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furnished, or in any way supplied the said drawings, specifications, or other
data, is not be be regarded by implication or otherwise as in any manner licensing
the holder or any other person or corporations, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in
any way be related thereto.
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2 FOREWORD

This report describes the results of a research program to
characterize the effects of surface treatments to titanium alloys for J
adhesive bonding. This report covers the period from May 1979 through
November 1979. Until September, 1979 it was conducted by the Southeastern Q
Center for Electrical Engineering Education (SCEEE), 202 Samford Hall, |

R T g

Auburn University, Auburn, Alabama 36830 at the Air Force Materials
Laboratory under Contract F33615-77-C-5003, Contributive Research/Resident
Scientist Program, initiated under Task 53B. The work monitor was H.L.

Guidrey.

Since October 1979 the program has been conducted by Universal
Energy Systems, Inc. (UES), 3195 Plainfield Road, Dayton, Ohio 45432,
with the research performed at the Air Force Materials Laboratory at

Wright Patterson Air Force Base, Ohio 45433, under Contract F33615-79-C-5129 3

Contributive Research/Visiting Scientist Program, initiated under Task 10.
The work monitor is W. Powell. The Project Engineer for the Air Force
was W.L. Baun, Mechanics and Surface Interactions Branch, Nonmetallic
Materials Division (AFML/MBM). The research was performed by A.A. Roche.
The author submitted this report in December 1979.
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I, INTRODUCTION

Advanced aircraft design and performance specifications require the
use of high temperature, lightweight materials, such as, titanium and
titanium alloys. These materials are used in a number of airframe systems,
which can in turn be fabricated in a number of ways, including conventional
riveting, adhesive bonding, and weld bonding. The latter two processes are
still in the research and development stage. Their anticipated advantages
over conventional fabrication processes includes overall weight reduction
while maintaining high strength requirements. Three major factors which
influence adhesive bond joint performance include prebonding surface
conditioning, adhesive formulation, and performance environment.

Titanium has two crystallographic forms: alpha and beta. The alpha
(«) phase is a close-packed hexagonal structure while the beta (B) phase
is body-centered cubic. There are approximately 30 titanium alloys and
there are usually classified into =, « - g or B8 groups. The principal
alloying elements used in the « alloys are AL,0,Sn, and Zr. The principal
alloying elements in B8 alloys, which serve as stabilizers are Mn,Fe,
Cr,V, and Mo. The alloys studied in this work are listed in Table I.

The purpose of this work is to establish a data base which can be
used to assess the effects of chemical etching on the surface morphology
and composition of titanium and titanium alloys. This data will thus be
beneficial in establishing whether a particular etch is to be used with
a series of surface conditioners or possibly as an exclusive prebonding
treatment. Seven common chenical etchants for titanium and seven titanium

alloys were investigated. Their respective effects on the metal alloy

surfaces were characterized with an Auger Electron Spectrometer (A.E.S.),
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Secondary Ion Mass Spectrometer (SIMS), Scanning Electron Microscopy
(SEM), and a X-Ray Photoelectron Spectrometer (XPS). The information

obtained from these four techniques is divided into three categories:

- surface chemistry

- elemental depth distribution

- and surface topography




IT. EXPERIMENTAL

Titanium and its alloys listed in Table 1 were subjected to the
chemical treatments listed in Table 2. After drying, they were analyzed
with a PERKIN-ELMER Physical Electronics Industries (PHI) model 540 A

Thin Film Analyzer equipped with a single pass Cylindrical Mirror

- Analyzer (CMA) with a resolution AE/E ~ 0.6%. The coaxial electron gun

was operated with a 4 KeV potential at 1.0 to 5.0 pA beam current. A peak-

to-peak modulation of 7eV during broad scans (ie, 0-2000 eV) and 3 eV for

. narrow scans (ie,330-530 eV) was applied to the analyzer for phase sensitive
detection. Elemental sputter profiles were constructed using digitally

| recorded and computer processed N“(E) data(Ref, 2). The ion beam was generated

} with a PHI model 04-191 Sputter Ion Gun which was operated with a beam

potential of 2 KeV and ion current density of approximately 1.9 uA/mm?
at 10 mA ion gun emission current or 0.5 pA/mm? at 3 mA ion gun emission
current (Data noted *).

The sputtering rate for Ti0, under the above conditions was determined

to be 11.5 nanometers per minute (1 Nanometer (nm) = 3.94 x 107%in.) with
an ion current density of 1.9 uA/mm? and 2.8 nm/min with an jon current
density of 0.5 pA/mm?. This was done using a titanium specimen anodized
in room temperature tartaric acid (150 g|1) at 100 volts. To determine

the oxide thickness, a piece of the anodized specimen was gold coated

and bent to produce cracks in the anodic oxide layer and examined with
an ISI - 60 Scanning Electron Microscope (S.E.M.). Figure 1 contains

the SEM micrographes of the bent specimen and cross sections of the

< fractured oxide which show the oxide to be 205 +10nm thick.The AES spectrum

3 of this specimen prior to sputtering is shown in Figure 2. The Ti peak
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TABLE 2

SURFACE CHEMICAL TREATMENTS FOR TITANIUM
AND TITANIUM ALLOYS

(hot alkaline)

CODE DESCRIPTION TREATMENT
1 Degrease Sample slurried in acetone, wiped dry,
then ultrasonically cleaned in carbon
. tetrachloride for 5 minutes.
2 Alkaline Sample submerged in 0.1N sodium hydrox-
ide, room temperature for 2 minutes.
Running tap H,0 for 1 minute, standing
deionized H,0 for 5 minutes.
3 HNO3 /HF Sample submerged in a solution of 170ml
¢ L nitric acid, 30m1 hydrofluroic acid,
(fluoro-nitric) 800m1 distilled water, room temperature
for 2 minutes. Rinse as in #2.
4 Na3PO4/NaF/HF Sample submerged in a solution of 50g
sodium ortho phosphate, 9g sodium fluoride,
(fluoro-phosphate) 26m1 hydrofluoric acid, distilled water to
1 Titer, room temperature for 2 minutes.
Rinse as in #2.
5 NH HF » Sample submerged in solution of ammonium
(fluoro-ammonium) bifluoride (10g/1iter) room temperature
for 2 minutes. Rinse as in #2.
6 H,50,/Cr0, Sample submerged in solution of 300g
) sulfuric acid, 409 chromium acid, distilled
(sulfo-chromium) water to 1 liter, room temperature for
2 minutes. Rinse as in #2.
7 HNO 3/HF/H,0, /NH, F,HF| Sample submerged in solution of 80ml nitric
P . . acid, 20 ml hydrofluoric acid, 20ml hydrogen
(fluoro-nitro-ammonium) | peroxide (30%), 10m1 ammonium bifluoride
(saturated), distilled water 500ml, room
temperature for 2 minutes. Rinse as in #2.
8 Hot NaOH/H,0, Sample submerged in solution of 20g sodium

hydroxide, 20ml hydrogen peroxide (30%),
distilled water to 1 liter, 65°C temperature
(150 F) for 2 minutes. Rinse as in #2.

Slgiam e



=
shapes are characteristic of Ti02 (Ref, 3-9). Figures 3 and 4 contain the
Auger sputter profiles with 10mA and 3mA fon gun emission current
respectively. Oxide thickness determinations from sputter profiles were
P made by multiplying the sputtering time to the oxide metal interface by

the predetermined sputtering rate. The sputtering time to reach an inter-
face was chosen as the average between oxygen and titanium sputtering
times to the 50% points on their respective profiles.

