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Preface

The primary purpose of this paper was to medify &u air-
to-air missile model used by the Cruise Missile Independent
Survivability Team (CMIST) of the Aeronautical Systems
Division (ASD). The model did not have incorporated within
it, data pertinent to the cruise missile. The modification,
integrated the required data into the model so that the
model could be used to evaluate an air-to-air missile's
performance against the cruise misgsile.

The model itself utilizes a hypercomplex number algebra
which avoids usage of direction cosine matrices and enables
real time of flight output. Prior to the completion of this
thesis, no adequate documentation existed that explained the
aigebra used and its translation into computer code. Bits
and pieces were gathered together and combined into the
appendices of this work, which should prove helpful in
understanding the model.

I wish to thank Captain Aaron DeWispelare for his
encouragement and help in completing this work. I also wish
to thank Molly Bustard, my favorite librarian, who consis-
tently provided a bright spot during many a dreary day these
last eightean months. I must also acknowledge Bob and Diane
Turelli, who provided an escape from the academic grind when
it was needed, and finally my mother, sister and her family

who gave me the moral help I needed to complete my studies.
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Abstract

The air-to-air missile model used by the Cruise Missile
Independent Survivability Team did not contain data useful
to the cruise missile. The objective of this study was to
modify the subroutine SIGNAL in the model to incorporate
the cruise missile data. The modification required an
understanding of quaternion algebra utilized within the
model to represent three—-dimensional motion. These guater-
nions allow real time outputs f£rom the model for use by
tactical ranges. The study contains a discussion of qua-

ternions and their algebra.

vi'i



I Introduction

Problem Statement

The Cruise Missile Independent Survivability Team
(CMIST) obtained the computer model of the air-to-air misg-
sile performance package utilized in the ACEVAL/AIMVAL pro-
gram. The model involves a new technique of repres«nting
the mechanics of the air-to-air missile's flight by using
quaternions.

The hypercomplex quaternions were not used regularly
in a computer at the Aeronautical Systems Division. Major
Ken Madsen (CMIST) expressed a desire for an analysis of
how guaternions are utilized in the model to be able to make
future changes if necessary. 1In addition, he requested a
modification to the infrared signature subroutine (SIGNAL)
which would incorporate infrared data generated for the

cruise missile and not currently in the model.

Background

In 1843 Sir William Rowan Hamilton developed a new
algebra of quadruples of numbers which he named quaternions.
His concept was intended to represent motion in three-space,
predating the familiar vector methods of J. Willard Gibbs.
Hamilton's quaternion theory, although the foundation of
vector algebra, was from the viewpoint of the student of
mathematical physics, a confusing mixture of scalars and
vectors. The vector which represented three-dimensional
moticn seemed to play a servile role as part of the guatern-

ion. The real power of the quaternion, however, came from

1



the vector aspects of the algebra which was later extracted
by J. Willard Gibbs. Gibbs simplified the quaternion meth-
ods of Hamilton and originated the vector analysis techniques
that we are familiar with today (Ref 3).

Because the concept.of a three-dimensional vector was
more acceptable than the hypercomplex quaternion (Ref 9),
vector algebra, a subset of quaternion algebra, was adocpted
by the mathematical community to describe three-dimensional
motion. With the advent of recent computer missile simula-
tions, however, different computational methods were
required to reduce the ccmputation times to the real times
of flight. To accomplish this, the concept of quaternion
algebra was resurrected and found capable of not only reduc-
ing computation time but also storage space normally required

by the nine element direction cosine matrices.




II Subroutine SIGNAL

The missile model obtained by CMIST was designed to
work with actual launch and target aircraft in mock combat
on a controlled range. While the aircraft maneuver, data
is relayed to a range computer by telemetry pods. The com-
puter tracks and stores their flight profiles and also does
real time missile launch calculations using the missile
model to determine if a hit or miss is achieved.

The missile model acquired by CMIST was to do some
effectiveness studies of several air-to-air missiles against
the cruise missile. The model, however, did not contain
the required data to calculate the infrared signal generated
by the cruise missile and could not be used until the data
was incorporated into the model.

The infrared signal is calculated within the model in
a subroutine called SIGNAL. The subroutine then uses the
approximation assumption of the basic model that the signal
strength is directly proportional to the maximum line of
sight tracking rate. Utilizing this assumption, the sub-
routine compares the calculated signal to several threshold
values to determine if the strength of the signal is adagquate
for the gimbaled seeker head to track the target aircraft at
the calculated line of sight rate.

The modification proposed not only involved the incor-
poration of the infrared data, but also required a redefi-
nition of the line of sight reference. This involved deter-

mining the iine of sight in the target coordinate system by

means discussed in the Methodology.
3




III Methodology

Two major problems were encountered in the modification
of the CMIST missile model. First, the model did not uti-
lize standard directicn cosine coordinate transformations,
an accepted technique to represent spatial relationships
ameng several coordinate systems, in SIGNAL. Secondly, the
method employed by SIGNAL involved hypercomplex quaternions
which are foreign to many encginearing students. (The
interested reader will find a discussion of quaternion
development and their properties in Appendix A.) This sec-
tion discusses the relative merits of direction cosines and
guaternions, with a justification for the methodology selec-

ted.

Direction Cosines

Direction cosines have been the accepted engineering
technigque to represent spatial relationships among several
coordinate systems. They are relatively easy to use
because direction cosines follow the rules of conventional
vector algebra and can be stored in a computer as clements
of an array. A vector can then be defined in another coor-
dinate system by utilizing the array as a directional cosine
matrix and using matrix multiplication to transform the vec-
tor coordinates. For example, the vector X will be redefined
in some primed coordinate system by multiplying it by the
Direction Cosine Matrix (DCM) which links the unprimed coor-

dinate system to the primed system
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X(DCM) = X' .

Direction cosines, although familiar and relatively
easy to use on a computer also have several disadvantages.
These consist of

1) Each matrix requires a nine element stcrage allo-

cation.

2) Trigonometric functions are required to form the

elements.

3) Many multiplications of the elements must be per-
formed in a proper order.
The direction cosine method would result in a major rewrite
of the subroutine SIGNAL but would enable a familiar engi-

neering method to be employed.

Quaternion Method

The quaternion method employed by the model derives a
quaternion to relate one coordinate system to another. This
methodology is discussed in Appendix B. The gquaternion g

then operates on a vector X converting it to X' by

Tl %q

where q * is the inverse of g. (The interested reader is
again referred to Appendix A.)

Quaternions consist of only four elements and thus are
advantageous over direction cosines since they require fewer
arithmetic operations and less storage space. The disadvan-

tage of quaternions is the requirement of understanding their

unique properties and operating rules.
5



Selection

To aveid a major revision of the computer code, guater-
nions were selected to modify SIGNAL. First, quaternions
did not require a conversion of the vectors from the gua-
ternion factored format into the conventional format used by
direction cosines. Seccndly, after the operations were com-
pleted the resulting vectors would have to be reconverted to
the factored format used by the rest of the program. Fin-
ally, the construction of direction cosine matrices could
be avoided alcng with a dimensioning of their storage space.
Quaternions were perceived to be the way to go because their

methods would have to be understood in either case.



W Modification of SIGNAL

Data Incorporation

The modification of the subroutine was to incorporate
the infrared data supplied by CMIST. The data used was
generated by a computer program into a set of data points
at various azimuths and elevations about the cruise missile.
This data was then incorporated into several arrays which
served as a tabulated reference, the idea being to enter an
array with an appropriate range and angle off from the tar-
get and be able to select the relative infrared signal

strength.

Coding

The principal problem in obtaining the infrared signal
was to convert the missile seeker line of sight to the tar-
get coordinate system so the tabulated dafa could be used.
The range vector is defined in the universal cooriinate
system. This same vector in the qu:ternion factored format

is:
T = (r; +k2i .
A gquaterniocn q, which relates the universal ccoordinate sys-

tem to that of the target coordinate system is used to

redefine T in the target system by

q-l rq .

The interested reader is referred to the methods of Appendix B.



With the range vector defined in target coordinates, the
relative position of the seeker line of sight in azimuth and
elevation can be determined. With this relative position,

a data point can be computed from the arrayed information.
Using this data point, the received signal strength is
reduced by a factor of one over the range squared. Upon
determination of the strengtii of the received signal, the
program reverts to the original line of sight rate tolerance

calculations and the simulatiun <oantinues.

Validation

The moaification to SIGNAL was validated by comparing
the infrared signature output of the 0ld model with that of
the modified routine. To accomplish this, the function
which formerly computed the infrared signal based upon
aspect angle and range was extracted from the original
model. Using this extracted function, a series of data
points were generated to £fill the azimuth and elevation data
arrays used by the modified routine. Once the arrays were
filled, infrared signal strengths were generated using both
models for various aspects and ranges of three, six and

nine thousand feet.

01ld Model

The original infrared data generating function used in
the old model, utilized data generated for a particular air-
craft by the Navy at China Lake. This data was plotted inte
several cardioid shaped curves {Figure 1) which varied in

size as a function of range and altitude. A function was
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fit to these curves for different aspects with parameters
of atmospheric attenuation, range and the cosine of the
aspect angle. The old model used this functional format to
determine the infrared signal. A unique feature of this
function was that the output was in the form of decibels
which are called Phasey dB's. The data supplied by China
Lake was in decibels formed by taking the natural logarithm
of the signal and multiplying it by a factor of ten rather
than the standard method of ten times the logarithm (base 10)
of the signal. The model uses these Phasey dB's in all of
its signal comparisons, something to be aware of when try-

ing to follow the logic.

