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PREFACE

This work is a shortened version of my master’s thesis [1] submitted in the Spring of 1979. The original text
covered several ancillary topics of which I was not satisfied with cither the presentation or technical content. |
had originally planned to complete these parts in a short time and produce an cxpanded version as a technical
report.  This task proved harder than 1 first realized. Consideration of many of these additional topics has led
to a gradual cvolution of the ideas in dircctions that differ in emphasis and specific technical detail from those
cxpressed here, 1 have decided it best to take what 1 felt was the stable core of the idcas and issue them at this
tme,

The topics that have been removed include:

(1) Manipulative viewpoint inheritance, the placing of filters between viewpoints so that some subset of the
assertions will be inherited. This mechanism can make use of justifications on the assertions in a viewpoint to
control the filtering. More recently 1 have been thinking of gencralizations of this concept in which the
contents of a viewpoint can be expressed as a function of the contents of its parents, not simply a subset. I
plan to develop this idea in the future.

(2) Use on parallel hardware. 1had developed a scheme for implementing Ether on multiprocessors. Its only
purposc was to show that the broadcast primitive could be implemented on a multiprocessor system without
having to invoke a network broadcast. It was not well-developed and 1 thought it best to drop.

(3) Conjunctive Subgoals with Shared Variables. This is a very important topic that I will develop more
completely in a future paper.

In addition, I am currently developing with Hewitt [2] a paper on the relationship between the problem
solving philosophy embodied in Ether and the landmark works of modern philosophers of science such as
Popper, Lakatos, and Kuhn. We feel there is much similarity between the notions of conjecture and
refutation in science as cxpressed by Popper and the paralle) execution of many activities including opponent
activities. I was largely unaware of this relationship when the work reported here was done.

The term viewpoint that is used in the present work replaces the term platform that I had originally used in my
thesis and in the paper describing Ether that appeared in 1JCAI6.

W a0 S R

R S 2 " A ’\w) -. - .,-.

Ak s




ACKNOWLEDGEMENTS

Special thanks go to my thesis supervisor, Carl Hewitt, for his support, keen interest, and hyperopic view of
the computer field.

Jerry Barber, Randy Davis, Roger Duffey, Ken Forbus, David 1 evitt, and 1uc Steels have been kind enough
to carcfully read earlier drafis of this work and make many comments that have cnormously aided the

presentation.

In addition to these, there are many people I would like to thank for contributing ideas in conversation,
among them: Beppe Autardi, Jon Doyle, Mike Genesreth, Harold Goldberger, Ken Kahn, Bob Kerns, Henry
Lieberman, Marvin Minsky, Vaughn Pratt, Maria Simi, Barbara Stecle, Richard Stallman, and Sten-Ake

Tarnlund.

My decpest appreciation goes to all the folks at the Artificial Intelligence Laboratory and the Laboratory for
Computer Science who have created an unparalleled working environment, a truly exciting place to be.




A28

. Introduction

. Combinatorial Implosions

. Basic Ideas

. Activities

. Hypothetical Reasoning

. Some Further Ideas

. Comparison With Other Work

. Bibliography

CONTENTS

2.1 An example problem

2.2 Sequential Solutions

2.3 Paraliel Algorithms

3.1 Pattern Directed Invocation

3.2 What Sprites Are

3.3 Explicit Goal Assertions

4.1 Creating Activities for Goals
4.2 General Schemas for OR and AND subgoals

4.3 How Activitics Work

5.1 Viewpoints

5.2 Deduction by Antecedent Reasoning to Anomalies

5.3 Modecling Goal States and Opponents

5.4 Modeling The Goal Stack in Opponents
5.5 The Relationship Between Yiewpoints and Activities

6.1 Resource Control
6.2 Quiescence

6.3 Virtual Collcctions of Assertions

7.1 Pattern-Directed Invocation Languages

7.2 Parallel Al Systems

7.3 Languages for Paralicl Processing

CERER

L ¥

R g g T P




L2

R T

Chapter I Introduction

My interest is in studying possible uscs of parallel program architectures for the sotution of problems in
artificial intclligence. What distinguishes this class of problems from others is the volume of "nonessential”
computation that gets done. Programs spend the bulk of their time scarching through spaces of facts and
methods for one that might possibly be uscf‘ul.T This scarch often takes place at many levels simultancously;
in determining whether a selected fact or method is uscful may entail a vast scarch through a different
subspacc of facts or methods. How this is orchestrated within a program is usually referred to as its control
structure. The intent of a control structure is to avoid as much of this scarch as possible, although a certain
amount of it scems nccessary. There have cven been some rescarchers suggesting that it is not possible to
curtail this scarch very much, at least for certain special cases of reasoning [3, 4], and have suggested solutions
involving vast amounts of parallel hardwarc that can decide many of these questions by use of sheer
computation power. While 1 don’t wish to take exception to their conclusions, only Ieave these questions in
abeyance, this is not the position taken by the present work. The emphasis is not on "brute force™ solutions,
but on techniques for gaining more programming flexibility and greater control over the problem at hand.

This work builds on various idcas in the problem solving litcrature and combines them with some new ideas
about parallel computation. The synthesis will be a new pattern-directed invocation language known as
Ether. Ether follows in the tradition of Planner in having a collection of assertions representing facts about
the world and procedural objects that interact with these facts via pattern matching,.

Two important subcomponents of Ether are a language for talking about activities and a hiearchy of
viewpoints for structuring data. The notion of an activity is intuitively similar to the notion of a process, that is
a locus of control with some purpose. It is not as rigid as the concept of a process as might be defined by
allusion to a Turing or Von Ncumann machine model. The concept of process for these models can be
thought of as a totally ordered sequence of state changes to a tape or other kind of memory. This is not the
casc with an activity. It may be the casc that several assertions are broadcast (i.c. added to the database) or
several procedural objects executed by one activity without there being any particular ordering between them.
The kinds of things that might become activities are "Do antecedent reasoning on the facts in the following
viewpoint,” "Attempt to achieve the following goal,” or simply "Run the following code.” Activitics are
objects that can be talked about through the Ether database and acted upon by special primitives. A kind of
thing onc might do to an activity is to prevent its continued cxecution. This might be desirable if the purpose
of the activity has alrcady been accomplished. Onc might also change the rate at which an activity is working.

In Ether the host machine is thought of as a finite resourcé that has a certain (constant) amount of power.

‘f ‘The problem of search isn't the only distinguishing feature of antificial iniclligence rescarch. There are many scrious issucs of data or
"knowledge” representation that are unique to the ficld. While many rescarchers today would considcr these to be the only serious
concerns, | think this attitude has led 10 the crcation of a number of sophisticated systems for the representation of knowledge with no
clear ideas on how 1o use them in programs. In contrast to Gus, we will be coneerned only with qucstions of program organization.




The power can be distributed amongst running activitics in whatcver way seems appropriate at the time. If
some newly discovered information suggests that once way of accomplishing a goal is more likely to succeed
than another, the amount of processing power being used by the former activity can be increased to the

detriment of the other.

Many Al languages rcason by creating and manipulating world modcls inside the machine. Context
mechanisms allow multiple inconsistent world models to reside in the database concurrently. Often many of
the world models share much of their structure, Context mechainisms make this cconomical by supporting an
inheritance between contexts. These mechanisms, as usually conceived, do not allow processing to happen in
more than one world model at a time. A gencralization of the context idea is the viewpoint. Viewpaints have
an inheritance structure similar to contexts but unlike them, there is no restriction on the number of
viewpoints that may be available at one time - all may be processed concurrently. Many of our examples
depend on the ability to build many incompatible but concurrently accessible world models.

Throughout this paper we will present a number of control structures that can be viewed as parallel
generalizations of well known techniques, such as forward and backward chaining, OR and AND subgoals,
depth first and breadth first search, and goal filtering. The parallel techniques tend to be more flexible.

One facility of most other procedural deduction systems that Ether has chosen to leave behind is automatic
backiracking; although uscful in certain circumstances, the purpose of this work is to study what could be
accomplished by allowing the user’s program to explicitly control the scarch. Even though backtracking is not
present, the system is set up so that the program is not committed to "believing™ hypothetical assumptions
just because they were once made. Why these arc different ideas will become clear later on.

In this work [ will not be concerncd with the question of whether the (parallel) programs described are to be
run on a conventional sequential machinc or a specially designed parallel machine. However, the language to
be described is designed so that an implementation on parallel hardware would require little revision of the
language constructs. The arguments for parallel processing advanced are as relevant to conventional serial

machincs as they are to more advanced parallel architictures,

The contribution of Ether can best be understood in a historical context. In Micro-Planner, many theorems
could be specified for accomplishing some purpose. They were chosen non-detcrministically by the
interpreter. The inability of the user to order the application of methods made programs semantically clean
but led to grossly incfficient scarches via the automatic backtracking mechanism, The Conniver language was
a procedural deduction system made to look and act more like a conventional programming language. The
driving motivation for this was 1o curtail the needless scarch cngendered by backtracking. The end result was
a system without a rich semantic modcl and thus the complexity barrier was rcached very quickly. The
presence of cxplicit paraliclism in Ether allows both goals to be achicved. 1 believe Ether programs to
maintain the clean semantic model of Micro-Planncr while allowing scarch to be tightly controlled.
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Chapter 11  Combinatorial Implosions

This chapter introduces a phenomeno:: that is possible in parallel programming environments. When many
activities arc running concurrently in an. attempt to solve some problem, some activities can produce
information that obviate the need for others or help them solve their problem more quickly than if they were
run in isolation. We would not reap the benefits of this sharing of information in a sequential system because
the activities must be run in some order decided before this information has been produced. We will use the

term combinatorial implosion for this unpredictable and uscful interaction between running activities.

Discussion of this phenomenon as a justification for parallel processing is curiously scant in the literaturc.*
The usual argument for parallel schemes is that problems can be broken into parts that are separately solved
on scparate processors, thereby finishing faster than could have been accomplished on a single processor.
Combinatorial implosions, however, can occur just as readily on time shared scquential processors as on truly
parallel machines. The main example of this chapter is discussed assuming it will be run on a single

time-shared processor.
2.1 Anexample problem

This problem is excerpted from the PROTOSYSTEM-1 automatic programming system [6]. It is presented in
a somewhat stylized format that is functionaly identical to an a~tual problem occurring in the design phase of

the automatic programming system.i

We are presented with a set of (boclean) predicates {Pl' Py .., Pn} and a (boolcan) predicate 2, such that
PIOP; VP, V.. VP, The goal is to determine all sets S C {Pl' Py, .., Pn}, such that 22 \k/ Py for
each P € S and for which there are no proper subsets R of S such that 2D \k/ P, for each Py € R. In other
words we want to find the smallest subsets of {P, P, ..., P} that cover the predicate ?. Note that there can
be more than one such subset.

