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Summary

The IPFP can be viewed as a method for maximizing the likelihood for
certain Iogline;r models or equivalently for minimizing the Kullback-Leibler
Information between two probability densities. Both of these viewpoints
Tead to natural generalizations of the classical IPFP., We examine the
generalizations suggested by the work of Csiszar (1975), Darroch and
Ratcliff (1972), and Haberman (1974) and, with the aid of the theory,

explore a practical example of expanding a contingency table.

Key words and phrases: Generalized Iterative Scaling; I-divergence;

Kullback-Leibler information number; Contingency tables.
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Introduction

There are many ways of calculating maximum likelihood estimates of mean
values for loglinear models. The two most popular methods are the Iterative
Proportional Fitting Procedure (IPFP) and variants upon Newton's method.
Newton's method has many desirable properties, including its quadratic con-
vergence rate near the maximum and the ability to calculate estimates of
asymptotic covariance matrices as a by-product of the computations. Its
principle disadvantage is a computational one in that the method requires
a considerable amount of storage and is thus limited by the size of the design
manifold being fitted. In many situations it thus becomes necessary to
consider alternatives to Newton's method.

The Iterative Proportional Fitting Procedure is an alternative method
for fitting many classes of loglinear models. Although the method is often
slow to converge it requires little storage. In our experience it is often
the storage requirements of an algorithm, as opposed to the computational
time required, that limit the algorithm's usefulness. The classical IPFP
(see, e.g., Bishop, Fienberg, and Holland (1975)) is limited in the type of
models which may be fitted. As many applications of the loglinear model
methodology now use models other than simple factorial situations, we seek
generalizations of the IPFP which extend its capabilities to any loglinear
mode) while preserving the desirable properties of the classical IPFP,

There are at least three generalizations of the IPFP. Haberman (1974)
shows that the IPFP is really just a special case of the method of cyclic
ascent for functional maximization. This observation immediately leads to

an algorithm defined for any loglinear model. Csiszar (1975) considers the

IPFP as a method for minimizing the Xullback-Leibler information (or I-divergence)




between two probability densities. When specialized to distributions on

finite sets, Csiszar's methods yield another type of IPFP. In Section 2,
we show that these methods and those of Haberman are closely related and
yield equivalent procedures in some situations. A third generalization of
the classical IPFP, discussed in Section 3, is the Generalized Iterative
Scaling (GIS) method of Darroch and Ratcliff (1972). This generalization
is also developed in the setting of minimizing I-divergence but does not
appear to be related to the other methods.

The impetus for this report came from an example of expanding a contin-
gency table into a more manageable structure which appeared in Fienberg and

Wasserman (1980). Section 4 is devoted to a discussion of this and similar

examples.
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2. The Results of Haberman and Csiszar on the IPFP

The Iterative Proportional Fitting Procedure is generally considered as
a method for obtaining the maximum likelihood estimates for the mean value
parameter of a loglinear model for a contingency table. The formulation of
the IPFP considered by Csiszar is presented as a problem of minimizing the
Kullback-Leibler information number between two Probability Distributions
(P.D.'s). Although we shall only use P.D.'s defined on a finite set, it is
instructive to outline Csiszar's very general formulation and specialize the
results as the need arises.

Haberman (1974, pp. 64-73) noted that the classical IPFP is a version
of the cyclic ascent method of functional maximization and suggested the
extension to arbitrary loglinear models. The methods of Haberman and Csiszar
can be viewed as dual methods although strictly speaking the algorithms dual
to Csiszar's encompass a much wider class of maximization techniques. We
sha1l concentrate on stating results, illustrating the ideas with examples.
However we should note that Csiszar presents very elegant proofs by developing
a "geometry"” for the information measure. The geometric ideas have (and
were perhaps developed from) a strong analogy with results in finite dimen-
sional Hilbert spaces. We now turn to a detailed discussion of the techni-
ques.

Let N, P, Q, R, S, T denote Probability Distributions on a measure
space {X,%). In our applications X will be a finite set and % the power
set of X. If P is absolutely continuous with respect to Q (written as P
a.c. Q) we will denote the corresponding density by pQ. The Kullback-Leibler

information number (or I-divergence, or information in P about Q), I(P]]Q),

is defined to be
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(2.1)  1(P|]Q) = f]n (pg)dP =jpo In (py)dQ if P a.c. Q
PN if P not a.c. Q.

When P and Q are both a.c. N then (2.1) may be written as
(2.2)  1P||Q) = [ py In (py/ay)oN.

In the above formulae we use the conventions that, In (0) = -=, 0 - (+ =) =0,
and In (v/0) = + « when r e (0,=).

In the special case where N is the P.D. which assigns equal weight to
each point of a finite set X, then all P.D.'s on X are absolutely continuous
with respect to N. Unless otherwise indicated (e.g., by the use of some
subscript) all densities on finite sets will be with respect to this uniform
N and the probability function pN(x) will be written as p{x). In this

situation equation (2.2) becomes:

(2.3)  I1(P||Q) = 1}7 £ T p(x) 10 (p(x)/a(x)).
X€

We next consider the I-Sphere,'5 , with center R and radius o, defined

by:
(2.4) A(R,0) = (P : I(P||R) <p), pe (0,=].

The I-sphere, & , contains P.D.'s which are close, in the information sense,
to a given P.D. If & is a convex set of P.D.'s such that 8 N (R,=) # @, then
aP.D., Q € &, satisfying
(2.5) I{Q}|R) = min I(P||R),

Pe &

is called the I-projection of R on & and will be denoted by Q = Pg(R).

The convex set & of P.D.'s is called a linear set if when P and Q are in &

W e iz I



and T = aP + (1-a)Q, (ax € R) is a P.D. then T is also in &. Csiszar gives

conditions under which P&(R) exists (it is always unique) and develops a
geometry of I-divergence by using an analogue of Pythagoras' Theorem.