Comparing Results

Once the old infrared function was understocod, data
points were generated for 1000, 5000 and 13,000 feet ranges
at various aspects and elevations. These data points {(in
watts/steradian) were next inserted into the azimuth and
elevation arrays utilized by the modified routine. (The
interested reader is referred to Appendix D.)

Once both infrared routines were set up using informa-
tion based upon the same aircraft, a comparison set of data
was generated by both methods to determine the accuracy of
the new infrared routine. The results are as shown in
Table I.

Some typical launch ranges for an IR missile at various
aspects in the rear hemisphere of the target (180° being a

direct tail shot) were selected. A comparison of the old

10




and new IR signature routines shows that the new model var-
ies at most by less than two—-and-one-half percent from the

cld and that at an extreme aspect angle.

TABLE I

Comparison of 0ld and New Models

IR Signal
(Phasey dB) %
Range Aspect 0ld New Difference
3,000 180 102.8 103.4 0.6
6,000 180 87.9 88.0 0.1
9,000 180 79.1 79.4 0.3
3,000 170 104.2 103.6 0.6
6,000 170 89.0 87.7 1.5
9,000 170 80.0 78.9 1.4
3,000 165 102.7 103.7 1.0
6,000 165 87.3 87.5 0.2
9,000 165 78.3 78.7 0.5
3,000 150 98.0 99.2 1.2
6,000 150 T 82.2 82.5 0.4
9,000 150 73.0 73.5 0.7
3,000 140 94.6 95.8 1.3
6,000 140 78.7 78.7 0.0
9,000 140 69.3 69.6 0.4
3,000 135 92.9 94.3 1.5
6,000 135 76.8 77.1 0.4
9,000 135 67.3 67.9 0.9
3,000 120 87.2 88.8 1.8
6,000 120 70.7 71.1 0.6
9,000 120 61.0 61.6 1.0
3,000 105 83.1 84.9 2.2
6,000 105 66.3 66.7 0.6
9,000 105 56.4 57.1 1.2
3,000 90 82.6 84.6 2.4
6,000 90 65.5 65.9 0.6
9,000 90 55.4 56.1 1.3

11



Vv Summarv and Conclusions

Quaternions, although initially appearing to be a com-
bination of 3 vector and a scalar, possess several desirable
properties when compared to conventional vector methods.
These properties have been applied in a missile model which
has been acquired by the CMIST branch at ASD. The model
was obtained to evaluate several air-to-air missiles against
2 cruise migsile target.

To use the model, data which represent the cruise mis-
sile characteristics had to be incorporated. This required
a working knowledge of some of the internal mechanics of the
model and how the quaternions were utilized. A working kaow-
ledge of the model's architecture and coding was also required
to modify the subroutine SIGNAL which would take infrared data
supplied by CMIST and integrate it with the existing model.
This research accomplished the incorporation of the required
data and compared the results with the infrared data gener-
ating function which the model has originally incorporated.

The most significant result of this research was the
modification to the subroutine SIGNAL and a greater
detailed description of how guaternions are used in the model
than available in the documentation. The modification of
SIGNAL saved the Air Force from contracting the work out and
is currently capable of generating the required data to com-
plete an evaluation of the cruise missile. Also, utilizing
the detailed description of the computer code along with the
description of how it applies to the quaternions, further

modifications should be possible if necessary in the future.
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Appendix A

Quaternions

Initial Development

Quaternions are specified using four real parameters,
a scalar and three other units i, j and k. The four param-
eters specify the properties that a quaternion possesses
when it acts as an operator. These properties allow for the
rotation of a line vector through a given angle about an axis
through its origin and a stretching of the vector by a given
ratio. Of the four parameters; two are required to specify
the axis of rotation, one to specify the angle of rotation
and one to specify the ratio of stretch (Ref 8).

A quaternion g can be expressed in the form
I = gyt 93t +gy] + g3k .
Thus it consists of two parts, a scalar d, and a vector
9 = qi+qyj + qzk
where d;r 95 and q, are the rectangular Cartesian coordinates
of a point P and i, j, k represent unit vectors in the posi-
tive direction of the x, y and z axes, respectively. The vec-
tor defines a line-vector from the origin O to the point P

(Ref 8).

Two quaternions g and q' are defined to be equal if (Ref 2)

q = gy + gyl + qy) + 93k

q' = gj + qi+ gy + a3k




and gy =gy .9 =aj o9y~ 9pandd;=ay .
There also exists a zero gquaternion (Ref 2)
0 + 0i + 03 + 0Ok or simply (0,0,0,0)
such that
q + (0,0,0,0) = g5+ qi+q,j+aqgk = q.

Two quaternions are added by adding their scalar parts
and the vorresponding coefficients of their vector parts

(Ref 2)
q+q' = (qo+q6) + (ql+qi)i + (q2+qé)j + (q3+qé)k .

Thus the sum of two quaternions is also a quaternion.

For any scalar A a quaternion can be defined (Ref 2)
Ag = A(qo + qli + qy + qgk)
= Aqo + qui + quj + Aqsk .
Also for A = -1
(-llg = -q; - q;1 - g,) - g3k
and
q + (-1)q' = (g4=qy) *+ (g;-qj)i + (a,-q))F + (a3-qalk .

So, quaternions obey the algebraic laws of addition and

scalar multiplication (Ref 2).

15



It can also be shown that for any quaternions », q and

r and any scalars u and A (Ref 2)

p+qgq = gqg+p

(p+q) + r = p + (gqtr)

Ag = g) , (Aw)g = A(uq)
(A+nu)g = g *+ ug
and Ap+q) = Ap + Ag .

To examine quaternion multiplication, the vector ele-
ments of a quaternion must be examined. In a Cartesian
coordinate system, three mutually perpendicular axes exist:
X, ¥ and z. PFor a right-handed system, the positiwve direc-
tions are as shown in Figure 2. Rotation is defined as
positive when viewed from the origin (0) as a clockwise
rotation of the coordinate axis. Thus rotation from x to v
about z, y to 2z about %, and z to x about y are all positive
rotations. Counterclockwise rotation is defined as nega-

tive (Ref 7). 4
Jd

Y o)
]

Fig. 2. Cartesian Coordinate System

16



The vectors i, j and k are defined as unit vectors
oriented along the x, y and 2z axes, with each specifying a
direction along its respective axis and possessing a magni-
tude of one. The rotation of the axis can be defined by
the multiplication of two of the unit vectors, i.e. the
multiplication of i into j or ij is defined to be the turn-

ing of j by +90° in the plane normal to i (Ref 6). There-~

fore
ij = k
Similarly,
jk = i, ki = 3
and ji = -k , kj = -1, ik = -j .
Furthermore, since
ij = k
and ik = =3
then -5 = ik = i@dj) = i%j
or 1?3 = -
therefore i2 = =1.
Similarly j2 = k% = ijk = -1.

All the familiar algebraic rules of multiplication

except for the commutative law are valid for guaternions.

17



This relates to the fact that the order in forming the pro-

ducts of i, j and k determines positive and negative rota-

tions and, therefore, the order must be preserved (Ref 6).
From the previous discussion a guaternion product can

be defined (Ref 2).

qeTy ~ 91T = 9Ty ~ 93T53 + gy (ryi + ryj + rjk)
+ rolgl + gy + agk) + (g,ry - giry)i
+ (q3r1 = qlr3)j + (qlr2 = g,ry)k

= 9gTg T 91Ty T 9T ~ 93T3 * qplrpi + ryj + rik)
i 3 9k
* rglapl + qyl +azk) +1q; q; aqy -
Ty Ty T3

Now consider a vector V, which is a special case of a qua-

ternion whose scalar portion is zero
¥ = 0+ ai+bj +ck .

The quaternion product of two vectors Vv and V' would be

‘d.

vv = 0 - aa' =bb' - cc' +0(a'i + b'j + c'k)
i | k
+ 0{ai + bj + ck) +{a b c
a! b' c.!

18



or

i 3j k
Vv' = (aa' + bb' + ce")(-1) +|la b ¢ .
a' b' ¢

There exists a unit sphere with origin O and an orthagonal
coordinate system as shown in Figure 3. The vector v

is defined as oriented along i with vector V' located in the
i, j plane, both with origins at O and v forming an angle

0 with ¥. (8 < 90°)

Fig. 3. Unit Sphere

The vectors are now defined

v = ai
and ¥' = a'i +b'5 . a'=a .
By definition
1¥] = a, |F'] = [@a91? + b"21/2
Sing = b' _ b

[(a';? + (b")211/2

<t

19




a‘ = a‘
[(an)? + (b') 2132

Cosf =

s ¥ = |¥V]i and ¥' = |V'|cos6i + |V'[sin6j

A vector product can now be defined as

i o

w' = |¥|i [|V'|(icos® + jsin8)]

= |¥||¥'|(~ cos® + ksin6)

or
W' = - |V]|V'|cose + |V]|V'|ksin® .

Substituting
o= -a(\/<a')2+<b')2)cose+a(\/<a')2+<b')2)ksine
but

V@) 2+(")2 cose = a
and

Va)2+(")2 sine = b
SO

YW' = - aa' + ab'k .

