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Consider the two-factor nested components of variance model

= 2
= u+ +
Y WA +B. ¥ B

= 2
13k 3 Cijk’ where Var[Ai] = 0%, Var[B

A 1=o0

iJ
- ~2
Var[CiJk] = 0g-

Confidence intervals are derived for oﬁ/oé, oi/(oi + aé) and

2 2 2
oc/(oA + oc).
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Introduction

Consider the two-factor nested components—of-variance model given by

Yijk =) + Ai + Bij + Cijk for

i=1,2, ..., I>1; §=1,2, ..., J>1; and k=1, 2, ..., K> 1;

]l = o%; E[C,,.] = 0;

= H = 2. - H
where E[Ai] 0s Var[Ai] Oyl E(B,,]1=0 Var[B1

1j 3 ijk

k] = g2, The random variables Y are observable; the

and Var[Ci C 13k

3

random variables Al, ooy AI; Bll’ sesy B C are

1 %110 o0 Cox
pairwise uncorrelated and unobservable and are jointly normally distri-

buted; u, ai, o%, and 02 are unobservable parameters. The parameter

C
space  1s defined by

2 >0, 02 3 0}.

= 2 2

A Op° 0%)‘ ~o<puy<w, 0g2320,0

A

'These specifications define a two-factor nested components-of-variance

model with equal numbers in the subclasses and the ANOVA table is displayed -
in Table 1.
Table 1.

ANOVA table for two-factor nested components-of-variance model
with equal numbers in the subclasses

Source d.f. S.S. M.S. E.M.S.
2
Total 1JK ZZZYijk
Mean 1 1JKY? 1
- T 5y  -Y 2 2 = q24%n2 2
Factor A n o= I-1 LI (Y . Y o) 81 8, = 0Z+KoZ+IKop
- - Yy -V 2 2 a 2
B within A |n, = I(J-1) |[ZIZI( 1. Yi‘.) s2 0, cé+KoB
- _ ik 2 2 - a2
Error n3 IJ(K-1) EXZ(Yijk Yij.) S3 63 9c




In this model there are several functions of the variance components

that may be of interest in applied problems. These include

2 w2 2 2762 4 a2y a2/(a2 4+ a2y a2/ (a2 4+ a2 + a2). q2/(q2 + o2 + o2
2 2 2 2 2 2 2
and oc/(oA + of + cc). The only functions of Ops 9p» U given above for
which an exact size confidence interval exists is aé and oé/(aé + 0%)- ”
Approximate size confidence intervals for oi and o% have been given by :
i

Moriguti (1954), Bulmer (1956) and Howe (1974). Approximate size confidence

2/(a2 + a2 + a2y a2/(a2 + a2 + o2 2/(s2 + a2 + o2} hav
intervals for oA/(cA + o3 + oc), oB/(oA +of + ac) and oc/(oA +of + cC) ave

been given by Graybill and Wang (1979). 1In this paper we give approximate size

e

confidence intervals for oé/(ci + oé), Ui/(ci + Gé), Gilcé and aé/oi-

: ) Actually we obtain approximate size confidence intervals for oiloé only
2/62  62/(g2 + o2 2/(g2 + g2 .

since og/oy, 0p/(ay + og), and 0&/(og + 0g) can be obtained from these

1 In Section 2 the lower limit of the upper confidence interval is derived,

in Section 3 the upper limit of the lower confidence interval is given, and

in Section 4 1s a short discussion of other methods that could possibly be

used for confidence intervals on oi/o%.
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‘ 2. Lower Limit of the Upper Confidence Interval onggﬁ/gé

Since Y ..., S2, S%, and S§ are complete sufficient statistics for this

problem, we will require the upper confidence interval to be a function of them.

. Write
B 6, - ©
g(Y ee 0y s 'Y Sz’ S3) 93

for the 1 - a upper confidence interval where the function g(? ceey Sz,Sg,Sg),

the lower confidence point, is to be determined.

JKo2

Using the notation in Table 1 observe that 8 = OZA: 80 an upper
6, - © 3 c

confidence interval on _l_?r_—_ is equivalent to an upper confidence interval on

3

2 )2
OA/oC.
2 2 2
Since oA/(oA + ac) is a function of 8y 855 8, only, this is unchanged

= if any constant c¢ 1is added to Yijk in the model given in Section 1. Thus

the lower confidence point g(? . Si, S%, Sg) should also be unchanged if ¢

= - Y . Y 2 2 2
is added to Yijk' Let ¢ Y ...; thus Y ... + ¢ 1is zero and Sl, 32' S3
: are unchanged when Yijk 13k + ¢ (or specifically by Yijk -Y ...).