As our goal is to study maximum likelihood estimation in contingency
tables, we turn briefly to the problem of estimating a multinomial probability
function with an underlying loglinear model for the probabilities. Consider
a multinomial random vector, z(x), of Z counts on the set X, with mean
(m(x) : x € X) where m(x) = Z-p(x) and p(x) is the probability an observa-

tion falls in cell x ¢ X. The vector s{x) = z(x)/Z is an observed probability

" function on X. The log-1ikelihood of the data, z, given the assumed mean,

m, will be denoted by 2(m;z). A loglinear model for the probability function
(equivalently for the mean vector) asserts that the logarithm of the underlying

probability function is an element of some linear manifold,TN, i.e.,
In (p(x)) e M,

It is well known (see e.g., Haberman (1974)) that the maximum likelihood

estimator, p, of p based on the observed probability function, s, satisfies

(1) In (p) em ,
(2.6)
(”)5-5:’7’1"‘.

and minus the log-likelihood ratio of p compared with s is proportional to
(.7) = s(x) In (s(x)/p(x)) = I(5][P).
xe X
The problem of minimizing I-divergence (i.e., equation (2.5))and
maximizing the 1og-1ike1ihood ratio (i.e., equation (2.7))appear similar.
A1l the same, the relationship between the two methods is not clear. In

order to show that the two problems lead to identical estimates we need to
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envoke a result of Csiszar (due originally to Kullback (1959)), giving the

form of the density of the I-projection. Csiszar's Theorem 3.1, which we
state below, g%ves conditions under which the probability function of the I-
projection satisfies a loglinear model. The examples at the end of this
section and the discussion after the theorem should help to clarify the

notation.

Theorem 1 (Csiszar (1975), p. 152).

Let 3= {fY : yerlbe a set of real valued ¥ measurable functions
on X and 4 = {aY : y € T}be real constants. Let & be the (linear) set of
all probability distributions, P, on (X, %) for which the integrals,
j}ydP exist and

fdP = a; :
f‘Y aY ver

Then if a P.D. R has I-projection Q on &, the density of Q with respect to
R is of the form

(2.8) qR(x) c. exp (g(x)) xe M

0 x§d M

where P(M) = 0 for every P in & N A(R,») and g belongs to the closed sub-
space of L](Q) spanned by the fy's.

Conversely if a Q ¢ & has a density with respect to R of the form (2.8)

where g belongs to the linear space spanned by the fY's. then Q is the 1-

projection of Ron &, =




In our applications of this theorem X will be a finite set. Let S

be an observed P.D. on X and consider a set of functions 3= {fY tyeT)

which span a linear manifold My . The set of constants “4= {aY tyerT)

will be defined by

a, = [r s = [f s ver.
That is the aY are the "marginal sums" of the observed probability function.
We will call the set <*, determined by an observed P.D. S and the functions
3, the 3 -margins of S. The set & of the theorem is the set of all P.D.'s,
P, such that j}YdP = aY =.j}yds for all y in T. In other words the set &
consists of those P.D.'s which have the same 3} -margins as the observed
P.D. S. This is in turn the same as the set of probability functions, p,
such that s-p is in ““; . The conclusion of the theorem (equation (2.8))

says that if Q = Pg(R) then &R, the density with respect to R, satisfies
In (qe(x)) € My,

If 6 a.c. N then this is the same-as saying that

(2.9) In (G(x)) e Mg +1n (ry).

Equation (2.9) says that the log probabilities of the I-projection lie in
an affine subspace of R|X|. Note that if 1n (ry) is in My then My + 1n (ry)
=Ty and the log probabilities lie in a linear manifold. When R
has a density N w.r.t. N and In (rN) is in 7n; , then the I-projection
is seen to satisfy part (i) of equation (2.6) for the manifold M;.
In the above development we have restricted our attention to those P.D.'s

which had the same % -margins as the observed P.D. S. In other words condition

(1) of equation (2.6),which required that f-s be in’ﬂh, is satisfied for all p




in & and in particular for the I-projection &N. The conclusion is that &N
satisfies all the conditions required of the M.L.E. and is thus the M.L.E.

An alternative demonstration of this fact comes from an argument due to
Darroch and Ratcliff (1972), which shows directly that the likelihood is
maximized by the I-projection.

A purely mathematical interpretation of this result is that the problem
of minimizing I-divergence subject to linear constraints is the convex (or
Fenchel) dual problem to maximizing the likelihood subject to loglinear
constraints. For further references to this topic see Rockafeller (1974)
or Luenberger (1969). We will use the theorem with many different spaces &
to demonstrate the duality between the Iterative Proportional Fitting Pro-
cedures of Csiszar and Haberman.

To illustrate the preceeding ideas we present a simple example, where

duality and results are well known.

Example 1.

Consider Z observations cross classified according to their response
level on two factors, A and B, each with 3 levels. We assume that the data
can be considered as 7 independent multinomial trials. The observed table

of data is

e e
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where Zij is the number of observations which have level i of factor A and
3 . level j of factor B. The sum of the cell counts, > Zij’ equals Z, the
1 1J’
E~ ‘ total number of observations. We will convert this to an observed probability

function by dividing each cell count by the total, Z. Thus the observed

! probability function, s, is represented by:

211/2 Z]Z/Z 213/2

s = 22]/2 222/2 223/2

231/2 z32/Z 233/2

We now consider the model of independence of the two responses for the true

P.0. P. This corresponds to a loglinear model
In (p) ¢ ™y

where My is the manifold spanned by the row and column sum tables;

11 | o | o | o

1 2 .

fa=|0 | 0|0 fe=fv [ v
o { oo o | o | o
ol o] o 1 {0 | o

3 1.

fa=]o [ oo fe=f{1 | 0] o0
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2 3.
fe=10 1 0 fe 0 0 1
0 1 0 0 0 ]

The maximum 1ikelihood estimator, p, of p maximizes 2(p;s) subject

to In(p) being in My. This is the same as maximizing the log-likelihood

ratio, i.e.,

max L p.: In(p;./s::) = I(S iP).
s 5 P Pi3/5i5) = 1(SIiP)

We now turn to the formulation of the problem as a minimum I-divergence

problem. Let

2 .3

_rel 2 2304
3= (for foo foo foo for o)
and
Ao a) 2 .3 1 2 3
{ag, aps Aps 3y Aps ac}
where
k _ K,:
a =t fn“’J)sij for ¢ = R,C and k = 1,2,3,
13
and define -

k

. . K, . )
&= {P.D.'s P s.t. L fl(w,J)pij = a,

ij

}.