Now consider the quaternion vector product

20
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i 3 k
V' = -(aa' + bb' + cc') + |a b c
aI bI cl
but
b = ¢ = ¢' = 0
g0
i 3 k
W' = - aa' + |a 0 0
a' b' o0
or
VW' = - aa' + ab'k (2)

which is the same as (l1). The product of two vectors can

be defined as a quaternion whose scalar part is
S(W') = = aa'

or equivalently -|¥||¥'[cos8, and vector part is
V(¥V¥') = ab'k

or equivalently |V||¥'|ksin®. These correspond with the
scalar and vector products as defined in the vector algebra
of J. Willard Gibbs (Ref 2). Gibbs defined the scalar or
dot product of two Vectors U and ¥ as

Q.V = |U|V]cose

and the vector or cross product as

WXV = |u]l|V]sinte

21




where e is a unit vector perpendicular to U and ¥ and 0 is
the angle bhetween v and v. Thus a quaternion product may

be defined as
3q' = §Xxgq -3 -3 .

Properties of Quaternions

The conjugate of a quaternion is similar to the conju-

gate of a complex number (Ref 2). If

q = gy + q;i+ g, + g3k
then the conjugate of g or g*

q* = qp - Qi - q,3 ~ azk .

The product of a gquaternion q and its conjugate g* is

defined as the Norm of g ox N(q)

N(@) = qq* = (qy+qi+q,i+azk) (gy=q,;i-a,3-q;k)
2 2 2 2
=qo+q1+q2+q3
and further

g*q = qg* . (Ref 2)

The Norm of a quaternion is a scalar and N(gq) = 0 implies
that dyg = 9 =9y =gy = 0. If N(g) =1, g is called a unit
guaternion (Ref 2).

From the quaternion product of two vectors
i 3 k
¥V' = =-(aa' +bb' +cc') +ja b ¢ |,
a' b' ¢!
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the conjugate of the quaternion formed by the product is

i 3 x|
(VW')* = =(aa' +bb' +cc') =la b ¢
a' b' ¢!
or equivalently
i j k

(55')* = ¥'Y = =(aa' + bb' + ¢cc') + la' b' c¢c'} .

For any two quaternions
q = (gg+@ ,q = (gf+3a")
whose product is
aq' = (g, + P gy +T') = quq) + 9d" + q4d + 4q°

the conjugate of their product will be

(@@")* = qua) - 9" - q4T + (@) *

= g,y - 953" - 9@ + T'T

or

(@@")* = (g3 -3V (gy - D -

Therefore, the conjugate of the product of two gquaternions
is equal to the product of the individual conjugates taken

in reverse order (Ref 2).

(qg')* = (g")*(q)*

23



From this property, the Norm of the product of twe qua-

ternions can be determined.
N(qq') = (ggq')(qq")*
= q(q') (q")*g*
= gN(gq')g*
Since N(g) is a scalar
gN(g')g* = qg*N(g') = N(g)N(q') .

If q is not the zero quaternion then N(g) # 0. Using

this fact the inverse of g can now be defined (Ref 6).

N(g) = qqg*

or

and

-1 _ q* - Ng) _
aq 9 7 N(Q) 1

It can also be shown that

-1 1
N(g ™) N -
Using the concept of the inverse of a quaternicn, the prop-

erty of division can now be addressed. For any three qua-

ternions p, g and r where
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gqr = p or rg = p

solutions for r may be obtained by multiplying both sides
of the equations by the inverse of g. In this way two solu-

tions are apparent

-1 -1 - -
qg gr = g p i rqgd l - pPqd 1

or

-1 -1
rl a p 7 r2 jele] .

where r; is called the right hand quotient of p by g and

r, is the left hand quotient of p by g. These solutions in
general are different and demonstrate again that order must
be preserved in quaternion multiplication (Ref 2).

Finally, from the Norm of g

N{q) = qqg*

2, 2, .2, 2
9 * 91 T 92 * a3

2 - 2
= qg + |qi
and the magnitude of g is defined

lal = m@1Y? = (g2 + o+ a2+ gh1/?

lal = taf + 191512 . (et 2)
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Product of a Quaternion and a Vector

To review, the quaternion product of two vectors 1 and

<}

e

W = UXV~-ud-V
and the product of two quaternions q and r
gr = (q0+§) (ro+'f') = 4y, + qof + ro-q' + &Xf - a-'r' .

The conjugate of q is

* = -a
q 45 - 4
and the Norm of g is
2 -2
N(@) = qa* = q, + |qi
where
5 . -
q = qyi+qy] +gzk
and
- 2 2 2,1/2
lal = (q]_ + q, + q3) .

The magnitude of the quaternion g is
1/2 2 = 2.1/2
lal = (N(q)) N - F I I-{ K R

For a vector X and a quaternion g, where

= 3 -1 = * o= qo-q
q 99 * a2+ @ ﬁ?ay N
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the quaternion product of q and X is

et -

qx = quX + (GxX) - (§-X)

=™ =

Xq = gux + (XXq) - (x°q) .

The right hand quotient of g+

q0§ - (3XX) + (%)
N(q)

or
qpR + (XX3) + (@)
N{q)

The left hand quotient of X and q-'1 is

o}
"
]

- -1 X(gy - Q)
Xq =
N(q)

qpX - (Xxg) + (%-Q
N{(q)

or

-1 q0§ + (§xX) + (X-3)
xq = .
N(q)

In general, the product of a vector and a quaternion yields
a quaternion whose scalar part is the dot product (X-g) and
whose vector part is the scalar of the quaternion times the
vector and the vector cross product (qo§ + (Exi)). However,
in the case where E and X are perpendicular (&-ﬁ = 0), and
the vector q0§ + Exﬁ is obtained. 1In this case both q0§

and gXxX are normal to each other and the resultant vector
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q0§ + gXX is normal to . Figure 4 shows the geometrical

relationships of Xg and § oriented into the page (Ref 5).

‘r—————-—b———-——-w-—_ ———————— xq

Y

BIREA
G e
: — =
quxl

Fig. 4. Vector Times Quaternion

It can be seen that

[ PR Y -
cane = xllal - lal

CMES %o
also
1%l = [URIIED2 + qylz211/2
= [FI21312 + EIx1BY2
= 11%]%q + 13112
= []%|2|ql21}/?
Ixa] = I%lla] .

Pigure 4 shows that a is a negative rotation around E, and
in summary multiplying a vector X on the right by a quatern=~
ion g (where § is the vector part of gq) rotates the vector X
negatively by an anagle tan_l(¥§l) and changes its lenath by

0
a |q| factor (Ref §j.
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d

Now consider the right hand quotient of g - and X,

qoX + (Xx3) + (§-%)
N(q)

q 1R

. - - .
Since X and g ar= perpendicular,

] ]
I
o

g-

and the results are similar to the previous iq except the

magnitude is reduced.
- =1.241/2
s - (B8 - () T
la x| |\ N (g TA\N@

- (6T
- zHal

o~

Since |g] = (N(q)) 1/2 then
2
N(g) = |q]
Therefore,
-1 E3
|al
and
-
1] 13l 2113)
x -
tana = —ELSL- = ___:E_ = Lﬂl
q, 1%l q, x| o
N(qg)
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a L) L3 é a L] L3
Because x is perpendicular to ¢, xq is alsc perpendicular

to § and if q"l is applied to Xq to form a vector ¥
¥ = alGa
$ = g% .

The vector ?’is rotated from X negatively by an angle of
€ = 2a. Now consider a special case where the vector X lies

along § and has a magnitude of A|g|. Then
X = AQ

where A is a real number. If the same operation is carried

out
¥ = a%q = qrodg

q MG - g la

¥y
-1 -1
= Alg "g - q "q4lq

1

= Al - qoq' 1q

M - qqq tal

Alg - qq]

= Aq x .

So, a vector that lies along E and operated upon by q-l§q is

not changed in magnitude or direction (Ref 5).
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Finally, consider a general vector ¥ and a quaternion

qQ=gq,t+ g. The vector X can be resolved into components

(Ref 5)
X = X, + X,

along g and perpendicular to g such that

<~ e
% ~ 2 9
|q|

where

and

where

b

[
it

|X] perpendicular to § .

i

ik
- g
(¥

Qv

X1
Fig. 5. Components of X

The dot product of 7 and X (oxiented as im Figure 5)

with the angle B between them is
3

3-x = |3||X|cosB
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or

- -
COsSB = —:9%§— .
|q] |%]

The cross product of § and X is

or
Therefocre,

EX
or
and

-

Ile

or

q

XX = |g||X]|sinB

Now a vector § exists such that

7

1g] %]
I§]cosB =3 |§l -é%—-
lal x|
|§1I = giﬁ
|g]
l§|sin6 = IX[ -é)i}i—
lal x|
’3:2' = ii—x
|q|
a"13q
—l -ln -
g (xl + x2)q
a4 X G+t g %9
Y -] - -
xl + q xzq = Yl + Yz
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where
= <P
Yy = % along g

and

-

Yo, = q-l§2q perpendicular to g .

<
The vector Yo is normal to E and is a negative rotation

about & through an angle

B = 2 tan—l lﬂl
9

When E is oriented along the Cartesian x-axis, the rotation
from §2 to ?2 is a negative rotation, but this negative space
rotation is equivaleant to a positive rotation of the coordi-

nate system, with q‘lﬁq representing a positive rotation

1

of coordinates and gXg - a negative rotation (Ref 5).

~

Tilt and Roll Quaternions

To utilize quaternions in computer programs rotating
coordinate systems in three dimensions, they must be fac-
tored into a convenient format (Ref 1). This format factors
the quaternion into two guaternions which divide the rota-
tion into two successive transformations, tilt and roll.
Because cf this, the factored guaterniomns are called the
tilt quaternion and the roll guatarnion {Ref 5).

