and therefore takes account of visual position
information only. Further development of HOPE would allow it to process
1 a variety of environmental cues, and would include control strategy
' parameters guiding the choice of cues. Neither is the sequence among
, decision-making processes permitted to vary. The task simulated involved
9 no subtasks, and the sequence of processes within the task was fixed
in the manner described in Section IV (D-1).

Y

i

1 Finally, the application of the HOPE simulation to measurement
embodies the ideas about the characteristics of human control strategy
developed earlier. That is, inferences about an individual's control

] strategy are made by a procedure (see Section V) which occurs frequently
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¢ rough (every 20 sec) to permit comparison of estimated control strategy
with the time-varying nature believed to characterize control strategy.

D. Operation of HOPL

HOPE 1s a computer simulation of one example of continuous control
behavior -- one-dimensional preview tracking. The present HOPE operates
on a numerical representation of visual information representing a track.

Modulated by control strategy parameters, HOPE generates control stick

positions related to performance of a preview tracking task in which

the task is to maintain a cursor on a track by manipulating a control
stick. Discussion of HOPE will begin with a description of the Super-
visory Processor and how it allocates attention among its functions.
Then, each of the subsidiary processes and the details of the functions
performed by Supervisory Processor will be discussed, followed by a
detailing of the functioning of fixed process parameters and of the
variable control strategy parameters.

1. Allocation of Attention by the Supervisory Processor

As seen from Figure 2, there are five jobs to be performed by
the Supervisory Processor. In terms of theory discussed in Section
111, these jobs involve attention-demanding processes and include performance
monitoring, intervening in the case of excessive error, storage of
executed commands and their outcomes, determining satisfactory commands
when the subsidiary processes are unable to do so, and determining
when attention can be temporarily switched to another task.

One problem which had to be addressed was how the Supervisory
Processor would allocate its attention among the demands of the five
different processes it performed. The Supervisory Processor can perform
only one function at a time, so there was a need to specify the order
in which simultaneously requested functions would be carried out.

Three possible ways of handling the attention allocation problem
were considered. The first, and most straightforward, was to put all
requests for Supervisory Processor attention into a list or queue on
a first-come, first-served basis. This method insures that all reques-
tors will be answered when their request comes to the top of the list.

However, i: does not allow certain requests to have higher priority
than other functions.

One method for prioritizing requests is a concept called polling.
In this approach, the processor asks each of the potential requestors
if its function needs to be performed. It polls each of the requestors
in a sequence indicative of their respective priority. However, this
method 1is intuitively unappealing because it seems inefficient for
the multi-purpose Supervisory Processor to have to spend some of its
time polling for processing requests.,




A third method, which avoids the undesirable aspects of polling,

is the interrupt method. In this method, each requestor demands the

use of the processor whenever it is required. A priority scheme car

be implemented within the processor such that any interrupt which occurs

is considered in the face of any other interrupts present or against

the priority of the task currently in execution. The interrupt method

insures that the highest priority task is always the first one to be

completed. However, this method has the disadvantage that lockouts

may occur. A lockout is a condition in which some number of relatively

high priority requestors constantly keep the Supervisory Processor busy

serving their repeated requests so that lower priority tasks never obtain
| the services of the processor.

Each of these schemes has its advantages, disadvantages, and spe-
cific applications, but none of them individually were suitable or jus-
tifiable for HOPE. Therefore, in HOPE, a combination of the queuing
process and the interrupt method was implemented to provide what seemed
to be the necessary attention allocation function. The combination
chosen was as follows. Requests for Stimulus-Response Association,
Satisfactory Command Searches and Attention Reallocation are recorded
in a queue. If several of these requests occur simultaneously, a loading
priority scheme determines the order in which these requests are loaded
into the queue. The highest priority function is the Satisfactory
Command Search, with Stimulus-Response Association and Attention Reallo-
cation following in that order. This order was chosen for two reasons.
First, the order reflects the (hypothesized) frequency and importance
of the function during learning, with more frequent and important func-
tions having higher priority. The Satisfactory Command Search is very
important early in learning when the Command Memory is relatively incom-—
plete. Similarly, Stimulus-Response Association is important early
) in learning for commands to be stored in the Command Memory. Attention
Reallocation is likely to disrupt performance at this time. The prior-
ity scheme is also dictated by real-time estimates of the execution
time for each of these functions. The lowest priority functions are
the ones believed to take the most time (see Section IV D-7). Thus,
the implemented loading priority scheme for queuing allows the most
important, but fastest, functions to be performed first. It should N
be noted, however, that because of the queue approach for handling :
these requests, they are all handled regardless of the loading priority
scheme.
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Requests for execution of the Excessive Error Process are handled
on an interrupt basis. When this type of request occurs, this process :
b is always the next to be executed. This is not to suggest that execu- !
tion of this process begins immediately, for any on-going process is
4 completed prior to initiation of the Excessive Error Process. It seems
3 logical for the Excessive Error Process to interrupt other processes,
for if it did not, performance would continue to deteriorate.

The last remaining task of the Supervisory Processor is Performance
Monitoring. Performance is checked after completion of any of the other




Supervisory Processor functions. When the Performance Monitor deter-
mines that performance in unacceptable, it initiates the Excessive Error
- Process.

In summary, the Supervisory Processor handles its five functions,
' one at a time, on the basis of a combination of an interrupt and queue
E system. Figure 3 illustrates this overall scheme. The sources for
! requests for Supervisory Process functions will be presented in the

g following discussion of the subsidiary processes.

i 2. The Perception Process

The Perception Process acquires information necessary for task
performance, and translates it into a form usable by other HOPE proces-
ses. In the present HOPE, the Perception Process provides to other
processes information about the current desired state (i.e., the center
of the track), the actual state (the current cursor position), and the
current command. This process occurs periodically, producing shapshots
of the task environment spaced in time by the duration of perception.

It reflects a basic characteristic of the human operator - intermittency
-the processing of information at discrete intervals (Bertelson, 1967).

The Perception Process makes its information available to the other
HOPE processes. Each new perception replaces the previous, so that
in terms of duration exceeding a perception, there is no perceptual
memory. Figure 2 shows that the Perception Process does interact with
the Supervisory Processor. This interaction, however, is not a request
! : for service, but rather an information input for use by the Supervisory
] ‘ Processes. Figure 4 indicates the functioning of the Perception Pro-
cess.

3. The Command Memory and Command Selection Process

The Command Selection Process and the Command Memory are respon-
J sible for locating and maintaining information which enables HOPE to
trick. The Command Memory stores information which describes the ob-
served operating characteristics of the task controller. The task con-
troller intervenes between a control input (such as a control stick
position) and a controlled element (such as a cursor visible on a video
screen). The Command Memory stores information about the task controller
S without the use of an algebraic characterization of the relationship
between the control input and the controlled element. As previously
discussed (see Section II), such algebraic representation would reduce
the psychological validity of the model. The present approach provides
a simulation of learning of the task controller, whatever its charac-
b teristics. The organization of HOPE's Command Memory allows control
skills to develop beginning with HOPE's first encounter of a given task.
Algebraic models require the specification of some canonical form of
the task controller in order to function, and that departure from psy-
chological validity is a primary reason for the choice of the present
approach.




.
:
b
'

Y

START

1

Are we off the track by more

NO

and is the Excessive Error Process

enabled?

than the allowable error (ERRLIM) YES

0

Obtain the next
process request from
the gqueue, if
available.

|

Execute the requested

process.

Figure 3.

RETURN

Supervisory Processor Resource Allocation Scheme

v

Execute Excessive

Error Process.




START

Obtain the current values of task controller input

and output. Provide these to consuming processes.

RETURN

Figure 4. The Perception Process

52




The operating characteristics of the task controller are stored
in the Command Memory of HOPE in terms of a set of commands which are
learned only through experience. Information is stored in the Command
Memory as follows. The task controller input (i.e., control stick posi-
tion U) and output (i.e., controlled element, or cursor position ¥)
are observed/recorded by HOPE at periodic intervals, producing a set
of ordered pairs U ., X ., which are the values of controller input
and controller outp&t, respectively, at time t.,. These data are organ-
ized in an array, in which the rows are indexed by X ., the columns
by xti+ , and the value at location X i X i+ is U i} The array and
its congents constitute the Command Mémory. %The equivalence between
this representation and a differential equation representation of the
task controller is provided in Appendix A.)

With an array loaded in this fashion, the correct command input
to the task controller for making an output change from one state at
t. ., to another specified state at t,, can be determined by reading
the needed command at the location péinted to by the states of interest.
Furthermore, since the array is updated only by actual experience, then
finding a command at the indicated location indicates that the state
desired at t., will occur if that command is used. Thus, the "predicted
state" at t.'can be used in finding a command to get to the desired
state at t. .. The state at t. ., is referred to as the '"last predicted
state." (hoée that, initially} %he "last predicted state"” is the pre-
sent state.) The state at t. is called the "desired state." The amount
of time between t, and t,_ Yis variable, depending on the value speci-
fied for Command bperative Time (COT). Thus, the Command Memory for
a HOPE model with a COT of 40 msec would develop differently from the
Command Memory for a model with a COT of 200 msec.

The Command Selection Process performs the function of looking
up commands in the Command Memory and updating state labels. The Com-
mand Selection Process addresses the Command Memory at the location
pointed to by the desired state and last predicted state. The located
command is sent to the Command Buffer, and the (predicted) desired
state is used as the last predicted state. The next desired state
from Perception Process becomes the desired state. Repeating the process
incrementally builds a string of commands in the Command Buffer for
sequential execution. The command string serves the functions of what
has been referred to as a "motor program". However, it permits more
flexibilty in response than does a pre-stored string.

The question naturally arises: What if the Command Selection
Process finds no command at the location specified by the last predicted
state and the desired state? When this situation occurs, the Command
Selection Process generates a request to the Supervisory Processor
to perform a Satisfactory Command Search. This function is one of
the queued functions discussed previously. The actual process which
occurs during the Satisfactory Command Search is described below in
the detailed explanation of the functions performed by the Supervisor
Processor.
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As will be seen, the Supervisory Processor alweys produces a comman
for use in this situation and supplies it to the Command Selection Pro-
cess for entry into the Command Buffer. The Command Selection Procces
is shown graphically in Figure 5.

4. The Command Buffer

The Command Buffer acts as a storehouse or backlog for the commands
selected by the Command Selection Process for ultimate execution by
the Command Execution Process. The Command Selection Process occurs
much more rapidly than the Command Execution Process and, as a result,
a backlog of commands is produced and stored in the Command Buffer.
This backlog of commands functions as a motor program, a set of commands
which can be run off in an open-loop fashion. Most discussions of
motor programs imply that the command sequence is stored as a unit
in long term motor memory (Keele, 1975). 1In HOPF, however, the sequence
i5 not obtained in whole, but 1s built up step-by-step, one increment
at a time, based on task requirements.

As seen from Figure 2, the Command Buffer not only interacts with
the Command Selection Process and Command Execution Process, but also
provides information on the current command backlog to the Supervisory
Processor and can receive commands directly from the Superviscry Pro-
cessor in certain situations. This command backlog will be important
in the discussion of the Attention Reallocation Process. The source
of the direct entry commands into the Command Buffer will be identified
in the examination of the Excessive Error Process.

5. The Command Execution Process

The Command Execution Process might be envisioned as the neuromus-
cular transducer which provides the actual control inputs to the task i
controller based on commands obtained from the Command Buffer. This ;
function is accomplished as follows. Each command is obtained from
the Command Buffer and executed as constant command for a discrete
but minute amount of time. Typically, a command would last for approximate-
ly 100 msec, although in HOPE this varies with one of the Control Strat-
egy Parameters. When this period of time expires, the Command Execution
Process requests the next command from the Command Buffer. If none
is available, for whatever reason, the Command Execution Process merely
repeats the execution of the last command it obtained from the Command
Buffer until more commands become available from the Command Buffer.
Each time a command is started, a signal is provided to the Supervisory
Processor. This signal is interpreted by the Supervisory Processor
as a request for Stimulus-Response Association and is loaded into the
queue for processing in turn. Figure 6 depicts the Command Execution
Process.

6. Functions of the Supervisory Processor

Previous sections have discussed HOPE's subsidiary processes,
and have indicated the sources of requests for action by the Supervisory
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Processor. Table 2 summarizes the source of such requests and resulting
response by the Supervisory Processor.

