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Summary

The IPFP can be viewed as a method for maximizing the likelihood for

certain loglinear models or equivalently for minimizing the Kullback-Leibler

Information between two probability densities. Both of these viewpoints

lead to natural generalizations of the classical IPFP. We examine the

generalizations suggested by the work of Csiszar (1975), Darroch and

Ratcliff (1972), and Haberman (1974) and, with the aid of the theory,

explore a practical example of expanding a contingency table.

Key words and phrases: Generalized Iterative Scaling; I-divergence;

Kullback-Leibler information number; Contingency tables.
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Introduction

There are many ways of calculating maximum likelihood estimates of mean

values for loglinear models. The two most popular methods are the Iterative

Proportional Fitting Procedure (IPFP) and variants upon Newton's method.

Newton's method has many desirable properties, including its quadratic con-

* vergence rate near the maximum and the ability to calculate estimates of

.asymptotic covariance matrices as a by-product of the computations. Its

principle disadvantage is a computational one in that the method requires

a considerable amount of storage and is thus limited by the size of the design

manifold being fitted. In many situations it thus becomes necessary to

consider alternatives to Newton's method.

The Iterative Proportional Fitting Procedure is an alternative method

for fitting many classes of loglinear models. Although the method is often

slow to converge it requires little storage. In our experience it is often

the storage requirements of an algorithm, as opposed to the computational

time required, that limit the algorithm's usefulness. The classical IPFP

(see, e.g., Bishop, Fienberg, and Holland (1975)) is limited in the type of

models which may be fitted. As many applications of the loglinear model

methodology now use models other than simple factorial situations, we seek

generalizations of the IPFP which extend its capabilities to any loglinear

model while preserving the desirable properties of the classical IPFP.

j -There are at least three generalizations of the IPFP. Haberman (1974)

shows that the IPFP is really just a special case of the method of cyclic

ascent for functional maximization. This observation immediately leads to

an algorithm defined for any loglinear model. Csiszar (1975) considers the

IPFP as a method for minimizing the Kullback-Leibler information (or I-divergence)
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between two probability densities. When specialized to distributions on

finite sets, Csiszar's methods yield another type of IPFP. In Section 2,.i we show that these methods and those of Haberman are closely related and

yield equivalent procedures in some situations. A third generalization of

the classical IPFP, discussed in Section 3, is the Generalized Iterative

Scaling (GIS) method of Darroch and Ratcliff (1972). This generalization

.4 is also developed in the setting of minimizing I-divergence but does not

appear to be related to the other methods.

The impetus for this report came from an example of expanding a contin-

gency table into a more manageable structure which appeared in Fienberg and

Wasserman (1980). Section 4 is devoted to a discussion of this and similar

examples.

I!
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2. The Results of Haberman and Csiszir on the IPFP

The Iterative Proportional Fitting Procedure is generally considered as

a method for obtaining the maximum likelihood estimates for the mean value

parameter of a loglinear model for a contingency table. The formulation of

the IPFP considered by Csiszar is presented as a problem of minimizing the

Kullback-Leibler information number between two Probability Distributions

(P.D.'s). Although we shall only use P.D.'s defined on a finite set, it is

instructive to outline Csiszir's very general formulation and specialize the

results as the need arises.

Haberman (1974, pp. 64-73) noted that the classical IPFP is a version

of the cyclic ascent method of functional maximization and suggested the

extension to arbitrary loglinear models. The methods of Haberman and Csiszir

can be viewed as dual methods although strictly speaking the algorithms dual

to Csisz~r's encompass a much wider class of maximization techniques. We

shall concentrate on stating results, illustrating the ideas with examples.

However we should note that Csiszar presents very elegant proofs by developing

a "geometry" for the information measure. The geometric ideas have (and

were perhaps developed from) a strong analogy with results in finite dimen-

sional Hilbert spaces. We now turn to a detailed discussion of the techni-

ques.

Let N, P, Q, R, S, T denote Probability Distributions on a measure

space (X,'L). In our applications X will be a finite set and X the power

set of X. If P is absolutely continuous with respect to Q (written as P

a.c. Q) we will denote the corresponding density by pQ. The Kullback-Leibler

information number (or I-divergence, or information in P about Q), I(PIIQ),

is defined to be
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(2.1) I(PH1Q) in (p )dP =fp o In (pQ)dQ if P a.c. Q
" + -if P not A.c. Q.

When P and Q are both a.c. N then (2.1) may be written as

(2.2) I(PIIQ) =JPN In (PN/qN)dN.

In the above formulae we use the conventions that, In (0) - --, 0 • (+_-) - 0,

m4 and In (r/O) = + - when r e (0,).

In the special case where N is the P.D. which assigns equal weight to

each point of a finite set X, then all P.D.'s on X are absolutely continuous

with respect to N. Unless otherwise indicated (e.g., by the use of some

subscript) all densities on finite sets will be with respect to this uniform

N and the probability function PN(X) will be written as p(x). In this

situation equation (2.2) becomes:

(2.3) I(PQ) = p(x) In (p(x)/q(x)).(2.3) I(PI I= ]T xe X

We next consider the I-sphere, A , with center R and radius p, defined

by:

(2.4) A (R,p) = {P : I(PIIR) <p), pe (0,].

The I-sphere,,S , contains P.D.'s which are close, in the information sense,

to a given P.D. If & is a convex set of P.D.'s such that & r) (R,-) # 0, then

a P.D., Q e &, satisfying

(2.5) I(QJJR) = min I(PJJR),
Pe &

is called the I-projection of R on & and will be denoted by Q = Pa(R).

The convex set & of P.D.'s is called a linear set if when P and Q are in
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and T = cP + (l-a)Q, (a e F) is a P.D. then T is also in £. Csiszar gives

conditions under which P (R) exists (it is always unique) and develops a

geometry of I-divergence by using an analogue of Pythagoras' Theorem.