A quaternion g = d, + qli + qzj + q3k can be written
as q = q4 + qli + k(q3 + iqz), where k(q3 + iqz) = jq2 + kq,.

For any complex number a + bi,
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or k times a

k (Ref 1).

where

Q1

The conjugate

q* =

N(g)

Similarly, a

into
-l
X
or
-
X
For any

be written

qr =

k(a + bi)

(a - bi)k ,

complex number is equal to its conjugate times

Now g can be written i

qa = Q01 + kQ32

= q, + 1q, and Q32 = g5+ iq2 .
and Norm can be written:

Qg1 = kQ35 + where Q5 = gy - iqy

2 2 _ 2 2 2 2
|Q01| + 1Q321 = qo + ql + q2 + q3

- . .
vector X = 1x, + JX

1 + kx3, may be factored

2

1xl + kZ where 2Z x3 + ix2

[z 4 o - «
(x1 + k2)i where 2 . ixy .

two quaternions g and r, their product may now

(Qgy *+ kQ35) (Ryy + kR35)

Qp1Rg1 * QgikR3; + kQ35Rpq + kQ35kR5,
oy 2—

Qp1Rg1 + kQgR35 + KQ35Rg; + KTQ35R5,

(Qp3Rp1 = Q32R3p) + k(QgyR3; + Q3,Rp,)
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Consider a quaternion g = QOl + kQ32 with 9 # 0. The

quaternion can be factored in two parts

Q
32
qa = (1 +k =)0

Tyy 01
oY)
= (1 + kT)QOl = tr where T = 5
01

or T = t3 + itz .

The tilt quaternion t is therefore
t = 1+ kT

and the roll quaternion is
r = Qo = 9 *iqy -

Tilt

The vector portion of the tilt quaternion kT is located
in the plane normal to the x-axis. It transforms the x-axis
by t-lit a new axis x' representing a tilt from x results

(Figure 6). 7
i )

ot

v

-

)

Kb

Fig. 6. Tilt
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Cond =i
The vector t remains normal to X and X' and represents the
axis of rotation of X to X' through an angle 6. The tangent
of 8 being
tang- = el o lt] = |T| = (t§+t§)l/2 .
The y and z axis are also tilted to y' and 2z' axis but this

is not shown in Figure 6 (Ref 5).

Roll
The roll quaternion r has the form r = (1 + irl). The

inverse is

Pl S S
N(r) rr*
So for a given vector X = (xl + k2)i and an X' = (xi + k2')i
-, = - Iy 1 = 1 - . ]
where 2 Xy ix, and 2 x5 ix3,

1 -1l

X' = r “Xr . (Ref 5)

r represents a roll about the x—-axis through an angle ¢.

This is accomplished by

1 1yd = -1 3
(x1 + k2')i r (xl + kZ)ir
or
. I, .
(xi + k2')i = (xl + k2 rzl
Thus
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and

g' = g £ = g EEX A "%ET Z ~£i5 .
r¥* rr ¥ A I r|

The angle ¢ is defined by

<>
¢ r >
tan 3 = T = |r| = ry . (Ref 5)
Therefore
- . o4
r = 1+ i tan 3
|r|2 = rr* = 1 + tan? %
2 = Q+itmHA+itamd
_ 2,0 . o}
= 1 tan (5) + i 2 tan 5
and
r2
— = cosd + i sind .
| ]
For a positive roll
Z2' = Z(cost + i sin¢)
or
xé % ixé = (x2 + ix3)(cos¢ + i sin¢)
and
xé = xzcos¢ - x3sin¢
xé = xzsin¢ + x3cos¢ .
Therefore Z2' = Zel¢ . (Ref 5)
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Appendix B

Convenient Computer Coding Relations

Complex Factoring

The tilt guaternion t represents a transfer of coordi-
nates from an unprimed system to a primed system (Ref 5).

A general vector X defined:

X = (x1 + kZ)1 with 2 = Xy = ix3
will become
X' = (x] + k2')i with 2' = =xj - ix} .

This is accomplished by:

' '1‘};

X' = t t
where
t = 1+KkT and T = ty + it2
By expanding
o= Lok 2 g o+

N(t)

(L - kT) 3

5 (1L + kT)
1+ |T|

Let

4 = —— (3)
1+ |T]
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then

X = % (L - k1) % (1 + k%)
= % (L - kT) (x, + k2)i (1 + kT)
= % (1 - kT) () + k2) (1 - kD)4
Expanding
e - @4 - - - i
(xi + kZ9)i = 2 {(xl + k% kal kTkZ) (1 - kT)i]
= 4 - - - -
= 3 [xl xlkT + kZ kZkT kal + kalkT
kTkZ + %TkZkT]i
= 4 [x, - kx,T + kZ + ZT - kTx, - x,TT + TZ - kTZE]i
2 1 1 1 1
_d = - = 2—. ..
= 3 [xl + Z7 - xlTT + TZ + k(2 - ZTxl - T°Z) 11
(! + k21 = S [x, - x,|T|% + ZT + Tz + k(2 - 2Tx
1 2 1 1 1
- Tzz)]i
' 8 - 9_ - 2 1 m é -
x; + k2 5 1% xl]Tl + ZT + Tz] + 3 k(2 2Tx,
- 127] .
Therefore
a 2., = =
x; = 3 [x,(1 - IT]“)+ ZT + Tz]
and
AR % [z - 2Tx, - 7] . (Ref 5) (4)
Let
b = x, + x]



then

- d - 2 = =
b = x; +3 [x,(1 |T|€) + 2T + Tz]
but
ZT = (x2 + ix3)(t3 + itz) = x2t3 - x3t2 + j_(xzt2 + x3t3)
and
TZ = (t3 - itz)(x2 - ix3) = x2t3 - x3t2 - i(x3t3 + xztz) <
So
ZT + T2 = 2x2t3 - 2x3t2
and
. &2 . (32 7
b = 3 [3=x +x(1 [T]“) + 2Re(TZ)]
where
Re (TZ2) = x2t3 - x3t2 .
Substituting
2 ml2
g = 1+|7
b o= § Ix(1+|7|%) + x,(1 - [T]% + 2Re(T2)]
b = £ [2x, + 2Re(TZ)]
2 1
b = 4 [x; + Re(T2) ] (5)
b = 4 [xl + t3x2 - t2x3] : (Ref 5) (6)
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From (4) we have
da _ 2=
2' = 5 [2 2'I‘xl - T7Z] (7)

Subtracting 2 from both sides

' - - d_ - - 2 -
YA 2 = 3 [Z 2Tx1 T“Z] g
= 4 - -4 27
= 3 2 pA 5 [ZTxl + TZ]
= s _ -9 2%
Z(2 1) 5 [2Txl + T°Z]

but

(S]] e
i
|_l
]
[
L
]

i
|
[\ ]
0
o)

0
3
Hi

1+ |T|? 1+ |T|
Substituting
V - = -g'. —.ng 27
Z pA 5 ZTT 3 [2Txl + T°Z]
= -4d T[2x, + 2T + TZ]
2 1l
- -4 T[2x., + 2Re(TZ)]
2 1l
Z -2' = < DbT
So

z'

Z - bT (Ref 5) (8)

A reversal of the tilt transformation

yields

41



This leads to the equations of the inverse transformation

dz_..._%__..z_ (9)
1+ |T|

b = d(x] - tax; + tyx]) (10)

X, = b-xj (11)

Z = Z' + bT . (Ref 5) (12)

Forming the Tilt for Range

For a given vector r in an unprimed cocrdinate system
there exists a quaternion t which will tilt the vector T

to the x'~axis (Ref 5). Let T be defined by:

T = (r, + k2Z)i where 2Z = r, - ir

i 3
and !?l = R. Now to determine t which will tilt the x'-axis
to ¥ by

To= £ Pt
or
1 1y 4 —- -l =

(r1 +kz2')i = ¢t " rt .

But r] = R and 2' = 0 since ¥ is to be oriented along the

xX'~axis. Thus utilizing

= ' =
b r1 + rl r1 + R

and

2' = 7 - bT 0

42




the tilt guaternion t = 1 + kT can be found.
bT = 2

or
r2 - 1r3

z o 2 "3
b R + rl

T =

If on the other hand, a guaternion t is desired which will

tilt the x'-axis to ?, the following egquations are used

(|T] = R, z¢ = 0, ¥} = R).
b = d[ri-Re('T‘."Z')] = dR
where
a = 2 ;
1+ |7
r, = b-R = R(d - 1)
2 = bT = dRT
where
_ 2
a-1 = 2218 ; j7| = tan
1+ |7
l'tanzg' 2.0
d -1 = 55 = €Os (EQ
1 + tan 3
d -1 = coso
and
rl = R{(d - 1) = R cosf
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Roll Representation Due to Tilt

Because missile seeker heads are gimbaled to move in
azimuth and elevation Euler angles, a tilt of the x-axis
will be accomplished by movements constrained by the fixed

axes (Ref 5). The tilt quaternion
t = 1 + kT

where

r. + ir
= _2_ 3 . :
S T, ol

transforms from i, j, k to i', j', k' coordinates by tilting
i through an angle 1. The case illustrated in Figure 7
shows a change in azimuth followed by a change in elevaticn
(Ref 5). To model this motion, the desired roll angle ¢ is
assumed known and through the inverse of this roll transform
the coordinates to the tilt position defined by t. Then by

using t_l the original position is obtained (Ref §).