TABLE 2

SOURCES OF INPUTS AND FUNCTIONS OF THE SUPERVISORY PROCESSOR

Desired Supervisory

Source Input to SP Processor Response
Command Selection Command Search Satisfactory Command
Process Request Search
Command Execution  New Command Stimulus-Response
Process Started Association
Command Buffer Current Command Consider Attention
Backlog Reallocation

These relationships are also shown in Figure 2. It should be remem-
bered that requests for the functions indicated in Table 2 are handled
on a first-come, first-served basis, and therefore, the functions are
not always performed immediately upon request. Requests for Performance
Monitoring and the Excessive Error Process are not shown because Perform-
ance Monitoring occurs in alternation with the other functions and ini-
tiates the Excessive Error Process when performance is unacceptable.
The sections below detail the functions of the Supervisory Processor.

a. The Stimulus-Response Association Process. The Stimulus-Response
Association Process updates the contents of the Command Memory. It
will be recalled that the Command Memory is an array, the rows of which
correspond to all possible desired task controller outputs, and the
columns of which correspond to all possible current task controller
outputs. The content at each array location is the command for input
to the task controller necessary to cause its output to transition from
a current state to a desired state in one Command Operative Time.

The Stimulus-Response Asociation Process is responsible for enter-
ing the commands into the Command Memory at appropriate locations.
To do this, it must have information about sequential task controller
outputs (i.e., cursor positions) and the task controller inputs (i.e.,
control stick positions) which intervened between pairs of outputs.
In the ideal case, this information is obtained as follows.

At time t,, a "new command started" signal is provided to the Super-
visory Processor by the Command Execution Process. At this time, the
Stimulus-Response Association Process records the current task controller
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output and current command to the task controller as provided by the
Perception Process. Later, at t 1’ (where ti+ minus t, is the Command
Operative Time), the "new command started" inpu% is presented to the
Supervisory Processor once again. At this time the Stimulus-Response
Association Process again records the current task controller output

and current command to the task controller. With these two records

the Stimulus-Response Association Process can now update the Command 1
Memory in the following manner.

The task controller output at t. and the task controller output
at ti—l are used as column and row indicators for positioning the inter-
vening command in the Command Memory. The command at ti—1 is inserted
in the array at this location, as shown in Figure 7.

At t.+1, the "new command started"” input arrives at the Supervisory
Processor once again and the Stimulus-Response Association Process records
the value of the task controller output and command input to the task
controller for this instant in time. The Stimulus-Response Association
Process therefore works with two time samples of data: the first being
presented by the Perception Process at the present time and the other
being one which is remembered by the Stimulus-Response Association Pr-
ocess as having been recorded by the Perception Process at a previous
instant in time. The Stimulus-Response Association Process is depicted
in Figure 8.

This description of the function performed by the Stimulus-Response
Association Process has assumed ideal conditions -- ideal in the sense
that when the "new command started" input arrives, the Supervisory Pro-
cessor is free and able to immediately execute the Stimulus-Response
Association function. In reality, this is usually not the case. The
Supervisory Processor is almost always engaged in performing one func-
tion or another, and the "new command started" input is loaded into
a queue. The result is that Stimulus-Response Association is delayed,
so the task controller output and command input used to update the Com-
mand Memory are not necessarily those which were present at the instant
when a new command began execution. There is, therefore, a certain
amount of inaccuracy in the data used to update Command Memory. For
this reason, new entries into the Command Memory are always averaged
with entries which have been previously stored at that location. Be-
cause of this averaging, HOPE (likewise, the human) becomes adept at
particular tasks only after a certain amount of practice. Only through
repeated observations of the same situation is the error in the record-
ing process finally eliminated.

b. The Satisfactory Command Search Process. The purpose of this
function is to provide a command when the Command Selection Process
is unable to do so. The Command Selection Process indicates its need
for help by submitting a request for a Satisfactory Command Search to
be handled by the Supervisory Processor.
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In a very limited sense, the Command Selection Process performs

a search for a satisfactory command within the Command Memory. This
search is limited to only one location within the Command Memory, namely,
that pointed to by the last predicted state and the desired state.
The Satisfactory Command Search Process then performs a more extensive
search within the Command Memory in an attempt to locate a command which
may not be the best command for the particular situation in question,
| but which will provide acceptable results. Acceptable here means that
‘ the predicted result of using such a command differs from the desired

state by less than the acceptable position error, as dictated by one

of three Control Strategy Parameters, ERRLIM.

.

i ‘ The search of the Command Memory by the Satisfactory Command Search
Process is carried out in two stages. The first stage is called a column
search. This portion of the search is shown in Figure 9. The column

to be searched is the column indicated by the last predicted state.

3 The region to be searched is the region bounded by the desired state
minus ERRLIM and the desired state plus ERRLIM. The search progresses
outwardly from the location pointed to by the desired state and last
predicted state as shown in the center column of Figure 10. The loca-
tion in the center of the column to be searched is the location of the
situation for which a command is needed. The search expands outward

3 from this location in the sequence Cl, C2, C3...as indicated in Figure

$ 10. This column search continues until either a command is found or

the region boundaries are encountered. 1If a command is found, this
command is provided to the Command Selection Process for loading into
the Command Buffer. If no command is found before reaching the region
boundaries, a broader search called a block search is undertaken.

The search region for this more extensive Satisfactory Command
Search is indicated in Figure 1ll1. Here the limits of the search are
the same in the row dimension, i.e., the desired state plus ERRLIM and
the desired state minus ERRLIM; but the column limits are expanded to
include the last predicted state minus ERRLIM through the last predicted
state plus ERRLIM. The sequence of this search continues until a com-
mand is found or until the region boundaries are encountered.

Because the task controller output is, or is expected to be, in
the state labeled last predicted state, precise assessments can be
made of the suitability of any command found in the column search.
: In other words, the task controller has not been observed in this sit-
uation, but has been observed in situations which are sufficiently similar
to allow assessment of the expected result of a particular course of
action. The rationale for block search is a bit more vague., Here, the
task controller has not been observed, nor is it expected to be, in any
of the states offset from the last predicted state at the time instant
in question. In other words, in addition to some tolerance on the
resulting predicted state, Xt., there is also lack of specificity
about the description of the 5eginning state, X _. .. This
implies the assumption that all task controllers'which will be
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encountered are reasonably analytically continuous; that is, within

a "small" region, if the current state is offset by some amount, "a"
(last predicted state = X . . + a), then the resulting state will also
be offset by an amount, "a*—lpredicted state = X_. + a), for any command
found within the region bounded by + a. t1

The Satisfactory Command Search Process must still produce a com-—
mand for the Command Selection Process, even if neither the column
search nor the block search discovers one. When these two search procedures
fail, the Satisfactory Command Search Process resorts to what might
be termed a "best guess" approach. In this instance, the Satisfactory
Command Search Process implicitly assumes that the task system is a
zero-order device with no gain, lead, or lag. This type of device
has the characteristic that the task controller output at t, is equal
to the task controller input at t. regardless of any past conditions.
The command provided to the Commafd Selection Process in this condition
is simply the desired state.

The results of applying these "best guess' commands are unpredict-
able to some degree. Therefore, when such a command is provided to
the Command Selection Process for entry into the Command Buffer, the
Supervisory Processor is informed so that it cannot divert attention
from the task. This point will be elaborated in discussion of the
Attention Reallocation Process. The overall structure of the Satisfactory
Command Search Process is shown in Figure 12.

(B The Attention Reallocation Process. As currently implemented,
switching of attention away from the tracking task is allowed when
the backlog in the Command Buffer exceeds some level, or when commands
have been planned for all states out to the maximum preview available.
When either of these two criteria are met, the Supervisory Processor
is requested to apply the Attention Reallocation Process to divert
its attention to other tasks. Before attention is diverted, however,
the Supervisory Processor determines if there are "best guess" commands
in the Command Buffer. If so, attention is not diverted. If there
are no "best guess" commands in the buffer then attention is diverted
from tracking. Since HOPE's Perception Process currently inputs only
visual information, diverting attention from tracking diverts the Perception
Process, and thus stops the Command Selection Process. Attention is
switched back to tracking when there is only one command remaining
in the buffer, and Command Selection must continue (see Figure 13).

d. Performance Monitoring and the Excessive Error Process. As
described above, one of the functions of the Supervisory Processor
is performance monitoring. Performance monitoring, very simply, consists
of detecting when the task controller output is different from the
desired output (desired state) by an amount greater than the acceptable
error criterion (ERRLIM). This function is performed in alternation
with each of the other Supervisory Process functions. If an unacceptable
error is detected, the Performance Monitor immediately invokes the
Excessive Error Process.
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I1f an unacceptable error is detected, there has been some deficiency
in planning (i.e., in command string generation) in the past; hence,
all commands remaining in the Command Buffer are suspect. Thereforc,
the first step taken by the Excessive Error Process is to empty the
Command Buffer. Also, because of the assumed planning error, any re-
quests in the Supervisory Processor queue are also suspect and are also
dumped to allow for expeditious handling of any new requests which might
appear during the course of correcting the excessive error. The next
step taken by the Excessive Error Process is to set the last predicted
state equal to the present state, i.e., to force command string develop-
ment to begin all over again from the present state.

Next, the Excessive Error Process acts for the Command Selection
Process and attempts to find the currently needed command in the Command
Memory. If a command is found, the Excessive Error Process places the
command directly in the Command Buffer, sidestepping the Command Selec-
tion Process. It does, however, report the predicted result of using
this command to the Command Selection Process for its use in continuing
the command string generation process. If a command is not found at
this location, the Excessive Error Process produces a "best guess" com-
mand, assuming that the command needed to get to the desired state is
the desired state itself.

The effect of using this type of command is not generally predict-
able and may not compensate for the error. To eliminate re-selection
of "best guess" commands which do not compensate for an error, further
"best guess" commands are adjusted prior to use. For example, if the
cursor is presently off the track on the same side as the last time
the Excessive Error Process was invoked and no command was found in
the Command Memory, this adjustment is made by adding a factor to a
cumulative adjustment factor, which is then added to or subtracted from
the 'best guess' command. The increment by which the cumulative command
adjustment factor is increased is computed on the basis of one of the
control strategy parameters, referred to as ADJUST. 1If the cursor is
not off the track on the same side as last time, then the cumulative
adjustment factor is set to zero, and the "best guess' command is used
as is. Figure 14 shows the command adjustment procedure.

Whether the Excessive Error Process finds a command in the Command
Memory or has to fabricate one, the command is placed directly into
the Command Buffer, and the predicted result is provided to the Command
Selection Process. For both command types, the predicted result is
the desired state. If the command was obtained from the Command Memory,
this result is predicted quite accurately; in the case of use of a fabri-
cated command, the result is less accurately specified.

The Performance Monitoring Process operates in alternation while
other processes are being executed. Hence, after the Excessive Error
Process terminates, it would be quite possible for the Performance
Monitor to detect the same problem that the Excessive Error Process just
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attempted to rectify and invoke the Excessive Error Process once aocin,
If this were allowed to occur, no commands would ever get into the
Command Buffer, no process requests would ever get into the queue,

and the net effect would be that no progress would ever be made toweard
eliminating the excessive error. This situation does not normally

occur. Therefore, it was necessary to design HOPE to ignore the repeated
reports of intolerable error until there has been time for assessment

of the effects of corrective steps. This has been implemented by

not allowing the Excessive Error Process to repeat until two Stimulus-

; Response Association requests have been received., The Stimulus-Response
Association requests are counted from the time the excessive error

was detected. 1In this manner the Supervisory Process is assured that

the command which it placed into the Command Buffer has been executed

so that it is now appropriate to reassess the situation, if the Performance
Monitor still claims there is a problem. The overall structure of

the complete Excessive Error Process is shown in Figure 15.
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7. Controlling Parameters - Fixed Process Timing

’ One final feature necessary for the implementation of HOPE is
the simulation of process execution and intercommunication times.
The Perception, Command Selection and Command Execution Processes and
: the processes executed by the Supervisory Processor require a finite
amount of time for execution. The exact length of time which each
process requires will be discussed below, after description of the
implementation of these processing times in the model.

Tigure 16 shows the standard process timing structure in which
[ each of the HOPE processes 1is embedded. Each time through the program,
! every process 1s called through its process timer. If sufficient time
‘ has elapsed since the last time this process was executed, then the
results of the last execution are made available and the process 1is
. allowed to execute again. The timer is then reset to simulate the .
time required to perform this function.

Figure 17 shows the overall program structure. The main control E
block sees to it that every process is called during each loop through
the program so that all process timers are updated. Any process whose
timer expires in a giver time through the program has the results of
its last execution made available to other processes which might use
this information, thereby simulating intercommunication between processes.
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these processes is based on physiological data.
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attempted to rectify and invoke the Excessive Error Process once aczin.
If this were allowed to occur, no commands would ever get into the
Command Buffer, no process requests would ever get into the queue,

and the net effect would be that no progress would ever be made toward
eliminating the excessive error. This situation does not normally

occur. Therefore, it was necessary to design HOPE to ignore the repeated
reports of intolerable error until there has been time for assessment

of the effects of corrective steps. This has been implemented by

not allowing the Excessive Error Process to repeat until two Stimulus-
Response Association requests have been received. The Stimulus-Response
Association requests are counted from the time the excessive error

was detected. In this manner the Supervisory Process is assured that

the command which it placed into the Command Buffer has been executed

so that it is now appropriate to reassess the situation, if the Performance
Monitor still claims there is a problem. The overall structure of

the complete Excessive Error Process is shown in Figure 15.