In order to simplify the following discussion we will make two definitions.

1. A tuple of predicates {Pil' Piz' v o P} worksif PO pil A" Pi2 V..VP.
n

2. A tple of predicates {Pil, Piz' . . P} is minimal if there i no
n
sC {Pil. Piz' ..s P; } such that S works.
n

+ A similar notion known as the accleration effect (S was developed independently.
1 in PROTOSYSTEM:] terminology the problem is one of gencrating driving dotasets candidates.
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2.2 Sequential Solutions
h“ In terms of the above definitions, we are looking for all subsets of the given sct of predicates that work and are
- minimal. There arc two algorithms that we, as programmers, might pick as solutions to this problem; they are

known as Top-Down and Bottom-Up. Descriptions of these algorithms follow.

t~

2.1 TopD

Crcate a results-list, initially null.
Top-Down({Py. Py, ...,P,}) = 3
L if for every j, where 1 < j < m, {P), ..., Pj.. Pj 4 1, . P} docs not work add :

{P}. Py, ..., P,} to the results-list.

2. clse execute Top-Down ({Pl, . Pj-l' P.i D T Pn}) for each of the
{Pl‘ ey Pj_l, P]+ ) DR Pn} that works.

3. Return the results-list as the answer when all computation is completed,

t )
s

Crealc a results-list, initially null, and a counter k, initiaily 1.

Bottom-Up ({Pl. Py, .., Pn}) =
1. Generate all k-tuples of the P; and remove all of the k-tuples that contain a proper
subsct that is on the results-list. Check cach of thesc to sce if they work, and if they
do add them to the results-list.

P ITW

* 2. Increment k and iterate until k =n, then stop and return the results-list.

Both algorithms arc optimal in the sense that no test for workingness (a very cxpensive operation) is ever
’ performed that could be logically eliminated; no algorithm could be created that will always require fewer

- tests than cither of these.
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2.3 Parallel Algorithms

2.3.1 Parallel AMgorithm |

The two algorithms have very different characteristics. Top-Down will work faster if the minimal working
subscts are large with respect to n, and Bottom-Up will work faster when they are relatively small. There is no
way to decide which one will be fastest for a given problem short of running onc of them. The variability is
sufficiently great that we could produce a faster algorithm on scquential machine by running them
concurrently with one another by time-sharing and waiting for the first to finish with the result. This is one
(albeit weak) form of combinatorial implosion. The timing variability between methods need only be high

cnough so that on the average twice the time of the fastest to finish is less that the average speeds of both.

2.3.2 Parallel Algorithm 11

In this scction we will improve on the algorithm of the preceding scction by allowing the two subactivities to
pass each other information. We note two facts:

1. If {Pil, P ..., P, } does not work, then any subset of it will not work.
2 n

2. 1f{P; , P, .. P; } works then any superset of {Pi . Piz' - P } will work and
2 n 1 n

not be minimal.

As Top-Down is running, it produccs as computational by-products numerous scts that don’t work and in
order from largest to smallest. By property 1 above it can be immediately deduced that all subsets of these
sets will not work and these can be eliminated from immediate consideration. This fact is of course implicit in
the design of the Top-Down algorithm, but can be of great use to Bottom-Up. As Top-Down discovers sets
that don’t work they can be passed to Bottom-Up and used to prune many sets from possible consideration. A
byproduct of the running of Bottom-Up is the cnumeration of sets (in increasing order) that work. By
property 2 these can be uscd to prunc all supersets of the set from consideration by Top-Down.

The paralle! algorithm we cnvision has these two activitics running concurrently and passing results to each
other as they are discovered. A block diagram is shown in figure 1. Arrows in the figure show conceptual
flow of information. As a process discovers new scts that it should report to the other process, it broadcasts
this fact. Whenever a fact is Icarned that climinates the need for what the activity is doing at the moment its
work is halted and a relevant one is begun. This algorithm is casy to cxpress in Ether, although difficult or

awkward using other parallel programming methodologies.
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Fig. 1. Block Diagram for Parallel Implementation
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Chapter 111  Basic Ideas
3.1 Pattern Directed Invocation

The principle feature of pattern-directed invocation languages arc a large, continually changing collection of
assertions that represent facts of importance to the problem solver and some mcans of procedure invocation
bascd on pattern matching involving this collection of asscrtions. In Ether,T these define the two principle

operations: broadcast and when.

We choose the term broadcasi for the operation that adds new assertions to the ones already known. The
rcason we are using the term broadcast (and avoiding the term database) is to supply a certain conceptual
model. A database is often thought of as a data structure in which items are inserted in some definite order.
It might matter to the overall behavior of the system in what order two assertions were entered. The database
itself often has to cnsure its own consistency. If this databasc is used as a joint repository of information used
by many activities running in parallel there are many opportunitics for unforscen and undesirable interactions
to occur between these running activities. The standard conceptual model of a database is at too low a level.
The pattern-invoked procedures, called sprites, are thought of as watching for broadcast asscrtions matching
their patterns. If onc of them is invoked it can broadcast new assertions to other sprites or create new sprites.

3.2 What Sprites Are

Sprites consist of two parts, a pattern and a body. They watch for assertions to be broadcast that match their
patterns. If a sprite’s pattern successfully matches an assertion, the body of the sprite is exccuted in the
environment of the match. Sprite bodies principally contain two kinds of constructs: more sprites that are
activated and commands to broadcast new assertions to the collection of sprites.*

An example of a sprite that serves the function of an antecedent thcorem is:

(when (ON =x =y) :When a block is on another block
(when (OVER y =2) ;and the sccond block is over a third
(broadcast (OVER x z)))) ;assert the first block is over the third

The pattern of this sprite will match any asscrtion with three clements that has o in the first position. When
this spritc is triggered it crecates a new sprite (as the sole action of exccuting its body). If the assertion
(ON A B) is broadcast, this spritc will create a new onc of the form:

+ “Ether" (according to many noted 19th century physicists) is the name of the medium through which all information travels at finite

speed.
$ In the current implementation the bodies of sprites are cvaluated by the Lisp interpreter in the lexical environment of pattern

malching. Broadcast and when are ordinary Lisp functions. Other Lisp functions, such as cond, can also be used.

AT T
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{when (OVER B =2) ;When B is known to be over a certain block,
(broadcast (OVER A z))) ;assert A is over that block.

If an assertion of the form (OVER 8 ¢) is also broadcast, the action of this spritc will be to broadcast

(OVER A C).

Nested sprites, are common cnough to motivate a simpler notation. The patterns are all collected together
into onc list delimited by curly brackets. For cxample, the form:

(when ((ON =x =y)
(OVER y =2))
(broadcast (OVER x z)))

is functionally equivalent to the one above.

Sprites obey an important property known as commuiativity. When there is a sprite S that is capable of
riggering on an assertion A, the behavior of the system is invariant with respect to the order of creation of S
and A. It docs not matter if the sprite was created before the assertion or vice versa for the sprite to trigger.
The Ether collection of assertions satisfy another important property known as monotonicity. Once an
assertion has been broadcast it can never be erased. The modularity of Ether code depends upon these

properties.

3.3 Explicit Goal Assertions

Many pattern-directed invocation languages have specific syntactic constructs for doing antecedent and
consequent reasoning (e.g. Planner’s antecedent and consequent “theorems”™). It was later realized that only
one pattern-directed invocation facility was needed [7, 8, 9). Sprites can serve as antecedent theorems as was
shown above. Asscrtions that represent goals can be marked as such so that the same syntactic construct can
ve used for conscquent as well as antecedent reasoning. deKleer ct. al. [9] describes a language using explicit i
control assertions closely resembling the subsct of Ether developed in this chapter. A natural deduction logic
that bears a certain resemblance is described in Kalish and Montague [10).

A simple consequcent theorem embedded in a sprite is shown in figure 2,

Fig. 2. Simple Consequent Sprite

(when (GOAL (MAMMAL =x)) :When there is a goal of demonstrating x is a mammal,
(broadcast (GOAL (HUMAN x})) :Try 10 show x is human.

(when (HUMAN x) JAf you show x is human,
(broadcast (MAMMAL x)))) cbroadcast thar x is a mammal

This sprite, when invoked by a goal assertion, broadcasts a new goal assertion that can be picked up by
(possibly several) conscquent reasoning sprites and worked on in parallcl. A sprite is created that watches for
an assertions to be broadcast that watches for the new subgoal goal to be satisfied. 1f and when this assertion
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appears the result (HUMAN X) is broadcast. Sprites of this kind, that watch for results of independent activity,
are called continuation sprites because of their similarity to continuations employed in other programming

languages.

There are many advantages in using explicit goal asscrtions. They allow the system to reason about its goals
(possibly concurrently with working on them.) There arc at Icast four reasons why a procedural deduction

system should be able to reason about its goals.

1. It is often uscful for a system to determine conscquents of its goals in order to cvaluate the plausibility of
the goals themsclves., If the system can know what its goals are, then it can reason about the possible
applicability of techniques aimed at accomplishing these goals. This idea will be developed extensively in

section 5.3.

2. Moore [11] presents another use of the ability to have access to the goal structure. He demonstrates
numerous examples of situations in which there is a goal with two OR subgoals. It is shown (because of the
existence of these two subgoals) that there exists a third subgoal, the successful solution of which will signify a
solution to the main goal. His examples of this are all of unc form that might be characterized as the dual of
resolution. (He calls it “restricted goal resolution”.) If one subgoal is of the form:

PAQ 1 A.LAD i
and the second is of the form:
P'A Ry A... A Rj

where P and P’ unify then it is sufficient to solve the goal: U
Q, AL A QAR ALA R’j

where the individual propositions are instantiated by variable bindings resulting from the unification of P and
P'. It is based on the obscrvation that it does not matter to the main goal which of P* and =P is achieved.
Since one of P’ and —P will be true, and all other prerequisites of the respective OR subgoals are achieved,
one of them will certainly be satisfied.

While this example secems somewhat artificial, (although Moore does develop the idea extensively) other,
more scmantically meaningful cxamples involving, for instance, planning can be imagined. Suppose you
want to do two things (have two goals): (1) Get money at the bank and (2) Buy a book. Let's say the bank has
two branchces, onc in Kendall Square and one in Harvard Square, you arc necarcr Kendall Square than
Harvard Square, but there arc book stores only in Harvard Square. To deduce that you should go to the

1‘ In our notation, the Q'; and R’; are the terms Q; and R with variables replaced by constants resulting from the unification of P and P
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bank’s branch in Harvard Square the rcasoning system must reason about its goals.