k s

Fig. 7. Gimbaled Tilt (T1)

44



The j coordinate in the final position following the

azimuth and elevation change can be defined in factored form

JS = (JSl + k Js)l
where
g = 0i + Jgpd * 0k . (Ref 5)
Since Jg1 = 0 and ki = j
J = 1

For an inverse or negative roll

20 = ze it
or
Jr = geTit - 10
s
. s -
igy Jg1 .
and for an inverse tilt
t = (1 + kT)
T = (t3 + it2)
where
_ 2
Sl 2
1+ |7
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and

b = dlil; - Re(TI)] =

Therefore

J3 = JL+DbT = e _ gre(Te~i? o
but

J; = (j;z - ijg3) where jz3 = 0
So

-~ ImJ; = 0
and
Im(e™® - dRe(Te™%)JT = 0 . (Ref 5)

Since for any complex number A

A - A A+ A

> = Im(A) and 5 Re (A)
L™ - are(@e™m - (&% - aRe(@e™INHT1 = 0
Collecting terms
10 _ dRe(Té-i¢)T = ei¢ . dRe(Té-i¢)T
1% _ it o dRe(Té“i¢)(T - T)
e~1® _ o1® - 2iaRe (Fe 1%) Im(T)
e-i¢ - i o idIm(T)(Té—i¢ + Tei¢)

46
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Multiplying both sides by et

1 - 22 - jam(T) (F + Te?i?y
Collecting terms,
1 - idIm(MT = 22i%[1 + igmm(m T3
Let
A = 1 - idIm(T)T
then
A = 1 + idIm(T)T
and
Q219 _ 1 - idIm(MT A
1 + idIm(T)T A
Q20 _a _ a2 _ A%
x A |a|?
Since
T a2 1/2 A
= e = (.__2) =
|A] |a]

o

(Ref 5)

(Ref 5)

(13)

The roll quaternion r acts through the angle $ to restore

the tilted coordinates to the zero roll position where the

tilt quaternion transforms them to their original position.
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Forming a Roll for Range

The roll transfer relation is formed from the relaticns

r A
=" |a|

This is accomplished by utilizing the relationships devel-

oped previously for a tilt for range where

r, - ir
- . 27 %3
t = 1 + kT T = R T =
1
and
b = dR
P b _ R + rl
R R *
Then
R+ r -r r-~ + ir
_ o 3 = . 1 3 2 3
a = 1 idIm(T)T = 1 i R (R T r)(R +r1)
.2 2 .
R(R + r,) R(R + r,)
1 1
and finally
2

r r,r
- . 3 23
ATl mmFzp *RERFIp L

Rotating Coordinate Systems

Let two rotating coordinate systems be related by a

tilt

t = 1 + kT

that is
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with angular velocities

w iwl + jw2 + kw3

and

b
mt

: ] < ) ]
1wl + sz + kw3

at a later time t, + At the systems will relate through an
angle laiAt about the W axis. Therefore, the & rotation

is similar to a quaternion (Ref 5)

AGYe = 1+ ug
or
dpe = 1+ - tan szt .
|w]
Since for small angles tana = ¢
Qe = 1+ M—Z—E (Ref 5)
Let E%E equal a vector X, and X = ixl + kX. The components
of x can be defined
w,At wLAt w,LAt
= 1 - 2 - 3
X, = 5 x, = 5 and Xq 5
andéd let
(w, + iw,)ALt
3 2 0A . P
X = 5 = —2—2 5 O=w3+li’fd2 {(Ref 5,
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There alsc exists a th such that

= i = -(‘;'At
q&t 1+ 1xi + kX' 1+ -3 -

Let s be a gquaternion that relates the unprimed coordinate
system to the primed system at time (to + At). Assuming s

is a tilt as was t then
s = 1+kS = 1+ k(T + AT) .

Now the quaternions dp ¢S and tht both transform from
unprimed to primed coordinates at time to (Ref 5). They
also transform from unprimed to primed coordinates at a

to + At and are therefore equivalent (Ref 5)

QeSS = ata,,

where a is a real number. Let a = 1 + h so that when
At = 9, h = 0 and qpeS = tq&t. Substituting for Appr Se t

and th and neglecting second order terms

LHS = (1 + ix, = XT) + k(X + T + AT - ixlT) + ord(Atz)

1

RHS = (L + ix! - TX' + h) + k(X' + T + ix!T + hT) + ord(at) 2.

1l 1l
where ord(At)2 is on the order of Atz. Collecting corres-
ponding parts:

ix, - XT = ix; - TX'+ h (15)

X + AT - ixlT = X' 4+ hT + ixIT . (Ref 5) (16)

1

Equating the real and imaginary parts of (15):

h = Re(TX' - ¥T) (17)
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= Im(XT) = + Im(TX)

%y X

= xi - Im(TX') (Ref 5) (18)

If a quaternion p is now defined as

= ' m A_t

then p = wj - Im(TO') = wy + Im(TO) which constrains w and
@' so that p will remain a tilt from unprimed to primed

coordinates (Ref S5). From (17)

k Re(TX' - XT)

Re(TX') - Re(XT) = Re(TX') - Re(TX)

thus

h Re[T(X' - X)1 . (Ref 5)
Now from (16)

AT = X' - X + T[h + 1(x1 + xi)1

(X' = X) + T[Re(T(X' - X)) + i(x1 + xi)}
So

AT = (L + 7|9 (X' - X) + TIRe(T(X' - X)) - T(X' - X)

+ i(x1 + xi)]

- % (X' = X) + iT(x] - In(TX') + x; + Im(TX)]

1
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and

AT = % [X' - X + 2iT(x} - InTX")] (Ref 5)

Dividing both sides by At and taking the limit as At » 0

T = é (0' = 0) + iTp  (Ref 5)
where
dx2 dx3
0O = (w3 + 1w2) and wz = =t ! Wy = <t

As long as p = w; + Im(TO) = wy = Im(TO') the unprimed and

primed coordinates will remain related by a tilt. {(Ref 5)
1 + kT
and T can be determined by
T = frat . (Ref 5)

If one of the coordinate systems is fixed then w = 0, O = 0
and p = 0 giving w] = Im(TO') and

i = %% . (Ref 5) {19)
In both cases é is numerically integrated to find the tiit

t (Ref 5). To relate a fixed axis system tc a non-rolling

system with rolling components in the j' k' plane only, an

intermediate rolling coordinate system R with angular velocity

-
[} =

w + kO'
R Rl

= Im(TO') so that
1

with wn
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hd ¢

R
Therefore, the tilt relating R to the fixed (F) system can
be found by numerical integration. If the quaternion g(t)

relating R to F is
g(t) = 1 + kT(t)

where T(t) = T, * J.T dt and a roll guaternion r(t) relating

the non-rolling system to the rolling system:

r(t) = ei¢(t)/2

the quaternion s(t) relating the non-rolling to the fixed

system is:
s(t) = q(t) r(t) = [1 + kT(t)1e10(¥)/2  (poe 5

Therefore., a ¢(t) must be found such that wy cf the non-
relling system equals zero (Ref 5).

The qguaternion transforms s(t) from F to non-rolling
(NR) axes at time t. For a small time interval At and a

time (£ - At), the quaternion [s(t - At)]gl transforms NR

to P and if

— _ -1 _
Pp = (s(t At) ] s{t) = POl - kp32
transforms NR at (t - At) to NR at time (t). Since Wep = 0
1
(NNRI)(At) = Im(Pol) = g

sukstituting inte p
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_perielt - ARN/21 10 | pp(e - At)][1L + kT(t)]el®(E)/2
p = N{s(t - At)]

and

[e~10(E - 88)/2) 13 4 FTE = BET T()1eH0(8)/2

for T 1+ |T(t - At) |2 e
Let
8¢ = o¢(t) - ¢(t - At)
then
Py, = [1+T(E=80) T(e)1ett¥2 | (Ref 5)
If Im(Pgl) = 0 then
arg[l + T(t - at) T(t) + arg(eiA¢/2)] = 0 (Ref 5)

If A is a complex number, then

A = a+ bi

When expressed in polar form

2 2,1/2 a . b }
A = (a® + b®) do 1| — =
[(aZ A bZ)l/f ((az 8 b2)1/2)
or
A = r(cos¢ + i sin¢) = rej‘(p

where r = (a2 + bz)l/2 and cos¢ = %, sing = % (Ref 9).

The argument (arg) of A is:

argh = ¢ . (Ref 9)
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Therefore if b(ImA) is equal to zero then cosd = 1 and
sing = 0. Which means that ¢ = 0.

Since P01 consists of two complex factors
iAd/
[1 + Tt = At) T(t)] and elA¢’2
their arguments must sum to zero, otherwise ¢ # 0. Then

arg[l + T(t - At) T(t)] = -arg(eiA¢/2)

but
arg eiA¢/2 = %?
and
%‘E = -arg(l + T(t = At) T(t)]
Ad = =2arg[l + T(t - at) T(t)]
or A¢ = =2argl[l + T(t - At) T(E]] (20)

The model numerically integrates (20) using the present and
past values of T which is numerically integrated from egua-

tiocn (19) (Ref 5).
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Appendix C

Comparison to Conventional Transformation

Consider a coordinate system as in Figure 8. The vec-
tor kT, where T = t3 + it2 in the complex Xy ¥q plane,
defines a new coordinate system which is rotated about the

Xy axis through an angle y with major axis Yir ¥pr ¥Y3-

Vo ge-maX
3:t2 3

i

D\ T2

1

! Y

: >

v x2

XY,

Fig. 8. Xy Rotation

Now consider a rotation about the Ys3 axis as depicted in
Figure 9. These two rotations represent a tilt of the Xy

axis to the yi position in space.

