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ABSTRACT

The efficient use of a search-surface radar or sonar, in

which one or more targets appear on the screen intermittently

usually demands a device for tracking the targets auto-

matically. Such a device, called a "track while scan systemn.",

must make an estimate of each target's in3tantaneous position

from the sampled-data information provided by the radar.

For th's purpose, an a-ý filter and an optimal Kalman

filter, that must track maneuvering targets, are analyzed

here and compared in terms of tracking accuracy for tactical

applications.
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I. INTRODUCTION

Systems such as search-surface radar and sonar, in which

the input data arrives intermittently, frequently require a

device for continuously estimating the "present" value of

the input. In radar terminology, this device is called a

"track while scan system".

In a more general sense, the term "track while scan"

system, may denote any system which estimates the "present"

value of a signal from the "past" sampled values of the signal,

the sampling taking place at regular intervals.

Vehicles, without maneuvering, of the class under consider-

ation (such as aircraft, ships, and submarines) generally

follow straight line constant velocity trajectories. If the

vehicles were not able to deviate from these trajectories,

i.e., could not maneuver, then the tracking problem could be

A solved quickly and simply using standard filtering such as

an a-$ filter.

Historically, a-8 filters were designed to m.*.nimize the

mean square error in filtered position and velocity under the

assumption of small velocity changes between data samples.

Thus, most a-8 filters have little capacity to track targets

that either accelerate or maneuver (changing direction). An

important early paper [11 defines a in terms of a with a a

design parameter. This greatly simplified the use of maneuver

detectors by reducing the design problem to a single variable.

12
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A later advance in a-3 filter design was achieved by

minimizing the mean square error in predicted posiLion

[2].

A system that developed using the above technique is the

VEGA LN I (Thomson-CSF, France).

The final choice of parameters for the a-$ tracker will

always end in a compromise between smoothing the input noise

(measurement errors) and retaining some ability to follow a

maneuvering target. Various performance measures have been

used for this compromise. For example, steady state noise

variance reduction and the ability to follow a target capable

of responding to impulse accelerations are used as performance

measures in [1] to derive good steady state filter parameters.

Time varying noise variance reduction and the ability to follow

a randomly maneuvering target are performance criteria which

follow from [3]. In this paper, such a filter is analyzed,

the frequency response, stability, noise characteristics and

transient error are derived and plotted, and a scheme for

optimizing the two dynamic parameters (a-8) is suggested.

A criterion for a-8 filter design with a numerical and

graphical example is also given.

Since the majority of tactical weapons systems requ4 res

that manned maneuverable vehicles, such as aircraft, ships,

and submarines, be tracked accurately, an optimal Kalman filter

has been derived for this purpose, based on the early work of
[4,5]. The target model for tracking applications must be

sufficiently simple to permit ready implementation in weapons

13

7 77 L- .. .
f ý2LA--,!



systems for which computation time is at a premium yet

sufficiently sophisticated to provide satisfactory tracking

accuracy.

The target acceleration selected for the Kalman filter,

and hence the target maneuver is correlated in time; namely,

if a target is accelerating at time t, it is likely to be

accelerating at time t+- for sufficiently small T. By sim-

plifying the maneuvering model used in the Kalman filter above,

the state vector can be reduced from six to four elements.

The model simplification - simplified Kalman filter - is

achieved by assuming (incorrectly) that the veicle's change

in velocity is uncorrelated between samples; i.e., the maneuver

is white. In the comparison which follows, the Kalman filter

and Simplified Kalman filter are compared with the a-B filter

in a variety of tactical environments with tracking sensors,

utilizing Monte Carlo sirulation techniques on realistic

target trajectories to verify their theoretical performance.

14
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II. FUNDAMENTALS OF TRACK-WHILE-SCAN

Any system which performs a tracking function must obtain

and utilize the basic target parameters of position and rates

of motion. In the earlier system both position data and

velocity data were used, to maintain the tracking antenna on

the target at all times, thus limiting the system to the classi-

cal one target-at-a-time tracking function.

In a track-while-scan system, target position must be

extracted and velocities calculated for many targets without

holding the radar antenna fixed on one target. Obviously in a

system of this type, target data is not continuously available

for each target track at a rate dependent upon the scan rate

of the system.

In a typical TWS system the data rate is one unit of data

per second or a scan rate for the search radar antenna.

Since the antenna is continuing to scan, some means of

storing and analyzing target data from one update to the next
and beyond is necessary. The digital computer with its memory

and computational capability is employed to perform this

function and also:

(i) To provide a tactical picture

A display of the tracks of all vehicles observed by sensors

showing present positions, courses and speeds etc., is essen-

tial for the deployment of a ship and its weapons. The computer

enables rapid use to be made of sensor information thereby

ensuring that the picture is accurate and up-to-date.

1/t
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(ii) For use in processes such as threat evaluation

and weapon assignment

The computer can forecast future likely positions of tracked

vehicles and rapidly perform necessary calculations to assist

operators in the assessment of threats and in the optimum

weapon deployment to deal with them.

(iii) To provide target information foz weapon

deployment

The computer can be used to generate smooth tracks from noisy

information thereby being able to pass information to a weapon

sensor more accurately than information derived from a single

plot on display. Hence, the central concept underlying any

TWS system is that the sensor itself continues to perform its

primary function of search (scanning) and data input while the

remainder of the system performs the target tracking function.

The sensor function simply provides target position data to

the computer subsystem where target velocities and position

prediction are calculated. In a military application the

major advantage of a TWS system is the elimination of the

process of target designation from a search radar to a fire

control radar.

The tracking information, developed in the TWS system,

is used as a direct data input to the computation of a fire

control solution.

Therefore, as soon as a target is detected a fire control

solution is available without the inherent delay caused by

the designation process. The time required from first detection

16



to fire control solution is on the order of milli-seconds for

a T1S system as opposed to seconds or even minutes for a

manually designated system employing separate search and fire

control sensors.

The focus of the following chapter has been to answer the

question: "What functions should the TWS system perform in

order to combine the search and tracking tasks into one

integrated unit?"

A. A TRACK WHILE SCAN METHOD

The method of solving the track while scan problem is

based upon the assumption that the radar furnishes target

position information once each scan. The scheme can be imple-

mented by a combination of special radar circuits (hardware)

and software. Existing systems also provide for operator

modification of system tracking.

Any track-while-scan system must provide for each of the

following functions:

(i) Target detection

(ii) Generation of target acquisition and tracking

"windows" or "gates"

S(iii) Target track initiation (assignemnt of targets

to track files)

(iv) Target data input and track correlation

(v) Track "window" prediction, smoothing and

11 positioningVF-
iti
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1. Target Detection

Target detection, localization and designation are

accomplished by the radar sab-system in the usual sense.