3. A more pragmatic, though no less important, reason for having explicit goal asscrtions is as an casy
technique for producing arbitrarily parallel processing on conventional machines. Conventional Lisp

interpreters contain a significant control state; there is a non-negligible amount of time required to switch
' processes. If goals are created in a manner similar to the calling of functions in Lisp, a great deal of effort
must be expendced to allow several goals to work in parallcl. By not mimicing this aspect of the host language,

large-scale parallel development becomes possible.

4. A problem that can arise in (particularly, but not exclusively) parallel problem solving systemns is one of
cnsuring that effort is not duplicated unnecessarily. If two distinct goal activitics broadcast identical subgoals
we would like them to initiate only one new activity, not two. This follows automatically from the invisibility
of multiple broadcasts of a single asscru'on.T This is similar to a well-known difficulty with recursive
programming as can be scen in a recursive definition of the Fibonacci function. A Lisp dcfinition of

Fibonacci is:

: (defun FIBO (n)
- (cond
((= n 0) 0)
((=n1)1)
(t (+ (FIBO (- n 1))
(F180 (- n 2))))))

Calling (F180 6), for example, will require (FIBO 2) to be cvaluated five scparate times, and this count

increases exponcntially with its argument. An Fther implementation of this same function is shown in figure
3

Fig. 3. Ether Implementation of Fibonacci

(when (COMPUTE (FIBO =n)) Af asked 10 compute (fibo n)
(cond
' ((= n0) Af s 0,
. (broadcast (IS (FIBO 0) 0))) ;broadcast the answer is 0.
t ((» n 1) Af nis 1,
(broadcast (IS (FIBO 1) 1))) broadcast the answer is 1.
} (t (broadcast (COMPUTE (FIBO <~ a 1>))) :Otherwise compute (fibo n-1),
(broadcast (COMPUTE (FIBO <- n 2>))) ;and compute (fibo n-2).
E (when {(IS (FIBO <- n 1)) =a) :When you have a value for (fibo n-1)
| - (IS (FIBO <- n 2>) =b)} ;and a walue for (fibo n-2),
P (broadcast (IS (FIBO n) <+ a b}>))}))) :broadcast their sum for (fibo n).
v
3
y’ . Because this sprite will only respond to the assertion (COMPUTE (FI80 2)) once, it will only compute the :
’ answer once. Scquential problem solving systems can get around this problem because there is a guaranteed
sequencing between attempts to solve a goal. Each goal activity merely has to record that it worked on the
;
| s + Ether sprites will respond to an assertion only once regardless of the number of times it has been broadcast ‘
1




goal and what the result was. A later attempt to achicve this goal first checks to see if this information was in
the database. The THGOAL primitive of Micro-Planncr half solved this by first checking the database to see if

the goal was present; apparently Micro-Planner repeatedly attempted failing branches.

A similar problem that we casily avoid is that of the infinite goal stack. I1f a goal attempts to sct itself up as a
., subgoal, work automatically stops at that point. This problem is much less serious one in paraliel problem
solving systems compared with scquential systems exccuting a depth-first search where it can cause the system
to came to a grinding halt. In parallel systems an infinite goal stack only degrades the cfficiency of the system.

Given the presence of goal assertions with explicit activities created to work on them in parallcl, we now have
the capability to compare and contrast them as they work. As work progresses new partial results are achieved
that can cnable the system to rcapportion its resources. A simple example of this is a system aticmpting 10
! solve the goal (IxHP(x) A Q(x)). The system in paralle! attempts to find assignments to x that will make one
of the predicates P and Q truc. 1f it succeeds in finding onc such assignment (say P(a}V then it should allocate
morce resources to working on a derivation of Q(a). Similarly, if it discovers —P(b), it should certainly stop

W

working on the goal of showing Q(b).
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Chapter IV  Activities

4.1 Creating Activities for Goals

The simple conscquent sprite developed in figure 2 on page 12 has one obvious problem; there is no way to
stop work on the subgoal when the main goal has been achieved. For example, if the original goal asscrtion
was (GOAL (MAMMAL F100)) and it had bcen achicved. i.c. (MAMMAL FID0) was broadcast, there is no
mechanism that would prevent work contributing to the solution of (GOAL (HUMAN FIDO)) begun by the
conscquent sprite from continuing. Our solution to this problem will be the introduction of the concept of an
activity. An activity is a locus of control with some purpvse. We would like to create two activities, cach
containing all work on cach of the two subgoals. The example in figure 2 is redone using activitics as shown

in figure 4.

Fig. 4. Simple Consequent Sprite With Activities

(when (GOAL (MAMMAL =x)) =activity :Af you want to show x is a mammal
(1ot ((subgoal (new-activity))) :Create a subgoal activity.
(broadcast (GOAL (HUMAN x)) subgoal) ;Try 10 show x is human in this activity.

(when (HUMAN x) Af you show x is human,

(broadcast (MAMMAL x))) ;broadcast x is @ mammal

(when (MAMMAL x) Jf you leam x is a mammal

(broadcast (STIFLE subgoal))})) ;stifle the subgoal activity.

Therc are a couple of new syntactic constructs used in this example. You will notice that sprites (such as the
main one) can take two clements in the pattern instcad of onc. Also notice that broadcasts (such as the first
one in the body of this sprite) can take two arguments. The second argument in both cases is the activity
marker. The main sprite will trigger if an assertion has been broadcast that matches its pattern and that
assertion is part of a currently active activity. The main goal, if it is to enable this sprite, should be part of
such an activity. The function new-activity creates a new activity that becomes a sub-activity of the current
activity. The new activity (bound to subgoa1) becomes the activity of the ncw subgoal of the main goal. The
goal assertion, representing this subgoal, is broadcast with this activity as a second argument. As before, a
sprite is created that watches for the the result of the subgoal to appear and then broadcasts the main result.
An additional sprite is crcated that waits for this main result to appear, and if so, broadcasts a STIFLE
asscrtion. These cause work on the created activity to halt. STIFLE is an Ether primitive.

At first glance it would seem that the two sprites created (the one that checks for the result and the one that
docs the stifling) could have been combined into one. ' Why have they been scparated? Rememboer this is a
parallel probiem solving system. There may be, concurrently running with this solution attempt, other such
activitics with the same overall purpose. Or it may be that this fact is lcarned by the system in some fortuitous
unexpected way. It doesn’t matter. If ever the result is achicved, regardless of how, the activitics created to
achicve them will stop working.




4.2 General Schemas for OR and AND subgoals

Traditional problem solving theory presents two standard techniques of backward chaining {12) based on
whether one or all of a collection of subgoals must be satisfied for its parent goal to be considered satisfied.
We will present Ether templates for doing these two kinds of reasoning where ail subgoals are attempted in

parallel.

4.2.1 _OR Suhpoal

If we wanted to determine if an object is a living thing it would suffice to determine cither that the object is a
plant or an animal. We can say this in Ether by creating two sprites, cach watching for a LIVING-THING goal to
be broadcast as shown in figure 5. Onec broadcasts an ANIMAL goal and the other a PLANT goal. Appropriate
continuation sprites are also crcated to broadcast the LIVING-THING assertion if cither of the subgoals are

achieved.

Fig. 5. Simple Or Subgoals

(when (GOAL (LIVING-THING =x)) =activity JAf you want 1o show x is a living thing
(1et ((subgoal (new-activity))) ;Start a subgoal activity.
(broadcast (GOAL (ANIMAL x)) subgoal) Ty o show x is on animal

(when (ANIMAL x) JAf x is an animal,

(broadcast (LIVING-THING x))) ;broadcast x is a living ihing.

(when (LIVING-THING x) Mf you leam x is a living thing

(broadcast (STIFLE subgoal))))) :stifle the subgoal

(when (GOAL (LIVING-THING =x)) =activity Af you want 1o show x is a living thing
(1et ((subgoal (new-activity))) ;start a subgoal activity.
(broadcast (GOAL (PLANT x)) subgoal) Try 10 show x is an plant.

(when (PLANT x) Af you leam x is a plant,

(broadcast (LIVING-THING x))) ;broadcast x is a living thing.

(when (LIVING-THING x) :If you leam x is a living thing

(broadcast (STIFLE subgoal))))) ;stifle the subgoal

Notice that the activities working on each of the subgoals stop if the main goal is satisfied, regardiess of
how. We could create a third such consequent sprite and insert it in the system and these would still behave

properly.

If we wanted to determine whether a person was a bachelor, it would be sufficient to determine that he was

malc and unmarried. This could be accomplished by the following:

This consequent broadcasts the two and subgoals simuitancously and cstablishes continuations awaiting the
results. When they are received, the individual subactivities are stifled. Another continuation spritc awaits

the successful completion of both subactivitics and broadcasts the main result.
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Fig. 6. Simple And Subgoals

(when (GOAL (BACHELOR =x)) =activity JAf you want 1o show x is a bachelor,
(Yot ((subgoall (new-activity)) Start one subgoal activity,
(subgoal2 (new-activity))) ;and another subgoal activily.
(broadcast (GOAL (MALE x)) subgoall) ;Try 1o determine if x is male.
(when (MALE x) :f you learn x is male,
(broadcast (STIFLE subgoall))) stifle the subgoal activity.

(broadcast (GOAL (UNMARRIED x)) subgoal2) ;Iry 1o determine if x is unmarried
(when (UNMARRIED x) Af you learn that x is unmarried
(broadcast (STIFLE subgoal2))) :stifle the subgoal activity.

(when {(MALE x) ;1f you leam that x is male,
{UNMARRIED x)} ;and that x is unmarried,

(broadcast (BACHELOR x))))) cbroadcast that x is a bachelor.

Activities form a trce by a subactivity rclationship. When an activity is STIFLEd, it and all activities
transitively related to it by the subactivity relation stop work. The patterns of these consequent sprites are
followed by a pattern variable (i.c. =activity) to indicate the match will only occur if the goal assertion, the
sprite’s pattern, was broadcast in an activity that is currently functioning. Any new activitics produced inside
the body of this sprite become direct subactivitics of the activity in which the assertion was broadcast. The
next section contains a precise description of how activities are defined and their relationship to the other
objects in the system: sprites and assertions. Note that if the main goal activity bound (o gctivity is stifled at
any time work on its subgoal subactivitics gubgeal} and subgoea12 stop work.