Y3

v

¥
T Yi
FPig. 9. Y3 Rotation
To accomplish the tilt from 3] to xi through the angle &,

using direction cosines, a two step process must be utilized.

Let the rotation about 31 be represented by direction cosine
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matrix A and the rotation about Yq be represented by direc-

tion cosine matrix B (Ref 4). Then
¥y = A%
- -, N
rotates X to y in x coordinates,
o

Y

rotates §'to ?' in vy coordinates. So the original vector X

rotated by A then B is

%' = aTsy
in x coordinates. (For an orthogonal matrix AT = A-l) The
completed tilt can be represented by

X' = CX
where

c = aBa .
From Figure 8
t t
siny = - —EL , and cosy = ffL .
| t] | t]

From the quaternion definition of T,

s
tan = |&] = |T|

SR

then
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1

Fig.10. tan T|T|

From Figure 10

cos(tan-llTI) = L 3173
(1 + |T|5~*
: -1 {7
sin(tan ~|T|) =
(1+{le)l/2
cost = cos 2(tan-l|T|)
cost = 2 cos?(tan”t|T|) - 1
— 2 _l+|T|2=l-T2
1+ |T|2 1+ |T|? 1+ |7|?

and

sint sin Z(tan_llTl)

= 2 sin(tan-lIT]) cos(tan_1|T|)

et [
1+ 7152 La o+ |15t/

- 2l ,

1+ |7

Now that the functions siny, cosy, sint and cost are defined,

the transformation matrices can be formed:
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1l 0 0
A = 0 cosy siny

0 -siny cosy

coOsT sint 0

B = -sinT cOoST 0
0 0 X
and
c = aTBa
r cosT cosysinTt sinysinTt
_ . 2 .2 . .

C = | =sintcosy cos“ycosT+sin®y sinycosycosTt-sinycosy
-sinysint sinycosycost-sinycosy SinzYCOST+COSZY J

Substituting and carrying out the vector multiplicaticn

T 2t, 2t,
X3 = T ¥ g Xy by Xy
1+ |7 1+ |7 1+ 7]
2 2
2t 1+ |T]° - 2t 2t,t
. 3 3 23
Xy = = —=3 %+ 2 Xy ¥ 2 =3
1+ |7 1+ |T]° 1+ |T!
2t 2.t 1+ |7)% - 242
] - 2 23 ! 2
X3 = T X t———5 %% 3 X3 -
1+ |T| 1+ |7 1+ |T]

From the tilt derivation for a positive rotatiocn of coordi-

nates

xi = b - x1 and 2' = 2 - bT
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oxr

VoL _ o _ )
X5 1x§ (x2 1x3) b(t3 + ltz)
therefore
¢ — -
x2 x2 bt3
and
¥ ——
x3 = x3 + bt2
where
b = d(x; + tyx, - t,xy) and 4 = —2
1+ |T|*
Substituting
- |mi2 2t 2t
%y —— 215 S “;”5 SN ""2'5 X3
1+ |T] 1 + |T| 1+ |7
2t 1+ ]le - 2t2 2t,t
r 3 3 273
Xg = -3 % 7 3 Xy + =735 %3
1+ |T| 1+ |T| 1+ |7}
2t 2.t 1+ |7|% - 2¢2
v 2 23 2
X3 = —= % ¢ - 3 =3
1+ |T| 1+ |7]° 1+ |7]

Therefore, the tilt quaternion gives the same result as the

three matrix multiplications.

Similarly for a negative roll but a positive coordinate

transformation
1 0 0
X' = AX where A = 0 cosf sing
“p -sing cosﬂ_
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and

X

»
==
U

1l
) = 3 n g
X, X,COS9 + x351n¢
' _— - . -
x3 x251n¢ + 3300b$

From roll quaternion development

r = 1-1i tan %
|r]2 = 1 + tan’ %
r? = l - tan2 % - i 2 tan %
IrTZ = cos$ - i sind
r
Then
Z' = (cos¢ - i sin¢)(x, + ix,)
x5 + ixy = x,c08¢ + X3sind - ix,sin¢ + ix,cos?
or
Xy = x2c05¢ + x3sind
X3 = - xzsin¢ + x5c0s0
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Rolling Coordinate Systems

From the discussion on rolling coordinate systems in

Appendix B, a p quaternion is formed by:
P = ¢ S

where p relates a rolling and non-rolling set of coccordinate
systems at any time t. From the development of p, equation
(19) is derived which implies the parameter wi of the rota-

tional velocity vector w is

w! = Im(TO') .

r
1

This is equivalent to:

wi Im(t3 = itZ){wé iz iwél

= tow! - t. w! (21)

To arrive at (21) utilizing conventional direction
cosines, it must first be understood that the product of two
guaternions will result in a negative coordinate rotation.
This is a reversal of the direction discussed previously in
this appendix and result in the following changes:

t t3

2
costr = L= 1T sint = 2T

1+ |T12 ’ 1+ |T|2

In addition, the cosine matrices A and B are now
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and

#

0
0

COST
sinTt

0

0
cosy

siny

0
=siny

cosY

=-sinT
cosT

0

0
0

To describe the vector ® which relates the non-rolling
coordinate system to the rolling coordinate system, the

fellowing relation is used:

ek = &)
where
c = aBa’ .
The vector @ can be found:
3 = &wicTw)
where
&e) = & amah
or
5 = AaT + aBBTAT + aB(ATa) (aB)T
T =T : T

Substituting for A, A, A , A, B, B and B
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0 Ysinysint-tceosy -ycosysint-Tsginy
@ = | -ysinysint+tcosy 0 -Y+YCOST

Ycosysint+isiny Y-ycosT 0

which implies

?(l - cosT)

wl e
wé = = ycosysinT - Tsiny
and wy = = ysinysint + Tcosy .

! e
Utilizing the equations for Wy and wé, Y can be solved for:

' (=
NZCOSY + w351n*(

Y o= = sint .

Substituting into the equation for wy

- . s cosT - 1
wy; = (w2COSY + m3sz.ny) ('—s-ﬁ-.f.—")

Substituting for cosy, siny, cosT and sinT:
o, = |- “3t3 | “’itz) (_ 2(TI2_) (1 + Lriz)
' EIRTT 1+ T\ 2|7

= w't3 - wétz (22)

Equations (21) and (22) are identical and the same results

are obtained.
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Appendix D

Computer Listing and Guide

Introduction

The subroutine SIGNAL was modified so that a table of
signal strengths for wvarious aspects and ranges could serve
as a data base for calculations of maximum seeker line of
sight (LOS) rates for target tracking. To accomplish this,
azimuth and elevation data arrays (Figure 1ll) were inserted
along with the proper code (Figure 12) to evaluate the
gecmetry and extract the proper values from the data base
to interpolate a proper signal strength.

The missile model uses many common variables so that
guaternions need to be defiﬁed once and then through the
common variables be available to various subroutines as
necessary. The program DRIVER manages the overall model by
reading the input data, initializing the variables and set-
ting up quaternion relationships among the various coordi-
nate systems. Where appropriate, the coding frcm DRIVER
has been extracted to help define the work variables which
form the tilt and roll quaternions utilized in SIGNAL.

The focllowing sections describe the code used to medify
SIGNAL. The reader is encouraged to read Appendices A and B
prior to reading the Azimuth and Elevation section. The
final section is an example problem to demconstrate how the

interpolation technique works.
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Range

The first computation
ITEMPA = R * 0.001 + 1

takes the actual magnitude of the range vector and divides_
it by 1000. This indexes the range into a range bin with
respect to the data. The data arravs are constructed such
that the row value corresponds to the range bin and the
column value corresponds to the LOS azimuth/elevation meas-
ured from the target back to the missile seeker. There are
four range indexes and 13 angle indexes.

The value IRNG is next assigned Dby determining if
ITEMPA is between zero or one (IRNG = 1), between two and
six (IRNG = 2), or greater than six (IRNG = 3). These val-

ues correspond to ranges

IRNG = 1 0 £ range < 1000
IRNG = 2 1000 < range < 5000

IRNG

3 5000 £ range < 13000

Azimuth and Elevation

The first step in setting up the geometry of the
missile-target relationship is to transform the line of
sight (L0S) from the fixed (launch aircraft) coordinates to
U (range) coordinates. This is done by calling the sub-
routine RESOLV which utilizes a direction cosine matrix
(FTOU). The calling sequence is CALL RESOLV (DLRF1l, DLRFR,

-DLRFI, FTOU, TEMPA, ZWORKA). DLRFl is the x component,
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DLRFR is the y component and DLRFI is the 2z component of

the range vector in fixed (F) coordinates. (DLRFI is negative
to aid later computations.) FTOU specifies the direction
cosine matrix to be used (F coordinates to U coordinates).
Finally TEMPA and ZWORKA are dummy argupents which return

the range vector in U coordinates in factored format
r = (rl + k2)i

where ry is the TEMPA value returned and Z = ZWORKA =
(r2 - ir3). The components r, and ry are the y and z values
of T in the U system.

Now that the LOS is defined in the U system which con-
tains both the missile and target, the LOS is redefined in
the target system to determine the azimuth and elevation of
the seeker from the target reference.