Secondary Ion Mass Spectroscopy (SIMS) analysis was performed using
an EAI/1100 quadrupole mass analyzer fitted with a lTow resolution double-

focussing ion energy filter. Figure 5 contains a schematic drawing of

the combined AES - SIMS instrument which allows for simultaneous analysis

by both techniques. The same ion gun used for sputter profiling was used
as the primary ion beam source for SIMS. Both Het and Ar' were used as
primary ion sources, He+ was used to obtain SIMS data from surfaces prior
to sputter profiling since near static (nonsputtering) conditions can be
achieved with the lighter inert gas. During sputter profiles analysis

Art was used. The AES - SIMS analysis of the specimens proceeded as
follows:

' - AES spectrum (0-2000 eV)
- AES spectrum (330-530 eV)
- SIMS spectrum (He+) .
- AES spectrum after He® SIMS (0-2000 eV)
, - AES in depth profile(Ar’)
- SIMS during the sputtering (Arh)
- AES spectrum after sputter profiling (0-2000eV)

Pieces of the specimens for SEM analysis were coated with ~ 20 - 50 nm

Au in an ISI-PS-2 Sputter coater. A1l specimens were analyzed with a tilt

.

angle of 15°,
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An X-ray Photoelectron Spectrometer (XPS or ESCA) KRATOS ES-300
was used for the analysis of several alloyed titanium samples. Base
pressure for the system was 7 x 107!° torr (9.1 x 107° Pa), and all scans
were taken at a pressure less than 6 x 10°® torr \7.8 x 10°¢ Pa). Non-
monochromatic Mg Kml'2 radiation was used at a power setting of 105 watts
(15 Kv, 7mA). Resolution was determined with a clean silver sample.
Using a 1.0 mm exit slit and operating in the fixed 65 eV transmission

5/2 peak was

mode, the full width at half maximum ( F W H M) of the Ag 3d
measured to be 0.92 eV. A Ion Tech B 22b Saddle-Field Ion qun was used
for sputter etching. Typical settings were 8KV, 5mA to the cathode and a
measured jon current 16 yA impinging on the sample. A constant flow of
argon through the ion gun and system was required for sputtering. During

this time the pressure in the analysis chamber rose to 2 x 10°* torr

(2.6 x 1072 Pa). The spectrometer was calibrated for Cig at 285 eV

(binding energy).
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[IT. RESULTS

1. TITANIUM (c.p.)

A. Surface Topography

Figures 6 - 9 contain S.E.M, micrographs of commercially
pure titanium panels subjected to each of the chemical treatments listed
in Table 2. The alpha-numberic code to the right of the micrographs
identifies the specimen according to material and treatment codes from
Tables 1 and 2, respectively. For example, code A1_7 identifies the
upper micrographs in Figure 9 as those from c.p. titanium subjected to
treatment 1 followed by treatment 7.

Treatments 1-2,1-6,1-7 and 1-8 produce surfaces very
similar to the "as received" (treatment 1) surface. Treatments 1-3,1-4, and
1-5 produce surfaces containing microcrystalline particles. This is in
agreement with previously reported work (Ref. 3,6, 10-14).

B. Surface Composition

a) Auger Electron Spectroscopy (AES)

AES spectra from specimens subjected to treatments 1
through 1-6 were similar to those previously reported from identically treated
titanium (Ref. 6, 14, 15).  Figures 10 and 11 contain AES spectra from
titanium subjected to treatments 1-7 and 1-8. Table 3 1is a semi-
guantitative compilation of the elements detected by AES from each of
the treated Ti panels. The numbers listed are the Auger peak-to-peak
height (APPH) ratio normalized to the TiLMM peak at ~ 381 eV, Figures 12
and 13 are the expanded spectrum of TiLMM’ TiLMV and 0KLL from specimens
Az and A1-8 respectively. The TﬁLMVpeaks at approximately 400-425

eV have a subtle difference in their respective shapes. These peaks
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reflect the 3d and 4s valence band transitions and are sensitive to the
chemical state of titanium (Ref. 5). The TiLMV peak from A, is very similar
to that of Ti0, (Ref. 3-9). The TiLMV peak shape from A;-; is similar to that
from Ti,0; (Ref. 8) and to that reported by Solomon et. al. (Ref. 16) and
Mathieu et. al. (Ref. 17) for electron beam induced reduction of Ti0,. Therefore
there is some doubt whether: (1) the TiLMV peak shape difference between A,_7
and A;-g reflects a real difference in the Ti chemical state; (2) electron
beam reduction occurred; or (3) the oxide layer is very thin and therefore
the TiLMV peak shape simply reflects a mixture of Ti0,+Ti.
b) Secondary Ion Mass Spectroscopy (SIMS)

Figures 14 and 15 contain the + SIMS spectra from specimens
A,-7 and A,_g respectively obtained with 2kV He+. The differences between
these two spectra are subtle. The largest difference is the presence of more
contaminant species, attributed to the tap water, on A;_s. Table 4 summarizes
the SIMS data from the treated Ti panels. A1l values listed are normalized
to the Ti(m/e = 48) peak.

¢) Auger Sputter Profiles Analysis (ASPA)

Figures 16 and 17 contain the Auger Sputter Profiles of
C,0, Ti and S from specimens A;_; and A,_s respectively. The profiles in
these figures reflect total analysis time. In all cases sputtering was
initiated after approximately five minutes analysis time. The difference
in initial 0 and Ti signal levels is attributed to the differences in surface
contaminants such as C and S.

Table 5 1ists the oxide thickness on each of the pretreated
panels. Because of the uncertainties of sputtering and 0-Ti diffusion, the

oxide metal interfacial width is listed in Table 5 as the
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TABLE

3:

AES ELEMENTAL I.D. OF TREATED TITANIUM (c.p.)

[TREKTMERT ELEMENT TOENTIFICATION

0 v{ ¢ P Cu a

1 2.8 1.6 0.
1-2 2.2 0.9 x x
i3 2 0.6 T o3| x x
1-4 1.2 0.3 0.2 T x
-5 1.8 0.3 x T x
1-6 2.4 0.9 x
Y ? 0.3 x
1-8 23 0.9 x

R O e o

( x APPH RATIO < 0.1)

10
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TABLE 4 : SIMS ELEMENTAL I.D. OF TREATED TITANIUM (c.p.)

] [TREATHENT m/e / positive fon identification
B | 8 | 2 3 k! 40 48 59 64 67 8
0 F Na P K Ca T CaF Ti0 TiF TiF,
1 0.2 X >6 >6 0.7 1 0.4
1-2 X X 1.6 X 0.5 0.4 1 0.36
‘ 1-3 3 X 0.6 X 0.1 1
1-4 0.23 5.2 13 0.25 1 1 X
1-5 3 X 1.2 X 0.20 b3 1
1-6 X x 1.3 0.35 0.2 1
1-7 x X 0.7 3 b3 1
1-8 X x 0.9 0.1 0.7 1

{ x VALUE < 0.1)

.,

N




TABLE 5: CARBON DISTRIBUTION, OXIDE AND INTERFACIAL THICKNESS DETERMINED
BY AUGER SPUTTER PROFILE ANALYSIS FROM TREATED Ti (c.p.)

f

TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
{ THICKNESS 16.6 5.7 6.7 82.5| 19.4| 1i3.5| 7.0 15.6

(nm)

INTERFACE 1.8 0.8 0.8 15.4 8.1 1.6 | 1.2 1.8

0 At(min)

C DISTRIBUTION 0.4 0.4| 3.6 7.5 5.5 1.2 | 0.4 0.6

At (min)