4.3 Ilow Activities Work

This section describes how activities function, what being in an activity means, and their relation to the other

concepts of the system,

The Ether cnvironment consists of assertions and sprites. The actual “work" of the system is done by
executing the bodics of sprites that have been triggered by assertions. In order for a sprite to trigger, it must
be part of some (non-stifled) activity. Associated with cach currently active sprite is an activity. Associated
with some assertions (those representing goals, for instance) must be onc or more activities that will supply
processing power to sprites matching the assertion, i.c. sprites capable of carrying out the tasks called for in
the assertion.

4.3.1 The Rules
There are two cascs that nced be considered.

(a) If the sprite is of the form:




-
+
>

(when (paltern)
body)

and is part of a currently active activity, the match will be processed. All new broadcasts and sprite activations

that result from evaluating the sprite’s body will happen in the same activity.
(b) If the sprite is of the form:

(when (pattern) =aclivity
body)

is part of a currently active activity and the asscrtion has been broadcast with one or more activitics that are
currently active, the match will happen. All new broadcasts and sprite activations that result from evaluating
the body will happen in a new activity that is a subactivity of all the activities the asscrtion was broadcast in.
This property is retroactive. If the asscrtion associated with the parent activity is subsequently broadcast with
a new activity, this activity is added to the list of parents.

When an activity is stifled, all work occuring in that activity is halted. If this activity has subactivitics they are
also stifled providing they do not have additional parent activities that arc not stifled.
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Chapter V. Hypothetical Reasoning

Many procedural deduction systems contain facilitics for creating scparate subworlds of the then current
collection of assertions (world model) to allow rcasoning new deductions to be made that are contingent on
this collection of assertions. New deductions made are placed within this subworld and thus the rest of the

system is left unaltered.

The notion of a situation is introduced by McCarthy [13] as one way of accomplishing this. All n-tuple
asscrtions are made into n+ 1-tuplc assertions by the inclusion of a situational tag. For cxample the assertion
(HAS MONKEY BANANAS) can bc relativized to become (HAS MONKEY BANANAS WORLD16). Then if all assertions
are so rclativized, the problem solver can reason about what would be true in WORLD16 and can make new
assertions that apply to that world without affecting the state of belief about other hypothetical worlds.

QA4 introduced the notion of a context for similar reasons. Coniexis are a generalization of Algol block
structure. Contexts can be pushed and popped. When a context is popped, changes made in that context
become invisible. QA4 generalizes block structure by making it possible to coroutine between the various
contexts; contexts form a tree structure. The QA4 context mechanism is somewhat less general than situational
tags becausc only one context can be current at a time. This makes it impossible to concurrently examine and
manipulate scveral of them. Contexts do supply onc additional structuring mechanism that situational tags
do not. When a context is pushed the new context contains all the information contained in the previous
context. This makes it easy to determine the implications of making a change to the current world model

without making a scparate copy of it,

Context and situational tag-like mechanisms are used to create hypothetical worlds inside the machine that can
be rcasoned about separately. Therc are two reasons for wanting such a mechanism. The first is to determine
the consistency of a hypothesis with presently believed facts. The second is to determine the implications of
making changes to the current world as would be done in robot planning problems, for example. We will call
these two uscs additive and manipulative. The name additive is uscd because the collection of assertions
representing the new hypothetical world is a superset of the assertions in the old one. Manipulative
mechanisms arc more general. The asscrtions in the hypothetical world produced are a function of the
asscriions in the one it was derived from. Manipulative mechanisms are inhcrently more complex. Most
problem solving systems placc more cmphasis on manipulative rather than additive hypothcetical reasoning
i and in fact do not recognize the difference. We have found some new uses for additive mechanisms in

paralicl problem solving and will concentrate only on these in this paper. A discussion of manipulative

hypothetical reasoning and their uscs in planning will appear in a later paper.
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5.1 Viewpoints

‘The tenm given to the Ether analog of context or situation is viewpoint. Viewpoints have the flexibility of
situational tags and an inheritance mechanism something like contexts. All assertions representing facts about !
the world are considered to be in some viewpoint. The syntax for these assertions is a 2-tuple: the first i
clement is the assertion itself and the second is the viewpoint. For example ((on A B) H1) means that i

(ON A 8) is true in viewpoint H1. So far viewpoints look just like situational tags. When viewpoints are
created, they may be declared to be subviewpoints of other viewpoints. When a viewpoint is made a
subviewpoint of another (in an additive hypothesis) all assertions of the second virtwally become assertions of
the first; i.c. sprites will trigger on them as if they were actually broadcast in the subviewpoint. This concept is

similar to Fahlman’s [4] notion of virtual copying.T

The function used to create new viewpoints is called new-viewpoint. It is given as an optional argument the

vicwpoimi it is a subvicwpoint of. It might be uscd in the following way:

(18t ((hypothetica) (new-viswpoint (parent INITIAL)))
(broadcast ((ON B C) hypothetical)))

This has the cffect of creating a new viewpoint (which we will call "HYPOTHETICAL" for the sake of discussion)
that is a subviewpoint of the currently existing viewpoint INITIAL. Suppose that INITIAL had three assertions

in it at some point in time:

((ON C A) INITIAL)
((ON A B) INITIAL)
((MADE MOON ROQUEFORT) INITIAL)

Then immediatcely after the broadcast, HYPOTHETICAL would contain (at least) four assertions:

((ON C A) HYPOTHETICAL)
((ON A B) HYPOTHETICAL)

. ((MADE MOON ROQUEFORT) HYPOTHETICAL)
((ON B C) HYPOTHETICAL)

The contents of INITIAL is not affected at all. Note also that any additional asscrtions broadcast at any future
time in INITIAL will immediatcly appear in HYPOTHETICAL; here are no race conditions between subviewpoint
creation and broadcasting in superviewpoints. We will use a diagrammatic representation to describe

*

T The terminology here is somewhat ambiguous. We will sometimes consider ((ON A B) [11) 10 be an assertion and sometimes consider
it to represent the assertion (ON A B) in viewpoint 111, Hopefully this will not cause confusion.

$ The viewpoint hicrarchy can be morc general than a tree structure. A viewpoint can be a subviewpoint of morce than one other
viewpoint. The subviewpoint hicrarchy can form any graph withowt directed cycles. The assertional content of cach of the parents is
virtually copicd into the subviewpoint. Wce do not have the multiple parent inheritance problem that occurs in class-structured
languages. lor the remainder of this chapter, though, all viewpoints will have no more than one parent.
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viewpoint structures as shown in figure 7.

Fig. 7. Fxample of Hypothetical Viewpoint

(ONCA)
(ON A B)
(MADE MOON ROQUEFORT)

initiall

O —

(ONBC)

hypotheticall

Individual viewpoints are shown as boxes of asscrtions with subviewpoint relations indicatcd by arrows. An

assertion that is virtually copicd from one viewpoint to another will be explicitly shown only in the viewpoint
it was actually broadcast in. However, to antecedent sprites, it will appear just as if the the assertions were
carried along the subvicwpoint link and actually placed in the lower viewpoint. Suppose there was an active

antecedent sprite such as:

(when (((OM ex =y) HYPOTHETICAL) Af x is on y in the hypothetical viewpoint,
((ON y =2) MYPOTHETICAL)) cand y is on z in that viewpoini
(broadcast (. ON x z) NYPOTHETICAL))) ;Assert x Is on z in thar viewpoint

Then the assertions (o A 8) and (oM 8 €) will be picked up by this sprite and cause (ON A €) to appear in
HYPOTHETICAL. The new viewpoint structure appears in figure 8. When doing antecedent reasoning from the

Fig. 8. Hypothetical Viewpoint After Processing

(ON CA)
(ON AB)
(MADE MOON ROQUEFORT)

nitial

— e ———

|
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|
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hypotheticall
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assertions in a hierarchy of viewpoints, the only assertions to be actually broadcast in the subvicwpoint are
those that depend on the new assertions broadeast in the subviewpoint. This (assuming additive inheritance) is
a rather trivial contribution to the study of the frame problem.

5.1.1 Antecedent Reasoning With Viewpoints

All work, including both consequent and antecedent reasoning, must occur in some activity. The emphasis
throughout this work is on schemas for conscquent reasoning. Code for creating activitics to pursue
antecedent reasoning has been, for the most part, left out of the examples. Our technique for instantiating
antecedent sprites is a variation on the one used by Charniak [14). The key idea is we have a sprite that
requires an activity to trigger (Just as we do with goals). The assertion this sprite triggers on indicates the
viewpoint on which antecedent reasoning is to be done. This sprite creates the antecedent sprites in the new

activity. In Ether code this appcars as follows:

(when (ANTECEDENT-REASON viewpoint) =activity
(when (antccedent; viewpoint)

(broadcast (conscquent; viewpoint)))
(when (anteccdenty viewpoint)
(broadcast (consequeniy viewpoint)))

iwhon (antecedent, viewpoint)
(broadcast (consequent, viewpoint))}))

There may of course be many anteccdent reasoning activities working on a given viewpoint. If the antecedent
sprites are divided into several activities according to the scmantics of the problem domain, these activities

can be manipulated scparately as the computation progresses.

It is the responsibility of the code that creates a viewpoint to initiate antecedent reasoning on the viewpoint.

5.2 Deduction by Antecedent Reasoning to Anomalies

One usc for additive viewpoint inheritance is in doing what mathematicians call indirect proof. Indirect proof
is a proof mcthod in which the negation of the theorem that is desired to be proved is assumed and
contradictory conscquents are demonstrated.  Indirect proof is used very commonly in mathematical
rcasoning. If you scan a typical text in Topology, say [15]. it scems that more than half the thcorems use
indirect proof for at least part of their demonstration.

There has been some argument in recent years that indirect proof is not appropriate as a sound basis for
rcasoning in domains outside purc mathcmatics. The argument asserts that any complex reasoning
mechanism must contain some mutually incompatible beliefs. If some assumption is made a contradiction
will be obtainable. Thus any fact you like is derivable via indirect proof. While the basis of this assumption

(the inherent inconsistency in the belief structures of a sufficiently complex reasoncer) is undoubtably correct,

i
4
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i
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and strongly suggests that logic cannot be an ultimate basis for rcasoning,T the plausibility of some
mechanism very much like indirect proof for reasoning about negative goals seems still quite necessary.