Hence g(Y ..., Si’ sg, Sg) becomes g(0, Si, S%, Sg) and the lower confidence

is replaced by Y

point is a function of S2, S%, and 82 only., So the objective is to find a

3
function of Si, Sg, Sg, say f£(82, Sg, S;) such that
F - 2 2 2 - ’
?: P[f(Sl. s<, S3) < (61 02)/03]

i is approximately (and very close to) equal to a specified number 1 - a.

K If Y is replaccd by ¢

19k for c ¢ 0, then (61 - 92)/63 is

Yijk

2 g2

- 2g2 2¢g2 22y o
£ unchanged. Thus we require f(c Sl, c“8s, ¢ S3) f(sl, 2

2
2 S3). Let

2 a2 1/82 2 82 §2) = 2/g2 2/g2y = 2/g2 g2/g2
c 1/82, then f(Ss, 52, 83) f(Sllsz, 1, S3/SZ) h(Sl/S s 83/32)’ so

ﬁﬁ ' the lower confidence point of (e1 - 92)/63 is a function of si/sg and S%/S% only.




61 - 62 ) 61/92 -1
63 63/62

Since the maximum likelihood estimator of is of the

2 _ g2 2/g2 _
S1 82 } SI/SZ 1

2 2/g2
83 S3/S2

2/q2 2/q2
form » We require h(Sllsz, 83/82) to be

(a) monotonic increasing in S%/Sz; (b) monotonic decreasing in s%/sg.

. 82 .-g2
Let 6 = —l——;—g, then from Mood et al. (1974, p. 180).
53
- s2 - s2 2n2 92 2n2 2
Var(8) = Var (-2 22)= 3 - _12....._3.__;__2.
T : S3 nl(n3 - 2) 63 n2(n3 - 2) 63
2n2 ) 8, \2 4n2 82
. + 3 (—l - _2 + 3 _z
l. - - 2 - - 2
, (n3 4)(n3 2) 93 0, nl(n3 4)(n3 2) 93
4n2 62
+ 3 2
- - 2 p2
n2(n3 4)(n3 2) 93

If we replace the 91 by UMVU estimators and denote the resulting Var(6)

g

by Var(d), then Var(8) = CISI/S; + c.Sk4/st

2/c2 _ 2/a2y2
255753 + (c3s1/s3 c482/83) where

C1» Cgs C4 and c, are appropriate constants which are functions of n,
i

", n,, and n,.




“

So a large sample lower confidence point for

R = s2 s Y
- A,A -1 2 4yl byl 2702 _ . a2/q2y>
0 N“ ar(6) " Na{clsl/s3 + c282/53 + (c381/S3 C432/33) }

3

2
El -1-nN/{c (52/52)2 +c
82 a 171 "2
2

k

272 _ 2
+ (c381/S2 c4) }

2
2/a2
5 q(sllsz)

where Na is the upper o probability point of a standard normal p.d.f.

Therefore, in general we require the lower confidence point, h(Si/Sz, S%/S%),

8, - 8 s2
of —lg———z to be of the form -—% q(Si/S%), and we determine the function
3 S3
q(Sf/S%) such that
s2 8, -6
P["z' Q(Si/sg) < “1—3——2]
82 3
3

is close to 1 - a. We require q(Si/S%) to satisfy (1), (2), (3) below.

(1) When the hypothesis Ho: oi = 0 vs, Ha: oi > 0 1is accepted for a size

a test the confidence interval should include zero, and when Ho is

rejected, h(Si/SZ, S%/S%) should be an increasing function of Si/S%.

e 42 m .« g2
To test HO. o) 0 vs. Ha. % > 0 the hypothesis Ho is accepted if

212
and only if 81/82 < Fa: nl,n2 (This test is uniformly most powerful

unbiased). Thus

2/c2 g2/¢2y =
h(sl/s R S3/82) 0 when sl/sz 5-F;: n,,n0,

2/g2 @2/q2 2/q2 2/q2
h(SI/SZ, S3/52) > 0 and increasing in 81/S2 when 81/S2 > F, n .n,

(2.1)

*M




iy =3 = e s A

|

2)

3

et e S S iz ke

SZ
Since h(sflsg, sglsg) --fg q(s2/s%) we obtain

172
53
2/02) = 2/q2
q(Sllsz) 0 when 81/82'5 F. a..n
172
2/q2 2/q2 2/g2
q(S;/Sz) > 0 and increasing in 81/82 when SI/SZ > Fa: o .n,

