AY- A D&Y (S
TRCHNICAL

% LIBRARY A A v ad

CONTRACTOR REPORT ARPAD-CR-80001

DISTRIBUTED SENSOR SYSTEMS AND
ELECTROMECHANICAL ANALOG FACILITY

R. A. VOLZ

S. L. BEMENT

R. JUNGCLAS

T. ROSENBAUM

E. J. SESEK
J. WENSTRAND
S. CAGLIASTRO

A. ZEMON

VERCHRON SYSTEMS, INC.

SALINE, MICHIGAN

P. BECK
ARRADCOM, PROJECT ENGINEER

JANUARY 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

PRODUCT ASSURANCE DIRECTORATE
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views, cpinions, and/or findings contained
in this report are those of the author(s) and
should not be construed as an official Depart-
ment of the Army position, policy or decision,
unless so designated by other documentation.

Destroy this report when no longer needed. Do
not return to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dato Entorad)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’'S CATALDG NUMBER
Contractor Report ARPAD-CR-80001 Final
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIDD COVERED

DISTRIBUTED SENSOR SYSTEMS AND ELECTRO-
MECHANICAL ANALOG FACILITY

6. PERFORMING OR%. REPORT NUMBER

7. AUTHDR(s) 8. CONTRACT DR GRANT NUMBER(®)
R.A.Volz, S.L.BeMent, R.Jungclas, T.Rosenbaum,
E.J.Sesek, J.Wenstrand, S.Cagliastro, A.Zemon, DAAG29-76-D-0100
VerChron Systems, Inc., P.Beck, ARRADCOM

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. iEEﬁR&AwDERLKE'L‘"E“NT’NPUR!ADé’EERcJ' TASK

VerChron Systems

325 Tamarack Drive . Materials Testing

Saline, MI 48176 Technology Program

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARRADCOM, TSD January 1980
STINFO (DRDAR-TSS) 3. NUMBER OF PAGES
Dover, NJ 07801 502

-

3. MONITDRING AGENCY NAME & ADDRESS(If ditferant from Controlling Office)
ARRADCOM, PAD

S. SECURITY CLASS. (of this report)

SASD (DRDAR-QAA) Unclassified
Dover, NJ 07801 TSe. gg'ségailglcrnon/oownsmomc

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstract entersd in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

~

19. KEY WORDS (Continue on reverss side if necsssary and identify by block number)

Distributed sensor systems Distributed computing system
Real time computer applications Interprocessor communications
Software validation Concurrent operations

Software test bed Hierarchical computer systems

20. ABSTRACT (Continus em reverss side if mecessary and identity by block number)

Distributed sensor systems are key ingredients in many real world applica-
tions. Specific instances abound both in industrial and military environments,
e.g., the monitoring (and possibly control) of manufacturing operations, or the
dispersion of various types of sensors to detect enemy movements. There are
two major areas of study in distributed sensors: the design and development of
the sensors themselves, and the logical use of such sensors. This report is

(continued)

FORM
DD\ ax s 1473 EDITION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterad)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

directed toward mechanisms to study the latter. Some examples of the latter,
explained in detail, are based on CICE/ECE/IOE 469, a course in Real Time
Computing Systems developed at the University of Michigan, Ann Arbor. Both
student and faculty critiques of the electromechanical analog facility used
in the program are included.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

l§; ‘ERETOAUCEIOR srows @7 o Erogs e a7 s (7] £78 @Vs's o7 (Sfaelele" = [efeToRS) SRR oTOL
l.1. Distributad Sensor ProblemS ...cessesscscccecccal
1.2. Sensor System ANAlog .cscesscccccsccssccnsssnnssld

.52 0= Computer Controlled Train ..cccccecocccnesed

.3. Real Time Computer Applications Laboratory4

.4. Organization Of RePOrt ..c.ceececccccccsccssccsad

— =

verview Of Facilities ..eiceccrcccccsecccnccccaccansbd
Laboratory Develiopment ..cicececcccscsscscccascaschd
Overview Of Operating Environmentcccecceeo?
Overview Of Hardware ...cccesceccccccscasccsascasd

3. Logical View Of Facilities .(.eccececcccccscs axerlils

3.1. A/D And D/A ConvertersS ...cesssecsscsssssasssssll
3.1.1. Logical Interfaceccccececcacccsaanassll
3,2, Train Paciilitiies .. v «fore aheke, e eratals sakarateleretatarell 2
3.2.1. Throttle SEeNSOrS ...cssecccccccccscsssecessl?
3.2.1.1. Logical Interface ..ceeeecccceccccccosssll
Bhe25e?2 o Photocell SenSOrsS .eeeecessecscsocssssscscesdld

3 o2we1 33 Hrack COREOL e svw et sne oo eremomerenes o oo s7ere e ome orlid
3,231 Logicad TNEEerface weeeseeawe s snmone soeoseld
3.2.4. Swiitich' [CONBron = s egem s e 5 = aeees 8 & o @ ss 5O
3.2.4.1, Logical Interface ..esseccsscsssssssccsesaslb
3.3, Software Controi Of Muitiple Trainseeecesa.l?
ke iy I Throttle Interrupt ..ceeceeccecscccccccesel?
3825 Photocell INterrupPt ..ecececececccecssccasssald
3.3.2.1. Simple Track Junctionccccecscsssssal8
3.3.2.2. Switch Entrance—-Variation 1 .¢..ccecese.19
3.3.2.3. Switch Control=--Variation 2 ..cceeeeesss20

B': 3 n2nldle) [GEFOSSOVIER o owe ame B ol 3 ahe1 3 315 & owa SHaIMNE) G 61 Bwe) 318) Se2 1
828|225 . Toop COMEERNs 75 /6 e bIeKe 3 e Lol Xele) 515 1316 5 /5 sHel2 1
3.3.2.6. Multiple Train Considerations24"

3l 318 Data' ISIERUCEIFES ol @ oueis @ wis.ale o isis.io omhd o005 oo onall 24D

4, Physical Description Of Hardware Facilities27
A/D And D/A Conversion Facilities ...eceecseeed27?
Triaiyn FaCh THIE el 5oVl s Suess pe aiend s biode D audlsdiveas ke 5, « 28

Sensor SYSEeM ..iceececccscsssccscasscassssall
sl "Phrott e [SIeNSIOE ye's il siaasiace buas sianefavisgsiageiols 28
2. Photocell Operation .cc.cecccocccccccccss30

Control SYSteM .eeeeessesccscssscscscosesell

N =
.

Overview Of Software ..cecesecscecosscsssscsccasasll

5.

6.

2.2.1. TraCk Speed Controller ® & & 0 0 0 00 0 000 00 0o .33
+2.2.2. Switch Controller ..e.ieeececesseeeesssa35
t er FaCilitieS l.l..........-..--..l.l.......37

Analog COMPULErS .t..uieeeencececoooscasosnsal’

escription Of Software Support Facilities
OSWIT - Operating System WIth Trains
GAEF@SMEESSSIN popems o) oxs 5 cxensns) 515§ 5o oiloms & S90S 5t Bhows, 310
OSWIT Command Language ..eeeeeceeccecosssaq0
OSWIT File System And Utility Programs ...40
OSWIT Support Functionsceececeeeceescdl
MTS - OSWIT CommunicationSeeececeses.4ql
Real Time OperationNS ..icieeecececosceccasssdl
GASIRNNGY o715 TR T 1 ST s IS 5805, e el oW A2
I/0 And Interrupt StrucCtUreeeeee..42
Compiler For Real Time Applications
SIeE SNs SeNells [5 % [olainme) 3 5 Siue SW5! 6.1, Bbhamoioibner diemeTeliadusnslanalo[A13
FnEredUeEDN & 5 i0Ewsers b b o=l b ow.d bus b Tuase b oo 548
PECRECUIREE sioelels @ . B o and oW .48 s duduonsilind Brbge AELAD
s Data Types And StructuUrese.cecececeess.45
: Run-time Variablie Checking000....48
: Storage Allocationieieeecececcnscnnnce.4q8
s Arithmetic And Logical Operations49

.+ 39
5.

D
1
5
of
5.
Si.
S5k
51

Ol—‘l—‘(ﬂU‘lthI—‘

o e o e

NV e b b b

(9]
W) e

> oo
e N

e MmN

e o QO o

Control ConNStruUCES ceeceeececessececscccessSO

Tasking And Timing ...iceieeeeeeenessneense5?
Interrupts And Special Processing

1ONS seveeocccccossccssscsscsssscosccesnscsncesscsadd

0. I/0 Statements ..uveeveveesoscoccaccanenss55

1. Predefined Functions And Subroutines57

2. CRASH SUMMATY ceeeescessscsscccnccnconneasd?

e e o e e o o
[] . .] . Y . 3 .

(@}
VU ULV TG N

L S |
NN ANNDNDNDNND NN NOT
. .

nstructional Appiication Of Facility
Use Of FacCility .t.iieievececeeccaceconnnnnss
Course Objectives And Material
Standard Projects .c..eeecececcscsccnns
Project 1. String Reverser
Project 2. Data Acquisition59
Project 3. Servo Controllereceee..59
Project 4. Electric Train Control59
Independent Study Projects ...eeecesecesssab0
action To Use OFf Pacility eopsssaessessssiossbi2
Prstructor™s View (ShB) mm on @ sremee snas b om sasBB
« Facilities Problems cisseoosswsosimesossbd
Curricular ProbiemS ..e.ceceeecsesncssesb5m
Textbook Problem ...iiiceceeeeececcnneessb6
CRMES WEIOR" o 5.0 96 8 i oWl sk Ve leng) axens Gud T sxons (16}
EUACIME" S VLEW s i cxenbioslle fronogellononarensss axumeols sl lGIT
View 1 - - Jack Wenstrandceeeeee..b67
View 2 - - Richard Jungciaseeeeeee.7l

.+58
..58
..58
«.58
«+58

6.

HO\O\O\O\'—"—‘
L]

I
1
6
6.

e o o o
e o

W N
e o o o o @

[e)}
.
[©) 3% s o)
e o o
ANV N
«
NN NN D W e
e o (D o o o
NN NN
. e o
. .

[e)}

.
e o o o o
e o o & o @
NN ~ =
. & .
[\ I [I ST
e o [Ne o o

SerVO Systems -.o---.-..------..o-------.-37‘

Data AchiSition System --o--------o--o--o38 S

..39 '

. 6.2.2.3. View 3 - - Terry Rosenbaumc.....71

7.
7.

peculation On Other Appiications ...cceecececceseelb,
Software Validation ...ceeececcccccacaes s 519 & B = U6,
. Software Engineering ...c.cececceccccccssslb
Possible Areas Of Train Utility¢cee...78
Program To Train Coupling ..eeeeeescccee.s?9
Potentiai Logical Relations Between
e & Train Systen| gayassmms:qeesE@moesEDaes a0
e 'CONELOL FLFOW epe s &6 smeme @« 5 ol 56655 5 515 6 5 810
2. Sequential Code BloCK .i.ceieescccscssec.80
3 Dol LOOPS [3 s 5o s shlerle sHalels Glelele 5 505 &85 3 b0 20
wid o BESs aTheNs s ELSE ayewers @ o5 916010 @ Sfle Solons oud) exens B 2
5
6
7
8

S
1
7
7
7
7
r

O o

l—‘\l\l\l\ll—‘\l\l\l\l\l\l\l\l\ﬂ [l il el
L]

P

s O ‘Gl B0 e S 0 X6 XA) 3 S S e MWW b Wandh e Shome, SIS
: ProceldliFe CHLAS arve e sWolels o8 Shellsl Do el d) sxomel 813
. INterruptsS sesececereccssccscnnssncsssseoa84-
J [(OPCFAHTHONS, [Pl cmend] Mo unindundnbmol.dl sgeVensl dganismsms 184
Potential Program Train Coupling86
l. Train Primitive ..iiieeeenccccccccancasa86
2. Software Simulation ...ciccececsccececssa87
.3. Compiler Generated CaliS ...ceceeeeeees.88
4. User Inserted CallS ..eieeececsscccases.n.B88
LimitationscceeeiececcecscacacceanessaB9
ta And ProcesSs FIOW ... ceececcoccccacccnnassasd0

Concept Of Operation ...eieecccccecescnseadO

Impiementation Considerationsc00...92

DisScuSSion ..iieeieeeeoceoescccecennannnassdl
Modeling Distributed Sensor Systems94

L]
Lo R SN S S S (]

~3
.

.
3(ﬂto#dcjG\F‘F‘F‘F‘U1FJFJF‘F‘F‘F‘F‘F‘N B W N -
[]

L]
U'|U1U‘U1

~J
.
.
.
(WY

L]
N NN
L]

W

~

Appendix A: OSWIT MANUAL .cceesecoceccsccnsccacecnsnsosnae 97
Appendix B: CRASH Users ManNuUal ..ceecececccccscscesceee 307
Appendive C: Tradh Lagouly ooeems oamss s en o6 8506 66 b e s diee
Appendix D: Circuits For Hardwareseeeecescsccecs 458
Appendix E: Detailed Course Outlineycg
Appendix F: Laboratory Project Statements R T Y.

Appendix G: Bibliograph}’ ® ® 8 0 0 0 5 550 00 0 05850000 00000 00 484

. Distribution List 1S S18NE ALS S S eS| § SIS 489

1. INTRODUCTION

il 5 Distributed Sensor Problems

Distributed sensor systems are key ingredients in many real
worlid appliications. Specific instances abound both in industrial
and miiitary environments, e.g., the monitoring (and possibiy
controi) of manufacturing operations, or the dispersion of
various types of sensors to detect enemy movements. There are
two major areas of study in distributed sensors: the design and
develiopment of the sensors themseives, and the logical use of
such sensors. This report is directed toward mechanisms to study
the latter.

Aithough a wide variety of sensors and appliications exist,
there are a number of basic probiems common to most systems.
First, a sensor oniy detects an event and/or indicates a piece
of information. Accordingly, our model of a2 sensor will be a
generator of a piece of data. There mnust be one or more
observers (human or machine) to record and use that information,
and in many instances there may also be some aspect of control
in the use of the sensor (e.g., when to take a sampie, or reset
instrumentation after an event detection). Qur sensor modei then
is a data generating device which can operate either
asynchronously upon some event occurrence or upon the command of
some observer. OQur sensor modei may inciude a controi input from
the observer.

In distributed sensor systems the overall system
architecture, or structure, is an important issue. This probiem
inciudes not oniy the assignment of a sensor to an observer, but
the interconnection between observers and direction of data flow
as weil. Indeed, some observers may operate on data raceived
from the sensor before passing it on to other observers. Figure
1 illustrates a hierarchical interconnection system; systems of
this type are very common and arise naturally in many
organizations 1in which the observers are human. There are,
however, many other forms of sensor system structures.

Another important issue is the concurrency of data arrivai.
It may occur either at the first order observer level (the
observers actuaiiy observing the sensors) or at any higher ievel
of observer interconnection. Various hardware and software
arbitration schemes can be developed to deal with these.

There is also the issue of the action to be taken by each
observer upon receiving a piece of data from a sensor or lower
level observer. In a simple monitoring system the observer may
merely aggregate and record the data received, while in others,
€.g., an automated assembiy 1iine, there may be a complex
sequence of actions undertaken, based upon the data, to effect
the individual operations being monitored and controiled. The
specific actions to be wundertaken are highly appiication

dependent, and not necessarily part of the sensor system {though
they are <clearly closely related). For purposes of this
anaiysis, specific actions will not be of concern. Rather, the
opportunity to perform actions in a timely fashion will be
considered.

Hierarchical model of distributed sensor system. Arrows denote
permissibie direction of data fiow. 5i are sensors and O0i are
observers.

Figure 1.

Finalily, there 1is the issue of timing considerations. In
many distributed sensor systems there are either time «critical
observations to be made (to avoid useless data) or time criticai
actions (e.g., remove a part from a conveyer before it falls off
the end or rams another device). The concept of "real time"
operation is then criticali to a 1large number of distributed
sensor systems.

1.2 Sensor System Analog

In the study of any compliex real system it is often
difficulit, too costly, or impossibie to have the actual system
avaiiabie for study. Rather, the analiysis and design generalily
proceed through several phases of development using mathematical
and simuiation techniques. Often, preliiminary work is done using

mathematical techniques. However, in large complex systems, the
mathematics of analysis and design often become computationaiiy
intractabie. In such cases the wuse of simuiation 1is quite
common. Simuiation 1is aiso often useful for testing ideas or
trial designs without the expense or risk of using the actual
system.

One form of simulation is the construction of a device with
characteristics similar to the system being studied, but being
much less costly, dangerous or difficuit to use. Simulation of
this type are aliso often used for training purposes or to assist
humans in wvisualizing the entirety of a compliex system. DOne of
the most prominent exampies of this form of simuliation is the
aircraft simulator used to train airiine pilots before they try
actual fiight.

The simulator, or analiog, must have certain characteristics
in order to be useful for simulation. Most importantly, it must
be capable of representing the actuai system (i.e., there must
be a mapping between the analog and the actual system).
Secondiy, it must have some gquaiity which makes it more
desirabie to work with than the actuai system, e.g., 1less
costiy, 1less dangerous, smaliier, or easier visuaiization of
system behavior. In our view of distributed sensors we desire
the analog to possess the following properties:

1. sensors capable of being activated by external events
and notifying the corresponding observer that an event
has occurred.

2. a mechanism for observer actions, based upon the event
occurrence, in "real time".

S5 a mechanism for emulating various queuing strategies
for concurrent events.

4, capabiiity of simuiating hierarchical 1levels of
observer activity.

1.2,1 Computer Controlled Train

A computer controlled ©N-gauge model raiiroad is the
specific analog used in this study. The track layout is divided
into a number of track sections, each separately under computer
controi. Each switch position may also be controiled by the
computer. The modei train system is itself a distributed sensor
system capablie of representing a broad ciass of such systems. A
substantial number of train sensors are distributed around the
train layout and several input "throttles" aliow users to enter
and controi the desired train activity. The train sensors
provide event data (interrupt, state and 1location) and the
throtties provide analog input data (via A/D converter).

Any system may have 1its sensors divided into two
categories; those that provide event information and those that
provide analog data. Each of these categories may be easily
mapped onto the train and throttle sensors. As each sensor in
the train system provides identification information along with
any data sent to the computer (observer), it is clearly possible
to associate separate actions with each sensor represented by
the system. The simulated action would typically be either
printed on a computer terminal or recorded on the disk system.
Real actions that cause the train to move around the layout
underliie these simuiated actions.

The sensor interrupts are buffered one level in hardware
which aillows the computer sufficient time to effect various
queuing aigorithms for concurrent events. Moreover, the software
environment for the system embraces multiple real time tasks.
This in turn faciliitates the simulation of real time operations.

The computer controlied train system 1is but one of the
facilities in the Real Time Computer Appiications Laboratory.
Other facilities 1involve acquisition and computer controi
applications. It 1is also possible to represent multilevel
observer systems by interconnecting the computers.

1.3 Reai Time Computer Appliications Laboratory The Real Time
Computer Appilcations Laboratory was estabiished 1in 1976 to
permit study and instruction on a.wide variety of applications
in which the computer is but one component. Distributed sensor
probiems clearly fali in this category and the broader
facilities of the laboratory are pertinent to their study.

The development of the laboratory invoived the creation of
an environment for liearning that encompassed both hardware and
software considerations. The hardware present in the laboratory
includes typical physical hardware to represent a broad set of
reai situations which could be encountered, and a set of analog
computers which may be used to simuiate a broad variety of
systems dynamics.

The software provided for the iaboratory is critical te the
successfui wutiiization of the hardware. It inciudes both a real
time operating system and a higher levei language for reai time
operation., The operating system addresses typical problems such
asi

1. Concurrent operations (e.g., concurrent I/0 and CPU
utilization)

2. event timing controi for real time operations
3. recognition of asynchronous events
4. muitipie tasks inciuding the handiing of priorities

Sks interprocessor communication

In addition a specially designed higher level language addresses
many of these same probiems: muitipie tasks, priorities,
overiapped I/0, and speciaiized data types.

The iaboratory context of the computer controiied train
system 1is important to its full utilization. Accordingiy the
facilities of the laboratory wiil be discussed in some detail.

1.4 Organization of Report

The remainder of this report wiil discuss in detail the
faciiities of the Reai Time Computer Applications Laboratory and
its applications to wvarious probiems. The next chapter will
contain a brief discussion on the development of the laboratory
and an overview of the system facilities. The third chapter wilii
contain a logical wview of the operation of the faciiities.
Chapters 4 and 5 describe both the hardware and software support
of the laboratory in some detail. Chapters 6 and 7 wiil discuss
the appiication of the facilities. Chapter 6 will concentrate on
the 1instructionai use of the facility and Chapter 7 wiil
consider other appiications (such as distributed sensors).
Finaliy the several appendices contain various operating manuals
for the faciiities and hardware circuits utilized.

2. OVERVIEW OF FACILITIES

il Laboratory Development

In 1975 the College of Engineering at The University of
Michigan recognized that an educational void existed in a
certain aspect of computer and computer control activities,
namely the use of computers in real time applications. As a
resuit, a proposal was funded jointly with the National Science
Foundation to acquire equipment to allow studies in these areas.
The present real time computer applications laboratory 1is the
resuit of that effort. ‘

The first equipment was received in January, 1976. The
faciiity was keyed around the newly introduced LSI-11
microcomputer from Digital Equipment Corporation. At that time
DEC had very liittle software support available for the LSI-11
and none suitable for the real time applications envisioned for
the iaboratory. As a result it was decided that it woulid be both
instructive and usefui to develop the major software facilities
needed for the laboratories in-house. We felt that we could
achieve the needed software support in roughly the same time
frame as the wvendor and that in the interim we wouid have
prototypes available for use. Moreover it was felit that the
experience gained by these developments woulid have academic
merit, '

A variety of sources were used for the labor to develop the
iaboratory. A large number of independent student study projects
were carried out to develop the specific aspects of the
faciiity. An advanced ciass project in compiler writing was used
to develop the basics of the higher level language. A smail
amount of paid assistance was used along with construction help
from departmentai téchnicians. The principal direction for the
activity was provided by Professor Richard Volz. The development
effort inciuded nearly ali of the hardware 1in the laboratory,
the floppy disk <controllers, A to D and D to A converter
controiiers, and the entire computer controlled train system.
The software developments inciuded principalily a real time
operating system for the LSI-11 and the definition andé
construction of a compiler for a real time higher 1lievel
ianguage, with a substantial number of utilities (e.g., editor
and high level debug package) being developed aliong the way.

Subsequent sections will give a more detaiied description
of these faciiities.

2.2 Overview of Operating Environment

The operating environment for the Real Time Computing
Laboratory 1is shown in Figure 2. Each real time computing work
station is connected via a 1200 baud 1ine to a remote data
concentrator. The remote data concentrator is an LSI-11
microprocessor attached directiy via a 9600 baud iine to a data
concentrator located at the University of Michigan Computing
Center.

University |
of | Amdahl 470/V7 |
Mlchlgqn | with Michigan
Computing Terminal System |
Center | (MTS)
|
|
| ' |
|
| |
| Data
Concentrator (
- _A___ _ _ __
W
Remote Data
Concentrator
1200 baud
lines
l"—'—"'_ e _— — e = ee— T St i B |
l] ‘
l Work Work Work |
| Station Station Station |
|

| Real TiWE_ComEEtiEg_EaEQFEFQEZ _—

The remote data concentrator muitiplexes a number of input lines
to the University of Michigan's <central computer, an Amdahl
470/V7 computer running the Michigan Terminal Timesharing
operating system (MTS).

Thus, the reai time computing laboratory operating
environment represents a four 1level computer hierarchy. This
arrangement is common in many manufacturing and business

applications.

Each real time work station consists of an LSI
microcomputer system, a flioppy disk drive, a Decwriter terminal,
access to an anaiog computer, and various analog to digital and
digital to anaiog devices. In addition, a line printer and N-
gauge raiiroad are interfaced to one of the systems. These
microcomputer systems may be configured £for independent
operation, for operation in communication with MTS, or for
muitiprocessor operation among themselves.

The system software configuration 1is structured to take
advantage of facilities available on the University of Michigan
controi computer. Ali assemblies, compiiations, iink editing and
text editing of programs are done under MTS. Object programs are
then either directly down 1lioaded to the LSI-11 or are
transferred across the communication channei to the fioppy disk
for subsequent execution. A small, local operating system known
as OSWIT (Operating System WIth Trains) and a «cross compiler
known as CRASH (Compiler for Real time Appiications SHop) have
been developed. Other 1locai system utiliity programs and
ilibraries provide additional capabilities.

2.3 Overview of Hardware

The hardware associated with the mechanical analog faciiity
in the real time systems laboratory is buiilt around three LSI-11
(Digitai CEquipment Corp.) microcomputer systems. As shown in
Figure 3, each system is connected to a £floppy disk drive, a
Decwriter terminal (30 char/sec.), and various analog to digital
(A/D) and digital to anaiog (D/A) converters. The system is ailso
connected to the university's central computer (Amdahi 470/V7)
through a serial interface and a remote data concentrator which
ailows data transmission rates of 1200 baud (soon to be
increased to 2400 baud).

Each microcomputer system is configured so that it can
controi independently various analog and digital devices, as
well as communicate with the centrai computer for the purposes
of program deveiopment, cross-compiiation, and down-liocading of
data fiies and programs. The microcomputers can aiso be
connected together for disk to disk transfer, simuiation of a
smaii hierarchy computing system or to aiiow experimentation
with computer to computer communication. Anaiog computers,
simpie servo systems, and the mechanicai anaiog facility are

connected to the system through the A/D and D/A converters or
through special interfaces.

The independent connection to the central computing system
provides the wuser with access to features of that system that
could not be readily impiemented in machines as smali as the
LSI-11 microcomputers. Programs can be deveioped, edited and
compiied without access to the LSI-11 systems which reieases
those systems for real-time appliications.

Decwriter
Terminal
Remote Data
Concentrator
R — LSI-11 <————>i Floppy
Amdahl Microcomputer Disk
470/V7)
D/A A/D

S,

Real Devices
sensors, servo,
train

Figure 3. Laboratory Configuration

One of the most important features in the laboratory is the
coilection of external anaiog devices that can be monitored or
controiied by the microcomputer systems. An analog computer at
each station can be used to simulate a wide variety of real time
devices with appropriate time and amplitude scaling. Thus the
operational characteristics of real world devices can be
simuiated in conjunction with experiments on real time operation
and controi aigorithms. The <control of simpie servo systems
provides "hands-on" experience with the use of computers and

10

hardware interfacing that evokes considerabie interest 1in
further control studies.

The interface between the disk drive and the computer
system was designed and built in conjunction with an early
version of the course. This exercise provided students with
experience in coupiing a high speed, real time device to the
system in such a way that it could be serviced according to
externally determined timing requirements.

2.4 Overview 2£ §oftware

An essentiai part of any computer system is the software
availabie to the users of that system. Certain software tools

are necessary for easy and efficient wuse of the hardware
faciiities.

The software tools developed for the real-time applications
facility are: a small operating system (OSWIT - Operating System
WIth Trains); a cross compller (CRASH - Compller for a Real-time
App;lcatlons SHop); and a simpie symbolic debugger (RAID - Reai-
time App;lcatlons Interactive Debugger). These tools enabie
students to write real-time Epplications programs in a high-
iteveli language and debug them symboliicaiiy.

The operating system (OSWIT) provides task scheduliing,
interrupt handiing, and I/O control oriented towards real-time
appiications. A set of utility routines for arithmetic
conversion and programs for fiie maintenance and editing are
inciuded in OSWIT. Commands aiiowing the LSI-11 consolie to be
used as a terminai for communication with MTS have also been
provided.

CRASH is a cross compiler that runs under MTS to produce
LSI-11 assembly 1language <code as output. This code is then
processed through a cross assembier to obtain LSI-11 machine
code. The CRASH language is a block structured ianguage similar
to IBM's PL/I in its basic control constructs and arithmetic and
1ogical operations. CRASH data types and I/0O are specifically
designed for reai-time data acquisition and control activities.
Interrupt handiing and task schecduling constructs are available
in CRASH to facilitate reai-time control.

Symbolic debugging of CRASH programs 1is possiblie using
RAID. If the debug option is specified, the compiler denerates_
debug tablies, and the debug system will be automatically ioaded
aiong with the program. RAID enables students to singie-step
through programs, set break points, and to dispiay and modify
variablies referenced by name.

10

11

3. LOGICAL VIEW OF FACILITIES

.

3| 5l A/D and D/A Converters

There are two A/D and two D/A converters available on each
microcomputer system for generai purpose appiication. The
specifications and operating details for these 8-bit converters
are given in Section 4.1.

O B | Logicai Interface

The D/A converter inputs are located at memory location
167772 for D/A 0 and 167723 for D/A 1. The analog output foilows
the storage of values in these locations by about 1 microsecond.

The A/D converters are controiied by a command status
register (CSR) located at location 167770. The bits used in the
CSR are shown in Figure 4 below. Any A/D converter with its mode
and done bits set will have a conversion started whenever its
data register (iocation 167774) is read. The done bit cliears at
the start of the conversion and sets upon compietion. An
interrupt is generated upon compietion if the appropriate
interrupt enable bit is set. Reading the A/D data register
initiates a new conversion. If the mcde bit is zero, the A/D
wiii be. free running so that it 1is performing continuous
conversions. The wvalue of the latest conversion is obtained by
reading the data register. The A/D converter wiili not interrupt
the processor as iong as the mode bit is zero.

The A/D converters are normaliiy operated in a free running
mode such that they make a <conversion, 1latch the <converted
vaiue, reset to =zero, and start converting 6 usec later. The
latched data are displayed continuousiy as octal vaiues on three
7-segment display mocdules.

The data are transmitted to the data register by the
computer whenever the appropriate control status register (CSR)
bit is set high (1). This generates an interrupt in conjunction
with an end of conversion (EOC) signai. The data register is
read by the CPU and a DATA READ signal returned to the A/D logic
network. This DATA READ signal ciears the interrupt and resets
the A/D converter to zero.

15 7 6 5 1 0
ADC1 ADCO ;I\g_gl %113%1 ADCLADCO"
DONE DONE [N |EN. MODE|MODE

Figure 4. CSR bits for A/D and D/A converters

11

12

3.2 Train Facilities

This section deals with the logical aspect of the train
faciiities, that is, the concepts of operation of the various
components and the logical interface between the train and the
LSI-11 microcomputer. There are four major components to the
train facility.

1. throttle sensors
2. photocell sensors
3. track control

4, switch control

The first two sensors transmit information about the
train's location and the commanded speed and direction to the
computer. The last two control the train's speed and direction
and the position of the track switches.

324 Throttle Sensors

The throttle sensor is a logical interface used to detect
changes in the manual throttle controller. Each train has
associated with it a throttle that «controls the speed and
direction of the train. The throttle controlier is simply a
potentiometer connected to a 5 volt source. As shown in Figure 5
the output from the potentiometer is connected to an A/D
converter. Most programs written to transiate the potentiometer
settings to speed controi treat the center position of the
potentiometer as zero speed. Turning the throttlie knob in a
ciockwise direction produces forward motion, while a
counterciockwise turn produces backward motion. Each throttie
controi box also contains a toggle switch used to determine the
desired position (straight or turned) of the track switch being
approached by the oncoming train. The execution of the toggie
switch command is performed by a computer program.

to CPU

Y

Figure 5. Throttlie input

12

13

8. 2% s 1 Logical Interface

A free running A/D converter 1is associated with each
throttle. The sensor 1logic continuously monitors both the
present and the most recent values from the switch and the
throttie. As iong as there is no change in either, no action |is
taken. However, when either the throttle or switch is changed,
an interrupt is generated and the new throttie vaiue or switch
position is piaced on the input to a paralleli interface
connected to the computer. To avoid fiooding the processor with
interrupts as the throttle potentiometer 1is adjusted, the
control 1logic inserts a 100 msec. time deiay after each
interrupt. During this time no 1interrupts are passed to the
processor.

The bit utiliization of the values placed on the 1input |is
shown 1in Figure 6. Only five of the eight availabie bits from
the A/D converter are used. This results in a range of values
from 0 to 31 corresponding to the actual 0 to +5 volt range
output by the throttle. Since the operating range of the train
is =15 to +15 voits, the 0 to 31 range must be mapped into a -15
to +15 range by the computer program.

Each throttle controller has a unique address specified by
two bits, which ailows a maximum of four throtties. The most
recent switch wvaiue 1is contained in bit 13: zero for straight
and one for curved.

15 14 18 12 13 16 9 8 7 6 5 4 2e 2 ok 0

0 0 0 0} 0 0 0t o0
']‘ 4 o A =
e D -
Figure 6. Throttie interface bit utilization

13

14

3.2.2 Photocell Sensors

The photocells are used to detect the location of the train
on. the tracks. Photocells are located at critical points (i.e.,
those places where the location of the train is essential, such
as around the switches and between electrically insulated
sections of track). The photocells are adjusted so that the
normai ambient room light keeps them on. As a train passes over
a photoceii, it turns off. The photocells are grouped in pairs
to prevent a faise indication of an end of train from 1light
between adjacent cars.

Each pair of photocells has a unique address. Whenever one
of the photoceli pairs changes state (detects a train entering
or ieaving the area) an interrupt is generated and the photocell
address and state are placed on the input to a parallei
interface connected to the computer.

The bit utilization for the photoceli sensor is shown in
Figure 7. Eight bits are reserved for the photocell address,
resulting in a maximum of 256 photocells. Our present layout
uses only about 64 of these. Bit 8 represents the state of the
photoceii. A 0 indicates an off or covered condition, a 1 means
the photoceil is on or uncovered.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 jo 0Joj]o 0 0
’ry 0
/' :
state photocell address
= on
Figure 7. Photocell input word

2.2.3 Track Control

The train layout (see Appendix C) is divided into about 40
eiectricaily separate sections of track. Each section may be
separately addressed and has its own D/A converter circuit to
suppiy power to the track. Computer controi of train speed and
direction 1is handled by placing an appropriate 16 bit value on
the output of a parailel interface connected to the train
controiler logic network. This 16 bit quantity will suppiy speed
and direction vaiues to a single track address. The liogic
controiier for the train then stores the commanded speed (which
is passed on through the D/A converter) and direction polarity
for each track section.

14

15

A computer control program must address appropriate tracks
at appropriate times and send the proper values to the
individual track controlliers. This process must be accompliished
dynamically as the photocell sensors indicate that a train has
reached the end of an 1individuali track section. Any simpie
procedure that applies the same power to all track sections is
inadequate for two reasons:

1. It fails to handlie lioop situations (i.e., a positive
to negative short would occur when the train passes
over the conjunction).

2% It fails to aiiow multiple train controi.
3.2.3.1 Logical Interface

The track control liogic receives a 16 bit integer from the
parallel interface each time the user program does an assignment
to the interface output. The bit wutilization for the track
controi is iliustrated in Figure 8. The tracks are grouped into
banks of 64. Bits 12-15 specify one of these banks. Our current
configuration supports approximately 40 separate tracks and
therefore only bank O 1is impiemented. Bits 6-11 are for the
address of one track in the selected bank. A six bit buffer
associated with each track contains the assigned direction and
speed.

When a track is addressed, bits 0-5 are taken from the
interface output and piaced 1in the appropriate track buffer.
Bits (-4 contain a vaiue in the range 0-31 which corresponds to
a 0 to 24 voitage range. Bit S5 is used to control the polarity
appiied to the track. A 0 in this bit will cause an engine to
move 1in the direction shown by the arrows on the track layout
diagram (Appendix C); a 1 in the direction bit wiii cause an
engine to move in a direction opposite to the direction of the
arrows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|

& . J \ J
N NS s
Bank 0 track address Speed
0 = stopped
31 = max
direction
Figure 8. Track Control Word

15

16

3.2.4 Switch Control

Approximately 25 track switches are inciuded in the train
iayout (see Appendix C). These switches allow for two way
branching/merging of the tracks. The position of an individual
switch depends on the direction of approach of the train. The
first case occurs when the train is approaching the switch in a
"branching mode". That is, a decision must be made as to which
of two directions the train will go. This decision is arbitrary
and 1is made by the wuser by setting the toggle switch on the
throttie controi box to either straight or turned. When the
Computer recognizes that a train is approaching a switch in this
"branching mode", it reads the position of the toggle switch and
set the track switch accordingiy.

The second case of switch control occurs when the train is
approaching a switch in a "merging mode". That is, there exists
oniy one direction that the train can continue from the switch.
The decision in this instance must be made so as not to derail
the train. Upon recognizing that a train is approaching a switch
in the "merging mode", the computer program must set the switch
accordingiy. The switch command set by the user is ignored 1in
this case.

352400 Logicali Interface

The bit utilization for switch control is shown in Figure 9
The switch control logic is driven by the same 16 bit paralieil
interface output as the track controi. A switch control command
is distinguished from a track control command by reference to
track bank 15 which is is interpreted as a switch controi.

The switches are grouped in sub-banks of 8 each. Bits 8-11

\ —~— Aer - 2 ~"
Bank 15 Sub~-bank Switch control
0 = straight
1 = turned
Figure 9. Switch Controi Word
are used to address a particuiar sub-bank. The sub-bank

assignments are:

Sub-Bank Switches
0 0-7
1 8-15
2 16-23
3 24-31
16

17

Each of the eight ieast significant bits (bits 0-7) controis one
switch in the assigned sub-bank. A bit vaiue of 0 1indicates a
straight position, whiie a 1 indicates turned.

33 Software Control of Muitiple Trains

One of the principal student assignments using the train
setup is to controi multipie trains 1in a transparent manner.
That is, the computer is to aliow muitipie engines to run on the
train system; yet it 1is to appear to the user that the train
responds to his control as if he had direct control over each
engine in the wusual model railroading sense. Moreover, the
computer is to arbitrate all contention situations that arise
and prevent either deraiiment and/or colliisions.

We wiii discuss the general problems invoived in such
control, general approaches to the resolution, and some
aiternatives which have been used. In impiementing this type of
throttlie driven control there are three critical considerations:

. formuiation of a data structure to describe the physical
and electrical connections of the train liayout

. actions to be taken upon a throttlie interrupt,
. actions to be taken upon a photocell interrupt.

3.3.1 Throttle Interrupt

The throttle interrupts are the most straightforward of the
three major components to the train controi system. An interrupt
is generated any time one of the throttie or switch settings is
changed. The corresponding actions are relatively simpie. The
data structure that describes the train iayout must aiso inciude
a structure to store those track sections presentiy occupied by
each train. When a throttie interrupt occurs the control program
reads the vaiue inputted by the throttle controlier. Since the
throttie number (train identification) is inciuded in these cdata
the program then merely iooks up the track sections occupied by
the train and resets their throttie speed in accordance with the
new commanded speed.

Any new position of the command switch is also saved. No
action is taken for this switch setting until the train covers a
photocell approaching a switch.

Severai wvariations are possible in more elegant controil
programs. For exampie, one might implement a speed 1iimit on
certain sections of track to «controi the maximum speed with
which a train could negotiate a curve or switch. Likewise the
switchyard can be programmed such that trains wiii not run into
the bumper stops at the dead-end of several track spurs.

17

18

BlaBr 2 Photocell Interrupt

The most complex set of actions which must be undertaken
occur upon photocell interrupts. Recall that photocell
interrupts occur when a photocell is either covered or No action
is taken for this switch setting uncovered and that the input
information provided by the controllier includes the number and
state of the interrupting photoceil. There are a substantial
number of distinct situations that require specific action.
Typically the number of the photocell invoived in the interrupt
willi indicate which case is to be performed.

We wiil assume that the information required by the control
program 1is avaiiablie somewhere 1in the data structure without
worrying for the moment about how this is done. It is easiest to
consider first the actions required by a singie engine on a
track without considering the <compiications arising from the
possibiiity of interference with other trains. The variations to
account for muitipie trains will be considered iater.

Bie3 e 2w L Simpie Track Junction

The simpiest situation is that occurring when the train is
about to pass from one electrical section of track to another,
as iiiustrated in Figure 10. In this and subsequent figures the
trains are assumed to be traveling from left to right. The
sequence of events and actions is as follows:

il The train covers photocei: A which generates an
interrupt to the processor and passes the photocell
number and the covered status to the CPU. The control
program uses the photoceil number as an index to look
up the number of the track associated with photoceli
B. Power 1is then appiied to this track. At the same
time the internal data structure is updated to inciude
track N in the list of active track sections occupied
by the train.

2. Photocell B is covered which generates an interrupt to
the processor. No action is taken.

3% Photoceil A is uncovered which generates an interrupt
to the processor. No action is taken.

4, Photoceli B is uncovered which generates an interrupt
to the processor. At this point the train has moved
compietely off track M and onto track N. Therefore,
the controi program would remove track M from the
iists of track sections occupied by the train and set
the power on track M to zero.

Note that events 2 and 3 could occur in either order depending
upon the iength of the train.