7. Controlling Parameters ~ Fixed Process Timing

One final feature necessary for the implementation of HOPE is
the simulation of process execution and intercommunication times.
The Perception, Command Selection and Command Execution Processes and
the processes executed by the Supervisory Processor require a finite
amount of time for execution. The exact length of time which each
process requires will be discussed below, after description of the
implementation of these processing times in the model.

Figure 16 shows the standard process timing structure in which
each of the HOPE processes is embedded. Each time through the program,
every process is called through its process timer. 1If sufficient time
has elapsed since the last time this process was executed, then the
results of the last execution are made available and the process is
allowed to execute again. The timer is then reset to simulate the
time required to perform this function.

Figure 17 shows the overall program structure. The main control
block sees to it that every process is called during each loop through
the program so that all process timers are updated. Any process whose
timer expires in a given time through the program has the results of
its last execution made available to other processes which might use
this information, thereby simulating intercommunication between processes.

Standard process timers control the amount of time required to
execute the Perception, Command Selection, Stimulus-Response Associa-
tion, Satisfactory Command Search, Attention Reallocation and Excessive
Error processes. The simulated real time taken to execute each of
these processes is based on physiological data.
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The perception interval is based primarily on sensory neural trans-
mission speed. For an average distance of 1 m and an average transmis-
sion speed of 25 m per sec, typical transit time for perceptual infor-
mation is in the neighborhood of 40 msec. This is the length of timc
required for information to be transmitted from the receptor to the
brain which uses it. Hence, the Perception time interval in the model
1s set at 40 msec.

The time required for the selection of an individual command is
based on neural transmission speed and on the results of reaction time
experiments. Typically, the results of binary choice reaction time
experiments lie in the range of 120 to 180 msec. This time is composed
of three elements: the perception time, the response selection time.
and the response transmission and execution time. In a manner similar
to that used to evaluate the perception time, motor neural transmission
time 1s evaluated to be in the neighborhood of 50 to 60 msec. This
leaves between 30 and 60 msec for the actual response selection process.
The HOPE model currently uses 40 msec for the Command Selection Process
time.

The processing time required for the Satisfactory Command Search
Process is also determined from neural transmission speeds and reaction
time experiments. In this case, the appropriate course of action is
not known beforehand and must be determined at the onset of the stimulus.
Results for this type of behavior typically lie in the range of 240
to 300 msec. Assuming that the sensory and motor transmission times
remain fixed means that the command selection time has increased by
40 to 80 msec over the binary choice reaction time requirements. The
execution time requirement for the Satisfactory Command Search Process
is therefore set at 120 msec.

The Stimulus-Response Association Process is the reverse of the
Command Selection Process. The Command Selection Process takes a command
out of the Command Memory; the Stimulus-Response Association Process
puts a command into the Command Memory. For this reason, the Stimulus-
Response Association Process execution time is set equal to the Command
Selection Process time, i.e., 40 msec.

The most difficult process execution time to rationalize is the
Excessive Error Process time. This process must allow time for emptying
the Command Buffer, for emptying the process request queue, and for
performing the same function as the Command Selection Process -- with
the addition of the command adjustment function. It should therefore
take at least as long as the Command Selection Process. The time re-
quired for discarding the old command string and for dumping all pre-
vious processing requests is probably insignificant by comparison.
Adjustment of a best guess command could perhaps take a measurahle
amount of time -- perhaps as long as the Satisfactory Command Search
Process. One could argue then that the time required for this process
should be in the range of 40 to 120 msec. Currently, the execution
time for this process is set for 40 msec.
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Studies of attention switching have not been pursued at this point,
Therefore, an execution time for the Attention Reallocation Process
has not yet been established.

2. Controlling parameters--Control Strategy Parameters

One of the fundamental assumptions in the design of HOPE is that
continuous control behavior is modulated by an individual's control
strategy. Control strategy is realized in HOPE by means of control
strategy parameters (CSPs). In HOPE, three CSPs have important effects
on the timing and style of tracking behavior. The CSPs are: the time
over which one command is executed, or Command Operative Time (COT),
an operator-defined limit for the amount of error allowable (ERRLIM),
and the magnitude of response to excessive error (ADJUST). Each will
be discussed below in terms of the way its variation affects the simu-
lation HOPE.

a. Command Operative Time (COT). The theory of psychomotor behavior
which shapes HOPE contains an explicit assumption that humans execute
motor control with short commands whose duration can be controlled
by humans. This is thought to be an aspect of control strategy and
would be evidenced in the human by the inverse of the frequency of
firing of neurons controlling the limb involved in the control task.
The limb controlled would exhibit some degree of '"jerkiness", or 'bang-
bang" control, when the duration of commands was relatively long.
In the HOPE simulation, this aspect of countrol strategy is represented
by a variable parameter called Command Operative Time (COT).

COT value has important effects on the behavior of HOPE. It will
be recalled that the Stimulus-Response Association Process is signalled
only when the Command Execution Process begins executing a new command.
I1f COT is short, then each command execution occurs relatively quickly,
and there are frequent signals for the Stimulus-Response Association
Process. Also, if COT is close to the Command Selection Process time
of 40 msec, the number of commands in the Command Buffer will always
be small, since each is executed nearly as rapidly as it is generated.
Longer COT values permit command strings of several seconds in duration
to build up in the Command Buffer. The size of COT also has direct
effects on the way in which the Command Memory develops, since the
associations which occur are of events perceived as one COT apart in
time.

Prior to the validation procedures described in Section V, five
values of COT were selected for testing in HOPE. These were: 40,
80, 120, 160, and 200 msec.

b. Operator Defined Accuracy Criterion -- ERRLIM. The theory
on which HOPE is based assumes that a second aspect of control strategy
in continuous manual performance is the depree of error that an indivi-
dual will allow before major error correct:.ve acticn is initiated.
Some individuals show considerable error before they begin to pay special
attention to correcting error; other individuals allow themselves much
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less error before corrections are begun. 1In HOPE, this aspect of control
strategy is represented by ERRLIM -~ the amount of position error allowed
before the Excessive Error Process is signalled. As ERRLIM decreases,
the frequency of interrupts by the Excessive Error Process increases.
Also, as ERRLIM decreases, there is a decrease in the region of the
Command Memory search during a Satisfactory Command Search.

A major impact of ERRLIM in HOPE is on the average command string
length. The smaller the ERRLIM, the more frequently the Excessive Error
Process interrupts and dumps the commands in the Command Buffer. For
small error tolerance, i.e., small values of ERRLIM, the average command
string length remains very small early in learning when the command
memory is not loaded with good commands for accurately predicting future
control actions. As learning continues, the command memory fills with
good commands, and the average command string length continues to in-
crease, almost independently of ERRLIM.

A second impact of ERRLIM on the simulation is that observable
error performance generally increases with ERRLIM, for a given state
of learning. The state of learning is indirectly measurable in HOPE
as the average number of Satisfactory Command Searches in a given inter-
val of time. For two models with different ERRLIMS and comparable
average numbers of Satisfactory Command Searches, the model with the
larger ERRLIM will demonstrate larger actual errors. This is because
during the Satisfactory Command Search, the model with the larger ERRLIM
can select commands which are further from the next desired state and,
therefore, more likely to result in observable error. With a large
ERRLIM, the command string in the buffer is composed of commands known
a priori to produce larger task controller output errors.

This effect is greatly diminished as learning increases. One
reason is that there are fewer demands for the Satisfactory Command
Search, and thus fewer opportunities for selecting an '"acceptable"
command which produces considerable error. In addition, as learning
increases, even when the Satisfactory Command Search does occur, commands
will be more frequently found closer to the location of the needed
command. These commands are less likely to result in large errors.

Prior to the experimentation described in Section V, five values
of ERRLIM were selected for testing in HOPE. These were .58, 1.17,
2.34, 4.67, and 9.35 cm.

c. Magnitude of Response to Excessive Error -- ADJUST. The

third control strategy parameter represented in HOPE is ADJUST. In
human control behavior, responses to conditions of excessive error

vary in size. A confident individual may exert large movements to

try to compensate for an error. A more conservative individual may

apply smaller movements. HOPE assumes that one aspect of an individual's
control strategy is the magnitude of the response to excessive error,
which is represented by ADJUST.
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The manner in which ADJUST affects HOPE behavior is as follows.
Each time the Excessive Error Process is called, it attempts to find
a valid command in the Command Memory. When this fails, it provides
the current desired state (a "best guess" command) or some modified
version of it. ADJUST is used in the modification of the "best guess"
command.

Modified commands are used when two conditions are met: (a) the
error has been excessive in the same direction, relative to the track,
since the last time the Excessive Error Process was called (at which
time no command was found in the Command Memory) and (b) no command
is found in the Command Memory for the current situation. The Excessive
Error Process records the number of times it sequentially operates with
the use of "best guess" commands without achieving acceptable error.

Modification of a "best guess" command is performed by adding (or
subtracting, depending on the direction of the error) a factor to the
best guess command. The factor is the product of ADJUST and the number
of sequential calls for the Excessive Error Process. This produces
the effect of initiating increasingly bold moves in the face of persis-
tent error.

The procedure of adding multiples of ADJUST repeats until the ob-
served error is in the opposite direction from that which previously
signaled the Excessive Error Process. At this point, the counter is
zeroed. The counter is also zeroed whenever the Excessive Error Process
enters the Command Memory at a point where a good command exists. In
such a case, the command found in memory is used as the next command.

The impact of ADJUST on model behavior is subtle. Both extremes
of the parameter, in general, will result in relatively greater error
than moderate values. For very small values of ADJUST, the "best guess"
command, (i.e., the currently desired next state) dominates model be-
havior in novel situations and rapid correction of errors is not observed.

For very large values of ADJUST, the currently desired next state
contributes a minor part to the model behavior in novel situations,
and jerky, erratic behavior results. The experience base expands rap-
idly with time with such behavior, however, and is not confined closely
to the track's centroid of history. Because of this phenomenon, models
with large values of ADJUST may show less error in response to new track
positions since the bolder moves associated with a large ADJUST may
have exposed HOPE to these positions.

Three values of ADJUST were selected for use in testing HOPE.
These were of .58, 1.46, and 2.34 cm. Thus, when ADJUST equals .58,
for example, the first time error is excessive in a given direction,
.58 multiplied by 1 will be added to the "best guess" command. If the
error remains excessive in the same direction, .58 multiplied by 2,
will be added to a "best guess" command.
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9. HOPE Program Specifications

The HOPE program is written in ANSI Standard FORTRAN and has been
used on both the CDC Cyber 70/74 and Interdata 7/32 computers at Georgia
Tech. The program consists of 950 lines of code and requires less than
30K words of central memory for execution. No overlays or disc-based

data are necessary. The program currently runs about 12 times faster
than real time.




SECTION V

rr PRELIMINARY TESTING AND RESULTS

A. Introduction

i This section describes an experiment and data analyses performed

in an attempt to provide initial validation and demonstration of HOPE,
(Human Operator Performance Emulator). HOPE is a computer simulation
which models cognitive processes associated with psychomotor skill learn-
ing and the effects of control strategies which individuals might employ
during learning. The processes modeled relate to perception, learning,
retrieval from memory, response selection and execution, and performance
monitoring.

HOPE can model performance guided by different control strategies.
Control strategy is represented in terms of three control strategy para-
meters (CSPs): ERRLIM, ADJUST, and COT. These parameters dictate,
respectively, the amount of error allowed before major error correction
procedures are applied, the magnitude of adjustment performed in exces-
sive error conditions, and the length of time over which one motor com-
mand is active. Five values of ERRLIM, five values of COT, and three
values of ADJUST were tested, yielding a total of 75 (5 X5 X 3 = 75)
sets of CSP values. Using numerical input corresponding to each of
four different training conditions, HOPE was run 75 times, each time
guided by a different control strategy, as represented by a set of CSP
values. Thus, for each training condition, HOPE produced 75 predictions
of control stick motions. The term "HOPE model" will be used to refer
to the operation of HOPE when controlled by a particular one of the
75 sets of CSP values.

The basic task used in testing was a one-dimensional preview track-
ing task. Human subjects used a low friction isotonic stick to control
the position of a cursor, specifically to try to center the cursor on
a track traveling on a screen before them. The control function was
position type, with a non-linear first order lag. It is this control
function which was to be learned by the subjects and by the HOPE models.
Subject behavior was recorded and matched against behavior of HOPE models
modulated by different control strategies. The control strategy para-
meters used in the HOPE model which best predicted human behavior in
a given time bin were used to infer the control strategy for that sub-
Ject during that period in time. This matching procedure will be de-
scribed later in greater detail.