‘The hasic idea is that the reasoning mechanisms imagines the antithesis of the negative goal to be true in a

4 separate hypothetical world that also contains facts currently known to be true. This world is then examined
for anomalous conditions. If ong is found, the original negative result is asserted. For example, if [ told you
| there was an angry skunk in this room you would not believe me. How do you so quickly decide this? 1

propose that the reasoning goes somcthing like: "Suppose there were an angry skunk in this room. Then
there would be a horrible odor. 1 do not notice a horrible odor, Therefore there is no such skunk here.” We
have achicved a negative goal. What we have donc is created a world inside our machine in which we placed
all known facts plus the fact that there was an angry skunk in the room. The antecedent theorems “went to
work” and quickly discovered an anomaly. This mechanism seems far more plausible than straightforward

conscquent reasoning. It is casier to imagine an antecedent-driven indirect proof-like mechanism for doing
this than a conscquent method that knows how to prove a skunk isn’t in a room.

The reason this mechanism scems primarily uscful for deriving negative results in "common sense reasoning”
is that the technique depends on the ability to reason antecedently from the negative of the fact to be
demonstrated. If the goal was to prove there is a skunk in the room we would have to imagine a world that
contained the onc additional fact of there not being a skunk in the room. Certainly this fact would not trigger
any new facts and thus nothing can be learned; no anomalies could be found.

It is intcresting to note that indirect proof, in mathematics, does not exhibit this limitation. This is because of
3 the nature of mathematical concepts. In mathematics, if we can derive interesting facts from the proposition
P, then it is also likely that P will have interesting consequents, One mathematical argument might go like
: "Suppose topological space T is Hausdorf. Then there is some open neighborhood U of x such that ..." or like
i "Suppose topological space T is not Hausdorf. Then there are two points x and y in T such that there is no
. open sct containing y that docs not contain x. ..." There does not seem to be the same asymmetry as exists

with common sense reasoning.

The way we would do indirect proof-type reasoning in Ether is by creating a vicwpoint that inherits from the
viewpoint containing facts about the world and place in that new viewpoint the negation of the fact we are

. trying 1o deduce. In addition to doing normal antecedent reasoning on this viewpoint, special "anomaly
expert” sprites are created to watch the viewpoint. In a logic thcorem prover, an appropriate anomaly expert
would be a sprite that checks for simultancous cxistence of a fact P and a fact =P in the knowledge base.

T Hayes [16] does not discuss this objection 10 logic in his otherwise insightful criticism of criticisms of logic. However, in Hayes'
defense. for this probiem 1o be of important pragmatic concern would require the construction of systems much more intricate than any
. discussed to date in the antificial intelligence literature,

t
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As an cxample of the use of indirect proof in Ether, suppose we had a viewpoint (called worRLD) with the
following asscrtions: (2 Q R), (2 P Q), and —R, with a goal of =P. Figurc 9 shows a sprite that knows how
to prove negative goals via indirect proof. It does this by creating a new viewpoint and places the antithesis of
the negative goal (P) in this viewpoint. Antecedent sprites working on the upper viewpoint also work on the
lower one, placing all results that involve any of the assertions in the hypothetical viewpoint expiicitly in it.
Onc additional sprite is created that watches for contradictions in this hypothesis viewpoint, If they are
found, the result (—P) is broadcast in the upper viewpoint.

Fig. 9. Sprite that Initiates Indirect Reasoning

(when (GOAL ((™ =x) =w)) =activity [Af there is a negarive goal
(let ((hypothests (new-viewpoint w))) :Create a new hypothesis viewpoint
(broadcast (x hypothesis)) :Place the goals antithesis in this viewpoint

(when {((™ =y) hypothesis) Af a fact and its negation

(y hypothesis)) :appear in the hypothesis viewpoint

(broadcast ({7 x) w))))) ;Broadcast the resultant theorem.

In order to get the ball rolling, the following would have to be exccuted:

(broadcast (GOAL ({™ P) WORLD) ACTIVITYS)

(when ((™ P) WORLD)
(broadcast (STIFLE ACTIVITY5)))

We do not have the continuation sprite in figure 9 stifle the activity of the indirect proof activity directly.
Rather, we create a scparate sprite that watches for the result to be achicved and then stifles the activity. It
should not matter who solved the goal, or how it was solved, for this activity to be stifled.

The GoAL assertion will be picked up by the conscquent sprite shown in figure 9 and will create a vicwpoint
structure as shown in figure 10. Assuming we have activated an antecedent rule implementing modus ponens,
new facts will be derived in the hypothesis viewpoint producing the viewpoint structure of figure 11. Then
the sprite that was created to watch for assertions and their negations will detect R and =R being present in
the lower viewpoint and broadcast the result to the higher viewpoint as shown i, figure 12. At this point the
spritc that watches for the goal (—P) to be achieved stifles ACTIVITYS and all work attempting this goal stops.

The purpose in our introducing techniques of indirect proof are twofold. First, it is an example of a program
in which the reasoner can concurrently reason about different world models (viewp<ints) in parallel. Any
consequent directed sprites that picked up the goal of =P would have worked unhindered in parallel with the
onc attempting indircct proof. The sccond purpose is suggested by the skunk cxample above. If P does not
imply any anomalics (i.c. =P is not derivable by indirect proof) then P is at least plausible. 'This is the subject

of the next section.
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Fig. 10. Initial Indircct Reasoning Viewpoint Structure
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Fig. 11. Subscquent Indirect Reasoning Viewpoint Structure
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5.3 Modeling Goal States and Opponents

A well known difficulty with backward chaining is that it can casily lcad to cxponentially widening trees of
goals where many of the goals in the tree arc to achicve states that are simply not true. Therc is a great
advantage in stifling the activity working on untruc goals; cvery such goal is itsclf the root of an cxponentially
widening tree of (guaranteed uscless!) subgoals. The strategy we will adopt in this section is to create when
appropriate a model of what the world would be like if the goal were true and sce if there are any anomalies
that would indicate that the goal is unachicvable. In Ether we do this by creating a viewpoint that inherits
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Fig. 12. Final Indirect Reasoning Viewpoint Structure
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from the viewpoint containing the world model in which the goal is broadcast. This viewpoint represents
what the world would be like if the goal were true. We instantiate both standard anteccdent sprites and
anomaly detection sprites that work on this viewpoint.

In this section we will build on the example of simple OR subgoals in figure 5 on page 17 which contained
two sprites that turned a goal of showing some object was a LIVING-THING into two subgoals of showing it is a
PLANT or an ANIMAL. We will assume now that we have a world model containing facts about the objects in the
system. In particular we may know some facts about the object we wish to prove is a LIVING-THING (call it
FRED), say that it is M0BILE. This along with other facts about our world arc contained in a viewpoint. We will
modify the consequent sprites shown in figure 5 to create new viewpoints containing the subgoals themselves.
In these subviewpoints antecedent reasoning is performed on the goal also using information contained in the
world modcl viewpoint. In this way the consistency of the subgoal is checked. We know of only one fact so
far, though the world model perhaps contains many others; that fact is that Fred is mobile. Our database
contains at least the following assertion: ((MOBILE FRED) WORLD).

In figure 13 cach of the component subgoals cstablishes a viewpoint that inherits from the WORLD viewpoint.
In this viewpoint is placed the assertion of the goal. We want to do antecedent rcasoning on the contents of
these new viewpoints. There arc presumably already antecedent sprites that arc pattern matching on the
WORLD vicwpoint. We would like to extend their range of application to the newly created viewpoints. There
is an Ether primitive for doing this called SPRITE-INHERITS. It is broadcast with two arguments, the inherited
and inheriting vicwpoints, It must be broadcast in a certain activity in which all the work done by these

el e b . .
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Fig. 13. OR Subgoals With Opponents

(when (GOAL ((LIVING-THING =x) =h)) =activity
(et ((subgoal (new-activity))
(subpiat (new-viewpoint h)))
(broadcast (GOAL ((ANIMAL x) h)) subgoal)
(when ((ANIMAL x) h)
(broadcast ((LIVING-THING x) h)))
(when ((LIVING-THING x) h)
(broadcast (STIFLE subgoal)))
(broadcast ((ANIMAL x) subplat))

(broadcast (SPRITE-INHERITS subplat h) subgoal)

(when ((CONTRADICTION) subplat)
(broadcast (STIFLE subgoal)))))

(when (GOAL ((LIVING-THING =x) h)) =activity
{let ((subgoa) (new-activity))
(subplat (new-viewpoint h)))
(broadcast (GOAL ((PLANT x) h)) subgoal)
(when ({PLANT x) h)
(broadcast ((LIVING-THING x) h)))
(when ((LIVING-THING x) h)
(broadcast (STIFLE subgoal)))
(broadcast ((PLANT x) subplat))

(broadcast (SPRITE-INHERITS subplat h) subgoal)

(when ((CONTRADICTION) subplat)
(broadcast (STIFLE subgoal)))))

:f there is a goal of showing x is a living-thing
:create a new activiny for a subgoal

;and a new viewpomt for an opponent
;Broadcast the new subgoal

Af the subgoal has been achieved,

;Broadcast x is a living thing

:Af you determine x is a living thing

;stiffe the subgoal

:Broadcast 1the goal 10 the opponent viewpoint.
:and star! antecedent reasoning

JAf the opponent viewpoint is contradictory,
;stifle the subgoal

Af there is a goal to shown x is a living thing
:Create a new subgoal activity,

;and an opponent viewpoint.

;Broadeast the new subgoal

Af the subgoal has been achieved,

;Broadcast x is a living thing

Af you detcrmine x is a living thing

;stifle the subgoal

;Broadcast the goal to the opponent viewpoint
;and start antecedent reasoning

Af the opponent viewpoint is found contradictory,
:stifle the subgoal activity.

inherited sprites happens. If that activity becomes stifled all work done by these sprites in the inheriting
viewpoint stops. We create an additional sprite watching for contradictions to be determined via antecedent
reasoning. If one is found, the subgoal activity (which includes the antecedent reasoning on that viewpoint) is

stifled. The vicwpoint structure appears in figure 14.

Fig. 14. Viewpoint Structure for OR Subgoal Opponent

| |

| (MOBILE FRED) |

| |

L world)
| | | |
] {PILANT FRED) ] | (ANIMAL FRED) |
| (CONTRADICTION) | | |
| | | |
L hypothesisi| L hypathesis|

Antecedent reasoning will eventually determine that moBILE and PLANT are incompatible properties and
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broadcast the (CONTRADICTION) asscrtion.~r

The general name we give to work being done to try to prove goals insoluble is opponent activity. The
viewpoints created to look for contradictions for an opponent activity are called opponent viewpoints. The

opponent conceept is a generalization of what is usually referred to as goal filtering.