18

)

There are several variations which the control program must
be able to handie in this case. First of alil, the user may
reverse the throttie after covering A but before B is uncovered,
thus backing the train off track N. This is essentialiy either
step 4 or steps 3 and 4 appiied to track M instead of track N
and shouid cause no probiem.

A second variation occurs if either track section M or N 1is

Track M Track N
O O
A B
===
Figure 10. Simpie Track Junction

physicaiiy short; the train may actualliy occupy more than two
track sections. It is for this reason that one shouid keep a
1ist of tracks occupied by a given train and their speed
controls. In terms of the photocelii operations this means that
there may be an intervening cover of a photoceil requiring a new
track aiiocation before step 4 is reached.

3,93 . 292 Switch Entrance--Variation 1

Assume that the train is entering a switch from the 1ieft,
as shown in Figure 11. It matters not whether the train enters
from position A or A'. The operations to be performed are
identical to those in the previous section with one exception.
Before powering up track section M the control program must scan
its data structure for the position of the switch necessary to
avoid derailment. Under photocell A the desired position will be
straight and under photocell A' the desired position wouid be
turned. Thus, in this case the switch must be set to avoid
deraiiment as a further action during step 1 above.

19

20

| Track N
'l JI. .;_ 4 b
ol |1 [1] |e [
1 T 1 1 1
A B
AI
Figure 11. Switch Variation 1

3.3.2.3 Switch Control--Variation 2

Consider a train entering another switch from the left, as
shown 1in Figure 12, The control here is similar to that of the
simple track transfer exampie considered in Section 3.3.2.1. 1In
this case, however, step 1 must be modified to inciude a
determination of the proper switch setting. This 1is done with
the stored switch position command from the 1last throttle
interrupt. The data structure for photocell A must inciude two
track section identifications, that for track N and that for
track Q. The controi program uses the stored switch position
from the last throttie interrupt to determine which track
section is to be powered and then issues the appropriate switch

setting commands. Otherwise the <controi 1is as 1in Section
2.3.2.1.

Track Q
O L\ c
A C
—_—
Figure 12. Switch Controi--Variation .

20

21

3.3.2.4 Crossover

Figure 13 shows a train crossover. It does not invoive any
changing of track power but 1is merely concerned with track
occupancy to avoid a collision. Upon covering photocell A the
controi program must check section track N for occupancy. If
section N is occupied and either photocell C or D has been
coverad (with the train moving in the appropriate direction) it
is not safe for a train on section M to proceed. Accordingly,
the control program must set the power lievel on section M to
zero to hait the train. Upon throttle reversal (which generates
a throttie interrupt to the program) the train may be backed-up.

Figure 13. Track Crossover

In the case of muitipie trains, when the train has passed
over section N (clieared the crossover), power may be reapplied
to section M and the stopped train ailowed to proceed from
photocelil A.

8la3m2.45 Loop Controil

One of the more complicated issues occurs when a 1loop is
encountered, as in Figure 14. The important thing to notice
about this situation is that the inside rail meets the outside
raii if one foilows it around the ioop. Thus, to avoid an
eiectrical short circuit there must be polarity reversal of the
appiied track power even though there is no reversal in the
commanded direction of the train from the throttie. The key

21

22

issue in these situations is to identify the presence of a loop,
or alternatively, to define a general a¢gor1tﬁm to determine
polarity of power appiied to the track.

In this simple case the existence of a loop is immediately
obvious. However, such is not aiways the case. For example, a
close look at the train layout of Appendix C will reveal that
there are in fact two loops which occur on the train layout. The
second 1oo0p 1involves a number of track sections, not just two.
It thus becomes difficult to identify just where in the loop the
power should be reversed. In fact there 1is not necessarily a
unique answer in that the 1loops can be entered from several
different points. A more general polarity determination
algorithm is needed to handie such problems.

In developing a soliution to this problem, consider the
movement of the train on a single section of track. Each active
track section has a polarity associated with it related to the
vaiue of the direction bit in the output word for that section.
Each section of track has one end designated with an R and the
other end designated with an F, with R and F chosen such that a
train wiil move from R to F if the direction bit for that track
is 0 and willi move from F to R if the direction bit 1is 1. The
required polarity reversali is 1iilustrated in terms of this
notation.

Consider in Figure 14 that a train enters from the left
with direction bit set to 0 and the switch is in the turned
position. Assume throughout this example that the commanded
train direction does not change. The train wilil proceed through
the turned portion of section 1 and approcach the R end of
section 2. To proceed onto section 2 power must be appiied and
the direction bit for section 2 set to a 0. When the F end of
section 2 is approached section 3 must be powered up with the
direction bit also set to 0. When the F end of track 3 1is
approached, however, the switch position must be set to straight
and section 1 powered up with direction bit 1. That is, the
polarity must be reversed even though the commanded train
direction has not changed.

To develop an algorithm to solve this problem one must
consider the possibiiity of changes in the commanded direction
as Weil. Moreover, the occurrence of a loop may not be at all
apparent. The loop may well involve a dozen or more sections of
track and be obscured by crossovers and muitiple switches. One
would therefore like to develop an aligorithm that does not
depend on 1oop detection but rather oniy on the parameters
associated with a given track section and the instantaneous
state of the commanded direction.

Let us therefore introduce three variables which describe

the track orientation, the commanded direction, and the desired
direction bit for the track. Let DIR(k) be the direction bit for

22

23

track section K which 1is the wvariable we are trying to
determine, Let EDIR be the variable which represents the desired
engine direction. (The particuiar aigorithm by which EDIR is
determined from the throttle setting is of no concern here as
iong as it is a consistent aigorithm.)

The first issue of concern is when any new value of DIR(k)
has to be determined. Clearly this has to be done whenever the
user changes the throttie position and a throttle interrupt is
generated. It also, however, must be done when the train is
about to pass from one track section to another.

Track 1 - FIF Track 3
i | . '
O BN
PCl
Figure 14. Poiarity Reversal in Train Loop

This liatter situation is indicated by a photocell interrupt
from the photoceii Jjust covered. However, not ail covered
photocell interrupts represent entrance to a new track. For
exampie, 1in the ©previous 1illustration when photocell 2 was
covered the train had just entered track 2 and was not about to
enter any other track. To detect this situation we associate
with each photocell a iogical variabie END(PC#) according to the
foilowing definition.

END(PC#) = {0 if photoceil is at R
1 if photocell is at F

A train on .track section K receiving a covered photocell
interrupt from photocell j is about to enter a new track section
if the foliowing condition holds:
END(j) XOR DIR(k) =1
The next problem is to determine the polarity, i.e., the

variabie DIR of the track about to be entered. For this purpose
we introduce a new variable, END.NEXT. This parameter is again

23

24

indexed by the photocell number. However, as in photocell number
1, the end of the track about to be entered depends upon a
switch setting. Accordingiy, the parameter END.NEXT must also be
indexed by the switch number and the commanded switch position.
Thus we define END.NEXT as follows:

END.NEXT(PC#,SW#,P0S) = {0 if next track end R
1 if next track end F

Since we know that we are about to enter the next track we can
determine 1its direction bit from this END.NEXT variabie. In
particuiar if M is the next section to be entered the direction
bit for section M is

DIR(M) = END.NEXT(PC#,SW§,POS)

The above algorithm 1is reasonabiy straightforward and
depends only upon track parameters and the direction bit of the
previous track section. It is possibie, however, that the user
might reverse the throttie while on a section of track. Then the
direction bit on the track section must aiso be reversed. This
is easily remembered by recording the commanded engine direction
upon entry to a track and simply comparing the commanded engine
direction with the commanded direction when the track was
entered at each throttlie interrupt. More precisely let EDIR.E(k)
be the commanded engine direction when track k was entered, and
1et DIR.E(k) be the assigned value of the direction bit when the
track was entered, i.e., the variable DIR.E is obtained directiy
from END.NEXT of the previous track. Then the direction bit at
any throttle interrupt is calculated as:

DIR(k) = DIR.E(k) XOR (EDIR.E(k) XOR EDIR)

We thus have two equations to calculate the appropriate
direction bit, one when a track is entered and a second when a
throttie interrupt occurs. In addition we have an expression
teiiing us when a covered photocell interrupt indicates that the
train is about to enter a new track section. With these
expressions it 1is possible to handie the loop problem without
any compliicated lioop detection aligorithms.

3.3.2.6 Muitipile Train Considerations

It is necessary to add only a few new checks to the control
program to inciude multipie trains. When a photoceli at the end
of a track section is covered and it is necessary to power up a
new section (via any of the schemes described above) the control
program must now check the next track section to see if it is
aiready occupied, i.e., the data structures for the iayout must
inciude some way of identifying occupied sections. If the
section 1s occupied, the train about to enter that track section
must be stopped 1in 1its present iocation and not aiiowed to
proceed. Otherwise, the probabiliity of a coliision is high.

24

25

When a photocell is uncovered and it is desired to de-power
a section of track it is also necessary to check to see if there
is a train waiting to enter the track about to be de-powered. If
this is the case that track section must be reailocated to the
waiting train which is then restarted after reliease of the track
by the first train.

It is aliso possibie for a train stopped and waiting for a
track to clear to be reversed without the awaited forward track
clearance. Thus, an additional check must be added to the
throttie controi to provide for a possible train restart by
reversasis.

With these few additions to the control program it is in
principie possibie to handie muitiple trains. There is, however,
one other practical consideration which should be taken 1into
account. This consideration 1is really only an impiementation
consideration and does not change the operating principles
described above. Multiple trains can generate muitiple photoceli
interrupts at closely spaced points in time. It has been
observed that this sometimes causes a failure in the train
controi program. The probiem can be alieviated by not taking
direct action upon the receipt of a photocell interrupt but
rather storing the photocell interrupt information on a queue. A
secondary task is then started to empty the queue. The interrupt
driven storage task can then be quite short which minimizes the
chance that an interrupt wiil be lost due to two trains hitting
photocells at neariy the same point in time.

3148153 Data Structures

By now it is evident that the major key to the control of
the train system by computer 1i1ies in the selection of data
structures both to represent the physical and electrical layout
of the track and to keep track of the operating state of the
system. Versions of the train control program have been written
with different data structures. Rather than state a specific
structure, the range of structures wili be described.

One can delineate a finite number of circumstances which
can arise in terms of covering or uncovering photoceils and the
direction of train travel at that time. At one extreme users
have coded ail of this information by hand and stored it with
the data structure describing the track layout. Generally, this
data structure is indexad around the photocell number. When a
photocell interrupt occurs the proper action 1is determined
merely by a table lookup operation. This approach 1leads to a
reiatively large data structure and a relatively short and
simpie program. .

The other extreme is to highly encode the data describing

the track and write a somewhat more sophisticated program to
caiculate (as in the 1loop operation described above) the

25

26

appropriate actions.

The most

suitablie mode of operation with either approach

seems to be to store the data that describes the track layout in

a separate disk
data structures
takes control

structure to be
controli program.

file and to dynamically locad it into the program
as an initialization phase before the program
of the train. This allows the track layout
changed or corrected without recompiling the

26

27

4. PHYSICAL DESCRIPTION OF HARDWARE FACILITIES

The analog facilities are divided 1into three major
categories for the purpose of this discussion. The data
conversion facilities will be discussed first, then the train
facilities, and lastly the other facilities.

4.1 A/D and D/A Conversion Facilities

Two 8 bit A/D binary counter converters (Datel, Modei ADC-
89A) are associated with each system. These converters are
operated as monopoliar devices with an input range of 0-10 wvoits
and a 200 microsecond maximum conversion time. They can be
operated either in free-running or interrupt mode under program
controi. The anaiog 1input signal to each A/D .converter is
iimited to 10 volts maximum by a =zener diode-operational
ampiifier buffer stage on each input. This signal can be read
with an anaiog volitmeter and its digitized version can be viewed
on three octal digit 7 segment dispiay modules.

At the time of selection (about three vyears ago) these
converters were relatively 1low cost ($70.00) with reasonable
temperature stability and conversion speed. Since high precision
rapid conversion is not important in the instructional context
of the 1laboratory, these 8 bit converters are more than
adequate.

Two 8 bit D/A converters (Datei, Model 198B) are available
on each system. These converters are also operated as monopolar
devices with an output range of 0-10 volts and 20 microseconds
settiing time. The offset and gain of each D/A converter can be
set through adjustment of two potentiometers. The anaiog output
can be dispiayed on an analog panel meter and the digital input
can be read on the 7 segment displiay modules. These general
purpose converters are also relatively iow cost ($29.00) with
reasonablie temperature stability and conversion speed.

The fcur converters, the three digit digital display, the
analog voitmeter, and the two switches that determine the
signals to be read are mounted on a single panel that serves as
a preplate for each computer setup. The analog input and output
signals are connected to banana jacks mounted on the prepiate,

28

4.2 Train Facilities

4.2.1 Sensor System

4.2.1.1 Throttie Sensor

This section gives a detailed description of the hardware
for the eliectronic throttle (see ELECTRONIC THROTTLE BOARD
circuit in Appendix D). A logical description of the throttle
can be found in section 3.2. In normal operation the train speed
and direction are controlled by a computer program. The program
receives data from an electronic throttle control box operated
by the user. Each train has its own throttle control box.

The throttie consists of a 500 ohm potentiometer connected
to a +5 volt source. The voltage across this resistance 1is fed
into an operational amplifier (MC 1458) and the output from the
op amp is in turn inputted to an A/D converter (DATEL, ADC-89A).
Only the "middle" five bits of the eight availabie from the A/D
are used, as greater precision 1is not necessary for train
control These five bits are used as input to a six bit D-type
latch (SN 74174). The remaining 1latch bit 1is used for the
commanded position of the track switches. Two polies of the
position toggie switch are connected to the preset and ciear
pins of a D-type positive edge triggered fiip-fliop (SN 7474) to
provide this position signai.

If the controls on the throttie box are not changed, no new
information concerning the train's speed or direction |is
avaiiabie. Only when a change occurs is there reason for the
computer to be interrupted by the throttle control logic. Thus,
the purpose of the six bit latch is to hoid the past vaiue from
the throttle. The six bits at the latch input are compared to
the six bits at the iatch output by two four bit comparators (SN
7485). If the two quantities are equal the clock input to the
iatch is kept low (inhibited) and the liatch is not triggered.
However, if they are not equai, the low signal from the
comparator is used to trigger the latch and send an interrupt to
the computer (via the NOR gate IC4--see discussion beiow).

A probiem with generating interrupts in this manner is that
an 1interrupt wiil be sent to the computer for every incrementail
change in the throttie potentiometer. Since the rate at which
these 1interrupts can be generated is governed by the speed of
the A/D converter and the 4 bit comparator, the processor couid
become fliooded with interrupts. To circumvent this probiem two
one-shots (SN 74122) provide a 100 ms deliay between interrupts.

The end-of-conversion signai from the A/D converter |is
inputted to the first one-shot. The normaiiy high output of the
one shot feeds into one input of a two input NOR gate (SN 7402).
The other input comes from the comparators. Now, when conversion
is compiete, the one-shot wiii go iow. This aiiows the output

28

29

from the comparator, via the NOR gate, to control the triggering
of the iatch. If there has been a change, the new vaiue is
iatched, and an interrupt sent to the processor. The conversion
process 1is restarted by a second one-shot triggered from the
first one-shot.

The process of generating an interrupt and piacing the
appropriate information on the parallel 1interface to the
computer starts with the output from the NOR gate described
above. The puise from this NOR gate is used as the clock input
to a D flip-fiop (SN 7474), whose D input is aiways heid high.
The compiement (low level) output of the fiip-fiop is passed
through a bus buffer gate (DM 8023). The inverted output of the
bus buffer is the actual interrupt signal. It is sent to the
LSI-11 as a throttle interrupt request. Simultaneous.iy, the
address of the interrupting throttie and corresponding A/D
vaiues must be piaced on the data lines to the computer.

As mentioned in the Logicai Description section, a maximum
of four concurrently running trains is allowed. Each train is
distinguished by the throttle that controls it and each throttle
has a unique address between zero and three. These throttle
addresses are generated by a counter (SN 74161). The two line
output of the counter willi contain the address (0-2) of the
interrupting throttie. The two outputs of the counter are fed
into a two to four decoder (SN 74155). Basicaily, each decoder
output selects one throttlie and (in its turn) opens the bus
buffer gates to pass any interrupts which may be present for
that throttle to the processor.

The ciock input to the counter 1is provided by a
continuousiy running osciilator (NE 556). The output from the
osciiiator is used as one input to a two input NAND gate (SN
7400). The other NAND input comes from the bus buffer line. When
a iow signal (interrupt) is present on the bus buffer line, the
osciliator is effectively disabled (via the NAND) from the clock
input of the counter. This action suspends the counting
sequence.

The compiement (low level) outputs of the decoder have
three important functions. First, they are used to controi the
bus buffer gates that seliect the interrupting throttie. Each of
the four lines from the decoder corresponds to a bus buffer gate
(which in turn corresponds to one of the throttles). When a
decoder line goes 1iow, the corresponding buffer gate is
selected. If the bus buffer input is also low, the signali wiil
be placed on the bus buffer line and the counting sequence wiil
be suspended. Thus the output of the counter wiil contain the
appropriate throttlie address. :

Second, each decoder output line corresponds to one of the

buffers containing the six bits of data from the throttie
control box. Again, when the decoder line goes 1iow it selects

29

30

one of these buffers. This places the data on the parallel
interface to the computer

Finally, the decoder iines select one of the four NOR gates
(SN 7402) connected to the clear input of the D flip-flops
associated with each throttle. After the computer has processed
the interrupt it sends a DATA TRANS pulse when the information
on the data 1lines has been transmitted to the computer. This
pulse is aliso sent to the four NOR gates Jjust mentioned. The
output of the selected NOR is inverted and used to clear the
interrupting D fiip-fliop. Once cleared, the counter will resume
and the entire sequence can begin again. '

4,2.1.2 Photocelil Operation
Qverview

The PHOTOCELL CONTROL BOARD is divided into three levels of
circuitry. At the lowest level is the PHOTOCELL SLAVE BOARD (see
Appendix D). Photocell sensors are piaceé around most of the
switches on the track. These sensors are grouped in pairs with
each pair having its own unique address. When an engine covers a
photoceli, the sensor is turned off. When uncovered, the
photocell is turned on. Each SLAVE BOARD consists of a photocell
pair connected to a PHOTOCELL MASTER BOARD. The MASTER BOARD
prevents any false indication of a change in state and sends the
state of the photoceli to the PC LOGIC CIRCUIT. If a change of
state in one of the photocells occurs, the LOGIC CIRCUIT
forwards a signali to the next higher 1level. Page 1 of the
CONTROL BOARD schematic diagrams shows the hardware used to
monitor each LOGIC CIRCUIT 1in order to detect any change in
state of a photoceli. The CONTROL BOARD then reports the change
to the INTERRUPT CONTROLLER (see COMPUTER INTERFACE BOARD). If
the device's interrupt system is enabled, an interrupt to the
processor is generated through the vector address associated
with interrupt A.

Each time a photocell generates an interrupt, 1its address
and state are input to the parailel interface and held until the
data 1is read by the central processor. After the CPU reads the
data bus lines from the device, it generates a DATA TRANS to
indicate that it has compieted the data transfer.

Photocell Address Generation

The hardware necessary to generate the photocell address
and state is shown on page 1 of the PC CONTROL BOARD diagrams.
The eight bit photocell address is generated by using two four
bit binary counters (SN 74161). The output of an osciiiator (NE
556) and the inverted PCINT signal (which is generated from the
PC LOGIC CIRCUIT) are used to ciock the two counters. The eight
bits from the counters are connected directiy to the input bus
1ines at the paraileli interface on the computer.

30

31

Each count corresponds to one photoceil pair. The counter
outputs are also connected to a set of decoders (described
beiow). With each count, one photoceli pair 1is selected and
interrogated for a change in state. The four most significant
bits of the photocell address are decoded (SN 74154) to select
one of the five banks of photocells. Each bank consists of four
PC LOGIC CIRCUITS. Each PC LOGIC CIRCUIT monitors four different
photocells (one at a time) on the track in order to determine if
one has changed state.

The LAST+1 PC ENABLE line is used to clear the two four bit
counters., This LAST+1 PC ENABLE line is the sixth output 1line
from the decoder (SN 74154) used to seiect the bank. After ali
the photocells in each of the five banks have been monitored
this sixth output line from the decoder willi be activated iow,
which clears and restart the counters from zero.

The least four significant bits of the photocell address
are passed through a second 4/16 decoder (SN 74154). The outputs
from this decoder are the select lines used to monitor one of
the sixteen photocells that are in a bank. These select 1lines
are inputs to the PC LOGIC CIRCUITS.

Change 3£ State Detection

Page 2 of the PC CONTROL BOARD diagrams shows a PC LOGIC
CIRCUIT. The inverted DO, D1, D2, and D2 lines are the output
select lines from the decoders. mentioned earlier. One of these
iines is seiected at a time and activated 1ow to monitor a
photocell. Oniy information pertaining to this particular
photocell can be passed to another lievel because of the bus
buffer gates (SN 74125). A strobe pulse aiong with the select
line are used as true inputs to a NOR gate (SN7402) to clock a D
fiip-fiop which has stored the 1last recorded state of the
photocelii. This strobe pulse 1is generated by the INTERRUPT
CONTROLLER of the COMPUTER INTERFACE BOARD upon receiving a DATA
TRANS puise from the computer. PCl, PC2, PC3 and PC4 are outputs
from the MASTER BOARD and contain the current state of the
photocelis.

The object of the LOGIC CIRCUIT is to determine whether the
current state of the photocell is different from that stored in
the D fiip-fiop. This can be done with the wuse of an XOR
({exclusive OR) gate (SN 7486) whose 1inputs are the current
photocell state and the inverted output of the D fliip-fiop. When
the D fiip-fliop is clocked and a change of state has occurred,
the output of the XOR gate wiil be LOW. The output of the XOR
gate is connected to the HCLK line. IF HCLK remains high (i.e.,
no change in state) the binary counters are incremented by 1 and
the next photoceil monitored. When HCLK goes low the counters
are disabled and an interrupt generated. The photocelli address
and new state are then sent to the CPU. Notice that when the
photocell changes state, the inverted output of the D fiip-flop

3l

32

wiil contain the new state of the photocell. The inverted output
is <connected to the DATAOT iine which transfers the photocell's
new state to a higher 1level.

Light Detection Circuitry

The lowest level of hardware with respect to the PHOTOCELL
CONTROL BOARD consists of the MASTER and SLAVE BOARDS (page 3 of
the PC CONTROL BOARD). When light hits the photocell pair of a
SLAVE circuit, the sensors act 1iike a battery and generate a
signai to the MASTER. When an engine covers the photocell
denying it light, a very high impedance prevents any current
from fiowing on to the MASTER.

The MASTER circuit must be able to send a correct high or
iow signai to the LOGIC CIRCUIT depending on whether the
photocell is on or off. The one-shot is inciuded in the circuit
to ensure no waviness in the signal and to prevent a false
indication of an end of train caused by light between cars when
muitiple cars are used,

The output of the ampiifier (MC3302) is tied to one input
of an AND gate (SN 7408) whose output is also low, sending a low
signal to the LOGIC CIRCUIT. The output of the amplifier is ailiso
tied to the clock of .-a positive-edge triggered one-shot (SN
74123) whose negative output is normally high. When an engine
covers a photocelii, the output of the ampiifier is low. The one-
shot ensures that a change does not take pliace for 45 ms. If a
false uncover occurs (due to an analog circuit wvolitage in the
undefined region for 1logic <circuit), the one-shot triggers,
making Q iow; this keeps the output of 1IC4 1low. When the
photoceil is uncovered by the train, the output of the amplifier
is high. The 1iow to high transition causes the one-shot to
trigger a low pulse for 45 milliseconds (i.e., a delay Iis
inserted). This approach 1is used to make sure that the light
between cars, if muitiple cars are used, would not affect the
state of the photocelli. Once the one-shot terminates, the output
of the AND gate (SN 7408) wilil be high, sending the correct high
signai to the LOGIC CIRCUIT.

Throttie-Photoceil Interrupt Management

The INTERRUPT CONTRCLLER of the COMPUTER INTERFACE BOARD is
simpiy a two-level priority circuit between throttle and
photocell interrupts. The PC INIT signai is generated by the
computer upon power up and is used as a power ciear to reset ail
of the D fiip-fiops in the LOGIC CIRCUITS.

32

33

4.2.2 Controi System

4.2.2.1 Track Speed Controlier

The track controi word is organized as shown in Figure 8.
The track speed controiier selects one of 64 tracks from a six
bit track address, (all tracks are on Bank 0). The speed is a
five bit number (yielding possibie speeds 0-31) and a direction
bit.

Track selection occurs as foliows. (See TRACK SPEED
CONTROLLER 1 of 3 in Appendix D.) Bits 10-11 of the track
controi word are input to a l-of-4 demuitipiexer (SN74155). The
four outputs are used to enabie one of the four 1l-of-16
demuitiplexers (SN74154) that are fed with bits 6-9. The resuit
is a 1-of-64 demulitiplexer. (Tracks are numbered 0 through 63.)

Two types of speed control are implemented. The first is
the traditional analog dc voltage contro. wused on tracks 0
through 15 (0-17 octal). The second, used on tracks 15 through
31 (20-37 octai), is under digital control: the track is puised
with a high voltage pulse train, with duty cyclie proporticnai to
the desired speed.

The anaiog controliier (see TRACX SPEED CONTROLLER 2 of 3 in
Appendix D) works as foliows. The incoming speed (5 speed bits +
1 direction bit) is liatched. The most significant four bits of
the speed are heid in a 4-bit 1iatch (SN7475). The least
significant bit and the direction bit are heid in a duai D-type
fiip-fiop (SN7474). The five speed bits are fed to a home buiit
weighted-resistor digital-to-analog converter. The resistor
1adder 1is composed of five separate resistors. Some attempt was
made to match the valiues when the boards were built (nominal
vaiues are 2, 4, 8.2, 16, and 33 K ohms). The operationai
ampiifier used in the D/A is a MC1458. The output from the op
amp drives a simpie two transistor ampiifier (a pair of
2N3053's). This yieids a maximum possibie voitage of 25 wvoits.
This is directed to the track through a double-pole, doublie-
throw reiay (PD RIO-E1-Y4-V52). The direction bit 1is 1inverted
with a NAND gate (SN 7401) ané wused to drive a transistor
ampiifier (a singie 2N3055). The transistor provides the power
to switch the direction relay (the NAND gate was used as an
inverter oniy because of availabiiity).

The digital controlier (see TRACK SPEED CONTROLLER 3 of 3
in Appendix D) differs functionaiiy from the analog in its
resoiution. All five speed bits + the direction bit are latched
in a hex C-type flip-fiop (SN74174). The most significant four
bits are used to set a four bit presetablie binary counter
(SN74151). The least significant bit is not used.

The counter 1is wused to pulse the track with a 25 volt
puise. As the duty cycie is increased, the speed increases. A

33

34

speed of O never pulises the track (duty cycie=0). A speed of 2
sends a 1 to the counter (since the least significant bit is not
used) and yielids a duty cycie of 1/16=.0625. 2 speed of 24
(counter input=12) gives a duty cycie of 12/16=.75. Finalily, a
speed of 31 yieids a unity duty cycie. This is accomplished by
1oading the counter with the upper four bits of the speed and
letting it count from . there to 15. Power to the track |is
inhibited whilie it is counting. During the remaining (up to 16)
counts, power is appiied to the tracks. One of the counter
outputs, TC, becomes high oniy when the counter reaches 15. TC
is inverted and fed back into the CEP input. CEP aiiows the
counter to count oniy when it is high.

An osciilator (described beiow) provides ciock pulses for
both the counter and a 1load function (once every 16 «ciock
pulses). The 1load pulse reloads the counter with an initial
count and resets TC iow. The net effect is to 1iet the counter
count from the speed/2 to 15 and stops for the remainder of 16
counts. TC is reinverted and used to drive a duai transistor
ampiifier exactly as 1in the anaiog case. The direction bit is
inverted and controls the reiay in the same manner. (Note: ail
inverters on this board are 3N7406.)

The oscililator for the digital speed controller consists of
a NES556 osciiiator and a SN7493 divide-by-15 counter. The
osciiiator provides the CLOCK input to the SN74161 counter on
the speed controiier. The SN7493 divides CLOCK by 16 to provide
the LOAD puises for the counter.

Whiie in principie the two types of controliers mereiy
provide two different mechanisms of providing a track voitage
proportionai to the commanded speed, some praticai differences
have been found. Specificaliy, the output ampiifier stage on the
analog version of the track controiier has been found to be
guite noniinear. The tablie in Tablie 1 shows this difference. The
operationali effects, however, are not as drastic as wouid seem
from this tabie. There are several reasons for this. First,
static friction keeps the train from operating at much beiow 4
voits. Secondiy, there 1is no printed caliibration on the hand
heid throttlie; one oniy has the "feei" for 1its operation.
Thirdiy, the usuai operating range is at the higher speeds at
which the difference is liess. Smaii speed changes can sometimes
be noticed as the train moves from one track section to another,
but this wili. occur even between anaiog tracks as iow precision
resistors were used (because they were availabie and cheap) in
the weighted resistor D/A converter.

34

35

4,2.2.2 Switch Controlixer

The switch controiier 1is activated through bank 15. The
switches are divided into 16 subbanks of eight switches each.
After the programmer selects a subbank the switch controiier
sets each of the eight switches on the subbank ONE AT A TIME; it
does not attempt to apply power to eight switches
simuitaneousiy. If ali switches do not set properiy within a
short time, an audible alarm sounds. The switch control word
format is shown in Figure 9.

TRAIN TRACK
SPEED-VOLTAGE RELATIONSHIP

Track 0-17 - Track 20-46
Speed Voitage Speed Voltage
(Octai) on track (Octaui) on track

(Decimaui)) (Decimal)
1 1.2 0 0

16 1.8 2 1.1

20 4,0 10 4.4

23 8.2 16 7.8

24 9.5 20 9.0

25 11.0 22 10.0

26 12.0 24 11.0

27 13.5 30 12.0

30 15 32 13.0

31 16 34 15.0

32 17 36 18.0

33 19 40 0.0

34 20 42 -1.6

36 20 56 -7.8

37 20 60 -2.0

40 To-1.2 62 -10.0

654 -11.0

55 -1.2 66 -12.0

56 -1.8 70 -13.0

60 -4.0 72 -14.2

70 -15.0 74 -16.0

77 -20 76 -18.0

TABLE 1

The switch controller is activated initially by seliecting
bank 15 (bits 12-15) (see COMPUTER INTERFACE BOARD and SWITCH
CONTROL circuits in Appendix D) on a 1l-of-16 decoder, (SN
74154) . The compiement of the bank 15 select 1iine 1is wused to
enabie a second l-of-16 decoder to seiect a suktbank from bits 8-

35

36

11. Only subbanks 0-3 have been impiemented (4x16=64 switches.)
The subbank select iines are inverted and used to enable exactiy
one pair of four bit latches (SN 7475). These latches hold the
switch settings.

The latched setting bits are XORed with the feedback of
the actual switch position. If they differ, the commanded bit is
used to set the switch to the desired position.

The feedback for each switch is iatched in one half of a
duail D-type Elip-filcp (SN 7474). If the switch position is
straight, the fiip-fliop is set; otherwise it 15 cieared. The
compiemented ocutput is used so that a straight switch ylelds a 1
output and a turned switch yieids a 0 output. The XOR is
performed with a SN 7486 guad exclusive-or gate. Wote: The XOR-
ing 1is performed simuitanesusiy for alli eight switches on the
subbank.

All eight switches would need switching in the worst case,
Since this wouid require an inordinate amount of power, they are
switched sequentiaily. The outputs from the XOR gates are fed
into a 1l-of-8 priority encoder (SN 74148). (A1l 1inputs to the
priority encoder are compiemented.) The priority encoder chooses
the high order 0 input and encodes its number onto the three
output liines. These three lines are immediately decoded again
(using an SN 74138 1-of-8 decoder) to select exactiy one switch
enable 1ine. Since the priority encode inputs are compiemented,
if the feedback latch (fiip-flop) output matches the set bits,
the XOR gate puts out a 0 which is eventually encoded by the
priority encoder. Inverters (SN 7404) are wused to '"re-
comp.iement"” the switch enable lines.

Now consider a singie switch (preferabiy the one that has
been selected). The set bit is inverted, and both the originai
and the inverted signais provide the first inputs to NAND gates
(SN 7400). The second input is the select li1ine. The NAND gates
seiect one of two one-shots (SN 741232) which in turn drive SCR's
(IR 108 BI), which drive the track switcher, which causes
feedback, etc. The purpose of the one-shots is to prevent power
from being appiied (through the SCR) to a switch controliier for
more than 150 miiliseconds 1in case a switch gets stuck and
docesn't move. A longer switching puise couid burn up the track
switches.

Once the feedback matches the set bit, the input to the
priority encoder becomes 1 and the encoder encodes the next
switch that requires resetting. When all switches on a subbank
are proper.y set, the priority encoder activates its enabie out
(EQ) 11ine. This is connected to the enable in (EI) iine of the
next subbank and allows the switches there to be set. The
propagation of EO is prevented by any switch that doces not set.
The EO iine from subbank 15 (or the last subbkank) is connected
to an audioc woscilliator; 1if EO015 does not come on in a short

36

37

time, an audio aiarm sounds.

Finaily, SPST switches lie between each XOR gate and 1its
priority encoder. These allow a switch to be isolated from the
controliler if it gets stuck.

4.3 Other Facilities

There are several other hardware facilities that may be
used 1in conjunction with each computer instaliation. These
faciiities wiil be described briefiy since they are associated
with other applications of the computers.

4.3.1 Servo Systems

The computer system can be used to program the real time
controi of a servo motor system (Experiment 3 in Appendix F).
The hardware facility inciudes an interface between a computer
controliled D/A converter and a servomotor. The interface
consists of three operationai ampiifiers that act to scalie and
off set the output voitage from the D/A converter to levels
compatablie with the input stage of the servomotor control unit.

There 1is aiso an interface between the output of the
reference potentiometer which monitors the output position of
the motor shaft and the A/D converter in the feedback ioop. This
interface <consists of two operational amplifiers that scale the
potentiometer output voitage to leveis compatible with the A/D
input to the computer.

The servomotor controi has a chopper-stabilized DC
ampiifier that drives a power ampiifier which in turn drives the
servomotor. The servo reference potentiometer is a single turn
wire wound potentiometer with a totali resistance of 50 K ohms.

4.3.2 Analog Cémputers

An anaiog computer is available at each computer
instailation. This computer can be programmed to provide a
variety of time varying input signais to the A/D inputs of the
computer. The anaiog computer is aiso used to provide signal and
impedance buffering in servomotor control studies and
appiications.

The analog computers are Appiied Dynamics AD-2 units that
contain 16 operationai ampiifiers and 4 multipiiers. The
circuits are wired on patch paneis that can be inserted for
specific appiications. These tube based computers are designed
to provide output signais in the range of 100 voits.

37

38

4,3.3 Data Acquisition System

A simpie data acquisition system is availablie to provide
"respiration™ signals to the computer (Experiment 2 in Appendix
F). This system consists of a thermistor in a cylindrical
"breathing™ tube. The thermistor is connected as the feedback
eiement in a simpie battery driven operational amplifier
circuit. The passage of inhaled and expired air through the tube
aiters the thermistor resistance and thus the output signal from
the operationai ampiifier. An on-off switch and an offset
voitage potentiometer are wused to control the input signal to
the A/D converter, :

38

39

5. PDESCRIPTICN OF SOFTWARE SUPPORT FACILITIES

5.1 OSWIT ~ Operating System WIth Trains

5.1.1. Introduction

The field of digital computers and their appiications is
perhaps the most dynamic £fieid in engineering at the present
time. Driving this change during the past ten years has been the
introduction and widespread acceptance of the microcomputer.
There are numerous products on the market using microcomputers,
and the future 1is aimost iimitless. At present, however,
software support for these systems lags far behind their oider
and .iarger counterparts. The avaiiability of microcomputer
operating systems is rather l1imited. Most present microcomputer
operating systems are not really suited to real time
appiications that are forthcoming for microcomputers. During the
next decade it is important that suitable reai time operating
systems be afforded the developer of microcomputer appiications.

OSWIT (Operating System WIth Trains) is an operating system
developed at the University of Michigan to meet reai time
executive system needs for the Digital Equipment Corporation
LSI~11 microcomputer. The basic features of the operating system
were designed and impiemented by Jack Bonn and Ted Kowaliski as
an independent study project under the direction of Professor
Richard A. Voiz in the falil of 1975 and winter of 1976. During
the £all 1976, Biil Dargel was responsible for the design and
impiementation of the disk controliler. In addition, Kent Hoult
deveioped and implemented the file system while Arnoid Vance
impiemented the A/D and D/A drivers and train interface. In fail
of 1977, Houton Aghili completed the design and instailation of
the MCP protocoi between OSWIT and MTS. In faii 1277, Kent Houit
continued the develiopment of OSWIT and the file utilities. Caroi
Briggs, Mark Haynie and Gien Purdy 1later modified the I/O
structure to ailow transmission rates of 2400 baud. Rick
Richardson modified OSWIT to support DEC compatibie soft
sectored fioppy disks at other locations within the University.

The basic features of the OSWIT operating system are:

0. A task scheduler which functions with a programmabie
ciock and asynchronous events to start tasks by
various methods subject to a specified software
priority.

e A wait structure to ailow processing and 1I/0

operations to proceed in parailel.

35 Input/Output device drivers for the ccnsole, A/Ds,
D/As, fioppy disk, paper tape reader, andé printer.

4, MCP protocol to aliiow the microcomputer system to

39

40

communicate with the University's central computer
system (MTS).

5. A simple command structure modeiied after the Michigan
Terminal System (MTS).

6. Floppy disk file system.

T A small set of utiliity routines to support arithmetic
conversions.

8. An absolute loader.
A brief overview of these features will be given here. They are
described in greater detail in the OSWIT user's manuai,
presented in Appendix A.

5.1.2 OSWIT command language

The OSWIT command iLanguage provides the mechanism for wuser
communication with OSWIT. This command language is modeied after
the Michigan Terminai System commané ianguage. This command
ianguage permits system controi, program contro:, a debugging
monitor, fiie handling and communication with MTS.

This command ianguage aiso supports iogicai unit assignment
and pseudo device names simiiar to those used on MTS. Assignment
of the physicai devices to 1logicai wunits may be done when
program execution is initiated from the OSWIT command language
or from within an executing program.

Pseudo device names are used by OSWIT command ianguage to
symboiicaliliy refer to physicai devices in a manner simiiar to
file references. Pseudo devices names are provided for terminai
output and input, paper tape reader, the iine printer, the A/D
and D/A converters, the train interface and a dummy file or
device.

533 OSWIT file system and utility programs

CSWIT can create, destroy, rename empty, truncate, edit,
and cataiog disk fiies. To minimize the operating system memory
requirements, these mechanisms are provided by an OSWIT utility
program named *FILES1l. OSWIT defines a fiie as a sequence of
i1ogical records placed in non-contiguous, 512 byte biocks on the
disk. A file cannot exceed 255 blocks.

Fiienames are iimited to 10 characters or 1less and may
consist of any combination of printable, uppercase characters.
Any filename starting with an "*" is designated as a publiic fiie
and is usuailiy reserved for OSWIT system files and utiiity
programs.

40

41

No fiie protection mechanism 1is availabie in OSWIT. The
WRITE ENABLE/PRCTECT hardware switch 1is the oniy protection
available.

Other wutility programs, such as *EDIT, *FILESNIFF, and
*TIME provide additional user support (see Appendix A).

5.1.4 OSWIT support functions

A number of support routines used by the operating system
to impiement its functions are internai to OSWIT. These inciude
numerical conversions, dynamic buffer management, I/0
operations, and task scheduiing. As a generai principie, ail
such functions are available to user's programs at the assembiy
language level via emulator trap instructions (EMTs).

5.1.5 MTS - OSWIT communications

OSWIT uses the MCP protocoli {1} to communicate with MTS on
an Amdahl 470/V7. Each system is hardwired via a 1200-2400 baud
1ine to a remote data <concentrator, which statisticaily
muitipliexes each input/output line with other units and
communicates with MTS through a hardwired 9600 baud 1iine. This
connection 1is wused ©principally to transfer data and programs
between '‘MTS and the locai floppy disk, or to use the system as
an "intelligent terminai". Source editing can be done liocaliy,
transferred to MTS for assembliy or compilation, iinked and the
object fiie down 1ioaded to be stored and executed on the
microcomputer system. Aliternativeliy ali development of user
programs can be accompliished on MTS with the finai object stored
and executed 1iocaily. In addition, data may be collected and
transferred to MTS for greater storage capacity or more thorough
anaiysis.