There were three basic questions examined in this initial testing.
The answers are important for establishing HOPE as an accurate simul-
ation of psychomotor behavior and for validating the approach of using
control strategy identification as a means for measuring human progress
in training. The three questions are listed and discussed below.

Question 1: Do HOPE models match human behavior to an
acceptable extent?

There already exist adaptive engineering models with time-varying
coefficients which produce matches of certain types of behaviors. To
validate HOPE as an alternative approach, it is critical that HOPE also
be able to match human behavior well. For this experiment, the crite-
rion for M"acceptable" matching of human behavior by HOPE was as follows:
For at least 90% of the subjects, one or more HOPE models must match
human behavior with a root mean square difference score of less than
7.5 cm for at least half of the duration of the testing (i.e., at least
30 out of the 60 time bins). This difference score requires that HOPE
match human behavior within 20% of the control stick's range of motion.

Question 2: Does control strategy, as identified by HOPE,
change with learning?

Earlier discussion (see Section III) pointed out that control stra-
tegy is believed to change during the learning of a new psychomotor
task. Most individuals begin a new psychomotor task using relatively
ineffective strategies for performance. Such strategies may be poorly
defined, or they may be well defined, based on experiences with other,
different tasks. With practice, the initial control strategy is revised,
and a more effective strategy develops. As was pointed out earlier
(see Section III), practice allows certain processes to become less
demanding of attention, freeing more attention for the development of
an appropriate control strategy.

If the conceptualization of control strategy in HOPE is valid,
then human control strategy as identified by HOPE should change with
learning. That is, the control strategy parameters (CSPs) of the HOPE
models which best match human performance should change with learning.

For this preliminary testing, subjects were given five U4-minute
trials of the preview tracking task. Control strategy was said to have
changed with learning if the CSPs of the best match models for behavior
on the first trial were significantly different from those for behavior
on the fifth trial.

Question 3: Does control strategy, as identified by HOPE,
reflect differences between training conditions?

Another assumption underlying the definition of control strategy
is that it reflects variations in the training environment. When factors




such as task difficulty or available cues change, control strategy gra-
dually changes so that overt behavior can remain fairly effective.

For example, a driver can stay on the road fairly successfully in dry
weather, or in a snowstorm, if he adaptively modulates his strategy

for driving, e.g., his speed, his accelerations, etc.

If the conceptualization of control strategy in HOPE is correct,
then control strategy as identified by HOPE should reflect differences
between training environments. 1In the present experiment, the training
environment was varied in two independent ways to create four distinct
training environments, each maintaining the same non-linear control
dynamics. First, subjects tracked either a more rapidly varying } Hz
track, or a less rapidly varying & Hz track. These two tracks make
different demands on the human operator, just as driving on a curving
road makes demands different from driving on a straight road. For example,
motor commands must vary more rapidly when tracking a more rapidly chang-
ing track or road. In HOPE, such changes might be reflected in changes
in COT, which controls the frequency with which motor commands can vary.
It might be predicted that the COTs of the best fit models for 3 Hz
tracking behavior would have shorter values, allowing more frequent
execution of new commands.

Further, a more rapidly curving track should cause subjects to
make more energetic responses to excessive error, since the track is
likely to be moving away from the controlled element at a more rapid
rate in errorful conditions. This idea suggests that ADJUST values
of best-fitting HOPE models should be larger in 3 Hz track conditions
than in & Hz track conditions.

A second way in which training conditions varied was in terms of
tracking guidelines. Each type of track had "narrow" or "wide" tracking
guidelines. It was hypothesized that these guidelines would affect
control strategy and in particular would affect ERRLIM, the HOPE repre-
sentation of an internal performance standard. The logic behind this
hypothesis is as follows.

Task performance is often influenced by externally provided stan-
dards for performance. Disregarding very high or very low standards,
performance is more likely to be of high quality when external standards
for performance are moderately high. It is proposed that this effect
is mediated by internal performance standards. Such standards are,
in part, subjectively determined, but also are responsive to, and change
with, external standards. The internal standard influences the quality
of performance by limiting excessive error, and is one aspect of the
control strategy used to guide performance. ERRLIM is HOPE's represen-
tation of an internal performance standard. If these previously dis-
cussed assumptions are correct, then the ERRLIM of HOPE models which
best predict human behavior should vary with external standards for
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performance, such as track guidelines. This hypothesis can be examined
by comparing the ERRLIM values of the best fit models for performance
in conditions of wide versus narrow guidelines.

The guidelines might also be expected to have a second effect on
control strategy. Subjects viewing a track with wider, more generous
guidelines might be less hesitant to make bold control movements in
the face of excessive error than subjects who view narrower, more re-
strictive guidelines. If such were the case, then ADJUST values in
HOPE models which best predict human behavior in wide guideline condi-
tions should be larger than ADJUST values for models which best predict
behavior of subjects in narrow guidelines.

In summary, if HOPE is valid, control strategy, as inferred from
CSP values of best fit models, should vary between different training
conditions. In the present experiment it seems likely that COT should
be particularly sensitive to differences in track frequency, ERRLIM
should be sensitive to differences in track guidelines, and ADJUST should
vary with both.

It is important to note that if the conceptualization of control
strategy is valid, differences in control strategy may not be immedi-
ately apparent but should emerge during the course of learning. As
was discussed with reference to Question 2, initial control strategies,
although often related to past experience, are likely to be relatively
ineffective in performance of a new task. In the present experiments
using inexperienced subjects, it is unlikely that there are systematic
differences in the control strategies used initially by subjects in
the four different training conditions. However, if the conceptuali-
zation of control strategy is correct, differences in the control strat-
egies used in the different training conditions should emerge over the
course of learning, with more clear-cut diiferences emerging on the
later trials. For these reasons, special attention will be focused
on the CSP values of the best fit models for behavior in the first and
fifth trial of the four different training conditions.

B. Method

1. Design

A 2 x 2 between-subjects design was used with track frequency
(L Hz or 4 Hz) as one independent variable, and guideline width (narrow
or wide) as the second independent variable.

Thus, the four experimental conditions were:

L Hz track, narrow guidelines
L Hz track, wide guidelines
3 Hz track, narrow guidelines
3 Hz track, wide guidelines.




2. Sub jects

t . .
‘ Subjects were 16 men and 16 women, all paid volunteers fror
ROTC units. Eight subjects were assigned_to each condition, with equal
- ‘ numbers of men and women in each condition.
1

3. Apparatus

The apparatus is displayed in Figure 19. The track and guide-
' lines were presented on a Grinnell Systems GMR-27 digitally refreshed

4 graphics display. The Conrac video monitor was 37.38 cm wide by 26.06
cm high. The track was generated by passing a pseudo-random signal
through a low-pass filter. The track generation procedure is detailed
in Appendix B. The track traveled downward from the top of the screen.
About five seconds of track preview were available during tracking.

The guidelines were centered around the track. Narrow guidelines appeared
+ 1.6 cm directly horizontal of the track; wide guidelines appeared

+ 3.58 cm directly horizontal of the track. Figures 19 to 22 show

the tracks as they appeared in each of the four conditions.

Al

The subject controlled a cursor in the form of a small plus (+)
visible on the screen. The cursor moved only in the horizontal dimension
halfway between the top and bottom of the video screen. Control was
by means of a low friction isotonic §tick with seven bits of position
output, or 128 possible positions (2° = 128).

To minimize effects of past experience, the relationship between
stick and cursor position, or control dynamics, was position type with
non-linear first order lag. The cursor was more responsive to stick
j movement when the stick moved in the middle of its range than at extremes. g
' Learning these control dynamics was the fundamental learning task for :
the subjects and for the models. Appendix C contains details of the 3
control dynamics.

An Interdata Corporation mini-computer recorded control stick
position every 40 msec. This same computer was used for data analysis.

4. Procedure

Subjects were seated at a desk from which protruded the control
stick and the key used to start each trial. About 1 m in front of them
was the display screen. Subjects in all conditions were given the 2
following instructions, which are fully consistent with the procedure ;
: used:

"The experiment you are participating in today involves using 3
a control stick to control a cross-hair on this CRT screen. You are
é to control the cross-hair so as to stay as close as possible to the
center line of a moving track you will see displayed in front of you.
You will have five 4-minute periods to learn this task, with a one
minute break in between each. The track will move down the screen from
the top. The cursor you control is able to move only in the horizontal
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Figure 18. Apparatus used in preliminary testing of HOPE.




Figure 19.

Figure

~n

Track in 1/4 Hz, narrow guideline condition.

Track in 1/4 Hz, wide guideline condition.




Figure 21. Track in 1,/2 Hz, narrow guideline condition.

Figure 22. Track in 1/2 Hz, wide guideline condition.
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direction and will be located at the middle of the screen. You will

see guidelines displayed on each side of the track to help you track
accurately. After each trial, wait one minute, and then push the button
on the table to start the track again.

"Now I'd like you to get familiar with the positions available
on this stick. Take hold of the stick and move it around until you
think you're sure about where the center is, and where other positions
on the handle are.

"The cursor-control stick 'machine' is different from any you have
ever experienced. You may find it difficult to control at first, but
it will get easier very shortly. At all times try to keep the cursor
as close as possible to the center of the track. The four men and the
four women who track most accurately overall will receive an additional
$5, as well as the $10 participation fee. Try to do the best you can.
Remember, after each trial, wait one minute and push the button to bring
on the next trial.

"Do you have any questions about the task you have to do?
"Now begin."

After each test session, subjects were given a brief explanation
of the project, as follows:

"We have a theory about how people learn to control vehicles such
as cars and airplanes, or even how to hit a tennis ball properly. We
believe you build up a special memory for the consequences of every-
thing you do, and when you get back into the same, or a similar situ-
ation, you repeat actions that have been successful.

"We have taken our theory, which is quite elaborate, and created
a computer program which does part of what we believe all humans do
when they learn a cortrol task. We call the computer program HOPE,
an acronym for Human Operator Performance Emulator. We will take the
recorded output from your control stick actions, and find the control-
ling parameter set which allows the HOPE output to best match your out-
put for each 20 second interval in your tracking record. Then we will
look at the values of the controlling parameters in the HOPE model of
you in the hope of learning something about psychological processes
involved in learning this task.

"Do you have any questions?"

5. Data Analysis Plan

a. Choice of best-fitting HOPE models - Each subject's con-
trol stick output was divided into sixty time bins of 20 seconds each ‘ ]
(5 track repetitions x 4 min each)/20 sec = 60 time bins, with 12 time :
bins per track repetition). Since data had been recorded every 40 msec f
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during testing, there were 500 data points per time bin (20 sec/40 msec
= 500).

For each time bin, a comparison was made between human control
stick positions and the control stick positions for that time bin pre-
\ dicted by each of the 75 HOPE models. A best-fit model for each time
bin was selected.

o

i

:

4

t

3

E

-

; The procedure for selecting the HOPE model which best-fit human

{ output for each time bin involved computing a measure of the difference

§ between human output and the predictions of each of the 75 HOPE models,

- and then ranking the goodness of the models according to their differ-

ence from human output. The end result was, for each time bin, a rank-

_ ing of the 75 models in terms of how well each predicted a subject's

1 control stick output in that time bin.

]

- Two different statistics for describing the difference between
human behavior and model behavior were investigated: root mean square
error (RMS) and mean absolute state error (MASE). RMS error is a con-
ventional measure used for describing the difference between two wave-
forms, but it has the disadvantage that it considers mainly position
difference between model and human output in describing the difference
between them. MASE is a newly developed statistic which includes infor-
mation about position, velocity, and acceleration differences to describe
the overall difference. MASE is computed as the sum of: a) the absolute
values of the instantaneous differences between positions, b) the first
derivative of position difference (velocity), and c¢) the second deriv-
ative of position difference (acceleration}.

Appendix D provides details of the computation of MASE, and proce-
3 dures used in an initial attempt to validate MASE. For a test bin,

. MASE rankings and RMS error rankings of the ten best models were com-
pared to human rankings. Although both measures agreed somewhat with
human choices, MASE choices agreed no better than RMS error choices

§ with human judgements. In view of the novelty of MASE, and the fact
that RMS error has been applied usefully many times before, it was de-
- cided that RMS error should be used to judge human-model behavior fits
' for this report. However, since MASE does employ more information in

1 describing differences and is computationally simpler, future work should
be devoted to further development of MASE.