12 -‘
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difference (At) between the sputtering time to the 16% and 84% points on
the oxygen profile contour at the interface (Ref. 17). It is felt therefore
that the At values listed in Table 5 provide a semiquantitative comparison
. of the effects of each treatment on oxide interfacial width. Treatment 1-4
had the thickest oxide layer and the broadest interface between oxide and
metal while treatment 1-2 produced the thinnest oxide layer and interface.
This is in agreement with their respective SEM micrographs in Figures 6 and
7. Carbon and sulfur were found to be present on the surface of all the
treated specimens. Their distribution within the oxide seems to be the
greatest when the oxide microstructure resulting from treatment 1-3 and
1-5 (Fig. 7 and 8) is observed. The carbon is most likely an adsorbed
species such as CO, CHn since as shown in Figure 18 most of the carbon
is removed with a very gentle sputter with He+. Like the oxide metal
interface, carbon distribution at the surface is listed Table 5 in terms
of At since it is removed too quickly to define its presence in a discrete
layer.
2. Ti-8A1-1Mo-1Sn
A. Surface Topography
Figures 19-22 contain S.E.M., micrographs of treated Ti-8A1-1Mo-
1Sn (B) alloy. The most noticeable difference with this alloy compared to
Ti - (Fig. 6-9) is the presence of what appears to be a second phase even
after chemical treatment. Treatment 1-4 produced the same "sea shell"
structure as observed on A;-,. Treatment 1-3, 1-5 and 1-7 produce surfaces
with the most distinguishable "plate-like structure" which is probably the

result of selective etching (Ref. 12, 18-20). This structure, which results

.,

from treatment 1-3,1-5, and 1-7 is characteristic of the alpha and beta phases.
e B. Surface Composition

a) Auger Electron Spectroscopy (AES) !

13 !
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Figures 23 and 24 contain the AES spectra from a degreased panel. The

spectrum in Figure 24 is an expanded portion of Figure 23 and shows that
Sn is not detected, although it would suffer interference by overlapping
Ti peaks. Except for treatment 1-4 (Figure 25) the AES spectra from the
remaining panels were similar to those for the degreased panel. Figure
26, the expanded spectrum from a panel subjected to treatment 1-4, shows

that the Ti v peak shapes have some subtle differences compared to Figure

LM
24 which implies a difference in the chemical state of titanium at the
surface since any electron beam effects would be the same for both specimens.
A semiquantitative compilation of the elements detected by AES in ai] the
treated specimens is presented in Table 6. As Table 6 shows, only one of
the alloying element, aluminum, was detected on any of the treated surfaces.

b) Secondary Ion Mass Spectroscopy (SIMS)

Figures 27 and 28 contain the + SIMS spectra for a
degreased panel and one subjected to the treatment 1-4. The SIMS spectra
from the remaining panels were identical to Figure 27. Table 7 summarizes
the SIMS data from the treated panels. A1l values Tisted are normalized
to the Ti (m/e = 48) peak. The fact that Sn is detected on the degreased
panel (Figure 27) shows the importance of having complementary techniques
which offset each others possible weaknesses.

c) Auger Sputter Profiles Analysis (ASPA)

Figures 29 and 30 contain the normalized ¢lemental sputter
profiles of C,0,Ti, and Al from panels subjected to treatment 1 and 1-4
respectively. In all cases, the increase of Al in the bulk reflects the
difference of Al combined with oxygen on the surface versus a metallic

state in the bulk. Table 8 lists the oxide thickness on

S e A R e e, e o
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TABLE 6 AES ELEMENTAL I.D.OF TREATED Ti-8A1-1Mo-1Sn
TREATMENT ELEMENT TDENTIFICATI

(3};11 o) 0 c P Cu Ca Na (] Al
1 1 2.3 0.7 X 0.2 X x x x
1-2 1 2.0 0.6 X x X X X
1-3 1 2.3 0.5 0.3 b3 0.1 X X
1-4 1 1.6 0.5 0.1 0.4 0.6 0.7 X X X
1-5 1 2.0 0.3 X X X x x x
1-6 1 2.1 0.8 X X X X X
1-7 1 2.1 0.5 X X x % X x x X
1-8 1 2.1 0.3 0.2 X x b3 X

{ x APPH RATIO < 0.1)
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SIMS ELEMENTAL I.D. OF TREATED Ti-8A1-1Mo-1Sn

[TREATMENT

m/e ; hositive jon identification

59
Ao,
CaF

96
™

0.76

1-2

1-3

0.29

1-4

0.73

1-5

0.10

1-6

0.2

0.12

1-7

0.3

1-8

0.4

35 39. | 40
K Ca
x 2.72
0.23
X 0.25 x
0.12
x 0.23
x
0.10 x
x 0.10

0.76

( x VALUE < 0.1)

e
=]

%




TABLE 8t  CARBON DISTRIBUTION, OXIDE AND INTERFACIAL
. THICKNESS DETERMINED BY AUGER SPUTTER PROFILE
ANALYSIS FROM TREATED Ti-8A1-1Mo-1Sn

TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
THICKNESS 14.6 15.7 17.8 111.8 17.8 12.2 13.3 7.8 é
(nm) ;
INTERFACE 1.8 2.3 2.3 10.8 3.1 2.2 1.4 1.4 %
0 At (min) :
C 1.0 0.8 1.0 1.4 2.4 0.9 0.7 0.8 :
DISTRIBUTION i
At (min) ;
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each of the pretreated panels. As with Ti c.p. (Table 5), Table 8

Ny

compares the carbon distribution and the width of the oxide-metal interface
in terms of the At of sputtering time,
3. Ti-6A1-4V

The data obtained from this treated alloy are generally

in good agreement with previously reported studies (Ref. 6,12,14,15,18-24),
A. Surface Topography

Figures 31-34 contain S.E.M, micrographs of Ti-6A1-4V
panels subjected to each of the chemical treatments listed in Table 2. The
most noticeable difference with this alloy compared to titanium c.p.

(Fig. 6-9) is its smoother surface. Treatment 1-4 did not produce the

"sea shell" effect as it did with Ti (c.p.) and Ti-8A1-1Mo-1Sn. In addition
the S.E.M. micrographs from this alloy did not reveal the presence of « or
B phases at the surface of any of the treated panels.

B. Surface Composition

a) Auger Electron Spectroscopy (A.E.S.)

Figures 35 and 36 contain the A.E.S. spectra from the treated
panels 1-4 and 1-7. Figures 37 and 38 are expanded portions of Figures 35
and 36, respectively. The spectra from the remaining panels were similar
to those for the treated panel 1-7. The TiLMV peak shape from treatment
1-4 (Fig. 37) is similar to those from 1-4 treated Ti and Ti-8A1-1Mo-1Sn. The

detection of small amounts of vanadium by A.E.S. in the presence of titanium

is difficult because of the overlapping of the VLMM peaks by much stronger

TiLMV peak. A.E.S. spectra of Ti,V, and Ti-6A1-4V in Figure 39 illustrate this

problem (Ref. 15). The problem is further complicated when oxygen is present

since a number of oxygen loss peaks can interfere with both Ti and V. Neverthe-

.