5.1.6 Real time operations

According to Martin, {2} a real time computer system is one
which accepts 1inputs from one or more sources, acts upon these
inputs, and produces corresponding outputs fast enough to effect
the source. This definition encompasses a wide variety of
systems such as the use of a computer as a data concentrator, as
the controi element 1in a feedback loop, as a data logger for
some real time process, or as a supervisor for a set of other
reai time computers.

1 UM Computing Center, "An MTS Communications Protocol (MCP)
Proposai", May 1976. :

2 Martin, James, Design of Real Time Computer Systems,
Prentice Hail.

41

42

There are two primary characteristics which distinguish
real time application from scientific computations: the need to
respond rapidiy to the occurrence of events external to the
computer, and the need to handle I/0 for a potentially 1large
number of externai devices in a manner which does not lock up
the CPU during the I/C transfer. An exampie would be to require
a computer controiiing electric power distribution to suspend
normal program operations upon detection of a generator failure
and 1initiate an orderiy shutdown procedure for that generator
and a redistribution of the l1oad among the remaining generators.
The consequences of these characteristics are far reaching.

5.1.6.1 Tasking

First, in order to allow the user to specify the response
to external events, he/she must be given some controli over
interrupt handiing. Secondly, since the computer is usually much
faster than the devices it controis or responds to, it is common
to have a single computer control a number external devices. As
a resuit, one usuaiiy has severai more or iess independent
pieces of code known as tasks which are executed at different
times. OSWIT provides a mechanism for associating a task with an
interrupt or a condition for a given externai device. When an
interrupt occurs the program currentiy operating may be
suspended and the associated task executed. When this task is
compieted, its execution is terminated and the originai program
is resumed.

Associated with notion of task: is that of a priority. If
two or more tasks are competing for the CPU, there must be some
mechanism for deciding which task is to execute. In CSWIT each
task is assigned a priority. Cnce started a task wiii run to
completion wuniess interrupted by a task with a higher priority.
If task A has priority of 10 and is interrupted by task B with a
priority of 25, task B wili execute untii compietion uniless
interrupted by a task with a priority greater than 25. When task
B finishes, task A wilil resume.

OSWIT supports tasks that require synchronous timing. The
LSI-11 microcomputer hardware has a programmabie reai time
ciock. The user can request OSWIT to set up time intervais in
the ciock and interrupt the CPU when the intervai has passed.
This OSWIT faciliity aiiows the user to specify that a task is to
be executed repeatediy at fixed intervais of time, at a certain
time of day or after some intervai of time.

5.1.6.2 I1/0 and interrupt structure

The OSWIT I/0 and interrupt structure 1is generaiized and
oriented toward real time appiications. Ail I/0 operations at
the programming ievei are done through liogicai unit assignments.
Assignment of physicali devices to liogicai units may be done at
the time program execution 1is initiated or dynamicaiiy from

42

43

within the program. All I/O requests to OSWIT do an immediate
return to the calling program after the request is initiated so
that processing may be overiapped with I/0. If an I/O operation
must be completed before the task can proceed, the task may
issue a WAIT request to OSWIT.

OSWIT supports 1ogical record (line), byte, word and
character I/0. OSWIT aiso supports requests for decimai or octal
character string to binary word and binary word to decimali or
octal character string conversion.

5,82 CRASH - Compiier for Real time Applications SHop

59281 Introduction

The CRASH lianguage and compiler were developed both as a

vehiclie to assist 1instruction in the Real Time Computer
Appiications Laboratory, and as an experimental ianguage
incorporating constructs to support reai time computer

operations.

The CRASH compiler is a cross compiier which executes on
the University of Michigan's Amdahli computer. The compiler
produces LSI-11 assembly code which is then processed through a
cross assembier. The object <code 1is then 1iink edited on the
Amdahi and down loaded to the LSI-11.

CRASH is a biock structured ianguage and is similar in some
respects to IBM's PL/I. A number of unessentiai PL/I features
have been restricted, and data types and I/0 statements
specificaiiy designed for data acquisition and reai time control
activities have been added. Task scheduling and interrupt
handiing constructs to faciiitate real time control are also
inciuded in CRASH.

These speciai structures have been added to CRASH not only
to facilitate reali time programming, but also to permit better
program structure and clieaner code. Programs written in the
CRASH 1ianguage may be structured according to a logical plan
with separate tasks being utilized for reai time activities,
thus avoiding a cliutter in the middie of the main program which
woulid be necessary using other programming languages. The
foliiowing section will describe the CRASH ianguage,
concentrating on the features designed to accommodate real time
appiications. A more complete description 1is availablie 1in
Appendix B: CRASH User's Manuai.

43

44

5.2.2 Procedures

Four types of ©procedures are availabie to provide for
program structure, moduiarity, and ease in debugging:

EXTERNAL
INTERNAL
MAIN
TASK

The basic unit processed by the CRASH compiler is the
EXTERNAL procedure. For each EXTERNAL procedure, a separate
assembly program 1is produced, resuiting in separate object
moduies after cross—assembler processing. Object modules for
each external and library procedure 1in a program are linked
together using the linkage editor to produce an absolute load
moduie. This approach has the advantage that the whole program
need not be recompiled for a change 1in one procedure, thus
saving time and money in program development.

An INTERNAL procedure 1is one which 1is defined within
another procedure (either EXTERNAL or INTERNAL). Three nested
INTERNAL procedures 1inside an EXTERNAL procedure are aliowed.
Procedure cails, however, may be nested to arbitrary depth.

A MAIN procedure is a special type of EXTERNAL procedure,
simiiar to a PL/I MAIN procedure. There must be one (and oniy
one) MAIN procedure in every program. Program execution begins
with the first executable statement in the MAIN procedure.

EXTERNAL and INTERNAL procedures may be referenced by calis
either as subroutines or as functions. Alil procedure parameter
passing is done by reference.

It is possible to write a recursive procedure by Jjudicious
use of AUTOMATIC variabies, parameters, and re-entrant code.
Return from a procedure to the calling program occurs
automatically when the end of the procedure is reached. A RETURN
statement will cause immediate return to the cailing program. A
return vaiue may be passed back to the calling program by using
a "RETURN <expression>;" statement., If a procedure is to return
a vaiue (as in a function call), the procedure must be defined
to be of the data-type(see section 5.2.3 for description of
CRASH data-types) which the procedure is to return.

A speciali type of EXTERNAL procedure, known as a TASK may
be defined to facilitate real time operations. A TASK is an
externaily defined procedure that takes no arguments, and may
return no valiue. TASKs are usuaily invoked through the use of
CRASH scheduiing statements. The main difference between TASKs
and normai procedures are their ability to be invoked by a
scheduiing statement, and their abiliity to run at a different

44

45

priority ievel than the invoking procedures. TASKs, scheduiing
statements, and priorities are expiained in section 5.2.8
(Tasking and Timing).

Sker2le,3 Data Types and Structures

The basic data types inciuded in CRASH are:

INTEGER
REAL
CHARACTER
BIT
BOOLEAN
ROUTINE
TASK

The INTEGER,REAL,CHARACTER, and BIT variable types in CRASH
are roughly the same as in most other lianguages. Aii REAL
variabies are 2 LSI-11 words (32 bits) long. INTEGER variables
occupy 1 word (16 bits) as do BIT variablies, since packing of
BIT variables has not been impiemented. CHARACTER variables are
of fixed maximum iength from 1 to 254 bytes. BIT variabies must
be deciared with a fieid width specification (1-15), and
CHARACTER variabie decliarations must include a maximum liength
specification (1-254). BOOLEAN variabies are the same as BIT(1)
variables.

INTEGER, REAL, CHARACTER, BIT, and BOOLEAN variabies may be
declared as arrays of up to 62 dimensions. Each dimension is
specified as (lower~bound: upper-bound). Negative subscripts are
aliowed. The iower~bound may be omitted and defauits to zero. If
.array bounds are specified with variabie names rather than
constants, storage aliiocation is postponed until run-time, thus
aiiowing dynamic modification of array size.

Any procedure iabel referred to in a program must be
deciared just 1iike any other identifier. The usuai data-types
appiy to procedure label declarations if a return vaiue (of the
declared data-type) is expected.

The ROUTINE data-type is used to deciare normal procedure
iabels (i.e. INTERNAL or EXTERNAL procedure identifiers) where
no return value is expected.

The TASK data-type is used for deciaring identifiers for
TASK type procedures. Procedures deciared to be of the TASK type
also may not send return values.

A number of optional characteristics, known as attributes,
may be specified for a variabie to provide great fiexibility in
the use of CRASH variabies.

The attributes avaiiable in CRASH are:

45

46

ANALOG CLAMP
DISCRETE MAP

L.DN INTERNAL
DELAY EXTERNAL
BYTE AUTOMATIC
WORD STATIC
SCALE GLOBAL
OFFSET : INITIAL

The ANALOG attribute is used with certain other attributes
to associate additionai 1information with a REAL or INTEGER
variablie, Typicaily variables with the ANALOG attribute are
associated with an I/0 device such as one of the A/D or D/A
converters. The declaration of an ANALOG variable may inciude a
logicai device number (LDN) through which I/0 1is to be
accompiished. A SCALE factor and an OFFSET to convert externail
voitages to the units used in the internal representation of a
variable may be inciuded if desired. SCALE and OFFSET are
applied as follows:

On Input:
INTERNA;_RESULT=(EXTERNAL_VALUE/SCALE)-OFFSET
On Qutput:

EXTERNAL RESULT=(INTERNAL_ VALUE+OFFSET) *SCALE.

An optional CLAMP attribute may aiso be specified for
ANALOG variablies to prevent wraparound. If the CLAMP attribute
(specified as (iow limit, high limit)) is inciuded, any attempt
to output a value outside the specified range will cause the
appropriate 1limit wvaliue (low or high) to be output instead. If
an 8 bit D/A converter is used with low iimit=0 and high limit
=255 then an attempt to output any vaiue greater than 255 will
cause 255 to be output instead, and an attempted output value of
-10 will cause an output of 0. Without the CLAMP attribute an
attempted output of 260 woulid result in wraparound with a actual
anaiog output of 4, and an attempt to output -10 wouid resuit in
an actual output of 245. Since it is usualiiy better to have 255
where 260 was intended rather than 4, the wuse of the CLAMP
attribute with ANALOG variablies is recommended when there is any
doubt about the range of possible output values.

Variabies with the DISCRETE attribute are simiiar to ANALOG
variabies in that they may be associated with a particuiar
device by the wuse of the LDN specification. However, the
DISCRETE attribute is valid only for INTEGER variabies. DISCRETE
variables are intended to be used with status or controi
register$, where value conditioning is unnecessary but impiied
I/0 port teference is stiil convenient.

46

47

Since some devices are 8 bits wide while others are 16
bits, two attributes, BYTE (8 bits) or WORD (16 bits) are
availiable to indicate the number of bits to be read or written.
These attributes may be specified for any ANALOG or DISCRETE
variablies and defauit to WORD for alli variabie types.

One common use of ANALOG variabies 1is 1in difference
equations used to compute new vaiues for some output variable as
in a sampied data control system. Typically in such uses, the
control formula requires a finite number of past sample vaiues
of the ANALOG variable, as welili as the current vaiue.
Accordingliy, a set of past vaiues for each ANALOG variable may
be kept automaticalily by utiiizing the DELAY attribute. These
past vaiues may be referenced with the form:

- ANALOG_VAREEXPRESSION

Where EXPRESSION is either a variable or a constant, or any
arithmetic or logical combination of them. The EXPRESSION,
caiied a delay indicator, 1is <converted to an integer before
being used. If EXPRESSION=0, reference is made to the current
vaiue. If EXPRESSION=1, reference is to the previous value, etc.
All references are relative to the current element, which is
updated each time an assignment is made to an ANALCG variabie
without: the delay 1indicator attached. The maximum depth of
storage of past values is decliared by specifying DELAY(N) in the
declaration for ANALOG variabies. N states the totai number of
vaiues to be saved, 1inciuding the current vaiue and N-1 past
vaiues. If the DELAY specification is omitted, N defauits to one
(i.e., no previous values are saved). A DELAY specification may
be inciuded in declarations for DISCRETE variables as welil,

.functioning as for ANALOG variabies.

The MAP attribute provides a way to name contiguous fielids
(bit-strings or character substrings) of an INTEGER or CHARACTER
variabie.For each variablie, up to 16 possibly overiapping fieids
of any positive liength may be specified. This feature enables
CRASH users to refer conveniently to specific bits or characters
by a simpie identifier instead of with a field description (see
description of sub-unit selection in section 5.2.5) for every
reference to the field. The MAP attribute contributes greatly to
program readability when the programmer is using for example, a
singie INTEGER wvariabie as a set of control fliags, or is
manipuiating the various bits of the train control registers. A
compliete description of the MAP attribute is given in Appendix
B: CRASH Users Manual, chapter 2.

The INTERNAL and EXTERNAL attributes are used to signify
that a procedure liabel rather than an ordinary variable is being
declared. The attribute must, of course, match the type
(internai or external, section 5.2.2) of the procedure whose
1abel is being decliared. These two attributes are legal for aii
data-types, except that the INTERNAL attribute 1is 1iliiegai for

47

48

TASKs which must be EXTERNAL.

The expianation of the AUTOMATIC, STATIC, GLOBAL and
INITIAL attributes is postponed to section 5.2.5: Storage
Allocation.

5.2.4 Run-time Variable Checking

Since program failures are often caused by out of bounds
references on arrays or delay variables, the compiler can
generate run-time bound checking for array subscripts and DELAY
variablie past value indicators. This checking, which can be
selectively enablied for any or all variables, wiil generate a
run-time warning message or cause an interrupt with associated
special condition processing (to be described iater) if an out
of bounds reference is detected. Since ail DELAY variables are
impiemented as a «circuiar 1iist, wraparound will occur when a
DELAY variablie becomes fuli, and the Nth past' value will be
discarded making room for the new current vaiue thus keeping N-1
past valiues and the «current value available at alil times. If
some action is desired after the first N samples have been,
accumuiated in a DELAY variable, a DELAYFULL condition may be
specified for ANALOG or DISCRETE variables to cause an interrupt
with associated speciai processing when the first storage
wraparound is about to occur.

5.2.5 Storage Aliocation

Three storage ailocaticen methods for variables are
available in CRASH: AUTOMATIC {(useful for recursive procedures,
or for large arrays to hold temporary results); STATIC (used
when variabie contents must be preserved from one invocation of
a procedure to the next); and GLOBAL (useful for inter-procedure
communication or "common" data areas).

The way in which storage for each variabie is ailocated can
be «controiied by the use of the AUTOMATIC, STATIC, and GLCBAL
attributes 1in the wvariabie declarations. If no storage
aliocation method is specified, AUTOMATIC is assumed, except
that in the MAIN procedure, STATIC is the default and 1is used
even if AUTOMATIC is specified.

Storage for AUTOMATIC variabies is ailocated dynamicaiiy
whenever the procedure in which the variabie was decliared 1is
activated, and freed for re-use when the procedure is de-
activated. If muitiple activations of a singie procedure exist
(this wili be described iater), a separate storage area for a
given AUTOMATIC variabie exists for - each activation of that
procedure. This alilows recursive procedures to be written.

STATIC variabie storage is aliocated when the program is

ioaded and remains ailocated when the program is exited. Even 1if
muitipie activations of the same procedure exist, oniy one

48

49

storage area exists for a given STATIC variabie declared within
that procedure. Variablies should usually be deciared as STATIC
since there is less processing overhead invoived with alliocating
and referencing them than there is with AUTOMATIC variabies.

Storage for GLOBAL variables (which must be declared in the
MAIN procedure) is allocated only in the MAIN procedure, and in
the same manner as for STATIC variablies. GLOBAL variables behave
exactly 1l1ike STATIC variables, except that they may be
referenced by any other procedure, internal or external, in
which they are declared. All references to GLOBAL variablies are
resolved by the iinkage editor when one MAIN procedure and any
number of external procedures are iinked 1into a singie 1io0ad
module. GLOBAL variables are mainiy used when more than one
EXTERNAL procedure must reference the same data. Consider as an
exampie a train control program with a MAIN routine,a photoceiil
interrupt routine, a user console communication routine, and
other routines. 1In this case, the photoceil interrupt routine
wouid need to update a train position table and the consoile
communication routine wouid need to access the same train
position table to answer train position queries from the user.
This situation 1is handied convenientliy by deciaring the train
position tablie as a GLOBAL variabilie in the MAIN routine, in the
photocelli routine and in the console communication routine, thus
providing a common data area for these routines. GLOBAL
variables are aiso usefuli for communication between EXTERNAL
procedures (e.g. if more than one return value must be passed to
the calier by a subroutine, this can be done with GLOBAL
variables).

An INITIAL attribute to specify desired 1initial wvalue(s)
-may be inciuded in a deciaration to provide for iniitaiization
of storage. GLOBAL variables may be initialized only in the main
procedure. If the INITIAL attribute has been used for an
AUTOMATIC variablie, that wvariabie 1is initialized each time
storage is allocated for it.

5.2.6 Arithmetic and Logical Operations

The usual PL/I arithmetic and iogicai operations and order
of precedence are utilized in CRASH. Mixed mode expressions are
aiiowed, with conversion between data types occurring
automatically as required, except £for character to numeric
conversions which must be performed expiicitiy with builtin
conversion subroutines (see section 5.2.10).

CRASH can also reference or assign values to individual
bits or groups of bits of JINTEGER or BIT variables. This
referencing or assigning vaiues to portions of variabies. is
known as sub-unit selection. Subunit selection information
(specified as [start,length] or [start] with remaining length
implied) is appended to the variabie name if desired. Substring
seiection on CHARACTER variables 1is specified 1in the same

49

50

manner, with characters (8 bits) rather than single bits being
seiected.

5.2.7 Control Constructs

The CRASH language provides a rich wvariety of control
statements to facilitate structured programming. CRASH control
constructs can be ciassified into two general groups, DO
structures and branching structures.

The DO structures available in CRASH are:

DO; <body> END;
(simpie do group)

DO controli_variabie=initial TO final; <body> END;
(iterated do group)

DO controi_variabie=initial TO finai BY increment;<body>END;
(iterated do group with increment controi)

DO controi_variable=valuel,vaiue2,...,vaiuen; <body> END;
(stepped do)

DO WHILE <condition>; <body> END;
(do while)

DO UNTIL <condition>; <body> END;
(do until)

DO CASE <case
expression>; <case0>;<casel>;...;<casen>; END;
(do case)

The <body> may be any CRASH statement or group of
statements 1inciuding another DO construct (nesting of DO groups
to an essentially unlimited depth is legai).

The simpie DO group 1is used whenever a sequence of
statements 1is to be considered as a singie statement. This is
sometimes needed for IF...THEN statements (expiained below) and
is aiso heipful to enhance program clarity using a iabeled (see
beiow) simpie do group.

The iterated DO group 1is wused to execute the <body>
repeatediy for different vaiues of the control_variabie. Since
it is sometimes useful to perform reverse iterations, or to
increment by some vaiue other than 1 (the defaulit increment
vaiue), the 1iterated do with increment control has been
inciuded. Both of these DO constructs function as in PL/I.

The stepped DO is an extension of the iterated DO. In this

50

51

type of DO group, the <body> is executed as many times as there
are vaiues 1in the list, with the control_variablie being set to
each successive valiue in the list for successive iterations.

The DO WHILE provides repeated execution of the <body> as
iong as the specified <condition> remains true. This construct
aiso functions as in PL/I.

The DO UNTIL construct is used to execute the <body> until
the specified condition is true. Since the <condition> is tested
after the <body> is executed, the <body> executes at least once.

The DO CASE 1is one of CRASH's most powerfui control
constructs, aiiowing the seiection of one of several statements
for execution. The DO CASE could also be cliassified as a
branching construct, because it provides the abiiity to perform
an n-way branch. A 4 way branch to take care of 4 possibie
interrupts is:

INTERRUPT_SERVICE: DO CASE(INTERRUP?;CODE);

/* case 0 - TTY interrupt */
TTY INTERRUPT: CALL TTY INT_HANDLER;

-/* case 1 - paper tape reader interrupt */
PTR_INTERRUPT: CALL PAR_TAR_READ_RTN;

/* case 2 - fire alarm */
FIRE_ALARM_INTERRUPT: CALL FIRE_ALARM HANDLER;

/* case 3 - burgiar alarm */
BURG_ALARM_INTERRUPT: CALL POLICE DIALER_RTN;

END INTERRUPT_SERVICE;

If the <case expression> evaluates to a non-existent case (e.g.
INTERRUPT_CODE=17 in the above exampie), a branch to the END of
the do case is taken.

Any CRASH DO construct may be labeled iike any other CRASH
statement. If a DO statement 1is iabeled, 1its matching END
statement must be 1identicaily iabeled. Labeling DO statements
greatiy enhances program ciarity, and aids the programmer in
matching DO's with END's as the CRASH compiler will check for a
iabel match on corresponding DO's and END's. The use of labels
is shown in the code exampie above.

The CRASH branching statements available are:

EXIT DO;
EXIT DO iabeyi;
NEXT DO;

NEXT DO iabeil

51

52

GO TO iabei;
IF <expression> THEN <statement>;
IF <expression> THEN <statement> ELSE <statement>;

It is sometimes desirablie to exit from a DO group before
its normal complietion. CRASH provides the "EXIT DO;" and "EXIT
DC labei;" statements to avoid the poor programming practices of
using a GO TO, or altering the control variable or <condition>
expression vaiue. Execution of these statements causes a branch
to the first statement following the end of the current (EXIT
DO;") or named ("EXIT DO label;") DO group.

The "NEXT DO;" and "NEXT DO iabhel;" statements provide a
convenient means to terminate the current iteration of the
<body> and resume with the next iteration, providing that the
condition for executing the DO group is still satisfied. This
statement appiies to either the current or some other named DO
group as for the "EXIT DO" statement.

A GO TO statement 1is 1included to avoid certain awkward
situations aithough its use is discouraged.

Two forms of the IF statement are possiblie in CRASH:

IF <expression> THEN <statement>;
IF <expression> THEN <statement> ELSE <statement>;

These statements function exactly as in PL/I. The wuse of 1IF
statements to structure programs, instead of the EXIT DO, NEXT
DO and GO TO statements, is encouraged as it leads to more
readable code.

5.2.8 Tasking and Timing

It is sometimes desirabie to have many different activities
take place <concurrentiy within the computer. Normai procedure
caiis cause suspension of the caiiing program untili the callied
procedure has RETURNed. To facilitate real time control
activities, CRASH aliows the possibiliity of having several

procedures active simuitaneousiy, without requiring the
complietion of one before another <can execute. These speciail
procedures, which can be active independentiy of and

concurrentiy with other procedures, are calied TASKS.

A TASK can be scheduied to execute in a variety of ways. It
can be synchronized with the <ciock, with the procedure that
first 1invoked 1it, or with another procedure. It may even be
scheduied to execute asynchronousiy when a speciai event or
condition occurs (triggered by some internal event such as out
of bounds array reference, by some externai event such as a
photo-cel1l connected to an interrupt port, or by I/O
compietion). These speciai events are described in more detail

52

53

in Section 5.2.9, Interrupts and Speciai Processing Conditions.

Since some Jjobs performed by TASKs may be more important
than others (e.g., shutting down the gas supply upon detection
of boiier overpressure as opposed to servicing the paper tape
reader) a method for deciding which T2SK should be run at a
given time 1is provided. This 1is accompiished by inciuding a
priority specification each time a TASK scheduling statement is
executed. The priority specifies the TASK's importance and
timing requirements in the collection of programs being
executed. A priority 1is specified by inciuding PRIO(<KN>) as a
part of a CRASH scheduling statement. Where <KN> is an integer
from 1 to 250, or an INTEGER variabie whose vaiue is in that
range. Priority 1 is the liowest, signifying the lieast important
TASK. The MAIN procedure and ail other normai procedures (i.e.,
non-TASK type procedures) run with a priority of 10. A TASK may
pre-empt another TASK or PROCEDURE if its priority is higher
than the priority of the one currentiy executing.

The six basic TASK scheduliing statements available in CRASH

are:
S3TART <task> PRIO(n);
AT <time> START <task> PRIO(n);
IN <time> START <task> PRIO(n);
EVERY <time> START <task> PRIO(n) ;
ON <condition> START <task> PRIO(n);

CANCEL <task>;

The <time> of the form (N units) may be specified in minutes (N
MIN), seconds (N SEC), in miliiseconds (N MSEC) or in 100-
microsecond units (just N). A <time> specification may also be
an 1integer wvariablie whose wvalue is assumed to be the desired
<time> in the specified units (e.g., INT_VAR MSEC).

START <task> will activate the TASK referred to by the name
<{task>.

AT <time> refers to time past midnight on the system cliock
when the <task> is to be STARTed.

IN <time> refers to time from present time when the named
<task> is to be STARTed.

An EVERY statement wiili activate the named <task>
immediately and reactivate it every time the interval specified
by <time> has elapsed, until CANCELed.

A task may aiso be scheduied to START asynchronously upon
the occurrence of some special event (<condition>). These
speciali events are described in Section 5.2.9, Interrupts and
Special Processing Conditions.

53

54

CANCEL <task> cancels the named <task> immediately if it is
inactive, or upon completion if it is currently active (for
self~cancellation).

A LOCK statement is provided which allows a TASK to
continue execution until an UNLOCK statement is executed, or
normal execution termination occurs. This prevents other tasks
of higher priority from pre-empting the task issuing the LOCK
statement, even though some significant time, condition, or
external event may have occurred. TASKs which are unable to
begin execution immediateiy, or which are pre-empted TASKs are
automatically queued for execution or continuation liater.

Since one may wish to start a TASK upon the occurrence of
more than one event, more than one definition of the same TASK
may occur. A method of distinguishing the occurrence of a TASK
from other suspended activations of that TASK Iis included.
Whenever a task 1is scheduied, an 1integer’ variable must be
surrounded by parentheses and appended to the task name (e.g.,
TASKNAME (TASKID) where: TASKNAME 1is the name of a TASK, and
TASKID is an integer variable). The scheduler then returns a
unique identifier (in the INTEGER variable) for that particular
definition of the TASK, thereby aiiowing the various definitions
to be distinguished from .one another. Any TASK that can execute
concurrentiy with itseif must be made re-entrant, and must use
AUTOMATIC variables.

5.2.9 Interrupts and Special Processing Conditions

Special events that may cause a TASK to be invoked are
divided into two ciasses.

The first class 1is the internal processing event which
inciudes subscript - or delay indicator range errors
(SUBSCRIPTRANGE and DELAYRANGE) or the filiing of a DELAY
variabie (DELAYFULL). These conditions wers described in Section
5 5.2mi6%

The second ciass of speciali events is the externai event
occurrence. There are two events in this class, IO-RETURN and
INTERRUPT.

An IO-RETURN occurs when an input-output unit signais the
computer that an I/O operation has compieted on a specified unit
(LDN) with a particuiar return code (RC). An ON IO-RETURN
(RC,LDN) statement allows scheduiing of a task whenever an I/0
compietion with a particuiar RC and LDN occurs. These return
codes can indicate error, end-of-file, end-of-disk, successful
compietion, etc.

Externali INTERRUPTs can occur for a variety of reasons

which vary from device to device. There are usuaily two possibae
interrupts associated with each device, A and B. When it |is

54

55

desired to start a TASK because of an interrupt, the statements:

ON INTERRUPT_A(LDN) START <task> PRIO(N)
or
ON INTERRUPT B(LDN) START <task> PRIO(N)

are used. Consult Appendix B (OSWIT User's Manual) for a
description of devices and possible interrupts associated with
them.

5.2.10 I/0 Statements

CRASH supports three forms of I/0 to enablie the user to
communicate conveniently with various devices. The first form is
intended primarily for communicating with the console device and
human operators. A second form is used to send and receive data
from external devices such as D/A converters or train interface
control registers. The third form is used for doing record type
I/0 with floppy disks, MTS, the wuser consoie, or any other
device which supports record I/0. ’

Since CRASH was designed for reai time applications, most
of the 1I/0 statements only start the 1I/0 operation, thus
aiiowing overliap between I/O device operation and computation.
Two methods of determining when an I/0O operation is complete are
provided. A WAIT statement may be used to suspend the currently
executing procedure or TASK untili the 1I/C operation 1is done.
Aiternately, an ON-<condition> statement <an be executed to
start a TASK upon a specified return code from the operation.
This ailiows the TASK or procedure to continue execution
simuitaneousiy with the I/0 operation.

The first form of I/O consists of three pseudo-variables:
INPUT, CARD, and OUTPUT. INPUT and CARD may be used anywhere any
other CRASH variable may be used, except that they may not be
the object of an -assignment. The identifier INPUT 1is used to
read character,integer, or real constants from the console.
Whenever INPUT is referenced, one constant 1is read from the
console input buffer, converted to the proper data-type if
necessary, and transferred or used as specified. Some examples
of the use of INPUT:

CHAR_VAR=INPUT;
IF INPUT='STOP';
INTEGER _VAR=INPUT;

If the console input buffer is empty, the user is prompted for a
new input 1line. Constants may be entered several to a line,
deiimited by commas or by one or more blanks.

CARD is used to read one complete 1line from the console

device. The user is prompted for an input iine, which is read in
as one compiete character string, with no conversions performed.

55

56

The use of CARD does not affect the console input buffer.

The pseudo-variable OUTPUT is used to write a line to the
system printer, usualiy the DEC writer console. OUTPUT behaves
exactly 1iike a simple CHARACTER variable, except that it must
aiways be the destination of an assignment. No substring
seiection may be performed on OUTPUT. Conversion from numeric or
bit data-types is performed automaticaliy if necessary.

The second form of I/0 is through GET and PUT statements.
The GET and PUT statements are used for communication with
external devices (e.g. A/D or D/A converters, Train control
registers, etc.). Ail input or output of data with GET or PUT
statements is performed by the device assigned to the LDN(s)
(described in section 5.2.3) associated with the variablie(s) 1in
the <variist>. The form for GET and PUT operations is:

GET <variist>;
PUT <variist>;

where <varliist> refers to either a singie variable or a 1ist of
variabies separated by commas. The SCALE, OFFSET, and CLAMP
attributes (section 5.2.3) are appiied during GET and PUT
operations. If an LDN was not specified for a variabie, the
console device is used.

The third form of CRASH 1I/0 1is the GET RECORD and PUT
RECORD statements. These statements have the form:

GET RECORD (LDN) <varliist>;
PUT RECORD (LDN) <variist>;

LDN and <variist> are the same as in the GET and PUT statements.
Up to 255 bytes may be transferred for each variabie in a GET
RECORD or PUT RECORD statement. No conversions are performed.
The data are simply transferred byte by byte as 1is. These
statements mereiy 1initiate the 1I/0, ailowing processing to
continue in paraliiel with I/O operations. This 1is the fastest
type of 1I/0 availabie 1in CRASH, and 1is useful for data
buffering, such as would be needed in a data acquisition
program.

I/0 operations are generaily quite siow compared to CPU
operating speed. Because of this, most CRASH I/O statements only
start the 1I/0 operation. If it 1is necessary to suspend
processing until the operation is compiete, a WAIT statement may
be executed. The WAIT statement has the form:

WAIT FOR LDN,LDN,...;
where "LDN" 1is the logicali device number of the device to wait

for. Execution of a WAIT statement causes program execution to
be suspended until the specified device signals (with an

56

57

interrupt) that the I/O operation is compilete.

5.2.11 Predefined Functions and Subroutines

a number of commonly used operations are available in the
form of predefined functions or subroutines. These operations
inciude trigonometric functions, length of character strings,
absolute vaiue, random number generation, matrix manipuiation
and conversion, character to numeric conversion and routines to
interface to the operating system for disk 1I/0, fiie
manipulation, etc. For a complete description see Appendix B:
CRASH Users Manual, chapter 1ll.

5.2.12 CRASH Summary

This section has provided a description of the CRASH
ianguage, concentrating on the features unique to CRASH, and
especiaily on those features designed for real time
appiications. For more detail on the CRASH language, or for
samplie programs, refer to the CRASH MANUAL in Appendix B.

57

58

6. INSTRUCTIONAL APPLICATION OF FACILITY

6.1 Use of Facility

The electro-mechanical analog facility has been used for
instructional purposes since January, 1976. During that time
approximately 400 students have taken the course for which this
facility was developed (ECE/CICE/IOE 469, Real Time Computing
Systems). In this section we will describe the current version
of the course inciuding the laboratory projects, evaluations of
the facility by students and staff, and indicate suggestions for
improvement. The <course consists of three hours of lecture and
one three hour laboratory period each week.

6.1.1 Course Objectives and Material

The major objectives of this course are:

1. To provide experience in programming a real-time
microcomputer system that incliudes synchronous and asynchronous
interrupts. .

2. To provide experience in the appiication of A/D and D/A
converters to real time problems.

3. To provide experience with practicai data sampiing and
frequency analysis with Fast Fourier Transforms. 30

4. To introduce basic concepts of digital process control
and its appiication,

5. To provide experience with distributed sensor systems 1in
a dynamic input-output environment.

A detailed <course outline is provided in Appendix F. The
iaboratory portion of the course 1is weli-integrated with the
iectures. In addition, materiai specific to each laboratory
exercise 1is provided at the beginning of most liaboratory
periods. The four projects 1in the laboratory are summarized
beiow; the experiment descriptions are given in Appendix G.

6.1.2 Standard Projects

6.1.2.1 Project 1. String Reverser

Each student is asked to write a CRASH program to accept a
character string from the Decwriter keyboard and type out that
string in reversed order. This short project 1is designed to
aiiow each student to become famiiiar with the CRASH ianguage
anéd some features of the operating system (OSWIT). One week 1is
devoted to this project.

58

59

6.1.2.2 Project 2. Data Acquisition

Each student pair develop a CRASH program to sampie an
anaiog signal and store the sampled data in a specified form on
a fioppy disk fiie. They adapt a command handier to accept
specific command words from the keyboard (with error checking)
to specify and control the sampiing process. The input signai is
a low frequency "respiration" signal that resuits from breathing
through a hollow tube that contains a thermister. After the data
are acquired and stored in the floppy disk file, they are copied
to a fiie on the central computer where a fast Fourier transform
(FFT) 1is performed. The transformed data can then be plotted on
a graphics terminal (Tektronix 4010) and/or listed on the system
iine printer for interpretation. This project provides
experience with command handiers, data sampling and synchronous
interrupts, file writing, and frequency domain analiysis via the
FFT. Three weeks are devoted to this project.

6.1.2.3 Project 3. Servo Controlier

Each student pair develiops a CRASH program to control the
response of a servo motor to a step input command from the
keyboard. Two control algorithms are implemented, Proportionail
Integral Derivative (PID) control, and velocity feedback
control. The amount of proportional, integral, derivative or
velocity control is specified from the keyboard as is the sampie
period and the number of periods of feedback delay. One hundred
samples of the position response to a step input are stored in a
buffer. By 1listing or plotting the response data on the 4010
graphics terminal, the students can observe and study the servo
motor response to varying types and amounts of controil,
inciuding those combinations that resuit in unstable responses.
In the process they have to reliate z-transform representations
of sampied data systems to the difference equations for the
controlier and the plant (the servo system and 1its power
ampiifier). Four weeks are devoted to this project.

6.1.2.4 Project 4. Electric Train Control

Each student pair develops a data structure to describe the
layout of an N-gauge model train setup. About seventy sections
of track must be specified in such a way that power (voltage) of
correct poliarity is appiied to each track section in
anticipation of the movement of the engine onto that section.
The 1ayout, shown in Appendix D, also includes 64 switches, one
crossover, one reversing iloop, and 64 photocell pairs to sense
the presence or absence of the engine and associated cars. The
basic problem is to control a singlie engine train in response to
speed, direction and switch commands given from an analog
control box. The students have to: deali with muitiple
asynchronous interrupts in an electrically noisy environment.
Project options inciude programming for speed control on various
track sections (i.e., siowing around curves) muitiple train

59

60

controi, and switchyard interactions. Five weeks are allowed for
this project, which is perhaps the most compiex and popular
exercise,

Each group demonstrates the program developed for each
project to the instructor who then checks for various features
and failures. A written report is submitted by each group a week
iater in which the data acquired are analyzed and discussed.
Grading of the work is based both upon operability and system
design.

5.1.3 Independent Study Projects

One of the most beneficiali aspects in the development of
the reai time computer appiications 1laboratory has been the
heavy invoivement of undergraduate and graduate students in
independent study projects. In fact, most of the hardware and
software faciliities in the liaboratory were developed in this
manner. The resuits of these projects have been extremely
valuabie to the development of the laboratory and have provided
an outstanding educational experience for the students invoived.’
The students gained design and development experience they wouid
not normaily have acquired untii their first job. As a result
they not only have greater experience to carry with them to
their empioyers but have developed some maturity in dealing with
real projects.

Many of the projects were quite substantial and 1invoived
more than a single student and severali terms worth of work,
sometimes beginning with one set of students and ending with
another. To illustrate the sort of tasks undertaken the major
projects are iisted below:

1. Design and ‘implement a basic real time operating
system for the LSI-11 (the basis for OSWIT).

2. Design and construct a fioppy disk controllier for the
Memorex 651 floppy disk drive used in the liaboratory.

3. Design and implement a disk file system for the flioppy
disk.

4. Design and impliement communications software to
support the MCP protocol for communication between the
LSI-11's in the laboratory and the university's
centrail Amdahi computer.

5K Design a higher lievel language to support real time
control appiications.

5. Impiement a cross compiier for the ianguage designed
in number 5.

6Q

61

7 « Design and impiement a high leveli debug package (RAID)
to be used with CRASH.

8. Design and implement a resident assembier (assembiies
are normally accompiished on the Amdahl computer with
the object code then downloaded to the LSI-11).

9. Design and impiement a resident linkage editor for the
LSI-11.

10. Design and implement the hardware controiler for the N
gauge model railroad system.

11. Impiement a distributive processing system between one
of the LSI-1ls and the University's Amdahi computer.

12, Study advanced control concepts with higher order
systems simuiated on the analog computers.

Many of these projects were quite substantiali and extended over
iong periods of time. The CRASH lianguage and compiler, for
exampie, were designed in a single term. Impiementation,
however, extended over a two year period to achieve a reasonably
welli debugged compiler.

These projects have been of great valiue to the
participating students. First of all the students had an
opportunity to become invoived in real projects. This gave them
exposure to practical problems which they can expect to
encounter in industry. They had to work within a group of
peopie. There were time constraints invoived. Finally, they had
the satisfaction of seeing their product actually being used by
‘other people. There were also substantial academic benefits as
weii. First of all the experience gave them a much fulier
understanding of the basic technique they had studied during
their regquiar course work. Moreover, much of the software
developed was state-of-the-art. They received exposure to
advanced techniques and new ideas.

The student reaction to these projects has been exceilent.
The students involved alimost to a person exhibited extreme
enthusiasm for their projects and worked with a fervor I have
seidom seen in industry. In addition to producing wuseful
products they achieved considerabie personai satisfaction.
Individual comments received from them at the compietion of
their projects indicate that they feit their activities were
well worth the time spent on them.

61

62

6.2 Reaction to Use of Facility

The course based upon the reai time computer appiications
iaboratory, CICE/ECE/IOE 469, was begun in January 1976. It has
been offered three times a year since then. The CRASH language
was introduced into the course during the fall of 1977.

Each term the department evaluates its teaching assistants
and instructional laboratories. Evaluation data on the course is
availabie for the fall and winter terms since 1977. Four types
of evaluation statistics have been collected: on the laboratory,
on the course comparison to other engineering courses, on the
course 1in comparison to other university courses, and on the
CRASH language. On the average the 469 laboratory ranked third
among iaboratories.

Prior to 1978 the Coilege of Engineering conducted its own
course evaluations on its courses. These evaluations were on a
scale of 0 to 4. The table below shows the three terms of
statistics available on 469 in comparison with the average
scores in the Electrical and Computer Engineering Department and:
the Computer, Information and Control Engineering Program.

Term 469 ECE Average CICE Average
Winter 1977 2,20 2.42 2.67
Fall 1977 2.52 : 2.28 24518
Winter 1978 Bt 7 2.48 2.49

Beginning with the Fail Term 1978 the course evaluation was
shifted to match a University-wide evaluation which is based on
a 1 to 5 point scale. During the 78-79 academic year the
evaiuations were as foliows:

25% of
Term 469 University Courses
Median Above this
Level
Fali 1978 4.45 3.96 4,28
Winter 1979 4,33 3.85 4,18

It seems evident from these ratings that the course based upon
this 1laboratory material ranked well in the upper 25% of the
courses within the University (probably at about the 15% 1level)
with the exception of one term. The exception occurred during
the fail 1977 term which coincided with the introduction of the
CRASH 1language to the <course. During this term numerous bugs
were found in the compiler and the cliass suffered accordingly.
In addition an attempt was made to cover both assembiy lianguage
and CRASH in the course which was too heavy a load. Note that in
the subsequent terms as CRASH continued to be used the course
evaiuations rose.