P

The RMS error calculation was performed as follows. Human control
p stick position was recorded every 40 msec throughout the experiment.
HOPE generated 75 model predictions of control stick positions for each
of the four training conditions. For each model in a given task con-
dition, the position differences between model and human control stick
position for each 40 msec measurement point were squared and summed
within each 20 sec time bin. RMS error was the square root of the sum.
! For each time bin, models were ranked as to their goodness of fit with
human behavior according to their RMS error value. The model having
the smallest RMS error value was chosen as the best match model.
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b. Development of subject learning curves - Learning curves
for each subject were developed using mean absolute position error.
The difference between cursor and track position was computed for each
40 msec measurement point and was averaged within each 20 sec time bin.
The purpose of this analysis was to determine the point of performance
asymptote, so that control strategy before and after asymptote could
be compared.

c. Computation for each subject of average values for con-
trol strategy parameters of best-fit models for each trial - These data
were used in an analysis of variance due to training conditions.

d. Preparation of matrices of control strategy parameter
values for best-fit models for each time bin - For each subject, two
2-dimensional matrices were prepared. One matrix listed for each of
the 60 time bins, the ten best model fits in order of goodness. The
second matrix listed for each of the 60 time bins. the CSP values of
the ten best model fits. This data was used to examine the clustering
of the CSPs of the ten best-fit models in order to propose model refine-
ments. Appendix E shows a sample of this data.

C. Results and Discussion

In this section, answers to the questions presented in Section
VA which formed the basis for the design of the preliminary tests are
discussed, along with the evidence on which those answers are based.

Question 1: Do HOPE models match human behavior to an
acceptable extent?

It was earlier stated that the criterion for acceptable matching
would be met if for 90% of the sub}ects, HOPE models matched human beha-
vior within a boundary of 20% of the control stick's range of motion
for at least half the duration of testing. This criterion requires
that the RMS difference value be less than 7.5 cm for the best-match
models of at least 30 time bins for each subject.

HOPE models matched human behavior well within this criterion.
For each subject in the { Hz condition, at least 59 out of the 60 time
bins of tracking were matched by models within the criterion RMS differ-
ence score. For the } Hz condition 15 of the 16 subjects were matched
within the criterion. Twelve out of the sixteen subjects met the RMS
difference criterion on 50 or more time bins. Given that the criterion
selected was somewhat arbitrary, it is important to note that HOPE's
matching of human behavior would have been acceptable even with the
use of a stricter criterion, either in terms of number of time bins
to be matched, RMS difference values, or number of subjects to be matched.

In summary, HOPE models did match human behavior to an acceptable
extent. However, the pattern of the quality of the matching over trials
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and between the two track frequency conditions raises several interesting
questions. Table 2 shows for each subject the average RMS difference
value for best match models for each trial. Figure 24 to 25 show plots
of human and best fit model control stick positions for certain represen-
tative subjects. These date indicate that model matching was better

for behavior in the % Hz condition and for behavior later in training.

One question is why HOPE was able to generate control stick positions
which better matched the % Hz track condition. For both the % Hz and
% Hz tracks, HOPE models generated control stick positions with position
errors low and at least equivaient to that of human control stick positionms.
Yet these % Hz models were not tue best match for human behavior, as
judged by minimal RMS error values. The current conceptualization
of HOPE and control strategy does not predict better matching of %
Hz track behavior.

A second question is why model behavior matched human behavior
better as training progressed. If the present HOPE simulation is correct,
then it should be able to generate control stick positions which match
early and late training behavior equally well. This problem is especially
intriguing because even though the models did not match humans as well
on early trials, there were some models whose match to the track, in
terms of position error, was as good as human performance on early
trials. In other words, on each trial there were models that tracked
as well as humans, but the match to human behavior was less good on
early trials.

There are many possible explanations for these patterns in the
quality of model-human matches. One possibility is that HOPE is not
yet able to represent the control strategy used when tracking is relatively
"more difficult," as it is early in learning, or when following a rapidly
varying, % Hz track. The CSP values selected for this test might not
be as adequate for describing the control strategy applied in these
more "difficult" conditions. An expansion of the range or fineness
(quantization) of CSP values may allow HOPE models to better emulate
human performance in "difficult" conditions.

Secondly, it could be that some aspects of the learning or memory
processes embodied in the simulation lack psychological validity.
For example, HOPE begins training with a "blank'" memory--no knowledge
of control behavior. People probably begin with some knowledge of
control tasks, even though they may never have experienced this particular
nonlinear control task. The difference in beginning knowledge may
result in the use of different control strategies by HOPE and by humans,
thus producing a mismatch in their behavior early in training.

In summary, HOPE models do match human behavior to an acceptable
extent, according to the criterion defined prior to testing. The matches
tends to be better later in training, and for the % Hz track condition.




TABLE 3

AVERAGE ROOT MEAN SQUARE DIFFERENCES (in cm) BETWEEN

SUBJECTS AND SAME-TRIAL BEST FIT MODEL CONTROL BEHAVIORS

FOR ALL TRIALS AND SUBJECTS

i a. % Hz Track, Narrow Guidelines
SUBJECT Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
! 1111 2.49 2.68 2.13 2.01 1.90
1112 2.46 2.35 2.16 2,26 2,00
‘1 1113 2.55 2.38 2.23 2.03 2.03
1114 2.45 2,41 2.09 2.09 1.99
1121 2.19 1.91 1.83 1.88 1.84
1122 2.47 2,19 2.11 2.13 2.16
1123 2.46 2.15 1.92 .238 1.93
1124 2.38 1.86 1.85 1.90 1.92
f- b. % Hz Track, Wide Guidelines
SUBJECT Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
- 1211 2.01 1.78 1.67 1.58 1.53
1212 2.36 2.48 2.21 1.86 2.02
]
1213 2,22 1.79 1.85 1.75 1.69
; 1214 2.47 1.74 1.62 1.52 1.51
E 1221 2.26 1,97 1.76 1.79 1.75
E ‘ 1222 2,34 2,02 1.87 1.92 1.71
E 1223 1.95 1.62 1.65 1.60 1.58
! 1224 2,29 1.97 1.86 1.68 1.68

9




TABLE 3 (Concluded)

AVERAGE ROOT MEAN SQUARE DIFFERENCES (in cm) BETWEEN
SUBJECTS AND SAME-TRIAL BEST FIT MODEL CONTROL BEHAVIORS
FOR ALL TRIALS AND SUBJECTS

c. }s Hz Track, Narrow Guidelines
‘ SUBJECT Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
2111 8.51 7.64 7.84 7.48  6.84
2112 6.07 6.39 6.10 6.52 6.09 ;i
fA,' 2113 4.59 4.85 4.86 5.00 4.49
. 2114 7.98 7.18 7.47 6.18 6.42
; ! 2121 6.38 5.23 5.31 5.17 5.12
| 2122 6.95 7.86 6.16 6.22 6.76
{ 2123 4.59 4.81 4.90 4.80 5.08
: 2124 4.68 4.81 5.01 4.69 4.60
3
;
d. % Hz Track, Wide Guidelines
SUBJECT Trial 1 Trial 2 Trial 3 Trial &4 Trial 5
i \ 2211 6.41 4.93 4.69 4.61 4.40
2212 5.60 6.20 5.54 5.48 5.54
] 2213 4.01 3.87 4.25 3.92 4.93
2214 6.05 5.42 4.25 4,47 3.68
2221 5.03 4.82 5.36 5.39 4.34
2222 4.19 3.22 3.32 3.61 3.90
2223 4.81 4.25 3.90 3.90 3.80
‘ 2224 4.04 5.03 5.41 5.67 5.51
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Question 2: Does control strategy, as identified by HOPE,
vary over the course of learning?

An essential prerequisite for answering this question is evidence
that the subjects did learn to track more accurately over trials. If
humans did not learn, then changes in control strategy as identified
by HOPE would not be predicted. Figure 25 shows the mean absolute posi-
tion error for humans for each condition for each trial. It is clear
that human learning did occur, in that position error decreased over
trials in all conditions. Position error was significantly less on
Trial 5 than on Trial 1 (F(1,28) = 29.63, p <.001). It is not clear
whether learning reached an asymptote within the period of training
used in this test.

The next issue is whether the control strategy, as measured by
HOPE models, changed with learning. This issue was examined by looking
at the differences in mean CSP values of best fit models for Trial 1
versus Trial 5. For each parameter, the difference between the mean
Trial 5 value and the mean Trial 1 value was computed.

To analyze whether overall co?trol strategy changed, a multivariate
analysis of variance was performed , with the three CSP Trial 5 minus
Trial Y difference scores as dependent variables. The three-dimensional
vector representing control strategy change was significantly different
from zero (F(1,28) = 217.30, p < .801) indicating that control strategy
did change between Trials 1 and 5.

Univariate analyses of variance were also performed on the Trial
5 minus Trial 1 difference scores for each CSP. For command operative
time (COT), this difference score was significantly different from zero
(F(1,28) = 561.66, p < .001). Figure 26 shows the change in COT value
over trials for each condition. The largest Trial 1 minus Trial 5 COT
differences appear to be in the } Hz conditions, an idea which is sup-
ported by the fact that the difference score varies significantly between
track frequency conditions (F(1,28) = 100.04, p <.001). This fact will
be important in upcoming discussion of Question 3.

1Multivariate and univariate analyses of variance were performed using
the program MANOVA, created by Eliot Cramer of the Psychometric Labor-
atory at the University of North Carolina.

2One alternative approach to the analysis would have been to use the
method of orthogonal polynomials to test the form of the trial to trial
changes, testing for linear, quadratic, or cubic trends. This approach
seemed inappropriate for this preliminary study. Measures of control
strategy are quite unrefined, and such an analysis of the form of changes
over time was believed to require more measurement precision than pre-
sently exists.
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ERRLIM also differed significantly between Trial 1 and 5 (F(1,28)
= 165.32, p < .001). Figure 27 shows the changes in ERRLIM over trials
for each condition. Greater changes in ERRLIM occurred in the 3} Hz
than in §{ Hz track conditions (F(1,28) = 880.00, p < .001) and with
narrow guidelines than with wide guidelines (F(1,28) = 8.u44, p < .007).

The trial one minus trial five ADJUST change was also significantly
different from zero (F(1,28) = 101.26, p <.001). As can be seen in
Figure 28, ADJUST changed more in the 3 Hz conditions than in the 1
Hz conditions. Overall, there was a tendency for ADJUST means to be
clustered near the minimal values currently tested. It is possible
that a larger and more consistent Trial 1 minus Trial 5 ADJUST differ-
ence might be observed if the possible ADJUST values in HOPE were ex-
panded in the lower range.

In summary, control strategy did differ significantly between Trial
1 and Trial 5. The amount of change for particular control strategy
parameters tended to vary as a function of training conditions. This
point will be discussed further in analysis of data relevant to Question

3.

Question 3: Does control strategy, as identified by HOPE,
reflect differences between training conditions?

Earlier discussion pointed out that during the course of learning,
individuals develop control strategies appropriate to the current train-
ing condition. Since it takes time for a task-appropriate control stra-
tegy to develop, control strategy may not vary with training condition
early in learning. However, more extended practice allows time for
the development of task-specific control strategies appropriate for
different conditions.

To examine these hypotheses, the CSPs of best fit models for be-~
havior in different training conditions were compared. The above dis-
cussion implies that there should be no significant differences in CSPs
early in training, but there should be differences later in learning.
The CSPs of best fit models for Trial 1 and for Trial 5 were analyzed
for variations between conditions.

As can be seen in Figures 26 to 28, for each CSP, the values
on Trial 1 did not vary very much between training conditions. This
would be expected if subjects begin training using relatively unsyste-
matic control strategies. These observations are supported by the out-
comes of a multivariate analysis of variance with the three control
strategy parameters as dependent variables. On Trial 1, the three dimen-
sional vector representing control strategy did not vary significantly
between training conditions (p > .05). None of the univariate analyses
of the CSPs revealed differences between values on Trial 1.
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In contrast, on Trial 5, there is considerable variation in CSP
values between training conditions (see Figures 27 to 29). The three
dimensional vector representing control strategy varied significantly
between conditions (F = 7.70, p .001. Univariate analyses indicated
that on Trial 5 ERRLIM varied significantly between guideline conditions
(F(1,28) = 10.27, p .003), though other CSPs were unaffected by guide-
lines. Differences in track frequency were reflected in differences
in COT (F(1,28) = 144.60, p  .001), ERRLIM (F(1,28) = 223.39, p
.001) and ADJUST (F(1,28) = 38.78, p  .001).

These patterns in the data support HOPE's representation of control
strategy. Control strategy as measured by HOPE did not vary between
training conditions early in learning, when human control strategy
would not be expected to be task-specific but did vary later in learning,
when task specific control strategies should have been developed by
subjects.

Earlier discussion also made predictions about the pattern of
estimated control strategies that might be associated with different
training conditions. As is shown in Figure 27, the Command Operative
Time used later in learning was shorter for % Hz tracking conditions
than for % Hz tracking conditions. This difference developed over
the course of learning. Although COT is shorter on Trial 5 than on
Trial 1 for both track frequency conditions, there was a greater change
in COT values for the % Hz conditions, as was pointed out in earlier
discussion of data relevant to Question 2. 1Indeed, by the last trial,
estimates of COT for subjects in the % Hz condition were just about
half as long as for subjects in % Hz conditions.