The mest familiar example of goal filtering in the literature is the classic gcometry theorem proving program
of Gelernter 117}, His program used only backward chaining. A representation of the diagram was available
to the program. Before it would attempt work on any goal it first checked to sce if the theorem was true of the
diagram. [f it was not true, work on the subgoal was never begun. Otherwise the subgoal was attempted.
This is analogous to our creation of a new inheriting viewpoint in which the goal is asserted and contradictions
arc looked for. Opponents are more gencral than goal filters because we do not require the opponents to
always terminate in a reasonable amount of time. It would be catastrophic in a sequential system using goal
filicring if cven rascly the filtering procedure did not terminate. Imagine that instcad of proving the validity
of a theorem in geometry we were interested in savisfiability. Presence of supporting cvidence in the diagram
would solve the problem. Lack of supporting cvidence would not be uscful information. However, our
opponents would still be useful. If a contradiction was determined then the theorem would not be satisfiable.

In the event of and subgoals we would create an opponent viewpoint that contained all the conjuncts. The
example of AND subgoals in figure 6 is redone in figure 15.

Fig. 15. And Subgoals With Opponents

(when (GOAL ((BACHELOR =x) =h)) =activity :f there is a goal of showing x is a bachelor,
(1et ((subgoall (new-activity)) :Create a subgoal activity,
(subgoal2 (new-activity)) ;and another subgoal activity.
{subplat (new-viewpoint h))) :Create an opponent viewpoint.
(broadcast (GOAL ((MALE x) h)) subgoall) :Broadcast a ‘'male’ subgoal.
(when ((MALE x) h) Af x is shown 1o be male,
(broadcast (STIFLE subgoail))) :stifle that subgoal

(broadcast (GOAL ((UNMARRIED x) h)) subgoal2) :Broadcast an ‘unmarried’ subgoal
(when ((UNMARRIED x) h) Af x is shown 10 be unamrried
(broadcast (STIFLE subgoal2))) sstifle that subgoal

(when {((MALE x) h) Af x is shown 10 be male

( (UNMARRIED x) h))} ;and x is shown to be unmarried

(broadcast ((BACHELOR x) h))) :broadcast x is a bachelor.

(broadcast ((MALE x) h)) :Broadcast a male assertion to the opponent viewpoint
(broadcast ((UNMMARRIED x) h)) :And also an unmarried assertion.
(broadcast (SPRITE-INHERITS subpiat h) subgoall subgoall) ;Antecedently reason
(when ((CONTRADICTION) h) Af there is a contradiction,
(broadcast (SYIFLE subgoall)) :Stifle one subgoal

(broadcast (STIFLE subgoal2))))) ;Stifle the other subgoal

Unlike the casc with OR subgoals, we require only onc opponent viewpoint in which we put all the conjuncts
because all must be truc if the goal is to be realizable. Figure 16 shows the viewpoint structure created for a

1' If it scems to you that an unrcasonably large amount of antecedent reasoning must be done to support this, see section 6.3.




particular world model by the consequent sprite of figure 15 after two independent goal broadcasts:

(GOAL ((BACHELOR JOHN) WORLD))
(GOAL ((BACHELOR SUE) WORLD))

fig. 16. AND Subgoal Opponent Viewpoint Structure

| I

] (FEMALE SUE) |

| |

| |

l/ __world)
| o | i |
| (MALE JOHN) | { (MALE SUE) {
| (UNMARRIED JOHN) i | (UNMARRIED SUE) |
| | | |
L John's opponent 1 Sue’s opponent]

Both goals are processcd concurrently with opponent activity trying to refute them. In each opponent
viewpoint is a description of what the world would be like if the goal were true. One of the opponents (Sue’s)
rather quickly discovers a contradiction as shown in figure 17 and the activity working on
{GOAL ((BACHELOR SUE) WORLD)) is stifled.

5.4 Modeling The Goal Stack in Opponents

If there are several goals arranged hierarchically we would like the opponent viewpoints to chain together in a
way that mimics the goal stack. Subgoals lower down can often be constrained by the overall purpose of the
main goal. For example, if we had the goal stack of figure 18 where the BACHELOR goal cstablishes two
conjunctive subgoals: uNMARRIED and MALE and thc UNMARRIED subgoal in turn scts up a subgoal to show FRED
does not have a wussano. This, however, is a subgoal that is only applicable in cases where the object is a
female. The subgoal should get stifled immediately. Using the methodology for opponents shown so far, this
constraint would not be carricd along hacause cach opponent inhcrits from the viewpoints containing the
world modcl vicwpoint. Instcad of having cach subgoal link its opponent directly to the worLd model
viewpoint, we would like it to link its opponent to the opponent of the goal it is a subgoal of. For this
particular cxample, the opponent viewpoint structure is shown in figure 19. In order to make this work, we
must pass the name of the opponent viewpoint along with the goal asscrtion itsclf. The conscquent sprite in
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Fig. 17. Subscquent AND Subgoal Opponent Viewpoint Structure

(MALE JOMN)

AN

| | | |
| (MALE JOHN) | | {MALE SUE) |
| (UNMARRIED JOHN) | | (UNMARRIED SUE) |
l | | (CONTRADICTION) |
! J | I
L John's opponen| L Sue's opponent|

Fig. 18. Example Goal Stack

(GOAL (BACHELOR FReD))

(GOAL (UNMARRIED FRED))

(GOAL (NOT (HAS FRED HUSBAND)))

Figure 15 is redone in figurc 20 with this modification. The explicit goal assertion contains an additional
clement: the name of the opponer.t viewpoint working on the goal. This allows the code in the sprite bodies
to make the newly created opponent viewpoint a subviewpoint of the opponent viewpoint of its supergoal.
Other than this, the code is identical.
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Fig. 19. Opponent Yiewpoint Structure for Goal Stack

----------------------------

{BACHELOR FRED)

.............. [-----fywqaeatl

(UNMARRIED FRED)

(NOT (MAS FRED HUSBAND))

.................... QRpRIEH (3{

Fig. 20. Code to Create Vicwpoint Goal Stack Model

(when (GOAL ((BACHELOR =x) =h) =opponent) =activity
{1et ((subgoall (new-activity))

(subgoai2 (new-activity))

(subplat (new-viewpoint opponent)))
{brosdcast (GOAL ((MALE x) h)) subgosll)
(when ((MALE x) h)

(broadcast (STIFLE subgoall)))
(broadcast (GOAL ( (UNMARRIED x) h)) subgoal2)
(when ((UNMARRIED x) h)

(broadcast (STIFLE subgoal2)))

(when {((MALE x) h)
( (UNMARRIED x) h)}

(broadcast ((BACHELOR x) h)))
(broadcast ((UNMARRIED x) subplat))
(brosdcast ((MALE x) subpist))

(brosdcast (SPRITE-INHERITS subplat opponent)
subgoall subgoall)
(when ((CONTRADICTION) subplat)
(broadcast (STIFLE subgoall))
(broadcast (STIFLE subgosl2)))))

JAf you want 10 show x is a bachelor,

;Start one subgoal activity.

:Stwart another subgoal activity.
:Create an opponent viewpoint,
sBroadcast a 'male’ subgoal

Af x is shown to be male,
:Stifle the subgoal activity.
:Broadcast an ‘unmarried' subgoal
JAf x is shown 10 be unmarried,
;stifle the subgoal

Af x 5 shown to be male,

;and x is shown fo be unmarried
;Broadcast x is a bachelor.

:Broadcast ‘unmarried’ 1o the opponent.

;Broadcast ‘'male’ to the opponent
;Start antecedeni reasoning,.

JAf there is a contradiction,
:stiffe one subgoal activity,
;and siifle the other subgoal activity.
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5.5 The Relationship Between Viewpoints and Activities

In every example in this chapter we have created viewpoints and activities in parallel. Whenever there was a
problem to be solved, an activity would be created to pursue the problem and a viewpoint created to scrve as
a "scratch pad” for the activity. This close relationship might tempt one to simplify the language somewhat

by combining the two notions.

Vicwpoints and activities are, however, quite distinct notions. Viewpoints are a mechanism for structuring
and localizing knowledge. Activities are a way of controlling the processing that actually gets done. Less
! trivial programs in Ether than the examples in this paper might require the use of an activity that needed to
H access more than one world model (i.e. viewpoint) to accomplish its purpose. Conversely, the information in 3
a viewpoint may be useful irrespective of the state of the activity that created it. i
]
2
j
1
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Chapter VI  Some Further Ideas
6.1 Resource Control

We have argued that by allowing many processes to run concurrently tighter control over certain search
problems can be achicved. This increasc in control can come from two sources: (1) taking advantage of wide
variabilitics in the timings of methods, and (2) the use of opponents to prune demonstrably useless attempts.
The system is able to capitalize on interactions between various running activity in ways that would be
hopelessly complex to manipulate by a coroutine-like control structure. Although our system is protected
from catastrophic failure when individual activities diverge, there is one sense in which we have lost control;
we hiave no means to protect the system from getting choked with thousands upon thousands of activities,
choked to the point where no activity can do anything at all!

6.1.1 The Basic Idea

The kinds of problem solving situations Ether is designed for involve substantial trees of backwardly chained
goals. These problems have the character that any given approach (goal) is not likely to succeed. We have
proposed one mechanism, namely opponent activity, that can achieve eventual pruning of activities working
on useless subgoals. Often it will require some amount of work to be done for a goal to be pruned. We are of
course most interested in pruning goals higher up in the tree. Because of the exponential growth character of
expanding goal trees, there may be, in a short time after the program is started, so many running activities that
nonc can get anything done. The system becomes choked. Even if you scc this scenario as being somewhat
unrealistic, it would secm that in a large problem solver some little corner of it would have this property of
generating many useless activities that do not get quickly stifled. This one corner would grow in a cancer-like
way and could come to dominate the entire problem solver. This is the traditional idea of a "combinatorial
explosion” applied to activitics instead of data. We have to provide some means of preventing it from getting
out of hand.

Our solution to this problem is the introduction of the notions of processing power and energy. The machine
is viewed as a finite resource usablc at a constant rate in the scnse that during a given interval of time the
machine can do a constant amount of work. Drawing an analogy with physics, we say that a machine has a
constant amount of power available to it that can be divided among its running activitics. Fach activity uses
up an amount of energy cqual to the time integral of the power available to it. When an activity creates
another activity, it mist give up a certain amount of its processing power o this activity. Thus processing
power, in addition to being conserved globally, is converved locally.

An analogy with tree scarch algorithms can be madc here. Sequential programs can be said to correspond
with depth-first search, and parallcl programs to breadth-first search. There is a third class of tree search




algorithm known as best-first that is a gencralization of depth and breadth-first search. Best-first searches can

make use of available heuristic information to decide what node to examine next. If all activitics are given
approximately cqual amounts of processing power then the control structure is similar to a breadth-first
scarch. If only one activity (or onc string of activities related by the sub-activity relation) has processing
power at a time it is similar to a depth-first scarch., Best-first scarch can be emulated by using heuristic

information to control the allocation of processing power.

