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MODERN EMPIRICAL STATISTICAL SPECTRAL ANALYSIS

Emanuel Parzen

Institute of Statistics

Texas A & M University

INTRODUCTION*

This paper has two aims: (1) to provide perspectives on the
diverse paths of analysis which are available in 1980 to estimate
the spectrum of an observed time series; and (2) to describe pro-
posals for optimal statistical spectral estimation procedures
which combine autoregressive spectral estimators and log spectral
estimators. It is proposed that empirical statistical spectral
analysis should be an adaptive procedure for forming an iterative
spectral estimator (an iterative estimator is one composed of
estimators obtained in different steps of the analysis). There
are three parts: I. Basic concepts of time series spectral
analysis; II. Entropy distances, autoregressive spectral esti.-
mators and log spectral estimators; III. An outline of empirical
spectral analysis

I. BASIC CONCEPTS OF TIME SERIES SPECTRAL ANALYSIS

- By spectral analysis of a time series Y(t) one means fitting
to the time series a spectral representation of the form

Y(t) = fe 2liXt dT(X)

*This research was supported by the Office of Naval Research

(Contract N00014-78-C-0599).
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Spectral analysis has as its aim the determination of the proper-
ties of the function T'() Model identification is concerned
with determining the qualitative properties of T(A) , and para-
meter estimation is concerned with determining the quantitative
properties of '(X) . This chapter defines some basic concepts

of spectral representations of time series.

1. DISCRETE PARAMETER AND CONTINUOUS PARAMETER TIME SERIES

The theory of time series analysis discusses separately dis-
crete parameter time series {Y(t), t = 0, + 1, ...) and continu-
ous parameter time series {Y(t), -- < t < "} . This paper dis-
cusses only discrete parameter time series. The range of the
frequency variable X is taken to be -0.5 to 0.5 in the discrete
parameter case, and -- to - in the continuous parameter case. In
many scientific fields, a discrete parameter series Y(n) arises
by observing a continuous parameter time series Z(t) at equi-
spaced times t = nD , so that Y(n) = Z(nD) . One calls D the
sampling interval. We assume a spectral representation

Z(t)=f e 2 rit0M

-OD,

Then

27inDw

Y(n) = Z(nD) = f e dw

Let A = DW. Then

Y(n) = f e 2 Zin I x dA

Write the integral from -- to - as the sum of integrals over the
tntervals k - 0.5, k + 0.5 for k = 0, + i, ...; the latter inte-
gral

k+0.5 2wi 0.5 2'inA' 1 A'
f e 1 x ) dA = f e -Z -- 1k) dA'

k-0.5 D -0.5 D

Sampling Theorem: Y(n) has the spectral representation

0.5 in

Y(n) = f e 2 y (X) dX

-0.5

!,

'AJ
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,y(X= D k=-.Z

Further, if Z(t) is bandlimited, in the sense that 4Z(w) = 0 for

Iwi > , then

1,y(X) = () = D y(Dw)

Using these formulas one can rewrite the formulas one obtains
for the spectrum of Y(t) , t = 0, + 1, ... as formulas involving
the spectrum of the sampled time series Z(t), -- < t <

2. SOME TIME SERIES MODEL TYPES

Observed discrete parameter time series often may be regarded
as sums of different types of functions.

Pure harmonics of period p > 2 are functions

2ir t  2ir
Y(t) = A cos -t + B sin- t ;

p P

for which T() is a function of bounded variation which changes
only in jumps; Y(X+O) - T(X-0) = 0 for all A in 0 < A < 0.5
except X = .

p C
Transients are square summable functions, Y Y (t) <

t=_0

Then Y(X) has a derivative *(X) = T'(X) satisfying

@(X) = ) Y(t) e-2itX

-0.5

An important example of a transient time series Y(t) is a sik
which is non-zero at only one time to; then

-27rit A
(X) = Y(to) e 0

and I (X)I2 = constant for all A

I ___________ _____
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The non-deterministic component of a time series is often
assumed to be a covariance stationar time series Y(t) with zero
mean and covariance tunction (n the notation of Parzen (1962))

R(v) = EtY(t) Y(t+v)] , v = 0, + 1,...

The correlation function is

R(v) - Correlation [Y(t) , Y(t+v)]

We divide stationary time series into three types, (1) white
noise, (2) short memory, or (3) long memory, whose definitions
are given in the next section.

A pure harmonic of period p obeys the difference equation

Y(t) - 4Y(t-l) + Y(t-2) = 0
2ir

where 4 = 2 cos - * Consequently if a time series Y(t) is the

sum of harmonics and a stationary time series a useful way to
identify a model for the time series Y(t) is to introduce a
transformed time series

Y(t) = Y(t) - *Y(t-l) + Y(t-2)

and to model Y(t) as a stationary time series. The final model
fitted to the time series Y(t) is called an iterated model
when it has the form

Y(t) _[ _ Y~) E(t) white noise

To estimate the spectrum of a time series, one must identify

the qualitative model types of which the time series is composed
before one can estimate quantitatively their properties. It may
be wisest to carry out in parallel several of the approaches to
time series computations described in Chapter III. I express
this point of view in a motto: "If one can think of two or more
ways of solving the problem, one should solve it in two or more
ways."