As our goal is to study maximum likelihood estimation in contingency

tables, we turn briefly to the problem of estimating a multinomial probability

function with an underlying loglinear model for the probabilities. Consider

a multinomial random vector, z(x), of Z counts on the set X, with mean

(m(x) : x e X) where m(x) = Z.p(x) and p(x) is the probability an observa-

tion falls in cell x e X. The vector s(x) = z(x)/Z is an observed probability

function on X. The log-likelihood of the data, z, given the assumed mean,

m, will be denoted by L(m;z). A loglinear model for the probability function

(equivalently for the mean vector) asserts that the logarithm of the underlying

probability function is an element of some linear manifold,7TL, i.e.,

In (p(x)) e M .

It is well known (see e.g., Haberman (1974)) that the maximum likelihood

estimator, p, of p based on the observed probability function, s, satisfies

(i) In (p qYL,
C2.6)

(i) s - e .

and minus the log-likelihood ratio of p compared with s is proportional to

(2.7) E s(x) In ) (sIIP).
XE X

The problem of minimizing I-divergence (i.e., equation (2.5))and

maximizing the log-likelihood ratio (i.e., equation (2.7))appear similar.

All the same,the relationship between the two methods is not clear. In

order to show that the two problems lead to identical estimates we need to



7

envoke a result of Csiszir (due originally to Kullback (1959)), giving the

form of the density of the I-projection. Csiszar's Theorem 3.1, which we

state below, gives conditions under which the probability function of the I-

projection satisfies a loglinear model. The examples at the end of this

section and the discussion after the theorem should help to clarify the

notation.

Theorem I (Csiszar (1975), p. 152).

Let = {f ye r} be a set of real valued I measurable functions
Y

on X and c4 {a : y e ribe real constants. Let & be the (linear) set ofY

all probability distributions, P, on (X, .) for which the integrals,

ffydP exist and

ffYdP =a; y e r.

Then if a P.D. R has I-projection Q on &, the density of Q with respect to

R is of the form

(2.8) qR(x) = c. exp (g(x)) x e M

=0 x f M

where P(M) = 0 for every P in & n 6(R,-) and g belongs to the closed sub-

space of LI(Q) spanned by the f yS.

Conversely if a Q e & has a density with respect to R of the form (2.8)

where g belongs to the linear space spanned by the f 's, then Q is the I-

projection of R on P. *



>1 In our applications of this theorem X will be a finite set. Let S

be an observed P.D. on X and consider a set of functions = {f : y e r}Y

which span a linear manifold ".1. The set of constants 4 (a y - ri

will be defined by

aY = ffydS =ffysNdN, y e r

. That is the a are the "marginal sums" of the observed probability function.Y

We will call the set ',determined by an observed P.D. S and the functions

the I -margins of S. The set & of the theorem is the set of all P.D.'s,
P, such that = a =ff dS for all y in r. In other words the set &

consists of those P.D.'s which have the same 3-margins as the observed

P.D. S. This is in turn the same as the set of probability functions, p,

such that s-p is in 'rn4. The conclusion of the theorem (equation (2.8))

says that if Q = P&(R) then R' the density with respect to R, satisfies

In Rx)e

If Q a.c. N then this is the same-as saying that

(2.9) In (N(X)) e " + In (rN).

Equation (2.9) says that the log probabilities of the I-projection lie in

an affine subspace ofRIXI. Note that if In (rN) is in 1I4 then "I + In (rN)

=7t1* and the log probabilities lie in a linear manifold. When R

has a density rN w.r.t. N and In (rN) is in IPI, then the I-projection

is seen to satisfy part (i) of equation (2.6) for the manifold 'MI.

In the above development we have restricted our attention to those P.D.'s

wh1ch had the same I -margins as the observed P.D. S. In other words condition

(1i) of equation (2.6),which required that -s be in1M Iis satisfied for all P
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in & and in particular for the I-projection N The conclusion is that qN

satisfies all the conditions required of the M.L.E. and is thus the M.L.E.

An alternative demonstration of this fact comes from an argument due to

Darroch and Ratcliff (1972), which shows directly that the likelihood is

maximized by the I-projection.

A purely mathematical interpretation of this result is that the problem

.of minimizing I-divergence subject to linear constraints is the convex (or

Fenchel) dual problem to maximizing the likelihood subject to loglinear

constraints. For further references to this topic see Rockafeller (1974)

or Luenberger (1969). We will use the theorem with many different spaces &

to demonstrate the duality between the Iterative Proportional Fitting Pro-

cedures of Csiszgr and Haberman.

To illustrate the preceeding ideas we present a simple example, where

duality and results are well known.

Example 1.

Consider Z observations cross classified according to their response

level on two factors, A and B, each with 3 levels. We assume that the data

can be considered as Z independent multinomial trials. The observed table

of data is

B

z 11  zl2  z,3

A z21  z22  z23

z31 z32 z33
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where z.: is the number of observations which have level i of factor A and

level j of factor B. The sum of the cell counts, E zij, equals Z, the

total number of observations. We will convert this to an observed probability

function by dividing each cell count by the total, Z. Thus the observed

probability function, s, is represented by:

z 1 1/Z z1 2/Z z1 3/Z

S = z21/Z z22/Z z23/Z

z31/Z z32/Z z33/Z

We now consider the model of independence of the two responses for the true

P.D. P. This corresponds to a loglinear model

In (p) e "M.1

where nY.is the manifold spanned by the row and column sum tables;

1 10 jJ 0 0

f 0 0 0 f2 1 1 1

0 0 0 0 0 0

0 0 0 1 0 0
f 3 0 0 0 f 1 0 0

R

1 1 1 1 0 0
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o 1 o 0 0

I2 0 1 0 f 3 ~ 0 0 1
AC

0 1 0 0 0 1

The maximum likelihood estimator, p, of p maximizes L(p;s) subject

to ln(p) being in 'i. This is the same as maximizing the log-likelihood

ratio, i.e.,

max z pij In (pij/sij) I(SHP).