Parallel processing with resource control is actually more general than best-first search. With best-first search,
after we have picked a method, we ~rc committed Lo pursuing it until we are given the opportunity to pick the
next method. Paratlel processing allows you to change resources allocated to running activities whenever facts

are discovered that would suggest such changes; there is no concept of an atomic, indivisble action.

6.1.2 An Implementation of Resource Control

There are two kinds of resource limitations we might want to define for an activity: power and energy. A
resource limitation on encrgy is optional; an activity with no energy limit will keep computing as long as it has
something to do. All activitics are power-limited, whether or not the language supplics a means of controlling
it. In this scction Ether primitives for dealing with these two quantities will be described. They have not been
cxtensively used and should be considered tentative.

The machine is viewed as consisting of some constant amount of power that is divided among the running
activities. For the moment we will assume the activity graph to be a tree. When an activity creates another
activity it must give it a certain amount of its own processing power if this activity is to do anything. The
processing power owned by an activity is distributed in some manner between its needs and those of its
subactivities. The default allocation strategy is to divide power cqually between an activity and each of its
subactivitics. With an cxponentially growing tree of activitics this has the property that the allocation of
power falls off exponentially as the tree is traversed down from the root.

When the default scheme is not desired there must be a way to alter the power allocation assigned to a node.
An activity is created to do a job. When an activity is crcated, its creator gives it an amount of processing
power that corresponds (o its notion of how important this job is to it at the time. This activity in turn divides
its power in the way it sees most fit. For these reasons the primitives dealing with processing power do not
deal in terms of propostions of the total machine resources that it is getting, they deal only in terms of
proportions of the processing powcr that have been assigned to it. We think of the processing powcr poscssed
by an activity and its subactivitics as summing to 1. The default scheme, then, allocates implicitly a power of
1/(n+1) to it and cach of its subactivitics. If it becomes desirable to change from the default allocation it

should do:
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(broadcast (PROCESSING-POWER aclivily number))

for subactivitics it has crcated and for its own use:

(broadcast (PROCESSING-~POWER-SELF activily number))

All subactivities that have not been explicitly allocated will divide up among themselves all the power that has
not been allocated. Itis an crror if the sum of these numbers for an activity and its subactivities is greater than

L

The other resource we would like to specify ways of limiting is encrgy. Processing cnergy is a guantity we are
used to dcaling with, somctimes cxpressed in the units of "CPU scconds.” It is, unfortunately,
implementation (and program) dependent. One would not use it in a program without having first had quite
alot of experience with that program on that machine, This, unlike idcas about processing power, has
received some treatment in the literature in the context of agendas and has been used as an integral part of at
least onc artificial intelligence system {18]. There arc any number of things we might want to do if an activity
has cxpended its energy limit. The following sprite stifles an activity when it has reached a prescribed energy
limit:

(when (PROCESSING-ENERGY aclivily number)
(broadcast (STIFLE aclivity)))

Other things we may want to do when an activity has reached a limit is check to see how it is doing, based on
information that has been broadcast by that activity during its running. If it has been making “satisfactory
progress” it should be allowed to continue, otherwise halted.

The primitives described arc just that, primitives. We nced to build on this a higher level language for
discussing resource control that speaks in the language of problem solving rather than these low level
concepts.

6.2 Quiescence

This paper discusses the desirability and possibility of doing rcasoning in paralicl. Emphasis has been placed
on uscful interaction between concurrent processing in order to limit search. In section 6.1.2 we present
control structure idcas for making use of notions of variable processing power to implement depth first-like
searches, characteristic of "sequential” problem solving.

One thing we can't do with the primitives presented so far in any casy way is to: "Order some methods, Try
them one at a ime. Only when you have exhausted all possible regimes for employing a given method do you
go onto the next.” Considering this to be the only natural control structurc in our distant ancestor,

Micro-Planner, it may scem somewhat odd that we cannot handle it! This docs not really cause us concern
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because in a problem solving situation it is rarely possible to be sure that al/l activity that could possibly
accomplish some goal has terminated; new information may be learned that could give a quiescent activity,
one with no work to do currently, new things to do. For most applications we believe it desirable to use the
merits of what the activity has or has not done so far as a gauge on whether to allow it to continue or not.
Quiescence is really a degenerate case of the much more important problem of detecting when an activity has

ceascd to make uscful progress.

There do seem to be, however, certain kinds of problem solving situations in which it is desirable to determine
whether an activity has gone quicscent. I believe one such problem is cryptarithmetic. A well-known example

of a cryptarithmetic problem from Newell and Simon’s book [19] is:

DONALD
+GERALD

,eerctavsanm-

ROBERT

The problem is to find an assignment of digits to letters so that this template represents a valid summation.

This kind of problem is most uscfully solved by multi-stage process of constraint propagation and case
splirting. Constraint propagation can be accomodated in Ether by antecedent reasoning. For cxample, if we
lecarned that (HAS-VALUE D 6), an antccedent sprite could assett (by examining the last column) that R must
have a value greater than five and G a value less than 5. These constraints would “propagate™ to other
columns containing the letters R and G, and to other letters that were competing with G and R for values. In
this way the problem solving space becomes constrained monotonically with time. When antecedent
processing has terminated (becomes quiescent), as it must in a reasonable amount of time, cither all letters
will be assigned unique digits making the problem solved, or therc will be some letters that are not yet fully

constrained.

The search for a solution can continue by casc splitting on the value of sc ne digit. For cxample, if we know
that R must be either 7 or 9, two ncw viewpoints can be crcated, inheriting from the current one, in which
(HAS-VALUE R 7) and (HAS-VALUE R 9) arc placed respectively. Antecedent processing continues in these
vicwpoints until onc of three things happen: a contradiction is determined to cxist in the viewpoint in which
casc antecedent processing activity is stifled, a solution is reached, or a quiescent state is reached. If the third

possibility happens case splitting can be effected again on some other digit.

To detect quicscence, the pattern of a spritc may be the special form: (QUIESCENT activity). The sprite will
then trigger when the designated activity has gone quicscent. Using this the cryptarithmetic problem solver

described above can be implemented in a straight forward manner.

Micro-Planner-style depth first scarches can be implemented using the quiescence detection mechanism. This
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is donc by starting up one alternative, waiting for its activity to become quiescent, and then starting the next.

This is shown in figure 21,

Fig. 21. Code for Implementing Depth First Scarch

(1ot ((activityl (new-activity)))
(broadcast (GOAL (alternativel)) sctivityl)
(when (QUIESCENT activityl)
(et ((activity2 (new-activity)))
(broadcast (GOAL (alternativel)) activity?)
(when (QUIESCENT activity2)
(et ((activity3 (new-activity)))
(broadcast (GOAL (dlternalive3)) activity3)
(when (QUIESCENT activityd)

SN
6.3 Virtual Collections of Assertions

The value of pattern-directed invocation as a basis for artificial intelligence programming is in the generality
different methods have for communicating with cach other. The different methods communicate in a
language based on the semantics of the problem domain rather than one based on the control structure of the
program. Itis certainly a poweful idea yet onc that has met little application outside of "toy" domains. This
can be attributed principally to the lack of efficiency of all extant implementations. The lack of efficiency can
be traced to two sources: (1) Any asscrtion broadcast is potentially processable by any sprite.  (2) All
information flow in the program involves the creation of asscrtions, structures that need to be CONS'd.
Discrimination nets and other technical aids ameliorate the situation somewhat, though not enough.

Compilation schemes, although attractive at first glance, do not scem very plausible in the general case.
Compilation of Ether-like languages would cntail converting broadcast-when interactions into function calis
with arguments. If we knew that goal assertions of a certain form were only and always reccived by a certain
set of sprites, the broadcast of this asscrtion cou'd be replaced by function calis of the code associated with the
sprites. However, sprites can be created while the system is running. There is no way a compiler can know
from syntactic considerations when this is the case, You might imagine a scheme in which the user specifies
when this more restricted condition holds. While this can certainly be done, the program writer might just as
well have specified the code in terms of the function calls it would be compiled into.

1t is the case that many subscctions oi a typical Fther-like program can be casily coded in a host language such
as Lisp. We would like a scheme for such #iand-coded meihods to communicate with other hand-coded
methods and with subscctions of the system that are more naturally written using pattern-directed invocation.
‘The inspiration for the method 1 will present comes from the object-oriented language formalisms. (Using
actor terminology) an actor is described solely by its message passing behavior, the messages it accepts and
replics with. Ffficiency can be incorporated very natuarally in these systems without sacrificing program
clarity. For cxample, a matrix is an actor that accepts two kinds of messages, one for storing new values and




one for requests as to values of its clements. Many matrices in applications are sparse, that is their values are
zero for almost all elements. A sparse matrix is most cfficiently stored as a hash table containing entries for
the non-zero elements. A function that took matrices as arguments in a non-vbject-oriented language might
have to check first to see how the matrix is represented to know how to access it. An object-oricated language
allows the programmer to create a sparse matrix by specifying how it responds to the two kinds of messages
mentioned. After this actor is created, it will behave functionally identically to any other matrix. The rest of
the program is effectively shiclded from the intricacies of how the individual kinds of matrices are represented

and accessed.

A subsct of a pattern-directed invocation system is exactly described by (1) a description of the assertions it is
interested in responding to, and (2) a description of the assertions that get added to the database when one of
the assertions that it is interested in is added to the database. Any method embuodicd in code that can provide
these two descriptions can be interfaced to the rest of an Ether-like language comipletely transparently. This
docs not mean the assertions it would add to the database arc actually present; only that the method supplies
code for deciding if they are virtually present. A mcthod described this way is known as a virtual collection of

assertions.

Incorporating property (1) of a virtual collection of assertions, indicating what asscrtions it is interested in and
what it does when they are broadcast requires no additions to the Ether language; sprites (at least in the
current implementation, whose bodics can contain arbitrary Lisp code) already do exactly this. The only new
facility we must supply is one to handle the queries about virtual presence in the database. For this we must
specify a set of procedures that specify (1) the membership questions they are capable of answering, and (2)
how to decide for an individual assertion query whether the assertion is actually present. A possible syntax

for this is:

(when-asked (pattern viewpoint)
--arbitrary Lisp code-- )

The pattern specifies the class of assertions this procedure can handle. The arbitrary Lisp code returns a list of

all assertions it considers to virtually cxist matching the pattern in the given viewpoint.