3. STATIONARY TIME SERIES MODEL TYPES

A stationary time series Y(t) has a spectral representation

in terms of a stochastic integrand T(A) satisfying
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nld4'(A) 2 - R(o) f(A) dA - R(O) dF(A)

where f(A) and F(A) are spectral density and spectral distribution

functions, respectively, whose definitions are given in this
section.

White noise, or a no memory time series, is a time series
of independent random variables; it satisfies I IR(v)l = 0

v>O

To introduce the notion of a time series of short memory
type, we consider a stationary time series Y(t) and assume that

jR(v) < ' We define the power spectrum of the time series
V=--

to be

S(X) = e R(v) , -0.5 < X < 0.5

it satisfies

0.5 2rv

R(v) = 0 e S(X) dA , v = 0, + 1,...
-0.5

We define the spectral density of the time series by

fro
-2iivA

f(A) = e p(v) , -0.5 < A < 0.5

It provides a spectral representation of the correlation function,

0.5 nv

P(v) = 0 e f(A dA , v = 0, + 1,...
-0.5

To deflne tei, spectrum of a statlolkary time serics whose
correlation function p(v) is not summable define, for any T > 0,

1 T
I T -2Trij 27ri~k

fT(X) = T Y e A e p(j-k)
j,k=1

it is a non-negative function by the non-negative definite pro-
perty of p(v) One can write

A'\
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( =Iv<T T

(i )P(v) = 0 eiv f (A) d.
-0.5

When p(v) is summable, fT(T) - f() > 0 . Otherwise, o(v) is

the limit (as T --c) of Fourier transforms of non-negative func-
tions, and therefore there exists a spectral distribution function
F(X) , -0.5 < A < 0.5 such that

0(v) .5 e2 7iAv dF(A)

-0.5

and FT(A) =f f T(u) du -- F(A)T -0.5T

An important diagnostic tool of the type of a stationary
time series is its spectral log range, defined by

SPLR = lim log max fT(0) - log min f T()
T--) o

The memory type of a stationary time series is classified
according to the behavior of its spectral log range:

NO MEMORY SHORT MEMORY LONG MEMORY

SPLR = 0 0 < SPLR < SPLR=

A stationary time series has short memory if 1 IP(v)I <

and the spectral density f(X) j 0 for any A ; then there exist
positive constants C1 and C2 such that 0 < C1 < f(A) < C2 < W

for all A. For a short memory series, f(X), f- (A) , and log
f(A) are all Integrable over the interval -0.5 < X < 0.5

4. STATIONARY FILTER THEOREM
The intLerpretatlon of the power spectrum comes from the

following important theorem.

Filter Theorem. If Y(') is stationary with spectral density
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fy(,) . and

Z(t) b(t-s) Y(s) - ) b(s) Y(t-s4)
S=- s=-00

where > b2 (s) < , B(A) = " b(s) e- 2 1tiXs
S=--ooS=-oo

then Z(.) is stationary with spectral dnsity and covarlaii-t,
function given by

fz(A) = fY(X) JB(X)1
2  Ry(0)

~Rz(O)s'

Rz(v) = X Rb(s) Ry(v+s)

defining R.0(v) = X b(k) b(k+v)
o k=-o

5. WHITENING FILTERS

Another major aim of time series analysis is to obtain
whitening filter representations of Y(t) , t = 0, + 1, ...

of the form

P q
a. a.Y(t-j) b k. b(t-k)

j =0 k=0

where {I(t) , t = 0, + 1, . is a time series of "simple"
structure; in particular 9(t) might be white noise or a series
of impulses. Whitening_ filter analysis has its aim the deter-

mination of the parameters p,q, a,, a1 ,..., a, b0, bl,...,bq and
series r(t) , especially its specral representation

f 0.5 2nit M~(t) = f e d'I' (A

-0.5

The whitening filter is called: an autoregressive, or
AR, filter if q = 0 ; a moving average, or MA, filter if p 0and an autoregressive moving average, or ARMA, filter if p and q

A
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are both non-zero. The most frequently used filters are AR

filters.