Hence, the TWS receives the following data from the outside,

via wire links:

(i) The surveillance antenna azimuth

(ii) The radar synchronization (presyne)

(iii) The surveillanqe radar video

2. Generation of Target Acauisition and Tracking "Windows"

A "window" c-in be defined as a small volume of space

initially centered on a target, which will be monitored on

each scan for the presence of target information. Each initial

target detection will cause a relatively large acquisition

"window" to be generated, centered on the position of the

detection. When a target is initially detected the algorithm

receives only the position data for that initial, instantaneous

target position. The acquisition window is then generated,

for example:

Initial position = (Range, Bearing, Elevation)

Range window = R ± 1000 yars (914.1 meters)

Bearing window = B ± 5 (0.0873 radians)

Elevation window = E ± 5 (0.0873 radians)

The acquisition window, Fig. la, is large in order to allow

for target displace-ent during the following scans of the

radar. If on the next radar scan the target is within the

acquisition window, a tracking window is generated in the

A 18
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Az imuth Window

10 degrees
0.1745 radians

Range Window

2000 Yards
1828.15 Elevation

Dit r r Window10 degrees
0.1745 radians

S.. .....- a - _ •- . - .. .

a. ACQUISITION WINDCV

1.5 degrees
0.0262 radians

120 yards
110 meters

##/
/#

, #, !

#i,/

FIG. 1. TRACK WHILE SCAN VOLUMETRIC WINDOWS
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same manner as the acquisition window. Although Fig. lb

shows only the very small, 120 yards, 1.50, 1.50 tracking

window, in actual practice intermediate window sizes are

generated until a smooth track is achieved.

3. Track Initiation

Concurrent with the generation of the acquisition

window a track file is generated in order to store the posi-

tion and window data for each track. In addition to the basic

position and window data, calculated target velocities and

accelerations are also stored in each track file. Track files

are stored within the digital computer (or processor) sub-

systems memory and the data is used to perform the various

calculations necessary to maintain the track.

Each track file occupies a discrete position of the

digital computer's (or processor's) high speed memaory. As

data are needed for computation or new data are to be stored,

the portion of memory which is allocated for the required data

will be accessed by the system'prograns (software). In this

manner a diversity of data in addition to the tracking data

may be stored in the "track" file, for example, ESM data, IFF

information. The generation of the track file begins with the

initial storage of position data along with a code to indicate

that an acquisition window has been established. If target

position data is obtained on subsequent scans of the radar, the

file is updated with the coordinates; the velocities and

accelerations are computed and stored, and the acquisition

window code is canceled.

A
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The acquisition window is then decreased in size to

the tracking window and the track code is stored which indi-

cates an active track file.

As the radar continues to scan, each input of data

is compared with the window positions of active track files

until the proper file is found and updated. However, it should

be noted that the search for the proper track file is generally

not a sequential one-to-one comparison. This method is much

too slow to be used in a system where speed of operation is

one of the primary goals.

This idea of comparing output data with window posi-

tions leads us to the problem of correlation of data input to

track files and what to do if correlation is ambiguous.

4. Resolution of Track Ambiguity

Track ambiguity arises when either multiple targets

appear within a single track window or two or more windows

overlap on a single target.

This occurrence can cause the system to generate

erroneous tracking data and ultimately lose the ability to

maintain a meaningful track. If the system is designed so

that an operator initiates the track and monitors its progress,

the solution is simply for the operator to cancel the erroneous

track and initiate a new one.

For systems which are to be automatic, software (pro-

gramming) decision rules must be established which will enable

the tracking program to maintain accurate track files. Decision

,

21
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rules as to target input data and track correlation can be

logically developed with an understanding of the definition

of the track ambiguity problem.

5. Track Window Prediction, Smoothing, and Positioning

In a track-while-scan system tracking errors also

exist due to target motion. The tracking window now has

replaced the "tracking antenna" and this window must be posi-

tioned dynamically on the target in a similar manner as was

the "tracking antenna". However, there is no "servo" system

to reposition and smooth the tracking window's motion. This

repositioning and smoothing must be dcne mathematically within

the TWS algorithm. To this end, smoothing and prediction equa-

tions (Eqs. 2.1-2.3) are employed to calculate the changing

position of the tracking window. Instead of the system "lagging"

the target the tracking window is made to "lead" the target

and smoothing is accomplished by comparing predicted parameters

with observed (measured) parameters and making adjustments

based upon the errors derived from this comparison.

Figs. 2 a-b and 3, illustrate the TWS principle,

track positioning and the TWS general processing loop of the

alpha-beta type, respectively.

B. DEFINITION OF TRACKING EQUATIONS FOR a-6 FILTER

Tracking in a track-while-scan (TWS) system consists

basically of two functions:

a. Smoothing

b. Correlation

22
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Smoothing is the processing of the sensor reports to derive

an estimate of both target velocity and position.

Correlation is the sorting of sensor reports into groups,

to determine which belong to which target then predicting a

new coordinate on which to center the correlation region.

The constants of proportionality, a and a, used in

correcting the position and velocity, respectively, of the

estimated target course, completely characterize the perform-

ance of the TWS system. These constants are the dynamic

parameters or so-called "smoothing constants" of the system.

Finally, the simplest case target tracks are based on

smoothing and prediction of an alpha (a) - beta (a) tracker

operating in a cartesian coordinate reference frame. The

information is ordinarily obtained from a coordinate converter

operating on the raw polar to cartesian transform. The a-ý

filter described by the well-known a-8 tracking equations [6,71:

XsN = XpN + a(XN _ XN smoothing Equation (2.1)
S P c(M - P

a N _xN
= VS-I + _ prediction Equation (2.2)

S S T

N N-I
X = s + VNl T prediction Equation '2.3)P S S

where:

X = smoothed position

Xp predicted position

ii
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VS = smoothed velocity

= measured position

aB = filter parameters or filter gains

T = sampling time or time between detections

Substituting Eq. (2.3) into Eqs.'(2.1) and (2.2) yields

N (l-a) N-I + (1-a)II T + cXN (2.4)

•S SN-N- S N

= - . Xs + (_$)VN- + a N (2.5)

S SN + 1F = X

T S + T T (2.6)

or

I Nl [N-1

Xs N (1-a) (i-a) T IXs

I +
V (1-6) V

aVs. I Ns

+ (2.7)

r• and

N+1 N
(X] = fI T] x (2.8)[2:

S~Vs
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These equations represented in block diagram form appear in

Fig. 4.

N+x

A- IDelay

Fig. 4. Block Diagram of an a-• Tracker

where the following matrices and vectors are defined:

r1r

A [ (l-a) (1-a)TBa
A-= B =

-a/T (lý /T,!

rxs]
C= [! T X

1. Stability Analysis

Since the system characteristic equations are in the

form of difference equations, Z-transform theory is helpful

in determining filter transfer functions and stability criteria.