It was predicted that guidelines , representing external performance
standards, would be expected to affect ERRLIM, representing an internal
performance standard. Although ERRLIM did vary between guideline condi-
tions on Trial 5, the pattern of the differences is somewhat unexpected.
First of all, one might expect that stricter external performance standards
in the form of narrow guidelines might be mirrored in a stricter internal
standard, in the form of a smaller ERRLIM. In fact, just the opposite
effect can be observed in Figure 27 ERRLIM in Trial 5 was larger when
guidelines were narrow.

Secondly, ERRLIM varied with track frequency, as well as with
guidelines, the former effect not being initially predicted. On Trial
5 ERRLIM was larger for the % Hz track condition than for the % Hz
track condition. This effect is also opposite from what one might
predict based on intuition. It seems logical that in more difficult
task conditions (i.e., the % Hz track), one might impose an internal
performance standard at least as strict as that used in easier conditions,
to avoid increases in error. In fact, both ERRLIM and position error
are greater in % Hz track conditions.
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Thus it appears that one of the basic assumptions guiding the ERRLIM
predictions is incorrect. To review, these assumptions are as follows:

People have internal standards for performance.

External performance standards influence internal standards.
Stricter external standards lead to stricter internal standards.
ERRLIM is associated with the internal standard.

a0 o

The first two assumptions reflect common sense, and in fact, receive
support from the data, since ERRLIM did vary significantly with guide- i
line conditions. The fact that only ERRLIM, and neither of the other
two CSPs, varied with guidelines supports the idea that ERRLIM is asso-
ciated with an internal standard influenced by external standards.

With reference to the third assumption there is some reason to believe
that it may not be valid within the context of the present laboratory
experiment.

First of all, subjects were told that the guidelines were present
to "help" them, but it was not implied that they were standards for
performance. Instructions emphasizing the role of the guidelines as
a standard might have led to results more consistent with expected ef-
fects on an internal standard.

Secondly, it could be that when subjects received cues which were
perceived as making their task relatively difficult (e.g., narrow guide-
lines), they reduced possible stress by relaxing internal standards
for performance and sacrificing error. This interpretation is supported
by the fact that absolute position error was consistently greater in
narrow as opposed to wide guideline conditions, even when track frequen-
cy remained constant. Such a relaxation in perforuance standards might
not occur in a situation where increased error was associated with dan-
ger or other more highly motivating increased costs of error. Such
costs could be manipulated in experimental tests including more highly
motivating monetary incentives than those used in the present experi-
ment. If ERRLIM does represent an internal performance standard, in-
creased costs for increased error should be inversely related to ERRLIM
value. Also, ERRLIM should become more strict as external performance
standards become more strict.

The third CSP, ADJUST, varied only with track frequency conditions.
As can be seen in Figure 28, on Trial 5 ADJUST was larger for the i}
Hz track. This pattern is logical, since larger movements are necessary
in conditions in which the track is varying more rapidly. The larger
the ADJUST values, the larger the movements used in conditions of exces-
sive error. However, one might also expect larger movements to be used
when guidelines are wider. Theoretically, when guidelines are wider,
an internal performance standard is relaxed, and more error is toler-
ated. This encourages the execution of bolder, larger commands. How-
ever, in the present testing, ADJUST did not vary with guideline condi-
tions, suggesting movements were no bolder with the wide guidelines.
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The failure of ADJUST to vary with guidelines supports the earlier sug-
gestion that subjects did not pay much attention to the guidelines.
Increased emphasis on the guidelines might lead to variation in ADJUST,
as well as ERRLIM.

D. Summary

This section describes the preliminary testing of HOPE, a computer
simulation of continuous motor learning, including the effects of con-
trol strategy. Control strategy is represented by three variable con-
trol strategy parameters (CSPs), referred to as COT, ADJUST, and ERRLIM.
The CSPs modulate HOPE's perfo.'mance. Using different values of these
CSPs, HOPE generates predictions of human tracking behavior. The CSP
values used by HOPE when it best matches human behavior were used to
identify human control strategy.

In the preliminary testing human operators performed a preview
tracking task in one of four training conditions: & Hz track, narrow
guidelines; { Hz track, wide guidelines; 3} Hz track, narrow guidelines;
3 Hz track, wide guidelines. An attempt was made to provide preliminary
validation and demonstration of HOPE by addressing the following three
questions:

1. Does HOPE match human behavior to an acceptable extent?

2. Does control strategy, as identified by HOPE, change with
learning?

3. Does control strategy, as identified by HOPE, reflect differ-
ences between training conditions?

HOPE models did match human behavior to an acceptable extent, with
the matches being better late, rather than early, in training, and in
the & Hz, rather than } Hz, condition. Refinements of psychological
representations in the model, and of the values of the control strategy
parameters tested, may reduce these differences.

Control strategy, as identified by HOPE, did change with learning.
For each CSP, the difference in value between Trial 1 and Trial 5 was
significant. This change supports the assumption that control strategy
varies over the course of psychomotor learning.

Finally, control strategy, as measured by HOPE, reflected differ-
ences between training conditions. If a task-appropriate control strat-
egy develops during learning, then differences in control strategy should
be more pronounced later in learning. This assumption is confirmed
by the data. On Trial 1 there were no CSP differences in best-fit models
between training conditions. However, on Trial 5, there were signifi-
cant differences. In comparing 3 Hz and 4 Hz track conditions, COT
was shorter and ADJUST larger for the 3 Hz track. These differences
seem consistent with the need for more quickly varying, bolder movements
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in response to the faster track. ERRLIM was responsive to both guide- ,
line and track frequency conditions, being larger when guidelines were i3
narrow or the track was faster. These effects are somewhat inconsistent

with initial predictions. However, it may be that in the present labor- ;
atory conditions, subjects relaxed internal performance standards to j
minirize stress induced by more difficult conditions of tracking (i.e.,

narrow guidelines or } Hz track were the conditions associated with

significantly larger error).

In summary, the preliminary testing of HOPE provides support for
current assumptions about control strategy, and for the validity of
using a computer simulation of strategy-controlled psychomotor learn-
ing to measure human control strategy.
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SECTION VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. Summary of a Theory of Manual Control Learning and Performance

The present work provides preliminary evidence that it is possible
to measure human control strategy through use of a psychologically-based
computer simulation. The simulation is based on a theory of manual
control behavior (see Section III) which includes assumptions about
the following topics.

1. Mental Processes Important to Continuous Manual Control
Learning and Performance

These mental processes include both decision-making and automatic
processes. Decision-making processes take attention, and most likely
are performed in a serial fashion. These include performance evalua-
tion, association and storage of new task information, developing respon-
ses to novel situations, developing responses in conditions of excessive
error, determining when attention may be redirected to another set of
decision-making processes, and developing a strategy for control.

Automatic processes take place with little or no attention, and
may be performed in parallel with each other and with decision-making
processes. Automatic processes include perception, selection of well-
learned motor commands, maintaining selected motor commands in short i
term store, and execution of motor commands. "

These processes are believed to be important in manual contrcl
learning and performance, and common to all individuals. The processes
vary in their functioning, depending on the individual's control strat- 3
egy. k

2. Parameters Important in Continuous Manual Control Learning
and Performance: Control Strategy

The mental processes important in manual control may vary widely ;
in their functioning in different circumstances. Control strategy is i
a set of parameter values that determines the form of these processes,
and thus has a profound effect on learning and performance. The param-
eter value set that comprises control strategy dictates the following:

ISR

a. criteria for performance in various aspects of the task;
b. stimulus cues on which learning and performance will be based;

c. the sequence in which decision-making processes will be per-
formed. E
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3. Structures Important in Continuous Manual Control Learning
and Performance - Internal Models

During manual control learning, knowledge is accumulated in threc
different memory organizations, each of which describes temporal rela-
tionships between important task-related events. The task controller
model describes relationships between states of a controlled-element,
and states of a control input. For example, in preview tracking, this
model specifies the motor commands which intervene between particular
pairs of cursor (i.e., controlled element) states. An input model
stores information about sequences of experienced stimulus states.
This model allows the operator to predict upcoming task demands. The
input model thus permits the structuring of movements, and the monitoring
of self-initiated movements in the absence of preview.

Finally, a neuromuscular model stores associations between central
nervous system states and limb states. It represents the individual's
knowledge of his neuromuscular dynamics - the motor outcome in relation
to neural signals issued from the brain.

4. The Theory and Its Application to Training Design and
Performance Measurement

These summarized ideas are integrated in an overall theory of
continuous manual control learning and performance that has important
implications for the design of training. It is assumed that two major
aspects of such learning are development of the internal models and
development of a control strategy. The development of the internal
models occurs as a function of interactions between the task-related
mental processes. The frequency with which different mental processes
occur varies over the course of learning. In particular, decision-
making processes predominate early in learning, leaving little atten-
tion available for other tasks. Training conditions can be designed
to emphasize information relevant to accurate internal models, and
can thus encourage internal model development.

The second aspect of manual control learning involves the develop-
ment of a control strategy. The development of control strategy is
a decision-making process which mav not occur in the absence of atten-
tion to it. The individual's initial control strategy in a new task
is in part a function of control strategies used in similar tasks,
and may vary widely between individuals. Control strategy is believed
to be variable and plastic, and can be influenced by training conditions.
Training conditions can guide the individual toward development of
an optimal control strategy - optimal in the sense that it permits
performance which is of high quality with minimal attention, and that
it transfers well to performance in other, specified tasks. It is
assumed that it is possible to identify and measure optimal control
strategies either through use of this research, or by other means.
Such measurement can constitute a more precise and informative measure-
ment system than any other presently used. A system of measurement
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built around the theory of strategy-controlled learning presented here
could permit design of cost-effective training devices and simulators,
as well as provide valid predictions of operator performance transfer
from one task or training environment to similar environments.

B. Features of the Simulation, HOPE

The theory, as applied to preview tracking behavior, was operation-
alized in the computer simulation named HOPE (Human Operator Performance
Emulator). The processes modeled in HOPE include cognitive processes
and control strategies used during psychomotor learning. These proces-
ses relate to perception, learning, retrieval from memory, response
execution, and performance monitoring. HOPE 1is a limited capacity pro-
cessor which can use a variety of strategies to guide performance.
Experience with tracking is stored in a two-dimensional, permanent
command memory which links pairs of track positions with the commands
that intervene between them. In contrast to describing function models
of tracking, HOPE is a simulation of how humans learn the characteristics
of any controlled element dynamics, even non-linear dynamics, without
algebraic representation of the controlled element.

An important assumption made in the development of HOPE is the
assumption that control strategies guide psychomotor learning. Control
strategy is represented in HOPE in terms of three variable value control
strategy parameters (CSPs): ERRLIM, ADJUST and COT. These parameters
dictate, respectively, the amount of error allowed before major error
correction procedures are applied, the magnitude of adjustment in response
to excessive error conditions, and the length of time over which one
motor command is active. Different models of psychomotor behavior
are portrayed by HOPE, each corresponding to a specific control strategy
defined by a specific set of CSP values. The models for the preliminary
testing were generated by forming all possible combinations of five
values of ERRLIM, five values of COT, and three values of ADJUST for
four test conditions.

C. Preliminary Testing and Results

The basic task for the validation testing was a one-dimensional
preview tracking task. Human subjects used a low friction isotonic
stick to control the position of a cursor, and specifically, to try
to center the cursor on a track traveling on a screen before them.
Subjects tracked for five trials in one of four training conditions:

1/4 Hz track, wide guidelines; 1/4 Hz track, narrow guidelimes; 1/2

Hz track, wide guidelines; 1/2 Hz track, narrow guidelines: Subject
behavior was recorded and matched against the predictions of HOPE models
using varying CSP values in the comparable training condition for a

given time interval. The CSP values of the HOPE model which best matched
humar: behavior were used to infer the control strategy for that subject
during that interval.
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Three basic questions were asked in this preliminary testing:

1. Do HOPE models match human behavior to an acceptable extent?

2. Does control strategy, as identified by HOPE, vary over the
course of learning?

3. Does control strategy as identified by HOPE, reflect differ-
ences between training conditions?

The results indicate that HOPE models matched human behavior to
an acceptable extent, with better matches for performance late in train-
ing, and in the 1/4 Hz track conditions. Human control strategy as
identified by HOPE reflected qualities control strategy is believed
to have. It changed with learning, being significantly different be-~
tween the first and last trials. More importantly, there were no sys-
tematic differences between the control strategies associated with dif-
ferent training conditions early in training, but there were systematic
differences in control strategies associated with different training
conditions once subjects became experienced. This pattern supports
the idea that task-specific control strategies develop during training.
The differences between control strategies were logically consistent
with the demands of the training conditions. For example, COT, ADJUST
and ERRLIM all were larger for the more rapidly varying 1/2 Hz track
than for the 1/4 Hz track. These differences suggest that in the 1/2
Hz track conditions subjects executed commands more frequently, used
bolder commands during error correction, and relaxed their internal
performance standard. These behaviors are sensible, given a rapidly
varying, perhaps more difficult, track. The only unexpected result
was the pattern of ERRLIM variation between narrow and wide guideline
conditions. ERRLIM, representing an internal performance standard,
was larger when an external performance standard (narrow guidelines)
cued use of a stricter internal standard (i.e., smaller ERRLIM). There
are, however, a variety of results suggesting that in the present test-
ing conditions the guidelines were not perceived by subjects as a valid
external performance standard. ERRLIM did seem, however, to represent
an internal performance standard, since estimated values were largest
(most lenient) in the conditions which were most difficult to perform.