When J + = (hence n, + ® and n, + ©) the confidence interval will be
required to have an "exact" confidence coefficient 1 - a. When J + = {1t

follows that n, *® and n, -+~ and from this it fbllows that S2 - 6, in

2 3 2 2
probability and S% > 63 in probability. Start with
82
P[ 1 < 8,]1=1-q
F - "1
ain, ,®

2 2

and use the result of J + =, {.e. replace S2 and S3 by their "equivalent"
values 92 and 83 respectively, to obtain
s2 s2 8, - 0
e - <2 -1-4
S3 SZFa: n, 3
Hence when J + «
2/c2y = 2/a2
q(Sllsz) 0 when SI/S2 E-Fa: a,
5
2/c2Y g o 2/g2
q(Sllsz) n 1 when Sl/S2 >F_, a,
2°a: n,, ®
1
& - %
If oi + ® , the quantity ~~—= {s dominated by 91/93, and we
3

want

si si %

P2 ——— < 7]
sz s2f 3

3 2 a: 0, n3

to be equal to 1 - a. This requires q(Si/S%) to behave like

2/q2 2/a2
SIISZFu= n, n, for large Slls2 in the sense that

2
51

2/2) = 2/q2
q(slfsz) iy {1+ z(sllsz)} where
2 a: Ny n,

-6-
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212 2/a2
l(Sl/Sz) + 0 as Sl/s2 +

Any function q(Si/S%) satisfying conditions (1), (2), (3) will give an
exact confidence coefficient in the three limiting cases 91/92 =1, 61/92 = o

and J > =,

The simplest function satisfying those conditions is the linear function

2/62Y = a ©2/g2
ql(SI/SZ) alsl/S2 + b1 where a, and b1 are functions of D, 50,04, and o

and are determined by the conditions (1), (2), and (3). However, this did not

S give results as good as desired so a more general function was used, namely

22,.22 27q2y"1
q(Sllsz) [3181/52 + bl + cl(Sl/Sz) ]/Fa: n, n, (2.2)

From condition (3) a1 = 1.

From condition (2) bl(nl’ ®, ®) = - Fa: n, o cl(nl’ w, ®) =0

From condition (1) Fa: ng, n, + b1 + c1/Fa: ny, Dy =0 or

.ab ~ .-F F +b -
¢1 a: ng, nz( a: ny, Ny 1)

Let bl(nl, n,, n3) =~ F,. for all n, and ng, then

c, =F F -F and
1 a: np, “2( a: n,, © a: n;, nz)’

212y = 21q2 _
q(Sl/Sz) l[slls2 F L*F

(F -F ) S%/S%]/F
1!

mn 1,1‘12 a:nl,w a:nl,nz

a:n;,n,

l Thus a 1 - o upper confidence interval on (Bl— 62)/03 is L2 < (61 —92)/93 <

i- where L2 is defined by
[}

. 2/g2 2.3
L, =0 if s2/s2 < F_, _ (2.3)

yo + F (F . _-F. ) s2/s2]
ain,,n, ~ain a.nl,n2 2°73

if S2/82 > F
1"72 ain,,n,

A AP B P et e e sekiEa e MR
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Note that L, = 0 if and only if the o level test of H,: o2 =0

0" "A
J]<1l-o0o and P[L2 =0]=1-a¢a

2

=01 = 2/g2
is accepted, so P[L2 0] P[Sl/52 hl Fu: nl, n,

if and only if oi = 0, The probability associated with Equation (2.3) is a function
of the unknown parameter p = 91/92 and is exactly equal to 1 -~ a when P 1is one
or infinity or when J is infinite.

The excellence of this approximation is indicated by Table 2,calculated by
simulation. Columns 7, 8, and 9 of Table 2 contain the range of probabilities of
L2 < (91 - 02)/63 as the unknown parameter 61/92 varies from 1 to ». The
approximation appears to be quite satisfactory even for small sample sizes.

Th% remainder of this section is devoted to the study of the behavior of

S 6, - 8 1
P = P[—g-q(si/sg) < —}————33 for all values of n;, n, and n4. From Table 2
s2 -

8
3 3
P appears to get closer to 1 - a as the value of K (hence n3) increases.

In fact as K + » (hence n, * ®) the problem is reduced to the interval

3

estimation of oﬁ in the one-factor model and the method discussed in this

section is equivalent to Moriguti's method (1954). From this one knows that the

error in P 1is of the order niq, i,e. P=1-~0a+ O(nz_ 2). Another way to
examine the behavior of P is to expand P in powers of nz— 1 and'na_ l.
The algebraic details of this work are heavy (see Bulmer (1957)). The resulting
expansion is

- - 2
P=1-0+ % + alz/n2 + al3/n3 + a22/n2 + a33/n3

=2 -3
+ a23/n2n3 + O(n2 » n3 ).