I

27

-77



For the system of the form:

XN+1 = AN + B(XM - CXN)

or

XN+l = (A- BC)XN + BXM

thus,

G(Z) = X [ZI - (A-BC)]- B (2.9) S(Z)

Using Eq. (2.9), the Z-transform for each of the several

components of Eq. (2.7) and (2.8) has been computed and is

given below. Hence, the a-a tracker transfer functions:

G Xs(Z _ ZlaiZ-l+ a] Smoothed (2.10)
GxS(Z) -x D(Z) position

vs (Z) ý-z(Z-1
GVS (Z) Smoothed (2.11)

)velocity

x(Z)

Xp aZ (Z-1) + 8Z °
Gp (Z) = -Predicted (2.12)

D (Z) position

vp(z) Y(Z-l)
= ____ Predicted (2.13)GVpZ) XM(Z) D(Z) velocity

1

I
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where the characteristic equation of the system is

D(Z) = IZI - Al = 0

or

D(Z) = 2- (2- B-8)Z + (I-1 ) 0 (2.14)

The stability of the system can be determined from the loca-

tion of the roots of the characteristic equation above.

A few methods are available for determining whether

or not a polynomial in Z contains a root or roots on or out-

side the unit circle. One method is to modify the Routh-

Hurwitz stability criterion. The Routh stability criterion

tells whether or not any of the roots of a polynomial lie in

the right half of the complex plane.

Since the following transformation

=r+lZ r=
r- 1

maps the interior of the unit circle in the Z plane to the

lef-half r plane, with this transformation, permits the

application of the Routh stability criterion to the polynomial

in r as in continous-time systems.

Now >4. (2.14) becomes a polynomial in r, in the

form

29
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8r2 + 2ar + 4 - 2a - 8 = 0 (2.15)

So, the resulting requirements for stability are

a > 0 , 0 > 0 and (2(x+ 8) < 4 (2.16)

An additional stable condition exists when 8 = 0. Thus the

resulting necessary and sufficient conditions for the stability

of the track-while-scan system are

a > 0 , 8 > 0 , and (2a+ 8) < 4 (2.17)

These inequalities determine a "stability triangle" in the

a-8 plane, for which all internal points and all points on

the base (a = 0) in the interval 0 < a < 2 correspond to a

stable system. This triangle is shown in Fig. 5.

The conditions for underdamped, critically damped, and

overdamped transient response are found by inspecting the

sign of the discriminant of Eq. (2.14). The resulting condi-

tions are:

2(a+8) 48 4 underdamped (2.18)

8 < 1, (a+8) 2 = 48 • critically damped (2.19)

1 < 1, 8 < 1, (a+8)2 > 48 = overdamped (2.20)
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All other values of The transient response
(a,3) inside the stability contains at least one
trianale and on the base • demped oscillatory natural
(0 = 0) in the interval mode with a rate of
0 < a < 2 oscillation equal to one

half the sampling frequency

The permissible values of a and B are shown in Fig. 6

2

1
B

1 2

Fig. 6. Allowable Values of a and a in a-B Tracker

Further restrictions will be placed on this region, when the

frequency response characteristics of the system are examined.

2. Frequency Response Characteristics

In this section, the frequency response characteristics

of the a-a filter are formed, This approach has not been

done before, in detail.

The frequency response of the filter can be found by

placing Z = ejwT and ejwT = cos wT + j sin wT into Eqs. (2.10)-

(2.13). These equations are now in the form:

GX (ejWT) = [ (cos2wT-coswT)+coswT] + j [a (sin2-sinwT)+sism•TI (2.21)
D(ejwT)
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GVS (eJ•T) = [TS--(aos2wT-coswT) ] + j [&(sin2wT-sinwT)(
D(eJ3T) (2.22)

-(eJwT) = [(a+8)cosTr (x] + j[(a+8)sinwT] (2.23)

D (ej )

G~(e~wT - [(COSWT-l) I + jsi 0 T] 2.4
D (eJT)2.24)

where

D(ej) = [cos2wT-(2-a-s)coswT+(l-c)] + j[sin2wT-(2-a-8)sinwT]

The amplitude and phase characteristics of GXS (smoothed

position) and GXp (predicted position) are plotted and shown

in Figs. 7-16, for several values of a and 8. Also the armpli-

tude and phase characteristics of GVS (smoothed velocity) and

GVp (predicted velocity) are shown in Figs. 17-26. All the

amplitudes and phases are plotted as a function of a, a and

wT.

Observing these 2igures and Eqs. (2.7) - (2.8) one

finds that is the result of passing x• through a low pass•S N an1 sol

filter, is the result of differentiating XM, and a should

never be larger than one.

It may be seen also, for positional smoothing, if

a = 0, all sensor information is ignored whereas if a = 1,

there is no smoothing of positional information. Similarly

8 = 0 causes sensor information to be ignored in the estima-

tion of velocity whereas s > 1 will cause overcorrection.
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Considering the figures for several values of a < 1,

a seems to control the bandwidth -f the low-pass filter and

B has more control over the damping. In fact B should be

somewhat smaller than a such that resonant spikes do not

occur.

Better accuracy occurs between smoothed and predicted

positions, when a has very large values compared with 8.

Table I, which follows, summarizes the accuracy and

provides an important design tool. In general the freq'iency

ot the input signal, tile sampling time T, and the filter

parameters • and P control the filter's response.
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A. ACCURACY (0-1) BETWEEN SMOOTHED AND PREDICTED
POSITION FOR wT = 0 to wT = n

0.1 0.5 0.75 0.9

0.011 1.0-0.90 1.0-0.98 1.0-0.99

0.051 1.0-0.60 1.0-0.90 1.0-0.94

0.10 1.0-0.33 1.0-0.82 1.0-0.89

0.25 1.0-0.71

0.50 1.0-0.50

0.75 1.0-0.33

B. ACCURACY (0-1) BETWEEN SMOOTHED AND PREDICTED
VELOCITY FOR wT = 0 to wT =

a 0.1 0.5 0.75 0.9
0 __________1.0

0.01 1.0" 1.0* 1.0

0.10 1.0 1.0 1.0
0.051 1.0 1.0 1.0

0.25 1.0

0.50 1.0

0.751 1.0

*As we expect 100% accuracy, since the vehicle was
generally assumed to follow straight line constant
velocity, when an a-8 filter is used.

TABLE I. ACCURACY BETWEEN SMOOTHED AND PREDICTED,
POSITION AND VELOCITY
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III. NOISE CHARACTERISTICS OF ot-8 FILTER-ERRORS--CRITERIA

In the study of any filter it is essential to know the

characteristics of the desired signals and the noise which

excites the filter. It is desirable also to know how the

choice of a and a affects the degree to which the noise is

smoothed or exaggerated by the system. The description of the

noise processes, prediction errors and methods (criteria)

for designing an a-$ filter, proceeds as follows:

A. NORMALIZED NOISE POWER OF PREDICTED POSITION

By making the following change of variable:

AX = VS T (3.1)

Equations (2.7) and (2.8) describing the filter can be

rewritten as:

S (1-a) (1-a) X [xM

- + (3.2)

t -j (1-a) ji AX

ii C]N+l =(1 1] X5  (3.3)

IAX I

where now
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A' = B'1

Xs

C' = [1 1] X =

I AX

The mean and covariance equations are defined as

[Xl N A'3l + B XN (3.4)
M[gN =_ ,- +BX

P N A'pN-1A'T + B'a2 BT (3.5)

where

-N[(]N = E[XNI , the expected value,

P11 P12!P = I

P21 P221J

P 11  = [ (EXs- Rs) (Xs- Rs)I

P2 = E[(Xs-Xs) (AX -AX)] P21

P = E[(AX- AX) (AX- AX)]

am = standard deviation of measurement error.