From a whitening filter representation of Y(t) one may infer

properties of its spectral representation; define

P q2TiA -2Tlij X 2niA 2,nikXgp ( a.e h ) (e bkej = q k

j=0 k=

called respectively the AR and MA transfer_fvnjtiona Then

f05 e 2it gp(e 2 i  )d Y ( A)  f 05 e2it h (e 27ri)dY(\)
-0.5 -0.5 q

Consequetntly (for all A0 )

f 2TT = f h (e27ii)d l(A)

-0.5 -0.5 q

Knowing gp hq, and T , one can solve for T y

When n() is a stationary time series we define the spectral

density of Y(-) by the filter theorem:

lh (e27TiA
) 2

fy(0) = f (A) P( )1 -2

where G2 is a "measure" of R (0)/Ry(O) , such as

-2 2 W

The whitening filter is written symbolically in terms of

the lag operator L defined by LY(t) = Y(t-l) . Then

g (L)Y(t) = h (L) rl(t) , r(t) =_g (t)
p q h (L)q

6. BASIC SAMPLE STATISTICS

To form estimators of parameters, such as R(v) and f( ),
we can either seek estimators which are optimal according to an

LA
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estimation criterion such as maximum likelihood or we can form
estimators which seem "natural" and determine their asymptotic
optimality properties. A natural estimator of R(v) = E[Y(t)Y(t+v)]
from a sample {Y(t), t = 1, ..., TI is

I T-vR(v) = - Y Y(t) Y(t+v)

Tt=l

called the sample covariance function. Note that we divide by
T rather than by T-v in order to obtain a function R(v) which
is positive-definite

n
n cjCkR(j-k) > 0 for all n, cl, nj ,k=l -

Then p(v) is estimated by

T-v

Y(t) Y( t+v)

(v) Vv) t=l

) Y2 (t)

t=l

called the sample correlation function. These functions possess
spectral representations

R(v) = f~" e S(1) dA
-0.5

10 .5 2~ ~
P(v) = f e f(X) dA

-0.5

in terms of

T
Y(t) e2TlitX 2

Smx = 1 1

t=l

It~l Y(t) e-2ItX 2

2
Y(t)

t=l

L *_^MAW



-10-

It should be noted that these functions provide a generalized
harmonic analysis of Y(.) in the sense of Wiener (1930).

We call S(A) the sample p r _spectruim and f(") the sample

spectral density. They are natural estimators 6f S(o) and f(Q)
respectively, but they are very wiggly functio-is and lack most
of the properties of optimal estimators. Thus arises the need
for a sophisticated theory of statistical spectral analysis.

One reason for using k(v) and f() as basic diagnostic
statistics for observed time series is that they possess fast
computation algorithms, using the Fast Fourier transform. Given
a sample {Y(t), t = 1, ..., T} one proceeds as follows.

A. Pre-processing. To analyze a time series sample Y(t), t = 1,
... , T , one will proceed in stages which often involve the sub-

traction of or elimination of strong effects in order to see more
clearly weaker patterns in the time series structure.

The aim of pre-processing is to transform Y(') to a new
time series Y(-) which is short memory (a zero mean stationary
time series whose spectral density has finite log range). The
basic pre-processing operations are memory less transformation

(such as square root and logarithm), detrending, "high pass"
filtering, and differencing. One usually subtracts out the sample

T

mean Y = I X Y(t) ; then the time series actually processed
t=l

is Y(t) - Y • If the mean Y is a large number, it should be sub-

tracted; the variations in Y(t) are then the variations of Y(t)
about its mean. The sample mean Y and sample variance R(0) should
always be recorded.

B. Sa§ple Fourier Transform by Data Windowing, Extending with
Zeroes, and Fast Fourier Transform. The first step in a compre-
hensive analysis of a pre-processed time series sample should
always be the computation of the sample Fourier transform

T
M(X) = Y Y(t) exp (-27i~t)

t=l

at an equi-spaced grid of frequencies in 0 < X < 1 , of the form

= - , k = 0, ... , Q-1 . We call Q the spectral computation
Q

number. One should always choose Q > T , and we recommend Q > 2T.

Prior to computing qj(X) , one should extend the lengfh of

the time series by adding zeroes to it. Then 4j(X) , X = -



-11-

can be computed using the Fast Fourier transform.

In addition, one should compute a sample "data windowed"
Fourier transform

T

mW(A) = Y Y(t)W(d) exp(-21TiXt)
W1~t=l

To understand the effect of the window, one replaces Y(t) by its
spectral representation

0.5
Y(t) = f exp (2iWi't) d'(Xl')

-0.5

0.5
then W = wT (;-X') dW(A')

-0.5

T
where w (A) = [ W() exp(-2niAt)

t=l

Considerations involved in the choice of data windows are dis-
cussed in Harris (1978)

C. Sample Spectral Density. The sample spectral density [W)
is obtained essentially by squaring and normalizing the sample
Fourier transform;

f( - , = , k = 0, 1, ... , Q-1 .

lQ k 2

k=

It is a function with period 1, whose domain is taken to be
-0.5 < X < 0.5 (or 0 < A < 1), which integrates to 1 and provides
a spectral representation of (v).

D. Sample Correlation Function. The sample correlation function
.(v) is computed (using the Fast Fourier Transform) by

1  k
(v) = - Z exp(27iv) f(-)

k=O

which holds for 0 < v < Q-T

VA ...
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E. Sample Spectral Distribution Function.

F(A) = 2 3f ) dX' , 0 A < 0.5
0

the graph of F(X) provides qualitative diagnostics of the time
series model type.

