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Marina T. Larson and Arthur W. Adamson

Department of Chemistry

University of Southern California

Los Angeles, California 90007

and
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Abstract

" Rh(NH3)5Br j is known to emit in aqueous solution, and quenching of

.this emission by hydroxide ion is reported. The quenching obeys Stern-

Volmer kinetics with a bimolecular quenching rate constant, of

W2.7x101 0 M- sec 1 at 5 *C. In acid solution the lifetime is 24.1 1 + &-

1.2 nsec at 5 OC, with a temperature dependence of about 5 kcal/mole ;'; ,

The photochemistry is known to be primarily one of ammonia aquation, with

a 10% component of bromide aquation. Under the same conditions as for

emission lifetime quenching, there is parallel quenching of the ammonia

aquation, with essentially the same k . but no quenching of the bromide

aquatlon. It is therefore concluded that the emitting state is implicated

in the former, but not in the latter. Possible revisions of excited

state schemes to accommodate the new results are explored.
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Selective Quenching of the Two Photoreaction Modes of Rh(NH3 )5 Br
2 + .

Sir:

We report here what appears to be the first case of selective quenching

of photochemistry of a d6 complex, a Rh(III) amine. Previous work from

this Laboratory showed that the emission and the photochemistry for aqueous

Rh(NH3)5C12+ are quenched almost completely in parallel by hydroxide ion.

The implication is that chemical reaction occurs from or via the emitting

state, assumed to be the first thexi triplet state ( 3Tlg in 0h symmetry, or

3E or 3A2 in C4v symmetry). Chloride aquation is the only photoreaction

mode for this complex, and it was of interest to extend the studies to

Rh(NH3)5Br 
2+ , which shows both ammonia and bromide aquation, the room

temperature yields being ONH 3 = 0.17-0.18, and OBr = 0"019.2 Preliminary

work has shown that the complex does emit in aqueous solution, and that the

emission is quenchable by hydroxide ion.
3

We report here an emission lifetime, T, for Rh(NH ) Br2+ of 24.1 ±

1.2 nsec in 0.01 M perchloric acid at 5 OC, with a temperature dependence of

about 5.1 kcal mole 1 .4  These values agree well with literature ones.

Lifetime quenching by hydroxide ion obeys Stern-Volmer kinetics, as shown

in Figure 1, giving a bimolecular quenching rate constant, kq, of

2.7x0 0 M'1 sec "1 at 5 OC, a value essentially at the diffusion limit.

In alkaline solution, the primary photochemistry is:

Rh(NH3)5(OH)
2+ + Br- (la)

Rh(N3)s~2+ + OH"
Rh(NHA Br 2.trans-Rh(NH 3)4 (OH)Br+ + NH3  (lb)

A complication is the photosensitivity of one of the products,
8

trans-Rh(NH3)4 (OH)Br+ + OH-= cis-Rh(NH3 )4 (OH)2 + Br (2)
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We obtained relative values for NH3 by following the absorbance change at

an isosbestic wavelength for the two species of Eq. (2).9 Ammonia

photoaquation is quenched by hydroxide ion, as shown. in Figure 1, and the

data give kq = 2.6x1010 M'1sec ~1 at 5 0C, in good agreement with the

value from lifetime quenching. Reaction (lb) therefore occurs from or

via the emitting state.

Reaction (la), the minor pathway, is not adequately reflected in

absorption spectral changes. We therefore determined the released Br

ion independently, using a specific ion electrode. 1 Within experimental

error, there is no hydroxide quenching of Br up to a hydroxide ion

concentration as high as 0.01 M, at which level T*/T would be 7.5 (see

Figure 1). The conclusion is that the emitting state is not involved in

the path for reaction (la).

We now examine some of the implications of these results in the

context of other work on the system. Kelly and Endicott2 found efficient

sensitization by triplet state biacetyl, concluding that therefore a
Rh(NH3)5Br2+ triplet state, designated "3X", was produced. In addition,

however, *NH showed a 2.8 kcal mole -1 temperature dependence, while
3 Br

was more nearly temperature independent. The observations called for a-

second state, ,,3y,,. The results could be accounted for if 3X led only

to ammonia aquation and lay 2.8 kcal above 3Y, which led only to bromide

aquation. It is necessary in this scheme that 3X and 3Y be In steady

state equilibrium.