1n(p)e 't i'j

We now turn to the formulation of the problem as a minimum I-divergence

problem. Let

(fl, f f3  fi f2 f
R' R' R C f C1

and

A- 1 2 3 1 2 3
(a', aR aR a', a, ad

where

ak L fL(i~J)sij for t = R,C and k - 1,2,3,

and define

= {P.D.'s P s.t. r f (i,j)p = a

Csiszr's Theorem 3.1 tells us that the M.L.E., p. for the loglinear model

corresponds to F(R), the I-projection of R onto 9, for any R which has In (r)

in 'lf . A simple R which satisfies this is
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1/9 1/9 1/9

r = 1/9 1/9 1/9

1/9 1/9 1/9

which assigns the same probability to each cell in the table. *

Thus far we have not given any techniques for calculating I-projections.

In the following paragraphs we hope to rectify this situation by presenting

some forms of the Iterative Proportional Fitting Procedure.

Recall that a set of P.D.'s, &, is called linear if when P1 and P2

are in & and T = aP1 + (l'-)P 2, a e IR is a P.D., then T is also in 4. We

note that if & is defined by a set of constraints, ) , and corresponding

constants, 4 , then & is a linear set. In particular the maximum likelihood

estimation problem for loglinear models can be posed in terms of linear

sets of P.D.'s. Csiszir presents results which enable one to build up the

total I-projection onto & cyclically, by forming the I-projections onto

other (and hopefully simpler) spaces, a.. The statement of Cslszir's

Theorem 3.2 follows.

Theorem 2 (Csiszar (1975), p. 155).

Let F-l,...,-k be arbitrary linear sets of P.D.'s on a finite set X

with & = r) a 0, let R be a P.D. for which there exists a P eC&
i=l

with P a.c. R and define Q1, Q2 ,.... recursively by letting Qn be the I-

projection of Qn-l on & n' n z 1,2,3 .... where Q = R and gn - 9i if i = n

mod k. Then Qn converges (pointwise) to the I-projection, Q -P(R). a
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Some analogies between this theorem and similar theorems about

projection operators on Hilbert spaces are presented in Appendix 1.

Before proceeding to the examples, we make two simple obser-

vations. First, if 11,...,1k are sets of constraint vectors with corres-

ponding sets of constants al'"k which together determine linear sets
k k

11"j, &k' then the sets U and U . together determine the linear
k i=l i=1

.4 set ) P.V. In other words more constraints (the union of the I i) leads
i=l

to a more restricted or smaller linear set (the intersection of the 9i).

Our second remark concerns a special case of Csiszar's Theorem

3.2. Let I I and 1 2 be sets of functions on X with corresponding sets of

constants, -4, and cA2 . We will assume that the functions in a 1 have

support XI while those in 1 have support X2 = XX. Let e, be the

indicator function of X and e2 the indicator function of X2 . We assume

that ei is in span ( i). Consider &i to be the linear space of positive

functions generated by 1i and c'4 , (i = 1,2), and & the space generated by

{I 2} and { I(lo42}. For any P.D. Q we define Qi to be equal to Q on

Xi and zero on X\X i.

Corollary to Theorem 2.

Consider 9l, &2 and QI, Q2 as defined above, then:

IP (Q) Z lp (QI) + P 2(Q2 )

A rough interpretation of the corollary is that if the constraints

can be separated into disjoint pieces, then the I-projection can be similarly

separated.

We now turn to some illustrations of the preceeding theorems.

I.,
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Example 1 (continued). A 3 x 3 table.

Recall that we have a table of observed probabilities, s, and a design

manifold IMA defined by a set of functions, = constants

u (aR,...,a }. We consider an arbitrary starting P.D., R with

r 11  r1 2  r 13

-4 r =  r21  r22  r23  , ij 1  =1.

r31  r32  r3

The usual IPFP alternately scales the rows and columns of r to have the

same margins as the observed table. Specifically, the row adjustment is;

ij (ri/r rij) a; i,j = 1,2,3,

which is followed by the column adjustment,

2 1 11r ) x. a;ij - (r. l ij ) x a; i,j = 1,2,3.

This process is repeated until the cell estimates converge. Of course when

In (r) e1)1A , the iterations converge after just one row and column adjustment.

The fitted values then correspond to the M.L.E.'s for the loglinear model,

In (p) e Mf. When In (r) l'M* the iteration need not converge after one

cycle. In this case the fitted values correspond to the M.L.E.'s for the

log affine model, In (p) e In (r) + "I71.

Let us now investigate how one could use Csiszar's theorem to calculate

P&(R). Consider two linear spaces of P.D.'s, &l and 92' defined by:
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{ -P.D.'s P s.t. E fl(ij)p(ij) = a', t = 1,2,31
ij

a2 - 4P.D.'s P s.t. Z f ilj)p(ij) = a', L - 1,2,3).
2. ii

That is 61 is the set of P.D.'s whose row sums agree with the observed

table and r2 consists of those P.D.'s whose column sums agree with the

observed table. As & = l 2' the I-projection, Q = P6 (R) is the limit

of

Q= P (R)

Q2 =Pa2 (Ql )

Q3 = I (Q2)

Q4= P6 (Q3), etc.
&2

where Qn p. (Qn-l)' i = n mod 2.
nl

Thus we need to be able to calculate the I-projections onto P1 and 62"

From the definition of I-projections, Q, satisfies

I(QIIR) = min I(QIIR)Qe6 l

min £q. In (qi /rij).Qkeal ij i

Expanding this expression leads to the following minimization problem:

min qll In (qll/r1l) + q In (ql2/rl2 ) + (aR-qll-ql2) In (a -qll-q12/r1 3)

+ q21 1, (q21/r21)+q22 In (q22/r22)+(a-q 21-q22) In (aR-q21-q22/r23)

3 na-q31 .q3 2fr 33 ) ,+ q31 In (q31/r 31)+ q32 In (q32 /r 32)+ (aR-q31-q32 R 31323
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where qll, q12, q21, q22, q31' q32 are allowed to vary freely over (0,1).