The foregoing basic statistics are the building blocks of
the smooth spectral estimators whose theory is discussed in the
rest of this paper.

II. ENTROPY DISTANCES, AUTOREGRESSIVE SPECTRAL ESTIMATORS, AND
LOG SPECTRAL ESTIMATORS

The theory of statistical spectral analysis in 1980 should
be based, in my opinion, on the role in statistical inference of
entropy and information numbers. The crcdit for emphasizing
this perspective should be given to the two pioneering develop-
ments of MEM (maximum entropy method) of Burg (1967) and AIC
(information criterion) of Akaike (1974).

Given a sample Y(t), t = 1, 2, ..., T of a discrete para-
meter time series Y(t), t = 0,+ 1, ..., the general problem of
statistical inference is to infer the probability distribution
of the observed random variables. A probability model whose
goodness of fit to the data is an ever-present hypothesis is
that Y(t), t = 0, + 1, ... is a zero mean Gaussian stationary
time series with covariance function R(v) = ElY(t) Y(t+v)]
v = 0, + , ..., and correlation function O(v) R(v)/R(O)
When discussing statistical inference, it is usual to assume that
the process is ergodic which requires us to make an assumption
such as R(v) is absolutely summable: IR(v)I . The power
spectrum S(X) and spectral density function f(X) are defined (in
Section 1.3) as the Fourier transforms of R(v) and 0(v) respec-
tively.

1. APPROXIMATE LIKELIHOOD FUNCTION OF STATIONARY GAUSSIAN TIME
SERIES

One approach to forming optimal estimators of statistical

parameters is to obtain a formula for the likelihood or joint
probability density function of Y(l), ..., Y(T), which we denote
by f0 (Y(l), ... , Y(T)) ; the subscript 0 indicates that it is a
function of the unknown parameters 0 , log is natural logarithm,
* is complex conjugate transpose. Then

-2log f (Y(), .... Y(T)) = log{(2n) T det K0 + YTK0 Y
0 0 T
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where Y = (Y(), .... Y(T)) and K0 = EYTYT is a covariance
matrix with (s,t) - element equal to R (s-) The subscript
0 on R0(v), P0 (v), S0 (X), and f i(n, indicate that they are
functions of unknown parameters 0 (which are to be estimated).

The covariance matrix K is a Toeplitz matrix; asymptotically,
as T tends to -, all T by T Toeplitz matrices have the same
eigenvectors exp(-2vit J/T) , j = 0, 1, ..., T-1 . The eigen-
values of K0 are Se(j/T)

We prefer to express the likelihood in terms of f0 (j/T)
Thereforewe assume that the time series Y(t) has been divided
by {R(0)} 2 so that it can be considered to have variance I, and
its covariance function equals its correlation function. Then
one can show that approximately, for large values of T,

-2 log f0(Y(l).. .,Y(T) = log2r + f {logf0 (A) + f(X)-T ... -0.5 6fe

= log2r + H(f;f 0 )

wh r 2(A T 2
where f(m) Y Y(t) exp-2rit2 ; y 2 (t)

t=l t=l

is the sample spectral density, and the entropy number H is
defined by

0.5
H(f;g) = f {log g(A) + W)I

-0.5 gX d

2. MINIMUM ENTROPY DISTANCE ESTIMATION

The maximum likelihood estimator 0 is equivalent to the
estimator 0 minimizinZ over 0

0.5
H(f;f0 ) = {log fO(A) + - dX

In order to regard H(f;f6) as a measure of "distance" or "fit"
between the data (with representing function f(M) and the model

(with representing function f6 (X)), we define the entropy
distance

A
-. -
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0.5 f(\)l(f;g) = I {f(A) - (\
-0.5ogg()- - 11)d = H(f;g) - H(f;f)

Since u - log u - 1 0 for all u, I has two of the properties
of a distance, namely I(f;g) > 0, l(f;f) = 0 . However I does
not satisfy the triangle inequality. Since

I(f;f0 ) = H(f;f ) - H(f;f)

minimizing 11(f;ft)) with respect to 0 is equivalent to minimizing
l(r;f ). Minimum entropy distance estimators ") are shown to be
consistent (as the sample size T tends to infinity) by showing
that the sequence l(f;fi) converges to zero, where f is the true
spectral density function. If f = f00 for some 00 , then one

can infer that the sequence 0 converges to 00.

3. L 2 DISTANCES BETWEEN SPECTRAL DENSITIES

22One can relate entropy distance to the L2 log spectral density

distance

L2L(f,g) = f {log f(A) - log g()} 2 dX
-0.5

2
Since u = exp (log u) = 1 + log u + 1/2 (log u)2 , for "neighboring"
f and g, l(f,g) = L(f,g)/2 and minimizing (i;f ) could be re-
garded as asymptotically equivalent to minimizing L2L(f;f 0 ) .