-

62

53

During the Winter Term 1978 a student evailuation of the
CRASH language was conducted. Among the questions asked was a
comparison of CRASH and Fortran and CRASH and assembliy language.
On a scaie of 0 to 4, with 4 being the preference for CRASH and
0 being the preference for Fortran or assembly .ianguage. The
CRASH ianguage received the folliowing evaluation:

3.2 with respect to Fortran
3.3 with respect to Assembly Language

It 1is ciear that once most of the bugs had been removed the
CRASH language was highly preferred by those who had used it.

6.2.1 Instructor's View (SLB)

I gave haif the liectures and taught a laboratory section of
CICE/ECE/IOE 469 for the first time 1in the Spring Half-Term
1979. I am giving all the lectures and directing the laboratory
during the fail term. '

The course evaluation which foliows covers both the lecture
and iaboratory portions of the course since they ars integrally
reiated. However, the laboratory portion of the course that
reiates to the train control project wiii be discussed 1in
greater detail than will other portions of the course.

The course evoived to 1its present form through the
dedicated efforts of Professor R. A. Voiz. Severai undergraduate
and graduate students have made significant contributions in
both hardware and software areas over a period of severai years.

Therefore I was able to step into the course after many of the

start-up probiems had been soived and the 1laboratory projects
were weli-defined. However, I had to iearn the software (CRASH),
the LSI-11 specifics, and the reai time aspects of the course
essentially as a student, and without benefit off the historicail
perspective gained by Professor Volz.

I beiieve the <course to be one of the best offerings
available to students with computer and control 1interests. The
course combines eiements of software (languages and programming)
with hardware (sampling, conversion, liogic design) and controi
(sampied data systems, stability, types of controi) from a users
point of view. Thus each student must combine and use computer
and engineering skiils 1in creative and practicai ways. In
general I beiieve that the course is excellent,

There is a high level of student interest in the course as
indicated by the fact that the course fiils up so fast that many
(30-40) students end up on the "wait" list each term. This is
particuiariy impressive since the course has a reputation for
being wvery time consuming and aithough 4 credit hours are given
it is considered as the equivaient of a 5 or 6 <credit course.

63

64

Unfortunateiy because of the high demands placed on the students
the attrition throughout the term may be as high as 20%. This
term we have lost about 10-12 students from an initial group of
65.

The problems associated with the course fall into two major
categories, laboratory facilities and curricuiar. The faciities
problems wili be discussed first.

6.2.1.1 Facilities Problems

The iaboratory faciiities are iimited to 2 LSI-11 based
setups. Each student 1is enrolled in a laboratory section that
meets formaliy for a 3 hour period each week. There are 13
students in each liaboratory section at the beginning of the term
and 10-11 by the end of the term. The students work in groups of
two or three (¢occasionaily). Each student can gain access to the
iaboratory at other times through about 10 hours’ of laboratory
instructors office hours outside of - regquiariy scheduled
iaboratory periods. Furthermore, if they pass a "key" test they
can obtain a key to the laboratory for evening and weekend '
access. However, even with ail this apparent access to the
iaboratory faciiities, the class enroliment is so big that the
students have difficuity in "getting on the machines",
particuiariy near the project demonstration deadiines.
Furthermore, the 1intensive wuse 1ieads to increased equipment
malfunction and student frustration. The solutions are obvious:
reduce the number of students or increase the number of set-ups.
Unfortunately space and financial considerations have made it
difficuit to increase the faciiities and the pent-up demand has
made it impossible to reduce the enrollment.

Each laboratory section 1is reasonabiy well equipped to
handie 9-10 students working in pairs which seems to indicate a
totai course enrolliment of about 40. The current large
iaboratory sections make it difficult for the 1instructor to
service ali the programming and operational problems that occur,
particuiarly at the beginning of the term.

The train set-up has problems. An N-gauge system is ciearly
an appropriate <choice in terms of the size required for a
reasonabiy chalienging train controi exercise. However, the
actual components for N-gauge systems leave a lot to be desired.
The track sections do not match welil which ieads to deraiiment
problems. The track must be cieaned often to reduce the contact
resistance to the engines. The switches are not well made and
thus have to be adjusted often to make them work. The -engines
are not particuliarliy reliablie in an intensive use situation. The
net resulit is that the train set-up must be prepared and tested
before each demonstration and at various intervais during the
duration of the train experiment. Unfortunately there is no
obvious soiution to these problems except to move to a larger
guage system which would be very costly in construction time and

64

65

would require a significantly larger area for the layout.

The connection of each set-up to the centrali computing
facility (MTS) wvia the remcte data concentrator works very well.
In general MTS is guite reliabie. On the other hand progress on
the laboratory exercises can be severely compromised on those
cccasions when MTS is not operating. I would iike to sever the
umbilical ¢ord to MTS but this would necessitate a smail
dedicated "central” computer system in the laboratory to service
the editing, compiling, and listing functions of MTS. Since over
530,000 of MTS computer funds are expended for this course each
year there may be sound economiz grounds for an in-house
"central" computer.

6.2.1.2 Curricular Probliems

Perhaps the most significant probiems with the course are
in the curricular area. The normal prerequisite for the course
is a course in Fortran and junior standing. However, the course
is also taken by advanced graduate students. Therefore, at any
given time the ciass consists of students who are both naive and
sophisticated 1in their software, hardware, and systems
background. The spread of backgrounds 1is so broad as to
compromise the teaching and 1learning situation. The naive
student 1is introduced to new material on a continuing basis
whereas the sophisticated student may aiready have had major
portions of the 1lecture material in other courses. There will
continue to be problems of this type as iong as a single course
if offered. However, the prerequisite should be changed to
indicate the necessity for more background and maturity than is
presentiy required. I have attempted to handle this problem by
warning the naive students on the first day of class concerning
‘the course content and "reai" prerequisites. Essentialiy each
student shouid have taken at least one out of S5 or 6 other
computer, mathematics or systems courses that provide background
or lecture lével material for this course. Then the amount of
new material would be manageable for the 1less well prepared
students.

The wide differences 1in background make the presentation
and selaction of the lecture material difficult. It 1is almost
impossibie to avoid "snowing" one group of students and boring
another group with the same material in many cases. To some
extent almost everyone 1is "snowed" or "bored" at some time
during the course depending on their backgrounds. Perhaps this
will aiways be the case in any course that tends to put together
a wide variety of techniques to solve a relatively broad base of
problilems.

A reasonable solution would be to offer a two course
sequence, each with a laboratory. The first course woulid be
aimed at the "naive" student with perhaps only the present
Fortran prerequiste. The lecture material woulid concentrate on

65

66

the CRASH language and simple concepts of data sampiing and
conversion. The second course would cover details of real time
pProgramming and control as well as more advanced material on
data sampling, conversion, sampled data systems and asynchronous
control. Computer to computer communication and interfacing
would also be covered from theoretical and practical points of
view. The first course or background in structured programming
and PL/1 or PL/C and at least senior standing would be an
appropriate background for the second course.

Again, the major iimitations in effecting any changes here
are lack of availability of staff and funds. :

6.2.1.3 Textbook Problem

There is no adequate textbook for this course. The
practical approach taken to the impliementation of real time
computer controi has forced the presentation of a set of topics
that are not covered in any single text. The CRASH language andé
OSWIT operating system are described in manuals not specificalliy
designed as teaching material. They contain few usefui exampies ’
and are more in the nature of a catalog of what 1is available.
Also they are specific to LSI-11 based systems in communication
with MTS. The other lecture material is generally basic material
from several major areas that are not treated in any single
text. Finally, the specifics of the LSI-11 and how it is
connected in our laboratory can be found only in the Digital
Equipment Microcomputer Handbook or in assorted circuit
schematics. Presumabliy much of the materiai developed for this
report wiil become availble for student use in the near term.
However, it would have to be revised somewhat before being given
to the students.

The volume of wunpubiished materiai distributed in this
course is immense. In addition to the CRASH and OSWIT manuais
the lectures are distributed in advance so that the students do
not have to «copy 1large amounts of information from the
biackboard. Hopefuliy, this aliows them to concentrate on
understanding ' the material presented rather than on transcribing
it. Unfortunately, some students depend on the written lectures
rather than attend ciass. However, students who aiready know the
materiai presented in a particular area may actually be able to
use the lecture time more profitably for other endeavors.

5.2.1.4 Conciusion

The evaiuation and course detailis provided here may helip to
piace the electro-mechanical analog facility in its educationai
context. I have enjoyed the learning and teaching experience
associated with the 469 course. It has helped me to appreciate
the many probiems associated with computer. based real time
controi and some of the methods for sociution.

66

67

5.2.2 Students' Views

Individuai student reactions to the iaboratory and course
have varied widely according to the background of students
taking the course and the administrative conditions under which
the course has been offered. It has been necessary to allow 60
people in the class at one time even though there are only three
laboratory setups. Even with this course loading, it has been
necessary to turn away a substantiai number of peopie each term.
In the following sections, views from individual students with
both favorable and unfavorable reactions to the cliass are
presented.

5.2.2.1 View 1 - - Jack Wenstrand

CICE 469 is a course 1in the appiication of real time
computer systems. It is described in the Coilege of Engineering
Bulletin as :

Principles of appiication of real time computer systems to
engineering problems. Topics incliude: computer
characteristics needed for real time use, mini/micro
computer operating systems, man-computer communication,
basic digital logic design, anaiog signal processing and
conversion, and inter-computer communication. Topics
investigated via laboratory using microprocessor system.

My background coming into this course included one semester of
structured programming, and a semester of circuit analysis. This
shouid be a minimum requirement for the course. I was able to
understand the material presented in the course, but everything
was new to me. I found the course to be 1interesting,
informative, worthwhile, and very difficuit.

The lecture opened with an introduction to real time
computing. Here the traumatic notion that a computer program
need not execute in the same sequential order in which it was
typed first entered my sophomoric mind. Approximateliy the next
two weeks were spent easing me past this critical moment as the
CRASH compilers were thoroughly discussed 1in class and the
concepts behind the real time functions that it implemented.
This discussion was important, as many of the students in the
ciass had no background in real time operations.

At this point, the language itseif merits a few words. The
CRASH language was a valuable tool in the laboratory. A high
level language much iike PL/1, it enabled many students with
limited programming experience to construct fairly complex real
time application programs. If the same programs were to -be
impliemented on the assembly 1anguage level, a much stronger
programming background wouid be required to make it through the
course. The main drawback to the language was that the compiler
stiil had some bugs. If you hit one of those bugs, and CRASH

67

68

produced code that would not execute, you had little recourse
but to restructure the code and try again. The course would not
have been possible for me without CRASH. It was sometimes rather
frustrating, but definitely necessary.

The next topic covered was the LSI-11 computer itself:
everything from bus structure to memory mapped I/0. Speciai
attention was devoted to the interrupt structure. This was
important because the major part of real time computing is
processing interrupts. The discussion of 1I/0 was also very
appropriate, helping us to understand how real information in
the real worlid can be converted to and from the binary bit
patterns that the computer crunches,

The next topic considered was that of digital to analog and
analog to digital conversion. This was approached, as it must
be, from a circuit analysis point of view. After a brief
introduction to op-amps, we were quickly pushed through D/A
converters and on through successive approximation A/D
converters. Some of the more software oriented peopie 1in the
ciass found ail this rather difficuit, but to me it was
fascinating.

Then came sampling theory. These lectures were the basis
for the first major lab experiment. The Fourier Transform
methods and resuits of its numerical implementation were
covered, 1inciuding the effects of sampie rate on resuilts,
aiiasing, and use of filters to improve results.

There was no break in this course -- the material just kept
coming. Next, the professor dove right in to control theory.
Wait a minute! What's a Z-transform? This section of the course
was probably the most difficuit for me to understand. The whole
concept was compietely new to me, and I think the same was true
for the rest of the class. Perhaps a littie more time could have
been spent here. While this was going on, we were working on a
servo controller in the 1iab. This was helpfuli from the
standpoint of allowing us to test some of the concepts that we
iearning in lecture.

Computer-computer communications was another very
interesting topic that was covered in this course. I am glad
that that was in the course, as it is becoming more and more
important as the trend towards digital signal processing grows.
Topics discussed incliuded requirements for a data communications
protocoi, a couplie of protocols now in use, and noise and error
detection/correction considerations.

The iectures concluded with a survey of microcomputers now
on the market. Costs, features, and capabilities were comparzad
and contrasted. As cost is such an important factor in any real
worid appiication, the «course wouid not have been compiete
without this section. The lecture encompassed aili of the topics

68

69

necessary as a basis for reai time systems design. Each of the
different subject areas was covered in sufficient depth to be of
practical value. Ail of the topics were important to the course,
and I hope that none of them will be omitted in the Ffuture. The
lab and the liecture were very well coordinated, each re-
enforcing the other.

The first lab project was a simpie probiem which served to
introduce the cliass to CRASH. We were to program the LSI-11 to
input a string from the terminal, reverse it, and output it to
the terminal.

Our next assignment was to write a general command handier.
The command handler was necessary as the following experiments
were to be command driven. This project had its good points and
its bad points. Writing the command handier required a liot of
time, especially for those with minimal pProgramming experience,
and has no direct relation to real time. On the other side of
the coin, the experience forced people to familiarize themselves
with CRASH before entangliing themseives' with new rea}l time
concepts and constructs. I feel that the project was worthwhile,
but could probabliy better be repiaced by another real time
experiment.

The next experiment involved synchronous sampiing of data
and analysis of that data. The hardware inciuded essentially a
thermister wired through an op-amp to a A/D converter. This
provided us with an eight bit number proportional to the
thermister temperature. We generated the waveform for sampliing
by breathing on the thermister. We were to record a specific
number of bytes on our floppy disk in a very specific format.
Also required was a routine to unpack the data bytes and print
. them out. After taking a data set, it couid then be transferred
to MTS where a fast Fourier transform program was avaiiable for
our use. This allowed us to verify rather easily the sampiing
theory basics -that we were learning in lecture. The fast Fourier
transform was definitely a nice tool to use as it simplified the
data analysis. However, in order to use the program we had to
pack the bytes in to the disk file in a very specific manner.
This part of the experiment is probabliy what caused the greatest
amount of troubie, particularliy to those without much
Programming experience, and again this was not directly related
to real time computing. This experiment couid be improved by
modifying the fast Fourier transform program to accept one data
point per 16 bit word, instead of one data poeint per byte as it
does now. While this does waste a 1little space, it greatly
simplifies the packing and unpacking of data points.

The third project was to implement two algorithms to
controi a servo. One was a velocity feedback controller, and the
other was a proportional integrai derivative controlier. We were
given equations for both controliers in forms suitable Ffor
impiementation. That was good, in that most people in the ciass

69

70

did not have a sufficient comprehension of controli theory to
come up with the equations themselves. This experiment also re-
enforced the liecture material by verifying such facts as a large
integrai term will make the PID controller unstabie.

The last experiment was the one that everyone was waiting
for. The 1idea of using an electric train for a lab project on
handiing asynchronous interrupts must have been a stroke of
genius! The train attracts interest to the course, helps to keep
the students interested, and 1is a perfect exampie of a case
where priority handiing of asynchronous interrupts is necessary.
The experiment was by far the most difficuit of the ‘term,
primarily because the class was on 1its own. We were given
specifics on the train board I/0 and a couple suggestions on
what our data structure (which had to represent the train board
to the computer) shouid contain, and that was it. It was a good
project -- it really made me think.

" The 1lab was an essentiai part of the course. While the
lecture was covering sampiing and control theory, which seemed
more than a littlie abstract to me, the lab served to force me to’
relate these concepts to the actual processing that I had
programmed the LSI-11 to do. The success of the lab was rather
dependent upon the teaching assistant. As each of the probiems
was an introduction to a different area, the class required a
number of specific suggestions of methods of approach to
compiete the projects. The dependence on the teaching assistant
could be reduced by inciuding more details in the write-up that
is handed out for each experiment, and by devoting a lecture
period to each 1lab or scheduling some extra ciass periods for
that purpose.

The iab facilities were good. CRASH, as mentioned before,
had some bugs, but it was definitely better than the assembly
ranguage alternative. The hardware was reliable. The train board
was subject to noise, leading to some false interrupts. However,
such is the case for real world systems aiso, so the experience
of trying to program around the false interrupts was a good one.
The one thing that couid have been improved was availability.
There were three LSI-1lls and oniy one train board. With the
amount of time and work that has gone in to that train board, I
understand why they don't have two, though. Access to the train
was a probiem at the end of the term. Members of the class were
given Keys to the lab after passing a "key test."™ That aliowed
students 24 hour a day access to the lab, which made aili but the
last week very acceptable.

This course does not replace a control theory class, a
sampiing theory class, a circuits ciass, and all of the math
necessarily prerequisite to those <classes. However, it does
ailiow a person, after one long, hard term, to be well versed as
to the capabilities of real time systems, and technigques for
programming them. Looking back on the course, I am stili amazed

70

71

by the quantity of materiai covered. I have never had a ciass,
before or since, in which I liearned so much, so fast. The course
was excellent. All college cliasses shouid be like CICE 469.

6.2.2.2 View 2 - - Richard Jungcias

The real time computing course has been successful 1in
meeting the goals specified in previous sections and the
expectation of students. One of the most significant aspects of
the course is the real world interaction of computers and
physical devices. In most college computer courses, the computer
programs develioped by the class consist of some contrived
resuits from simulator and test data. In this course, the
computer program has a casuai relationship with sensing and
controliling a physical device such as the servo or the trains.
Although compliter interaction and manifestation might be seen in
printed results from simulations, having these interactions and
manifestations occur physically imprints these interactions in
student's mind.

6.2.2.3 View 3 - - Terry Rosenbaum

My reaction to the use of the train 1lab facilities was
generaily unfavorable. My reactions can be broken down into
three categories: my reaction to the hardware facilities, my
reaction to the software facilities, and my reaction to the real
time programming ciass.

The hardware faciiities are over used. This leads to two
problems. The first probiem 1is breakdowns. The LSI-1lls,
Decwriters, and floppy disks generally function quite well in
spite of their heavy use. The "breath tube" peripheral also
seemed to function weil. The servo mechanisms seemed to break
down occasionalliy, thus increasing the 1load on the remaining
units. The problems I experienced with the train were non-
functioning photocell sensors, worn out rolling stock and
various problems with the tracks. The non-functioning photocells
introduced an unnecessary obstacle into train control
programming. The worn out engines, cars and tracks made program
testing difficult. Engines would sometimes stall or not start
when power was applied. Cars would come unattached from the
engines due to worn or broken couplers. Poorly aligned or worn
out tracks caused train deraiilments. All these things detracted
from the excitement of <controliing the train by computer,
thereby iessening student enjoyment and satisfaction with the
experiment, and giving rise to a certain amount of frustration
and subsequent drop 1in motivation. This probiem could be
corrected with increased maintenance.

The other problem with overuse of the facilities is the
amount of time availabie to students for program testing. The
high wusage necessitates round the ciock sessions at the end of
the term. This overtires the students thereby 1iessening their

71

72

efficiency and reducing their chances of success. Also, the
amount of debugging time availiable is just not enough, as is
evidenced by the low rate of success on the train program. Most
students have their programs partially working, but few are
really satisfied with their final result. The solution to this
problem is obvious, and extremely expensive--purchase more
equipment. I have another suggestion to alileviate this probiem
through restructuring of the course. This suggestion will be
covered in the section on suggested improvements.

There were two main probiems with the software reliability
and documentation. All software seemed reasonably reiiable - with
the exception of the CRASH compiler. A number of bugs existed in
the compiler, and some of these compiler bugs caused erratic
program operation not attributable to source <code errors.
Subsequent work on CRASH by me has removed many of these bugs,
however, and this problem should be eliminated in the future.

The problems with documentation were the lack of a good
operating manual for OSWIT, and some rather poor expianations in
the CRASH manual. An OSWIT manual has been written which should -
alleviate the first problem. The CRASH manuali which exists needs
work. Perhaps this wouid be a good project for a technical
writing cliass in the Engineering Humanities Department. Since
aii engineering students are required to take technical writing,
it seems feasible to set up a section of 469 which would operate
jointly as a technical writing class to attempt to rewrite the
CRASH user's manuai.

The probiems I experienced with 469 were due to my
programming background, and to the overliy 1large number of
students 1in the class. Since I had already taken many computer
courses inciuding operating systems design and compiler design,
some of the program assignments were a bit underchallenging. The
iarge number of persons in the ciass led to overcrowding in the
lab, and caused the overuse probiem expliained earlier.

I feel that my most rewarding experiences with the train
1ab came not through the 469 class, but through my summer
independent study project debugging the CRASH compiier, and my
subsequent involivement in this documentation project.

Debugging CRASH provided me with experience in large scale
program debugging, and greatly 1increased my understanding of
compiier operation in generai. My invoivement in the writing of
this document has heiped to develiop my technical writing skills,
skills which are very important for engineers to possess. While
neither of these benefits are directly related to real time
programming, my work on CRASH did help to increase my
understanding of real time operations.

I wiil now suggest some improvements which could be made to
the train iab facility and to the 469 cliass. My suggestions for

- 72

73

improvement can also be broken down into three categories:
possible improvements to the hardware facilities, possible
improvements to the software faciliities, and possibilie
improvements to the 469 class.

For the hardware facilities, I would recommend better
maintenance procedures. A maintenance scheduie should be
deveioped if one does not exist. Programs couid be written to
verify the operation of the train board sensors, switches, servo
systems, etc. These programs should be run at requiar intervails
(perhaps daily during period of heavy use) and any bugs
discovered shouid be corrected promptiy. This woulid greatly

increase the likelihood that alil equipment 1is properly
functioning and availabie for student use. I would also
recommend the purchase of additional LSI-1lls if funds, space,
etc. couid be found. This would help to ailieviate the

overcrowding in the lab,

While the CRASH compiler has been improved considerably
aiready, there is still room for nmore improvement. The main
probiem in CRASH 1is stack depth checking. The LSI-11 stack is
heavily utiiized by CRASH programs, and stack overfliows often
cause erratic program operation or abnormal termination. The
compiier should be modified to keep better track of stack depth
during compilation, thus enabling detection of stack overflows
during run time checks. Currently, the stack 1is often used
(especialiy during calls to system subroutines) without upping
the maximum stack depth counter (done by cailing the "pusy"
subroutine). This leads to a situation whereby it is possible to
overwrite the stack into the buffer region without a stack
overfiow being detected (because the maximum stack depth being
tested against was incorrect (too iow)). This causes unexpiained

.program faiiure.

The BIT variable parameter size feature is not properily
impiemented. Currently, all BIT variabie parameters must be
treated as 1integers, because the proper field width is not
passed as a part of the procedure cali (this should be changed) .

A possible extension to CRASH wouid be the impiementation
of TRAIN control primitive statements. This wouid tend to
standardize train control I/0 somewhat, thus aiding in debugging
train control programs. The operating system, OSWIT, could be
improved by the addition of better error diagnostics. Currently,
eérror messages are very short and undescriptive. About ail that
a user knows after receiving an OSWIT error message is that the
program bombed. More descriptive error messages wouid certainly
aid in debugging programs. Also, a real time assembly language
debugger is needed. The current assembliy language debugger runs
with interrupts off, limiting its usefuiness. Perhaps assembliy
ianguage debugging features couid be added to RAID.

To aileviate the problems with the 469 cliass which I

73

74

described earlier, I would recommend restructuring the class.
Due to the fact that the field of real time computing has
expanded greatly in the past few years, I think that a one term
iong 469 class 1inadequately covers the subject of real time
computing.

I think that the class should be split into two one term
ciasses, The first term would introduce the student to the
software used in the real time laboratory, and introduce the
student to real time operations, concentrating on data
acquisition, D/A and A/D converters and on elementary control
problems such as the servo control experiment. This would give
the students a more thorough understanding of D/A and A/D
converters, and allow more time for learning about the software
facilities in the lab before tackiing more complex problems.

The second course could be a more advanced course covering
interrupt programming, other types of control interfaces
(paraiieir 1I/0, modems, etc.) real time operating systems
(perhaps a short survey of what is avaiiable in the industry
today), data communications (a very important part of
distributed sensor systems), and ultimately the train controil
probliem.

This restructuring would of course require the purchase of
additional equipment (two to four more LSI-11 setups), personnel
expenditures for development and 1instruction, and probably
additional lab space. I also have some ideas for new experiments
which would possibiy be designed: a sound processing experiment;
a sound or light tracking device (an extension of the servo
control experiment to make it do something useful); an acid
titration control experiment; a transistor curve tracing
"experiment; a 1logic device tester/identifier; capacitor and
resistor value measuring experiment.

Some of these experiments could be impliemented with minimail
cost, whilie other would probabiy be very costiy and time
consuming to deveiop. The division of real time computer
instruction into two courses combined with the impiementation of
new experiments (both to fiili in the 1lab schedulie and to be
offered as alternatives with the student choosing the more
appeaiing of say two or three experiments) would definitely make
the course more interesting, more challenging, and abie to offer
students a more complete background in real time computing.

As for the ©probliem of overcrowding 1in the 1labs, the
division of the course may help to alleviate this problem too,
although this is not <certain. A less ambitious experiment
schedulie 1in the introductory course would alilow more time for
each experiment, hcpefully aliieviating the problem of not enough
"hands-on" time for each student., Although it 1is a difficult
decision to make, perhaps it wouid be necessary to set somewhat
more reaiistic enroliment levels than exist at the present time.

74

75

At any rate, the problem of access to the train setup would be
greatiy reduced, both by the fact that there woulid be more time
available for this experiment, and by the fact that due to
natural selection process, there would probably be liess students
(at least iess haif interested and under motivated ones) in the
advanced course.With more time avaiiabie to students 1in the
advanced for working on the train setup, the success rate shouid
rise considerabiy, as would student satisfaction with this
experiment.

I must temper the negativism of my views by adding that my
position ciearly represents the minority viewpoint. The CICE-469
ciass has fulifiiled its objectives for providing students with
a sound background in reai time operations (and even surpassed
them). If given a choice between having the course as it exists
now, or not having it at all, I wouid have to choose the former.
Also, I must add that I have nothing but the highest respect for
the ingenuity and years of 1labor which have gone 1into the
deveiopment and implementation of the 1lab faciiity and the
course. ‘

75

76

7. SPECULATION ON OTHER APPLICATIONS

- ¢

7.1 Software Validation

Among the suggestions for use of the computer controlled
train facility 1s the valiidation of certain software systems.
Chuvaia and Beck [l1] have expressed a strong interest in
facilities for wvalidating 1large complex software systems. The
discussion in this section is speculation as to what might be
done. It in no way represents the results of extensive research,
nor do the authors necessarily advocate the ideas discussed.
Rather the discussion 1is somewhat in the nature of a
brainstorming session to try to determine if there are areas in
which the basic structure provided by the train system might be
of use.

7.1.1 Software Engineering

The development of reliable computer software in a timely
fashion at reascnable cost 1is one of the most significant.
unresoived probiems in the computer area today. Software
projects are almost aiways late, over cost budget and seldom
match the original specifications. Moreover, software products
are generaily iaden with errors that appear only after use has
begun, resulting 1in a long drawn out and expensive maintenance
operations.

Software engineering refers to a coilection of techniques
developed and stiil being develioped to help alleviate these
problems. The software engineering techniques addressed the
following aspects of software develiopment

1, validity--does the program function properiy?

2. performance--measured in terms of execution time and
storage size reguired.

31, software architecture-—the organization and structure
of the software system.

4, ease of wuse-—-the human engineering aspects of the
software.

5t maintainability--how readily can the program be
changed without introducing new errors in other parts
of the program

6. cost--how to estimate development costs beforehand and

controi them during development.

The i1ife cycie of a software product must be considered 1in
addressing these issues. Most of these issues must be considered

76

77

across most if not all phases of this cycie. Only by considering
this entire 1life cycle can one hope to adequately manage the
software development probliem.

The software life cycle can be divided into the following
phases:

il 5 functional requirement specification and analysis
2. develiopment of software specifications

3. software design

4, software implementation

5. validation

6. operation and maintenance.

The particular concern here is software vaiidation even
though this item is a separate phase in the 1life cycle of
software. As pointed out by Ho [2] it is an issue which must be
considered throughout the design and implementation phases as
weil. Ho points out that approximately 2/3 of the software
errors are design errors. Furthermore, design errors are much
more difficult to find and correct than are impiementation
errors.

There are typically three basic approaches to program
validation: testing, program proving, and automated aids. Of
these, the first and the third are by far the most widely used.
Program proving techniques typicalily involve the development of
. a set of input and output assertions such that if the input
satisfies the input assertion and the program terminates the
output satisfies the output assertion. Automated theorem proving
techniques are then used to verify the relation between the
input and output assertions. In spite of much work on these
techniques, such as the work by Stavely [2] which uses moduliar
code structure, and higher level assertion languages to reduce
the difficulty of these techniques, validation of software by
program proving techniques is still a very complex probiem. It
is generalily not feasible to use them with large complex pieces
of software,

Testing forms a basis for almost all real software
validation work. In fact, after a piece of complex software is
put into operation the technique continues, with the users as
the testers of the system. The errors they find become a 1large
part of the maintenance of the software product. Since
exhaustive testing is not typ1caxly feasible one of the major
issues in testing software is the determination of a suitabile
set of test inputs. A number of techniques for selection of
inputs have been made (see Ho [3] for a good summary of these)

77

78

including the development of formal criteria (such as forcing
all program branches to be taken, Huang [4]), or that all
statements be executed. However, the most common method of
selecting tests is functional testing in which one identifies
sufficient input to test the major functional activities of the
product. For exampie, Goodenough and Gerhard [5] propose a
methodoiogy for selection of a test based upon decision tabie
techniques.

Every programmer uses a variety of automotive static and
dynamic testing aids whether he realizes it or not. All
compilers and assemblers, for example, have some level of error
detection built into them for at 1least proper syntax. Other
checks commonliy found are for matching types, undefined
variables, etc. Dynamic analysis usually includes run time error
checking with programs. This may include numeric, arithmetic
anomalies (such as divide by =zero) or may extend to address
checks on data references, subscript range checking on array
variables, etc. Unassisted automatic aids, however, are not yet
capable of compietely wvalidating compiex software. This
condition will remain for the foreseeable future, since
automated aids do not usually contain formalized descriptions of
systems requirements and therefore cannot possibly verify the
behavior of a program against its requirements.

Another area which may offer some potential for assistance
is software simulation. By use of simulation it may be possibie
to model the system throughout its development and verify at
each stage that the specification performance requirements are
met. Relatively little work, however, has been done in this area
(for example see Rowe [6] or Berger [7]).

7.1.2 Possibie Areas of Train Utility

With this introduction to the wvalidation problems of
software engineering let us consider possible areas in which the
train system might be of assistance. It is ciear that there are
some areas where the train 1is highly uniikely to be of any
utility, such as in the validation of numeric computations. On
the other hand there are areas where the visualization provided
by the train system may be of assistance in software validation.

Perhaps the most obvious point to consider 1is program
controi fliow. It is well known that control flow programs can be
represented as graphs with nodes representing program statements
and arcs representing flow between statements. Similariy the
train layout can be represented as a graph. If the wunderlying
graphs were identical, then the train layout would have the
potential to represent control fiow in a program.

It is also possible to consider modeling the control fiow

for tasking. Essentiaily one couid have one engine for each
task. Engines wouid stop and start as they are removed and

78

79

inserted to execution.

Though 1in general it does not seem possiblie to represent
ali operations by the train system there are some situations in
which it is at 1least conceivabie that something could be
accomplished. First of all, I/0 operations could be represented
by the pickup and/or release of cars from sidings. Similarly
different types of cars or coded cars might represent data
types. The wuse of a train facility to represent queuing
operations wouid be perhaps somewhat more realistic. Many large
systems programming activities involve a number of queues with
different strategies for managing them. OQueues represented by
cars on the railroad could provide an effective visualization of
queuing operations.

7ol 3 Program to Train Coupling

The previous section describes some potential areas for use
of the train in software validation. These were presented,
however, only at the logical level. In order to actually benefit
from such a system there must be a mapping from the program to
the train. The program does in fact include mechanisms for
operating the train. Even for an idea which seemed iogicaily
attractive if there were no mechanism for impiementing the train
control . the idea would be of 1little wvalue. This section
identifies briefly some potential methods for control of the
train which willi be discussed further.

Most simply one could write a simulation of the program as
a separate entity in which the train represented those aspects
under study. At the other extreme one could envision modifying
the compilers or interpreters wused to automatically generate
- cails to drive the train. A third possibility would be to have
the user insert the desired cails at run time through a suitabile
simuliation package which has been appropriately augmented with
train control-functions and a macro facility.

These 1ideas will be explored a bit further in a subsequent
section.

7.1.4 Potential Logical Relations Between Programs and a Train

sttem

This section is concerned with potential logical relations
between programming considerations and a computer controlied
train system. It is not concerned at this point with physical
implementation of that connection. This will be considered in
the next section. Rather it 1is concerned with explioring the
potential usafulness of such studies should physical
impiementation prove feasible.

79

7.1.4.1 Control Flow

As noted above the most obvious correspondence between a
program and the computer controiled model train is that both can
be represented as a graph. Truly then if the underiying graphs
are identical there can be a correspondence between the program
and the train. This suggests that one might try to model program
control flow with the procession through the execution path of
the program being represented by movement of the train across
the corresponding track. Furthermore, it is possible to consider
multitasking with muiltiple trains, one for each execution path.

Although it is clear that both the program and control flow
and the train can be represented by an underlying graph which
could in many cases be identical, it is nevertheless useful to
look in greater detail at the recommended systems they would
represent. In the foilowing sections the various types of
pProgram control constructs will be examined.

7.1.4.2 Sequential Code Block

The most fundamental code structure is that of a sequential
stream of instructions. This can be represented on a train
layout as a section of track with no switches or crossovers, as
shown in Figure 15. Photocells at various points aiong the track
can be used to represent either individual statements or blocks
of statements, 1i.e., when the train reaches a particular
photocell, compietion of the «corresponding code block is
indicated.

O

' O
\ /
photocells representing

program statements

Figure 15. Representation of Sequential Instructions

7.1.4.3 Do Loops

There are several forms of do 1loops used in programming
ianguages. The oldest 1is the do with iteration count. More
recentiy do until and do while 1loops have become prevalent.
Figure 16 illustrates a possible correspondence between lioop
program structures and the train layout. Figure 16 A iliustrates
a do untili ioop. Note that the code block is always executed

80

81

once. Figure 16 B illustrates a DO WHILE loop. Notice that in
this case the code biock is in the return loop and may or may
not be executed depending upon the test condition performed
before entry to the switch configuration. A do with iteration
count couid be represented by the same layout as a do until
loop.

Figure 16 C represents a multi-purpose loop block which
could represent either a do until or a do while loop depending
upon where one presumes code of the 1loop to be represented.
Photocells represent statements in both the forward and return
loop. It would be possible to represent each variety of loop as
being considered by using auxiiiary 1iight on the layout to
indicate the active (those that refer to actua. facts of code)
photocells.

S 2
7
0 C
O \ 5
F {ccde -
i ?black <
- 'D:?ndi_ C:l o
t],.[_‘.ln -
y test
E; W C O
<
O @ O
Y B C

Figure 16. Correspondence Between Do Loop and Train Layout

81

82

7.1.4.4 If...Then...Else

The If...Then...Else structure can be handled with switches
in a manner similar to that wused for loops. Figure 17 A
jllustrates an If...Then operation while Figure 17B represents
an If...Then...Else. It is presumed that the condition is tested
prior to reaching the switch. Depending upon the result of the
condition the switch can be thrown either straight or turned
resulting in either the Then cause being done if the condition
was true, or bypassed if the condition was false. The only
distinction between the If...Then and the If...Then...Else in
this representation is whether or not there is a block of «code
for the Else clause. This can be generalized as was the do loop
shown in Figure 17.

Tl
condition_| = | condition |C
—> | C — S
tests _ tests
kax
i K\(
O | 1ot
THEN . THEN F
code ¢ | —
block ik T-—L cleide ¥
i | block
e o il .
U C
Fa
A O B C
Figure 17. Correspondence Between If...Then...Else Clause and

Train Layout

82

83

7.1.4.5 Go To

The Go To construct is simpiy a transfer from one stream of
operations intc another. It is represented simpliy as an inbound
branch to another section of the track. This is iilustrated in
Figure 18 A.

A computed Go To is similar except that in the main stream
of code one encounters a sequence of switches each of which
branches to an inbound switch in another section of the track
iayout. This is illustrated in Figure 18 B.

computed
\ GO TO
\L Ol check
N
!
¥
¢ i Hh\""—-__‘“
’ 5 v \\\\.
o) , ‘
N ' o
O T AN
' N
~
A B
Figure 18. Correspondence Between GOTOs and Train Layout

7.1.4.6 Procedure Calils

A procedure call is basicaily a transfer to another block
of code with a return upon complietion of that block of code. The
critical component here is that the procedure may be entered
from severai different places with an appropriate return being
made. A representation of this is illustrated in Figure 19. The
entry to the subroutine is simpiy a series of inbound switches
to a block of code with their return being a series of outbound
switches. The control computer must of course keep track of the

83

84

appropriate inbound and outbound switches so that a proper
return 1is made. This 1is basicalily no different than managing
subroutine returned within a procedure.

V

procedure
‘r"‘fﬂ.—‘ call

-

Figure 19. Correspodence Between Procedure Calils and Train
Layout

7.1.4.7 Interrupts

The handiing of interrupts and execution of a new task of
code 1is managed by using mulitiple engines on the layout.
Essentially one engine 1is present for =each task. When an
interrupt occurs the running train is stopped and a new engine
corresponding to the new task is started. When the second engine
either complietes its traversal through the appropriate portion
of the train 1layout (or 1is timed out) it is stopped and the
original engine begins operation again. This is illustrated
staticaily in Figure 20.

7.1.4.8 Operations

Whiie there appears to be reasonably liogical correspondence
between control fiow in a program and a track layout, any
correspondence between noncontroi operations and the train is
far 1less apparent. In fact some operations may not be possible
at all. How does one represent X=Y+3,6892? Nevertheless there
are some operations which conceivably might be modeied by the

84

85

train system.

normal
program Q
flow
trainz? M \l/
U
O
Figure 20. Correspondence Between Interrupts and Train Layout

One of the most fundamental types of operations one might
wish to model is system I/0. In general, system I/O can be very
compliex and difficult to model. It does not seem reasonable to
expect that it could be modeled in any quantifiable way.
However, the occurrence of an I/0 operation couid be modeled 1in
two ways. First, one might envision sidings with cars on them.
An input operation could be modeled by backing into the yard and
attaching an additional car to the train. Similarly an output
operation could be the decoupling of a car from the train, with
the car being left on a siding. Alternately one could consider
an automatic 1oad-unload facility for some item (perhaps small
steel balls) from an open model car. In addition to not
representing I/0 in a quantitative manner, either of these
alternatives is likely to be moderately difficuit to impliement.

An alternative would be to represent data types by model
railroad cars. Different types of cars could represent different
data types. While it does not appear feasibie to have
quantitative representation, one could use such a scheme -to
indicate all cases of data types within the procedure.
Essentially the cars corresponding to the data types they
represent would be picked up by the engine upon entering a
procedure and would be deposited upon exit <£from a procedure.

85

86

This might be done only for those variables dynamically
ailocated. Again this 1is 1likely to 1lead to implementation
difficuities.

Perhaps a more likely utilization of the train facilities
for actual operation is in the representation and queuing
operations. Many programs, particularly complex systems
programs, invoive substantial numbers of queuing operations. If
this were done each queue would be represented by a string of
model railroad cars parked on a suitable siding. FIFO and LIFO
operations would be easily represented in terms of the addition
of a car or removal of a car from the appropriate end of a
section. Such an arrangement might help to wvisualize the
effectiveness of various queuing algorithms.

7.1.5 Potential Program Train Coupling

The ideas presented in the previous section are associated
with some potential areas in which the computer controlled train
might be wused to assist in wvisualization and validation of
software. Impiicit in each, however, is some connection between
the actuai software and the running of the train. It is
basically assumed that the processor executes "in parallel™ with
the operation of the train and that the train 1is in fact a
visual representation of what is going on within the processor.
This carries with it several implications. First of all there
must be a great slowdown of the executing program from its
normal execution speed. Accordingly all appropriate timing input
cues must be siowed down as well. Furthermore, and this 1is one
of the most important difficulties, there must be a program
connection between the executing program and the operation of
the train. That is when a statement is executed the train must
be told to move beyond that statement to the next. When a
condition 1is evaluatéd and a branch is taken the appropriate
switch must be set on the train layout and the train must be
toid to move over that switch. This section will discuss some
possible ways in which these problems might be addressed.