Tess except treatment 1-2 and 1-4, V was detected on the surfaces of this

T T T

treated alloy. Table 9 s a semiquantitative listing of the element detected




TABLE 9: AES ELEMENTAL I.D. OF TREATED Ti-6A1-4V
anr ECEMENT IDENTIFICATION
Ti 0 c P Cu Ca Na F S al A
(381 eV) '
1 1 2.71 0.6 0.2 X X X X
1-2 1 2.2 0.9 X X X X X
1-3 1 2.3( 0.8 0.4 % 0. x
1-4 1 1.3] 0.5 | «x 0.2 0.5 | 0.8] «x x x
1-5 1 2.2] 0.8 | x x x x| x x
1-6 1 2.2 0.5 X X X X
1-7 1 217708 x X X X x x
1-8 1 2.1] 0.4 X X X X X

{ x: APPH RATIO < 0.1)

19
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TABLE 11: CARBON DISTRIBUTION, OXIDE AND INTERFACIAL THICKNESS
DETERMINED BY AUGER SPUTTER PROFILE ANALYSIS FRUM
TREATED Ti-6A1-4V
TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
THICKNESS 5.1 14.3}) 4.0 35.0 15.2 13.0 4.8 15.8
(nm)
INTERFACE 2.8 2.5] 3.2 66.2 5.5 4.3 3.8 12.0
0 At (min)
C 5.3 5.1] 3.9 31.5 8.7 2.6 1.9 7.8
DISTRIBUTION
At (min)
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by A.E.S. on all the treated Ti-6Al1-4vV.

b) Secondary Ion Mass Spectroscopy (SIMS)

Figures 40 and 41 contain the + SIMS spectra for the
1-4 and 1-7 treated Ti-6A1-4V. The SIMS spectra from the remaining panels
were identical to Figure 41. Table 10 summarizes semiquantitatively the
SIMS data from the treated Ti-6A1-4V panels. Unlike A.E.S., the vanadium at
m/e = 51 SIMS peak is not subject to interference by titanium and consequently
its detection by SIMS is more reliable. As Table 10 sfHows, vt was detected on
all the treated alloy surfaces. The V+/T1'+ ratio from the treated surfaces
compared to the bulk (Ref. 6), infer that the vanadium concentration on the
surface is the same as the bulk, with the exception of treatment 1-4 and
1-5 which show higher ratios of V+/Ti+ on the surface. The A1Y/Ti% ratios
were generally lower for the treated surfaces compared to the bulk (~ 0.3),
again with the exception of treatment 1-4 and 1-5.

c) Auger Sputter Profiles Analysis (ASPA)

Figures 42 and 43 contain the normalized elemental
sputter profiles of C, 0, Ti, Al and V from panels subjected to treatment
1-4 and 1-7 respectively. Table 11 lists the oxide thickness on each of
the pretreated panels, carbon distribution and oxide metal interface width.
On all cases the bulk aluminum concentration is higher than the surface.
The bulk vanadium concentration is greater than the surface on panels sub-
jected to treatments 1-2, 1-3, and 1-4 and less than the surface concentra-
tion on the remaining panels.

4, Ti-5A1-2,5Sn
A. Surface Topography
SEM micrographs of treated Ti-5A1-2.5Sn in Figures 44-47

show fairly rough surfaces (except for treatments 1-3 and 1-7).
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The "sea shell" structure produced on Ti with treatment 1-4 is not evident

on this alloy treated with 1-4.

B. Surface Composition

a) Auger Electron Spectroscopy (AES)

The spectra in Figure 48 shows that the "as received"
surface of this alloy is void of tin. On the other hand, treatment 1-5
produces a Sn rich surface, which is reflected in the spectra in Figure
49, The remaining spectra in Figure 49 also show Sn present in varying
amounts on the surfaces of panels subjected to treatment 1-2,1-3 and 1-4.
Although the main tin Auger peak is overlapped by titanium, the degree of
overlapping is less than that of vanadium, therefore Sn is easily identified
in expanded spectra such as those in Figure 49. Included in Figure 49 is
the Equilibrum Sputtered (ES) spectrum from this alloy. An ES surface is
one which was ion beam etched until no noticeable changes are observed in
the AES spectrum. Table 12 is a semiquantitative listing of the elements
detected by AES on each of the treated Ti-5AL-2.55n panels.

b) Secondary Ion Mass Spectroscopy (SIMS)

The SIMS spectrum from the "as received" surface in
Figure 50, 1ike AES, does not show the presence of Sn. Unlike the previous
alloys subjected to treatment 1-4, this alloy did not have a fluoride rich
surface and therefore the SIMS spectra (Fig. 51) from this specimen does
not show Ti-F species such as TiFt . Tin+ etc....
Because of its low secondary ion yield (Ref. 25) the detection of tin by SIMS

is difficult, especially when a 1ight probing ion such as He' is used.

The problem is further complicated by the high sputtering yield of Sn




TABLE 12:  AES ELEMENTAL I.D. OF TREATED Ti-5A1-2.5Sn

[TREATMENT ELEMENT ITDENTIFICATION
T 0 c P Cu ca Na F s 3 A sn ]
(381 ev)
1 1 [ Z.L - 0.1 .2 S 0.3 X X x x
1-2 1 3.2 3.3 X 0.3 X X .1 0.2 X x
ST PP S . e : oL e B
1-3 1 27| 1.8 03] x 0.1 0.2 X x
1-4 1 2.4 1.9 X 0.1 X X X x x
SRR INENE.L.1. S S ——
1-5 x X X . X X _‘J X X 1
1-6 1 2.7 1.9 X X A X x X
1-7 1 2.2 0.3 3 X X X X X
1-8 1 2.7 1.6 C.4 X X x

( x APPH RATIO < 0.1)
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TABLE 13: SIMS ELEMENTAL I.D OF TREATED Ti-5A1-2.55n
[TREATHEN m/e ; positive fon Tdentification

16 19 a3 27 33 40 48 64 96 112 120

T F Na CE?; K Ca il T T, 7.0 Sn
1 x X 9.9 0.50 14.4 0.5 1 0.23 X X
1-2 X x 1.5 0.50 1.2 1.0 1 0.25 X X b
1-3 X X 0.5 0.35 0.4 0.2 1 0.16 X X X
1-4 X X 1.2 0.33 0.7 0.6 1 0.20 x
1-5 X x 1.2 0.33 1.0 0.6 1 0.34 x
1-6 X X 0.6 0.27 Q.3 0.3 1 0.18 % X X
1-7 X X 0.7 0.21 X 0.1 1 0.15 X X x
1-8 X X 1.3 0.63 0.4 2.1 1 0.15

{ x VALUE < 0.1)




TABLE 14: CARBON DISTRIBUTION, OXIDE AND INTERFACIAL
. THICKNESS DETERMINED BY AUGER SPUTTER PROFILE
ANALYSIS FROM TREATED Ti-5A1-2.55n

TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 F
THICKNESS 6.2 10.1 7.3 19.2 49.5 5.1 2.3 9.0
- — fom) '} )
- INTERFACE 3.7 « 3.5 4.3 13.8 30.3 3.7 3.7 6.7
0at (min)
C
DISTRIBUTION 5.7 9.1 15.6 25.6 21.7 6.7 2.3 8.3
At (min)




and Sn oxide (Ref, 26) because surface monolayers of Sn are quickly sputtered
away even with He' (Fig. 52).

Table 13 s a semiquantitative summary of the SIMS data from the

treated Ti-5AL-2.5Sn alloy.

c¢) Auger Sputter Profiles Analysis (ASPA)

Figures 53 and 54 contain the normalized elemental
sputter profiles of C,0,Ti, Al and Sn from panels subjected to treatment
1 and 1-5, respectively. Table 14 1lists the oxide thickness and each of
the pretreated specimens, carbon distribution and oxide metal interface
width., The bul¥ aluminum concentration is less than the surface in
panels subjected to treatments 1 and 1-3, and higher than the surface
concentration on the remaining panels. The bulk tin concentration is
higher than the surface in the remaining panels and less than the surface
concentration on the panels subjected to treatment 1-3 and 1-5.

5. Ti - 5A1 - 55n ~ 2Mo - 2Zr - .25Si

A. Surface Topography X

The surface of this alloy subjected to treatments 1-2, |
1-6 and 1-8 as well as the "as received" alloy are fairly smooth while the
1-3,1-5 and 1-7 treated surfaces show the « and B phase structure (Fig 55-
58). The topography of the 1-5 treated alloy (Fig. 57) is very similar
to 1-5 treated Ti-5A1-2.5Sn (Ffg. 46). The treatment 1-4 produce again
"the sea shell surface".