Csiszar's Theorem 3.1 tells us that the M.L.E., 5. for the loglinear model

corresponds to Pg(R), the I-projection of R onto &, for any R which has In (r)

in My . A simple R which satisfies this is




&

adiem b

1/9 1/9 1/9

r=11/9 1/9 1/9
1/9 1/9 1/9

which assigns the same probability to each cell in the table. =

Thus far we have not given any techniques for calculating l-projections.
In the following paragraphs we hope to rectify this situation by presenting
some forms of the Iterative Proportional Fitting Procedure.

Recall that a set of P.D.'s, &, is called linear if when P, and P,
are in&and T = uP] + (1-a)P2, a€Ris aP.D., then T is also in & We
note that if & is defined by a set of constraints, } , and corresponding
constants, <4 , then & is a linear set. In particular the maximum likelihood
estimation problem for loglinear models can be posed in terms of linear
sets of P.D.'s. Csiszar presents results which enable one to build up the
total I-projection onto & cyclically,by forming the I-projections onto
other (and hopefully simpler) spaces, &i' The statement of Csiszar's

Theorem 3.2 follows.

Theorem 2 (Csiszar (1975), p. 155).

Let 8],...,& be arbitrary linear sets of P.D.'s on a finite set X
k
with &= N 8i # @, let Rbe a P.D. for which there exists aPe &

i=1
with P a.c. R and define Q], 02,.... recursively by letting Qn be the I-

projection of Q._1 on &, n =1,2,3,.... where Qy = R and 8 =& ifi=n

mod k. Then Q, converges (pointwise) to the l-projection, Q = Pa(R).'
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Some analogies between this theorem and similar theorems about

projection operators on Hilbert spaces are presented in Appendix 1.
Before proceeding to the examples, we make two simple obser-
vations. First, if 3],...,‘3k are sets of constraint vectors with corres-
ponding sets of constants ‘4]"""4k which together determine linear sets
8]...‘.(, Bk, then the sets i§13i and it:)]-'{i together determine the linear
set _T 81. In other words more constraints (the union of the £ i) leads
to a];;re restricted or smaller linear set (the intersection of the &;).
Our second remark concerns a special case of Csiszar's Theorem
3.2. Let 3 ) and '%2 be sets of functions on X with corresponding sets of
constants, <4, and =42. We will assume that the functions in 3, have
support x] while those in 3 2 have support Xz = X\~X]. Let e be the
indicator function of X] and €, the indicator function of Xz. We assume
that e; is in span ( 31). Consider &i to be the linear space of positive
functions generated by ‘31 and 041, (i =1,2), and & the space generated by
1,, 32} and 04],042}. For any P.D. Q we define Q; to be equal to Q on

Xi and zero on X‘\Xi.

Corollary to Theorem 2.

Consider 8], &2 and Q], Q2 as defined above, then:
PglQ) = R (Q)) +Pg (Qy). »

A rough interpretation of the corollary is that if the constraints
can be separated into disjoint pieces, then the I-projection can be similarly

separated.

We now turn to some illustrations of the preceeding theorems.
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Example 1 (continued). A 3 x 3 table.

Recall that we have a table of observed probabilities, s, and a design

3

manifold My defined by a set of functions, 3 = (f;,...,fc} and constants

oA = {a;....,ag}. We consider an arbitrary starting P.D., R with
" M2 | "3
r=|r r r Lop . =1
21 22 23 { * 1§ i] :

The usual IPFP alternately scales the rows and columns of r to have the

same margins as the observed table, Specifically, the row adjustment is;

1. iy
r‘ij = (r'IJ/§ riJ) x aR' 1, = 1'2o3,

which is followed by the column adjustment,

2 1 1 s B
rij = (rij/§ rij) x apy 1,§ = 1,2,3.

This process is repeated until the cell estimates converge. Of course when

In (r) €My , the iterations converge after just one row and column adjustment,

The fitted values then correspond to the M.L.E.'s for the loglinear model,
In (p) e Mg. When In (r) ¢ My the iteration need not converge after one
cycle. In this case the fitted values correspond to the M.L.E.'s for the
log affine model, In (p) e In (r) + 7"3.

Let us now investigate how one could use Csiszar's theorem to calculate

P&(R). Consider two linear spaces of P.D.'s, &] and &,, defined by:
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£

{(P.0.'s P s.t. T fR(i3)p(i.3) = ag, 2 = 1,2,3)
ij

[
"

' Lrae N -
2 {P.D.'s P s.t. ;3 fc(ig)p(1,3) =ag, ¢ 1,2,3).

That is &] is the set of P.D.'s whose row sums agree with the observed
table and &2 consists of those P.D.'s whose column sums agree with the
observed table. As & = a] N &,, the I-projection, Q = P&(R) is the limit
of

Q-l = &‘(R)
03 = P&](Qz)

Q = Pg2(03). etc.

where  Q =Pg (Q _4), i =nmd?2.
i

Thus we need to be able to calculate the I-projections onto &1 and 82.

From the definition of I-projections, Q] satisfies

1(Q;[1R) = min 1(Ql[R)
Q&

=min I q.. In (q../r..).
Qes] ij ij ij’ 1]
Expanding this expression leads to the following minimization problem:

min ayy 10 (aq9/ry7) + Ay, Tn (agp/rp) + (ageay-ayp) Tn (3g-033-075/773)

+ a1 I (a51/75)) 0 1 (app/rpp) * (eh=0p-0g5) 0 (25-051=05/753)

3 3
*+ 031 10 (Q3y/r3)) +a35 10 (93,/r3)) + (ag-G3y-035) In (ag-a3y-a35/733) s
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where Q11» 912+ 927> Gpps A3y G3p are allowed to vary freely over (0,1).