For example, suppose we had a virtual collection of asscrtions that modeled a semantic net. It should be
capable, among other things, of deciding that an object known to be human is also a mammal. An cntry point

1o the scmantic net would look something like:

(when (HUMAN =x)
--code 1o enter x inlo the semantic net--)

Then for cach of the characteristics that the net will answer questions about, we have a when-asked as follows:




(when-asked (MAMMAL =x)
-=code to check if' x is a manmal in the net-=)

Then a sprite of the form:

(when (MAMMAL FRED)
do something)

will trigger if FRED was previously known to be a human. From the point of view of the Ether program there
is a very large collection of asscrtions available for pattern matching. However, the information is represented

in the most compact and efficicnt way the programmer could devise.

- There are many attributes a virtual collection must have to function correctly. These include ensuring proper
interaction with the viewpoint mechanism and invariance of behavior with respect to the order of virtual
insertion into the databasc and request for presence by sprites. 1 think this approach will make possible a
synthesis of the very general but incfficient Ether mechanisms with efficient Lisp code where it is known how
to construct this code. The MIT Lisp machine with stack groups and alarmclock interrupts supplies an
implementation vehicle for Ether that will allow the running of Lisp code without removing the parallel

behaviour of Ether programs.

1
A
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Chapter VII  Comparison With Other Work
7.1 Pattern-Directed Invocation Languages

Many of the concepts of pattern-directed invocation languages originate with Planner {20]. A subset of
Planner known as Micro-Planner {21] was implemented. 1t embodicd the ideas of antecedent and consequent
theorems or procedurcs that were invoked automatically by the system. Micro-Planner investigated all goals
by simple depth-first scarch with backtracking when failure points were reached.

There were a couple of interesting bugs discovered in Micro-Planner. It was not possible to distinguish
between wanting to know if a certain fact is known to be true and investing effort in trying 1o prove it. In Ether

we would say:

(when (INTERESTING FACT)
(Do something))

if we wanted to do somcething only if the fact was true. If we wanted to start some work attempting to show it

is true we would do:

{broadcast (GOAL (INTERESTING FACT)) ACTIVITY)

In Micro-Planner the two were lumped under the primitive THGOAL. Another, similar, problem with
Micro-Planner was an ambiguity between knowing something is not the case and not knowing if something is
the case. [11] Negation was handied via the primitive THNOT. THNOT succeeded if and only if its argument
failed. For example:

(THNOT (THGOAL (MAS ALPHA-CENTAURI LIFE)))

would, in the absence of any way to prove the goal, succeed. This is the Micro-Planncr equivalent of proving
(NOT (HAS ALPHA~CENTAURI LIFE)). l.anguages developed subsequently, like QA4 [22], Conniver [23), and
Popler [24] made further contributions. QA4 introduced the notion of contexts as a means of structuring the
Lisp enironment (property lists, variable bindings, ctc.). Contexts could form a trec structure; it was possible
to create a context, leave it for a while, and go back to it later on. QA4 was found to be very incfficicent and a
subset of it known as QLISP was cmbedded more directly in Lisp [25). Conniver had a context mechanism

similar to QA4's. lts principle contribution was a way of controlling backtracking by means of generators and
possibility lists. Instcad of the language implementation trying possibilitics in some arbitrary order, the
program could manipulate possibilities to try next as data structures, hopcfully optimizing its search.
Programs in Conniver become complex beyond the point of understandabitity. These sysiems largely failed
because of unexpected interactions between methods that were conceptually unordered (i.c. running in
parallel), Popler [24] was an implementation of many of the original Planncr ideas in the language Pop-2. It




was the first of these languages to allow methods to be run in parallel, though it was not designed for the

massive parallelism Ether is.

Amord makes usc of explicit goal assertions (sec section 3.3) and inspired the basic form of their use in Ether.
Amord docs not have analogues of acrivities and viewpoints as primitives. Instcad these concepts are
implemented using justifications and truth maintenance [26). Justifications provide a more gencral
mechanism for structuring knowledge than the vicwpoints we have used. Truth maintenance systems,
however, do not lend themselves to parallel problem solving. There is a concept of, at any one time, certain
assertions being visible or invisible to the sprites. The visible assertions correspond to a mutually consistent
collection of beliefs - essentially what might be accessible from a single viewpoint. Parallel problem solving
requires the ability to have more than one viewpoint available at a time,

7.2 Parallel Al Systems

The Hearsay spcech-understanding system [27] makes usc of dccentralized parallel processing in a
fundamental way. It presents many levels of description (raw input, phonological, word, phrase, etc.) that are
constructed in parallcl with one another. The basic philosophy of the approach is that cach level is inherently
noisy and incomplete, and thus the only way anything can get done is if processing at one level helps to
constrain work at other levels. In this sense their approach is quite similar to ours. Theirs is a more special
purpose system; Heaisay is not a programming language in which such concepts as opponents could be
written.

I.cnat [18] presents the most interesting use of notions of resource control that I have scen. His domain is
mathematical discovery; the object is to have the program discover new mathematical concepts from ones it
alrcady knows about. Many possible avenues of discovery are explored in parallel. There is a criterion for
interestingness of the potential discovery that guides the scheduler in determining what to run next, and for
how long. l.cnat’s basic control structurc is an agenda mechanism with resource limitation information based
on how interesting the result would be if achicved. The important point of agreement between his work and
ours is the obscrvation that you cannot tell how successful a path will be short of trying it; for this reason
many paths should be pursucd in parallcl to avoid having "all your eggs in onc basket.” Lenat's thesis inspired
the concepts of processing power and cnergy in Fther,

Fahlman [4] discusses a special purpose language and hardware network for doing the kinds of problems
appropriate for semantic nets. He shows that many problems can be solved by doing set intersections that can
be easily simulated by passing tokens through the network. He argues that conventional sequential control
structures cannot do the scarch that scems to be required to solve these problems in rcal time as clearly
happens with pcople. His system is designed to be connected to a problem solving system as a semantic net
subroutine box. Fahlman's approach to combining parallclism with artificial intelligence, in contrast to ours,

is to make brutc force scarches tractable. We have demonstrated that paraliclism can be used to make
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scarches more controlled.

Sinith [28] introduces a mechanism known as the contract net. The problem solver itself is distributed around
a resource-limited network. The nodes of the network interact with cach other in a manner reminiscent of
commercial systems consisting of contractors, contracts, bids, and awards. The bidding protocols result in a
distribution of tasks throughou: the system in a manner that utilizes the available processing resources
rcasonably. Contract nets, in contrast with Ether, deal with issucs of task distribution on physical hardware,
The reasons bids are awarded include such items as load balancing, better suitability of the processor, etc. We
have concerned oursclves only with parallel language design and the uses of parallel processing for artificial
intelligence. A protocol such as contract ncts may well be necessary to implement Ether on parallel hardware.

Minsky and Papert {29] arc devcloping a theery of intelligence they call the “"socicty theory of the mind”. The
theory asserts the existence of an enormous number of agenrs or specialists in certain arcas or points of view.
Intclligence is manifest through the interaction of thesc agents in a massive parallel scheme, The emphasis in
their scheme seems to be the presence of lots of simple computational elements all "speaking their mind”; the
final behavior of the system scems to represent a compromise between the various agents. They develop the
notion of a critic which bears some resemblance to our opponents. The society theory as it now stands is
mectaphorical and suggestive of how a computer systcm might be implemented to cxhibit intelligent behavior
rather than a specific technical proposal.

7.3 Languages for Parallel Processing

There is now a large litcrature on languages for parallel processing. There are several distinct reasons why
parallel processing languages and systems have been proposed. We will list four of these and then suggest a
fifth proposed by the present work.

1. To make computers useful in an inherently parallel society. We arc used to, in our own lives, interacting with
such diverse and distant information sources as banks, schools, governments, etc. If we want to integrate
computcrs into this society, they in turn must be able to deal with these diverse sources. The sequential
machinc model is not applicablc here. As it was realized computer systems needed these capabilities, schemes
for interrupt handling were developed. These schemes naturally led into a consideration of parallel
processing languages.

2. To provide robust computation. Computing machines, being inherently complex, are prone to crrorful
performance. With current hardwarce trends as they are, a practical solution to this problem is to compute
redundantly making use of scveral processors. Discrepancics and hardware signaled crrors will cause some
backup or reconfiguration operation to happen. This approach has been successful in such critical
applications as the design of jet airplane flight control computers [30], onboard spacc vehicle computers [31),

and remote message relay processors [32],




3. To increase overall program speed. The idea here is to cxploit cheaply available muli-processor
architectures by making it convenicnt to separate certain tasks to be performed in parallel. Friedman and
Wise [33] note that “applicative” languages, such as pure Lisp, can have function exccution transpareny
donc in paralicl. They advocate a scheme in which onc processor is given charge of the cvaluation; as it runs
across subtasks to be handled they are farmed out to other processors. Baker [34] develops the notion of a

Suture. Futures give the program writer explicit control over what activities are farmed out.

4, To increase program understandability. As more familiarity is gained with concepts of parallel programming
several rescarchers have discovercd that certain tasks are more casily described as parallel algorithms. These

points arc stressed by Hoare {35] and Kahn and MacQueen {36}

Ether has been used to explore what is perhaps a fifth use of parallel processing: combinatorial implosion.
Useful interaction between running processes can occur that simplify the overall computational effort. These
ideas have applicability in artificial intclligence. Possible application to other areas is suggested by chapter 2
although I know of no other clearly useful algorithm than the onc in that chapter.

1 S foat? C u- »

The principle means of communication between processes discussed in the literature is by shared dafa
structures modificd by programs ecmbodying critical regions. The first development in this area was the
semaphore by Dijkstra [37]. Improvements on the semaphore led to the monitor by Hoare [38] and
subscquently the serializer by Atkinson and Hewitt {39] improved upon in {40]. Other schemes for
communication between concurrent processes require information to flow along predesignated topologies.
The Communicating Sequential Processes of Hoare [35] is of this kind. The applicative schemes mentioned
above allow information to flow along the dynamically created paths of expression evaluation only.

. Ether presents a modcl of parallel computation that allows information flow in arbitrary ways without having
a shared data structures manipulated inside critical regions. It is instead based on the notion of broadcasting
' information that interested partics have the option of intercepting. We have argued already why arbitrary
information traffic between different activitices is desirable.

Certainly, at an implementational level, Ether must support interprocess synchronization. Ether is an
alternative language level formulation that when usable is superior in its ability to suppress unwanted detail,

A28

There are, of course, many problems that require synchronization (such as the “airline rescrvation system”)
and, as such, cannot be handlcd by the cxisting Ether system. We have made plausible that useful
communication between parallel processes can be done without synchronization.
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