An extensive discussion of these distances is given by Gray, Buzo,
Gray, and Matsuyama (1980).

The notation 12 L is chosen to emphasize the distinction
between that distance and the L 2 spectral density distance

0.5 2

L2 (f,%) = . {f() - fem )} dX
-0.5

This distance has been used for spectral estimation but it seems
not to be justifiable in general.

However in the case of smoothing prewhiten-d sample spectral

densities. when f () may be expected to have a small log-range,
L2(tf O ) may be a justifiable distance. It then may approximate

o0.5_f -X fo(X ) 2-0.5 f 0
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which is also a useful "distance".

4. MINIMUM DISTANCE FORMULATION OF OPTIMAL ESTIMATION

Ii, summary, one approach to forming "optimal" estimators
f(A) of the spectral density f(A) of a stationary time series is
to view (X) as a function closest to f(A) in a "distance" between
spectral density functions, such as

H(f;f) = l.og +(X) + d

I(j;f) = o.5 f (c log (A) dX = H(i;j) - H(i;j)

0 .5 

2

LzL(if) = So.5 {log f(X) - log f(A)} 2 dX

The class of functions from which f(A) is chosen can be specified
or constrained either parametrically or non-parametrically. A
parametric constraint is to choose f(A) from a family of functions
f (X) indexed by a finite number of parameters 0. A non-parametric

constraint is to impose a smoothness measure on f such as the
square integral of second derivatives:

0O.5 12 0orf.5 2

.51f"() d or _.51(tog f(X))"I 2dX

One then seeks to choose to maximize smoothness while minimizing

a measure of distance of f from f .
Nonparametric approaches to spectral estimation may work best

for estimation of the log spectral density using an approach in-

troduced by Wahba (1980). Motivated by the estimation distance
0.55),,.2

f0 5
5 log i(x) - log i(M)2dX + KJ_0.1(log (x) dX

where K is a penalty parameter to be determined adaptively by the

data, she considers estimators of the form

log f(A) = I w() y(v) exp (-2irivX)
V=w M

where y(v), which I call cepstral-correlations, are defined by

y(v) = fO.5 log t(A) exp (21TivA) dA
i -0.5 i

and the weights w(v) are of the form

w(v) = 1 r = 2 or 4.

Sl+v2r
We call M the "half-power" lag. In Section 7 we discuss how one
might choose M and r to minimize an estimator of
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SE -0.5 {log f(A) - log -f(A)2 dX

assuming log f(A) has finite range and therefore has a represen-

tation

log f(M) = y y(v) exp (-27rivX)

5. PARAMETRIC SPECTRAL ESTIMATORS, BIAS, AND VARIANCE

A spectral density estimator is called parametric if it is
based on a representation of the spectral density as a function
of m parameters Ol ..., em , which we denote f6 l ..., 1 (A)

We call m the order, and it is also often a parameter to be esti-

mated. The problem of model identification, or model approximation,
is to estimate m, and also to estimate which parameters eO, ..., 0m
are "significantly" different from zero.

The true spectral density is denoted by f or f A best ap-

proximation f = f- - can be determined for each order

m where Ol "" I em minimizes H(f;fe ). An estimator

of f is f = f6 6 where 0l' Om 0 minimizes 1H(f;f 0 • ... 0 "
01 m I m

The optimal estimator f minimizes R(f) = EI(f ;f)
When using approximating parametric densities the criterion R(f)
Is replaced by an order determining criterion C(m) to determine

the order m of the parametric density. One can write
C(m) = B(m) + V(m,T)

where B(m) = I(f ;f) , V(m,T) = EI(f;f)
We call B(m) the model approximation error (or bias) and V(m,T)

the parameter estimation error (or variance). As m -4
B(m) --p 0 and V(m,T) -4 -. Consequently C(m) has a minimum.

AIC introduced by Akaike (1974) may be regarded as corresponding

to

;fm)' ) - H(f;f) fi log ;2 _ log -2B(m) = H(f~f 6 (
1' . m

V(m,T) = 2m/T

Other order determining criteria may be regarded as corresponding
to different formulas for V(m,T):

V(m,T) = (m/T) log log T, Hannan and Quinn (1979);

V(m,T) = (m/T) log T, Schwarz (1978)
CAT(criterion autoregressive transfer function) is an order

determining criterion for autoregressive spectral estimators

introduced by Parzen (1974), (1977); one version is

1 2 -2 A-2 ,fi
CAT(m) =Tjfi m T
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We would like to emphasize that it is also of the general form
B(m) + V(m,T) , defining

2 ( 22-2

B(m) = + -2 vm T , Yr)=¥J I-

6. AUTOREGRESSIVE SPECTRAL ESTIMATORS

The most convenient parametric estimators are autoregressive
spectral estimators of the form

f,m () = a211 + 0
e- 2 vi X + ... + aem -2iXmi-2

2

The parameters are o , ... , o as well as the order m. The
subscript 6,m is merely symbolic o indicate that f(\) is a
function of m parameters (in addition to i )
Estimators of these parameters can be found by solving "normal
equations"

m aZ kK(j,k) = 0 , j = 1, ... , m ;

k=O

mY, akK(O, k ) = 
a-m

k=O

where K(j,k) is an estimator of K(j,k) = ELY(t-j) Y(t-k)] The

normal equations are called stationary if k(j,k) is chosen to be
a function of (j-k)