If one takes partial derivatives of this expression with respect to

' 91128729+ -+4032 and equates each derivative to zero one obtains the equations:

(1) In (a3/ryy) = In (qy5/ry,) = In (2 - a1 - 92/7y3)

2
In (3 - a5y - 9p9/T53)

(1#) In (ag/r3y) = 10 (agp/rgp) = 10 (3 = G = agp/ryg).

By removing the logarithms one sees that these are just linear equations
whose solution is found by scaling the rows so that the marginal sums are 1
- correct. Analogous equations result for the [-projection onto 82. Thus for
this partition of the space, & the Csiszar algorithm reduces to the usual
IPFP.

The particular subdivision of the space, &, is not the only one pos-

sible. Consider dividing the space &€ into more linear spaces, namely:

_ 1o 2 relde = a)
&] = {P.D.'s P s.t. ffRdP ffRdS = aR}
] . 8, = {P.D.'s P s.t. Sfadp = f2dS = ad)
f |
8 = (P.D.'s P s.t. /fadP = [F2dS = ad).
6 . :
As &= N 81’ Csiszar's theorem tells us we can find the I-projection, Q_,
i=1 ,

onto & by cyclically projecting onto 81...., &6' Again we need to calculate

each of the elementary I-projections. For example we need 01 such that

I(Q1||R) = gjn I(Q]{R). If we write the expression out more fully we require
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the:
min ayy M (agy/ryg) +arg 10 (/) ¢ (ageayyayg) In (ageayy-ayp/ry)
* O 10 (g)/rg1) *agp I {agp/7pp) + Gp3 1 (a3/rp3) + a3y 1 (agy/ry)
+ gy 1n (a3p/73) + ([1-2g)-0g"039"0p303 035
0 (11-2g) -0y -6p5~53703 03/ "33)

where the minimization is over 17 9120 921 9op» Gp3s 933 and A3 all in

(0,1). We can obtain the minimizing Q] as we did before. The procedure is,

(i) scale the first row of r so that it has the correct margin
(i1) scale the rest of the table so that the sum of a2}l the cells is

again one.

The full algorithm then cycles through rows and columns one at a time.

This algorithm is not as efficient as the earlier procedure, as we need
to adjust the entire table at each iteration and only one of the (row) margins
is necessarily satisfied at the end of each iteration. In this approach we
have ignored the corollary to the theorem whereas in the earlier approach

the corollary was implicitly invoked. ®

Example 2. Goodman's Association Models for Tables with Ordered Categories.

A recent article by Goodman (1979) presents a class of models for I x J
contingency tables with ordered categories. This class of models postulates a
structure for the odds ratio (association) in the 2 x2 subtables formed by cells in
adjacent rows and columns of the table. (It is well known that the odds ratio for
any 2 x2 subtable can be recovered from the odds ratios in the adjacent subtables.)

Goodman presents two classes of models for the table, but we will consider only

the loglinear version, which Goodman denotes as Model 1.




|
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Consider the odds ratio, eij’ of the 2 x 2 subtable formed by the

intersection of rows i and i+1 with columns j and j+1, i.e.,

i,d " P01, 44
TP

8,. = .
3Py 0 0 Pinyg

The model we wish to consider asserts that 8,4 can be written as the product

J
of a row effect and a column effect, i.e.,

or In (eij) = 1n (ei ) + 1In (8 j)' When written as a loglinear model for

the expected probabilities this becomes:

In (pij) = o + Bj + jYi + i6j°
We now describe a spanning set and some of the calculations required to fit
this model for the special case of a 3 x 3 table.

The linear manifold, M , for this model is spanned by a set of tables,

i i j s s . s

fa, fOR’ fé and f%c; i,j = 1,2,3. The subscripts R, OR, C and OC indicate
that the vector corresponds to Row, Ordered Row, Column or Ordered Column
parts of the model,while the superscript indicates the row or column number.,

e.g.,




The general structure is that f; (or f%) is a table of zeros except for the ith

row (jth column) which contains ones, i.e.,

1 k=i

flik,2) = {
R 0 kfi.

Similarly, for the ordered row and column tables, the general form is

jk-l 2 =]

fj (k,2) =
oc lo o3

We now group the spanning tables into sets of related constraints. Let
Fr = (s fop @ 1= 1,2,3)

and
e {fg, fgc : 3 =1,2,3).

We also need the corresponding sets of constants, ”‘R and "4C' Generally

these are determined from some observed table of probabilities. The

linear spaces of P.D.'s corresponding to these constraints and constants are:

= ' igp = al: A = c i o=
&'-R {P.D.'s P s.t. ffAdP It A =0,0R; i=1,2,3}

= (P.D.'s P s.t. [fidP = a); B = C,0C; j = 1,2,3).
B B

B R - - ey - -




it dnei-< T A

In order to find the M.L.E.'s of cell probabilities for this model we

need to be able to compute, P&(R? for some suitable R and & = &R N &C. The
theory tells us that this I-projection can be obtained by cyclically pro-
jecting onto &R and Gc. It is these projections which we now compute. The
first observation we should make is that each of the spaces is generated by
three pairs of functions with disjoint support. For example, 8R is generated
by the pair of functions (f;, faR), (f%, ng) and (fg, ng) and the support
for these functions is respectively the first, second, and third rows of
the space of tables. Thus we can apply the corollary to this estimation
problem.