B. Surface Composition

a) Auger Electron Spectroscopy (AES)
This alloy was the most difficult to analyze for treat-

* ment effects on surface elemental composition because of severe peak over-

lapping of Zr and Mo with contaminants such as S and C1. The spectra in




L

Figure 59 from the "as received" alloy shows the presence of Al and Sn
at the surface by Zr and Mo cannot be seen. Then their presence is not
confirmed in the Equilibrium Sputtered (ES) spectrum in Figure 60. Tin
was detected on all treated surfaces, with treatment 1-5 producing the
highest concentration (Fig. 61). Unlike Ti-5A1-2.5Sn (Fig. 49), the 1-4
treated surface was rich in fluorine (Fig. 62) and the TiLMV (n~ 421eV)
peak shape is different from Ti0,, which was observed for Ti c.p. and
alloys A,B and C. Table 15 summarizes the AES elemental data from the
treated alloy surfaces. At no time was Zr positively identified.

b) Secondary Ion Mass Spectroscopy (SIMS)

Like AES, the elemental SIMS characterization of this
alloy was difficult because the low secondary ion yields and peak overlap
problems with Tiz+,Zr+ and Mo+. Sn was detected on all surfaces while a
trace of Zr, but not Mo, was detected on the ES surface (Fig. 63). The
SIMS results are tabulated in Table 16. The 1-4 treated surface (Fig. 64)
did contain fluorine and TiF+ species were observed.

c) Auger Sputter Profiles Analysis (ASPA)

Figures 65 and 66 contain the normalized elemental
sputter profiles of C,0,Ti, Al and Sn from the 1 and 1-5 treated panels.
Because the profiles are normalized Sn in Figure 66 appears to decrease to
a zero level when, in fact, it approaches the bulk level. This means that
the Sn concentration at the surface of the 1-5 treated panel was higher
than the bulk. The surface concentration of 5n on the remaining panels
was always less than the bulk. Table17 lists the oxide thickness,
carbon distribution, and oxide metal interface width for each of the

treated panels. On the remaining panels, the bulk aluminum concentration
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TABLE 15: AES ELEMENTAL I.D. OF TREATED Ti-5A1-5Sn-2Mo-2Zr-~0,25Si
E TREATMENT ELEMENT IDENTIFICATION
Ti 0 o P Cu Ca Na IV F S o] Al Sn
1 (381 ev)
4
1 1 2.5 0.6 X X X 0.2 X X X
1 1-2 1 2.3 0.9 X 3 X X X X X x
X 1-3 1 2.2 0.6 X 0.3 X X X 0. x 3
1-4 1 0.9 0.3 0.12 X 0.2 0.8 X x X x
1-5 b3 X X I3 x X x 1
1-6 1 2.3 0.7 X X X X X X X x
1-7 1 2.2 0.4 X X X X X x x x
i-8 1 2.2 0.4 X X X X x

T e v a8 AT

Ul ST I K

( x APPH RATIO < 0.1}
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E . : TABLE 17:
b

CARBON DISTRIBUTION, OXIDE AND INTERFACIAL

THICKNESS DETERMINED BY AUGER SPUTTER
PROFILE ANALYSIS FROM TREATED Ti~5A1-5Sn-2Mo-27r-0.255i

. TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
3
‘ THICKNESS 10.4) 45| 5.6 112.0| 20.0! 5.1 2.6 3.4
(nm) ~
INTERFACE 5.5| 3.5| 4.3 8.4 12.9{ 3.7 3.7 4.5
0 At (min)
C 4.3 3.9 3.7 3.5 4,9 3.7 3.7 4.1
DISTRIBUTION
At (min)

.

e A
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(except the 1-8 treated panel) and the bulk tin concentration (except
the 1-5 treated panel are higher than the surface.
6. Ti - 3A1 - 2.5V
A. Surface Topography
The surface of the Ti-3A1-2.5V alloy subjected to the
treatments 1-2,1-6 and 1-8 as well as the "as received" surface are fairly
smooth (Fig.67,69 and 70), while the 1-3,1-5 and 1-7 treated surfaces have
a rough texture (Fig 68,69,70). The 1-4 treated surface has the "sea
shell" appearance (Fig. 68).
B, Surface Composition
a) Auger Electron Spectroscopy (AES)
The problem of the AES detection of vanadium in the
presence of titanium was discussed in section II1.3.B.a. However, as

shown in Figure 71, there was evidence of vanadium on the surface of the

1-5 treated alloy. AES spectra from all the treated surfaces from this
alloy revealed the presence of both Al and V., Figure 72, which contains
spectra from a panel subjected to treatment 1-4, shows a fluorine rich
surface and a subtle change in the TiLMV peak shape. Table 18 summarizes
the AES elemental data from the treated Ti-3A1-2.5V surfaces.

b) Secondary Ion Mass Spectroscopy (SIMS)

Figure 73 shows the 1-5 treated alloy + SIMS analysis.
The spectra from the remaining panels are similar to Figure 73 except the
1-4 panel (Fig. 74) which shows the same fluorine and sodium species like
Na, ¥ ALEY (m/e = 86), TiFt (m/e = 67),Nas” (m/e = 69), VF' (m/e = 70),
Tin+ (m/e = 86). Table 19 is a semiquantitative summary of the SIMS data
from the treated Ti-3A1-2.5V alloy. ?
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TABLE 18: AES ELEMENTAL I.D. OF TREATED Ti-3A1-2.5V

-

TREATMENT ELEMENT 1DENTIFICATION
Ti 0 ¢ p Cu ca Na {F s ¢l K Al v 1
(381 ev |
H |
T T t —

. 1 1 2.2 0.4 & 0.1 x| DX x ok |x
1-2 1 4.2 8.7 AX X J ! x T—x X X
=3 T 73 0.5 X | 0.83] X N [ x 0.3 X X
-3 T 1.2 0.3 x| 0.1 0.37 o.aT X —‘l X X
1-5 1 2. 0.3 f X ] ___1 x x_nj I X
1-6 1 2.1 0.4 X x X x

AT 1 Y 0.6 X 0.2 0.1 x x
=8 1 .U 0.3 X X X X 4

( x APPH RATI0 <0.1)
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SIMS ELEMENTAL 1.0, OF TREATED Ti-3A1-2.5V
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TABLE 20:  CARBON DISTRIBUTION, OXIDE AND INTERFACIAL
THICKNESS DETERMINED BY AUGER SPUTTER PROFILE
ANALYSIS FROM TREATED Ti-3A1-2.5V

TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

THICKNESS 1.7 3.4 8.4 50.7 7.9 2.9 2.3 3.1

(nm)
INTERFACE 4.5 5.3 6.3 44.8 9.4 3.7 3.7 5.1 1
0 At (min) 3
C
DISTRIBUTION 3.3 2.7 3.7 9.1 5.3 2.4 3.3 3.7

At (min)




.

c) Auger Sputter Profiles Analysis (ASPA) . ‘

Figures 75 and 76 contain the normalized elemental sputter
orofiles of C,Ti,0, and V from the panels subjected to treatment 1-5 and
1-7, respectively. Aluminium was not profiled because the signal intensity
was too low. The vanadium profile in Figure 75 shows a higher concentration
on the surface versus bulk. This was also observed with the SIMS technique
by measuring the m/e ratios of 51/48. Vanadium surface concentration was
higher than bulk on the 1,1-2,1-3,1-6 and 1-8 treated panels. Although
the normalized Al profiles are not shown in Figures 75 and 76 the raw data
did show that the aluminium concentration on treated surfaces was less
than the bulk. Table 20 1ists the oxide thickness, carbon distribution

and oxide metal interface width for each of the treated panels. F

7. Ti - 13v - 11Cr - 3A1

A. Surface Topography

Figures 77-80 contain SEM micrographs of Ti-13V-11Cr-
3A1 panels subjected to each of the treatments listed in Table 2. Once
again the 1-4 treated surface has a "sea shell" like structure surface
and the 1-3 treated surface contains microcrystalline particles. The
remaining specimens have fairly smooth, clean surfaces.