C5
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The covariance equation for the filter becomes

-- 2 2 2-N

PII (l-) ) 2(1-a) (l-c)P

12 12PI 2  - -8 (1-a) (1-28) (l-ci) (1-8) (1-a) P1 2  +

I I 2
2 2LP~22 -6 1-)(1-6) P !P22

F2 2
S[ aXM]

+ (3.6)

2
8

The variance of the predicted position is easily zomputed

in terms of the variances from Eq. (3.6)

2
CXP = PII + 2 P 2 + P2 2  (3.7)

The steady state solution of Eq. (3.6) is computed by leting

P(N) equal P(N-l) and the resulting algebraic equations are

solved;

PII = 2s - 3a8 + 2a 2  
(3.8)

2 a (4 - 2a-)
XM

P12 8(2a-8) (3.9)
a2 a(4 - 2a -. 8)
cXM
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P 22_ a (2a 2  a 3 + 2a - a0 (3.10)
2 a(4- 2a - 8)

aXM

The predicted noise power is normalized

22 °XP
R = a = XP (3.11)0XM

Substituting Eqs. (3.7) - (3.10) into Eq. (3.11) yields

a22
XP a2 (2 + 2B -as) + B(2 + a - a3) (3.12)

R = 2 a(4 - 2a + 0)
0XM

Hence, the predicted noise power is plotted as a function of

a and a in Fig. 27. This figure shows that by appropriately

adjusting a and a the input noise power can be reduced. One

also finds that the parameter a greatly affects the predicted

noise power, as expected, since differentiated noise is quite

"noisy" and a affects this quantity.

An interesting phenomenon occurs for small values of

a and large values of B. The noise power increases sharply.

The reason for this may most easily be seen by looking at the

frequency responses in Figs. 7-16. The large resonant peaks

in the response allow a lot of noise to -ome through.

B. PREDICTION ERROR DUE TO MEASUREMENT ADDITIVE NOISE ERRORS

In the a-$ tracker the observations are in the form

N N NX = XM + (3.13)
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where:

N
v = additive measurement noise

2
2 N M = aR for N = M
V

= 0 for N # M

and by letting

Variance (Xp) = VARN+ Np1

Variance Reduction Factor = VRF

hence

-N+I-

N VAR(Xp )

VRF(X +) = 2 (3.14)

V

or

SN+I VAR(xNI) 2 _22+28+a8 (Steady (3.15)VRF (Xp ) = 2 (4-2t-8) sae
cyR state)

The VRF is plotted in Fig. 28 as a function of a and 8. Com-

paring this figure with Fig. 27 (normalized noise power of

predicted position), the two figures look alike, but this is

not true, when both graphs are plotted together in Fig. 29.

C. PREDICTION ERROR DUE TO CONSTANT ACCELERATION

Constant acceleration X(t) results in fixed error in

predicted position on reaching steady state, i.e., for

N co.
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Specifically for noiseless constant acceleration trajec-

tories,

N 
(NT) 2! M I -r- x (3.16)

the steady state prediction error becomes

*N .N+I. XT2
* r lim ( xp+1 = - XT (3.17)

Cormmon names for steady state prediction error E due to

constant acceleration are:

(i) Dynamic error

(ii) Truncation error

(iii) Systematic error

(iv) Bias error

Typical design procedure for balanced dynamic and random

errors is

3 (Standard deviation) (Dynamic)
of random error error

that is

N+l3 VAR(X) = (3.18)
(P

D. TRANSIENT ERROR

The transient error of the system becomes significant when

the input is switched from one time-shared target to another

6
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or when the target makes a sharp maneuver. Since a-ý trackers

aze initialized by original estimates of position and velocity

and in many applications these estimates are so inaccurate that

the filter exhibits transient errors before settling to a

steady-state solution. In the transient phase, when the esti-

mates are poor, one would like to rely on the measurements

and thus weight the errors more heavily. After several measure-

ments have been made, the accuracy in prediction increases.

So, the transient error yields

Dx N x 1  N 2 ( (3.19)
S n=0 I = a 8(4 - 2a- 8)

The transient error D,+1 is plotted and shown in Figs. 30-32,

Pas a function of a, a and T. Observing these figures, one

finds, that the sampling time T greatly affects the transient

error. For large values of T the transient error increases.

An interesting phenomenon occurs for small values of a and

small values of a. The transient error increases sharply.

E. OPTIMAL STEADY STATE RELATIONS FOR THE a-a TRACKER

The simplest possible system is one in which a and a

are fixed constants. The theory of such systems has been

studied in [8]. For such systems, T.R. Benedict and G.W.

Bordner [1] applied the calculus of variations to derive the

following relationship:
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22- (3.20)

A few years later S.R. Neal [7] used the results of linear

estimation theory to derive the relation:

2(2a + a) 88 (3.21)

As a matter of interest, the above Eqs. are plotted and

compared in Fig. 33. Observing these figures it is inter-

esting to note that the relations (3.20) and (3.21) are quite

similar for 0 < a < 0.4 and 0 < 3 < 0.1.

Constant paramieter systems suffer from the incompatible

demands that good smoothing requires heavy damping (i.e., small

values of a and a - small noise response, Figs. 27-28), while

good resporse to maneuvers requires light damping (i.e., large

values of a and 8 - small transient errorFigs. 30-32). Light

damping and therefore large noise response, can lead to low

probabilities of weapon sensor acquisition and problems of

plot-to-track association. Heavy damping, implying poor

maneuver response (large transient error), can cause sudden

loss of tracks (sometimes termed track death) through failure

to associate with subsequent plots.

These limitations led some workers to optimize for varia-

ble parameter systems, where a and 8 are varied according to

the state of the track. Some systems have been developed

* wherein a and 8 were initially selected arbitrarily and changed

iI
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during program development by trial and error. Various

operational sets of values being derived for various states

of track. Such methods are adaptive and are usually economi-

cal in computer use, both in terms of required storage and

run time, but generally have no theoretically optimum adaptation.