Because the seeker is a gimbaled system, both a tilt
and roll are required to match the LOS from the target to
the seeker reference system. The required transformation
utilizes the tilt quaternion t = 1 + k(ZTUT) and the roll
transformation ZRUT.

The tilt quaternion is constructed first through the

work variables TEMPA, TEMPB, WORKAR, and WORKAI:
TEMPB = DUT*(TEMPA + WORKAR * TUTR + WORKAI * TUTI) .

DUT is defined in the DRIVER as the factor 4 of the tilt

guaternion (ZTUT) from U to T coordinates where

pur = ———JL——— . (4 from U to T)

1+ |'r|2
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TUTR is the real part and TUTI is the imaginary part of
ZTUT which is also computed in DRIVER. The sequence from

DRIVER is as follows:

TEMPA = VT + VTUl
TUTR = VTUR/TEMPA
TUTI = VTUI/TEMPA

TEMPA = TUTI**2

DUT = TWO/(ONE + TUTR**2 + TEMPA) .

The variables used here are VT, the magnitude of target
velocity; VTUl, the x-coordinate of velocity:; VTUR, the
y-coordinate of velocity; and VTUI, the z-coordinate of
velocity. The target coordinate system's orientation is

defined by VTUl. TEMPA in this case is

TEMPA = VT + vl VIUul = vl
Va2
TUTR = V_'i'_"'_q VTUR = V:Z
V3
TUTI = V-_'ﬁTl. VIUI = V3 .
TEMPA is then redefined
v3
TEMPA = 3 .
(VT + vl)
Since the tilt
t = (1 + kT)
V3. v2
and T = t3 + lt2 where t2 = m and t3 = ‘7—.'1_'.—:’.--“’—l

then the magnitude of T:
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L p2 L 2172
7] (t5 + t3)

DUT therefore is

d = DUT = z
2 2
v v

1+ 57 +2v *\TT +3v

1 1

= 2 - 2
2 2 2

1+ &5 + t3 1+ |Tf

Returning to the SIGNAL sequence, TEMPB is:

TEMPB = Db = d[rl + t3r2 - t2r3] ’
and
rl = TEMPA
r 2 = WORKAR
-r, = WORKAIL (From the RESOLV calling parameter)
t3 = TUTR
t2 = TUTI .

With these parameters the new range vector r' can be con-

structed.

A
TEMPC = TEMPBE - TEMPA

-

is equivalent to

r! = be-r (from App. B (11))

1
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WORKBR WORKAR - TUTR*TEMPB

it

H

1
ot
o

and

WORKAI = WORKAI -~ TUTI*TEMPB
= -ry - tzb
ZWORKB is defined by
ZWORKB = WORKAR + 1WORKBI
or equivalently
z' = ré - iré . (from App. B (8))

From the discussion of a guaternion times a vector
2 = 2 -DbT ,
where
Z = r2 - ir3 = WORKAR + i{(WORKAI) .
This can further be broken down into

2! = r, - bt3 - 1(r3 + btz)

2
or
WORKBR = r, - bt,
WORKBI = =-r, - bt, .
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The roll due to tilt is next considered using the roll trans-
formation from U to T cocrdinates (ZRUT) which is defined in

DRIVER by the sequence:

WORKAR = ONE - DUT*TEMPA
WORKAI = =DUT*TUTI*TUTR
TEMPA = CABS (ZWORKA)
RUTR = -WORKAR/TEMPA
RUTI = -WORKAI/TEMPA

This sequence is identical to the development of the roll
due to tilt discussiocn where the roll quaternion r = (1 + irl)

and the roll transformation is

id r A
e —3 ——— = — s,
r* )
|a|
The complex number is:
A = 1-idIm(T)T

where T = t, + it,, T = t, ~ it, and d = DUT. ZRUT which
L

is equivalent to f;,—is foundéd by R

m—

WORKAR = Re(A) = 1 - dt)
T WORKAI = Im(A) = -dt,t,
A = ZWORKA = WORKAR + iWORKAI
therefore
A = 1-aeel+ityey
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where

) = . .2 .
iIm(T)T = 1t2(t3 1t2) = t2 + 1t2t3 .
Since
TEMPA = CABS(ZWORKA) = |a]| ,
and
RUTR = - 22{B)
|a]
RuTT = - BA)  pen zruT = -2 .
|a] ia|

The roll takes place about the x-axis of the coordinate
system and ZRUT is negative to transform the coordinates of

Z to their zero tilt origin. This is done by

e .
1 - r _ -ld)
M____,,,..—--""‘""fi = Zl * = Ze
—---"""f
orT
ZWORKB = 2ZWORKB*ZRUT .

With the line of sight defined in target coordinates,

the azimuth and elevation can be computed as

AZ ATAN2 (WORKBR, TEMPC)

EL ASIN(WORKBI*RRECIP)

where WORKBR is the y coordinate, TEMPC the x coocrdinate,
WORKBI the z coordinate and RRECIP is the reciprocal of the

range magnitude.
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Signal Strength Interpolation

The infrared signal strength is obtained by interpolat-
ing the values cobtained from the data matrices AZARAY and
ELARAY. The interpolation is done by a comparison of values
based on range, azimuth and elevation from the target. Once
a representative signal is calculated it is compared to
ninimum standard values characteristic of the missile seeker

head to determine the maximum line-~of-sight tracking rate.

Azimuth

The program initially converts azimuth (AZ) to degrees,
a more convenient working form utilizing the radians to
degrees conversion factor (RADDEG). An index (ITEMPA) is
next computed by dividing the value of azimuth by 15 and
adding one to it so the lower value of the azimuth band can
be determined. (The azimuth bands run from the nose to the
tail (0° to 180°) in 15° bandwidths.)

Next an increment term is set to one (IN = 1) for
later use. If the azimuth is equal to 180° then this incre-
ment is set to zero.

TEMPB (an interpolation angle based upon the size of
the angle formed by the azimuth with the lower azimuth band
angle), is now computed. The difference between the azimuth
and the lower azimuth band angle is calculated, and this
difference is multiplied by 12 to place it into a convenient
size. The band is 15° wide and if the azimuth equals the
lower band angle, TEMPB will be zero; if the difference is

7.5°, TEMPB will be 90°; and if the difference is 15°,
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TEMPB will be 180°. TEMPA is then set to the cosine of
TEMPB times one half,

Data points from the azimuth array are now selected
for an azimuth interpolation. TEMPC is chosen by the com-
puted IRNG and ITEMPA where ITEMPA is the lower azimuth
band. TEMPD next selects the next higher azimuth value at
the same range as TEMPC. If the azimuth is 180°, IN, which
increments ITEMPA, is zero so that an inappropriate value
is not selected from the data matrix. (There is no data
point for azimuth greater than 180°.)

The interpolation now takes place at the lower range

band and a lower azimuth band value (BNDAL) is computed:

BNDAL = (TEMPC + TEMPD)*HALF + (TEMPC - TEMPD)*TEMPA

or equivalently:

AZL Value + AZU Value
BNDAL = *JZ

AZL value - AZU Value
+ 5 cos ({TEMPB) .

If TEMPB is 0° then cosine(TEMPB) is equal to one and BNDAL
reduces to the lower azimuth value. If TEMPB is 90° then
cosine is equal to zero and BNDAL becomes one-half the lower
plus one-half the upper azimuth values. If TEMPB is 180°
the cosine is equal to (~1) and BNDAL reduces to the upper
azimuth value. For angles between these values, an appro-
priate ratio of the azimuth values is computed.

Next an upper limit (BNDAU) based on the next range

data (IRNG + 1) is computed in a similar manner. The same
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azimuth indices are used but IRNG is incremented by one

into the next outer range bin.

Elevation

The next series of computations are to arrive at a
pair of elevation data points which correspond to the azi-
muth position. 1In other wbzds, the IR signature can be
thought to be similar along a conical path around the
source.

The first statement determines if the elevation is
negative and if it i, adds 13 to the ITEMPA index to ref-
erence the negative elevation data array. Values for TEMPC
and TEMPD are selected as previously discussed for azimuth,
and a similar interpolation is done for an inner range value
BNDEL and an outer range value BNDEU.

The final interpolation based upon angles is accomp-
lished by first computing an index based upon the elevation
angle (TEMPA). The value of the elevation is divided by
15 and one is added to it so a lower value of the elevation
band can be determined. (The elevation bands run from the
pPlane of the wings to the perpendicular axis of the plane
(0° to 90°) in 15° bandwidths.)

TEMPB, an interpolation angle, is now computed, similar
to the azimuth interpolation angle. The cosine of the angle
(TEMPB) is then computed and the final interpolation between
the azimuth and elevation values takes place. The values
computed are a lower (BNDL) and an upper (BNDU) signal

strength.
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Final Interpolation

The last interpolation combines the signal values at
distances which bracket the actual distance at the correct
azimuth and elevation. The missile seeker will receive a
signal somewhere in between the wvalues calculated at BNDL
and BNDU. The infrared signal is a function of cne over
range squared {(Ref 6), so what the program does now is com-
pute a reference signal at the close range (BNDL) and then
a reference signal at the far range (BNDU). The two refer-
ence signal strengths are then combined to form a new refer-
ence signal strength at the actual range, and finally this
reference is divided by the range squared (TEMPD) to give

the interpolated signal. Let

BNDU = SU = Upper tabulated value (Interpolated)
BNDL = SL = Lower tabulated value (Interpolated)
Then
SU %and SL-%
where SrU = the source reference signal upper and SrL = the

source reference signal lower.