The above scheme encounters difficulties from our results. The

emission presumably occurs from either 3X or 3 , yet if this were so,

bromide aquation would be quenchable along with the emission, contrary to

observation. Alternatively put, since the two states are in steady state
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equilibrium, quenching of ammonia aquation should require quenching of

bromide aquation, contrary to observation.

An alternative two triplet state scheme is shoWn in Figure 2.

Assuming applicability of ligand field theory for tetragonal geometry,

excitation leads, after intersystem crossing, to 3E and 3A2 thexi states.2I
The former should be the lower in energy, and is assumed to give rise

both to emission and to ammonia aquation. The temperature dependence of

*NH3 is not large, and could just be the accidental net of the temperature

dependencies of non-radiative and chemical reaction rates. The 3A2 state

undergoes bromide aquation (in competition with conversion to 3E); to

accommodate the results, it is also the state populated in biacetyl

sensitization. However, the orbital population of 3A211 provides dx2 y2

antibonding electron density, and it is difficult to see how this should

lead to bromide labilization. A rationalization is the following. If

we consider the geometries of the states, perhaps that of 3A2 is relatively

close to the ground state geometry (while E is highly distorted, as

evidenced by the large Stokes' shift13). Facile relaxation of 3A2 into the

ground state manifold would produce a vibrationally "hot" molecule,

leading to reaction by the normal thermal path, which is bromide aquation.

2+To explain the results with Rh(NH3)5 C , the ordering of the triplet

levels could be inverted, or the photochemistry of-3E could now be made

one of chloride aquation. Both maneuvers seem awkward. The emission from

Rh(NH3 )5CI
2+ and Rh(NH3)Br

2+ are quite similar in lifetime, temperature

dependence, and spectrum.13 The emitting state thus appears to be oF

the same species in the two cases, suggesting that no change in ordering

occurs. Possible change in reaction mode has indeed been rationalized

qualitatively in terms of ligand field arguments, 12to make the scheme of



Figure 2 acceptable. However, it seems awkward to have to assume that

such reactivity change is not accompanied by a comparable degree of

change in emission properties.

There is another, albeit more complicated, possibility. The emitting

state, again taken to be a triplet, which we now call T1 0,1 4 does not

itself undergo chemical reaction, but generates one or the other reactive

state by internal conversion. Ammonia aquation can occur through a second
0 0 15

triplet state, T2°, and halide aquation, through a quintet state, Q l.

With a nearly uniform d-orbital occupancy, Ql° might be less distorted from

the ground state than the singlet and triplet thexi states, and therefore

more apt to resemble the ground state in thermal reactivity (or to relax

to a reactive hot ground state). One now accounts for the varying photo-

2+0chemistry in the Rh(NH3)5X series by supposing that while the TI

energy does not vary much, those of Q, and T2 * relative to T, do

vary sufficiently to vary the state populated via Tl°. Some direct

crossing to Q1
0 provides the bromide yield (and perhaps the 15% unquenchable

portion of the chloride yield1 ).

There are similarities to the d3 system. There seems to be little

doubt now thai reaction can occur from either the first doublet or the
17-20

first quartet thexi state of Cr(III) complexes. In the case of the

Cr(NH3 )5X
2+ family, the same two reaction modes occur as with Rh(NH3)5X

2+

and we have in fact postulated that the doublet state tends to show the

thermal reaction mode (analogous to QI0), and the quartet state, to obey
20-22

the photolysis rules (analogous to T2
0 ). Some of the same approaches

used in the d3 cases (see Refs. 17 and 19 especially) may prove to be

useful in evaluating excited state schemes for Rh(III) ammines.

1* -*
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Legends for the Figures

Figure 1. Stern-Volmer plot of'hydroxide ion quenching of excited

2+
state processes of aqueous Rh(NH ) Br at 5 OC. A, Ammonia aquation,

A, emission, 0, bromide aquation.

Figure 2. Schematic two-state energy scheme, the abscissa indicating

degree of distortion, and light parallel lines denoting vibrational

states.
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