If one takes partial derivatives of this expression with respect to

qll~ql2,...,q32 and equates each derivative to zero one obtains the equations:

(i) In (q11/r11) = In (q12/r12) = In (a1 - qll - q12/r

(R q1 / 13)

(ii) ln (q21/r21) = In (q22/r22) = In (a - q21  q22/23)

(iii) In (q31/r31) = In (q32/r32) = in (a - q q32/r33)"

By removing the logarithms one sees that these are just linear equations

whose solution is found by scaling the rows so that the marginal sums are

correct. Analogous equations result for the I-projection onto F2. Thus for

this partition of the space, 6, the Csiszar algorithm reduces to the usual

IPFP.

The particular subdivision of the space, 9, is not the only one pos-

sible. Consider dividing the space & into more linear spaces, namely:

61 = (P.D.'s P s.t. ff dP = ff dS = a1)

-2 (P.D.'s P R~t Rf2P dS -a2 )

&6 = {P.D.'s P s.t. ff dP = ff~dS - a3 }
C CC

6
As & = &' . Csiszar's theorem tells us we can find the I-projection, Q.,
onto 6 by cyclically projecting onto 61,... 66. Again we need to calculate

each of the elementary I-projections. For example we need Q, such that

I(QIIR) = min I(QIIR). If we write the expression out more fully we require
Qe &I
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the:

min ql 16 (qll/rll) + q12 In (q12/r12 ) + (al-qll-ql 2 ) In (1 qll-ql2 /rl 3 )

+ q21 In (q21/r21 )+q22 In (q22/r22 )+ q23 In (q23/r23)+q31 In (q31/r31 )

+ q32 In (q32/r32 ) + ([l-alJ-q2 1 -q2 2 -q2 3 -q3 1 -q 32 )

In ( [l-a] R-q2 -q 22 -q23-q 31-q32/r 33)

where the minimization is over ql' q12 v q2 1 , q2 2 ' q2 3 q q31 and q32 all in

(0,1). We can obtain the minimizing Ql as we did before. The procedure is,

(i) scale the first row of r so that it has the correct margin

01) scale the rest of the table so that the sum of all the cells is

again one.

The full algorithm then cycles through rows and columns one at a time.

This algorithm is not as efficient as the earlier procedure, as we need

to adjust the entire table at each iteration and only one of the (row) margins

is necessarily satisfied at the end of each iteration. In this approach we

have ignored the corollary to the theorem whereas in the earlier approach

the corollary was implicitly invoked. •

Example 2. Goodman's Association Models for Tables with Ordered Categories.

A recent article by Goodman (1979) presents a class of models for I x J

contingency tables with ordered categories. This class of models postulates a

structure for the odds ratio (association) in the 2 x2 subtables formed by cells in

adjacent rows and columns of the table. (It is well known that the odds ratio for

any 2 x2 subtable can be recovered from the odds ratios in the adjacent subtables.)

Goodman presents two classes of models for the table, but we will consider only

the loglinear version, which Goodman denotes as Model I.
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Consider the odds ratio, 0ij, of the 2 x 2 subtable formed by the

intersection of rows i and i+l with columns j and j+l, i.e.,

dPi " i+l,j+lBiJ P i,j+l " P i+l,j

The model we wish to consider asserts that e.. can be written as the product

of a row effect and a column effect, i.e.,

" :' ij = i. • -j

or In (e ij) = In (el.) + In (e.). When written as a loglinear model for

the expected probabilities this becomes:

In (pij) = ai + ej + jY. + i6j.

We now describe a spanning set and some of the calculations required to fit

this model for the special case of a 3 x 3 table.

The linear nianifold,1L., for this model is spanned by a set of tables,

f' fR fJ and fJc; ij = 1,2,3. The subscripts R, OR, C and OC indicate

that the vector corresponds to Row, Ordered Row, Column or Ordered Column

parts of the model,while the superscript indicates the row or column number,

e.g.,

0 0 0 0 0 0

f 1 1 1 OR- 0 1 2

0 0 0 0 0 0
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1 0 0 0 0 0

.1 0 0 f 0 0 1

1 0 0 0 0 2

The general structure is that f (or f s a table of zeros except for the ith

row (jth column) which contains ones, i.e.,

1 k -i

f1(kz) {
0 k # i.

Similarly, for the ordered row and column tables, the general form is

-1 jfi k.Lj.

We now group the spanning tables into sets of related constraints. Let

IR fR OR :i= 1,2,3)

and

-JC a { f ' f C : j = 1,2.31.

We also need the corresponding sets of constants, &R and 4 C, Generally

these are determined from some observed table of probabilities. The

linear spaces of P.D.'s corresponding to these constraints and constants are:

= {P.D.'s P s.t. ff dP =a; A =,OR; i = 1,2,3}

&C {P.D.'s P s.t. ff-40 a; 8 CA0C; i 1,243).
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In order to find the M.L.E.'s of cell probabilities for this model we

need to be able to compute, P,(R for some suitable R and P R n &C. The

theory tells us that this I-projection can be obtained by cyclically pro-

jecting onto &R and PC' It is these projections which we now compute. The

first observation we should make is that each of the spaces is generated by

three pairs of functions with disjoint support. For example, P-R is generated

1 1 ,2 2 13 3
by the pair of functions (f, fOR ) , (fR , fOR ) and (f R, fR ) and the support

for these functions is respectively the first, second, and third rows of

the space of tables. Thus we can apply the corollary to this estimation

problem.