Consider a starting table (which may already be the result of several

jterations),

Then ng(R) is the probability function, p, which minimizes
(2.10) :3 pij n (pij/rij)

subject to p being in 8R. By applying the corollary we can separately

minimize (2.10) for each i (i.e., row) and combine the results. For i =1

we need to minimize,

(2.11) (g - agg * Py3) In (ag - agg + Pyg/ryy) + (agg - 20y3) 1 (agg-2p3/7,)

+ p]3 In (913/r13)-

subject to P13 € (0,1).
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By taking the derivative of (2.11) with respect to P13 and equating

it with zero we obtain the equation:

o
.

(2.12) Tn (a; - aéR + p]3/r])) -21n (ag)R - 2p]3/r12) + 1In (p]3/r]3) =

which can be written as

(2 - agg * P13) * (py3) + (ryp)° i

1 7
(agg = P13)" 17 M3

or equivalently as,

reqer Foqer Foqer
1,2
il - ) # pyglag = agg + 22gp —p) - L (agg)” < 0.
"2 M2 "2

This equation is relatively easy to solve for Py3- The estimates for PN and
Py, are derived by solving the constraint equations. The equations from the
second and third rows and the columns are analogous.

If we consider the same class of models for I x J tables where one of
I or J is greater than 3, the resulting equations are systems of higher order
polynomials. Clearly, solving such systems may themselves be a difficult
task.

In the next section we will show another algorithm that can be used for

this problem, =

The preceeding exampies have used an I-divergence approach to the IPFP,
We now consider the approach discussed by Haberman (1974, p. 64). That
discussion uses the method of co-ordinate cyclic ascent to directly maximize

the 1ikelihood. A fixed set of vectors which span the model space, MM, is

chosen and the likelihood is maximized along each of these directions in
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turn. Specifically, consider a set of vectors 7 = (f_: ye T} which span

M, , denote the log-likelihood by 2(p;s) and consider an initial estimate po

with 1n (po) in M. The algorithm proceeds by finding pi such that
iy . i-1 o
In(p')=1n(p ') + “ify; i=ymod |T],
where ay is determined so that

o+ <a(p'71is),f > | < belalplis) - 26" ss)

for some fixed b in (0,1). Generally we would find a; by attempting to

maximize

(2.13)  alexp (n (p771) + ayf D).

This is a one-dimensional maximization problem in the fixed direction, fy.

This problem can be re-expressed as:

(2.14)  maximize 2(p'),
subject to,
i j-1
In(p)eIn(p ')+ span (fY).

which is a maximum 1ikelihood problem for a log affine model. Csiszar's

Theorem 3.1 showed that this has a dual representation as a minimum I-diver-

gence problem. But the solution, pi, to (2.14) is not necessarily a P.D.,

even though P> = ]im pi must be a P.D. To rectify this situation we consider
1400

the related problem:
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(2.15) maximize 2(pi),
subject to,

n (p') e In (p'71) + span (f,.e),
where e is the vector of all ones. The dual representatibn of this problem ]
is to consider &Y = {P.D.'s P s.t. -/}de = ./}YdPi']} and then form p' as
P, (Pi-l)

y

are conjugate dual problems to the algorithms of Csiszar. It appears that

Thus, in a certain sense, the co-ordinate cyclic ascent methods

the cyclic ascent method is easier to work with as it does not require the
result of each iteration to be a P.D.

If we use the duality result the other way around, we can describe the
I-projections in an alternate form. For example, consider the linear space
&= &] N &2 generated by @ ]lJ 32 and suppose we wish to calculate Pgi(o)

for an arbitrary P.D. Q. The dual to this problem is to
maximize 2(p),
subject to, :

In (p) € 1n (q) + span (3 ,.e).

Thus another type of IPFP maximizes the likelihood, not in a set of fixed
directions, but in a set of planes spanned by (4 i,e). If R is a starting
vector such that In (r) eMand M is equal to span (3],32,..., 3,) where
the 3'1 are not necessarily 1 dimensional subspaces then the following
algorithm converges. Form % ; = span (3i,e) and PO = R. Then pi+] is

the p which maximizes 2(p) subject to In (p) is in span (gi), where

&i = 3 j ifi=jmod k. If each of these problems is easy to do then

this may form a useful algorithm.
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3. The Darroch and Ratcliff Generalized Iterative Scaling

The preceeding section has shown how Csiszar's Theorems and the "dual”
theorems of Haberman may be cyclically applied to compute I-projections
and maximum likelihood estimates. A paper by Darroch and Ratcliff (1972)
attacks the same problem, again by looking at it from the information theory
point of view; however their generalization of the IPFP is different from
those we have thus far considered. Darroch and Ratcliff (D & R) succeed in
calculating the total I-projection without necessarily calculating any of
the marginal I-projections. In the "usual" case, i.e., where the space, &,
is generated by vectors containing only zeros and ones their generalization
also reduces to the conventional IPFP algorithm.

The D & R algorithm, or Generalized Iterative Scaling (GIS), ensures
that at each iteration equation (2.8) is satisfied (i.e., qR(x) = c. exp (g{x)),
where g is in the linear space spanned by the constraints). When the
algorithm has converged one is able to show that the fitted values also
satisfy the marginal constraints. This should be contrasted to the algorithms
we have discussed earlier. The algorithms of Csiszar and Haberman alternately
satisfy the marginal constraints, with only the final fitted values neces-
sarily satisfying equation (2.8). We now consider the D & R algorithm in
more detail.

Let ¥ = {fY : ye T} be aset of constraints with corresponding con-

stants o = {aY : vy € T} and consider the linear set of P.D.'s
&= (P.D.'s P :‘[} = a; .
{(P.D.'s YdP aY y€e T}

As before, & is just the set of P.D.'s whose 3 -margins are correct. It

is always possible, as D & R show, to find a set of vectors ﬁ = {96 6 e A}

whose span is the same as span (3 ) and which satisfy
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(3.1) gs 20 Vs and I (gé) = e,
In this formulation,
&= (P.D.'s P :.lbédP = by &€ 8)

| where the b6 are determined from the aY. We now consider the problem of
finding the I-projection of some R onto &, i.e., we wish to find a

'J P ¢ & such that

p=re-exp{Z 2,  » @g.}
sen 6

where the A, are to be zetermined. D & R show that the following algorithm

converges to the ML E.:

0

n
-

(i) setp

9s
(ii) set pn+1 =p" . 1 {(b6/<96.Pn>)
e

n n
p exp{ gg * In (by/<g,.p >)
sea

where § = nmod |o|. The algorithm, as given, adjusts for all of the marginal
constraints at once. However, it is possible to adjust for several sets of

simultaneous constraints, one set at a time using partitions not unlike those

those discussed in Section 2.