7.1.5.1 Train Primitive

Before proceeding it should be pointed out that a set of
primitive train operations can be written utilizing the
techniques described in Chapter 3 to facilitate movement of the
train in any of the schemes described below. It will be recalled
that the hardware 1level control on the train impliements two
basic functions: the setting of a bank of eight switches to a
set of desired positions and the setting of the power levels to
individual electrically separate sections of track. It was noted
that in order to operate the train effectively a moderately
compiex data structure and set of algorithms are required. Based
upon these however a reasonable set of functions can be
impiemented.

86

87

For example, it is expected that the following functions

would be reasonably straightforward to impiement. . ‘
PCWER (PVAL) apply power VAL to track T
SWITCH (A,POS) set switch A to position POS
FORWARD (E) move train E in the forward direction
REVERSE (E) move engine E in the reverse direction
TURN (S) set switch S to the turn position
STRAIGHT (S) set switch S to the straight position

Each of these functions can be impilemented relatively easily in
terms of the basic train system.

A very usefui but basically more complex function wouid be
a MOVE (A,B) which would be to move train A from its present
position to photocell B. In general one would want the shortest
path. For purposes of this application, however, the problem
couid be localized since calls of this nature would generally be
made only to a relatively short distance from the present
position of the engine. Accordingly the search space for the
path could be greatly restricted to make the operation feasible.
In fact a general path selection problem has been implemented on
the train system at the University of Michigan.

A set of functions of this nature should be kept in mind
when considering the discussions below.

7.1.5.2 Software Simulation

Perhaps the most promising use of the train facility for
software validation lies in the area of software simulation.
Moreover this is probabiy one of the easiest forms of
utilization to implement. With this approach there is no formai
direct 1link between the program and the simulation. Rather a
separate simulation program utilizing the primitive train
operations described above is written to correspond to program
control flow. Program structures would be mapped 1into train
movement utilizing the correspondences described in the previous
section. As the simulator is executed the developer may then
observe control flow by movement of the trains on the track
layout.

This form of study is most likely to be useful during the
design phase of the system. As noted earlier it is at this stage
that the largest number and most difficuit to correct errors are
generally made. Assistance and validation at this stage may have
greater impact on overall liability and cost effectiveness than
elsewhere in the software life cycie.

87

88

7.1.5.3' Compiler Generated Calls

At the other extreme of program train coupiing is the
notion of having a compiler option which would 1insert the

appropriate calii to primitive train operations into the
executabie <code stream as source program statements are
processed. One woulid of course also need synchronization

control; otherwise the program execution would rapidly run away
from train movement. When the resulits of the program were
executed it would result in essentially parallel operation of
the program and the train visualization of the program. Thls is
perhaps the tightest coupliing one could expect.

However, this form of coupling is expected to be
exceedingiy difficult to realiize. There are several problems
with this approach. First is the matter of mapping a program
Structure onto the train layout. Though this is likely to be
feasibie to accomplish it 1is not expected to be easy.
Furthermore no matter what algorithm is selected there always
wiil exist programs which would not fit into a given layout.
Finally, modifications of a compiler to this extent are likely
to prove to be expensive, time consuming and difficult to debug
in and of themselves.

7.1.5.4 User Inserted Calls

The idea of user insertion of appropriate train calls falls
somewhere in between compiler generated train calls and a
separate simulation program. This could be accomplished 1in two
ways. First the user might insert the calls directly in the
source code (perhaps with an appropriate tag in the comment
fieid to allow easy removal after vaiidation). This shifts the
responsibility for mapping the program structure onto the track
iayout from an automatic procedure to the user where it is much
more likely to be accomplished successfully. Furthermore it does
not require extensive modification to program development
software. It would, however, represent a significant increase in
the programming icad for the system developer.

The second method of wuser 1insertion of <calls to the
primitive train operations is through the use of a debug
facility. Many debug facilities have the capability of insertion
of subroutine <cails at break points. That 1is, when a user
defines a breakpoint he is also able to specify the address of a
section of code to be executed when that breakpoint is reached.
It is conceivable therefore that a wuser couid set up
correspondence between the program and the train facility at the
time he was ready to execute the program through use of the
debug facility. This would also allow him to look readily at
only portions of the code, and control the degree of fineness
with which he examines it (treating blocks of code as a singie
statement).

88

89

7.1.6 Limitations

All of these possible program train couplings have
limitations of one sort or another. Limitations specific to a
particular method have been mentioned in the section describing
that method. This section will concentrate on limitations common
to all of the possibilities.

One of the most obvious limitations 1is in the area of
speed. Though a program can execute on even the smallest of
today's computers at a rate of hundreds of thousands of
instructions per second the train could not even handie a singie
instruction per second. This is most serious in the area of do
loops. It 1is cleariy not reasonablie for the train to circlie a
iloop any large number of times. Yet this may be necessary to
represent what is happening within the control filow of a
program. Perhaps a digital readout could be added to the 1loop
and a single symbolic licop made with the train with the actual
number of iterations displiayed on the readout.

Technicaliy there is a lack of representation of program
operations. It 1is clear that some things can be modeled but
there are certainly many which <cannot. The extent to which
meaningful validation can be carried out without a more complete
model is still unknown.

Finally there is a matter of the configuration of the train
layout itself. Large complex software systems also have a large
number of controi statements, many loops, many branching
decisions, and many procedure calls. Representation of an entire
system on a train facility would require a very liarge train
faciiity. Moreover unless one designs a specific train layout
for each program (a time consuming and costiy operation) one
would have to strive for a general train layout which could be
mapped 1into a wide variety of program structures. This would
require a means for some way of "blanking out" unused areas of
the layout. This might be accomplished through the use of small
signal lights along a layout. However, there 1is aiways the
problem that no matter what track layout is present a program
structure can be found which will not map into it.

"The last issue can be ameliorated to some extent through
the use of modularity in code design and in code validation.
There is no need for each photocell on the track layout to
represent a single station. Rather it could represent a block of
statements or procedure which has previously been verified. In
this way the size of the model might be reduced to one which
would fit on a given train layout.

It 1is the feeling of these investigators that it is not
reaily practical to try to represent complex software systems
directly via a computer run train system and they are unwilling
to endorse these ideas. If one were to proceed, however, it 1is

89

90

feit that the use of the facility for simulation at the design
state or the use of simulation simply to provide visualization
of how the program works, say for training operation, would
represent the most likely areas for further investigation.

7.2 Data and Process Flow

The use of the train to model program control flow, was
considered in the previous section. In this section a dual to
that concept is considered, the use of the train to model data
flow or some real process fiow. In some respects the use of the
train to model data or process fiow may be more likely to wyield
usefui results in 1its use for program control flow. First of
ali, this use of the +train does not necessarily require as
detailed a mapping to the train as the instruction mappings
considered previously. Moreover, modeling process flow opens an
application other than validation, namely operator training. The
visualization provided by the train may provide a useful tool
training operators in the use of the computer for complex
process control appiications.

32 5l Concept of Operation

The basic 1idea 1is to use the movement of the train to
represent (i.e., model) some type of fiow in the overail system
being studied. It is the movement and position of the train or
its associated raiilroad cars that are of interest.

One example of this discussed briefly in the previous
section is the use of the train to modei data fiow in a program.
While 1in general it is not reasonable to use the train to model
operations on the data, in some circumstances, useful resuits
can be obtained. 1In particular, if the operation invoives a
logical movement of data, a train representation might be
possiblie. In particular, it might be used tc model various types
of cues. In Figure 21 below the siding could represent a queue.
The cars on the siding represent items in the queue. Since the
siding may be entered from the main track at either end, the
siding could represent either FIFO or LIFO queue operations by
adding or deieting cars from either end. Of course, one could
have many such sidings to represent different queues and could
use different types of cars to represent different types of
items on those queues.

A second.class of examplies for which process flow modeling
might be wuseful is for comupter controlled manufacturing
operations. Such a system might consist of several individuai
assembiy or processing stations with a flow of partiaily
compieted material through the various stations. Each station

90

9l

Figure 21.

would typically have material queues for incoming and outgoing
materials. Such a system might be under the control of a singie
computer or a hierarchical system of computers with a processor
for each station and a supervisor computer which monitors and
controls the actions of the individual stations. A single such
system is sketched in 22 below.

Use of the train system to model such a manufacturing

Supervisor
Computer
Control 3 . Control Control
Computer - Computer oo Computer
/L
Operitlon Operation Operation
h n

material flow
Figure 22.

environment might proceed as foliows. The engines under computer

control wouid represent the transport system between
manufacturing stations. Open model railiroad cars would represent

91

92

containers for material being processed at the various stations.
These cars might contain smalli steel balls to represent the
material itself. As in the data flow example above sidings could
be used to represent material queues. Manufacturing operating
stations might be represented by modei load-unload stations to
move the steel balls (magnetically) from one open car to
another.

loading station
Material queue L

A , RS
%X L - T l FT3QH41

I

Material queue

Figure 23.

The use of a computer controlled train facility to
represent data or process flow would typicaliy not be for
software validation in the sense described above. Rather it
might be used to study fiow algorithms, e.g., dueuing
algorithms, in the early design stages. Visuai representation
afforded by the train might be useful during design.

Secondiy, the study might be useful as a training tool even
for operations which are not totally computerized. For example a
shop foreman might be charged with the responsibility of
managing the routing of materials from oné manufacturing station
to another. The visualization afforded by a train simulation
might be wuseful in illustrating to him the real effects of
various scheduiing algorithms he might elect to use.

7.2.2 Implementation Considerations

There are basically two requirements which a process must
meet before simuiation by the train system could be considered.
First, there must exist a mapping from appropriate process
variabies to the train facilities. This is highly appiication
dependent and general rules are not easily stated. Two exampies
of such a mapping are cited above. 1In general movement or
position of the train and/or model cars must be relatable to
some significant parameters within the process being studied and
the visual representation afforded by the train shouid assist
either the designer or an operator in some way.

92

93

Secondly, the speed range of the train must be acceptabie.
That is, it is unreasonable to use the train to represent a data
queuing operation which takes place at the rate of 100,000 data
movements per second. To be useful in a situation like this it
would be necessary that there be a meaningful shift in time
scale which couid be accomplished with only a small number of
movement operations actually studied.

Given that the modeling of a process by the train system is
in some way reasonable, there are two approaches to
implementation which might be considered. The first is straight
simuiation. In this case there is no physical connection between
the process being modeied and the representation in terms of the
train system. Essentially one would write a separate simuiation
program to effect the desired movements on the part of the
train. This is.similar to the simuiation approach described in
the software validation section above. This 1is probably the
easiest mechanism which <could be used and particuiariy for
training operations might well be quite satisfactory.

When the process under study is one which involves control
of some external (to the computer system) real process an
alternative implementation might be considered. For exampie,
suppose that each station 1in Figure 22 above is computer
controlled. One could consider removing the control output from
the real devices to be controlied and repiacing the devices with
sensors that would be inputs to the computer controlled train
facility. The train computer woulid then receive all control
commands for the manufacturing devices through an internal
mapping program which would have to be written. These commands
could be transliated into appropriate train movement commands. In
addition the train computer facility would have to generate
appropriate inputs to the manufacturing computers.

This alternative approach does in fact have some bearing on
the software validation process as it provides an interaction
with the actual control software in the manufacturing computers
and presents a visual display of the operations they are
performing. This approach, however, is likely to be more complex
than the simulation approach in that one has to develop a number
of hardware sensors as well as a suitable software program.

7 w23 Discussion

As with software validation, the use of the computer train
facility to model data or process flow requires that a suitably
general track layout and auxiliary facility (e.g.,loading and
unloading stations) exist. One again has the problem of either
developing a special train facility for the process to be
modeled or trying to develop a large general train facility to
model a broad ciass of processes. The iatter case suffers from
the problem, of course, that there always exists processes which
would not fit any given train layout.

93

94

Nevertheless the authors feel that it is in this type of
application that the train facility offers the greatest promise.
The authors are not yet willing to endorse strongiy such a
program based upon the limited study to date. Nevertheless, 1if
suitable applications exist it 1is believed that this type of
activity may be the most fruitful for future work.

7.3 Modeiing Distributed Sensor Systems

This section will examine briefly the methodology for
modeling the logical aspects of distributed sensor systems using
the computer controiled model train system. Recall from Section
1.1 that our modei of a sensor was a generator of data which
could be activated either wupon synchronous request of the
processor or upon the occurrence of an external event. Recall
aiso the desired property is an analog to be used for studying
distributed sensors. From the foregoing discussions it is
evident that the facilities of the real time computer
applications laboratory satisfy these conditions.

The train system is itself a distributed sensor system with
two categories of sensors, position sensors (the photocells) and
value sensors (the throttle sensors). Normaily these operate in
asynchronous mode based upon external events. However since the
controlling computer system has a real time clock, they may aiso
be operated synchronousiy upon command from the computer. The
muiti-tasking capabilities of the system software developed for
the computer make it possibie to implement various queuing
strategies for dealing with concurrent or nearly concurrent
external events. Moreover, since the computers in the laboratory
may be interconnected it is possibie to emulate the effects at
hierarchical 1levels of observer activity. Consequently, the
computer controlled train system does meet the conditions set
down for an analog of distributed sensors.

The first step in modeling sensor activity is to develop
mapping between the distributed sensors and those available on
the train facility. In most cases this impiies a restriction of
the set of sensor systems which may be considered. When one
considers the manner in which interrupts from the photocell
sensors on the train occur it is apparent that they do not in
generai occur at random. Normally they are the result of a
sequence of interrupts from contiguous sensors on the train
iayout. Accordingly, the system is most appropriate for the
modeling of sensor systems in which there 1is some expected
movement through the sensor field. This restriction need not be
totally appiied, for there 1is no such restriction on the
throttle sensors, however, since the largest number of sensors
are photocells it would be a common restriction. This
restriction could be somewhat ameliorated by using aiternate
mechanisms for causing photocell interrupts, e.qg., passing some
other object over them.

94

95

Once a mapping of sensors to the photocells has been
compieted, a clear definition of actions to be performed wupon
the occurrence of an interrupt must be defined. If these actions
require suppiemental input, the user must provide test values
from a secondary input source, e.g., a disk file.

The actions being modeled must be implemented on the
computer system. Most likely they will take the form of a
recording and/or processing of the information obtained from the
sensors. The interconnection between the computer and the
laboratory allows for a study of hierarchical interconnection
between processors. Generally the code at this level of
simuiation would be quite similar to that in the system being
modeied. The train system would merely provide a wvisualization
of the operations.

The generation of the interrupts wouid be controlled by a
human observer/controller. Underlying the sensor-observer
interconnections being modeled would be a separate set of tasks
such as those described 1in Section 3.4° for controlling the
movement of the train. Desired motion (i.e., sensor activity)
could be generated either by a fiie describing the desired
routing or by the human observer/controller using a subset of
the train throttles.

It is also possible to add auxiliary controis and sensors
to the model train system which would augment its modeling
capability. Automatic coupler-decoupler systems for model
railroad cars could be easily added. Moreover, to represent
material of one sort or another, mechanisms for 1loading and
unloading items (e.g., small steel balils from open cars could be
added. Perhaps more usefully, it 1is possible that bar codes
similar to those currently in wide use in grocery stores could
be added to model railroad cars. Passing the car past a read
mechanism would enable identification of that car. 1In other
words, the class of sensors which could be represented by the
system system would be increased.

With procedures such as this, it is possiblie to represent a

reasonable class of distributed sensor systems observe behavior
under varying inputs.

95

000000000000
000000000000
00 00
10]0) 00
10]0) 00
00 00
00 10]0)
10]0) 00
00 00
00 00
000000000000
000000000000

5555558888
55555858888S
Ss Ss
Ss
S§SS

5SSS588SSS

S5585SSSS
SSsS
ss

Ss S8
S858S555885SS
S5885SSSSsS

APPENDIX A

WW WW
WW WW
WW WW
WW WW
WW WW
WW WW
WW WW WW
WW WWWW WW
WW WW WW WW
WWWIW WWWW
WWW WWW
WW WW

Operating System WIth Trains

USERS

MANUAL

97

ITITIIIIII TTTTTTTTTTTT
ITITIIIIII TTTTTTTTTTTT
II TT
II TT
IT TT
IT TT
II TT
II TT
II TT
II TT
. IITIIIIIIII TT
ITIIIITIIIII TT

August, 1979
Richard A. Volz

Richard M. Jungclas

TABLE OF CONTENTS”

1. OSWIT: An OvVerview ...cieeeccccctsoccccscasnsnensansasnsl
l.1. Introduction ...ciceeecccscsccessacccoccssnsseeael
1.2. OSWIT Command LABNJUAGE ceeeceeoceecoosssnosososssssesl
1.3. OSWIT File System And Utility Programs2
1.4, OSWIT Support FUNCLionsSceeeececccccacoscesssl
1.5. MTS - OSWIT Communicationsc.cceesecccscesescel
1.6. Real Time Operations ...eeeecececcosscsscncssesesl

1.6.1. Tasking c.eiceeieecnerscecsscccennececcnnnsaasd
l1.6.2. I/0 And Interrupt Structure ...seescccessssd

2. SYSTEM OPERATING INSTRUCTIONS it ceeececocssccncnseesh
2.5le 'SyEten HallEWaBe | europeegens o5 spepers spepsysre) 8 515 @ @ s5e0s 3 555 1 3 O
2.1.1. HALR BWiECR oy mpepmepsmenersns g spsmerass oxs)s o sxare & 615 <56 7
Disk WRITE ENABLE/PROTECT Switch ..eeceec..7
MAIN/AUXILLARY Disk Switch T <
Hardware Bootstrap Switchcceeceeccescss8
MEin B DEIVE mmpe 95 o Sremesiems & 5 EE 3 2 sedxensledil
LSI-1]1 BacCKpPlaneeececcecacesensancsseael
DiBile '‘ComBrolller] &r asimmeIrers sl Sk & o Moy Wesisand@
A/D And D/A INterfACEe teeeeoseccecccnocncnsesl
B8 CUEPUEE &5 enran sEreniels @ Bi.de WessTokaliTosage. dexl /10
B/B TRPIES aSiemspE o6 G Hners) e Moo T spe dud ks sxsid
Digital Display And Select Switch9
12. Analog Display And Select Switch9
. Loading OSWIT And Fatal Error Recovery9
o7 o dlic EoaEiiNG 55l e T e lisi s &b By Peembloge Suenenens i Wenl O
SEACPAD Fatal Error RECOVErY ..ieeeeesscncsscccscesd

HEOOJAau o wiN
.

[
.

e o o

Qe o
.

OSWIT System Memory Configuration10
MTS CommunicationsSceeecececcecceesnsnansaall

3. OSWIT COMMAND LANGUAGE tvceeecocoocconssacansnssnesl3
3.l Command OVELVIEW & i@ s e ilos oo s esbions 4 saiss oo stors oerl 3
3.2. OSWIT Command Language Descriptions15

COMMBNIT s 5.8 o ausupels Budéilius oo gty S sl=tinrinsloralivrs 15
COPY fuisens ileutlapsloussslanalleVelsns) dpemtioneyn s shoNeRoneNens o menenans o8 116
DEBUG it ibeVogonorelont o sixens sxans 45 sucaoneners ona=smene) o toleie oy 17
BORD 4dun m W nliVa ot W iaws sV onslament owetoten. el amwere . 118
MT'S Pl Wiy swepiie Sl sxoneds¥or o fo¥o oLt PR To el n Mo N anonon 11O
REISIPART e &t e sus bl o sremaremalinsnereroRelio o ones 5k e WP wmenen 2]
RUM cucbion ope oo olaemiPindiarume suomon e Bot onsl SIsFiHE o amethonomyrodens o OB

SET ®© 6 05 0600000000 00000 0000000000000 0 000000800 23

START ®© 5 00 060 000000000000 0000000000000 00008s008 25
UNLOAD ®© & 005 00 0000000000000 0000060000000 0s00 0000 26

99

ii

4.

5K

6.

i

OSWIT I/O AND INTERRUPT STRUCTURE ® & 0 & & & 8 8 0 0" 80 9 o

4.1.

4.1.1.
4.1.2.

4.2

4.3.
4
4

.3.
.3.

System I/0O Di

Logical Units
Pseudodevices
1

rectives ...

. Psuedodevice Overview
2. Pseudodevice Descriptions ..eeccecesscsces C

CONVERTERO ...cevceee
CONVERTERLc0ccee

DUMMY ® 606 0 006006000 8008000000 000 e 0 s e e o0

MSINK ©e e 0 ee 0000000000000 00000000s000000 0000

MSOURCE

Read And Write Operations ...eceecscccccss
Conversions ..ceeecee

MTS ® © 8 006 000 00 000 8 00 068 0020500008000 0800 00000

PRINT ..

READER ...cceoccccccsocccssccccsssscscscsssscscse
FOINK* i ieeeeeeccecoscscsoscccssscsonssscscnnnscscs
*SOURCE® [.ccceeccoossoscscsccsncsnsssssnsascncs
FTRAINY® . ..ccecececsssscscsscssccnnsasssnnssscas

TASKING AND TIMING .cccccosvses

5.1.
5.2.

5.2.1.

5.3.

5
3
5
5
4.
.5.

2

Tasking And Timing Introduction ..ccccececececccscs
Task Definition

325 Priority

Task Identifiers ...

Task Scheduling ..ceeecse
Sl Synchronous Scheduling .eeeececccccconsocss
2 Asynchronous Scheduling ...cecccecccccccss

Task Terminat

ion ceeeecen

Locking And Unlocking TasksS .eecececccsccscnsss

OSWIT FILE SYSTEM

6.1.
6.2.
6.3.

6.4.

File System Overview
File Naming Conventions .
OSWIT Public Files

*ABSLOAD .
*BOOTLOAD
*BITMAP ..
*CATALOG .

*OSWIT ® 6 6 060 000 000 068 060060000000 % 0000000000000

*TEMPFILEL
*TEMPFILE2
*TEMPFILE3

File Protection .cececeoces

OSWIT UTILITY PROGRAMS
Utility Programs Overview
OSWIT Utility Program Descriptionscececece.

0 IS
7.2.

*BLOKEDIT

*BOOT cccececcoscsscscscsncssccnsocas cteccess e

*DISKCOPY

100

40
40
40
41
41
41
42
42
42
43

44
44
44
44
44
44
44
44
44
44
44
44
46

47
47
48
48
50
Sill

BEDIT o pepsps srerspew-ewrene® o s gwons wiegy 19 ageyers swonensye enerone Dl
*PILEFIX c.cccecccccccccscccoscososcsscsossossssss 55
*PILESNIFF .ccccvcoccccccccccsoccsosscccnsccae 57
*FILES]1]l ..cccececccccosccscscscsccsccsssoscsceas 59
*LINK1]l .ccceccccacas 5 ole) & [0 5% BE) &) sR9)E] € o) 8 reereRe] (OML
*LOADCOPY .ccceescoctccccccccccsssscccsossssee 64
XPATCH cwes s s oioieansisls @ s s saisiesis sisee simsens srave 05
XNTHME o areteiws o 218 5 SINNeTs) 6¥6 (6 SIoNE) b 605 @ »Eiens) 9o Sanals 00
*VERIFY ..cccecececoccsccccsocscccssssccsccsse 67

Appendix A: OSWIT ERROR MESSAGES ...ccececccccccccccess 68

Appendix B: OSWIT SYSTEM DIRECTIVEScccceecccecssss 69
7.3. System Directive Overviewcecceccccccccess 69
7.4. EMT DescCriptions .c.eeeeccscccccsscscsccssscccssss 10

AT} oeneds diduons ot B Sul1 a8 5. 5t) S e inWen W5t L SWS o W ome1 /0
BIN2D .ccecececccccscccccsccssccsssossocsssscas 711
BITNRIO & orenelss ok aVenelokio sWertls shons: spegons toseflonsgs snoLoLons yoioge ions M2
CANCEL teoeesccccccccsocssocsvsccssccsccsnsosse 13
CLOSE ccccececcccccccccscccscsscssssosssssasse 14
DEEINE AR SelotrY-Xeacle elefdrolekete filoNe s XoRore Lol o lole o e lo Non oo Xe] D)
DESTRON| mrrrere i i il s SIoTeke shons ToloLeNeRsvokele| sheIo R ReNer Ve (157,
DSKIO ccceeecsccccccscscccccsscscsssoscassanccsecs 18
D2BIN Rk ol RN T s e s ekews 1612
ERROR ..ccoccocceccccctcccscccsccscscscscceasses 84
EVERY .cccceeccccccecsscccsccssoscscccssssssnscs 85
EXSTT L Siee, e CYore Rty e lonc PoleT-Nens ReRekoNe s Rl eYenchonchene sadelonolels SIO
GETBUF .ecceccccerscccccccccconccsccsssscssses 87
GETPAR ceccecccccccctcccscccscccsccccsccsosnss 88

22 P - 11
IN cieeeeececccccsccccosscssoscoscssscscssssscsssss 91
LISTEN cccecescccesssccsccsscscssssccsssascaasse 92
LOAD .ccveeccecacsoscesccsccscccccccscsnsocscsscs 93
LOCK teeevececcccssscccsssccssssssnssnccssssce 95

OPEN © 0 6 0606 0600600600605 0600606006006 060606000606000006006006o00 96

O2BIN cceeeeocescosecsccscsccsosscsscssscsscccs 98
PARSE cccececccccccscccssosscsssssccssssssssssll0
READ tceceecccccescssccsssscsscssscsssssssssensll2
READB .iccecececcccsccsssssscsssssscssssssssnsl0d
READW ¢ccceececccccsccscscscsssscsssssssssssssllb
RELBUF .cceccecececcccccsssssccssssconsnsssssll?
RESET cceceecoccceccocsocsosossssssscsssssssssssllB
SCAN i ceececscccsssocossossccsssssssssssssessll9
START coeeccccccccccccssssscssssssnsnnocns seeelll
WATLT ereyeregeperersrs @ o o/sgs 9% s ofs) & [¢['e"eks T TS (&) T[e [7%) & = 3] Shs)[o]'® LrL2
WHENA .cccceccccccccssoscccssssoscsosscoccssaslld
WHENB sccceesccsccecosccsossssosescsoonsosassslld
WRETE; [sie «Ieo1srs) 3 15 & dus] 549> 50! 8hons (6 Srd] osola i8] 548 & onille 863 3) alfe] el D)
WRITEB crorm o @ ois 848 66 & B 0@ 5+ 5 Sonells) 583 815 B0 3606 & o1 @ DL
WRIETEN seres « @ o6k 51616 2 618 b 9@ SaeRiiye-GIe 3«5 b o 489
UBLOCK seios swras o e smeme amens @ s o185 & Grerens ars & o @ @ oo & 210

101 iii

iv

Appendix C:

SYSTEM SUBROUTINES AND FUNCTIONS .ececosessl2l
) L 0 O 0 040D 0 0.0 C 000 0 00 D0 0 00RO Ot sl 00 0.0 Ok 4] §
COE oW el B XY TN N S e N Yoo N Y N X We o YT V122
D2FLOAT .eceeeeccocsscsossoscscssscssccsscsssscsnscsell3
DOPEFIX cccoccoccccsossossocssscsscscsoscssscsscssll5
EXP teeoceoceossosasassossscsssscssscsssosocscocscesll
FLOATNZD, s w s sjpe 57 (o oxsgags [sre) eriagenie susie)[o]he o o slie] sysie] o sxege s 112 7
BO6 &Il ek 3 C10 & & & SR @8 SOEheas B9 e 6 2 s v B2
SHMY) 1 3 ope3e B B B 2408 & [5] SIE0E) 518 @) 5 % (@ @ o) SIS IR B Bl & «eneratlias
SORT GErErIEREEREEE IBEEE+ERE R 3 90 35 E 356G RS0
HBMIBXMUNY mrerer<s sXsw 5 6105 4@ 56+ 5 £ 535 & GIIsE] 536 & 6 5 51ers) 16 1 Shll
HECME" Hrnmrs sicis tX6)+ O16KE) 5¥6 [3) & 5vale B 5 s NeXeok o ISNoNs) & el [Shs, IIf 3f2,
HEEORT nr i¥.o0 5 15 o¥6) 211 (s BXs) & 66 & GNeXs 5 oHCI I 00 0 B0 0 olb CEESE
HEMTXOUT 3 55,0613 505 & ETNEE 3R 656 & 3 oXaE 3 533 SXele¥e. 3 Tas.s) Phe Il 3
$FMTXADD ceeeecee SESIABICKIE™E oot oltle oMdc oo b Blclcs 135
HEMTEMUIEY o056 o siions 63 22315 5 3 5hsh o6 Biiss 5.8 Mo, B8 B 33 Daxe 2 136
FEMTPNSUBT o xsiionshtiioish sl W o1s ohbions, 51s) B hismeWend) &6 18 2] 5.6, 13 SHoXE Sl
HESCUDIIV: srede shonesohe ol & oae sl o5 2o WT ome N Jouion it monontud miis, B YSIO
EESIGLEMULN Fstioni i 5608 WenWeweiid) snerclilonenonsnonsiiols Bilos wuilonenors i 19
FIIEINN Phols PomomersWoms: onituohithondics cand stmekins o Awem et wentut i Wenas 1410
BTEMTXZ2E Paextis Auensione chibmendidndiia ke N A bl Sk aek Waness SN
HIIMTIADD] sxsucniWomsioness N exons doitromerhsWorsnd aud) oro bk Worlssois Wawmra 1412
FAMIDXAND | Fuolssmensife s 08 ¥ iondicodamar suibuahia o SR A fw s iimensis NS
FTMINMUIEN swewet cwiitsmone sl ns: SFWoitsr diiomolkomiNor Smomar horis eWents, /s (o) 5t omons MNAG
FIMTXOR .eceencns S SRR SRRRP-F WA Py PN | Ew 3 i e WS
NMIVISTIB] swewenwet Wawant Budide. SuiWonts 54 PN o o u WawsWoldudiosla. slomana: dus 1416
F TN OR coteneh Mowel W fweweh Wy SraliVWewo s owd) apamal MWeas1% oWoWansuna, 1¥417
HESCEPDNWI swown v iWobowena swadhdifty s & iW g o Maudls ol Lagails uiVen 24 RIS
$ISCLMUL .cecceccee ewawabiwewalome Mhen i dwiWan ad! duudid udlemewe 14419
HIFROUNDI Yxers.ionei donels BRS) sweifebsns affenemonen s Waway o i Al iwdWe o epIi510
FMTXMOV .o 00 MO0 O Ciar s SRR IR P dL '
HEOLY] EPEY ororm® sxopem, s o amm il el rarememegers Vowarsl A mowava oy 8512
EEOWER £ snensHellones ke oleNeNoNoNeNe] shoNenanst clolal oo /alene sReNolaiins s¥als 153
HPOWERII ccceecocoocosscossssascassasscssscascsssldd
HPOWERRIE ./ Terenty « Bfons oHe s e ta¥ oo N Ranateler o be, S¥elala; SHalls foNeretaterlioD
FPOWEIYY .Lieeecrecsccsssncscsnsssssssssssssssl’6
$SCAlE tevevesoscsscscsrosesasccsssssssnccsces 157
#SUDbSCY cieecececncece cesessccecaas cescesssssesl58
FCABNAIEEH oxe oo peeerans orerepere o eneneme: ofs) ame esessssesesslD9
FSUBSITIR! (srepemereneronepersysrsnsemssore ragsrona s sy s ora epomazens sreeriiO0
FBIETSIBIL, srepsnsnereronsss) spsyens1els) o (o1s] spare: o) (s] syl sFagaris weawageroree Ol
PR aneons) spere s SHspeNerTyS) eisIeTe s Isks] sharE aperat s, ® WreNera erapeTere: e ol LNOW2
BIRD: oreepenere s o) oy a)a) o o o] SESRSTSLs] SEeY 8] (88 (spiafa eseesseseaslB3
FE' everegegerenens) ¢ (o o] 5e] 8151975 S)e SWawa) spers (a (&) sWaNaFS] spayel 5 owers » ereAlIONL
PBED: 6 5 e E EHIP TEEETT NS) sgeRsieTsLe) o[<ks] ohe o soewene o s » TGN
S| wsE I IEE T 6 @ Rl EEE BEE GEE E SRR S € CEasAe e R 00
HRERD o5 5 o & 5 05 9 GISEsNsrs) © 5XF 518 SEoNe] SIeNels ® (8 sAToes § &7 s IOR
HOR o160 s DO 2 @5 355 6 @ e SIEIT s LK e s Eree o W) oS8
HORD' Lrerers svens 535 & 3 GXSIeTE] 5 313 & & GNeNsl s IeIelsohs) SXo+els 314 sEeRe» Tl 6/
Oy S OO0 L Olob DT © oo O HIC o 0 0 0 6 0lG 0 0 ORI L (L0,
HOED)| rrnrsEREs s aenEEsEE s 5030 0P 0 ob tIobIo ob HIoh OB Ol ¢/ ol
HOSF = TR R E 5 26 2 6 IR AT & SXeTe) el Xele) 5 /&) SXeXeN: [GXaNe] NerL # 2
FWRITE ceeececcas Do HIE & OFDIe A0 D00 0 0 01 L4S
FDUMMYIE cxenons Buonei oTanondiions) buonoilo donss .5 LoWeTosi 10, ST3) 3 GHoNG o761 LWL 714

102

-8

BGRD teveecevceoceccocooscoooscoososcasescsecssl?B
BGID veveececocococoooocsosocccooncsoscscosecseesllb
FREABE roxers 5 555 SEE-sIeRsIs BXeIE) & 5] 3o) SEoxe 5hen] SISISHS (315) oX5) rexsil 47
LPERD 55539 aeEE Y iEEE IEEEEE e e@aus s EEEE E i LS
$PIED srpae eI NIeEE IRE IR IEEES 5 e E B 6 3 56K 5 3§ sl
SWRIGTEE sppres 0 E o6 @ »2EE 8 5 6 558 516 @ 553§ 6 BXers 3 ors 1480
PDUMMY 2 @@ e dres 51615 516 & 140006 6 SIS § 51615 § B sexamsnsnlio) 1
S CICI " worsaers) @ SHe¥s] @ BUSEE1 5 <I6TE 6 6] 5¥oke. al SWE) oaf6) 13 & Bvells: & e owems, cwenll 812
BEOCRY" ors s m s s 10 5% G605 S6IeNYe s & 8 5 6. 66 2 5 6 6 5 e slsucws BER

Appendix D: ODT - Online Debugging Tool ...ceeeccesese.l84

Appendix E: ASSEMBLY DEBUG MODE ...:cccecoscssccccssessesl86

7.5.
7.6.

Index

General CONCEPLS tcceccccsvscsococscscsscssccssosseesl8B
DEBUG Command DesScriptionsS ...cccecccescocccccessl89

AR fob51s 4T cotlls dbsiowonch sub DL sbmbs A1 W Wente et WeousWeWis AP w1l 10
S R s L NP PR PR |
BREAK Rxilonm it el PaoltalbMcdebbd o4 howodFimsnonchdun o¥ivomsera 9.1
BINEGN 5 eusiuions MVixllo clini¥o bubuagbontgorVommaromsnsl? arenslehevll OB
CONTIRUIE 4r¥imggeré b age & 8 i ot Fomre P EMekens Mivisal e Vvl 918
CLERRN 55550 aws s i) amomomerdVons 4f0eFomedtne i 3 e%e sxfSelon sroxs v MLt OTL
CEBER JohowodVimmstt Fomomer¥s TP Fhod™ . oxor)e himsrorostn 1 95
DISBLAY, sl S coralele s suarere™s siits o HUGETe0ioHs gus Frolons 511106
DUSBERE) ro toilor--suiusnncncus [o8s e, ohelohe o Ho o oo emoriesgone, L DT
GO e 7 6h0nse U550 N6 o o sonsnenss omsnayss snmsnamsmsmonansns ik pens- 1918
)2 P £ -1
MODGR +eveeeeveenncenoconnosnsosaosasssassnes200
OSWIT eeveeevecocccenoncsnnosorcossoosossssse20l
STEP «evvevueencnnconcooceoccooscossosonoassa202

.o.o.oo.o.ooooo.o.o.000000.0000000..000000000000203

*
Page numbers in the Table of Contents refer to the numbers
in the upper corner of each page.

103

OSWIT USER'S MANUAL R

1. OSWIT: AN OVERVIEW

1.1 Introduction

The field of digital computers and their applications is
perhaps the most dynamic field in engineering at the present
time. Driving this change during the past ten years has been the
introduction and widespread acceptance of the microcomputer.
There are numerous products on the market using microcomputers,
and the future 1is almost 1limitless. At present, however,
software support for these systems lags far behind their older
and larger counterparts. The availability of microcomputer
operating systems is rather limited. Most present microcomputer
operating systems are not really suited to real time
applications that are forthcoming for microcomputers. During the
next decade it 1is important that suitable real time operating
systems be afforded the developer of microcomputer applications.

OSWIT (Operating System WIth Trains) is an operating system
developed at the University ~of Michigan to ‘meet real time
executive system needs for the Digital Equipment Corporation
LSI-11 microcomputer. The basic features of the operating system
were designed and implemented by Jack Bonn and Ted Kowaiski as
an independent study project under the direction of Professor
Richard A. Voiz in the fall of 1975 and winter of 1976. During
the falil 1976, Bill Dargel was responsible for the design and
implementation of the disk con*roller. In addition, Kent Hoult
deveioped and implemented the file system while Arnold Vance
implemented the A/D and D/A drivers and train interface. In fail
of 1977, Houton Aghilil completed the design and instailation of
the MCP protocol between OSWIT and MTS. In fail 1977, Kent Houit
continued the development of OSWIT and the file utilities. Caroi
Briggs, Mark Hanlie and Glen Purdy later modified the I/O
structure to ailow transmission rates of 2400 baud. Rick
Richardson modified OSWIT to support DEC compatible soft
sectored floppy disks &t other locations within the University.

The basic features of the OSWIT operating system are:
1. A task scheduler which functions with a programmable
clock and asynchronous events to start task by various

methods subject to a specified software priority.

2. A wait structure to allow processing and 1I/0
operations to proceed in paraiiel.

3 Input/Output device drivers £for the consocle, A/Ds,
D/As, flioppy disk, paper tape reader, and printer.

4. MCP protocol to allow the microcomputer system to
communicate with the University's central computer
system (MTS).

5. A simple command structure modeliled after the Michigan

OSWIT: AN OVERVIEW
104

2 OSWIT USER'S MANUAL

Terminal System (MTS).
6. Fioppy disk file system.

7. A small set of utility routines to support arithmetic
conversions.

8. An absolute loader.
A brief overview of these features will be given here. They are
described in greater detail 1in the OSWIT user's manual,

presented in Appendix B.

1.2 OSWIT command language

The OSWIT command lahguage provides the mechanism for user
communication with OSWIT. This command language is modeled after
the Michigan Terminal System command language. This command
language permits system controi, program controi, a debugging
monitor, file handiing and communication with MTS.

This command language also supports iogical unit assignment
and pseudoc device names similar to those used on MTS. Assignment
of the physical devices toc 1logicai units may be done when
program execution is initiated from the OSWIT command language
or from wihtin an executing program.

Pseudo device names are used by OSWIT command ianguage to
symbollically refer to physical file or devices when the actual
file or device names or address are not available. Pseudo
devices names are provided for terminali output and input, paper
tape reader, the line printer, the A/D and D/A converters, the
train interface and a dummy file or device.

1.3 OSWIT file system and utility programs

OSWIT has mechanisms for creating, destroying, renaming,
emptying, truncating, editing and cataloging disk files. To
minimize the operating system memory requirements, these
mechanisms are provided by an OSWIT utility program named
*FILES1l. OSWIT defines a file as a sequence of iogical records
placed in non-contigious, 512 byte blocks on the disk. A file
cannot exceed 255 blocks.

Filenames are limited to 10 characters or less and may
consist of any combination of printable, uppercase characters.
Any filename starting with an "*" is designated as a pubiic file
and is usually reserved for OSWIT system files and utility
programs. .

OSWIT provides no file protection mechanism in the its
catalog. The only protection of files available is through the
WRITE ENABLE/PROTECT hardware switch.

OSWIT: AN OVERVIEW
105

OSWIT USER'S MANUAL 3

In addition, other utility programs, such as *EDIT,
*FILESNIFF, and *TIME provide additional user support.

1.4 OSWIT support functions

Internal to OSWIT are a number of support routines used by
the operating system to implement its functions. These include
numerical conversions, dynamic buffer management, I/0
operations, task scheduling, etc, . As a general principie, ail
such functions are made available to user's programs. These
functions are called at the assembliy language level via emulator
trap instructions (EMTs).

s MTS - OSWIT communications

OSWIT uses the MCP protocol {1} to communicate with MTS on
an Amdahl 470/V7. Each system is hardwired via a 1200-2400 baud
line to a remo“e data concentrator, which statistically
multiplexes the line with other units and communicates with MTS
through a hardwired 9600 baud 1iine. This mechanism 1is wused
principaliy to transfer data and programs between MTS and the
local fioppy disk, or to use the system as an "inteliligent
terminal". Source editing can be done localily, transferred to
MTS for assembly or compiiation, linked and the object file down
loaded to be stored and executed on microcomputer system.
Alternatively all development of user programs can be
accompiished on MTS with the final object stored and executed
iocally. In addition, data may be collected and transfered to
MTS for greater storage capacity or more thorough analysis.