This assures that as the values of J and K (hence n, and n3) increase

the accuracy of the approximation gets better.

In Table 2, P 1is between 0.9500 and 0.9597 when I =3, J =3, K= 3,
and 1 ~q = 0.95 and when I = 7, J =3, K=3, P is between 0.9500 and 0.9581.
A study of the valuesof P when I 1is large (nl, By, and n, are large, but

R = nllnz, R, = nlln3 remain constant) is in Wang' (1979).
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3. Upper Limit of the Lower Confidence Interval on 02/02

A—C

61 - 62 91 -9
Since P[—__E—_—‘i f(SZ,Sg,Sg)] =] - P[f(Si,S%,S%) < 5 1, we use

3 3 |

the confidence coefficient « in the lower limit of the upper confidence

interval 1in Equation (2.3) to obtain a lower 1 - o confidence interval

on (91 - 62)/63 given by 0< 6, - 62)/ 93 < U where

1
sg :
U= [s2/s2 - F. . +F, . (F, . -F. . s2/s2]
S2F 1" 72 1—a.nl,w l-a.nl,n2 1-a.n1,w l-a.nl,nz) 2’71 }
3’1 -a:n,,n :
1’3 i
i
27g2 '
if Slls2 > Fl—a:n n (3.1) =
1’72 :
U=0 if 82/s2 F :
1"72 < l—a:nl,n2
We could determine how close the confidence coefficient of this confidence ’

interval is to the nominal 1l-o by simulation. However, due to the expense

of computer simulation we chose a different route. We used ql(Silsg) = alsi/sg + by

and conditions similar to (1), (2), (3), of Section 2 to obtain the confidence

where U is given by

intarval 0_5(61-92)/63 S-Ul’ 1

= 22
U1 0 if sl/SZ :-Fl-a:n ,n (3.2)
1’72
s
U, = —= (82/s2F . -F . JF, . 2/q2
1 S§ 17271 a:n;,n, l-a:n;,n," 1 a.nl,n3) if Slls2 > 1"1_0‘:“1,nz

Note that U, = 0 and U = 0 if and only if the 1 -~ a level test of Ho:oﬁ =0

is accepted. Also note that conditions (2) and (3) of Section 2 are satisfied

by the confidence intervals given in Equations (3.1) and (3.2).




The probability associated with Equation (3.2) depends on the value of

p = 61/62, nl,nz,n and can be easily calculated if n1 is even; we get

3
8, - 0 s2
1 "2 2
P[——= < —= (S2/s2F, -F. . /F._ . )]
93 S§ 17271 ain N, 1 ain,,n, 1 ain,ng,
/2-1
n,/2 n,/2™M
= Xy 21,3 1 _C_ 4 5y 7Y
=) @ [ SRR, + Gp)l,)
y=0 y:2
where ¢ = RlFl_a:nl’nzlp, d = (p-l)RlnzFl_aml’%/p (seeWang (1979)).

The results of the probabilities of (01-92)/93§p1 are given in Table 3

for various values of I, J, K and for 1l-a = 0.09, 0.95, 0.99. The actual
probabilities are quite close to the specified probabilities even for small
sample sizes. We expect the results to be even better if the more general

confidence interval Ogﬂel - 92)/03 < U is used where U 1is given in Equation
(3.1).

4, Comparison with Other Methods.

The literature does not contain any references that have been evaluated and
directly relate to confidence intervals on ci/oé. Perhaps Satterthwaite's (1946)
method could be used but this procedure 1is extremely poor when used to place
confidence intervals on the difference of expected mean squares (i.e. on (61-62)/93
=JK ci/oé ). Broemeling (1969) presents a method for placing simultaneous

2

confidence intervals on oi/oC and c%/oé.. This method can be used to place con-

fidence intervals on oi/oé.

We use Equation (15) in Broemeling (1969) to obtain

2/ 2 2/gq2
PLO< K J op/of < 87/} F

n3].i (- a)?

1- a:nl,




oae

-

which car be used for a lower confidence interval on KJOi/Oé with confidence

coefficient greater than or equal to (1 - a)2, Clearly the 1 - &« lower
confidence interval in Equation (3.2) above is shorter than the (1 - a)2
confidence interval in Equation (4.1). Thus the confidence interval on

ci/oé derived from the procedure by Broemeling is not as good as the method pre-

sented in this paper.
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