Consider two linear spaces of P.D.'s, 8] and &2, defined by constraint
sets 3 p and 1’2, each of which satisfies equation (3.1) on its support.
Csiszar's results suggest that to calculate the I-projection of Qo = R

onto & = 8] N 82 one should successively form
Q, = Pﬂi(on-l)’ i=nmod 2.

The GIS algorithm would be one way of calculating these elementary I-projec-

R —
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tions. Darroch and Ratcliff suggest an alternative approach which does not

necessarily involve calculating the individual [-projections. The idea is

to perform one iteration of the previous algorithm on the space f]. then

one iteration on Ez and continue cycling. If we let -91 = {gl; §e A]}
= (g2 1, 2, .

and 152 = {gg5 6 € 8}, and Tet {b'; e 4y} and (b"; &€ 4,} be the associated

constraint spaces then the algorithm would proceed as follows:

(i) set p0 =r

A g'i
i . R 5
(ii) set p"+] = p" « 1 {(b’/<g'.p">) }, where i = n mod 2.
5=1

To illustrate the ideas presented here we reconsider Example 2.

Example 2 {continued).

We illustrate one of the ways that the GIS algorithm can be used
to find the M.L.E.'s for Goodman's association model in a 3 x 3 table.
Recall that the constraints came in natural pairs (e.g., fg and ng) of a
row (column) and ordered row (column) function. These pairs do not satisfy

equation (3.1) on their support, but we can convert them into:
NS B S T J o2 )¢l
%R *"R"7 TR 9%k " 7 Tor

which still span the same space. We also need to make a similar adjustment

to the constants, viz:

Jod 1. h S
bR = 3 - 73gg and by = 7 ape.
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Analogous transformations are made to the columns. As all the pairs of
constraints are similar we will concentrate on the pair corresponding to

the first row and consider only one step of the algorithm. We note that

1 [ w2 | oo
o =10 0 0 and
0 0 0
o | 12 | 1 !
1 _
0 0 0 l

If Qn is our current approximation to P&XR) then the GIS algorithm would form
as its next estimate,
1, oMor(155) (11 aqm\goplisd)

: q. . e
ij ij 1 1
bg bor

q

The algorithm continues by considering each of the constraint sets in
turn. In this example we sometimes need to take square roots of the ratio
of the observed margin to the expected margin. In a more typical situation
we would take arbitrary powers rather than just square roots.

Note that applying the same adjustment to the new table (i.e., not
cycling through the pairs of constraints) produces another new table. 1If
we were to continue with the same pair of constraints we would arrive at
the I-projection onto that constraint space. Thus in many respects GIS

just combines the first steps of an algorithm to compute l-projections. ®

e 4
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The GIS algorithm is a method which is conceptually easy to compute
and guaranteed to converge. Unfortunately the algorithm is also known to
converge very slowly in some situations. In contrast, the Csiszar approach
is appealing as it maximizes along a fixed space at each step but it has
the disadvantage that the elementary l-projections may themselves be dif-
ficult to compute or require iteration. Which procedure (or combination)
is better may depend on the problem under investigation but certainly

requires further study.
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4. Methods for Maximum Likelihood Estimation in Special Cases

In this section we shall use the ideas of the preceeding sections to
study some problems in which the constraints, F , have a special structure.
We consider as examples the ordered categories model for a 3 x 3 table intro-
duced earlier and a special situation considered in Fienberg and Wasserman
(1980). In both examples we will find it edifying to expand the table (i.e.,
increase the number of cells) and fit a transformed model to the larger
table. Clearly we will need some conditions on the model and how we "expand"
the table. The following "theorem" is a collection of conditions which we
will need to verify in the examples. In general verifying the conditions

may itself be a difficult task.

Theorem 3

Let g be a one to one mapping of the P.D.'s on a set X into the P.D.'s
on a set X*. If & is a linear set of P.D.'s on X, then define g(&) =
{g(P) : Pe &)}). Let & be a linear set of P.D.'s on X* such that g(&) C &*.
If g is such that

(4.1)  1PIIQ) = k-1(g(P){]g(Q)) for P,Q ¢ &
and Pg,(g(R)) e g(&) then
Pg(R) = g7 (Pgulg(R)). ®

This theorem allows us, under certain conditions, to calculate the
I-projections in a transformed problem and then invert the transformation to
obtain the I-projection in the original setting. There are at least two

ways of using the theorem. In some situations it may be possible to define

the linear set & so that g(&) = &*, This is the easier case and it essen-
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tially just relabels the problem. However even such simple relabeling can
be helpful if it helps one to interpret the model or recognize, say, a
model in the transformed space for which closed form estimates are known to
exist. The second application of the theorem requires more work to verify
the conditions, but is also more generally applicable. Here we take

a linear set & which is much larger than g{(&), we need to prove

that ng(g(r)) ¢ g(8). In other words, even though &* contains g(&)

we need to show that for any g(R), the I-projection onto &* is always

an element of g(&). For a.particu?ar set of data it may be easy to
verify this condition. All we need do is fit the transformed model and
see if the I-projection is in g(&). To prove this type of result for

a general class of R's and &'s is much more difficult. These ideas are

best illustrated in the context of two examples.

Example 2 (Continued)

We have previously shown that the row and column constraints
can be considered in pairs and each of the pairs of constraints can be indi-
vidually fit. Thus if (w],wz,w3) are the current fitted values for, say,
the first row, we need to adjust this triple so that its row and ordered
row margins match some specified constants.