Consider a starting table (which may already be the result of several

iterations),

r r1l r 12 rl13

r r21  r2 2  r 23

r31  r32  r33

Then P PR(R) is the probability function, p, which minimizes

(2.10) E . In (p./r..)lPij (P/r)

subject to p being in &R. By applying the corollary we can separately

minimize (2.10) for each i (i.e., row) and combine the results. For i = 1

we need to minimize,

R(OR1+)P13)- In (aR -aOR + P13/rll) + (aOR -2P 1 3 )In (aOR-

+ P13 In (P1 3 /r 13 ),

subject to p1 3 e (0,1).
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By taking the derivative of (2.11) with respect to p13 and equatingF.

it with zero we obtain the equation:

(2.12) In (aR a1r + p 3/r,,) - 2 In (aOr - 2p13/r12) + in /p13/r13, = 0,

which can be written as

- aR + P13) ' (P13) • (r12 )2  1

S(aR- P13)
2 r 1  13

or equivalently as,

2 r1 I* r13  1 1 1 r1 *r 13  r 11 ' ~r13  1 2
p13(1 r2 ) + P13(aR aOR + 2aOR r2 r- 2r1. (aR) :0.r12 12 r12

This equation is relatively easy to solve for P13. The estimates for pl and

P12 are derived by solving the constraint equations. The equations from the

second and third rows and the columns are analogous.

If we consider the same class of models for I x J tables where one of

I or J is greater than 3, the resulting equations are systems of higher order

polynomials. Clearly, solving such systems may themselves be a difficult

task.

In the next section we will show another algorithm that can be used for

this problem. *

The preceeding examples have used an I-divergence approach to the IPFP.

We now consider the approach discussed by Haberman (1974, p. 64). That

discussion uses the method of co-ordinate cyclic ascent to directly maximize

the likelihood. A fixed set of vectors which span the model space, ML, is

chosen and the likelihood is maximized along each of these directions in

• .. . . . ... .. --- .. .. -l . . . . I
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turn. Specifically, consider a set of vectors I = {f y e r} which span
Y

q , denote the- log-likelihood by i(p;s) and consider an initial estimate p

with In (pO) in It. The algorithm proceeds by finding pi such that

In (pi) = In (pil) + Iif = y mod Ir,

where ai is determined so that

Ici " <Z(p 1;s),fy> l 1 b-li(p ;s) - L(p -';s)l

for some fixed b in (0,1). Generally we would find ai by attempting to

maximize

(2.13) (exp Oin (pil) + ify )

This is a one-dimensional maximization problem in the fixed direction, f.Y

This problem can be re-expressed as:

(2.14) maximize Z(p

subject to,

In (pi) e In (p1 -l) + span (fy

which is a maximum likelihood problem for a log affine model. Csiszar's

Theorem 3.1 showed that this has a dual representation as a minimum I-diver-

i
gence problem. But the solution, p , to (2.14) is not necessarily a P.D.,

even though P = im p must be a P.D. To rectify this situation we consider

the related problem:
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(2.15) maximize E(pi),

subject to,

i i-IIn (p) e In (p -l)+ span (f ,e),
Y

where e is the vector of all ones. The dual representation of this problem

is to consider_&Y= {P.D.'s P s.t. JfydP = Jf dPi' l } and then form pi as

4 & (P i-). Thus, in a certain sense, the co-ordinate cyclic ascent methods
Y I

are conjugate dual problems to the algorithms of Csiszar. It appears that

the cyclic ascent method is easier to work with as it does not require the

result of each iteration to be a P.D.

If we use the duality result the other way around, we can describe the

I-projections in an alternate form. For example, consider the linear space

lr) a2 generated by I U I2 and suppose we wish to calculate Pp.(Q)

for an arbitrary P.D. Q. The dual to this problem is to m

maximize 1(p),

subject to,

In (p) e In (q) + span (}i,e).

Thus another type of IPFP maximizes the likelihood, not in a set of fixed

directions, but in a set of planes spanned by (I i,e). If R is a starting

vector such that In (r) eMtand IX is equal to span (11 , 2,..., k) where

the are not necessarily I dimensional subspaces then the following

algorithm converges. Form i = span (3Ie) and PO = R. Then pi+l is

the p which maximizes X(p) subject to In (p) is in span ( i), where

= . if i = j mod k. If each of these problems is easy to do then

this may form a useful algorithm.
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3. The Darroch and Ratcliff Generalized Iterative Scaling

The preceeding section has shown how Csiszar's Theorems and the "dual"

theorems of Haberman may be cyclically applied to compute I-projections

and maximum likelihood estimates. A paper by Darroch and Ratcliff (1972)

attacks the same problem, again by looking at it from the information theory

point of view; however their generalization of the IPFP is different from

those we have thus far considered. Darroch and Ratcliff (D & R) succeed in

4calculating the total I-projection without necessarily calculating any of

the marginal I-projections. In the "usual" case, i.e., where the space, 6,

is generated by vectors containing only zeros and ones their generalization

also reduces to the conventional IPFP algorithm.

The D & R algorithm, or Generalized Iterative Scaling (GIS), ensures

that at each iteration equation (2.8) is satisfied (i.e., qR(x) = c. exp (g(x)),

where g is in the linear space spanned by the constraints). When the

algorithm has converged one is able to show that the fitted values also

satisfy the marginal constraints. This should be contrasted to the algorithms

we have discussed earlier. The algorithms of Csiszir and Haberman alternately

satisfy the marginal constraints, with only the final fitted values neces-

sarily satisfying equation (2.8). We now consider the D & R algorithm in

more detail.

Let I = (fy : y e r} be a set of constraints with corresponding con-

stants of= (a : y e r} and consider the linear set of P.D.'s

a = {P.D.'s P :fdP = a ; y C r}.dP Y

As before, & is just the set of P.D.'s whose I -margins are correct. It

is always possible, as 0 & R show, to find a set of vectors = {g6  6 e Al

whose span is the same as span (.) and which satisfy
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(3.1) g6 > 0 V6 and z (g6 ) = e.
6e A

In this formulation,

( {P.D.'s P :f 6dP = b6; 6 c

where the b6 are determined from the a . We now consider the problem ofY

finding the I-projection of some R onto C, i.e., we wish to find a

P &such that

p = r - exp{ x 6 " g6}
6e A

where the x6 are to be etermined. D & R show that the following algorithm

converges to the M.L.E.:

(i) set pO = r

n+1 n ng6

(ii) set pn+l = pn e {(b6/<g6,pn>)

= pn exp{ E g6 " ln (b6/.g6,pn>)
6e A

where 6 = n mod 161. The algorithm, as given, adjusts for all of the marginal

constraints at once. However, it is possible to adjust for several sets of

simultaneous constraints, one set at a time using partitions not unlike those

those discussed in Section 2.