F. DISCOUNTED LEAST-SQUARES CRITERION

To find linear trajectory

XN = 0 N T 0 (3.22)Xp = p . p

Nan
wr.ich minimizes sum of weighted errors between Xand

N N-1 N-2,M ,~ , ... , i.e.,

0o

eN = ( N-r xN) 2 6r (3.23)r= 0

where 0 < e < 1, still too many degrees of freedom for

selecting gain terms, a and B. Minimize

{e( N N-I N-i 2 1 N-2 N-2 2
{eN} ( -XP)2 + (X M -Xp ) + (XM -Xp )e +

(3.24)

by solving the above equation in order to weight the differ-

ence between measured and predicted values. This yields

in simple gain terms

2a = (1-02) (3.25)
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= (1 - e)2 (3.26)

Common names for discounted least-squares a-B filter are

(i) Critically damped a-8 filter

(ii) Fading-memory polynomial filter of degree 1

Equations (3.25)-(3.26) are plotted as a function of (theta)

in Fig. 34.

More recently, processes have been developed in which

and are made to change with time in order to continually

compute the least-squares line through the observations. Such

approaches assumed that errors are equally distributed in

x and y and had a constant standard deviation. The formulae

for changing a and a in this manner were worked out in [9].

For the incorporation of the nth measurement:

a 2 (2N - 1) (3.27)
N N(N + 1)

6(~l (3.27)
6

= N(N-fi) (3.28)

The above equations are plotted as a function of the number

of measurements N, in Fig 35.

It is clear that, for large N, a and B tend to zero,

i.e., observations will be increasingly ignored. This sug-

gests that there should be some maximum value of N. The

maximum value used is generally 7 to 15. Such a method may

be made adaptive if a means of detecting changes in motion
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is used, i.e., if turn detection is provided. Then, if a

turn is detected, the values of a anc 8 may be raised simply

by lowering N. Doing this will impro\ the turn following

capability.

1. Numerical Example

Assume the following;

Range measurement = R = 30.5 ft

Xmax = 5g = 150 ft/sec

S-N+I1
Desire VAR(X ) = 31.6 ft

p

Find suitable critically damped a-8 filter design.

By substituting Eqs. (3.25) and (3.26)

a = i.- 8

2

8 = (i - o)2

in Eq. (3.15)

VAR(+I) _ 2a 2 + aa + 28
W2 a(4 -2a -8)

aR

and letting

(36 2 2 2VAR( = *.6 aR = (30.5)4 R

75
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yields

VRF = 1.074

e = 0.5

hence

= 0.75

8 = 0.25

From Eq. (3.18)

* N+Il( 3 2 =948f

E = 3 VAR(X ) = 3 31.6) 94.8 ft
p

but from Eq. (3.17)

* -- X T2

Ea 8

hence

T = 0.3848 sec.

Finally, from Eq. (3.19)

2D T (2-ci)
D N+1 = 8( 4 - 2a -8)
xp
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yields

D D = 0.439 ft 2

The values for a = 0.75 and B = 0.25 satisfy the critically

damped Eq. (2.19)

2+ = 4s and 8 < 1

The above values for a-8, VRF and D can also be determined

by using Figs. 27-31-34.
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IV. ESTIMATING OPTIMAL TRACKING FILTER
FOR MANEUVERING TARGET

The work which follows is an attempt to apply optimum

filter theory to the tactical radar environment. There it is

desired to obtain optimal estimates of target positions and

their predicted tracks.

There are several possibilities for structuring a digital

filter. From the work of Kalman [3], the filter should con-

tain the same dynamic model as that of the incoming signal

shown in Fig. 36.

Measurement Noise V
I

Excitation Signal Process Signal Measurement Observable

WK Dynamics XK Prcs K
S~H

a. Signal Process

•K + ,ynmcs XK K+l

K K+I (H)

b. Filter

Fig. 36. Schematic of Filter Structure in Relation to Signal Process
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The modeling of the various system components involved

in a tactical weapon system, such as the radar measurement

process and the target itself, is essenuial in the design

of practical tracking and control algorithm. By modeling

the ta.rget to be tracked and the accuracy of the radar's

measurements [101, then a practical tracking procedure, con-

sistent with the computer limitations and weapon system

requirerments, can be designed.

A. SENSDR AND VEHICLE MODELING - DYNAMIC EQUATIONS

The tracking systems under consideration utilize sensors

.that pro'iide measurements of range and bearing. The selection

is intended to reflect that this pair of measurements is most

common, however, other output measurements as elevation and

range rate (Doppler) are often available.

The vehicles to be tracked can be modeled by the state

equations:

X(K+l) = ýX(K) + Gu(K) (4.1)

where

Y(K) range at time K

Y(K) range rate at time K
O(K) bearing at time K

= L6(K) j bearing rate at time K

vehicle state vector at time t = KT
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U change in vehicle range rate between

u(K) = time K and time K+l

u 2 (K) change in vehicle bearing rate between
time K and time K+I J

1 T 0 0
0 1 0 0

= 0 0 1 T = state transition matrix (A.2)

0 0 0 !.j

0 01
G 1 0

0 0

0 1

and

T = sampling period.

The tracking sensor measures target position, range and bearing

or elevation and provides the following output equation:

[ measured rate at time K 1
Y(K) =HX(K) + V(K)=

measured bearing at time KJ

(4.3)

where

H= 1 0 0 1 and V(K) (4.4)
0 0 1 0v2 (K)]

a i80
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The measurement noise covariance matrix R(K), satisfies

[G2T I R(K)
R(K) = E[V(K)V T(K)] = I (4.5)

0 2ae Mx

assuming the noise V1 (K) and V2 (K) are independent. The

selection of sensor coordinates (R,6), at this point, for

the covariance matrix R(K) has been made because the output

matrix H assumes the extremely simple form shown, and the R(K)

becomes diagonal. When Doppler measurements are available,

this selection of sensor coordinates becomes extremely advan-

tageous because the cartesian forms for H and R(K) becomes

complex and time varying &nd often impose computational

penalties for real-time implementation.

Consider the following polar to cartesian transformaticn

(i.e., from R,e to X,Y)

X = R sin 0

(4.5a)

Y = R cos e

For the Kalman filter in XY coordinates, the measurement

covariance matrix R(K) is a function of the radar-target

geometry. Therefore, the elements of the covariance matrix
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2 2OXX °XY

R(K) = (4.5b)
2 2

are

2 2 2 + R2  2 s2
XX R COS 0 ae sin2

2 2 a sin 2. + R2  cos 2e (4.5c)
YY R si 0 o

2[ °2 2 2
a 2 R R o2 ] sin e cos e°xY R

2 2

where a Rand a2 are the variances of the range (R) and

bearing (0) measurement errors, respectively. It .s inter-

esting to note that in general, the coordinates after the

transfermation (X and Y) are not independent. The singular

casz where they are independent occur for e = 00, 10,

1 .0, ... or for R = --. These special cases are easilya0

explained from the assumption that the measurement errors are

Gaussian, with typical contours of equal probability, which

are ellipses.

Hence, if the axes lie in the directions of the axes of

the frame of reference, the covarlance terms R(:') R(K)
02' 21

are zero and the independence of X,Y errors Zor = 00, 900,

ujtc.