D. Research Problems and Known Model Limitations

The major difficulties experienced in the present investigation
were associated with: a) attempting to develop a computer simulation
of processes not precisely described in the psychological literature
and b) deciding how to choose the best-fit model for human behavior.
The psychological literature is not precise with respect to the oper-
ation or timing of processes associated with continuous psychomotor
behavior. Considerable time was spent developing specific ideas which
could be operationalized in the computer simulation. Some of these
ideas, such as the representation of long term motor memory, are inno-
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vative and deserving of further study in themselves. The choice of
which HOPE model which best fit human performance during a specific
time interval was also problematic, in that human choice of a best-fit
model from visual inspection was somewhat different from choices made
on the basis of the conventional measure, root mean square (RMS) posi-
tion error, or a newly developed measure, mean absolute state error
(MASE). After some testing, it was finally decided to use the conven-
tional RMS error to gauge model fits to human behavior.

E. Conclusions and Recommendations

This investigation indicates that it is possible to develop a psy-
chologically based computer simulation of strategy-controlled, manual
control performance that can be used to identify human control strategy.
Preliminary testing indicates that the present simulation, HOPE, has
psychological validity, and has potential for high quality, informative
measurement of human control learning.

The success of the present HOPE simulation suggests a variety of
recommendations for further research. These recommendations are at
three levels: recommendations for refining the present HOPE, recommen-
dations for expanding HOPE, and recommendations for further research
suggested by the theory.

1. Recommendations for HOPE Refinement

The first recommendation for refining HOPE involves determining
how the HOPE simulation might be refined to produce even better matches
to human behavior. Although HOPE matches human behavior to an accept-
able extent in all of the training condition tested, matches tend to
be worse in the 1/2 Hz track condition, and for early trials of tracking.
Careful comparison of best-match model and human behavior in these
conditions might reveal consistencies in the differences between them,
which could be used to guide changes in the simulation.

Refinement of HOPE should also include testing some of its assump-
tions about human information processing. One fundamental assumption
which deserves further examination is the organization of the permanent
motor memory, the Command Memory. The Command Memory stores associa-
tions between specific controlled element and control input states.
However, others have suggested that permanent motor memory contains
"schema" (Schmidt, 1975) or motor programs (Keele, 1968). Studies
could be designed to distinguish between these alternatives, and therefore
to test the validity of the current representation of permanent motor
memory.

After refinement, the revised simulation should be further vali-
dated, and tested not only for its utility in identifying control strat-
egy, but also as an aid in building a predictive model of control strat-
egy development.
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2. Recommendations for HOPE Expansion

HOPE evolved from a broad theory of continuous control behavior.
Recommendations for expanding HOPE focus on expanding the model to reflect
more of the characteristics of the theory. The current HOPE inputs
visual information, models performance of a single task and develops
an internal model for the task controller in its permanent memory.

An expanded version of HOPE would include supervisory and subsidiary
processes associated with performance of other tasks, and would identify

a plan allocating attention among tasks. The current unidimensional i
Command Memory could be made multidimensional, allowing input of infor-
mation from several modalities and the execution of a variety of responses.
HOPE could be expanded to model pursuit or compensatory tracking by
including the development an input model.

3. Recommendations for Further Research

A third area of recommendations concerns aspects of the theory
that have implications for the design of more cost-effective training
programs. One topic deserving investigation involves the definition
of optimal control strategies for various manual control skills, and
of methods for training these strategies. We have defined optimal con-
trol strategy for a given task to be that which produces high quality
performance with minimal attention, and which promotes good performance
transfer to other similar tasks. What cues should be emphasized to
the trainee at each state of learning? What internal criteria should
be fostered for various aspects of the task? How can task-related mental
processing be manipulated directly? What processing skills should be
emphasized in training? These are important questions about control
strategy and its learning which would require extensive experimentation.

Another research topic involves the design of procedures for aiding
trainees to develop an internal model of the task controller. If the
internal task controller model is organized as was proposed, then it
is of importance to determine what sets of state-to-state transitions
will result in the most accurate controlled-element model. For most
complex skills, it is not feasible to provide training for all possible
experiences. There is a need to define the subset of experiences that
can be trained and used for 3iccurate generalization, or "filling-in"
of memory, on the part of trainees.

Another area which should be investigated, based on its importance
and potential for training applications, is the means by which persons
can be trained to develop accurate input models. For many skills of
importance, the input that is tracked is self.-generated, and the only
continuous monitoring of performance possible is through comparison
to the input model. The questions of how this model is most rapidly
and effectively learned should be explicitly addressed.

In summary, the present investigation has demonstrated that it
is possible to develop a psychologically based computer simulation of
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strategy-controlled behavior that can be applied to performance measure-
ment. This simulation is useful in itself and has generated a variety
of research questions whose answers have implications for the develop-
ment of more cost-effective training programs.
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APPENDIX A

EQUIVALENCE BETWEEN COMMAND MEMORY REPRESENTATION AND A
DIFFERENTIAL EQUATION REPRESENTATION OF THE TASK CONTROLLER

Any linear system (this restriction will be removed later) can
be characterized by the vector equation

X = AX + BU

where X is an n x 1 column vector of the state variables of the system
A is an n x n transition matrix
U is an n x 1 input vector
B is a 1 x n input weighting vector

X is the time derivative of X.

Approximating the derivative with a backward difference, the equation
may be written

x(ti) - X(t
At

1)
i-1 = AX(ty_)) + BU(t,_,)

or

X(b) = X(b_) + Bt [Ax(e,_p o+ BUCt; )]

i-1

So, the state at time t. is totally dependent of the state at time ti_1
and the input at ¢t 1 This fact is the basis for the Command Memory.
If the task controiler input and output are observed/recorded at periodic
intervals, a set of ordered pairs X(t,), U(t,) will be produced. This
data can be mapped into a two-dimensional array such that the contents

at location X(ti), X(ti_1) is U(ti_1).

To see how the restriction on system linearity may be removed,
consider the following one-dimensional version of the system of equations
discussed just above:

X = AX + BU

Any non-linearity can be represented by making A and/or B a function
of X or U, or both. As an example, making A a function of X and U:

X = £(X,U) + BU
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Approximating the derivative by a difference as before

Xi - X

—at = (X

X,

i-1Y3-9)%; 4 + BU

1 i-1

—Yr

S xi = xi—1 + At [r(x 1,Ui 1)Xi_1 + BUi_1]
Again, by observing X, and U, at succescive instants in time, an
array can be filled by loaéing u. at the location X X. . And,
| as before, by having this 1nform%tlon available, effectlve control is
possible even though the non-linearity is neither explicitly determined
or recorded.
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APPENDIX B

PROCEDURE FOR TRACK GENERATION

The track was generated by passing a pseudo-random signal through
a low-pass filter as shown in Figure B-~1. The low-pass filter has the
characteristic that frequencies below a certain limit are passed through
unattenuated while higher frequency components are heavily attenuated.
The attenuation characteristic of the filters used to generate the L Hz
and 3 Hz tracks (as they are called) are shown in Figures B-2 and B-3.
The recursion relationships necessary to implement these attenuation
characteristics are provided in Table B-1.

The pseudo-random signal generator was designed to produce, on
the average, equal energy at all frequencies over a band broader than
the corner frequencies of the low-pass filters. The algorithm for gener-
ating this function is presented in Table B-2. A test of how uniformly
distributed the energy of the signal happens to be is provided by the
auto-correlation function of the signal. A uniformly distributed signal
will have an auto-correlation function as shown in Figure B-4. The
actual computed auto-correlation function is shown in Figure B-5.
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TABLE B-1

Butterworth Low-Pass Filter Realization

y,(pT) = a,y,(n = 1T = byy,(n - 2)T +{G x*(nT) + 2x[(n - DT] + x[(n - 2)T]}
! yz(nT) = azyz[(n - 1)T] - b2y2(n - 2)T + y1(nT) + 2y1(n - 1T + y.‘(n - 2)T
y3(nT) = a3y3(n - 1T - b3y3(n -2)T + yz(nT) + 2y2(n - T + y2(n - 2)T

y,*(nT) = ayy,(n - DT - byy,(n - 2)T + y3(nT) + 2y3(n - 1T + y3(n -2)T

0.25 Hz 0.5 Hz

a,, b, 1.972, 0.976 1.936, 0.951

a,, b, 1.928, 0.932 1.856, 0.871

a3, b 1.896, 0.899 1.796, 0.810

a,, by 1.880, 0.884 1.766, 0.780
c 1 x 10712 1.723 x 10710
T 40 ms 40 ms

#x(nT) is the input signal; yu(nT) is the output signal
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TABLE B-2

Algorithm for Generation of Pseudo-Random
Signal for Forcing Function

In general,

N, = ANi- mod B,

where Ni = current number
A = 99
B = 1097684
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APPENDIX C

ALGORITHMS FOR NONLINEAR FIRST ORDER POSITION
CONTROL USED IN PRELIMINARY TESTING

Abbreviations Used:

If 56 ACCOM 76,

If 38 AccoM 89,

If 25 ACCOM 102,

If 13 ACCOM 114,

If 0 ACCOM 128,

Plant update:

RCPOUTi +1 =

ACCOM

RCPOUT

= Xc, and

1.5 °
X

2.0

“ 3.0 °

4,0

Actual Current Command (Control
stick position)

Real current plant output (Screen
position on same scale as control
stick position)

Transfer constant

.1

go to Plant update

and go to Plant update

and go to Plant update

and go to Plant update

and go to Plant update

RCPOUTi + X (ACCOM - RCPOUTi)




APPENDIX D

?’ PRELIMINARY TEST OF USEFULNESS OF MASE
(MEAN ABSOLUTE STATE ERROR) FOR
CHOICE OF BEST-FIT MODELS TO HUMAN BEHAVIOR

3

- I. Calculation of MASE Value

o A. Derivation

{ As the model or operator attempt to track the road, the control
stick position is recorded. A value is sampled every seconds. The
value of is 40 ms. The values recorded are then stored for analysis

and may be pictured as in Figure D-1.

Figure D=1

where X is used to denote a position value. The data in this form pro-
vides only instantaneous position values.

We define velocity to be the following:

T SRS S Sl &

a c At

That is, velocity is the change in position between samples divided
by the time between samples.

Similarly, acceleration is defined:

AL S S
17 Tat T a2 F OTTAZT
‘ The Absolute State Error (ASE) for each of the 500 points in a

time bin is then defined as:

ASEi = X, + Vi + A

k.
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The Absolute State Error (MASE) is obtained by summing the individual
state errors over all points in a bin and dividing the sum by the number
of points.

I11. Procedure for Comparing MASE, RMS, & Human Choices of Best-Fit

SN i

Models to Human Behavior

A.

A sample of 44 plots of model-human control stick pos tion
for Operator 1112, bin 51 was generated. This operator was
tested in the % Hz, narrow guideline condition. The sample
of plots for bin 51 included:

- The 10 best models as chosen by MASE
- The 10 best models as chosen by RMS

- Every 4th model out of the total model set
of 75 for that training condition

- Model numbers that clustered around the models chosen by
MASE and/or RMS. These models are similar to those chosen
by MASE and RMS and are, therefore possible
candidates for best-fit model. However, models with
ADJUST values of 50 were excluded, as these models are
obviously not good fits to human control stick data.

Six people were asked to choose and rank the 10 best-fit models
from the sample of 44.

A comparison was made between the best fit models chosen by
people, and those picked by MASE and/or RMS (see Table D-1).
For each person, each model picked was labeled R (picked by

RMS only), M (picked by MASE only), or RM (picked by both

RMS and MASE). The agreement in relative rankings between
statistic and human choices was not considered in this prelim-
inary analysis. However, relative agreement in ranking between
humans was examined.

The results indicated that neither MASE nor RMS was very con-
sistent with human choice of the 10 best-fit models. For
most human listings, there was some overlap with MASE choices
and some with RMS choices, with a tendency for there to be
greater overlap between RMS and human choices than between
MASE and human choices. Human subjects did not agree with
one another in their relative rankings of the 10 best model
fits (see Table D-2).