Consider two linear spaces of P.D.'s, F. and &2' defined by constraint

sets II and 1 2' each of which satisfies equation (3.1) on its support.

Csiszar's results suggest that to calculate the I-projection of QO = R

onto A = C Cl 2 one should successively form

Qn =  .(On-0) i = n mod 2.

The GIS algorithm would be one way of calculating these elementary I-projec-
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tions. Darroch and Ratcliff suggest an alternative approach which does not

necessarily involve calculating the individual I-projections. The idea is

to perform one iteration of the previous algorithm on the space *, then

one iteration on 2 and continue cyclinq. If we let gl;= 6 eandg- = 6e A2 , 1 }

an 2 {g; 6 e A , and let {bl; 6e Al) and {b2; 6 A2) be the associated

constraint spaces then the algorithm would proceed as follows:

(i) set pO = r
In n Ai ,pI n>) g6

(ii) set pn+ = n ((b/<gi p>) , where I = n mod 2.
6=1

To Illustrate the ideas presented here we reconsider Example 2.

Example 2 (continued).

We illustrate one of the ways that the GIS algorithm can be used

to find the M.L.E.'s for Goodman's association model in a 3 x 3 table.

Recall that the constraints came in natural pairs (e.g., f2 and f R)
R ofa

row (column) and ordered row (column) function. These pairs do not satisfy

equation (3.1) on their support, but we can convert them into:

9R -R - 2f OR and ITf

which still span the same space. We also need to make a similar adjustment

to the constants, viz:

b3 = aj- alj and b = a=1 .
RaR OR OR aOR
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Analogous transformations are made to the columns. As all the pairs of

constraints are similar we will concentrate on the pair corresponding to

the first row and consider only one step of the algorithm. We note that

1 1/2 0

1 0 0 0 and

40 0 0

0 1/2 1

1 0 0 0
g0R = 0

o 0 0

If Qn is our current approximation to P6 (R) then the GIS algorithm would form

as its next estimate,

n+l -n (g~dQng(1) [fg0R dQn 90R(1"j)

( R )OR/

The algorithm continues by considering each of the constraint sets in

turn. In this example we sometimes need to take square roots of the ratio

of the observed margin to the expected margin. In a more typical situation

we would take arbitrary powers rather than just square roots.

Note that applying the same adjustment to the new table (i.e., not

cycling through the pairs of constraints) produces another new table. If

we were to continue with the same pair of constraints we would arrive at

the I-projection onto that constraint space. Thus in many respects GIS

just combines the first steps of an algorithm to compute I-projections. *
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The GIS algorithm is a method which is conceptually easy to compute

and guaranteed to converge. Unfortunately the algorithm is also known to

converge very slowly in some situations. In contrast, the Csisz~r approach

is appealing as it maximizes along a fixed space at each step but it has

the disadvantage that thL elementary I-projections may themselves be dif-

ficult to compute or require iteration. Which procedure (or combination)

4is better may depend on the problem under investigation but certainly

requires further study.

I
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4. Methods for Maximum Likelihood Estimation in Special Cases

In this section we shall use the ideas of the preceeding sections to

study some problems in which the constraints, 3 , have a special structure.

We consider as examples the ordered categories model for a 3 x 3 table Intro-

duced earlier and a special situation considered in Fienberg and Wasserman

(1980). In both examples we will find it edifying to expand the table (i.e.,

4increase the number of cells) and fit a transformed model to the larger

table. Clearly we will need some conditions on the model and how we "expand"

the table. The following "theorem" is a collection of conditions which we

will need to verify in the examples. In general verifying the conditions

may itself be a difficult task.

Theorem 3

Let g be a one to one mapping of the P.D.'s on a set X into the P.D.'s

on a set X*. If & is a linear set of P.D.'s on X, then define g(&) =

{g(P) : P e &}. Let 9* be a linear set of P.D.'s on X* such that g(&) C V.

If g is such that

(4.1) I(PIIQ) = k-I(g(P)JIg(Q)) for P,Q e &

and P&,(g(R))e g(g) then

PF&(R) = g-1 (PF,(g(R))).

This theorem allows us, under certain conditions, to calculate the

I-projections in a transformed problem and then invert the transformation to

obtain the I-projection in the original setting. There are at least two

ways of using the theorem. In some situations it may be possible to define

the linear set &* so that g(&) - &*. This is the easier case and it essen-
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tially just relabels the problem. However even such simple relabeling can

be helpful if it helps one to interpret the model or recognize, say, a

9- model in the transformed space for which closed form estimates are known to

exist. The second application of the theorem requires more work to verify

the conditions, but is also more generally applicable. Here we take

a linear set P6* which is much larger than g(&), we need to prove

4 that P.*(g(r)) e g(?). In other words, even though &* contains g(g)

we need to show that for any g(R), the I-projection onto &* is always

an element of g(&). For a particular set of data it may be easy to

verify this condition. All we need do is fit the transformed model and

see if the I-projection is in g(&). To prove this type of result for

a general class of R's and 9's is much more difficult. These ideas are

best illustrated in the context of two examples.

Example 2 (Continued)

We have previously shown that the row and column constraints

c-an be considered in pairs and each of the pairs of constraints can be indi-

vidually fit. Thus if (wl,w 2,W3 ) are the current fitted values for, say,

the first row, we need to adjust this triple so that its row and ordered

row margins match some specified constants.