When R = OR/A, these ellipses zeduce to circles which

may be considered as limiting ellipses whose major and minor

I I8
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axes lie along the axes of the reference frame. Finally,

since the observation y(K) consists of x and y position

measurements, hence, the observation V(K) can be assumed to

have covariance

R(K) R 2 (4.5d)
0 OR

B. STATISTICAL DESCRIPTION OF TARGET MANEUVER

The input sequence u(K) is additive 5_are (or maneuver)

noise that results in the vehicle deviating from a constant

velocity trajectory.

Although the maneuver history and observation noize are

not independent, the covariance E[u(K)V (j)] is zero. Indeed,

the radar cross section of a piloted vehicle changes during

a maneuver, causing the radar observation noise to depend on

the particular m~aneuver being exercised by the vehicle.

The maneuver noise is neither Gaussian nor white. For

example, the pilot of an aircraft moving at constant velocity

will generally not maneuver unless threatened by either radar

detection or attackina vehicles. His maneuver will then often

be a turn or an increase or decrease in his forward velocity.

A typical maneuver probability density is shown in

Fig. 37.

i8

.. . .jI i l

, I -- ' =. . i l i i u I ! '' ... .i



P (u)

P 2 1-(P 2+2P1 )

2A

-A A u

Fig. 37. Typical Probability Density -,f Target Maneuver

The quantity A is the maximum acceleration which the plane-

pilot combination can withstand. Values of the density

between :ion-maneuver (u = 0) and maximum (u = ±A) are non

zero because:

(i) The vehicle may not be accelerating a' its

maximum rate

(ii) The projection of a circular maneuver on any

dimension can give values of u from -A to A.

Clearly, then, the maneuver density is not Gaussian.

C. DISCRETh TIME EQUATIONS OF MOTION

It is often desirable to whiten the maneuver noise so

that system equations to which optimal filtering theory

applies can be obtained. This is done, as in [4] The

whitening procedure for a discrete signal is analogous to

the procedure developed by Wiener and Kolmogorov to white

continuou- signals [11]. So, u(k) may be expressed recursively

in terms of the white noise sequeace W(K) by
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u(K+I) = pu(K) + W(K) (4.6)

Using the above equation, the following set of systen equations

are obtained baving white noise sequences W1 (K) and W2 (K)

as their only inputs:

X(K+l) = pX(K) + GW(K) (4.7)

Y(K) = HX(K) + V(K) (4.8)

where

r(K)

u(K)
uI (K) l

X(K) = e(K) (4.9)

6(K)

Lu 2 (K)

and

W(K) (4.10)
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Also

1 T 0 0 0 0
0 1 1 0 0 0
0 0 p 0 0 0 State Transition
0 0 0 1 T 01
0 0 0 0L Matrix

10 0 0 0 0 p(4.11)

0 10 0
1 0

G = 0 0 
(4.12,

H 0
0 0 

1

H = 1 0 0 0 0 0',

10 0 0 1 0 0

[Observation matrix] 
(4.13)

and where

Q(K) = E[W(K)WT (K)] = L 0 2

0 M2 (1 p 2)

[covariance of
the measured

L noise (4.14)
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2

The values for the maneuver variances a Mi and the correlation

coefficient, p, depend on the maneuver characteristics of

the vehicles being tracked.

2Hence, the variances, aMi, of target acceleration are

calculated using the model illustrated in Fig. 37. The

target can accelerate at a maximum rate A (-A) and will do

each with a probability P 1 and a probability P 2 of not

accelerating at all, with an assumed uniform probability

distribution of amplitude:

P (u) 1 - (2P1 +P 2 )
P (u) = 2A (4.15)

of accelerating between -A and +A.

The acceleration variable, therefore, has mean zero and

variance

A2
2 A (1 + 4P 1 - P(2)

Mi 3 (4.16)

Consequently, the variables u 1 and u 2 , which are assumed

independent, have zero means and uI has variance

2T2
2 A T (1 + 4P 1 - P2 )

M1 3

while u2 has variance

22i~ i2
A2 T(1 + 4P -P

2= 32 1(4.18)

Mj 8'
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where R is the target range from the sensor and where all

these quantities have appropriate units.

The correlation coefficient (HIJ < 1) can be modelled

by

1i- pT T <•

-- 4
- E[u(K)u(K-l)] (4.19)

20Mi 
0 T >

The quantity, P, is essentially the inverse of the average

maneuver duration. This correlation model is analogous to

that in [4], which has the discrete time form r(K) = M2 -aT
M, e

where a is the inverse of the continuous maneuver time con-

stant of the target. Hence, p equals e-. When aT is small,

p can be approximated closely by 1-aT, so that a and p become

identical.

The two extreme cases occur when p is unity and when p

approaches zero. So, the first case represents the completely

correlated case, and the second is the completely uncorrelated

case, namely white noise.

D. FILTER DESCRIPTION

Three types of filters are considered as potential can-

didate algorithms for tracking vehicles that are described

by the model just discussed. These filters are the Kalman,

the simplified Kalman and an a-5 filter.

* i8
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1. The Kalman Filter

The Kalman filter uses the augmented version of the

model presented earlier in order to obtain white excitation

(maneuver) noise.

The method of computing the optimum estimate (the filter)

is as follows:

X(KIK-l) = .X(K-I K-l) (4.20)

T T -
X(KIK) = X(KIK-I) + P(KIK-I)H [HP(KIK-I)H +R(K)]-I

(4.21)

[y(K)-HX(KI,-l)I

where

P((KIK-l) = OP(K-1!K-l) OT+GQ(K-l)G T (4.22)

P(KIK) P(KIK-l)-P(KIK-l)HT [HP(KIK-I)H T+R(K) ] -1P(KjK-l)

(4.23)

In these equations

(i) The double argument always denotes an estimate

(ii) X(KjK) Filtered estiamte of X(K)

(iii) X(KjK-1) = one-step predicted estimate of X(K)

(iv) P(KJK) Covariance of filtered estimate

(v) P(KIK-l) = Covariance of predicted estimate

(vi) [y(K)-HX(KIK-l)] = Error in the predicted
observations

, I
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"(vii) G(K) = P(KIK-1)HT[HP(KIK-I)H T+R(K)]- 1

= Kalman Gain Matrix

- Is a matrix of adjustment coefficients.
The matrix, G(K), reflects the relative
confidence one should have in the
observed data as compared to the
predicted estimate.

The filter is initialized on the basis of two observations

as follows:

y1 (2)
[1

1Ty[l (2)-yi(Ji) ]

0
X(212) (4.24)

Y2 (2)

T[Y2 (2) (1)]

0IS~J

The elements of the corresponding covariance matrix, P(212),

are:
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222 2 2 2 20 0 0 0

R RMl+-

2 2

0 2 M2 0 0 0

P(212)

0 0 0 2 a2 /T 0e e
22/ 2 2%• 2

0 0 0 2 /T _2 PCM2e M2+-T2 P CM2

0 o 0 0 2 2
M2 M2

(4.25)
quanitie 2

The quantities M1 2 M2 should be calculated as discussed

previously (Eq. 4.17-4.18).