Stationary estimators Ctl, ..., am may be found by minimizing
Jc ) r0 .5  -2 iiX e-21Tim\12 (1)d

J019 .... ) = So.5 Ii + ale- +...+ a me 12AJUX

2 . 1 -

since H(;ff) = log 02 + 2 J(alf "'' am
fl - oI , + -2niX

W ave used the important fact that elogl
+ a e mId= 0 under the assumption that the characteristicm m
polynomial g (z) = 1 + a z + ... + am z has all its roots in the
complex z-plane outside he unit circle. 2

Differentiating H(f;f ) with respect to a one obtains
-2 J al ... 9 otm)

- = 3( I

The problem of minimizing J(al ... , can be viewed as a
problem of projection in the Hilbert space of functions on the
unit circle with the inner product

(gl9 g2 )f = fo 5 g 
iX ) fg2

(e 21i ) }* f(A) d •

J(al... m is the norm snuared of the best approximation of I
by 3 linear combination of e2 i The coefficients

, .,eTecefcet
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Q1  .. a are determined by the condit ion that g (z) =1+ a z~mm 2rriA mI
+ + ,m z = e ,is orthogonal to z1, j 1, .. ,m

Thus

0 =fo. 5  g(e 
2ItiA e-2 7llAj f (A) dX

- in , j = 1, ... , mn, where &= 1

k=0

These are the celebrated sample Yule-Walker e qipns, *or Toeplitz
normal equations for the autoregressive coefficients. The estimator
of 02 is ' 2 , called the residual variance or prediction error

in
variance, given by

a m= (1,2) = k
in=

It cannot be too strongly emphasized that there are several
ways to form estimators of parameters to form an autoregressive
spectral density

=2 21TiX + 2 1TiAmi-2.f m 1 + ae + .. +r

Various approaches are otitlined in section 9. When the coefficients
are computed by the Yule-Walker equiat ions f mis cal led the Yule-
Walker autoregressive spectral estimator, and it satisfies

H(i;i~ = 05 f m f(X) + f dX = loga2

since f 05log f m(A) dA = log in

f5 f(A) d= 211 12 = 1I
-0.5 in-x f 2 (lg.)

Akaike's AIC (to be minimized to determine significant
orders m) is

AIC(in) = B(m) + V(m,T) =Haf;f ) + 2m = log a2 + -m

m T in T
An Important consequence of otir deri[vat ion is that one can

evaluate a similar criterion for other ways of computing an auto-
regressive spectral estimator fm~

f .510 am*2 m

dA-- "- (> 1I usually)

-0.55 1M ~

defining 0 in = 'O5 1 + &le 2 .+ ae 2inI 
2  

0 dX

Consequently an order determining criterion could be
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m) 2m m .2 2m
m T mT+ logm +

m

if the criterion one uses for the match of model to data is one

based on the spectral matching of f to f (although f is estimated
using non-stationary autoregressive models).

7. LOG SPECTRAL SMOOTHING AND CEPSTRAL CORRELATIONS

The problem of estimation of the spectral density of a time
series Y(:) can be regarded in theory as determining a smooth
function f (A) which optimally fits a sample spectral density
f y(A) . (Note that to compute fy( ) one may have used a dataYJ
window). We believe that the best fit is often obtained by an
iterated spectral estimator which uses an autoregressive estimator
to match the large scale excursions of fy(A) , and then uses log
spectral smoothing to match the smaller excursions. The autore-
gressive filter often has the effect of reducing the log-range of
the spectrum, without following fine structure which is present.
The fine structure which is left in the residual process is esti-

mated by the log spectral smoothing estimator.
For long memory time series, the iterated spectral estimator

combines (1) an order 1 or 2 autoregression to transform to a
short memory time series, (2) an autoregression to prewhiten,

(3) log-spectral smoothing.
Autoregressive spectral estimation phase. Using an order

determining criterion, and either stationary or non-stationary
estimators of coefficients, one determines an autoregressive fil-
ter gm(L) , autoregressive residLal variance a2 , and autoregressive

m m
spectral density estimator

m m m

The residual time series Y(t) is defined by

Y(t) = g (L) Y(t) •

Autoregressive spectral estimators are superior to other spectral
estimators when the length of the observed segment of a time
series is short compared to the (long) memory of the correlation

func tion of the tIIme series.
If Y were regarded as white noise, one would regard frM()

as the estimated spectral density of the time series. To compen-
sate for the fact that Y may not be white noise, and to ease the
burden of requiring Y(t) to be white noise, we estimate its spectral
density.