Let &S be the set of positive triples which satisfy the row and ordered

row constraints for the first row, i.e.,

&S x (positive triples, q : 2q, + q2 = 2a R a1R 2 a3

and q2  2q3 
= aoR = a4).

As the vector e = (1,1,1) is in the span of the space of constraints which

defines S, we can apply the corollary of Csiszar's Theorem 3-2 and Just

work with P& S(W). Now consider the function
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g W

Y - W2 W3

and define

9* g(as)

= {2x2 tables such that a+b=a+c =  a3 and

d+c=d+d=7 a4).

Note that the constraints on 9* imply that b equals c which means that g

is well defined on C*. It is not a difficult calculation to verify that

I(QJJW) = I(g(Q)j g(W)). Our theorem now allows us to calculate ]s(W) as

The constraints which define &* are just simple row and column margins.

Thus the I-projection, P.*(g(W)), can be calculated by the usual IPFP (i.e.,

adjusting row and column margins), or, as it in a 2x2 table, by direct

calculation. As the logarithms of the starting values, w, do not

necessarily satisfy any model, the IPFP will in general require several

iterations to converge. Thus to obtain the I-projection, P (Qn) ,

where R is the space of P.D.'s which satisfy all of the row constraints,

we could transform each row of the 3 x 3 table into a 2 x 2 table, cal-

culate with the 2 x 2 table and then use g-1 to return a triple of fitted

values. The approach for the colunmwould be similar.
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There is another g, which transforms the entire 3 x 3 table into a

2 x 2 x 2 x 2 table. In this case 6* = g(g) becomes the model of no fourth

order interaction for the 24 table. Specifically,

aa lb ~ b c
g: d e f

g h d ee ~f

~d e e 7 f

g y h -1 h i

It is not difficult to check that the model of no fourth order interaction

corresponds to g(&) and that I(PIIQ) = I(g(P)fJg(Q)). Therefore the usual

IPFP, with starting values g(e) and the model of no fourth order interac-

tion applied to g(Qn) will yield a 24 table of fitted values which can in

turn be transformed (by g- ) into a 3 x 3 table for the original problem. a

Both applications of the theorem in the previous example used an A*

which was equal to g(A). The following example gives a situation where &*

is much larger than g(&). Here we need some trickery to show that the I-

projection of g(R) onto * is in g(&).

Example 3.

Fienberg and Wasserman (1980) describe a class of loglinear models

for some multivariate directed graphs. Their paper considers as an

example a set of data concerning the interrelationships between 73 or-

ganizations in a small community. Three types of relations were observed
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for each of the pairs of organizations, but for simplicity we restrict

our attention to two of these criteria, support and money. For each

criterion the organizations were asked to respond to the questions:

(i) to which organizations do you give support (money)?

(ii) from which organizations do you receive support (money)?

A particular directed relationship (i.e., giving or receiving) is regarded

4J to be present if either or both the organizations in a pair perceived the

relationship. For each pair of organizations it is possible to construct

a four-vector of zeros and ones indicating the presence or absence of

(support out, support in, money out, money in). Consider for a moment

just the support relationship. A pair of organizations are said to have

a Mutual relationship if they support each other (i.e., (support out,

support in) = (l,l)), a Null relationship if neither supports the other

(i.e., (0,0)), or an Asymmetric relationship if support is unreciprocated

(i.e., (0,) or (1,0)). If we aggregate over all (2 = 2628 pairs of

organizations there are ten distinguishable support-money relationships,

namely:

MM with four vector (1,1,1,1)

MA (1,1,0,1) or (1,1,1,0)

MN (1,1,0,0)

AM (0,1,1,1) or (1,0,1,1)

AA (0,1,0,) or (1,0,,0)

A (0,1,1,0) or (1,0,0,1)

AN (0,1,0,0) or (1,0,0,0)

NM (0,0,1,1)

NA (0,0,1,0) or (0,0,0,1)

NN (0,0,0,0)



.i

34

Notice that when both relationships are asymmetric there are two different

cases, corresponding to whether the relationships flow the in the same or in

different ways. We denote the table of observed probabilities by Z where

for example zM is the number of mutual-mutual relationships divided by

7~3) .The table is represented by

MONEY
4M A N

M ZMM ZMA : ZMN
S

U z
P AA

Zu P A z AM z AN
0 z AN

R
T N ZNM ZNA ZNN

An alternate, though somewhat deceptive, description of the data is

to consider four-vectors for each of the (13) x 2 ordered pairs of

organizations and to aggregate this into a 2 table, Y = Yijk' ijk9. = 1,2,

where a 1 indicates the presence of a flow and a 2 indicates the absence

of a flow. Thus y,,,, is the number of mutual-mutual relationships

divided by 5256. The Y table duplicates certain relationships and gives

double weight to certain others. The Y-table has the form,

L



.4

35

money out 2

money in 1 2 1 2

supp out supp in

1 l~ Y111 l12 Y1121 Y112

* 1.

2
2 " " " Y2222

We now consider one of the models for the Z-table considered by

Fienberg and Wasserman. (The same arguments work for all of their models.)

The model takes as a linear space, &, of P.D.'s the set of tables, S,

which have margins Sa+ and S+b, a,b = M,A,N, which are the same as the

corresponding margins for the Z-table. For example we require

Sa+ a SAMA S +S + SAN ZAM + ZAA + ZAA + ZAN = ZA+

This model can be fit directly to the Z-table using the methods of the

previous sections. As the model space can be spanned by vectors consisting

of only O's and l's, both the D & R and Csiszar algorithms reduce to the

same simple scaling algorithm which takes an initial table of all l's

and successively adjusts the row and column "margins" to match those in

the observed table. This algorithm is easy to do by hand, but because

the Z-table is not square (i.e., it has 10 cells rather than the 9 one

would expect), and consequently has an extended interpretation of marginal

totals, standard IPFP computer programs would not be able to analyze this

table. Moreover, for some of the models considered by Fienberg and Wasserman
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the models are not so simple and the computations on the Z-table require

the full power of the generalized IPFP's. For this reason we prefer to

work with a transformed problem, where the sufficient statistics for

the models can be represented by simple marginal totals.