SrU = BNDU*RBNDSQ(IRNG + 1)

SrL = BNDL*RBNDSQ (IRNG)

Using the calculated reference strengths, and the interpo-

lated signal strengths a delta signal is calculated as a
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ratio of the change in reference to the change in interpo-

lated signals.

-
AS (SrL “rU)
(SU - SL)

or
TEMPB = (BNDL*#TEMPC ~ BNDU+RBNDSQ(IRNG + 1))/BNDU - BNDL)
TEMPA 1s now computed:
TEMPA = BNLDL* (TEMPC + TEMPB)
which is egquivalent to:
TEMPA = S #(RZ + 4S) .

The signal is then calculated by:

RADANC = TEMPA/(TEMPD + TEMPB)
Qr,
(Rg + AS)
RADANC = §S_|—2—1—
L\g? + as

which is the value of the signal at the inner range decreased
by the slope determinsd by the ratio of the ranges plus the
decreased value of the signal from the inner band to the
outer band.

The interpolated signal strength is then converted to

Phasey decibles by:

TENLNH = 10.0*ALOG(RADANC#PHASEY/TEMPD) .

where Phasey decibles are ten times the natural log of the
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signal and PHASEY/TEMPD is a factor to convert the interpo-
lated RADANC from watts/steradian to picc—watts/cmz. The
comparison logic uses the Phasey decible strength to deter-

mine the maximum track rate of the missile seeker.

Example Problem

For an example of how the azimuth and elevation inter-
polation works, suppose the target and launch aircraft have
range of 4000 feet (IRNG=2). Further, let the aspect meas-
ured from the target's nose be 150° and the elevation be
-45°.

The first value determined is ITEMPA which would be
equal to 150 divided by 15 or 10 plus one or ITEMPA would
egqual 11. Since 150° is less than 180°, IN would equal one.

The interpclation angle (TEMPB) is now computed by:

TEMPB = (TEMPA - BNDAZ (ITEMPA))*12*DEGRAD ,

or ’

TEMPB = (150 - 150)*12+*DEGRAD .

(DEGRAD is the transformation constant from degrees to
radians just as RADDEG is the transformation constant from

radians to degrees.) This is equivalent to:
TEMPB = 0 .

Next TEMPA is computed as the cosine of TEMPB or

TEMPA = cos(0)*(.5) = 0.5
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Now the first interpolation begins. TEMPC and TEMPD are
the values which bracket the azimuth or AZARAY (IRNG,ITEMPA)
and AZARAY (IRNG,ITEMPA + 1l). Those ccrrespond to the

values 165 and 180. BNDAL is now computed by:

(TEMPC + TEMPD) + TEMPC - TEMPD

5 3 cos(0°)

BNDAL

or

Bwpar, = 1653180, 165 - 180 . g5

BNDAU is computed similarly but at the next outer range

values (IRNG + 1).

BNDAU = TEMPC’; TEMPD - TEMPC ; TEMPD

where TEMPC = AZARAY (3,11) = 100 and TEMPD = AZARAY (3,12)

= 110. So

BNDAU = 100 ; 110 . 100 ; 110 _ 100 .

The elevation values are now computed in a similar

manner, but the elevation is less than 0° (-45°) so,

ITEMPA = ITEMPA + 13

oxr

ITEMPA = 24 .

The lower elevation value is:
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BNDEL ELARAY(2,24)<;4ELARAY(2,25)
+ ELARAY (2,24) ; ELARAY (2,25)
or
BNDEL = 137 ; 168 , 157 ; 168 _ 157 |
Similarly for the outer range:
105 + 109 105 - 109 _ 445 .

BNDEU = ) +

The final computation for BNDL and BNDU consists of first
computing an interpolation angle as a function of the ele-

vation. The indeg ITEMPA is computed:
ITEMPA = (45/15) + 1 = 4 .
The interpolation angle TEMPB is now computed:
TEMPB = (45 - 45)*12*DEGRAD

and the factor TEMPA:

TEMPA = cos(0)*(.5) = 0.5 .
BNDL is now computed:
BNDL = 1554% 157 , 165 ; 157 . 165
and
BNDU = 100 + 105 _ 100 - 105 _ 100 .

2

~N
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s are then finallyv interpolated for range as
= =

discussed and the value for RADANC is:

RADANC = 117.33 watts/steradian .
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Appendix E
DRIVER

The medel is an adaptation of a dynamic simulation
utilized by the ACMR/I range which involved real time data
transmission to and from the participating aircraft and the
simulation computers. To enable the model to work inter-
actively on a time sharing terminal, a DRIVER program had
to be developed which would initialize the necessary param-
eters normally supplied by the aircraft telemetry pods. 1In
addition, DRIVER also sets up the quaternions relating the
U (earth surface) coordinate system to the T (target)

coordinate system.

Tilt from U to T
The tilt gquaternion is constructed in Section 2 through
the work variables TEMPA; TEMPB; WORKAR; and WORKAI, as

follows:

TEMPA = VT + VTUL
TUTR = VTUR/TEMPA
TTI = VTUI/TEMPA

The variables used here are VT, the magnitude of the target
velocity; VTUl, the x-coordinate of target velocity:; VTUR,

the z-coordinate of target velocity; and VTUI, the y-coordi-
nate of the target valocity. These lines of code are equiv-

alent to:
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TEMPA = VT + VTUl VIUl

i
<

il
V2
t3 = TUTR = Vm VITUR = V2
V3
t2 = TUTI = m VTUIL = V3 p
Since the tilt,
t = (l = kT) ’
and
T = t3 + 1t2
where
v v
_ 3 _ 2
t2 VT + v and t3 VT + v
1 1
SO
T = TUTR + TUTI = 2ZTUT .

Roll from U to T

The roll relation is formed by the following lines of

code:

TEMPA = TUTI**2

DUT = TWO/(ONE + TUTR**2 + TEMPA)
WORKAR = ONE - DUT*TEMPA

WORKAI = -~DUT*TUTI*TUTR

TEMPA = CABS(ZWORKA)

RUTR = -WORKAR/TEMPA

RUTI = -WORKAI/TEMPA

TEMPA is defined:
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The magnitude of T is:

7] = (tg + tg)l/2

and DUT is therefore:

2

d = DUT = —3
1+ |7
- 2
B 2 2
1+ t2 + t3
2

1 + (TUTI)? + (TUTR)?
The additional lines of code follow from the roll transfor-

mation

= —— from Appendix B .
|a]

The complex number A:

A = 1-idIm(T)T
where again
T = tp + it,
T = t, - it,
and d = DUT .
ZRUT which is equivalent to ei¢ is found by:
WORKAR = Re(A) = 1 - dt2
WORKAT = Im(A) = -dt2t3
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and

A = ZWORKA = WORKAR + iWORKAI .

Therefore
A = 1 - at? - idt,t
2 2°3
= 1 - d(t? + it t.)
2 2°3 .
where
. = . . _ 2 .
Since
TEMPA = CABS(ZWORKA) = |A]
and
Re(A) _ _ VWORKAR
RUTR T TEMPA
|a]
= . Im(R) _ _ WORKAI
RUTI = = TEMPA
|a]
then
ZRUT = RUTR + RUTI = Tér i
A

Tilt Derivative

In Section three of DRIVER, a derivative of tilt from
U cocrdinates to T ccordinates is calculated based upcn a
roll angle ¢ from the target to the maneuvering plane; NT,

the magnitude of the normal acceleration; and VT, the
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magnitude of the target velocity. The code beging by rede-

fining TEMPA:

TEMPA = TUTI**2

which is equivalent to:

TEMPA = tg o
DUT is then calculated:
DUT = TWO/(ONE + TUTR**2 + TEMPA)
or
4 = pur = ey =
1+ &3+t 1+ |T|

WORKAR and WORKAI are recalculated:

WORKAR = ONE = DUT*TEMPA

WORKAI = =DUT*TUTI*TUTR
or
WORKAR = 1 - dt2
and
WORKALI = -dt,t, .
This again is equivalent to

A = 1~=4idIn(T)T
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Qr

ZWORKA = WORKAR + 1WORKAI
= 1 - dt? - idt.t
2 2ty -

The roll relation from U to T is therefore:

ZRUT = RUTR + RUTI = -2
|a|
ZWORKA.
CABS (ZWORKR)  °

The derivative of the tilt is now calculated:

TUTDR

(CPHITM*RUTR - SPHITM*RUTI)*TEMPA

]

TUTDI (-SPHITM*RUTR - CPHITM*RUTI) *TEMPA

This sequence can be broken up into

CPHITM*RUTR - SPHITM#*RUTI

where

CPHITM = c¢o0sd
and

SPHITM = sin¢

¢ being the angle between the target coordinate plane and the
maneuver plane. This portion of the code projects the tar-

get roll relation onto the maneuvering coordinate frame where

CPHITM*RUTR -~ SPHITM*RUTI
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is the real axis projection and
~SPHITM*RUTR - CPHITM*RUTI

is the imaginary axis projection. The sum of the two pro-
jections form the complex number O' from egquation (19) in

Appendix B. The tilt derivative is formed by:

= 9
t = 9 .

This is accomplished by multiplying the terms of 0' by

TEMPA where:
TEMPA = ~NT/(VT*DUT)

where the factor (- g%) forms the derivative of O' with

respect to time for numerical integration and
DUT = d

which completes the denominator of the tilt derivative:

d = o' TUTDR + TUTDI ( NT)
- T W

DuT vT
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