B. Surface Composition

a) Auger Electron Spectroscopy (AES)

The spectra in Figure 81 show the presence of vanadium,
chromium, and aluminium on the "as received" surface. The remaining spectra
are similar to Figure 81, Although the main vanadium and chromium peaks
are overlapped by titanium and oxygen, they are observed. The expanded

portion of the spectrum from "as received" titanium (c.p.) is
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TABLE 21:

AES ELEMENTAL 1.D. OF TREATED Ti-13V-11Cr-3A1

C S PV e e e - -

{ x APPH RATIO < 0.1

FTEMENT TDENTIFTCATION
Ti [\] C P \ Cu Ca 1 Na 1 F T S \ Ci I Al Cr
(381 ev) S S ‘
! ! S B ..’f.A\ o .,f"l.,.Fl,, E l 92 .k 03 1 x |__x
‘ 1-2 1 2.8 1.5 x 0.1 x E Soox ) x x x
13 1 3.0 1.2 1 0.6 X l Cox 0 x x
if—T—a 1 31 1.3 x } o1 - x| o1, x | «x x x
1-5 1 2.5 0.7 X | x x ﬁ
3 1 2.4 0.8 \ x i x | J‘E x 1 x x x i
-7 1 75 0.8 ] l I | | o1 I x x X
-8 1 3.5 3.5 ] \ 0.1 J x l 1 x ) x _I x x
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TABLE 23: CARBON DISTRIBUTION, OXIDE AND INTERFACIAL
THICKNESS DETERMINED BY AUGER SPUTTER PROFILE
ANALYSIS FROM TREATED Ti-13V-11Cr-3A1

TREATMENT

THICKNESS
(nm)

INTERFACE
0 At {min)

C
DISTRIBUTION
At (min)




superimposed above the G, expanded spectrum to show that the differences
between the two spectra are due to vanadium and chromium. The 1-4
treatment (Fig. 82) did not produce a surface rich in flucrine

and consequently the Ti peak shape was jdentical to that of Ti0,.

LMV
The Equilibrium Sputtered spectrum from this alloy in Figure 83 shows
quite clearly the presence of vanadium, chromium, and aluminium in the bulk.
Table 21 is a semiquantitative listing of the elements detected by AES
on each of the treated Ti-13V-11Cr-3A1 panels.
b) Secondary Ion Mass Spectroscopy (SIMS)
. Figures 84 and 85 contain the + SIMS spectra from the
degreased panel and the specimen subjected to 1-4 treatment. The spectrum
from treatment 1-4 reflects the low fluorine concentration by the weak ]
peaks associated with F, such as T1'F+ (m/e = 67), compared to some of the
other alloys. Table 22 tabulates the + SIMS data from all the treated
panels of this alloy.
c) Auger Sputter Profiles Analysis (ASPA)
Figures 86 and 87 contain the normalized elemental
sputter profile of C,0,Ti,V and Cr from the 1 and 1-2 treated panels. The
surface concentrations of aluminjum, vanadium, and chromium on the all
treated panels were less than the bulk. Table 23 Tists the oxide
thickness, carbon distribution, and oxide metal interface width for each
of the treated panels .
8. Ti - 8Mn

A. Surface Topography

The SEM micrographs in Figures 88-91 show the surfaces

..

of the Ti-8Mn alloy subjected to treatment 1isted in Table 2, to have
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TABLE 24: AES ELEMENTAL 1.D., OF TREATED Ti-8Mn

[TREATMENT[ ELEMENT TDENTIFICATION
L . 8 0 ¢ P Cu ca Na F s o K Mn s4
! (381 eVv)
Y 1 1 2.7 0.5 «x 0.1 M T ox x x X x
N 1-2 | 1 ‘ 2.6 ; 0.6 x 0.1 X x X x
3 1 2.6 07 0.5 | x 0.2 0.5 x x
1-4 1 1.35 0.1 | 0.2 X 0.2 0.7] «x X X
Po1es T 2 21 0.4 X X x x
1-6 | 1 1[ 2.5, 0.4 ] «x X X x x
1-7 ! 1 | 2.6] 0.5 X x 0.2 | «x X
1-8 | 1 2.4 0.2 0.2 X X X
|

{ x APPH RATIO < 0.1)
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TABLE 26: CARBON DISTRIBUTION, OXIDE AND INTERFACIAL

THICKNESS DETERMINED BY AUGER SPUTTER PROFILE
ANALYSIS FROM TREATED Ti-8Mn

TREATMENT 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
THICKNESS 7.9 3.7 2.3 21.4 1.7 2.8 3.4 13.5
(nm)
INTERFACE 6.3 4.1 3.7 31.8 4.7 4.1 3.7 12.8
0 At (min)
C 4.1 5.7 7.9 11.8 4.7 1.8 1.8 7.7
DISTRIBUTION|
At (min)
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a granulated crystalline surface structure consisting of < and B8 phases.
B, Surface Composition

a) Auger Electron Spectroscopy (AES)

Figure 92 contains the spectra of the 1-8 treated
panel and ES surface, respectively. Except for 1-4 treatment spectra from the
remaining panels are similar to Figure 92. Because of the overlapping with
oxygen and fluorine, manganese is difficult, but not impossible to detect.
Figure 93 shows a high concentration of F on the surface of the 1-4 treated
alloy which affected the TiLMV peak shape. Table 24 summarizesthe AES
elemental data from the treated Ti-8Mn alloy.

b) Secondary Ion Mass Spectroscopy (SIMS)

Figures 94 and 95 contain the + SIMS spectra of the
1-4 and 1-8 treated panels. A1l the remaining panels are similar to Figure
95. Because of the high surface concentration of F a number of fluorine
species are evident. The Table 25 summarizes the SIMS data from the treated
panels.

c) Auger Sputter Profiles Analysis (ASPA)

Figures 96 and 97 which contain the normalized
elemental sputter profiles of C,0,Ti, and Mn from the 1-7 and 1-8 treated
panels show the surface concentration of Mn were less than the bulk. The
manganese surface concentration of all the treated panels of this alloy
was less than the bulk. Table 26 1ists the oxide thickness, carbon
distribution, and oxide metal interface width for each of the treated
panels.

The data obtained from this treated alloy are generally in

good agreement with previously reported works (Ref. 6, 15).




IV. DISCUSSION

Table 27 1ists the surface oxide thickness for each treated
alloy.
1. Treatment 1 (Degrease)

Treatment 1 is not a true chemical treatment which modifies
the metal surface. It is simply a degreasing step which strips the "as
received" titanium and titanium alloys of gross surface contaminants in
order to characterize these surfaces prior to actual chemical treatment.

In general, the "as received" surface of the metal and alloys studied were
covered with thin carbonous and oxide layers. As shown in Figures 98 and
99 the oxide layer on Ti-6A1-4V was primarily Ti0,. The XPS oxygen spectrum
from Ti-6A1-4V in Figure 99 has two main features which correspond to two
different chemical states. The peak at approximately 530 eV corresponds to
oxygen bound to Ti as Ti0, and the peak at approximately 533 eV corresponds
to oxygen chemically bound to carbon (ie, €O, CO., etc...) as an adsorbed
layer. The shift in the Tizp peak (Figure 98) is characteristic of the
oxide 1ike Ti0, on Ti-6A1-4V (Ref. 12, 20).

2. Treatment 1-2 (Degrease and Alkaline)

This treatment had 1ittle or no effect on surface
topography. The oxide layer on each alloy was identified as Ti02. In
some cases the etching effect of this treatment was insufficient to re-
move carbon contaminant layers.