Residual log spectral estimation phase. Between the sample
spectral densities of Y(t) and Y(t) there exists a basic relation:

a- 2 ^I (e27iD MfY( = "m Im ) y(X
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where *2 f.5  g( 
211iX) 20 -- f-0 .5 9g m(e ) 1 y(A) d X,

This relation cnn be written:
G2 y(X)

fPA() -- -- 2
m

^2

log f4() = log 2 log fm(A) + log fy(A)

am

Assuming that fi(A) has been "prewhitened" in the sense of
haigmoderate log range, we smooth log f(X) to form an estimator

{log f (X)}^ . Then as a final estimator of the true log spectral

density f(A) we take, up to a normalizing constant,

{log fy (X)} ^ = {log fj(X)}^ + log fm(A)

To smooth a log spectral density, compute cepstral correlations

y(v) = ' exp (-2n ivk) log k (

Qk=O Q
for v = 0, 1, ..., T. Define, following Wahba (1980),

flog f (A)}^ = .57721 + exp (21ivX) y(v) 1

Iv.<T 1 + (v/M)2 r

where r is an integer > 2 ; usually one takes r = 4 or r = 2 ,

and M is a real number-chosen in practice to be an integer satis-
fying 2 < M < 12 . One calls M the half" power point of the estimate.

To introduce a criterion for the choice of M, define g(X)

log f.(A) , g(A) = log if(A) , y(v) =f.5 exp (21Ti)v)g(X)dX,

(N) = flog f (X)}^ defined above. A measure of the goodness of

an estimator is

RM  -E I (X) - g(x) 2dX = ¥ Ejg^ (-)

Following Wahba (1980), to minimize RM one minimizes RM = B(M)
+ V(M,T) , defining

1 - (v)12 v4r 11 + (V) 2r.-2

M 4 rIvI<T/2 
M

2r-
V(M,T) 2 4f' (1O u2r ) -1d

=T 6 0 i u

One evalues RM for various values of M (and r); one chooses for

these parameters the values minimizing RM . The iterated spectral

estimator is data adaptive, since the parameters m and M required

to compute the estimator are chosen adaptively through order-deter-
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mining (or model selection) criteria.

8. MAXIMUM ENTROPY SPECTRAL ESTIMATION

To discuss the philosophical basis of the maximum entropy
method of spectral estimation introduced by Burg (1967), we
need to discuss further the role of infornation numbers in statis-
tics. To a sample {Y(t) , t = 1, ... , TI there is a true pro-

bability density f(Y(l), ..., Y(T)) ; we denote by f (Y(l),... ,Y(T))

a probability density function which is a function o? parameters
and which represents a model for the true probability density.
A measure of the discrepancy between f and f, is the Kullback-

Liebler information number or directed divergence

fI E, ) f
rIT ' 0 T f flog0

1 f(y 1 l ... lYT
= ...I' YT)Iog (yl )log . ... dyT "

Pinsker (1963) shows that in the limit as T -4

21 T J = 0.5 rim - 1 - log f() dA

= H(f;f) - H(f;f)

We can distinguish two ways to use this formula, (1) a stat-
istical or data analysis approach, and (2) a probability approach.

A data analysis approach to parameter estimation is to use a raw
estimator f of f (which, while a wiggly estimator of f, is satis-
factory when only used as an integrand) to form an estimator
I T(;f ) of IT(f;f )

In contrast to the data based approach which minimizes H(f;f6 )

over 0, is the probability approach which maximizes H1(f;f) over

all functions f satisfying a set of constraints

O.5 4j(A) f(X) dX C. j M

for speclFied functions q).(A) - An example of a set of constraints

is to require the first m correlations of f(X) to equal sample

correlations o(j)

-0.5 e27T~j f(A) dX = pMi) , 0, ±-_ 1, ... , + m

Since H(f;f) = fO.5 {I + log f(X)} dX

the optimal function i(X) is called a maximum entropy estimator
of f(M) It is well known that f(A) has the form of an auto-
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regressive spectral density:

f() 2 1i + a e  + ... + a e 2li~i
m Im

The maximum entropy principle provides a motivation or justi-
fication for the use of autoregressive spectral estimators. However
the maximum entropy principle provides no insight into how to
identify an optimal order m, or even what are the effects of dif-
ferent methods of estimating the parameters a2, (I,*.., " .
It provides no guidance for how to learn fromm the'data whethr

the time series Is non-stationary (long memory) or stationary
(short memory), or whether the best time series model is AR, MA,
or ARMA. In my view it is a principle for deriving probability
models, rather than statistically fitting models to data.