Let 85 be the set of positive triples which satisfy the row and ordered

row constraints for the first row, i.e.,
85 = {positive triples, q : 2q] + q = ZaA - aaR =3,
and q, + 2q3 = aAR = a4}.

As the vector e = (1,1,1) is in the span of the space of constraints which
defines &S’ we can apply the coroliary of Csiszar's Theorem 3-2 and just

work with Pa\(w). Now consider the function
S

S S D




Sa R e , <R
) ; . -

and define

&* = g(&)

= {2x2 tables such that a+b=a+c=

ag and

o
-
N —

a4}.

O =t

d+c=d+d=

Note that the constraints on &% imply that b equals ¢ which means that g'] }§
is well defined on &*. It is not a difficult calculation to verify that ué
1(Q) Jw) = I{g(Q)||g(W)). Our theorem now allows us to calculate Pas(w) as
o Pg.(a(H)).

The constraints which define &* are just simple row and column margins.
Thus the I-projection, Pg,{(g(W)), can be calculated by the usual IPFP (i.e.,
adjusting row and column margins), or, as it in a 2x2 table, by direct
calculation. As the logarithms of the starting values, w, do not
necessarily satisfy any model, the IPFP will in general require several
jterations to converge. Thus to obtain the I-projection, ’aR(Qn)'
where GR is the space of P.D.'s which satisfy all of the row constraints,
we could transform each row of the 3 x 3 table into a 2 x 2 table, cal-

1

culate with the 2 x 2 table and then use g~ to return a triple of fitted

values. The approach for the columm would be similar.
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There is another g, which transforms the entire 3 x 3 table into a

2 x 2 x2x 2 table. In this case & = g(&) becomes the model of no fourth

order interaction for the 24 table. Specifically,

a|blec 1 1
g dje|f -> * |z i H i __:i__
gl|hli % d % e % e % f
1 1 1 1
AR ge|zf
g %-h %h i

It is not difficult to check that the model of no fourth order interaction
corresponds to g(&) and that I{P}{|Q) = I(g(P)[{g9(Q)). Therefore the usual

IPFP, with starting values g(e) and the model of no fourth order interac-

tion applied to g(Qn) will yield a 2 table of fitted values which can in

turn be transformed (by g']) into a 3 x 3 table for the original problem. ®

Both applications of the theorem in the previous example used an &*

which was equal to g(8). The following example gives a situation where &*

is much larger than g(&). Here we need some trickery to show that the I-

projection of g(R) onto &* is in g(&).

Example 3.
Fienberg and Wasserman (1980) describe a class of loglinear models

for some multivariate directed graphs. Their paper considers as an

example a set of data concerning the interrelationshios between 73 or-

ganizations in a small community. Three types of relations were observed




for each of the pairs of organizations, but for simplicity we restrict
our attention to two of these criteria, support and money. For each

criterion the organizations were asked to respond to the questions: -

(i) to which organizations do you give support (money)?

(fi) from which organizations do you receive support (money)?

A particular directed relationship (i.e., giving or receiving) is regarded
to be present if either or both the organizations in a pair perceived the
relationship. For each pair of organizations it is possible to construct
a four-vector of zeros and ones indicating the presence or absence of
(support out, support in, money out, money in). Consider for a moment
just the support relationship. A pair of organizations are said to have
a Mutual relationship if they support each other (i.e., (support out,
support in) = (1,1)), a Null relationship if neither supports the other
(i.e., (0,0)), or an Asymmetric relationship if support is unreciprocated
(i.e., (0,1) or (1,0)). If we aggregate over all (1?) = 2628 pairs of

organizations there are ten distinguishable support-money relationships,

namely:

MM with four vector (1,1,1,1)

MA (1,1,0,1) or (1,1,1,0)
MN (1,1,0,0)
AM (0,1,1,1) or (1,0,1,1)
AA (0,1,0,1) or (1,0,1,0)
AR (0,1,1,0) or (1,0,0,1)
AN (0,1,0,0) or (1,0,0,0)
NM (0,0,1,1)
NA (0,0,1,0) or (0,0,0,1)
NN (0,0,0,0)
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Notice that when both relationships are asymmetric there are two different
cases, corresponding to whether the relationships flow the in the same or in
different ways. We denote the table of observed probabilities by Z where
for example Zym is the number of mutual-mutual relationships divided by

(723) . The table is represented by

MONEY
M A N

Iwq | ZmA | ZmN

~
[]
—TVOvVoOoCWw»
>

Nt zym | Zva | 2w

An alternate, though somewhat deceptive, description of the data is

to consider four-vectors for each of the (Z?) x 2 ordered pairs of

organizations and to aggregate this into a 24 table, Y =y , 1jke = 1,2,

ijke
where a 1 indicates the presence of a flow and a 2 indicates the absence
of a flow. Thus Yun is the number of mutual-mutual relationships

divided by 5256. The Y table duplicates certain relationships and gives

double weight to certain others. The Y-table has the form,

S

T ey

i
}
!
|




- money out 1 2
_money in 1 2 1 2

supp out supp in

1 i | Y1z | Yn2r | Ynzz

2

2 y y ¥ Yo222 | - :

We now consider one of the models for the Z-table considered by
Fienberg and Wasserman. (The same arguments work for all of their models.)
The model takes as a linear space, &, of P.D.'s the set of tables, S,
which have margins Sa+ and S+b’ a,b = M,A,N, which are the same as the

corresponding margins for the Z-table. For example we require

'Sa+ = Spm + SAA + Sk + SaN " It ZpA *Zpt ZpN T ZA+‘
This model can be fit directly to the Z-table using the methods of the
previous sections. As the model space can be spanned by vectors consisting
of only 0's and 1's, both the D & R and Csiszar algorithms reduce to the

same simple scaling algorithm which takes an initial table of all 1's

and successively adjusts the row and column "margins” to match those in

the observed table. This algorithm is easy to do by hand, but because : j
the Z-table is not square (i.e., it has 10 cells rather than the 9 one {
would expect), and consequently has an extended interpretation of marginal
totals, standard IPFP computer programs would not be able to analyze this

table. Moreover, for some of the models considered by Fienberg and Wasserman
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the models are not so simple and the computations on the Z-table require
the full power of the generalized IPFP's. For this reason we prefer to
work with a transformed problem, where the sufficient statistics for
the models can be represented by simple marginal totals.