1.6 Real time operations

According to Martin, {2} a real time computer system is one
which accepts inputs from one or more sources, acts upon these
inputs, and produces corresponding outputs fast enough to effect
the source. This definition encompasses a wide variety of
systems such as the use of a computer as a data concentrator, as
the control element in a feedback loop, as a data logger for
some real time process, or as a supervisor for a set of other
real time computers.

There are two primary characteristics which distinguish
real time application from the scientific computations: the need
to respond rapidiy to the occurrence of events external to the
computer, and the need to handie I/0 for a potentially iarge

1 UM Computing Center, "An MTS Communications Protocol (MCP)
Proposa.i", May 1976.

2 Martin, James, Design of Real Time Computer Systems,
Prentice Hail.

OSWIT: AN OVERVIEW
106

4 OSWIT USER'S MANUAL

number of external devices in a manner which does not l1ock wup
the CPU during the I/0 transfer. An exampie wouid be to requirce
a computer controlliing electric power distribution to suspend
normal program operations upon detection of a generator failure
and initiate an orderiy shutdown procedure for that generator
and a redistribution of the load among the remaining generatotrs.
The consequences of these characteristics are far reaching.

l1.6.1 Tasking

First, in order to allow the user to specify the response
to external events, he/she must be given some controli over
interrupt handiing. Secondly, since the computer is usuaiiy much
faster than the devices it controls or responds to, it is common
to have a single computer control a number external devices. As
a result, one usually has several more or less independent
pieces of code known as tasks which are executed at different
times. OSWIT provides a mechanism for associating a task with an
interrupt or a condition for a given external device. When an
interrupt occurs the program currentiy operating may be
suspended and the associated task executed. When this task |is
completed, its execution is terminated and the original program
is resumed.

Associated with notion of task is that of a priority. If
two or more tasks are competing for the CPU, there must be some
mechanism for deciding which task is to execute. In OSWIT each
task is assigned a priority. Once started a task wiil run to
completion unless interrupted by a task with a higher priority.
If task A has priority of 10 and is interrupted by task B with a
priority of 25, task B will execute until completion unless
interrupted by a task with a priority greater than 25. When task
B finishes, task A will resume,

1.6.2 I/0 and interrupt structure

The OSWIT I/0 and interrupt structure is generalized and
oriented toward real time applications. All I/O operations at
the programming level are done through logical unit assignments.
Assignment of physical devices to logical units may be done at
the time program execution 1is 1initiated or dynamically from
within the program. All I/O requests to OSWIT do an immediate
return to the caliing program after the request is initiated so
that processing may be overlapped with I/0. If an I/O operation
must be completed before the task can proceed, the task may
issue a WAIT request to OSWIT.

OSWIT supports logical record (line), byte, word and
character I/0. OSWIT also supports requests for decimal or octai
character string to binary word and binary word to decimai or
octal character string conversion requests.

OSWIT supports tasks that require synchronous timing. The
LSI-11 microcomputer hardware has a programmabie real time

OSWIT: AN OVERVIEW
107

OSWIT USER'S MANUAL 5

clock. The user can request OSWIT to set up time intervals in
the clock and interrupt the CPU when the inverval has passed.
This OSWIT facility allows the user to specify that a task is to
be executed repeatediy at fixed intervals of time, at a certain
time of day or after some interval of time.

OSWIT: AN OVERVIEW
108

6 OSWIT USER'S MANUAL

2. SYSTEM OPERATING INSTRUCTIONS

Each laboratory station consists of a number of individual
pieces of hardware. Their use as a coordinated system is
controliled by the OSWIT operating system. This chapter
identifies briefly the individual components of the system and
describes how to operate the system, which includes the
operation of the system hardware.

2.1 System hardware

Figure 1 shows the pictorial view of the system hardware.
The components of interest in system operation are:

A. HALT switch
B. Disk WRITE PROTECT/ENABLE switch
c. Disk READ/WRITE LED

D. Hardware Bootstrap Switch
E. MAIN/AUX disk switch
F. Main disk drive

G. LSI-11 Backplane

H. Disk controller

I. A/D and D/A interface

Jd. D/A outputs

K. Digital display select switch
L. Digital dispiay

M. Analog Dispiay

N. Analog display select switch

The position of these components are indicated in Figure 1.
The way each component 1is described 1in more detail in the
following sections.

2.1.1 HALT switch

Depressing the HALT switch will place the system in HALT
mode which in turn traps the system to the ODT (Online Debugging
Tool) monitor. This monitor resides in a read only memory (ROM)
on the CPU circuit board. It allows the wuser to (1) dispiay
and/or modify memory and register contents, (2) begin execution
at a specified address, or (3) load an absolute core image in a
special form (usually just a more generail loader).

2.1.2 Disk WRITE ENABLE/PROTECT switch

This switch controls write protection on the system floppy
disk. When this switch is placed in the WRITE ENABLE position,
writes to the disk will be completed. When the switch is in
WRITE PROTECT position writes to the disk are not completed but
an audible alarm (two bells) is sounded. Since this is the only
protection mechanism for the floppy disk, this switch should be
set on WRITE PROTECT at all times, except when the user needs to
WRITE to the disk.

SYSTEM OPERATING INSTRUCTIONS
109

NowtlS Awozvwogw] 3o map T 3309/

oo Q

‘W

B,
BEH] O 4
3 A

bL/It/8
[/Y

110

OSWIT USER'S MANUAL 8

2.1.3 MAIN/AUXILLARY disk switch

Although there is normally only a single disk connected to
a system, the disk controller is capable of controiling two disk
drives. This switch is present for each disk drive present. When
two disk drives are present, these switches selects which drive
is designated as the main drive and which drive is used as the
auxillary drive. With single drive units, the switch should be
in the MAIN position.

2.1.4 Hardware bootstrap switch

The hardware bootstrap switch 1is wused to bootstrap the
operating system located in-the file *OSWIT on the disk into
core. Use of this switch is the normal way of locading OSWIT and
beginning a session with the system. It is also often wused to
restore operation if the user's program causes the system to
crash (fail). The operating system wiil not boot if this file is
not present on the currentiy selected drive. The sequence of
events 1is as follows. First, the hardware bootstrap iocads and
executes another bootstrap program residing in a file «called
*BOOTLOAD. This bootstrap program loads and executes an absociute
loader program residing in a fiie calied *ABSLOAD. The absolute
loader loads and executes the operating system residing in the
file named *OSWIT. Once OSWIT is initialized, the user will be
prompted with an initial message.

2.1.5 Main disk drive

This is the standard disk drive present on all systems. It
utilizes a hard sectored, single density diskette.

2.1.6 LSI-11 backplane

The LSI-11 1is the heart of the system. This unit consists
of a LSI~1ll microprocessor, 56K bytes of memory, and serial and
paraliel I/O boards.

2 sxlyvs 7 Disk controller

The standard disk controller interface will control up to
two disk drives.

2.1.8 A/D and D/A interface

The A/D and D/A interface contains the A/D and D/A
converters and other 1logic to interface the converter to the
LSI-11l. The standard interface will provide up to two converters
of each type. to interface the converter to the LSI-1ll.

SYSTEM OPERATING INSTRUCTIONS
- 111

9 OSWIT USER'S MANUAL

2.1.9 D/A outputs

These are the analog outputs from the D/A converters
contained on the interface.

2.1.10 A/D inguts

These are analog inputs to A/D converts from external
devices.

2.1.11 Digital display and select switch

This digital display will display the digital output from
A/D converter or the digitai input to the D/A converter. The
dispiay select switch will determine which device is displayed.

2.1.12 Analog display and select switch

The anaiog display will display the voltage input from the
A/D converter or the voltage output from the D/A converter. The
analog display select switch determines which device is
displiayed.

2.2 Loading OSWIT and fatal error recovery

2.2.1 Loading

The OSWIT operating system can be locaded or reinitialized
by hardware bootstrapping or by running a bootstrapping program
*BOOT. By pressing the BOOT button, the operating system
residing in the file *0SWIT wilil be 1locaded, 1initialized and
executed. The *BOOT wutility program may be used to load,
initialize and execute the operating system contained in any
file. (This feature is typically used only by system programmers
when working on a new version of OSWIT.) Once booted, the user
wiil be prompted with '.', and the user will be in the OSWIT
command language monitor. The OSWIT command language is
described in detail in the next chapter.

2.2.2 Fatal error recovery

When a fatal error occurs, the program is unable to
continue and will crash to either ODT with prompt of '@' or the
DEBUG mode with a prompt of '*', depending upon the severity of
the error and the system configuration. In some cases it is
possibie to recover operation without rebooting OSWIT.

From ODT, a cold start of the operating system can be
performed by typing 140G. This is equivalent to starting with a
fresh OSWIT load except that the presently 1loaded version of
OSWIT 1is wused. Alil I/0 devices are disconnected from the user
program and the program disappears. A warm start of the
operating system may be performed by typing 144G. This attempts
to ieave the user program iocaded with I/O devices connected. A

SYSTEM OPERATING INSTRUCTIONS
112

OSWIT USER'S MANUAL 10

program restart 1is generally inadvisabie. It is used prior to
entering DEBUG mode to see what went wrong. When in ODT, the
DECwriter must have the uppercase key down.

A return from the DEBUG package may be accompiished by
entering an "OT" command.

2.3 OSWIT system memory configuration

Figure 2 shows the standard operating system memory
configuration. The 1interrupt vectors are located from 0-377
(octai). The memory mapped I/0 device status registers are
located in 1iast 8K bytes. OSWIT, the debug package, the system
stack and buffer area are located in high memory as shown. The
user program area always starts at 400 (octali). Approximately
18K words (36K bytes) of user program can be locaded.

The system can be reconfigured in two ways; by modifying
the stack size, and by removing the debug package. The system
stack size is dependent upon the number Jf nested subroutines
and parameters stored on the stack. The default size of 1K
should be sufficient for most applications.

By removing the debug package, the user recovers an
additional 2K of memory space, which can be used for his/her
program. When the debug package is removed the buffers and stack
area are redefined.

2.4 MTS communications

OSWIT uses the MCP protocol to communicate with MTS. When
the OSWIT MTS command is issued, the DECwriter is effectively
connected to MTS and operates as a "standard" terminal, except
that a control-Z 1is accepted as a control command to return
con*rol to the local operating system, OSWIT.

It is also possible to have program communication with MTS.
The OSWIT pseudodevice *MTS* can be used by OSWIT commands,
utility programs, or user programs to establish a data path
directly between MTS and OSWIT as needed (see OSWIT "RUN"
command in the next chapter).

One of the more useful features of the MTS communication is
the transfer of files between MTS and the local flioppy disk.
There are many options, however, and care must be taken if the
transfer 1is to be completed correctliy. The following examples
illustrate copying object and source files between MTS: from
OSWIT.

Example (s) :
A, Binary files

1. From OSWIT to MTS

SYSTEM OPERATING INSTRUCTIONS
113

gAY

8/29/77 @
a;J‘(resSes (0c tl)
(o]
I NTERRUPT VECTORS 256 By fes
400
USER'S
Pro&rAMS ~ 20K B, s
SYSTEM B UFFPERS ~ 1K bytes
SYSTEM STACK “/K 677'?: ‘
DEBve v @K bytes
OSWi | }Nzeu,%(s
157971
16 0000
DEVICE STATUS
t DATA REGISTERS } K bytes
177777

I'l&uﬂe 2: STANDARD OSWIT MEMoRY CONFI&URATI ON .

114

12 OSWIT USER'S MANUAL

#COPY *SOURCE*@BIN MTSFILE
.COPY OSWITFILE *MTS*

2. To OSWIT from MTS

#COPY MTSFILE *SINK*@BIN@ ™ TRIM
+-COPY *MTS* OSWITFILE

where @BIN, and @“TRIM are MTS modifiers to transfer a binary
file without character conversion and without trimming trailing
bianks off the 1lines.

B. Source files

e From OSWIT to MTS

#COPY *SOURCE*@SP@NCC MTSFILE
-COPY OSWITFILE *MTS¥*

2. To OSWIT from MTS

#COPY MTSFILE *SINK*@SP@NCC
-COPY *MTS* OSWIT FILE

where @SP is a MTS modifier that is a special I/0 request to the
data concentrator and @NCC is a MTS modifier specifies no
carriage control is used and "" is a control-Z and the prompts
typed by the active operating system are underliined.

SYSTEM OPERATING INSTRUCTIONS
115

OSWIT USER'S MANUAL 13

3. OSWIT COMMAND LANGUAGE

Slalt! Command overview

) The OSWIT command language provides the mechanism for user
communication with OSWIT. The command language permits system
control, program control, a debugging monitor, file handling and
communication with MTS.

All commands must start in column 1 and may be entered in
either upper or lower case. Abbreviations consisting of a string
of the initial characters of a command are alilowed. The minimum
abbreviations are underiined. The O0OSWIT command language
interrupts always prompt the user with a ".".

The commands are listed below with a brief explanation of

their function. A detailed explanation of each command is given
in the following section, "OSWIT command language descriptions”.

COMMAND SUMMARY

COMMENT [TEX1]

Insert comments on console listing

COPY (FDnamel [FDname2]]

Copy contents of a file device to another
file or device.

DEBUG -
Enter DEBUG monitor
L0AD

Load a program without executing

MTS

Enter MTS through OSWIT

RESTART [AT location] [I/O FDname]

Restart or initiate program execution

OSWIT COMMAND LANGUAGE
116

14

OSWIT

OSWIT USER'S MANUAL

RUN [object FDname] (1/0 FDnames]
[PAR=parameters]

Load and execute the program

SET parameter=state [parameter=state]

Change system parameters

START [AT location] [I/O FDnames]

Restart'or initiate program execution

UNLOAD

Unlioad the currently loaded program

COMMAND LANGUAGE

117

OSWIT USER'S MANUAL 15

3.2 OSWIT command language descriptions

Purpose:

Prototype:

Description:

Example (s):

COMMENT

Command Description
To aliow insertion of comments on output to the
terminal.
COMMENT [TEXT]
This command 1is 1ignored by the system, which
allows the user to put comments in with his OSWIT

commands.

CCM THIS IS A COMMENT COMMAND.

OSWIT COMMAND LANGUAGE
118

16

Purpose:

Prototype:

Description:

Example(s):

OSWIT

OSWIT USER'S MANUAL

COPY

Command Description

To copy the contents of a file or device to
another file or device.

COPY [FDnamel [FDname2]]
Two FDnames may be given as parameters;
FDnamel

FDnamel specifies the file or device
that contains the lines to be copied
(the input). If FDnamel and FDname2 are
both omitted the input lines will be
read from *SOURCE* and written on
SINK, .

FDname2

FDname2 specifies the file or device
that is to receive the <copied 1lines
(the output). If FDname2 is omitted the
output lines will be written on *SINK*,

The COPY command 1is a series of read and write
operations. It causes lines to be read
sequentially from FDnamel and written on FDname?2
until the end of file is encountered on FDnamel.

COPY A B
. File A is copied to file B
COPY A
File A is copied to *SINK*
corPY
SOURCE is copied to *SINK*
COMMAND LANGUAGE

119

OSWIT USER'S MANUAL 17

Pﬁrpose:

Protoype:

Description:

Example (s) :

DEBUG

Command Description

To alliow the user to enter either ODT mode or to
make a forced entry to the DEBUG package.

DEBUG

This command will issue an IOT instruction which
will either be trapped, and an entry made to ODT
via a HALT instruction; or toc the DEBUG pregram,
if it has been 1loaded.

To get back to OSWIT you may issue a "P" if in

opr, or "OT" (OSWIT) or "CE" (CONTINUE) if you
are in the DEBUG program.

DEBUG

OSWIT COMMAND LANGUAGE
120

18

Purpose:

Prototype:

Description:

Example (s):

OSWIT

OSWIT USER'S MANUAL

LOAD

Command Description

To load a program without initiating execution.

LOAD [object FDname] [1/0 FDnames)
[PAR=parameters])

"object FDname" specifies the £file or device
containing the program to be locaded. If omitted,
the program is loaded from *SOURCE*.

The keyword parameters "I/O FDnames" are the
assignments of logical I/0 units to files or
devices for use by the loaded program during
execution.

The PAR keyword specifies an arbitrary string of
characters to be passed to the locaded program on
initiation of execution through an ADCON in Rl.

LO OBJECT 5=INPUT 6=0UTPUT PAR=RUN

This loads the program OBJECT. Logical units
5 & 6 are specified as INPUT and OUTPUT
respectively and Rl is set up to point to a
string in core which contains a 3 in the
first byte (the 1length of the string)
foliowed by the characters "R","U","N".

COMMAND LANGUAGE

121

OSWIT USER'S MANUAL 19

Purpose:

Prototype:

Description:

Example(s) :

MTS

Command Description

To allow the user to communicate with MTS through
OSWIT.

urs

The user should establish a 1ink to MTS, then
issue the MTS command to allow usage of the
console device as a regular terminal connected to
MTS. The 1link may be established though a
telephone link or via a remote data
concentrator (rdc) link. When using the rdc it is
necessary to type an "extra" carriage return to
establish the link £from the rdc to the data
concentrator. When wusing the phone link, it is
necessary to select the full duplex and proper
baud rate for correct communication.

The MTS mode may also be used to transfer data
across the phone link. This 1is accompiished by
referring to the pseudo device *MTS* in an OSWIT
command. To initiate a transfer, MTS must start
sending data, and OSWIT must start receiving it,
or vice-versa. This is a two step process, where
(1) MTS is toid what to do, and (2) OSWIT is toid
what to do.

To stop the MTS mode the user types the special
line terminating character: Controi-2Z
(SUBstitute). While talking to MTS the Controi-Z
causes the current line to terminate. The line is
then sent to MTS and control 1is returned to
OSWIT.

Control may be returned to the MTS mode again at
any time by re-issuing the MTS command.

The ATTN key always interrupts OSWIT and shouid
not be wused in for interrupting the MTS mode. A
control-E is used in the MTS mode to attention
interrupt MTS.

CAUTION: Avoid issuing multiple controi-E's since

these may hang the system (MCP protocol). Due to

the high transmission rates, a 1large amount of
transferred data may be present 1in OSWIT's
buffers.

OSWIT COMMAND LANGUAGE
122

20 OSWIT USER'S MANUAL

E user is talking to OSWIT then

5 establishes a link to the Data Concentrator
with

.MTS

$SSIGNON XXXX PW=XXXX

$#SCOPY MTSFILE *SINK*@BIN

.LOAD *MTS* SCARDS=*SOURCE* SPRINT=*SINK%*
.MTS

$$SSIGNOFF

«START

where the character in column 1 1is the
prompt, and the "" is a Control-Z,

OSWIT COMMAND - LANGUAGE
123

OSWIT USER'S MANUAL 21

Purpose:

Prototype:

Description:

Example (s) :

RESTART

4 .

Command Description

To restart or initiate execution of a program
following either initial loading or an attention
or program interrupt.

RESTART [AT location] [I/O FDnames]

The address at which execution 1is to begin is
specified by LOCATION. The user can reassign the
logical 1I/0 units (see the RUN command
description).

The restart command restarts (or 1initiates)
execution of the currently loaded program. If a
location 1is omitted the program is restarted at
the point of the attention or program
interruption or at the beginning if it was not
already executing.

If logical I/0 units have been reassigned, the
files and devices originally assigned are CLOSEd
and the newly assigned files and devices are
OPENed.

RESTART SPRINT=A

This restarts the currently loaded program
with SPRINT reassigned to file A.

RES AT 20000

This command will restart the users program
a* location 20000.

OSWIT COMMAND LANGUAGE
124

22

Purpose:

frototype:

Descripton

Example (s):

OSWIT

OSWIT USER'S MANUAL

RUN

Command Description

To load and initiate execution of a program

RUN [object FDname] [1/0 FDnames]
[PAR=parameters]

"object FDname" specifies the file or device
containing the program to be loaded. If omitted,
the program is loaded from *SOURCE*.

The keyword parameters "I/O FDnames" are the
assignment of logical I/0 wunits to filies or
devices for use by the loaded program.

The PAR keyword specifies an arbitrary string of
characters to be passed to the loaded program on
initiation of execution.

The run command calls upon the loader to liocad the
object program into memory. If there are no fatal
loading errors the comment " EXECUTION BEGINS "
is printed and control 1is transferred to the
entry point of the program by a standard
subroutine call. Rl <contains the address of a
byte containing the length of the string passed
foilowed by the actual string. If the program
terminates execution by restoring the registers
and doing a subroutine return the comment "
EXECUTION TERMINATED " is printed.

All storage, files, and devices used for this RUN
command are automatically released uniess
execution was not terminated normally.

RUN LOAD

This loads and initiates execution of the
program in the file LOAD.

R MYPROG 5=INPUT 6=0UTPUT PAR=QUIT

This loads and initiates execution of the
program in MYPROG. Logical I/O units 5 & 6
are assigned to the files INPUT and OUTPUT
respectively. Rl contains a pointer to a
byte which contains the length of the string
(4) followed by the letters wer Ay

,“IH,HT“.

COMMAND LANGUAGE
125

OSWIT USER'S MANUAL 23

Purpose:

Protoype:

Description:

SET

Command Description

To allow changing of various system parameters.

SET PARAMETER=STATE [PARAMETER=STATE]

The PARAMETER will be set to the specified STATE.
If an illegal parameter or state is entered an
error message will be printed and the rest of the
line will be ignored. However ail legal
assignments before the point of the error will be
set.

The legali parameters and states are as follows:

DEBUG=0FF

This will remove the DEBUG monitor from the
system to give extra space for user
programs. When removed, OSWIT will fatally
trap memory and illegal 1instruction errors
which were previously trapped by the DEBUG
monitor. Using the OSWIT DEBUG command with
the DEBUG monitor removed, will cause an
entry to ODT. Typing P will restart OSWIT.
The only way to get the debugger back is to
reboot the system.

Default - Debugger 1is in system after
loading.

STACK=SIZE

This will change the stack space available
to the program. -SIZE is the number of bytes
to be aliocated for the stack. It must be an
even decimali number in the range 0 to the
amount of memory available to the user.

Defauit - STACK=1024

Note: Setting the stack too large or too
smail couid result in a system crash.

WV={ON/OFF}
To enable or disable verification of writes

to the floppy disk. If write verification is

OSWIT COMMAND LANGUAGE
126

OSWIT USER'S MANUAL

24
turned on then after every write the data
will be read back in and compared with the
original. If a write error has occured then
the write will be retried up to 3 times.
With write verification off disk writes will
be faster and require less buffer space, but
have an increased chance of ervor.
Default - WV=O0N

Example (s) : SET STACK=1000

SET WV=0FF
SET STACK=500 Wv=0ON DEBUG=OFF

OSWIT COMMAND LANGUAGE
127

OSWIT USER'S MANUAL 25

START
Command Description
Purpose: To restart (or initiate) execution of a program
following either initial loading, or an attention
or program interrupt.

Prototype: START [AT location] [I/O FDnames]

Description: This command is identical to the RESTART command.

OSWIT CCMMAND LANGUAGE
128

26

Purpose:
Prototype:

Description:

Example(s):

OSWIT

OSWIT USER'S MANUAL

UNLOAD

Command Description

To unload the currently loaded program.
UNLOAD

The UNLOAD command unloads the current program in
memory previously LOADed by the load command, or
a RUN command if execution did not terminate
normally. All storage allocated to the program is
released, and all files and devices OPENed at
execution time are released.

UNL

COMMAND LANGUAGE

129

OSWIT USER'S MANUAL 27

4. OSWIT I/0O AND INTERRUPT STRUCTURE

The OSWIT I/0 and interrupt structure 1is generalized and
oriented toward real time applications. All I/0 operations at
the programming level are done through logical unit assignments.
Assignment of physical devices to 1logical wunits may be done
either at the time program execution is begun or dynamically
from the program itself (e.g., in response to wuser input).
Further, all I/0O requests do an immediate return to the calling
program after the request is initiated so that processing may be
overlapped with I/0. Both record and character wuser 1I/0 are
supported. When the user requires that an I/0 operation be
completed before proceeding, he must issue a WAIT call. If the
physical device 1is in use when input request 1is made, an
automatic WAIT is done, otherwise the request 1is queued. The
user task may be started upon completion of an I/Ooperation.

A WAIT 1is accomplished with a WAIT EMT from an assembly
language program and with a WAIT statement in a CRASH program.

4.1 System I/0 directives

These system I/0 directives represent supervisor ‘“"calls"
which transfer information to OSWIT to perform predefined I/0
functions. A brief overview of the I/0 capabiiti is presented
here. A detailed description of the I/0 directives may be found
in appendix B.

4.1.1 Read and write operations

The I/0 structure supports four types of READ and WRITE
operations to loglical units: byte oriented, character oriented,
word oriented and logical record (line) criented. These
functions are performed from user's programs through EMT calls
in assembly programs or CRASH statements in CRASH programs which
are translated into EMT calls by the CRASH compiler.

4.1.2 Conversions

The I/0 structure also permits character string to binary
word and binary word to character string conversions. These
functions are performed for octal and decimal character strings
from wuser's program via EMT calls. For CRASH programs, number-
string conversions are also provided for real numbers. In CRASH
many of the conversions take place implicitly as needed (see
CRASH manual).

4.2 Logical units

When a program is coded, the names of the files and devices
to be nsed for input and output are normaily wunknown, Even |if
the names were known it would be inconvenient to specify them in
the program, since this wouid require retranslation each time a
file or device name is changed. Thus, it is desirable to specify

OSWIT I/0 AND INTERRUPT STRUCTURE
130

28 OSWIT USER'S MANUAL

the names at execution time rather than at translation time.
This is accomplished with logical I/O units. A logical I/O unit
is a symbolic name used in a program to specify the source of
data for input and the destination of the output information. A
logical I/O unit does not identify a specific file or device.
The logical I/O unit is used by the program as a reference. When
the program 1is executed, each logical unit used by the program
must be attached to the actual file or device. This is normally
done on RUN command by specifying a keyword of the form of

unit=FDname

Alternatively, 1logical I/O units can be attached by calling the
appropriate subroutine in CRASH or EMT in assembly language.

The logical units are numbered 0 through 30. Some of these
logical wunit numbers have specific character representations.
These are:

Name LUN
SCARDS 26
GUSER 27
SPRINT 28
SPUNCH 29
SERCOM 30

These character representations are equivalent to the MTS
definitions.

Since it is desirable to minimize the information needed on
the RUN command, some of logical I/0 wunits have defauit
specifications. The following defaults are provided if no
logical I/0 unit assignment is given with the RUN command:

Name Default

SCARDS *SOURCE*

SPRINT *SINK*

SPUNCH *SINK#*

SERCOM *MSINK*

GUSER *MSOURCE*

0-25 *SOURCE* or *SINK%*

(Depending on usage)

4.3 Pseudodevices

4.3.1 Psuedodevice overview

A pseudo device name is used to refer to a file or device
if the actual name 1s not available. Pseudo device names are
needed for the paper tape reader, terminal input and output, the
line printer, the A/D and D/A converters, the train interface
and dummy devices or files. These pseudo devices are predefined
and described in the next section.

OSWIT I/0 AND INTERRUPT STRUCTURE
131

OSWIT USER'S MANUAL 29

Pseudo device names begin and end with an asterisk. The
characters in name may be entered as uppercase or liowercase,
These devices can be connected to any logical unit.

Exampie(s):

.RUN MYPROGRAM SCARDS=MYFILE SPRINT=*SPRINT*
0=*CO*

OSWIT I/0 AND INTERRUPT STRUCTURE
132

30

OSWIT USER'S MANUAL

4.3.2 Pseudodevice descriptions

Purpose:

Ref by EMT(s):

Description:

Example(s) :

CONVERTERO and *CONVERTER1*

Pseudodevice Descriptions

To allow access to the D/A and A/D converters.

READB

WRITEB

These pseudodevices allow users to assign units
to the A/D and D/A converters.

A READB from this pseudodevice will result in the
current A/D value being input. A WRITEB will
cause an output to the D/A. The trailing number
of the pseudodevice name corresponds to the A/D,
D/A set which it controls. These pseudodevices
cannot be reassigned.

RUN SERVOPROG 2=*CO*

OSWIT I/0 AND INTERRUPT STRUCTURE

133

OSWIT USER'S MANUAL 31

Purpose:

Ref by EMT(S):

Description:

DUMMY
Pseudodevice Description

To allow access to the infinite wastebasket(for
writes) or empty file(for reads).

All 1/0

DUMMY is a null device which wilil accept output
lines and do nothing. On input, it returns with
an endfile condition. The pseudodevice is useful
for routing unwanted output.

OSWIT 1/0 AND INTERRUPT STRUCTURE

134

32 OSWIT USER'S MANUAL

MSINK

Pseudodevice Description

Purpose: To allow write access to the master sink
device(terminal).
Ref by EMT(s): WRITEB

WRITE

Description: *MSINK* is similar to *SINK* except that:
1) It is always assigned to the terminal

2) It cannot be reassigned

OSWIT I/0 AND INTERRUPT STRUCTURE
135

OSWIT USER'S MANUAL 33

Purpose:

Ref by EMT(s):

Description:

MSOURCE¥

Pseudodevice Description

To allow read access to the master source
device(terminal).

READB

READ

MSOURCE is similar to *SOURCE* except that:
1) It is always assigned to the terminal

2) It cannot be reassigned:

OSWIT 1/0 AND INTERRUPT STRUCTURE

136

34

Purpose:

OSWIT USER'S MANUAL

MTS

Pseudodevice Description

To allow access to MTS

Ref by EMT(s): READB
READ
WRITEB
WRITE

Description: *MTS* allows user programs to communicate with
MTS via the modems connected to the LSI-lls. This
pseudodevice cannot be reassigned.

OSWIT I/0 AND INTERRUPT STRUCTURE

137

OSWIT USER'S MANUAL 35

Purpose:
Ref by EMT(s):

Description:

Exampie (s):

PRINT

Pseudodevice Description

To allow access to the line printer.

WRITE

Writing a record to *PRINT* will cause the line
printer to print the record, using the first
character for carriage control. Valid carriage
control characters are (+,-,9,1, ,0) and have the
same meaning as with MTS.

COPY PROGLIST *PRINT*

OSWIT I/0 AND INTERRUPT STRUCTURE

138

36

Purpose:

Ref by EMT(s):

Description:

Example (s) :

OSWIT USER'S MANUAL

READER¥

Pseudodevice Description

To allow access to the paper tape reader.

READB

Assigning *READER* to a unit number wili resuit
in the paper tape device being referenced. A
READB will resuit in a byte being read.

RUN TAPEREAD 0=*R¥*

OSWIT I/0 AND INTERRUPT STRUCTURE

139

OSWIT USER'S MANUAL 37

Purpose:

Ref by EMT(s):

Description:

Example (s) :

SINK
Pseudodevice Description

To ailow access to the current sink file or
device,

Depends on assignment.

Accessing *SINK* will reference the file or
device currently assigned to it. *SINK* is
assigned initially to *MSINK*, Any write
operation by an unassigned unit will default to
SINK,

RUN PROG2 1=*SINK*

Output written to unit 1 will reference the file
or device currently assigned to *SINK*,

OSWIT 1/0 AND INTERRUPT STRUCTURE

140

38

Purpose:

Ref by EMT(s):

Description:

Example (s) :

OSWIT USER'S MANUAL

SOURCE™

Pseudodevice Description

To allow access to the current source file or
device.

Depends on assignment.

Accessing *SOURCE* will reference the file or
device currently assigned to it. Initially,
SOURCE is assigned to *MSOURCE*. Any read
operation by an unassigned unit will default to
SOURCE,

RUN PROG 0=*SOURCE*

When PROG references unit 0, it will reference
the file or device assigned to *SOURCE*.

OSWIT I/0 AND INTERRUPT STRUCTURE

141

OSWIT USER'S MANUAL 39

Purpose:

Ref by EMT(s):

Description:

Example(s):

TRAIN
Pseudodevice Description

To allow access to the devices associated with
the train.

READW

Each word read from the train interface is passed
directly to the user program. The high order bit
of the word is set for a photocell interrupt and

reset for a throttle interrupt.

WRITEW

The word passed to WRITEW is written directliy to
the train interface.

This pseudodevice allows users to assign units to
the train devices which consist of:

1) Switches
2) Tracks
3) Photocells
4) Throttles
This pseudodevice cannot be reassigned. See READ,

WRITE, READW, and WRITEW EMT descriptions for the
calling procedures.

RUN TRAINPROG 6=*TN*

OSWIT I/0 AND INTERRUPT STRUCTURE

142

40 OSWIT USER'S MANUAL

5. TASKING AND TIMING

5.1 Tasking and Timing introduction

It is sometimes desirable to have many different activities
take place concurrentliy within the computer. Normal subroutine
calls cause suspension of the calling program until the called
program has returned. OSWIT allows several procedures to be
active at one time, without requiring the compietion of one
before another can execute. Procedures which can "live"
independently of other procedures are called tasks.

There is a wvariety of ways a task can be scheduled to
execute. It can be synchronized with the <clock, with the
procedure which first invoked it, or with some other procedure.
It may even be scheduled to execute asynchronousliy (triggered by
some external event or I/O completion).

Any task has both a scheduling attribute and a priority
attribute. The priority attribute specifies the relative
importance of each task in the colilection procedures being
executed. The basic tasking functions that are part of the OSWIT
system directives are:

AT Starts a task at a certain time of day
CANCEL Cancels the task

DEFINE Creates and defines a Task Control Bliock
DESTROY Cancels and destroys the TCB

EVERY Starts a task every intervai of time

IN Starts a task in an interval of time

LOCK Locks the active task to prevent pre-empting

ON Starts a task on the occurence of a condition
START Starts task immediately

WHENA Starts task when interrupt from channel A occurs
WHENB Starts task when interrupt from channel B occurs

UNLOCK Restores task's orginal status before LOCKing

The general meaning and use of these functions are described in
the following sections. A detailed description of these EMTs can
be found in Appendix B.

The CRASH tasking and scheduling statements are translated
into these EMTs by the CRASH compiler.

5.2 Task definition

Each task occurrence must be known to the operating system.
The DEFINE EMT creates a task control block (TCB) (a block which
contains information about the task, e.g., its starting address,
priority, time interval, etc.) and enters it in a DEFINED queue.
Up to 255 task control blocks may be allocated by OSWIT before
additional requests are ignored. A single piece of code may be
used by multiple tasks (multiple TCBs required) when it is

TASKING AND TIMING
143

OSWIT USER'S MANUAL 41

desired to use the code for more than a singlie type of event
occurrence. For example, a piece of code may be scheduled for
either of two types of asynchronous interrupts. Three operations
pertain to usage of tasks; (1) Task definition, (2) Task
scheduling and (3) task invocation. Task definition specifies to
OSWIT the existence and the attribute of a section of code that
is going to be used as a task. Task scheduling causes the task
to be entered into a scheduled queue where the task awaits for
some event that triggers the task to began execution. Task
invocation occurs, when some event causes the task to be enteved
into the execution gqueue. Task scheduling and invocation may
occur at the same time or at distinct times. For example, START
schedules and invokes the task concurently, while scheduling and
invocation for ON and EVERY occurs at distinctive times.

5.2.1 Task identifiers

Since the same piece of code may be defined to execute for
several different events, just giving the name or the address
does not uniquely specify which invocation of the task is meant
when it is referred to. Therefore, whenever a task is scheduled,
the scheduler returns a unique 1identifier for the ©particular
definition. Subsequently, the task 1is identified by its task
identifier.

B2 o2 Priority

An invoked task is entered into the collection of tasks
competing for execution. Since only one task may proceed at any
time the one selected to proceed is the one with the highest
priority. TIf a task with a higher priority is invoked, it pre-
empts the lower priority task until it is compieted. There 1is
neither time siicing nor sharing in OSWIT by the scheduler
during I/0. The highest priority task in competition for CPU
time will run to completion before any lower priority task can
proceed. Within a given priority level, tasks are started in the
same order in which they are scheduled.

It is recommended that user tasks be restricted to
priorities between 5 and 250. The other priorities are reserved
for system use. The main task (program) has priority of 10.

5.3 Task scheduling

Tasks are scheduied on the occurrence of some event. Event
types are grouped as folliows:

b2 synchronous
2. asynchronous
Synchronous events represent timed events. These events are

predictable in the sense that they are only time dependent.
Asynchronous events are those triggered by some external event

TASKING AND TIMING
144

42 OSWIT USER'S MANUAL

or I/0 compietion. These are time independent events.

Timing is handled by a programmable real time cliock 1in the
system. The <clock 1is a register 32 bits 1long that may be
programmed to contain any count between 0 and (2**32)-1. Every
clock tick (every 100 micro-seconds) decrements this register by
1. When a O to -1 transition occurs an interrupt is generated
and control is transferred to the task scheduler.

Each of the EMTs described below enters the task's TCB into
a scheduiing queue.

5.3.1 Synchronous scheduling
A, AT A task is started at certain time of day.
B. IN A task is scheduled at certain increments of

time from the instant that it was defined.
c. EVERY A task is scheduled to start periodically.

D. START A task 1is placed into the queue of tasks
competing for immediate execution.

5362 Asynchronous scheduling

A. ON A task is scheduled to start execution upon the
occurrence of some event. Such events occur
whenever an input-output unit signals the
computer that an I/0 operation has been
completed on a specified unit with a specific
return code. Possible return codes might be an
end-of-file, an end-of-disk, or a successful
I/0 compietion.

B. WHEN A task is scheduled to start execution after
the A or B interrupt from a device interface
card.

Once a synchronous or an asynchronous event occurs the
scheduler removes the task's TCB from the scheduling queue and
places it into the execution queue.

5.4 Task termination

After a task has been scheduled, it is @placed 1in a
scheduling queue. The task waits 1in this queue until the
appropriate event for the task occurs., Once the event occurs,
the task 1is removed from the scheduling gqueue and placed into
the executing queue. The task remains there until all of task
code has been executed and all the I/0 has been compieted. Tasks
can be terminated before executing by the CANCEL EMT or before
complete execution by the HALT EMT.

TASKING AND TIMING
145

OSWIT USER'S MANUAL 43

The CANCEL EMT calli cancels the task. If the task |is
currently proceeding or has been pre-empted by a higher priority
task, during 1its execution, it will be allowed to complete its
current execution. If, however, it is not in the execute queue,
it will be cancelled (TCB removed from Scheduling queue) and
never be allowed to proceed. Tasks may be rescheduled.

The HALT EMT call can be used to terminate the execution of
the currently active task. Tasks waiting in the scheduling queue
remain unaffected.

The DESTROY EMT call cancels the task and deallocates the
TCB. A DESTROYed task cannot be rescheduled without reDEFINEing
the TCB.

All tasks should be DESTROYed when they are no longer
needed. Each invocation of a scheduled task requires that a TCB
be maintained by the schedulier. There are only 255 of these task
control blocks available.

5.5 Locking and unlocking tasks

The LOCK EMT is used to lock the active task into an active
state. The task active at time of the <call will have its
priority raised to 250, effectively making it the highest
priority user task and giving it exclusive control. The UNLOCK
EMT call will restore the task's original priority. LOCK and
UNLOCK can be used to define critical regions, where task
interruption is undesirabie.

TASKING AND TIMING
146

44 OSWIT USER'S MANUAL

6. OSWIT FILE SYSTEM

6.1 File system overview

OSWIT has mechanisms for creating, destroying, renaming,
emptying, truncating, editing and cataloging files on the flioppy
disk. These mechanisms are provided in the OSWIT system wutility
programs.

Whenever OSWIT opens a file it creates several internal
tables, including a File or Device Usage Block (FDUB - a biock
which contains information about the file, e.g., logical unit,
buffers, etc.). OSWIT defines a file as a segeunce of logical
records placed in 512 ‘byte blocks on the disk. Each biock is
linked forward and backward with other blocks composing the
file. This system allows all files to be accepted as non-
contiguous blocks on the disk, thereby avoiding repacking the
disk. A file cannot exceed 255 blocks.

Each 1logical record begins with a-'singie byte containing
the true record length between 0 and 255 bytes. A single logical
record may overlap two file blocks. Special file control
records, such as end of file and checksums, are indicated by

using a record length of zero, followed by a code defining the
record. .

6.2 File naming conventions

File names are limited to 10 characters or less, which
consist of any combination of printable, uppercase characters.
Lowercase filenames can be <created without translation to
uppercase, but the OSWIT command intepreter translates the input
line to upper case. File names starting with an '*' are
designated by OSWIT as public files (see next section). Although
the user may define his own public files, they are generally
limited to system files.

OSWIT does not support any mechanism for distinguishing
data, object and source files. This function 1is the
responsibility of the user. One suggested approach is to append
a ".8" for source files, a ".0" for object files, and a ".D" for
data files to the file name.