3. Treatment 1-3 (Degrease and Fluoro-nitric)
The overall effect of this treatment is the selective
etching of the = phase, leaving a thin oxide layer on the remaining 8

phase. The oxide composition is Ti0.. Oxide thicknesses are generaily
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less than 10nm. (*See note at the end of the discussion)
4, Treatment 1-4 (Degrease and Fluoro-phosphate)

This is a common industrial surface etchant often referred
to as a "conversion treatment" because it supposedly changes the rutile
Ti0, oxide layer on unaged panels to the anatase form or the anatase to
rutile on aged panels (Ref.21,28). In general, this treatment produced the 1
thickest oxide layers which had a "sea shell”" like appearance. The oxides
were not pure Ti0,, since in most cases, fluorine was presert throughout
the oxide layer. Table 28 summarizes the physical and chemical effects .

of treatment 1-4 on titanium and its alloys. As mentioned above, the {

1 oxide layers contained F throughout and as indicated in Table 28 the

Ti peak shape was slighty different than Ti0, (see Figure 100). J.S.

LMV
Solomon et al.(Ref.16) reported changes in the TiLMV peak shape from

Ao s ot ane

} ‘ Ti0, resulting electron beam induced reduction of the oxide (Figure 101).

In attempting to determine the chemical state of Ti, 0, and F within the

e

oxide layer produced with this treatment possible instrumentally induced

artifacts, ie. electron beam effects, had to be investigated. In this

work the electron beam current density was less than .7 pA/mm? and with

prolonged exposure no changes in the TiLMV peak shape were observed.
Oxide reduction can also be induced by an ion beam bombardment. Compari- !
son of AES spectra before and after ion beam (He+) bombardment did not
show changes in TiLMV peak shapes. Figure 102 contains the TiLMV and

AES spectra from fluoro-ammonium (1-5) treated Ti-6A1-4V recorded

OrL
; at various times during Ar’ ion beam etching. Initially, the TiLMV

o

peak at ~ 418 eV had a Ti0, like appearance. With increasing Art




b il

T e TR e e

.

!

l \

h R e — . - e

Table 28: PHYSICAL AND CHEMICAL EFFECTS OF FLUORQ PHOSPHATE

TREATMENT ON_TITANIUM (c.p.) AND SOME OF ITS ALLOYS

MATERIALS
. T4-5A1-55n i g | Ti-13v-nce-

OBSERVATIONS [Ti{c.p.) T1-8A1-1Mo- 1Sn T1-6A1-4V Ti-5A1-2,55n 2Mo-22r-. 2550 Ti-3A1-2.5 3A1 Ti-80

S.E.M.

"sea shell" Yes Yes No No Yes Yes Yes Yes

surface

A.E.S,

"Ti0," No No No Yes No No Yes L]

peak shape

+SIMS

Tif* Yes Yes Yes No Yes Yes No Yes

m/e=67 AMU
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etching the Ti

peak shape gradually changes to a characteristic

LMV
metallic form. The peak shape at t=75 seconds has a Ti0 like appear-

ance. However, since the oxide is thin and is being removed at a fairly
fast rate, a distinction between possible beam reduction and composite
oxide-metal special features cannot be made. Figure 103 also contains
TlMV and 0KLL AES spectra recorded from fluoro-phosphate (1-4) treated
Ti-6A1-4V at various times during sputter profile analysis with AT,

In this case, the intermediate Ti spectra revealed neither pure Ti0;

LMV
nor Ti0 shapes.

With the assumption that negligeable beam induced reduction is
occurring, the data in Figure 37 and Figure 104 suggest that the TiLMV
shape varies with the amount of fluorine, and therefore F is chemically
bound to titanium. The unhomogeneous nature of this surface is rep-
resented by the different spectra in Figure 104 was previously reported
by T. Smith (Ref. 23).

The chemical states of O, F, and Ti on fluoro-phosphate treated
surface specimens were investigated with high resolution X-rays Photoelectron
Spectrometer (XPS) since this technique is much more sensitive to chemical
bonding than Auger Electron Spectroscopy. Figures 105 and 106 contain
the respective XPS spectra of oxygen and titanium from treated Ti-6A1-4V
and Ti0, "standard". These spectra were recorded after the carbon over-
layer was removed by sputtering. Before sputtering, F,q was recorded
and is compared to Fig recorded from the oxide layer in Figure 107. The
fluorine on the surface has a higher binding energy than in the oxide.

This would be expected if the surface fluorine was chemically bound to

49
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surface contaminants such as C, Ca, Na, and K versus Ti in the oxide.

The 015 and Ti,_ spectra from the oxide (compared to Ti02) show shifts

P
to higher binding energies. These shifts along with the Fig shift infer
the composition of the oxide layer to be an oxy-fluoride rather than a
pure Ti0, plus contaminants.
5. Treatment 1-5 (Degrease and Fluoro-ammonium)

The general effect of this treatment is to produce a
surface with characteristic « and 8 phases covered with a thin oxide
layer. The composition of this oxide layer was found to be Ti0, except
for alloys containing 2.5 and 5 wt% Sn. In those cases the surface oxide
was identified as Sn-0 by comparing their respective AES spectra in
Figures 49 and 61 with the AES spectra in Figure 108 from anodized Sn
and Sn metal,

6. Treatment 1-6 (Degrease and Sulpho-chromium)

The effect of this treatment on surface topography was
negligible with no apparent evidence of = or 8 phases. The oxide film
produced in each case was identified to be Ti0,.

7. Treatment 1-7 (Degrease and Fluoro nitro-ammonium)

In general this treatment produced the thinnest oxide
layer identified as Ti0,. It also produces a surface topography with the
characteristic « - 8 phases on all « -8 alloys.

8. Treatment 1-8 (Degrease and Hot alkaline)

This treatment has no apparent effect on surface topography
compared to "as received" panels, Characteristic «-p phases are not evident
on = - B phase alloys. The major difference between this treatment versus
room temperature alkaline (1-2) is that it produces a much cleaner surface.

In all cases, the oxide layer produced is TiO,.
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* Note:

The source of the copper found on the surfaces of the
etched alloys can be traced to the fluoro-nitric solution, which
was previously used to etch the Cu containing 2024T-3 Al alloy.
The SEM microphotographs of the treated alloy surfaces have the
same characteristic morphology as those treated in a Cu containing

fluoro-nitric solution by Baun et.al. (Ref. 6).




3 V. CONCLUSIONS

Different chemical treatments of various titanium alloys

produce significant differences in surface topography, composition,
chemical state, and oxide thickness. The effects of these treatments
T cannot be adequately evaluated using a single characterization technique. :
" In this study it was necessary to thoroughly assess treatment effects. ]
? The data base produced will be beneficial in the evaluation of adhesive

} bond joints of titanium alloy adherents. In general, the influence of

F‘ surface topography and chemistry on joint strength and durability cannot

F be predicted. Only after mechanical testing and induced failure can these

} properties be evaluated. Therefore, it is essential that as much as possible
be known about the adherent surface before bonding so that evaluation

failure modes can be more easily related to the physical and chemical

properties of all components of bonded structures.