Consider

2zM ZMA ZMA 2ZMN

zAM ZAA ZAA ZAN

ZAM ZMA zAA ZAN

2ZNM ZNA ZNA 2 NN

which maps the Z-table into the 24 Y-table. We denote the factors support

(out, in), money (out, in) by the numbers 1, 2, 3, and 4. It is now easy

to see that the marginal sums considered for the Z-table can all be found

(twice) in the (12] and (341 margins of the Y-table. Also note that the

Y-table has a strong symmetry, Yijkt = Yjitk VijkZ. Now g(&) is just

the set of tables which have (i) the correct [12] and [34] margins and

(ii) preserve the observed symmetry in the Y-table. Consider just the

first of these conditions ignoring the symmetry constraint. It is this

model which we shall consider to be &*. As we have relaxed some condi-

tions it is clear that g(g) C 6*.

It is convenient now to explicitly define the space 9* and the

conditions we need to verify to show that P&.(g(R)) is in g(&). Consider
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= {fl " f 8 where

f 1 1 1 . f4 = 0 0 0 0

0 0 0 0 0 0 - -

0 0 0 0 0 0 0 0

000 00000

f5
=  1 0 0 0 ... f8 0 0 0 1

1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1

1 000 0 0 0

and constants a = {al,... ,a8} where aj = <fj,g(Z)>. Note that a2 = a38 3

and a6 = a7. We define 9* to be the space of P.D.'s defined by I and

. Now consider the symmetry transfomation:

h : Yijkt'yjik.

For P.*(g(R)) to be in g(g) we require

h( P&.(g(R)) =]P&.(g(R)).

It is possible to assert this because the space &* is invariant under h.

Specifically h(fi) = fi for i = 1,4,5,8 and h(f2 ) = f3, h(f3) = f2 ' h(f7 ) =f6

and h(f6) = f7. Because a2 = a3 and a6 = a7 the linear space h(&*) generated

by h( 1) and h(,4) is the same as &*. We also note that h(g(R)) = g(R),

because of the nature of g function. That is the starting values necessarily

satisfy the symmetry constraints. Now let

L ___ ____ ___
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Q= P.(g(R)) and

Q Ph(e*)(h(g(r))) =]Ppg(R)).

But note that Q = h(Q) as all we have done is relabeled the co-ordinates.

Thus

Q = Q =()4

i.e., the fitted P.D. is (I) invariant under h and (ii) is in P*. Thus

Q is in g(&) and g (Q) is the fitted P.D. in the space of Z-tables.

For any of the other models considered by Fienberg and Wasserman,

it is easy to show that the space, &*, is invariant under h and thus

the above argument still works. *

Both the examples of this section have shown situations where, for

reasons of computational ease, it was desirable to transform a contingency

table into a related but larger table. In the transformed table it was

possible to fit a model using the standard IPFP whereas in the original

table the corresponding model would have required a more complicated

algorithm. This approach of using transformed tables is especially

important in practice as versions of the standard IPFP are widely

available and easy to use. An additional bonus which can sometimes be

found in the transformed table is the existence of closed form maximum

likelihood estimates. The theory about when closed form estimates exist

in complete tables with factorial models is well known and such situations

are easily recognized. On the contrary, when a table is incomplete or

has a more complicated structure, very little is known about the existence

of closed form estimates. The insight gained from looking at the trans-

formed table may also assist in interpreting the models.



39

Appendix 1. Analogies with Hilbert Space

In this appendix we discuss some of the analogies between the IPFP and

methods for cyclically calculating projections in Iilbert spaces.

Consider (V,<.,.>) to be a finite dimensional Hilbert space and let

al,...,ak be linear subspaces of V with corresponding orthogonal projections

EI,...,Ek. In other words the orthogonal projection of a vector v e V onto

a & will be denoted by E v. The following theorem can be shown to be true.

Theorem Al.l.-

If (V,<.,.>) is a finite dimensional Hilbert Space and 8l,...,ak are

linear subspaces of V then the orthogonal projection of any v e V onto
k

= a &. is equal to
i=l 1

lim [(Ek * Ek-l EI)m v).

A simple extension of this result states that if Qn is defined to be the pro-

jection of Qn-1 onto &n9 where &n = &i when i = n mod k, and Q = v then

Qn converges to the projection of v onto &. This is a direct analogue of

Csisz~r's Theorem 3.2. I am not sure if the above theorem is always true

when (V,<.,.>) is an infinite dimensional Hilbert space, but it is true

when any of the 9i are finite dimensional. There is however a version of

cyclically projecting onto subspaces which is always true (for a proof see

Von Neumann (1950)).

Theorem A1.2.

If (V,<.,.>) is a Hilbert space, the orthogonal projection of any v e V
k

onto = a) is equal to
1=l

lim (E1  * E3 * ... Ek 1  Ek Ekl ... E2 * E1)m v.
M_
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In this version of the theorem we use a symmetric form of the operator.

Again it is true that the piecewise projections (in the correct order) con-

verge. The advantage of Theorem A1.2 is that powers of symmetric operators

generally converge more quickly than do powers of unsymmetric ones.

The proof of Csiszr's Theorem 3.2 can easily be modified to prove the

symmetric version of that theorem. Arguing by analogy with Hilbert spaces

4we conjecture that a symmetric form of the IPFP may converge more quickly

than the usual version. This conjecture needs to be numerically investigated.

2I
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The PFP~ can be viewed as a method for maximi.zing the likelihood for certain
loglinear models or equivalently for minimizing the Kuliback-Leibler Informa-
tion between two probability densities. Both of these viewpoints lead to
natural generalizations of the classical IPFP. We examine the generalizations
suggested by the work of Csisza'r (1975), Darroch and Ratcliff (1972),-md-
Hlaberman (1974).iand, with the aid of the theory, explore a practical example
of uxpanding a contingency table
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