6.3 QSWIT public files

Public files are any filename starting with an '¥*',
Although the wuser may define his own public files, this

designation is usually reserved for system files and utility
programs.

The only functional distinction between public and non-
public files is made by *FILESNIFF. Public files are not

normaliy 1listed 1in the £file directory unless explicitly
requested.

OSWIT FILE SYSTEM
147

OSWIT USER'S MANUAL

The following public files are available:

45

*ABSLOAD OSWIT absolute loader

*BLOKEDIT Disk block editor

*BOOT Bootstrap for copies of OSWIT other than the
one loaded by the hardware bootstrap

*BOOTLOAD OSWIT software bootstrap

*BITMAP OSWIT system file indicating the status of
blocks on the disk

*CATALOG OSWIT system file contains the file
directory of all files on the disk

*CRZAP Removes carriage returns from source files
originating on MTS

*DISKCOPY Duplicate disks

*EDIT Edit disk source files

*FILEFIX Repairs damaged disk file structures

*FILES11 Manages disk files

*FILESNIFF Prints file directory ‘

*[INK11 Links relocatable object files intoc absolute
load modules

* LOADCOPY Used in earlier versions of OSWIT to copy
object files from MTS

*OSWIT Current version of OSWIT

*PATCH Patches disk absolute load modules

*TEMPFILE1 Temporary scratch file used by utilities

*TEMPFILE?2 Temporary scratch file used by utilities

*TEMPFILE3 Temporary scratch file used by utilities

*TIME Reports the current time of day

*VERIFY Detects unusable disk blocks

*ABSLOAD, *BITMAP, *BOOTLOAD, *CATALOG, and *OSWIT are
system files that must always be present on the system floppy
disk. *ABSLOAD and *BOOTLOAD are used to boot the operating

OSWIT FILE
148

SYSTEM

46 OSWIT USER'S MANUAL

system contained in *OSWIT. *BITMAP is system file that records
the current status (used or unused) of all disk biocks. *CATALOG
is a system file that contains a directory of ail disk filies.

In order for the wuser to wutilize disk files, *EDIT,
*FILEFIX, *FILES1ll and *FILESNIFF should also be present on the
floppy disk. These files will allow editing, repairing, filie
management and cataloging of disk files. In addition,
*TEMPFILEl, *TEMPFILE2, AND *TEMPFILE3 are used by some of the
utilities as temporary work files, The ©publiic wutility program
files are described in detail in the following chapter.

6.4 File protection

The OSWIT file system does not support any method of
protecting files. The hardware, however, provides some degree of
protection. All the files on the floppy are protected when the
disk is write protected or unprotected when the disk is write
enabled. The user should always leave the disk write protected
unless he explicitly wants files written. -

OSWIT FILE SYSTEM
149

OSWIT USER'S MANUAL

47

7. OSWIT UTILITY PROGRAMS

Utility programs overview

Utility

) programs provide additional wuser support not
provided in the operating system. These wutilities are public
files written in CRASH and/or assembly language.

The utility programs are:

*BLOKEDIT Disk block editor

*BOOT Bootstrap for copies of OSWIT other than the
one loaded by the hardware bootstrap

*CRZAP Removes carriage returns from source files
originating on MTS

*DISKCOPY Duplicate disks

*EDIT Edit disk source files

*FILEFIX Repairs damaged disk file structures

*FILES11 Manages disk files

*FILESNIFF Prints file directory

*LINK11l Links relocatable object files into absolute
load modulies

*LOADCOPY Used in earlier versions of OSWIT to copy
object files from MTS

*PATCH Patches disk absoiute load modules

*TIME Reports the current time of day

*VERIFY Detects unusable disk blocks

utilities are described in detail 1in the following

section. The most commonly used utilities are *FILES1l, *EDIT,
*FILESNIFF and to a lesser extent *TIME and *BOOT. Each of these

utilities have a prompt character, different than OSWIT, ODT or
the DEBUG package.

OSWIT UTILITY
150

PROGRAMS

48

7.2 OSWIT

OSWIT USER'S MANUAL

utility program descriptions

Purpose:

*BLOKEDIT

Utility Program

To allow editing of the data on physicai disk
biocks.

Logical I/0 Units Referenced:

Description:

OSWIT

SCARDS - Read user commands
SPRINT - Output information

This 1is an interactive program toc ailow display
and modification of disk blocks. The program
contains a single block buffer that may be
displayed, altered, filled with a constant,
written to disk, or read from disk. The command
summary is as follows:

ALTER <offset> <valued> [<valued> <value>]
This will allow the user to alter
consectutive locations in the buffer
starting <offset> words from the beginning.

FILL <value>

To £ili the buffer with the specified value.

DISPLAY <offset> [<count>]

This will display the specified part of the
buffer in octal. Offset 1is the number of
words to offset from the start of the buffer
and count is the number of words to be
displayed. If <count is omitted then 1 word
is displayed.

READ <disk addr>

UTILITY PROGRAMS
151

OSWIT USER'S MANUAL

Example(s) :

49

This command will read the specified disk

block into the buffer.

WRITE <disk addr>

This will write the buffer into
specified disk block. The third word of
buffer will be altered to contain
correct checksum.

Note - All number are octal.

RUN *BLOKEDIT

EXECUTION BEGINS

READ 1000

DISP 10 4

ALTER 12 12 34 -3

WRITE 1004

<CNTL-C>

OSWIT UTILITY PROGRAMS

152

the
the
the

50 OSWIT USER'S MANUAL

*BOOT

Utility Program

Purpose: To allow copies of the operating system other
than the one loaded by the hardware to be used.

Logical I/O Units Referenced:

None.

Description: This program will attempt to ioad the file given
in the PAR field as a new operating system. If
there is no PAR field specified, then it will
default to booting *OSWIT. If the file specified
does not <contain a valid operating system then
the current core image will be destroyed and you
will end up in ODT.

Example (s) : RUN *BOOT
RUN *BOOT PAR=*QSWIT24K

OSWIT UTILITY PROGRAMS
153

OSWIT USER'S MANUAL 51

Purpose:

*DISKCOPY

Utility Program

To duplicate a floppy disk.

Logical I/O0 Units Referenced:

Description:

Example(s):

SCARDS -~ Reads start copy command.
SPRINT - Output messages.

The original disk should be placed in the main
drive and the new disk in the auxillary. Also the
write protect on the auxillary drive should be
off.

When return is hit, the copy operation will
start. Due to copying a full track at a time the
copy will be completed in about 30 seconds. If
any errors occur the copy will be aborted at that
point. Entering another return will attempt to
recopy the disk.

If control-C 1is pressed the program will

terminate by doing a «cold start of OSWIT to
restore the disk vectors.

RUN *DISKCOPY

OSWIT UTILITY PROGRAMS
154

52

Purpose:

OSWIT USER'S MANUAL

*EDIT

Utility Program

To edit source files on the floppy disk.

Logical I/0 Units Referenced:

Description:

OSWIT

SCARDS - Editor command input.
SPRINT - All editor responses.

*EDIT 1is an 1interactive program to allow the
editing of source files on the floppy disk. The
*EDIT program requests the name of the fiie to be
edited. The *EDIT program will take lines from
the specified input file, perform the requested
operation on the 1lines and places the edited
lines into a *TEMPFILE. Uniess the UPDATE command
is given, the orginal file remains unchanged. The
TOP command is used to re-edit the beginning
lines of the file. After each *EDIT command, the
lines in the newly edited fiie are changed
accordingly and placed into another *TEMPFILE.
The command syntax is as follows:

ALTER lpar [stringl<delid>string2<deil>]
DELETE lpar

INSERT lpar

OSWIT

PRINT lpar

REPLACE lpar

SCAN lpar [<dei>stringl<dei>]

TOP

UPDATE

number

A description of these commands follows:

ALTER lpar [stringlstring2]

The ALTER command will change the first
occurance of STRING1l to STRING2 in each line
for all lines in the given line range. All
altered strings are echoed. If an altered
string 1is not entered, the previous altered
string will be used. DEL can be any
character, If no changes were made the user
is prompted for a new command.

UTILITY PROGRAMS
155

OSWIT USER'S MANUAL 53

DELETE lpar .

The DELETE command removes all lines
specified by lpar from the file.

INSERT lpar

The INSERT command inserts lines into the
file after the 1line specified by 1ipar.
Fractional 1line numbers are not allowed. A
carriage return will end the insert.

OSWIT

The OSWIT command returns to OSWIT. All
changes are stored in *TEMPFILEl or
*TEMPFILE2.

PRINT lpar

The PRINT command is used to print lines in
the file specified by lpar.

REPLACE lpar

The REPLACE command will replace the given

line number range with the 1lines entered.

The 1line to be replaced is echoed. The user .
is then prompted with a question mark for

the input line to replace the echoed liine.

If a carriage return is given on input the

replace process stops.

SCAN lpar ([stringl]

The SCAN command will search the lpar range
and print all occurances of STRINGl. If
STRING1 is omitted, the previous scan string
will be used. No checking is made for no
lines found. If the search fails, the user
is prompted for a new command.

TOP
The TOP command updates the *TEMPFILE and
opens it at the top. If the user has done
editing and wishes to INSERT at line 0 then
he must issue the TOP command.

UPDATE

The UPDATE command updates the file being
edited with all changes made. If this
command is not entered, the edited fiie |is

OSWIT UTILITY PROGRAMS
156

54

Example (s):

OSWIT

OSWIT USER'S MANUAL

stored 1in either *TEMPFILEl or *TEMPFILE2
upon return to OSWIT.

number

The 'number' command changes the current
line to the current line + number and prints
the current line. The number can positive or
negitive.

LPAR can be null, contain one line number or
contain two iine numbers which specify a 1iine
range. Line numbers must be non-fractional and
positive. Lines are pseudo lines since the files
are all sequential. For this reason automatic
renumbering takes piace after De.ietes and
Inserts, g

*EDIT

:THIS:
END

= >»ooa
2

DS
UPDATE

UTILITY PROGRAMS

157

OSWIT USER'S MANUAL 55

Purpose:

*FILEFIX

Utility Program

To try and repair damaged disk file structures.

Logical I/0 Units Referenced:

Description:

GUSER - Reads user input to prompt messages.
SERCOM - All printed output from FILEFIX.

This program will trace all files on the disk in
the main drive. When an error is found the user
is told the file it occured in and the disk
address. Then the user will be prompted as to
whether the file shouid be fixed. Fixing consists
of chopping the file off at the point of the
error and emptying it. If the user reponds vyes,
the file will be fixed, but if the answer is no,
then FILEFIX will attempt to ignore the error and
go on, If the error was serious enough, FILEFIX
may hang and have to be interrupted. If the
reason for answering no was that the data in the
file 1is needed , then the user can try to copy
the damaged file to another before . running
FILEFIX again. This may or may not work depending
on the severity of the error.

The user 1is asked if he wants a full trace
map upon program startup. If the answer 1is vyes
then every block traced by FILEFIX will be
printed. Use of this option %X the general user
is not recommended since the information is not

useful unless manual repair of the file by some

other means i1s to be attempted.

After «completing the file trace a check is
made to see if there are any files occuping the
same disk address. If any are found, the user
should destroy both files after FILEFIX is done.
Once again, recovery of the data may or may not
be possibie before the files are destroyed.

The third phase finds and corrects any
discrepencies between the bitmap and the actual
storage used on the disk. A 1list of all
discrepencies will be printed.

Note - FILEFIX does not currently correct any

erroneous information in the catalog. So if a

OSWIT UTILITY PROGRAMS
158

56 OSWIT USER'S MANUAL

FILESNIFF bitmap and cataiog
disagreed before the fix they
disagree.

Example (s) : RUN *FILEFIX

OSWIT UTILITY PROGRAMS
' 159

block
wilil

count
stili

OSWIT USER'S MANUAL 57

Purpose:

*FILESNIFF

Utility Program

To print information about the files on the disk
in the main drive.

Logical I/O0 Units Referenced:

Parameters:

Description:

SPRINT - The file information .
SERCOM - Fatal open error messages(should not
occur)

The par field is used to specify what files are
to be sniffed.

If no par field is specified then all files that
do not begin with an asterisk will be sniffed.

When "PAR=*" is specified all files on the
disk will be sniffed. Also the number of blocks
allocated to ail files listed in the catalog,
number of blocks listed in the bitmap, and the
number of free blocks remaining will be printed.

Note - for "PAR=*" the number of blocks listed in
the catalog should equal the number of blocks in
the bitmap. If they do not then the file
structure on the disk is defective.

If "PAR=filename" 1is specified then only
that particular file 1is sniffed. If the file
doesn't exist then an appropriate message is
printed out.

When "PAR=FI?" 1is specified, all files
beginning with the characters "FI" are sniffed.
The "?" may appear only as the last character of
the file name fragment. I£"PAR=?" is specified,
the resultant action is the same as "PAR=*",

When "PAR=FULL" 1is specified, ail non-
asterisk files are sniffed as when no "PAR="
field 1is specified. However, extended file
information is printed out -~ file size, truncated
size, extended size, and start address. When
"FULL" is appended to any parameter field, this
extended information is printed out.

OSWIT UTILITY PROGRAMS
160

58 OSWIT USER'S MANUAL

' Exampie(s): RUN *FILESNIFF PAR=%*

RUN *FILESNIFF PAR=0S?FULL

(FILE NAME) (FILE SIZE) (TRUNC SIZE) (EXT SIZE)

= 0S.V4.0 60 45 60
= 0S.V4.1 64 64 60
= 0S5.V4.2 66 46 66

=150 BLOCKS LISTED IN *CATALOG

=250 BLOCKS LISTED IN *BITMAP

=232 FREE BLOCKS

RUN *FILESNIFF SPRINT=FILEINFO PAR=PROBLEM1
RUN *FILESNIFF PAR=FULL

= (FILE NAME) (FILE SIZE) (TRUNC SIZE) (EXT SIZE)

=X 10 3 10
= SWFLIP 1 1 1
= TRAININT 1 1 1
‘ = 0S 60 45 60
= V3.1 64 64 60
= V2.6 45 45 70

=181 BLOCKS LISTED IN *CATALOG
=265 BLOCKS LISTED IN *BITMAP
=247 FREE BLOCKS

OSWIT UTILITY PROGRAMS
161

OSWIT USER'S MANUAL 59

*FILES1l .

Utility Program

Purpose: To allow the wuser to create, destroy, empty,
truncate, and rename files.

Description: *PILES11 is an interactive program to alliow file
manipulation by the user. The command syntax |is
as foilows:

CREATE filename [size]

DESTROY filename [!,O0K,0.K.]

EMPTY filename [!,0K,0.K.]

OSWIT

RENAME filenamel filename2 [!,0K,0.K.]
TRUNCATE filename

A description of these commands follows:

CREATE filename [size]

The CREATE command is used to create a file
on the floppy disk. If size is not
specified, then it is created with a size of
1 block (512 bytes long). Otherwise it is
created with the number of blocks specified.
The initial size of the file 1s also the
amount by which the file will be extended
when necessary. The size of a file cannot
exceed 255 blocks. The filename is limited
to 10 characters in length. If the specified
filename already exists then an error
message will be printed.

DESTROY filename [!,0K,0.K.]

The DESTROY command will remove a filename
entry from the catalog and release its
blocks to the free block pool. If
confirmation is not given on the destroy
command a prompt will be issued. Any
responses other than expected will cause the
command not to be executed., An error will
occur if the filename specified does not
exist. 1If the optional parameters are
omitted, then confirmation 1is required
before the file is destroyed.

OSWIT UTILITY PROGRAMS
162

60 OSWIT USER'S MANUAL

EMPTY filename [!,0K,0.K.]

The EMPTY command will empty a file by
writing an end of file mark as the first
thing in the file. The size of the file does
not change when it 1is emptied, but the
truncate size is set to 1. If the specified
filename does not exist then an error
message will be printed. Confirmation is
required as in the destroy command.

OSWIT

The OSWIT command will return control to
OSWIT without wunloading the program. If a
end-of-File 1is typed (cnti-c¢) then the
program will be uniocaded and controi passed
to OSWIT. .

RENAME filenamel filename2 [!,0K,0.K.]

The RENAME command will change the name of a
file from filenamel to filename2. An error
occurs if filenamel does not exist or if
filename2 already exists. Confirmation is
required as in the destroy command.

TRUNCATE filename

The TRUNCATE command is used to free unused
blocks at the end of a file. The freed
blocks are returned to the pool of available
blocks. TIf the specified filename does not
exist then a error message will be printed.
An empty file has a size of 1.

Example(s) : RUN *FILES11

CREATE FILE1l

CREATE OXSNARD 50
DESTROY OXSNARD OK
TRUNCATE FILEl
EMPTY FILEl O.K.
RENAME FILEl PTAVV !

OSWIT UTILITY PROGRAMS
163

OSWIT USER'S MANUAL 61

Purpose:

*LINK11

Utility Program

To link relocatable object files into an absolute
load moduie.

Logical I/0 units Referenced:

Description:

GUSER - Commands for the link-editor are read
through this unit.
SERCOM - Errors and other linkage information are
output here.

The link editor is designed to be an interactive
program, although it can also read it's commands
from devices other than the consoie by
reassigning GUSER. This program requires a fairly
iarge amount of memory to operate {at least a 24K
system), so as much memory should be made
available as possible (eg. SET DEBUG=0OFF). A
stack size of 1024 bytes is sufficient.

The basic commands accepted by the link
editor are as follows:

CLEAR

LINK <FILENAME>

MAP [<FILE OR DEVICE>]
SET <SYMBOL> <VALUE>
SYMBOL <SYMBOL NAME>
SToP

WRITE <FILE OR DEVICE>

* o)

A description of these commands follows:

CLEAR

To clear out any previously linked programs
from the 1link editors symbol table. This
command 1is done automatically when the
program is started, it is needed only to
generate multiple l1oad files or to erase bad
input from the symbol tabie.

OSWIT UTILITY PROGRAMS
164

62

LINK

OSWIT USER'S MANUAL

<FILENAME>

This command will cause the specified file
or device to be read and all of it's symbol
and relocation information to be stored. the
filename is also stored for use when a write
command is issued.

MAP [<FILE OR DEVICE>]

To produce an octal 1load map of all the
symbols currently in the symbol tablie. If
the optional file or device name 1is given
then the map will be written on that file or
device.

SET <SYMBOL> <VALUE>

stoe

This command is used to set the current load
address and entry point. If the symboli "@"
is specified the next module to be 1linked
will be 1linked starting from the specifed
address. As each module 1is read the "@"
pointer is automatically advanced. The
defauit value of this symbol is octal 400.
It 1is set to this value when the program is
started or when a clear command is issued.

If the symbol "#" 1is specified the
entry point will be set to the specified
value. The entry point is set to 2zero when
the program is started and when a clear
command is issued. This value will be set to
the start of the first csect if it has not
been changed by an entry on an END card or
by the set command. The final value will be
that given on the last end card read or last
entry command given. If neither of these
modified the at point then it will point to
the first csect linked.

To terminate execution of the program.
Reading an endfile from GUSER will have the
same effect.

SYMBOL <SYMBOL NAME>

This command will cause the value of the

OSWIT UTILITY PROGRAMS

165

OSWIT USER'S MANUAL

Example(s):

WRITE

J

RUN *
LINK
WRITE
MAP S
STOP

RUN *
SET @
SET #
LINK

&

* THE
LINK

SET @
LINK

WRITE
CLEAR
LINK

WRITE
STOP

63

specified symbol to be printed. If the the
symbol is currently wundefined then an
appropriate message is printed.

<FILE OR DEVICE>

When the write command 1is issued a check
will be made to see if all symbols have been
resolved. Any unresolved symbols will be
printed and the write will be aborted.

A second pass is made through all the
files to extract all the text information.
As this information is read the locad module
is generated and written on the specified
file or device.

This command will cause a 1list of all
unresolved symbols to be printed.

Any text folowing an asterisk is regarded as
a comment and will be ignored.

Note - there must be at least one blank
immediately after the asterisk.

LINK11
SERVO.OBJ
SERVO. LOAD
ERVO.MAP

LINK11
400
1000

FILEl

UNRESOLVED SYMBOLS WOULD BE PRINTED HERE.
FILE2

10000
FILE3

FILE4

YAAA
YYY

OSWIT UTILITY PROGRAMS
166

64

Purpose:

OSWIT USER'S MANUAL

* LOADCOPY

Utility Program

To read a load file byte by byte and convert it
to load records.

Logical 1I/0 Units Referenced:

Description:

Example (s):

OSWIT

SCARDS - The load file to be copied.
SPUNCH - Where to write the load records.
SERCOM - Completion and error messages.

This program will input a byte oriented ioad file
and output a record oriented ioad file. The paper
tape reader (*READER*) and MTS (*MTS* OSWIT version
2.6) are byte oriented devices. It is illegai to
just issue a copy on these devices. The input |is
checked for the following errors:

1 - Checksum errors.

2 - Premature end of file on scards

3 - Missing or invaiid start record.
RUN *LOADCOPY SCARDS=*MTS* SPUNCH=MYLOADFILE

RUN *LOADCOPY SCARDS=*READER* SPUNCH=ATAPELOAD

RUN *LOADCOPY SCARDS=NEWOS SPUNCH=*0OSWIT
SERCOM=*DUMMY*

UTILITY PROGRAMS
167

OSWIT USER'S MANUAL 65

Purpose:

*PATCH

Utility Program

To make patches to floppy files containg absolute
load modules.

Logical I/0 Units Referenced:

Description:

Example(s):

GUSER - To read patch statements from the user.

When started the program will be in file request
mode. The user should enter the name of the file
to be patched. If a legal name 1is entered then
patch mode will be entered. Otherwise a new
filename will be requested. If a contrel-c |is
entered the program will terminate execution.

There are two legal commands in patch mode,
ALTER & CSECT. These commands operate identically
to Tthose in the OSWIT debugger. All ALTER
commands are converted to load records and stored
in the file being patched so the next time the
file is loaded the patches will be in place. If a
control-C is entered while in patch mode, control
will revert to file request mode.

RUN *PATCH

EXECUTION BEGINS

ENTER NAME OF FILE TO BE PATCHED.
?SUPERTRAIN

) CSECT 400

) ALTER +20 137 +1254

) AR 20 100

y [CNTL-C]

ENTER NAME OF FILE TO BE PATCHED.
2?2 [CNTL-C]

EXECUTION TERMINATED

OSWIT UTILITY PROGRAMS
168

66 OSWIT USER'S MANUAL

*TIME

Utility Program

Purpose: To print the current time of day.

Logical I/0 Units Referenced:

SPRINT - all program output

Description: The contents of the time of day clock will be
converted to a text string and written out.

Example (s) : RUN *TIME
EXECUTION BEGINS
TIME=21:34:16.3945
EXECUTION TERMINATED

OSWIT UTILITY PROGRAMS
169

OSWIT USER'S MANUAL 67

Purpose:

*VERIFY

Utility Program

To detect unusable blocks on a floppy disk.

Logical I/O Units Referenced:

Description:

Example(s) :

SPRINT - All bad block information output.

This routine will scan the disk in the main drive
for bad disk blocks. It will first read the block
to be tested into a buffer. Then a test pattern
will be written out and verified. Next the
complement of the test pattern wil be written and
verified. Finally the original block contents
will be written out and verified.

The message "read error" will be printed 1if
the block <contained a bad checksum. The message
"write error" will be printed every time a write-
verify operation fails.

This program takes about 9 minutes to
because of the large number of 1/0 operations.

1s not recommended that ~ this program
interruped since a test pattern could get left

a1
|;1sz|:ls

an unfortunate spot on the disk.

RUN *VERIFY

OSWIT UTILITY PROGRAMS
170

OSWIT USER'S MANUAL

Appendix A: OSWIT ERROR MESSAGES

Illegal memory reference (bus time out)
Illegal instruction

Floating point exception

Bad EMT number

Buffer system impure

There is nothing to restart
Command unknown

End of disk on write

Buffer overflow

Stack size too big

Error in set command

Incorrect format for filename
File doesn't exist

MTS is not connected

Missing or bad parameter or filename
Checksum error during loading
Missing or invalid start address
There is no program loaded

Input iine len >255

Illegal unit

Illegal file assignment string format
Tasker - no buffers

Tasker - undefined ID

Tasker - time CO

Tasker - stack error

***Task rescheduling has occurred
Illegal device for EMT WHEN

No buffer for I/0 queueing

Unit NN: bad I/Otype

Byte bof has run out of buffer
RC not 2 when I/O queued

Disk read error

Write verify error

Bad file structure

Open getbuf error

Disk removed while no I/0

Grow getbuf error

SRCHCAT catalog file error
Squeeze gelfat error

Squeeze disk read error

Finfo getbuf error

Finfo disk read error

Finfo disk write protect

Finfo write error - will retry

OSWIT ERROR MESSAGES
171

OSWIT USER'S MANUAL 69

Appendix B: OSWIT SYSTEM DIRECTIVES

7.3 System directive overview

All LSI-11 operation codes from 1040008 to 1043778 are EMT
instructions. These instructions represent supervisor "calls"
which transmit information to OSWIT to perform predefined system
functions. When an EMT is encountered, the processor traps to
the EMT trap vector liocated at 308, 1loads the EMT handler
routine address from 308 and the new processor status word from
328 and executes the EMT routine handler. This handiing routine
in OSWIT transfers control to specified routine to perform the
pre-defined system function. Control is subsequently returned to
instruction after the EMT instruction. ‘

For a complete description of the EMT instruction and the
LSI-11 interrupt facility see DEC's Microcompuer Manual, 1976.

The next section describes the EMT routines incorportated
into OSWIT.

OSWIT SYSTEM DIRECTIVES
172

70

OSWIT USER'S MANUAL

7.4 EMT Descriptions

Purpose:

at

EMT Routine

To schedule a task at a particular time of day.

Calling Paramters:

Remarks:

Example (s) :

Error(s):

OSWIT

e

(sp)+4
lo 16 bits of time of day

(SP)+2
hi 16 bits of time of day

(SP)
task ID

This routine will scheduie a task to be started
at the time of day specified. The time 1is the
number of hundreds of micro-seconds since
midnight. It must be a positive 32 bit integer
less than 864,000,000(24*3600*10000).

The EMT number of this routine is 42.

*

6 PM = 18*%3600*10000 = 9887*(2**16)+45568

MOV =45568,~-(SP) PUSH TLO

MOV =9887,~-(SP) PUSH THI

MOV ID,~-(SP) PUSH TASK 1ID

EMT AT SCHEDULE THE TASK

An error will occur if an illegal ID is passed to
the tasker.

SYSTEM DIRECTIVES
173

72 OSWIT USER'S MANUAL

BIN20O
"EMT Routine
Pﬁrpose: To convert one binary word 1into octal ASCII
characters.
Calling parameters:

SP+4
word to be translated

SP+2
: size of buffer area

SP
: address of buffer area

Return parameters:

The converted word is returned in the buffer and
the stack is clear.

Remarks: The word is translated into octal ASCII
characters and placed right justified into the
fieid. If the field 1is too small it will be
filled with asterisks. If the field is too large
it will be padded on the left with blanks

The EMT number for this routine is 1.

Example(s): MOV VALUE,- (SP)
PUSH VALUE
MOV =BUFFER, - (SP)
PUSH BUFFER ADDRESS

MOV =2,-(SP) PUSH SIZE
EMT BIN20O GO DO IT
VALUE DC 0'177777!
BUFFER DS 2C BUFFER

The result of this run will piace ** in buffer
because the field is too smalil.

Error(s): The field will be filled with asterisks on field
overflow.
OSWIT SYSTEM DIRECTIVES

174

OSWIT USER'S MANUAL 73

Purpose:

CANCEL

EMT Routine

To cancel any further executions of a particular
definition of a task.

Calling Paramters:

Remarks:

Example(s):

Error (s):

(SP) : task ID

This routine will cancel any further executions
of the specified ID. If the task 1is currently
executing it will be allowed to finish. The TCB
will be removed from all scheduliing gueues.

The EMT number of this routine is 40.

MOV IDb,-
(SP) PUSH THE TASK 1D
EMT CANCEL CANCEL THE TASK

An error will occur 1if a 1illegal task ID is
passed.

OSWIT SYSTEM DIRECTIVES
175

74

Purpose:

OSWIT USER'S MANUAL

CLOSE
EMT Routine
To disconnect an internal unit number from a file

or device, and reconnect the unit to the default
device (*MSOURCE* or *MSINK*).

Calling parameters:

SP
the unit number

Return parameters:

Remarks:

Example(s) :

Error (s):

OSWIT

None
A singlie unit specified must be between 0 and 30.

All units may be closed by specifying a negative
unit number.

The EMT number for this routine is 15.

MOV =10,-(SP) CLOSE LOGICAL UNIT
EMT CLOSE
BCS BADUNIT IF ERROR

If an illegal unit number occurs the C BIT is set
to "1".

SYSTEM DIRECTIVES
176

OSWIT USER'S MANUAL 75

Purpose:

DEFINE

EMT Routine

To create a task control block (TCB) and enter it
in the DEFINED queue.

Calling parameters:

(SP) +6 : processor status to start task
with

(SP) +4 : priority of task (0-255)

(sp)+2 : starting address of task being
defined

(SP) : address of word to store task 1ID
in

Return paramters:

Remarks:

The task ID 1is returned 1in the specified
ilocation.

This routine makes a task occurence known to the
operating system. A TCB is allocated and entered
into the defined queue. The address of the TCB
will be returned 1in the location specified for
the ID. The ID of the main task will be in
register 0 when it is started by a RUN or a START
command (Note - the address of the PAR string is
in R1l).

The starting address of the task is where a
task will be entered when it becomes active.
Multiple definitions of a single task can be
accomplished by making more than 1 call to DEFINE
with the same starting address since a task is
identified by 1its 1ID, not by its starting
address. This 1is wuseful if it 1is desired to
initiate a task on more than one occurence of an
event type. Examplies might be to have a task
scheduled every 3 seconds and every 5 seconds, or
to schedule a task on multiple WHEN conditions.
Event types are grouped as folliows:

1) timed events
2) ON and WHEN events

A single task definition may be gqueued on only

OSWIT SYSTEM DIRECTIVES
177

76

Example(s) :

OSWIT

OSWIT USER'S MANUAL

one of each event type. To go higher you need
multiple definitions. However to wuse multiple
TCB's the task must be reentrant.

A single task definition may be schedulied
for more than one execution. This can come about
by a task scheduling itself, a burst of events,
or a scheduling request coming in while the task
is blocked by a higher priority task. The maximun
number of times a single TCB can be scheduled at
one time is 255. Any further requests are ignored
until the count drops below 255.

The priority determines the order that tasks
are executed once scheduied. Scheduled tasks will
be activated 1in order of decreasing priority.
Within a priority level they are started 1in the
same order they were scheduled. Scheduling policy
is such that no lower priority task can take
control from a higher or same priority task, even
if the higher or same priority task is blocked by
I/0 or some other process. It is recommended that
the user tasks restrict themselves to priorities
5 through 250. The other priorities are reserved
for system use. The main task will be started
with a priority of 10.

The processor status allows tasks to be
started with interrupts ON or OFF. Except for
special cases tasks should run with interrupts
ON.

The EMT number for this routine is 33.

CLR =
(SP) PUSH PROCESSOR STATUS(ION)
MOV =25,-(SP) PUSH PRIORITY
MOV =TASK, -
(SP) PUSH ADDRESS OF TASK
MOV =ID,-
(sP) PUSH ADDRESS OF ID
EMT DEFINE DEFINE THE TASK
TASK EQU L ENTRY POINT OF T
ID Ds H STORAGE FOR TASK
SYSTEM DIRECTIVES

178

OSWIT USER'S MANUAL 77

Purpose:

DESTROY

EMT Routine

To cancel any further executions of a task
definition and to destroy the TCB.

Calling Paramters:

Remarks:

Example (s) :

Error(s):

(SP) : task ID

This routine will cancel any further executions
of the specified ID. If the task 1is currently
executing it will be allowed to finish. As soon
as it finishes the TCB will be destroyed(the 1ID
will no longer be valid).

The EMT number of this routine is 41.

MOV ID,-
(SP) PUSH THE TASK ID
EMT DESTROY DESTROY THE TASK

An error will occur if an illegai ID is passed.

OSW%?Q SYSTEM DIRECTIVES

78 OSWIT USER'S MANUAL

DSKIO .

EMT Routine

Purpose: DSKIO performs physical block transfers with the
fioppy disk wunit. This is not the normal way of
doing I/0 to the disk (see Tnstead OPEN, READ,
WRITE, WAIT, etc.)

DSKIO handles queing of all I/O for a given disk
unit, on strictly a first in, first served basis.
It will perform three commands: READ, WRITE, and
WRITE-VERIFY. DSKIO does all handling of the
block checksum. It generates it for a WRITE or a
WRITE-VERIFY, and checks it on a READ. A WRITE-
VERIFY operation 1is accomplished by a WRITE
followed by a READ, and then a word by word
comparison.

Calling parameters:

SP
: address of DSKBUF (see figure 1)
Rl
: points to PHYTAB entry for disk ‘

Return parameters:
None (from the EMT)

Remarks: DSKIO queues the request and does an immediate
return to the <calling task. Upon the interrupt
from the disk after a READ, WRITE or the READ
portion of a WRITE-VERIFY cperation: DSKIO will
check the checksum and verify as necessary, and
then do a JMP to the user's program at the
address specified by DSKENT (see figure 1). On
the stack will be:

SP : ADDRESS OF dskbuf
SP+2 : ADDRESS OF THE phytab FOR THE DISK
SP+4 : PC of interrupted task
SP+6 : PS of interrupted task
The current PSW will indicate errors as folilows:
C-BIT set 3

the checksum is incorrect on a READ or the block does not verify

on a WRITE-VERIFY. .

OSWIT SYSTEM DIRECTIVES
180

OSWIT USER'S MANUAL

V-BIT set -

79

unablie to get required buffer to perform read back and
verification on a WRITE-VERIFY.

data format:

the parameters

for DSKIO ar organized as 1in

figure 1, usually in the form of a DSECT.

DSKBUF
DSECT

DSKLINK
DS A

DSKCMND
DS F

DSKCNT
DS F

DSKENT
Ds A

DSKBLOCK
EQU *

DSKLINKB
DS F

DSKLINKF
DS F

DSKCHKSM
DS F

DSKDATA
DS 253F

DSKLINK

LINK TO NEXT I/O REQUEST

COMMAND TO PERFORM

OF WORDS TO TRANSFER

ADDRESS TO GO TO WHEN DONE

DISK I/0 STARTS HERE

BACKWARD LINK (DISK ADDR)

FORWARD LINK (DISK ADDR)

CHECKSUM

ACTUAL DATA GOES HERE

figure 1

strictly for DSKIO's internal use in

queing up requests.

DSKCMND is the command DSKIO is to perform, which

is specified as follows:

X XYY YYZ 222 Z2Z 220

where XX is:

00 READ

OSWIT SYSTEM

DIRECTIVES
181

80 OSWIT USER'S MANUAL

01 WRITE .

10 READ-(NO CHECKSUM CHECKING)

11 WRITE-VERIFY
where YYYY is reserved for future expansion ?22?2?2?
where Z ZZZ 22ZZ ZZ0 is the block number to transfer

DSKCNT 1is the number of words to transfer:
3DSKCNT256. specifing DSKCNT<K256
is egquivalent to padding the last
256~-DSKCNT words with 0's (on a
write only). The DSKCNT specified
for a READ should be the DSKCNT
specified when that block was
written, otherwise a checksum
error will (should) occur.

DSKENT 1is the address jumped to by the interrupt
handler when this I/0 request is
complete (see operation
description).

DSKBLOCK The next DSKCNT words are what actually
get transfered to/from the disk, .

DSKLINKB is the pointer to the previous disk
block in a logical file structure.

DSKLINKF 1is the pointer to the next disk block
in a logical file structure. DSKIO
will, when there 1is no quequed
I/0, perform a SEEK on the block
specified by DSKLINKF (if non-
nuil) of the last biock
transfered. If the DSKLINKB and
DSKLINKF are not being used, they
should be set to null links (f"-
1SN

DSKCHKSM 1is the checksum returned from a READ or
space for the checksum generated
on a WRITE.

DSKDATA 1is DSKCNT-3 words of whatever you like.

The EMT number for this routine is 31.

Exampie (s) :

MOV @=DISKVEC,RO GET ADDR OF DISK .

OSWIT SYSTEM DIRECTIVES
182

OSWIT USER'S MANUAL

(5P)

INT

FLAG

MYBUF

TST (RO} +
MOV @RO,R1
MOV =MYBUF, -
PUSH DSKIO BUFFER ADDR
CLR FLAG
EMT DSKIO
TST FLAG
BEQ *-4
CMP (SP)+, (SP) +
INC FLAG
RTI
DS F
DS F
DC 0'1776"
DC F"256"
DC A"INT"
DS 256F
OSWIT SYSTEM

183

81

BUMP PTR TO POIN
FETCH PHYTAB ADD
INIT DONE FLAG
START THE I/O
CHECK IF I/O DON

LOOP IF NOT

THROW AWAY PHYAD
SET DONE FLAG
RETURN

LINK SPACE FOR D
READ BLOCK 1776

256 WORDS TO TRA
INTERRUPT HANDLE

THE ACTUAL DATA

DIRECTIVES

82 ' OSWIT USER'S MANUAL

D2BIN

EMT Routine

Purpose: To convert an ASCII character string of decimal
digits to its equivalent two's complement value.

Calling parameters:

SP+2
field iength to scan

SP
: address of word to convert

Return parameters:
If the C BIT is clear then:

Sp
: the binary value of the number converted

SP+2
the address of the character which caused
conversion to stop

otherwise the stack is clear.

Remarks: The first characters may be blanks, a + sign, or
a minus sign. Thereafter all characters must be
decimal ASCII characters until the number
terminates, or the field iength is exhausted. The
range on the numbers to convert is 32767 to -
32767. If no error has occurred (C BIT clear) the
address of the character which caused conversion
to stop, or the address of the byte following the
field 1length specified, is placed on the stack.
The converted number is placed on top o¢f the
stack. If the number is out of range (C BIT set)
the stack is ciear (no number is returned). If a
nondigit was encountered before the end of the
string, the converted number 1is returned as
above, but the V BIT will be set and the C BIT
will be clear. Then if desired, the user may test
for this condition.

The EMT number for this routine is 2.
Example(s): MOV =3,-(SP) PUSH FIELD LENGTH

MOV =BUFFER, - (SP)
PUSH BUFFER ADDRESS

EMT D2BIN GO DO IT
BCC OK NO ERRORS
OSWIT SYSTEM DIRECTIVES

184

OSWIT USER'S MANUAL 83

JMP ERRORHAN TO ERROR HANDLER
OK MOV (sP)+,VALUE
GET VALUE
MOV (SP) +,NEXTCHAR
GET BREAK ADDRESS

BUFFER DC C' 167"
VALUE DS F
NEXTCHAR DS F

This routine will return a binary 16 on top of
the stack, followed by the address of the "7".

Error(s): A number outside of range (32767 to -32767) is
shown by setting the C BIT to "1".

OSWIT SYSTEM DIRECTIVES
185

84 OSWIT USER'S MANUAL

ERROR
EMT Routine
Purpose: To output a standardized error message followed
by a call to OSWIT for user interaction.
Calling parameters:

SP+2
logical unit number

SP
: the buffer address

Return parameters:
None

Remarks: The 1logical unit specified must be between 0 and
30.

This routine will return control to OSWIT,
however controi may be returned to the user
program via a RESTART command.

The first byte of the buffer must specify the
buffer length.

The EMT number for this routine is 19.

Exampie(s): MOV =SERCOM, - (SP)
UNIT NUMBER
MOV =ERRORMSG, ~ (SP)

ADDRESS OF MESSAGE
EMT ERROR

ERRORMSG bé H"24" ,C'THIS IS AN ERROR MESSAGE'
this call will print out:
***ERROR, THIS IS AN ERROR MESSAGE
control will be passed to OSWIT

Error(s): None

OSWIT SYSTEM DIRECTIVES
186

OSWIT USER'S MANUAL 85

EVERY

EMT Routine

Purpose: To reschedule a task repeatediy at a fixed time
interval.

Calling Paramters:

(SP)+4 : lo 16 bits of time intervail
(SP)+2 : hi 16 bits of time interval
(SP) : task ID

Remarks: This routine will schedule a task every N ticks

of the real time clock (a clock tick occurs every
100uS). n is a non-zero positive 32 bit integer.

The EMT number of this routine is 35.

Example (s) : MoV =10000,-
(SP) PUSH LO TIME(1 SECOND)
MOV =0,- (SP) PUSH HI TIME
MOV ID,~-(SP) PUSH TASK ID
EMT EVERY PUT TASK IN TIME
Error(s): An error will occur if an illegal ID is passed to

the tasker.