A block diagram of the discrete Kalman filter is shown in

Fig. 38.

<~ ._ 7Deay

+ +

1 YKIK-I XKK-1
- • H

XKIK XKIK-l + G IYK - -13
XKIK-I : XK-11K-I

*1 P Fig. 38. Block Diagram and Equati. As of the Discrete Kalman Filter
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2. The Simplified Kalman Filter

By simplifying the maneuver model used in the Kalman

filter, the state vector can be reduced from six to four

elements, and the number of independent components of the

covariance matrix from ten to six. The model simplification

is achieved by assuming (incorrectly) that the vehicle's

change in velocity is uncorrelated between samples, i.e.,

the maneuver is white.

The regular Kalman filter requires two augmented state

variables in order to whiten the target maneuver. If the

maneuver is assumed white, no augmentation need be performed

and the simplification just discussed occurs. This simpli-

fied Kalman filter can therefore also be referred to, as an

unaugmented Kalman filter.

The utility of this filter is greatest, therefore,

when either sensitivity of tracking performance to assumed

maneuver correlation is small, or when the target maneuver

approaches whiteness relative to the sensor data rate.

The equations for this filter and all quantities

except the following have previously been defined:

2
SO 0
l [Covariance of

Q(K) = [jjassumed white" (4.26)
i 0 2 maneuver noise

L M2

and the elements of the corresponding covariance matrix,

P(212), are:
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2/T 2  2R

2
2 2 a 0

jMl + T--2 0

0 0 2 2 /T

2 2 2e0 0 20 /T +2U M2+T-2

(4.27)

3. Recursive Algorithm

The problem is solved recursively by first assuming

the problem is solved at time K-1. Specifically it is assutied

that the best estimate X(K-lIK-I) at time K-I and its error

covariance matrix P(K-11K-1) are known.

(i) Calculate the one-step prediction

X(KIK-1) = •X(K-I K-l) (4.28

(ii) Calculate the covariance matrix for the one-step

prediction

P(KIK-l) = lP(K-iIK-l)cT + GQ(K-I)GT (4.29)

(iii) Calculate the prediction observation

^(K!K-1) = HX(KIK-I) (4.30)
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(iv) Calculate the filter gain

G(K) = P (K !K-l) HT [HP (K iK-i) HT +R(K)I 1- (4.31)

(v) Calculate the new smoothed estimate

X(KIK) = X(KIK-1) + G (K) [Y(K -Y (K IK-l1) (4.32)

(vi) Calculate the new covariance matrix

P(EIK) P(KIK-I) -p(KIK-I)H T[HP(KIK-1)H T+R(K)]-I1HP(KIK-1)J

G GK

or

P(KIK) ( I -G(K)H] P(KIK-I) (4.313)

In summary, starting with an estimate X(K-I1K-I) and its

covariance matrix P(K-IIK-I) after receiving a new observation

-()and calculating the six quantities in the recursive
Y(K)

algorithm, a new estimate X(KjK) and its covariance matrix

P(KIK) are obtained.
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V. IMPLEMENTATION AND SIMULATION RESULTS

In order to evaluate the three filter algorithms in a

variety of tactical environments, an air vehicle type, and two

tracking sensors were selected for analysis.

Maneuver statistics (A, Pi' P2' P) were selected to match
2 2 )wr slce

the vehicle, and sensor statistics (a2, a2, T) were selected

for each combination of sensor and data entry evaluated.

One trajectory was constructed for the vehicle that consists

of a straight track and a maneuvering track and is shown in

Fig. 39.

The x-direction vs time of range, velocity, acceleration,

bearing, bearing rate and bearing acceleration, were plotted

and shown in Figs. 40-45.

For the scenario considered, an aircraft . 10 KM moves

at 100 m/sec (200 knots), can maneuver at a maximum accelera-

tion of 4g (A = 39.24 m/sec 2), and has a probability of

maneuvering at max 0.2 (2P 1 = 0.2, P1 = 0.1), and a probability

0.5 of not maneuvering at all (P 2 = 0.5). Assume a Lazy

maneuver that will provide correlated acceleration inputs for

periods between 10 and 30 sec. Hence, with an average maneuver

duration of 20 sec, by using Eq. (4.19), i = 1/20 = 0.05 = a,

and the correlation coefficient P = 1 - aT = 1 - .005T.

The two sensors were classified as:
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T =30 sec

T = 24 s _ New maneuver begins

Maneuver with acceleration begins

=1

T= 10 sec

X Xscale: 2.0E + 03 units inch
Y-scale: 5.OOE + 02 units inch

FIG. 39. VEHICLE TRAJECTORY IN X-Y
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A. EXAMPLE 1 - AIR SEARCH RADAR

The radar data rate was ten samples per second (T = 10

sec) hence, the correlation coefficient p = 1 - 0.05(10) = 0.5,

and the sensor processing noise (measurement noise variances)

has been taken into account, 500 m in range (OR = 500 m) and

17.4 mrad in bearing (a. = 1 degree = 17.4 mrad). The

variances of maneuvering at max acceleration, and not maneu-

vering at all, were calculated by using Eqs. (4.17-4.18)
2 2 -4 -2

and Zound to be, M1 = 46193 m/sec and aM2 = 1.346 x 10 - sec

1. Kalman Filter Evaluation

This model can be used with the Kalman filter

Eqs. (4.29-4.31-4.33) to determine a set of filter gains.

For the model assumed, by using Eqs. (4.5, 4.11-4.14,

4.25), the following matrices were obtained:

1 10 0 0 0 0 0 0
0 1 1 0 0 0 0 0

0 0 0.5 0 0 0 1 0
0 0 0 10 0 G 0 0
0 0 0 0 1 1 0 0

0 0 0 0 0 0.5 0 1

H [ 0 0 0 0 0j
0 0 0 1 0 0

R = 314 0 1
0 3.02 10-4
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34645 0
Q 0 0 oO 4

25x104 254103 0 0 0 0

25xi03 51193 23096.5 0 0 0
0 23096.5 46193 0 0 0

P(212) -4_
0 0 0 3.02xi0-4 3.02xi0 0

0 0 0 3.02xl0-5 1.41xlO-4 0.673x10-4

0 0 0 0 0.673xi0-4 1.346×i0-4

2. Simplified Kalman Filter Evaluation

The simplified Kalman filter is achieved by assuming

(incorrectly) that the vehicle's change in velocity is

uncorrelated between samples; i.e., the maneuver is white, and

p = 0. Here, for the model assumed, by using Eqs. (4.2-

4.4-4.5-4.26-4.27), the following matrices are obtained.