MASE and RMS agreed in five out of the ten models picked as
ten best, and agreed in their first choice. This choice,
of model 34, was the first choice of only one of the per-
sons (HE), however.




L TABLE D-1

CHOICES OF TEN BEST-Fit MODELS BY MASE, RMS, AND SUBJECTS 1
H
y
o
S
]
S Subjects
[ Model
L Rank MASE RMS DM BB HE BS FV DF
’ 1 34 34 30R 31RM 34RM 31RM 73 M 3R
3 2 708 19¢ 29R 34RM 37RM 19R 34RN 4OR
3 49 37 31RM 198 49RM 4gRM 67 M 37RM
; y 37 3N 34RM 37RM 19R 30R 49RM 19 M
5 73 4o 19R 0M 73 M 70 M 70 M 3URM
6 46 29% 73 M 49RM 67 M 4OR 52 M 30R
7 3 g9 37RM 29R 4OR 3URM 37RM 29R
| 8 67° 28 70 M 67T M 59 37RM 75 >
9 52¢ 308 N9RM NOR 31RM by 31RM 70 M
‘ 10 61¢ u6 25 30R T4 23 198 uy

#Picked by MASE or RMS.

Overlap (# of Models Chosen By Both) Between
Subjects and RMS, Subjects and MASE

Agree With Agree With Agree With
Subject MASE Only RMS ONLY Both Other

M 2 3 ] 1

BB 2 4 4 0

% HE 2 2 ] 2
BS 1 3 4 2

PV L} 1 & 1

2 § 2 2

‘ DF




TABLE D-2
RANKS ASSIGNED TO EACH MODEL BY SUBJECTS
\
. Sub jects
|
’ Model DM BB HE BB BV IF
f | 19 5 3 4 2 10 4
b 23 10
' 25 10 8
_ 28
| 29 2 7 7
30 1 10 4 6
31 3 1 9 1 1
34 y 2 1 7 5
37 7 y 2 8 3
L 40 9 7 6 2
4y 9 10
u6
49 9 6 3 3
- 52
59 8
) 61
67 8 6
1 70 5 5 9
E 73 5 1
T4 10
75 8
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APPENDIX E

b DATA MATRICES FOR ONE SUBJECT
}

IN 1/4 HZ TRACK CONDITION
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Matrix 1. FOR ALL TIME BINS, TEN BEST-FIT MODELS (BY NUMSER) AND
THEIR ASSOCIATED RMS DIFFERENCES (IN ARBITRARY UNITS)*

QUASOK BH-TQGI-PTNGOD
OPERATOR IDENTIFICATION NUMBER: 1111
IN
DOWN

' 1 RMS ID ! 2 RMS ID ! 3 RMS ID ! 4 MASE ID ' S RMS ID ¢

I 11.38 46! 11.39 61! 11.49 16! 12,24 48! 12,32 31!

! B.44 46! B.97 49! 9,67 72} 9.79 A4l 9.81 £11

1 9.83 61! 10.03 64! 10.07 46! 10,13 67! 10.63 49!

' 7.20 61! 7.53 46! 2.70 34! 7.84 635! 2.84 641

| 9.22 61! 9.49 44! 9.75 46! 10.11 67! 10.21 49!

! 7.72 46! 7.73 61! 0.00 67! 8.37 64! B.52 49!

] 7.43 22! 7.88 47! 7.93 46! 8.00 32! 8.09 61!

1 8.51 61! 8.90 44! 9.25 44! 9,52 31! 9.78 49!

] 6.49 61! 6.65 44! 6.80 65! 7.13 31! 7.25 64!

! 9.08 64! 9.26 22! 9.40 49! 9.49 37! ?.51 S21

] 8.45 So! 9.49 65! 9.70 46! 9.73 64! 10,00 61!

! ~13.,36 49! 13.94 46! 14.28 37) 14,34 31! 14.51 34

T 8.46 25! 8.54 52! 0.95 64! 9.20 61! 9.44 34!

' 9.41 67! 9.41 44! 9.44 49! 9.82 22! 10,09 61}

Y 11.45 19! 12,21 22) 12,49 61! 12.513 16! 12.53 34!

! 9.12 48! 9.13 46! 9.36 672! 9.41 61! 9,49 42!

T 11.26 65! 11,69 18! 11.77 46! 11.97 63! 12.01 50!

f 11.83 30! 11.89 19! 11.96 61! 12,08 47) 12,10 22!

1 6.61 47! 8.73 63! 8.98 18! 9.25 49! 9.40 17!

' 9.35 46! 9.69 49 9.85 24! 9:96 S0!) 10,25 42!

1 6.00 46! 6.08 611 .14 34! 6.21 31! 6.28 47!

! 7.45 22t 7.93 61! 8.16 19! 8.30 64! B.50 49! -
] B.17 48! 8.55 33! 8.69 62! 9.04 34! 9.18 47!

! 11.57 46) 11,60 49! 11,60 61! 11,80 22! 12,06 50!

T 6.06 64! 6.11 61! .11 371 6.16 52! 6.32 26!

) 6.99 31! 7.23 34! 7.27 46! 7.30 49! 7.42 61!
[]
!
i
!
[
!
1
!
]
'
T
)
1
1
T
!
¥
'
1
'
]
!
T
'

-
[

oAbuuﬁuuuuuuuuunnnnuunn-----o-nnun [
N =O o® @MbUNP‘OOO\IOMbﬂdMF‘OTQ\J&M&NM © OI® O NS LN »

8.67 17¢ 8.77 471} 8.80 23! 8.91 46! B.%5 50!
6.30 46! 6.44 25! 6.49 50! .66 47! 72.03 65!
7.41 41} 7.35 64! 7.82 46! 7.99 47! 8.15 31!
.16 19! 6.5% 38! 6.56 446! 6.60 49! 6.70 31!
8.78 50! 8.98 43! P.11 47! 9.18 49! 9.21 36!
6.68 64! 2.16 49! 7,18 46! 2.24 61! 2,50 35!
5.81 61! 5.91 46! 6.34 49! 6.35 31! 6.36 50!
8.18 461! 8.21 49! 8.37 46! B8.53 64! 9.19 31!
9.24 64! 9.29 50! 9.83 33! 10.02 43! 10.04 49!
9.58 61! 10.01 46! 10.73 SO0! 11.26 49! _ 11.45 48!
9.60 34! 5.70 671 §.70 46! 5.92 64! 6.02 61!
5.73 61! 6.69 64! 6.75 44! 6.82 16! 6.84 34!
7.47 251 7.61 S0! 7.74 41! 7.92 19! 7.96 30!
6.32 47! 6.61 331 6.77 351 7.06 48! 7.10 18!
7.55 471 8.24 18! 8.50 32! 8.55 36! 8.59 42!

$5.95 19! 6.15 61! é6.28 37! 6.34 38! 6.39 29!

33 6.05 487  &.41 477 6.44 6&11 6.47 31! 6.57 66!
44 7.05 44! 7.16 49! 7.18 311 7.47 61! 7,54 38!
45 8.04 61! B.09 62! B8.11 4é! 8.26 31! 8.42 34!
46 7.11 31V 72.54 34! 7.87 61! 7.90 25! 8.11 28!
47 8.69 627 9.21 48! 9.92 321  9.97 47! 10.02 46!
48 9.17 61! 9.27 46!  9.72 49! 9.84 31! 10.04 22!
14 5.31 46! 5.83 64! 5.87 521 6.08 611 4.18 37!

6.07 S0! 6.38 611 6.53 31! 6.0 48!
. [ 27 26! 7.41 38! 7.45 47! 7.56 23!
5.83 50! 6.21 48! 6.22 $1! 6.50 32} 6.60 47!

32 !
53 1 B.41 &5T 8.4 a9 8.72 821 8.83 48! 8.97 350!
sS4 ! 5.74 49! 5.94 34 6.08 41! 6.09 50! 6.21 31!
35 ! 7.4% 311 7.71 62! 7.90 471 7.98 36! 7.99 63!
Sé ! 6.68 49! 6:.77 _64) 6.81 611 !

‘ 37 ] 4.92 47 S.01 461 $.23 62! S5.40 31 S5.42 61!
38 ! 6.27 341} 6.31 61! 6.43 20! 6.85 49! 6.89 311
39 ! 7.58 171! 7.76 471\ 7.786  S11 7.81 é2¢ 7.85 324
40 | 27,32 25! 27,73 68! 27.80 491 27. 2! ? !

* One unit is equivalent to .29 cm.
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Matrix 1. FOR ALL TIME BINS, TEN BEST-FIT MODELS (BY NUMBER) AND
THEIR ASSOCIATED RMS DIFFERENCES (IN ARBITRARY UNITS)* (CONCLUDED)

! __RMS 1D
12.47 64' 12.50 47! 12,68 19! 13.15 22! 13.29 49
)]
10.65 31! 11.25 Sé! 11.43 1! 11.56 34! 11,88 19
2.94 47! ] ) _ )
\ 10,38 53! 10.63 31! 10.76 220 10.77 65! 11.06 34
] [] t
8.32 49! 8.59 119! 8.60 641 8.62 50! 8.70 23
__9.B0 A2! 9.8 22 .95 %21 _10.00 Al _10.01 A&
7.54 23! 7.58 S0! 7.63 19! 7.5 41! 7.78 32
] ] 1
10.56 31! 10.80 16! 10.90 49! 11.10 34! 11.17 67
) ] ' .
9.51 371 9.65 46! 9.786 31! 9.86 26! 9.90 35
1 ] ] t
12,62 20! 12.76 31! 12,83 24¢ 12,86 38! 12,98 29
$.20 42! $.24 521 Q.94 231 2.972 191 9.98 38
12.08 62! 12.08 S1! 12,20 61 12.40 35V 12,42 47
1 [] ] ]
?.47 19! 9.49 61! 9.55 50! 9.73 11 9.89 16
] { ] ]
6.35 64! 6,43 49! 6.44 48! 6.59 65! 6.64 16
8.5% rd . ! '
9.45 1714 9.65 20! 9.66 21! 9.86 50! 9.94 1
12.3 ] 1 | |
6.33 46! 6.42 31! 6.49 30! 6.58 67! 6.60 49
2.94_ 22! 2.82 30! 2.99 19! i
9.02 62! 9.11  S1! 9.21 61! 9.50 33! 9.52 49
2,09 48! 2.15 63! 7.34 317! 2:37 42! 2,38 164
8.16 65! 8.41 35! 8.46 19! 8.48 50! 8.60 33
] ] ] ]
?.25 19! 9.26 22t 9.32 46! 9.52 17¢ 9.58 27
[ 1 ] ]
6.43 47! 6.45 51! é6.60 32! 6.67 19! 6.70 22
2.;9 ] ] ] ] 22
10.39 61! 10.44 S1! 10,45 46! 10.74 22t 10.82 16
11.49 S! 20 2! ! 2__ 35!
6,12 $2! é4.18 50! 6.21 49! 6.22 35! 6,27 31
6.85 65! 9 ! ! 2:07 491 7.18 30 A
8.04 20! 8.11 49! 8.12 26! 8.13 29! 8.16 64 f
7,33 32! 72.34 62! 7.46 ! ! ;
8.63 S1! 8.64 17! 8.73 48! 8.77 So0! 8.85 61
. ] ' ] $
6.70 SO! 6.92 63! 7.01  35¢ 7.04 45! 7.10 34 :
7.42 0! ! 7:92 S2!¢ 0,00 34! 8,19 30 d
8.44 50! 8.46 32! 8.49 14! 8.54 64! 6.56 47
] i
10.20 35! 10,27 33! 10.33 61! 10.34 S1! 10.68 S0
-10.310 1! 10.23 ' !
6.19 34! é.24 I 6.28 49! 6.33 19! 6.40 S0
6.74 47) 4.8BB 34! !
7,57 19! 7.58 46! 7.59 31t 7.74 2214 7.78 34 i
6.60 66! 6.61 62! .64 33! 6.65 49! 6.83 67
9.01 S11 9.10 43! 9.23 471 9.25 S! 9.27 32
6.31 44!} 6.35 47! «S0 !
8.06 466! 0.06 44! 8.08 491 8.18 S0! 8.30 1
$.43 S0O! S.47 641 5.53 32% 5.55 341 5.5 16
]
8.04 49! 8.31 20! 8.61 481 8.69 39! 8.70 1

-22.69 368! 20.00 34! 28,01 46! 28,14 44! 20,17 S4

* One unit 1is equivalent to .29 cm.
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ALUES

FOR ALL TIME BINS, CONTROL STRATEGY PARAMETER V
FOR THE IEN BEST-FIT MODELS (CONCLUDED)

(UNITS SPECIFIED FOR THE SIMULATION HOPE) **
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ADJUSTs of 2,5,8 correspond to .58, 1.46, and 2.34 cm
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