OSWIT SYSTEM DIRECTIVES
187

86 OSWIT USER'S MANUAL

EXIT

EMT Routine

Pﬁrpose: To return all resources to the operating system.

Caliing parameters:
None

Remarks: Program execution is terminated and all memoty
space 1is returned to the system. All logical I/O
units are reset to *MSOURCE* or *MSINK*, Control
is not returned to the user but rather to OSWIT.

The EMT number for this routine is 23.

Example (s): EMT EXIT TO SYSTEM
Error(s): None
OSWIT SYSTEM DIRECTIVES

188

OSWIT USER'S MANUAL 87

Purpose:

GETBUF

EMT Routine

To have the operating system alliocate a temporary
buffer for the user.

Calling parameters:

SP
number of bytes desired

Return parameters:

SP
address of the first word in the buffer if the
C BIT is set to "0"; otherwise the stack 1is

clear.

Remarks: The calling parameter 1is the number of bytes
desired. All allocations begin on a word boundary
and are an integral number of words. The address
returned is the word address of the first word in
the buffer.
the EMT number for this routine is 5.

Example(s): MOV =160,-(SP)

ASK FOR 160 BYTES

EMT GETBUF GO GET IT
. BCs NOSPACE NO SPACE LEFT
MOV (SP)+,STRADR

Error(s):

GET STARTING ADDRESS

This example will request £from the operating
system 160 contigious bytes (80 words) of storage
and if this amount of storage exists will place
the starting address in STRADR.

The C BIT 1is set to "1" if there is not enough
space to accommodate the request.

OSWIT SYSTEM DIRECTIVES
189

88

Purpose:

OSWIT USER'S MANUAL

GETPAR
EMT Routine
To build a stack of ADCONS which point to

parameters and modifier names in a string given
it for parsing.

Calling parameters:

SP+2
string starting address (byte containing length)

SP
address of where search is to begin

Return parameters:

Remarks:

Example (s) :

OSWIT

sSp
address of break character

SP+2
address of first non-break character

SP+4
number of modifier names

SP+6
addresses of each modifier name are on stack

GETPAR expects the first byte of string to
contain the length of string followed by bytes of
data to be parsed.

Returned on the top of the stack is the address
of the next byte to be parsed followed by the
address of the first parameter seen, which is
followed by the number of modifier names followed
by an address for each modifier name.

***%** break characters are: " " and ","

*kkk** modifier characters are: "@" and "="

The EMT number for this routine is 9.

MOV =STRING,-(SP)

ADDRESS OF THE STRING

MOV =STRING+1,-(SP)

WHERE TO START SCANNING

EMT GETPAR
BCS NOPARAM

SYSTEM DIRECTIVES
190

OSWIT USER'S MANUAL 89

STRING

Error (s):

DC
DC

H"10"
C' FILEE@BIN '

In this example(s):

FILE is the parameter

@BIN is a modifier

@ is the modifier character

BIN is the modifier name

This example(s): will return the address of the
blank foliowing the "N" on the top of the stack
foliowed by the address of the "F" on the stack
followed by a 1 to indicate one modifier name,

followed by the address of the "B".

If nothing is left in the string the C BIT will
be set to "1" and the stack will be clear.

OSWIT SYSTEM DIRECTIVES
191

90

Purpose:

OSWIT USER'S MANUAL

HALT

EMT Routine

To terminate the current execution of a task.

Calling Paramters:

Remarks:

Example (s):

Error(s):

OSWIT

None

This routine will terminate execution of the task
that was active at the time of the call. If the
active task had multiple executions scheduled
then it will be restarted and the execution count
decremented (except if it had been canceliled). If
the task was scheduled for destruction then its
TCB will be destroyed at this time. when there
are no tasks left able to execute the tasker will
return control to OSWIT, otherwise it will wait.

The EMT number of this routine is 39.

Note - this routine should be used to terminate
all tasks. If EXIT is used instead then all tasks
in the system will be destroyed and controili
returned to OSWIT. '

EMT HALT TERMINATE EXECUT

An error will occur if the stack has had more
items popped off than were on it when the task
was started.

SYSTEM DIRECTIVES
192

OSWIT USER'S MANUAL 91

IN

EMT Routine

Purpose: To schedule a task for execution 1in a certain
amount of time.

Calling Paramters:

(SP)+4 : 10 16 bits of time interval
(SP)+2 : hi 16 bits of time interval
(SP) ¢ task ID

Remarks: This routine will schedule a task in N ticks of

the real time clock (a clock tick occurs every
100uS). n is a non-zero positive 32 bit integer.

The EMT number of this routine is 34.

Exampie(s): MOV =10000,~
(SP) PUSH LO TIME(1 SECOND)
MOV =0,—-(SP) PUSH HI TIME
MOV ID,~(SP) PUSH TASK 1D
EMT IN PUT TASK IN TIME
Error (s): An error will occur if an illegal ID is passed to

the tasker.

OSWIT SYSTEM DIRECTIVES
193

92 OSWIT USER'S MANUAL

LISTEN .

EMT Routine

Purpose: OSWIT command language handler.

Calling parameters:
None

Return parameters:
None

Remarks: A call to this routine will invoke OQOSWIT's
command language handler. LISTEN will return to
the wuser's program if he enters a RESTART
command.
The EMT number for this routine is 18.

Example(s): EMT LISTEN

Error (s): None

OSWIT SYSTEM DIRECTIVES
194

OSWIT USER'S MANUAL 93

Purpose:

LOAD

EMT Routine

To load a file into main memory.

Calling parameters:

.
.

SP
filename

Return parameters:

Remarks:

Example (s):

OK

STRING
LOADADR

Error (s):

.
.

SP
the load address if the C BIT is set to "0";
otherwise an error code

The filename string must begin with one byte
giving the 1length of the - -filename. The contents
of the named file are loaded into main memory.
however, execution is not begun.

The EMT number for this routine is 7.

MOV =STRING, - (SP)

FILE ZIPPY
EMT LOAD IS TO BE LOADED
BCC OK NO ERRORS
ADD PC,@sp BRANCH TO
MoV @(sp)+,PC ...ERROR ROUTINE:
DC A"NOFILE" NON-EXISTANT FILE
DC A"BADUNIT"

ILLEGAL UNIT NUMBER

DC A"BADFMT" ILLEGAL FORMAT
DC A"BADSUM" CHECKSUM ERROR

MOV (SP)+,LOADADR

DC
DS

'y

..

SAVE ADDRESS

H"8" ,C'TESTPROG'
F

If an error occurs the C BIT is set to "1" and
one of the following error codes placed on the
stack:

2
non-existant file

4
illegal unit number

6
bad filename format

OSWIT SYSTEM DIRECTIVES
195

94

OSWIT

8
checksum error

SYSTEM DIRECTIVES
196

OSWIT USER'S MANUAL

OSWIT USER'S MANUAL 95

Purpose:

LOCK

EMT Routine

To lock the active task into the active state.

Calling Paramters:

Remarks:

Example (s):

Frror(s):

None

The task that was active at the time of the call
will have it's priority raised to 250. This
effectivly makes it the highest priority user
task giving it exclusive control of the CPU.

The EMT number for this routine is 44.

EMT LOCK GET EXCLUSIVE CPU

None

OSWIT SYSTEM DIRECTIVES
197

96 OSWIT USER'S MANUAL

OPEN

EMT Routine

Purpose: To provide a connection between an internal unit
number and a file or device.
Calling parameters:
SP
: the address of the assignment string
Return parameters:
(SP) :return code if VBIT is set,
otherwise stack is clear.
Remarks: The length of the string 1is contained in the
first byte of the string.
The assignment string must be of the form:
unit#=pseudodevice
Where unit# can be 0 - 30 or one of the following

equivalent strings.

Device equivalences are provides to be compatible

with mts as follows:

SCARDS = 26
GUSER = 27
SPRINT = 28
SPUNCH = 29
SERCOM = 30

If the unit was already opened, it is ciosed,

then reopened.
The EMT number for this routine is 14.

Exampie(s):

MOV =STRING,- (SP)
OPEN SCARDS
EMT OPEN e.. WITH *MTS*
BVC OPENOK BRANCH IF NO ERROR
aADD PC,@SP VECTOR TO
OSWIT SYSTEM DIRECTIVES

198

and

OSWIT USER'S MANUAL 97

MoV @(SP)+£?C PROPER HANDLER
DC A"PDNEXIST"
DC A"BADSTR"

STRING DC H"12",C'SCARDS=*MTS*'

Return codes:

4 : File or pseudo-device non-existant
6 : Illegal string format
8 : Bad unit number
OSWIT SYSTEM DIRECTIVES

199

98 OSWIT USER'S MANUAL

02BIN
EMT Routine
Purpose: To convert an ASCII character string of octal
digits to its equivalent two's complement value,
Calling parameters:

SP+2
field length to scan

SP
: address of word to convert

Return parameters:
if the C BIT is clear then:

SP
the binary value of the number converted

SP+2
the address of the character which caused
conversion to stop;

Otherwise the stack is clear.

Remarks: The first character may be blank, a plus, or a
minus sign. Thereafter all characters must be
octal ASCII characters until the number
terminates, or the field length is exhausted. The
range on the number to convert is 177777 to 0. If
no error has occurred (C BIT is clear) the
address of the character which caused the
conversion to stop, or the address of the byte
following the field iength specified is placed on
the stack. The converted number is placed on top
of the stack. If the number 1is out of range
(C BIT set) the stack is clear (no number |is
returned). If a nondigit was encountered before
the end of the string, the converted number is
return as above, but the V BIT will be set and
the C BIT will be clear. Then if desired, the
user may test for this condition.

The EMT number for this routine is 3.
Examplie(s): MOV =4 ,-(SP) PUSH FIELD LENGTH

MOV =BUFFER,-(SP)
PUSH BUFFER ADDRESS

EMT 02BIN GO DO IT
BCC OK NO ERRORS
OSWIT SYSTEM DIRECTIVES

200

OSWIT USER'S MANUAL 99

. JMP ERRORHAN TO ERROR HANDLER
OK Mov (SP)+,VALUE
GET VALUE

MOV (SP) +,NEXTCHAR
GET ADDRESS OF BREAK

BUFFER DC Cc' 167!
VALUE Ds F
NEXTCHAR DS F

This routine will return a octal 167 on top of
the stack.

Error (s): Number outside of range (177777 to 0) shown by
C BIT being set to "1",

OSWIT SYSTEM DIRECTIVES
201

100

Purpose:

OSWIT USER'S MANUAL

PARSE

EMT Routine

This is a general table driven parser routine. It
is capable of parsing input character by
character from the keyboard or a line at a time
from a core buffer.

Calling parameters:

SP+4
string lengt

..

SP+2
string address

SP
: table address

Return parameters:

Remarks:

Example (s):

OSWIT

SP
: 2* the number of the string that matched if the
C BIT is set to "o";
otherwise the stack is clear
The "PARSE" EMT requires a table of strings
against which it will try to match the input
string. Each string in the table must be
preceeded by one byte which contains the 1length
of that string. A null string (length=0)
indicates the end of the table.

PARSE will compare the input string with the
entries in the table 1in the order in which
entries appear in the table. If a match is not
unique (e.g. RE will match RESTART or RESTORE),
PARSE will return the first match it finds in the
table. If no match is found, the C BIT is set to
"1". If one 1is found, it is set to "0", and 2*
the string number in the table will be returned
on top of the stack.

The EMT number for this routine is 8.

MOV =LENGTH,-(SP)

PUSH STRING LENGTH
MOV =STRING,-(SP)

PUSH STRING ADDRESS
MOV =CMDTABLE,~- (SP)

PUSH TABLE ADDRESS
EMT PARSE LOOK FOR MATCH

SYSTEM DIRECTIVES
202

OSWIT USER'S MANUAL 101

BCS BADCMD BRANCH IF NO MATCH
ADD PC,@SP BRANCH TO
MOV @(SP)+,PC SERVICE ROUTINE FOR
DC A"CMD1" ...CMD1
DC A"CMD2" CMD2
DC A"CMD3" CMD3
CMDTABLE DC Al"XRESTART-CMDTABLE-1"
DC c'cory’
XRESTART DC Al"XRESTORE-XRESTART-1"
DC C'RESTART'
XRESTORE DC Al"XEND-XRESTORE-1"
DC C'RESTORE'
XEND DC H"O"
STRING DC C'RES'

LENGTH EQU *~STRING
The preceeding example will return a 4 on the top
of the stack to indicate-a match of the second
string.

Error(s): If there was no match the C BIT is set to a "1".

OSWIT oG SYSTEM DIRECTIVES

102

Purpose:

OSWIT USER'S MANUAL

READ

EMT Routine

To read a logical record from a device.

Calling parameters:

SP+2
logical unit number

sSp
the buffer address

Return parameters:

Remarks:

Example(s) :

OCEWIT

None

The logical unit specified must be between 0 and
30.

Although the routine read returns immediately,
the transmission is not necessarily complete.

Upon return the first byte of the buffer will
contain the length of the input record.

***%%* Tf the 1logical wunit 1is assigned to the
terminal, EMT READ will echo back the read
characters onto the printer. An input line wilil
be terminated by entering carriage return
[pushing "RETURN" key] , but carriage return is
not placed in user buffer. When a new line is to
be read, the user is prompted with "?" [it is
possible to change this prompt character], then
after "READ" operation termination a carriage
return and line feed will be supplied
automaticaliy, however this happens as a result
of echoing back last "RETURN".

Both "BACK SPACE" [to delete the 1last character
read] and "DELETE" [to delete the whole input
line] keys on the dec-writer can be used.

NOTE: After issuing an "EMT READ", and before
issuing another "EMT READ" to the same device an
"EMT WAIT" should be issued first, 1in order to
make sure that the 1last read operation is
complieted successfully.

The EMT number for this routine is 10.

SYSTEM DIRECTIVES
204

OSWIT USER'S MANUAL

BUF

Error(s):

MOV

MOV

EMT
BCS
MOV
MOV
EMT
TST
ADD
MOV
DC
DC
DC
DC

DS

=SCARDS,-(SP)

READ FROM
=BUF,-(SP)

.+.SCARDS (UNIT 26)
READ ... FROM BUFFER BUF

BADUNIT IF ERROR

=0,-(SP) WAIT FOR UNIT 26
=X'8400"',-(SP) WAIT UNTIL DONE
WAIT

(SP) + POP UNIT NUMBER
PC,@SP VECTOR TO

@ (SP)+,PC PROPER HANDLER
A"AOK"

A" EOF“

A"REC2LONG"

A"CNTLZ"

256C

103

If an illegal unit number occurs the C BIT is set

to

bl Gl

OSWIT SYSTEM
205

DIRECTIVES

104 OSWIT USER'S MANUAL

READB .

EMT Routine

Purpose: To read a byte from a logical unit.
Calling parameters:

SP+2
logical unit number

SP
: address of the byte

Return parameters:
None
Remarks: The logical unit must be between 0 and 30.

Although the routine returns immediately, the
transmission is not necessarily complete.

***** NOTE: "EMT READB" will not echo back the
entered character, and does not print any prompt
character either, it merely reads the entered
character, all keys on the DECwriter are treated
the same, and will be placed in the user buffer.
Thus unlike the "EMT READ", no carriage return,
line feed , delete or back space are provided
here, user 1is responsible for such editting
procedures.

After - issuing an "EMT READB", and before issuing
the next "EMT READB", to the same device an "EMT
WAIT" should be 1issued first to make sure that
the previous read operation has been completed
successfully.

The EMT number for this routine is 12.

Example(s):
MOV =SCARDS,-(SP) READ CHARACTER
MOV =BUF,-(SP) FROM SCARDS (UNIT 26)
EMT READB ... INTO BUF
BCS BADUNIT IF ERRORS
MOV =0,-(SP) WAIT FOR UNIT 26
MOV =X'8400"',~-(SP) WAIT UNTIL DONE

EMT WAIT
TST (Sp)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO

OSWIT SYSTEM DIRECTIVES

206

OSWIT USER'S MANUAL 105

MoV @(sp)+,PC PROPER HANDLER
DC A"AOK"
DC A"EOF"

BUF DS 1C
Error(s): If an illegal unit number occurs the C BIT is set
to "1".

OSWIT 505 SYSTEM DIRECTIVES

106 OSWIT USER'S MANUAL

READW '

EMT Routine

éurpose: To read a word from a logical unit.
Calling parameters:

SP+2
iogical unit number

SP
: address of the word

Return parameters:
None
Remarks: The logical unit must be between 0 and 30.

Although the routine returns immediateliy, the
transmission is not necessarily complete.

After issuing an "EMT READW", and before 1issuing
the nrext "EMT READW" to the same device an "EMT
WAIT" should be issued first to make sure that
the previous read operation has been completed
successfuily.

The EMT number for this routine is 24.

Example(s):

MOV =10,-(SP) READ WORD
MOV =BUF,-(SP) FROM UNIT 10
EMT READW .+« INTO BUF

BCS BADUNIT IF ERRORS
MOV =X'0600',-(SP) WAIT FOR UNIT 10
MOV =X"'8000"',~-(SP) WAIT UNTIL DONE

EMT WAIT
TST (sp)+ POP UNIT NUMBER
ADD PC,@sP VECTOR TO

MOV @ (SP)+,PC PROPER HANDLER
DC A"AOK"
DC A"EOF"

BUF DS 1F
Error(s): If an illegal unit number occurs the C BIT is set
e M.
OSWIT SYSTEM DIRECTIVES

208

OSWIT USER'S MANUAL 107

RELBUF

EMT Routine

Purpose: To release a buffer previously obtained through
GETBUF.

Calling parameters:

2 Sgddress of the first word in the buffer to be
released
Return parameters:
None
Remarks: The buffer beginning at the given address Iis

released. As the LSI has no memory protect
features, the user must be careful not to write
over any memory he has not been given by GETBUF,
and to return the correct address to RELBUF.
OTHERWISE THIS ROUTINE WILL LIKELY CAUSE THE
SYSTEM TO BOMB.

The EMT number for this routine is 6.

Example(s): MOV STRADR, - (SP)
PUSH STARTING ADDRESS
EMT RELBUF RELEASE IT

STRADR DS F PLACE ADDRESS IS STORED

Assuming that a previous GETBUF call has placed
an address in STRADR the buffer space so
designated will be released.

Error (s): No errors are detected by this routine. However,
an attempt to release improper space will WREAK
UNKNOWN HAVOC upon things, which may not be
detected until after the next call to GETBUF.

OSWIT 506 SYSTEM DIRECTIVES

108 OSWIT USER'S MANUAL

RESET ‘

EMT Routine

Purpose: To return all resources to the operating system

calling parameters:
None

Return parameters:
None

Remarks: Program execution is terminated and all memory

. space is returned to the system. All logical 1I/0

units are reset to *MSOURCE* or *MSINK*. Control
is returned to the user rather than to OSWIT,
which in most cases 1is very dangerous. It is
therefore recommended that unless the user needs
control to be returned to him/her, he/she issue
an EMT EXIT rather than EMT RESET.
The EMT number for this routine is 4.

Example (s): EMT RESET

Error(s): None

OSWIT SYSTEM DIRECTIVES
210

OSWIT USER'S MANUAL 109

. SCAN

EMT Routine

Purpose: To scan a character string for break characters.
calling parameters:

SP+6
length of break characters

SP+4
address of break character

SP+2
length of string to scan

SP
: address of string to scan

Return parameters:

sp
: address of scanned string
' SP+2
: length of scanned string
SP+4

Return codes:

SP+6
updated address of string to scan

SP+8
: updated length of string to scan

SP+10
address of break chars. (unaltered)

SP+12
length of break chars. (unaltered)

Remarks: The address and iength of the break characters
are returned unaltered for the next call.

The address and length of the string left to be
scanned beyond the break character found are
returned on the stack (for the next call).

The EMT number for this routine is 29.

‘ Example (s):

OSWIT o SYSTEM DIRECTIVES

110 OSWIT USER'S MANUAL

CLR RO .
MOVB BREAKS,—-(SP) PUSH THE LENGTH AND
MOV =BREAKS+1,-(SP) * ADDRESS OF THE BREAK

* * CHARS.

MOVB STRING,-(SP) PUSH THE LENGTH AND
MoV =STRING+1,-(SP) * ADDRESS OF THE STRING

x * TO SCAN
SCANMOR EMT SCAN SCAN TO A BREAK
EMT D2BIN KEEP A
ADD (SP)+,R0 * RUNNING TOTAL
TST (SP)+ POP OFF D2BIN PARAMETER
ADD PC,@SP CHECK RETURN
MOV @(sp)+,PC * CODE 'FROM SCAN
DC A"Z" END OF STRING
DC A"SCANMOR" :
DC A"SCANMOR" ;
DC A"SCANMOR" =
A ADD =8,5P REMOVE STRING AND
= BREAK CHAR. DESC.
HALT
STRING DC H"5",C'10:20' <OR> STRING STRCON '10:20°
BREAKS DC H"3",C':;=' <OR> BREAKS STRCON ':;='

This program will halt with 30 -(decimal) in ro0.

Return codes: .

2 : string was terminated by an "end of string"
4 ¢+ the first break character caused termination
6 : the second break character caused termination
Error(s): None
OSWIT SYSTEM DIRECTIVES

212

OSWIT USER'S MANUAL 111

START

' EMT Routine
Purpose: To schedule a task for immediate execution.
Calling Paramters:
(SP) : task ID

Remarks: This will cause the specified task to be
immediatly inserted in the execute queue. If it
has a higher priority than the task that
scheduled it then it will begin execution,
otherwise it will be bliocked until it becomes the
highest priority task. ’

The EMT number of this routine is 43.

Exampie (s) :

MOV ID,-
(SP) PUSH THE TASK ID
EMT START START THE TASK
Error(s): An error will occur if an illegal ID is passed.
OSWIT SYSTEM DIRECTIVES

213

112 OSWIT USER'S MANUAL

WAIT .

EMT Routine

Purpose: To determine the status (whether or not done) of
a previous I/0 request and/or to wait for the
compietion of one of a specified set of requests.

Calling parameters:
SP+2
: a word whose bits correspond to the logical units
0 through 15 with bit 0 being unit 0.
SP
: a word whose bits correspond to the logical units
16 through 30 with bit 0 being unit 16.
Return parameters:

If the Vv BIT is set then:

SP
the unit number of the I/0 task completed.

SP+2
the return code.

otherwise the stack is clear.

Remarks: If bit 15 of the word on top of the stack is set
to 1, the system will wait wuntil one of the
logical units corresponding to 1 bits set in the
calling parameters has completed its requested
I/0 task. This unit number will be placed on top
of the stack the V BIT set to "1", and a return
made to the caliing program.

If bit 15 of the word on top of the stack is set
to 0, the system checks the completion status of
the logical I/O units corresponding to 1 bits set
in the calling parameters, and returns without
waiting to the calling program. If any of the
marked 1logical 1I/0 wunits is done, the V BIT is
set to "1". The number of that logical 1I/0 unit
which is lowest among those done is returned on
top of the stack. If none of the indicated
i1ogical units is done, the V BIT is cleared.

The EMT number for this routine is 17.

Exampie(s):
WAIT EQU DEFINE WAIT

OSWIT SYSTEM DIRECTIVES
214

OSWIT USER'S MANUAL

UNITNUM

UNITNUM

Return codes:

MOV
MOV

EMT
MOV
ADD
MOV
DC
DC
DC

DS

MOV
CLR
EMT
BVC
MOV

ADD
MOV
DC
DC
DC

DS

2

=3,-(SP)
=0'100000"',-(SP)

W

(SP) +, UNITNUM
PC,@SP

A"AOK"
A" EOF"

AIT

WAIT FOR UNITS 0 OR 1

SET WAIT BIT

BRANCH
@(sp)+,PC TO CONTINUE

A"LONGLINE"

F

=3,-(SP)
- (SP)

WAIT
NONEDONE

(SP) +,UNITNUM
SAVE UNIT
PC,@SP

CHECK STATUS

OF 0 AND 1

@ (SP) +,PC PROCEED

A ” AOK "
A"EOF"

A"LONGLINE"

F

¢ successful completion of I/0 operation

4

.o

6

end of file on read;

end of disk on write;

: line too long (> 255);

8

line

113

terninated by control Z if in MTS mode of

TTY

OSWIT

215

SYSTEM

DIRECTIVES

114

éurpose:

OSWIT USER'S MANUAL

: WHENA and WHENB

EMT Routines

To schedule a task when a device interrupt
occurs.

Calling Paramters:

Remarks:

Example (s) :

Error(s) :

OSWIT

(SP)+2 : logical unit number of device

(sP) task ID

These two routines are used to have a task
scheduled when the A or B interrupt of a
interface <card occurs. The unit to have a WHEN
condition enabled on must be opened to the
appropriate device before the call to WHEN is
issued. Also all WHEN's on a device should be
cancelled before the device is closed(except when
exitting, the WHENs will be cancelled at the same
time the device is closed).

The EMT numbers of these routines are 36 and 37
respectively.

MOV =ASSNTN, -
(SP) ASSIGN THE TRAIN TO UNIT 5
EMT OPEN
BVS NOTRAIN ERROR IF NO TRAI
MOV =5,"
(sP) PUSH UNIT NUMBER
MOV ID,-(SP) PUSH TASK ID
EMT WHENA ASSIGN PHOTO-

CELL TASK

ASSNTN STRCON 'S5=*TRAIN¥*'

An error will occur 1if an 1illegal device is
assigned to the unit specified, if an 1illegal
unit number is specified, or if an illegal ID is
given. ’

SYSTEM DIRECTIVES
216

OSWIT USER'S MANUAL 115

Purpose:

WRITE

EMT Routine

To write a logical record to a device.

Calling parameters:

SP+2
logical unit number

Sp
the buffer address

Return parameters:

Remarks:

Example(s) :

None

The logical unit specified must be between 0 and
30.

Although the routine returns immediately, the
transmission is not necessarily complete.

The first byte of the buffer must specify the
buffer length.

%%** NOTE: if the logical unit is assigned to
the terminal, "EMT WRITE" will supply a "CARRIAGE
RETURN" and a "LINE FEED" after performing a
write operation. There 1is no need to wait for
completion of the "WRITE" operation after issuing
an "EMT WRITE" and before issuing the next "EMT
WRITE", to the same device, as the operating
system will provide buffering facilities in this
case.

The EMT number for this routine is 11l.

MOV =13,-(SP) WRITE
MOV =TEXT,-(SP) ... TEXT ON
EMT WRITE ee. UNIT 13

BCS BADUNIT IF ERROR

MOV =X'2000',~-(SP) WAIT FOR UNIT 13
MOV =X'8000"',~-(SP) WAIT UNTIL DONE

EMT WAIT
TST (SP) + POP UNIT NUMBER
ADD PC,Q@SP VECTOR TO

MOV @(SP)+,PC PROPER HANDLER
DC A"AOK"
DC A"DKFULL"

OSWIT SYSTEM DIRECTIVES
20 7

116 OSWIT USER'S MANUAL

TEXT DC H"14" ,C'SAMPLE STRING.'
Error (s): If an illegal unit number occurs the C BIT is set
: to "1".

OSWIT SYSTEM DIRECTIVES

218

OSWIT USER'S MANUAL 117

Purpose:

WRITEB

EMT Routine

To write a singie byte to a logical unit.

Calling parameters:

SP+2
logical unit number

Sp
the address of the byte

Return parameters:

Remarks:

Example (s) :

BYTE

MO
MO
EM
BC
CL
MO
EM
TS
AD
MO
DC
DC

DS

None

The logical unit specified must be between 0 and
30.

Aithough the routine returns immediately, the
transmission may not be complete.

kx NOTE: "EMT WRITEB" merely prints out the
specified character, all codes are wvalid and
therefore, no carriage return or line feed are
supplied automatically, the user 1is responsible
for all such editing procedures. There is no need
to wait for completion of an "EMT WRITER" in
order to issue the next "EMT WRITEB" to the same
device, the operating system provides buffering
facilities in this case.

The EMT number for this routine is 13.

\' =30,-(SP) WRITE CHARACTER
\ =BYTE,-(SP) ... FROM BUFFER BYTE
i WRITEB .. TO UNIT 30 (SERCOM)
S BADUNIT IF ERROR
R - (SP) WAIT FOR UNIT 30
\ =X'C000',~-(SP) WAIT UNTIL DONE
T WAIT
g3 (sp)+ POP UNIT NUMBER
D PC,@SP VECTOR TO
\' @(sp)+,PC PROPER HANDLER
A"™AOK"
A"DKFULL"
icC

OSWIT SYSTEM DIRECTIVES
219

118 OSWIT USER'S MANUAL

Error(s): If an illegal unit number occurs the C BIT is set .
tO "1".

OSWIT SYSTEM DIRECTIVES
220

OSWIT USER'S MANUAL 119

WRITEW

EMT Routine

Purpose: To write a word to a logical unit.
Calling parameters:

SP+2
: logical unit number

SP
: address of the word

Return parameters:

None
Remarks: The iogical unit must be between 0 and 30.
A wait must be 1issued to insure that the

operation is complete.

The EMT number for this routine is 25.

Example(s) :

MoV =12,-(SP) WRITE WORD
MOV =BUF,-(SP) TO UNIT 12
EMT WRITEW ... FROM BUF

BCS BADUNIT IF ERRORS
MOV =X'1000"',-(SP) WAIT FOR UNIT 12
MOV =X'8000',-(SP) WAIT UNTIL DONE

EMT WAIT
TST (SP) + POP UNIT NUMBER
ADD PC,@sp VECTOR TO
MOV @(SP)+,PC PROPER HANDLER
DC A"AOQOK"
DC A"DKFULL"

BUF DS 1F

Error(s): If an illegal unit number occurs the C BIT is set
tO ||lll.

OSWIT SYSTEM DIRECTIVES
221

120 OSWIT USER'S MANUAL

UNLOCK

EMT Routine
Purpose: To set a locked task back to normail.

Calling Paramters:
None

Remarks: This routine will reset the priority of the
active task back to the priority specified in the
original task definition. A locked task will be
restored to normal. If the active task was not
locked then this routine has no effect.
The EMT numberfor this routine is 45.

Example (s) :
EMT UNLOCK RESET THE TASK P

Error(s): None

OSWIT SYSTEM DIRECTIVES
222

OSWIT USER'S MANUAL 121

‘ Appendix C: SYSTEM SUBROUTINES AND FUNCTIONS

ATAN

Function Description

Purpose: To calculate the arc-tangent.

Location: _ CRASHLIB

Calling Sequence:

CRASH: Y = ATAN (X);

Parameter: X - Real.

Value returned: Y - Real, vaiue in radians.

Routines used: $#POLY, #FCMP
‘ Author: John J. Puttress

Last update: April 21, 1976
@

SYSTEM SUBROUTINES AND FUNCTIONS

223

122 OSWIT USER'S MANUAL
COsS ‘I'
Function Description
Purpose: To calculate the cosine.

Location: CRASHLIB

Calling Sequence:

CRASH: Y = COS (X);
Parameter: X - Real, value in radians
Vaiue returned: Y - Real
Routines used: #POLY
Author: John J. Puttress
Last update: April 21, 1976
SYSTEM SUBROUTINES AND FUNCTIONS

224

OSWIT USER'S MANUAL

Purpose:
Location:

Calling Sequence:

Assembiliy:

Parameters:

Return codes:

Descritpion:

Routines used:

Author:

123

D2FLOAT
Subroutine Description

To convert a string of ASCII characters into
a floating point value.

CRASHLIB

CALL D2FLOAT, (BUFFER,LENGTH, FLOATING,
INDEX, RCODE)

BUFFER - First byte of data to be converted.

LENGTH - A fullword location containing the
length of the buffer to convert.

FLOATING - A double word iocation to piace
the floating resuit.

INDEX - A fullword location to return the
address of the next byte in the buffer
to scan. Points to break character or
byte after last buffer location.

RCODE - A fuliword iocation to return the
error code.

0 - ok
2 - exponent overflow underflow
4 - conversion error

This subroutine scans the input string for
three cases:

XXXXX
X . XXXX
and X.XXXXEXX
including sign for both mantisa and
exXxponent, It then converts it into a

floating point number. the index returned
points to either the character that stopped
the conversion (non-numeric) or the byte

after the 1last buffer 1iocation (end of
field). '
#SCALE, #SCALE?2

John J. Puttress

SYSTEM SUBROUTINES AND FUNCTIONS

225

124 OSWIT USER'S MANUAL

Last update: April 21, 1976 ‘

SYSTEM SUEBROUTINES AND FUNCTIONS
226

OSWIT USER'S MANUAL

Purpose:

Location:

Calling Sequence:
Assembly:
Parameter:

Descritpion:

Routines used:
Author:

Last update:

125

DOPEFIX

Subroutine Description

An intrinsic CRASH subroutine to setup an
automatic dope

CRASHLIB vector depending on passed
parameters.

CALL DOPEFIX, (ADOPE)
ADOPE - Array's dope vector.

This routine takes the dope vector shell and
fills in missing information. the element
size, number of dimensions, lower bounds and
upper bounds (passed in size) are filled in
at call. The (virtual base - base address),
size and scale factor are filled in on
return. Also on return, in register 0, the
number of bytes required to create the
array.

NONE
John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS

227

126 OSWIT USER'S MANUAL
EXP
Function Description
Purpose: To calculate the exponential.

Location: CRASHLIE

Calling Sequence:

CRASH: Y = EXP (X);
Parameter: X - Real, where -88.02 < X < 88.02
Value returned: Y - Real
Routines used: #FCMP, #IFIX, #FLOAT
Author: John J. Puttress
Last update: April 21, 1976

1. ON ERROR, V-BIT IS SET, CLEARED OTHERWISE.

SYSTEM SUBROUTINES AND FUNCTIONS
228

OSWIT USER'S MANUAL

Purpose:

Location:
Calling Sequence:
Assembly:

Parameters:

Descritpion:

Routines used:
Author:

Last update:

127

FLOAT2D
Subroutine Description

To convert a floating point number into a
character string.

CRASHLIB

CALL FLOAT2D, (FLOATING,BUFFER)

BUFFER - First byte of a buffer to place
resultant character string. this buffer
must be at least 11 bytes long.

FLOATING - A double -word containing the
floating point number to be converted.

This routine converts the floating point
number into one of two 11 byte formats:

' XXXXXEXX'
or ' (XXXXEXX'

If the number 1is positive, the sign is
suppressed (the exponent always has a sign).
if there is an overflow underflow, the

buffer is filled with "*',

#SCALE, #SCALE2

John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS

229

128 OSWIT USER'S MANUAL
LOG ‘I'}
Function Description
Purpose: To calculate the logarithm.

Location: CRASHLIB

Calling Sequence:

CRASH: Y = LOG (X);
Parameter: X - Real, where x 0
Vaiue returned: Y - Real
Routines used: #FCMP, #FLOAT, #POLY
Author: John J. Puttress
Last update: April 21, 1976

l. on error, V-bit is set, cleared otherwise.

SYSTEM SUBROUTINES AND FUNCTIONS
230

OSWIT USER'S MANUAL

Purpose:

Location:

Calling Sequence:
CRASH:

Parameter: -

Value returned:

Routines used:

Author:

Last update:

SIN

Function Description

To calculate the sine.

CRASHLIB

Y SIN (X);

X

Y - Real
#POLY
John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES
231

Real, value in radians

AND

FUNCTIONS

129

130 OSWIT USER'S MANUAL
SQRT
Function Description
Purpose: To calculate the square root.

Location: CRASHLIB

Calling Sequence:

CRASH: Y = SQRT (X);

Parameter: X -~ Real, where X > 0

Value returned: Y - Real (Note: if X is negitive, the SOQRT
of the absolute value is taken and its
negitive value is returned).

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS

232

OSWIT USER'S MANUAL 131

#BMTXMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply two
boolean arrays.

Location: CRASHLIB
Calling Sequence:

Assembly: CALL #BMTXMUL, (ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Boolean array dope vector,

BDOPE - Boolean array dope vector.

CDOPE - Boolean array -dope vector (product).
Operation: C = A * B;
Routines used: NONE
Author: John J. Puttress
Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS

233

132

Purpose:

Location:

On cail:

Operation:

Condition codes:

Routines used:
Author:

Last update:

OSWIT USER'S MANUAL

$FCMP
Routine Description
To compare two floating point number and set
appropriate condition codes.

CRASHLIB

RO A (Source)
R1 A(Destination)

(Source) ~ (Destination)

N: set if Resulit < 0, cleared otherwise
Z: set if Resulit = 0, cleared otherwise
V: cleared

C: cleared

NONE

John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS

234

OSWIT USER'S MANUAL 133

FLOAT

Subroutine Description

Purpose: To convert an integer into a floating point
number.

Location: CRASHLIB

On call: SP PC

SP+2 Integer value

On return: SP Floating Hi
SP+2 Floating Lo
Registers 0 and 1 modified.

Routines used: NONE
Author: John J. Puttress
Last update: April 21, 1976
SYSTEM | SUBROUTINES AND FUNCTIONS

235

134

Purpose:

Location:
Calling Sequence:
Assembly:

Parameters:

Operation:
Routines used:
Author:

Last update:

OSWIT USER'S MANUAL

#FMTX21I

Subroutine Description

An intrinsic CRASH subroutine to convert a
real array into an integer array.

CRASHLIB

CALL #FMTX2I, (ADOPE,BDOPE)

ADOPE - Real array's dope vector (source
array) .

BDOPE - Integer array's dope vector
(destination array).

B = A;

#IFIX

Rick Richardson

September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS

236

OSWIT USER'S MANUAL 135

FMTXADD
e e

Subroutine Description

Purpose: An intrinsic CRASH routine to add two real
arrays.
Location: CRASHLIB

Calling Sequence:
Assembly: CALL #FMTXADD, (ADOPE,BDOPE,CDOPE)
Parameters: ADOPE - Real array dope vector.
BDOPE - Real array dope vector.

CDOPE - Real array dope vector (sum).

Operation: C =A + B;
Routines used: NONE
Author:’ Rick Richardson
Last update: September 1, 1978
SYSTEM SUBROUTINES AND FUNCTIONS

237

136

Purpose:

Location:
Calling Sequence:
Assembly:

Parameters:

Operation:
Routines used:
Author:

Last update:

OSWIT USER'S MANUAL

$# FMTXMUL

Subroutine Description

An intrinsic CRASH routine to multiply two
real arrays.

CRASHLIB

CALL #FMTXMUL, (ADOPE,BDOPE,CDOPE)

ADOPE ~ Real array dope vector.

BDOPE - Reai array dope vector.

CDOPE - Real array dope vector (product).
C =A* B;

NONE

Rick Richardson

September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS

238

OSWIT USER'S MANUAL 137

#FMTXSUB

Subroutine Description

Purpose: An intrinsic CRASH routine to subtract two
real arrays.

Location: CRASHLIB
Calling Sequence:

Assembly: CALL $#FMTXSUB, (ADOPE,BDOPE,CDOPE)
Parameters: ADOPE - Real array dope vector.

BDOPE - Real array dope vector.

CDOPE - Real array dope vector (difference).
Operation: C = A - B;
Routines used: NONE
Author: Rick Richardson
Last update: September 1, 1978
SYSTEM SUBROUTINES AND FUNCTIONS

239

138 OSWIT USER'S MANUAL

#FSCLDIV .

Subroutine Description

Purpose: An intrinsic CRASH routine to divide a real
array by a scaler.

Location: CRASHLIB
Calling Sequence:
Assembly: CALL #FSCLDIV, (ASCALER,BDOPE,CDOPE)
Parameters: ASCALER - Reai scaler.
BDOPE - Real array dope vector.

CDOPE - Real array dope vector (quotient).

Operation: C =B A;
Routines used: NONE
Author: Rick Richardson
Last update: September 1, 1978
SYSTEM SUBROUTINES AND FUNCTIONS

240

OSWIT USER'S MANUAL 139

$FSCLMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply a
real array by a scaler.

Location: CRASHLIB
Calling Sequence:
Assembly: CALL $#FSCLMUL, (ASCALER,BDOPE,CDOPE)
Parameters: ASCALER ~ Real scaler.
BDOPE -~ Real array dope vector.

CDOPE - Real array dope vector (product).

Operation: C =B * A;
Routines used: NONE
Author:‘ Rick Richardson
Last update: September 1, 1978
SYSTEM SUBROUTINES AND FUNCTIONS

241

140 OSWIT USER'S MANUAL

#IFIX .

Routine Description

Phrpose: To convert a floating point number into an
integer

Location: CRASHLIB (the fraction is truncated).

On call: SP PC

SP+2 Floating Hi
SP+4 Floating Lo

On return: Sp Integer value
Registers 0 and 1 modified.

Routines used: NONE
Author: Rick Richardson
Last update: September 1, 1978
SYSTEM SUBROUTINES AND FUNCTIONS

242

OSWIT USER'S MANUAL 141

IMTX2F

Subroutine Description

Purpose: An intrinsic CRASH subroutine to convert an
integer array into a real array.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTX2F, (ADOPE,BDOPE)

Paramete<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>