"1 10 0 0 0 0

0 1 0 0 1 0

0 0 1 10 0 0

0 0 0 1 0 1

= l 0 0 01 R - 25xl10 0 1
0 0 1 L 0 3.02xI0
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r46193 0

L0 1.346x10 -4

25xi04 25xiO3 0 0

25xi03 51193 0 0p(212) = 4
0 0 3.02x10-4 3.02x10-5

0 0 3.02xl0-5 1.41li0-4

B. EXAYMPLE 2 - SURFACE AND AIR SEARCH RADAR

In this example, all quantities except the following, have

previously been defined for the air search radar example:

Sampling time T = 1 sec, hence p = I-aT = 1-0.05(1) = 0.95,

the sensor processing noise (measurement noise variances)

has been taken into account, jR = 20 m, a8 0.1 degree = 1.74

mrad and the variances of maneuvering were calculated and
22 2 -6 -2

found to be, al= 461.93 m/iec 2  = 1.346xl0-6 sec=l " M2

1. Kalman Filter Evaluation

For tne model assumed the following matrices were

obtained-

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0.95 0 0 0 1 0
€ = G -

o0 0 0 10 0 0

;0 0 0 0 1 1 0 0

0 0 0 0 0 0.95 0 1
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1 0 0 0 0 0 [400 0
0 0 0 1 0 0 0 3.02×x0-6

[45.04 0 1
Q 0 0.13xl0-6

400 400 0 0 0 0

400 1261.93 487.83 0 0 0

0 438.83 461.93 0 0 0
P(2j2) -=6-

0 0 0 3.02xi0-6 3.02×10-6 0
-6 -6 -

0 0 0 3.02x10 7.386x10 1.2787x106

0 0 0 0 1.2787xi0-6 1.346xi0-6

2. Simplified Kalman Filter Evaluation

For the model assumed the following matrices were

obtained:

[1 1 0 0 0 0

0 1 0 0 1 0
G =

0 0 1 1 0 0

0 0 0 1 0 1

H1 0 0 01 [ 400 0

Oj 0 3.02xi0-6

1 0
10

I.•°



461.93 0 1
L 0 1.346xi0- 6

"400 400 0 0

400 1261.93 0 0
P(2 2) 0 0 3.02x10-6 3.02xi0-6

0 0 3.02x10-6 7.386x10-6

C. THE a-8 FILTER EVALUATION

The a-a filter considered in this paper, and used for

simulation, is one of many varieties possible in this class,

is more easily implemented than either the Kalman or Simpli-

fied Kalman filters, and has been selected for evaluation

since it is utilized extensively in tactical applications.

Because it is designed to minimize the mean squared error in

filtered position and velocity under the assumption of straight

line target motion, it has little capability to track severely

maneuvering vehicle. The a-a filter examined has no provision

to adapt to different target types, as does the Kalman filter,

since maneuver statistics are not taken into account. The

Eqs. (2.1-2.3-2.37-2.38) for the a-8 filter evaluated are:

XNS = XpN+ •(XN- X•)

xN - NS S 'N Y

N N N-

S ST l M
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where

2 (2N-I) 6S= N(N+l) ' = N(N+I) and T = 1 sec or 10 sec

in order to continually compute the least-squares line through

the observations.

D. COMPARISON OF FILTER ACCURACIES

One hundred (100) Monte Carlo trials were made for each

combination of tracking filter, tracking sensor and data entry

procedure.

Experimental determined filtered and predicted accuracies

in vehicle range coordinates (range, range rate, and range

acceleration) and bearing coordinates (bearing, bearing rate,

and bearing acceleration) with means and variances of estima-

tion error histories, were then calculated and plotted and

shown in Appendix A.

Table II shows a representative summary of the result,

in which the prediction accuracies of each filter were

compared on a percentage basis to that of the Kalman filter.

The entries in the table were determined by averaging the

experimentally obtained percentage degradations in each of

the above coordinates.

The Simplified Kalman filter, and the Kalman filter

generally performed within twenty percent (20%) of each otler.

The a-B filter performance, on the average, appears to

be about equal to the above filters for the straight part

of traCk, and about thirty to sixty percent (30-60%) worse,

;2- .108



ensor Type
Filter Air Search Surface and

Type Radar Air Search
_____ ____ ____ ____Radar

2-$ Filter 2 1

Simplified
Kalman Filter 1 1

Kalman Filter 1 1

Key: 1 = within 10-20 percent of the Kalman filter

2 = within 30-S0 percent of the Kalman filter

Table II. Synopsis of the Accuracy Comparison
of the Three Tracking Filters

with the greatest degradation occurring for the maneuvering

and accelerating part of track, because the gain vector quickly

becomes too small to correct for the large estimation errors

resulting from target maneuvers.
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VI. SUMMARY AND CONCLUSTONS

While no extensive analysis is implemented, it is con-

sidered that a reasonable and unequivocal comparison of the

filters can be made from the material presented.

The analysis of the filters and the radar system simula-

tions presented in this paper is considered overall to be a

simplified but realistic model of a sophisticated system which

could be implemented with current "state of the art" hardware.

Based on the ensemble averages the Kalman filter obviously

provides a somewhat better tracking response for the target

track tested.

The tracking ability of the a-8 and Kalman filters appears

to be about equal for "look alike" targets in close proximity,

under the assumption of straight line motion. The a-$ filter,

however, provided unsatisfactory performance when the tracked

vehicles executed maneuver... Based also on the simulation

results, the Simplified Kalman filter becomes attractive for

implementation, because it provided tracking accuracies within

ten-twenty percent of the Kalman filter. The utility of this

filter is greatest, when either the sensitivity of tracking

performance to assumed maneuver correlation is small, or when

the target maneuver approaches whiteness relative to the

sensor data rate.

The filter implementation requirements increase in the

following order: a-8 filter, Simplified Kalman filter,

1
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Kalman filter. Moreover, the "complexity factor" between the

above filters is about two-to-one.

Finally, in most applications, the answer to the question,

"which filter is most accurate?", does not alone determine

filter selection. Indeed, the following questions must all

be answered in the filter selection process to obtain the

"best" filter for a particular system:

a. What are the actual accuracies of each filter?

b. What are the relative filter accuracies?

c. What are the tracking accuracy requirements of the

system?

d. How sensitive is system performance to tracking

accuracy?

e. Whaz are the computer requirements of the filter?

f. What are the computer limitations of the system?

The list shows thaz filter selection involves careful balancing

of filter accuracies, filter implementation requirements,

and system performance goals and limitations.
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APPENDIX A

Simulation results, of experimental filtered and predicted

accuracies, Ln vehicle range and bearing coordinates, with

means and variances of estimation error histories, provided

for comparison of each of the three filters.

These results were generated using Monte Carlo simulation,

with the following description of run:

a-B Simplified Kalman
Filter Kalman Filter Filter

order of system 2 4 6

no. of measured states 2 2 2

no. of time samples 31 31 31

no. of random forcing inputs 2 2 2

no. of members in ensemble 100 100 100
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