It should be realized that the maximum entropy principle justi-
fies autoregressive estimators only for short memory time series
(for whom log f(X) is integrable). Autoregressive estimators are
justified for long memory time series by the fact that a pure har-

monic Y(t) = A cos -t + B sin -t satisfies Y(t)-4Y(t-l)+Y(t-2)=O
p p

where 4 = 2 cos --

p

A justification of autoregressive estimators for short memory
time series that I prefer is the existence of the infinite auto-
regressive scheme representation for a stationary time series satis-
fying: spectral density f(X) is continuous and differentiable;
f(A) is bounded above and below; f'(X) is square integrable.
Then f(X) has an infinite autoregressive representation

fM) = a. Jg(et2 X)j

where g.(z) = 1 + alG z + ... + am, z +m

9. PARAMETRIZATION OF AUTOREGRESSIVE SPECTRAL ESTIMATORS

There are many approaches for forming autoregressive spectral
estimators, because there are four equivalent ways of parametrizing
them: (A) autoregressive coefficients, (B) correlations, (C) par-

*tial correlations, and (D) residual variances.

A. Consider autoregressive coefficients 0 < a2 < 1, a ..m - Im' ' m,m

such that3(z) = 1 + almz + ... + a mZm satisfies g(z) J 0 for

complex z such that Jzi < 1 . Thus g(z) is a minimum phase filter
transfer function. These coefficients define the autoregressive

II"
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spectral estimator f(A) = g (e 2fiA )2
m m m

lB. Consider correlat ion cocfficients (1), (2), , 0(m)
which are positive definite. The correlation coefficients deter-
mine autoregressive coefficients by solving the Yule Walker
equation (with Om = 1)

m 2
y jm p(j-k) = 0, k = 1, ... , m; = a , k = 0

j-0 
' m

The autoregressive coefficients determine the correlation coef-

ficients by

PO f) .5 exp (2hij) fm (A) dA

C. Consider coefficients H(1), ..., 1(m) satisfying

IH(1)1 1 1, ..., 11(m)I < 1 . They represent partial correlation
coefficients defined theoretically by: 1(j) = partial correlation
between Y(t) and Y(t-j), conditioned on Y(t-l), ... , Y(t-j+l)

2 2
D. Consider coefficients ai, ...' 0 m sign fl(1), ..., sign 1(m)

2 2 
2

satisfying 1 > oI > 0 ... > )m > 0 . They represent residual
2

variances-defined by: 1. = mean square prediction error o Y(t)
given Y(t-l), ..., Y(t-1) , expressed in units of E[IY(t)|I .

Partial correlation coefficients determine autoregressive
coefficients and residual variances by the Levinson recursion
(see Makhoul (1977)):

akk =- 1(k) ,

aj,k = j,k-l-' (k) ak-j,k-l'

2 G2_ { - 12 (k))ok k °kI

Residual variances determine partial correlation coefficients
by a formula due to Dickenson (1978)

I(k) = sign 11(k) ( k

Attoregressive coefficients determine partial correlations
by the recursion (Barndorf-Nielsen and Schon (1973))

Aj,k-l = fl-I 2(k) 1 I(jk + 11(k) nk-j,k }

In summary, to form f (A) one can specify any one of the fourm
parametrizations. Given correlations, to solve the Yule-Walker
eqtiations one has many approaches: (1) SWEEP, (2) Cholesky decom-
position, (3) Levinson-Durbin recursion, which computes partial
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correlation coefficients by

k-I 2
-11(k) = a cj- p(k-j)/ 0k-l

j=O k
and (4) Levinson-Whittle-Robinson recursion which computes H(k)
using forward and backward prediction error coefficients (see
Kailath (1974)).

III. AN OUTLINE OF EMPIRICAL SPECTRAL ANALYSIS

Successive stages of analysis whose outputs are combined to
form estimators of the spectrum of a single time series are:

Data Transformation and Detrending
Data Windowing

Extend with Zeroes
Fourier Transform

Average Short-time Segment Spectral Density Estimators
Sample Spectral Density, Sample Spectral Distributions

Spectral Average Direct Spectral Density Estimators
Sample Correlations

Indirect Lag Window Spectral Density Estimators
Autoregressive Coefficients, Yule Walker Equations
Autoregressive Spectral Density Estimators
Autoregressive Order Determination AIC CAT
Memory Identification, ARMA Identification

Autoregressive Coefficients: Nonstationary Least Squares,

Lattice Algorithms. Kalman Filtering
Autoregressive Transformation of Y to Y

If Y long memory, either seek Y short memory and return to
data transformation stage or go to long memory mixed or band-
limited methods listed below.
If Y short memory, seek whitening filters

Log Spectral Density Estimators of Y, via cepstral correlations
Iterated Adaptive Spectral Density Estimators of Y

Subset ARMA Identification
S-Array ARMA Identification
ARMA Spectral Density Estimator of Y

Other spectral analysis procedures:
Robust Autoregressive Transformation of Y to
Mixed Spectral Estimation (Long Memory)
Bandlimited Noise Spectral Estimation (Long Memory)

New techniques under research:
Nonparametric Data Modeling of Sample Spectral Density

Spectral De-whitening

A good description of techniques for reliably estimating the

spectrum is in Thomson (1977). We must conclude our outline
here due to space limitations.
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