*
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APPENDIX

t . RELATIVE ABUNDANCE OF NATURALLY OCCURRING ISOTOPES !1

(z=1-92)
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AFFRLDLX
RELATIVE ABUNDANCES
OF NATURALLY OCCURRING ISOTOPES

i A- v |2 |3 4|5 |67 |89 [to]rl12[13]|14]15)16 17|18 19|20
! H 9991 01

2 He 100

3 Li 74 |926

4 Be — 100

5 B 183| 817

6 c r 989f 11

1 N 99604

8 0 998004020

9 F 100
10 Ne 309
2i A- ]21122}123}24|25]26|27|28|29{30(31{32|33{34]35|36(37]|38(39]40
10 (Ne) Difes

1 Na 100

12 Mg el 101] N3

13 Al 100

14 Si 922] 47 |31

15 P 100

16 S 95008 |42 002

17 Cl 155 245

18 Ar 034 0086 996
19 K 93ifom
20 Ca 970
Zi A- |41 [42 143144 (45|46 |47 (48| 495051 |52 {53 [54 [55[56 |57 |58 |59 | 60
19 K b

20 Ca 06012 003 02

21 Sc 100

22 Ti 60 |73 |740f55 |52

23 v 03 |937

24 Cr 43 836 (96 (23

25 Mn 100

26 Fe 58 N7122 |o3

27 Co 100

28 Ni 678 262
1i A- |61 )62 (6364 (65|66 |67[68]69 (70 7172723747576 [727]78 [79]80
28 {Ni) 12 1 5w ]

29 Cu W g

30 In ——f 28 |4 e b

3N Ga —_t— — [IEY 39

32 Ge 205 214|171 |37 17

33 As 100

34 Se 09 90 |76 [238 498
35 Br 506
36 Kr 04 23
1i A- 181182/83|84[85]|86|687]88] 8990919219394 {95 96 |97 [98 |99 [t00
34 {Se) 47

35 (Br) 434

36 {Kr) 1M5[115]59 174

37 Rb 122 278

38 Sr 06 99 | 70| 825

39 Y 100

40 U 5t5 i1zl 174 28

41 Nb 100

42 Mo 159 91 N5/ [165]95 [237 96
43 Tc DOES NOT OCCIHR NATURALLY

44 Ru e ) e 56 19 |27 |es
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AbPEND LA

( Contirgeed )

L A- | 101(102]103/104|105]|106|107[108|109| 110|188 |[112(113|114 | 115]1116({117]/118(119|120
44 (Ru) [r71]a1e 185

45 Rh 100

46 Pd 1u nojezz2|er3 267 118

47 Ag 514 486

48 Cd 12 09 124 1127]241[123|288 76

49 In 143 957

50 Sn 09 06 |03 |1a2| 76| 240] 86 330
51 Sb BOES NI OECUR NATURALLY

52 Te 01
1i A- | 1211122(1231124(125[12G|127|128]129/130|131]132{133[134[135(136)137/138/139/140
50 {Sn) i) bl

51 (Sh} 4y a7/

52 (Te) 2abugtas frg taey 318 45

53 | 100

54 Xe vl 0l 19| 264| a1 212|269 104 89

55 Cs 100

56 Ba 01 01 24 | 66| 78 N3 N7

57 ta 01998

58 Ce — 02 02 885
2i A- 114111421143 144 1451146 (147 {148 {149 (150 | 151]1621153]154 1155|156 [157{158 |159{ 160
58 {Ce} R

59 Pr 100

60 Nd 201 r21{238183 {i73 58 56

61 Pm UOES NOT BCCUR NATURALLY

62 Sm 32 19111313875 266 226

63 Eu 479 521

64 Gd 02 21 114712050 157] 249 219
65 Th — - 100

66 Dy —— 01 01 23
2i A- P161]162]163 164 1165 |166 [167 |168 169 [170 {171[172)173(174 {175 (176 {177 |178 (179|180
66 Dy} BRI R R

67 Ho 1y

68 Er Ui i vedf 229 149

69 Tm —_ 100

70 Yh e e 4 ¥, Jufrasfa18161 319 127

n Lu - _ M,_-__j 974126

72 Hi SV Y NS PR S 02 52 |85{271 (138352
13 Ta R B e Uy B oo!
74 W —— 07
2i A- [1B1JTE2[183 (184 184 (166|187 |188 (189 (190 [191]1192(193{194 |185 196 {197 [198 [199 |200
73 {Ta) '“

73 (w) — () 11 [

15 Re |—-}---j—f——{" (Y

76 Os s peal v v 264 410

n Ir —_ =) =] — R 615

18 Pt — - -} = —j—1 0 0y 3291339 |22 719

19 Au — e ) 100

80 Ho p—t———1 -~ o e 02 00 { 18] 231
24 A - 1201 202] 203[ 204 |20¢. [206 | 207 |208 [209]| 210{ 211| 212{ 213|214 215|216 }217|218 [219]220
80 (Hg) Jroo| e o

81 \ —_ 24 e,

82 Py }— 14 PO W KXW

83 8i Tt 1 100

84 (Po), 85 (A1), 86 (Rn), 87 (Fr), 88 (Ra), 8Y (Ac), DO NOT OCCUR NATURALLY

2 A - |221] 222] 223|224 225]226] 227 {228 229 230] 231] 232]233(234 | 235 |236 237 | 238 |239 | 240
90 Th — IS T

9 Pa — e - 00

92 1] 1 A B s —-— IO e 993

93 {Rp), 24 (Pu), 95 {Am), 96 {Cm), 97 (Bk), 98 (CH), 99 (Es), 100 (Fi) 101 (MJ), 102 (No}, 103 (Lw),
DO MO OLCDICNATURALLY
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S.E.M. photomicrograghs of Ti-8A1-1Mo-1Sn subjected

to 1-7 and 1-8 treatments
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and Ti-6A1-4V by J.S. Solomon et.al. (Ref. 15)
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FIG. 48 A.E.S. spectra aof Ti-5A1-2.55n subjected to 1 treat-
ment (0-2000 eV and 330-530 eV)
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FIG. 49
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treatments and Equilibrium Sputtered A.E.S. spectrum of Ti-5A1-2.55n
(330 - 530 eV)
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FI1G. 59 A.E.S. spectra of Ti-5A1-5Sn-2Mo-27r-0.25Si subjected to 1

treatment (0-2000 eV and 330-530 eV)
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FIG. 61 A.E.S. spectra of Ti-5A1-55n-2Mo~22r-0.255i subjected to 1-5
treatment (0-2000 eV and 330-530 eV)
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S.E.M. photomicrographs of Ti-3A1-2.5V subjected to 1-6

and 1-6 treatments

FIG. 69
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FIG, 71 A.E.S. spectra of Ti-3A1-2.5V subjected to 1-5 treatment
{0-2000 eV and 330-530 eV)
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FIG. 81 A.E.S. spectra of Ti-13V-11Cr-3A1(G,) and titanium(A;) subjected

to 1 treatment (0-2000 eV and 330-530 eV)
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E. 1 FIG. 82 A.E.S. spectra of Ti-13V-11Cr-3A1 subjected to 1-4 treatment
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S.E.M. photomicrographs of Ti-8Yn subjected to 1-7 and

1-8 treatments
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F1G. 92 A.E.S. spectra of Ti-8Mn subjected to 1-8 treatment (
and Equilibrium Sputtered A.E.S. of Ti-8Mn (0~1000 eV
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ELECTRON BEAM INDUCED CHANGES
IN Ti0, (J.S. SOLOMON et al)

Ti Ly [\ﬁ Ti LMM
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45m,) “

450 4?0 4170 ‘ 360 400 440
1
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\\gﬁg

FIG. 101 A.E.S. and A.P.S. spectra of Ti0, by J.S. Solomon et. al. (Ref. 16).




i
-
"
(o
»
I ———

t= 15s.

N(E)

metal

3BO 370 390 40 430 450 470 490 510
ENERGY (eV) ’

FIG. 102 AES spectra of Ti-6A1-4V subjected to 1-5 treatment at various
times during sputtering (330-530 eV)
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FIG. 103 A.E.S. spectra of Ti-6A1-4V subjected to 1-4 treatment at various
times during sputtering {330-530 eV)
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