Consider

=Y

which maps the Z-table into the 24 Y-table. We denote the factors support

(out, in), money {out, in) by the numbers 1, 2, 3, and 4. It is now easy
to see that the marginal sums considered for the Z-table can all be found
(twice) in the [12] and ([34) margins of the Y-table. Also note that the
Y-table has a strong symmetry, yijkz = yjizk Vijke. Now g(&) is just
the set of tables which have (i) the correct [12) and [34) margins and
(1) preserve the observed symmetry in the Y-table. Consider just the
first of these conditions ignoring the symmetry constraint. It is this
mode) which we shall consider to be &*. As we have relaxed some condi-
tions it is clear that g(&) C &+,

It is convenient now to explicitly define the space &' and the

conditions we need to verify to show that Pa,(g(R)) is in g(&). Consider

4
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3= {f1....fg) where

1".l RN I B B A f4 =(010{0]0
o[(ofjofo 0101040
ojoj0f0 0{0fO0}|0
0101010 1117111

fe = 110101} 0 f8 =1 0}10]0({1
11010¢0 0{0|0 1
1{0]01}0 01010}
110(01]0 0]0j0}1

and constants oA = {a],...,as} where aj = <fj.g(Z)>. Note that 3, = a4

and ag = as. We define &* to be the space of P.D.'s defined by ¥ and

A . Now consider the symmetry transformation:
o Yike™Yjiak:
For Pa*(g(R)) to be in g(&) we require

h( Pgu(g(R)) = Pga(g(R)).

It is possible to assert this because the space &* is invariant under h.

Specifically h(fi) = f, for i=1,4,5,8 and h(fz) = f3, h(f3) = fz, h(f7) = f6
and h(fe) = f7. Because a, = 2, and a, = a, the linear space h(&*) generated
by h(3}) and h(4) is the same as &. We also note that h(g(R)) = g(R),

because of the nature of g function. That is the starting values necessarily

satisfy the symmetry constraints. Now let
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Q= Pg.(g(R)) and
Q = Py, gey (h(5(r))) = Pgu(a(R)).

But note that Q = h(Q) as all we have done is relabeled the co-ordinates.

Thus
Q=q-=n(Q),

i.e., the fitted P.D. is (1) invariant under h and (ii) is in &*, Thus
a is in g(&) and g'I(a) is the fitted P.D. in the space of Z-tables.

For any of the other models considered by Fienberg and Wasserman,
it 1s easy to show that the space, &*, is invariant under h and thus
the above argument still works. =

Both the examples of this section have shown situations where, for
reasons of computational ease, it was desirable to transform a contingency
table into a related but larger table. 1In the transformed table it was
possible to fit a model using the standard IPFP whereas in the original
table the corresponding model would have required a more complicated
algorithm. This approach of using transformed tables is especially
important in practice as versions of the standard IPFP are widely
available and easy to use. An additional bonus which can sometimes be
found in the transformed table is the existence of closed form maximum
Tikelihood estimates. The theory about when closed form estimates exist
in complete tables with factorial models is well known and such situations
are easily recognized. On the contrary, when a table is incomplete or
has a more complicated structure, very little is known about the existence
of closed form estimates. The insight gained from looking at the trans-

formed table may also assist in interpreting the models.

;1
-4
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Appendix 1. Analogies with Hilbert Space

In this appendix we discuss some of the analogies between the IPFP and
methods for cyélica]ly calculating projections in Eilbert spaces.

Consider (V,<-,->) to be a finite dimensional Hilbert space and let
&],...,8k be linear subspaces of V with corresponding orthogonal projections
E],....Ek. In other words the orthogonal projection of a vector v e V onto

81 will be denoted by Eiv. The following theorem can be shown to be true.

Theorem Al.1. .

If (V,<-,->) is a finite dimensional Hilbert Space and &1""'8k are
linear subspaces of V then the orthogonal projection of any v e V onto

k

&= N &i is equal to
i=1

Tim ((E, » E, y * ... » E;)M v}, @
M S 8 1

A simple extension of this result states that if Qn is defined to be the pro-
jection of Qn-l onto &n’ where 8n = 8i when i = n mod k, and Q0 = v then
Qn converges to the projection of v onto & This is a direct analogue of
Csiszar's Theorem 3.2. 1 am not sure if the above theorem is always true
when (V,<-,+>) is an infinite dimensional Hilbert space, but it is true
when any of the &i are finite dimensional. There is however a version of
cyclically projecting onto subspaces which is always true (for a proof see

Von Neumann (1950)).

Theorem Al,2.
If (VE<.’.>) is a Hilbert space, the orthogonal projection of any ve V

onto & = 1fH 81 is equal to

Tim (E, ¢ E, © Eo o vos o Ep q o Ep o EL q ¢ coo o By s E.)"y,
S B S k-1 ° %k ° fk-1 2" 5

. S~ .
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In this version of the theorem we use a symmetric form of the operator.
Again it is true that the piecewise projections (in the correct order) con-
verge., The adéantage of Theorem A1.2 is that powers of symmetric operators
generally converge more quickly than do powers of unsymmetric ones.

The proof of Csiszar's Theorem 3.2 can easily be modified to prove the
symmetric version of that theorem. Arguing by analogy with Hilbert spaces

we conjecture that a symmetric form of the IPFP may converge more quickly

than the usual version. This conjecture needs to be numerically investigated.
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