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Airfoil coefficients (used as design variables)

Chordwise force coefficient
Drag coefficient (total)
Lift coefficient

Moment coefficient

Normal force coefficient
Pressure coefficient
Momentum coefficient

Chord length
Objective function

Constraint function

Slot height

Length of a panel

Mach number

Number of panels

Source strength

Direction of search

Arc length along airfoil surface
Thickness

Velocity

Vector consists of design variables Xj

Airfoil coordinates
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Xj Design variables
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2 Lower
m Iteration number during optimization
u Upper

N . | Subscripts

| e Edge of boundary layer

f Frictional
i ith panel

; . j jth design variable; also jet

! : m Iteration number during analysis
max Maximum

o min Minimum

! P Pressure
sepl Separation point, lower surface
- sepu Separation point, upper surface
.
° o Freestream :
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ABSTRACT

A numerical procedure developed for optimizing the
- circulation control airfoils is presented. The pro-
cedure finds the optimum basic airfoil shapes subjected
to specified flow conditions and geometric constraints.
It consists of a numerical optimization code for linear
or nonlinear constrained problems coupled with a viscous-
potential flow interaction analysis for necessary
viscous-inviscid flow field calculations. The desired
airfoil shape is defined by a combination of baseline
shapes representative of airfoils suitable for circu-
lation control purposes. The coefficients of these
basis vectors are then used as the design variables in
- the optimization process. Three baseline shapes (a
cambered ellipse, a cambered ellipse with a drooped
trailing edge, and a cambered ellipse with a
logarithmically spiralled trailing edge) are employed
for special contouring of the trailing edge geometry.
With some minor modification of the analysis method,
the combined program allows optimization for maximum
1lift without substantial difficulty; but for minimizing
the drag, further improvement of the analysis method is .
required. 1
Numerical results were obtained for maximizing CL i i

with a blowing coefficient Cu of 0.04, a Mach number of I

0.3, and at angles of attack of -5 deg and -2 deg. ]
Contraints on the lift augmentation ratio and the lift-to-
drag ratio were imposed. The lift coefficient increased
from an initial value of 2.05 to a final value of 2.34

for the case of a = -5 deg. A similar result was ob-
tained for the case of a = -2 deg with the same flow
condition. The resulting airfoil profile is somewhat
between the baseline shapes of cambered ellipse and the
drooped trailing edge. The result agrees qualitatively
with the available experimental data for which the air-
foils having cambered elliptic and drooped trailing edge
contours exhibit better performance than the one with
spiralled trailing edge geometry. Efforts for improving
the drag prediction capability of the analysis method

are in progress.
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INTRODUCTION

In the development of technology for V/STOL aircraft, efforts have
been made to increase the lift coefficient through blowing. Systems
which use blowing may be classified into three major categories:
(1) the blowing flap, (2) the jet flap, and (3) the circulation control
airfoils. In the application of blowing to helicopter rotors, the
circulation control (CC) system offers two basic advantages, namely, the
much higher lift-to-thrust augmentation for a given slot momentum and the
mechanical simplifications in 1lift control.

Experimental data are available for circulation control air-

1%, 2-4%%

foils. Analytical methods developed earlier used an integral

approach to model the flow as an incompressible turbulent boundary layer
flow mixed with a wall jet.s’6 Later, Dvorak and Kind solved the wall
jet flow region problem by the finite difference scheme but retained the
integral approach for flow regions where ordinary boundary layers prevail.7
Reasonably good lift-momentum results have been reported in using these
methods, although a major deficiency in drag prediction still exists.
Attempts to incorporate a more realistic eddy viscosity model are found
elsewhere.8

To meet the performance requirement for several naval applications, **%
an optimization procedure is highly desirable to provide an advanced
design capability. 1In the present work, a numerical approach is taken to
optimize the airfoil for maximum lift or for minimum drag, or for maximum
lift-to-drag ratio. Various constraints including thickness, lift-to-drag
ratio, and lift-momentum flux relations are imposed to generate optimal
airfoil shapes. In so doing, a numerical optimization scheme of
Vanderplaats9 for linear or nonlinear constrained problems has been em-
ployed and coupled with a viscous-potential flow interaction analysis of

Dvorak and Kind7 for necessary viscous—inviscid flow field calculations.

*A complete listing of references is given on page 39.

**Work performed by J.S. Abramson for two-dimensional subsonic wind
tunnel tests of the circulation control airfoils documented as DTNSRDC TM-
16-76-42 of December 1975.

***During 1977 to 1979, the circulation control airfoils have been
applied to an A-6 testbed aircraft, an H-2 helicopter, and a stopped rotor
(X~-Wing) aircraft at DTNSRDC.
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Reasonably good agreement between theoretical and experimental results
for certain cases has been repurted to warrant some confidence in the

method.

ANALYSIS METHOD

A schematic of the flow about a CC airfoil is shown in Figure 1. As
opposed to the conventional airfoil, a typical CC airfoil is equipped
with a blowing slot on the upper surface for energizing the flow in the
viscous layer and a rounded trailing edge for deflecting the jet. High
lift can be generated because of increased circulation created by the
blowing jet. The flow is characterized by outer inviscid flow and inner
viscous flow consisting of boundary layers, wall jet, and separation
bubble.

Rather than starting from scratch, the analysis method developed
by Dvorak and Kind7 with some minor modifications was adopted. The
method is found to be the most comprehensive one available. A brief

description of the theory is given below.

DVORAK~KIND METHOD

Dvorak and Kind7 considered the subject problem as a viscous-inviscid
interaction flow over a two-dimensional airfoil section with or without
slot blowing on the upper surface. The inviscid potential flow is calcu-
lated first and then followed by boundary layer and wall jet developments
which are computed using pressure distributions obtained from the potential
flow analysis. The viscous effects are modeled and the procedure is

repeated until a converged solution is achieved.

Potential Flow Solution

The potential flow is represented by vorticity distribution along the
panels. The vortex strength is assumed to vary linearly along each panel
and is continuous at all junction points. The horizontal and vertical
component of the velocity induced by the vorticity according to the

potential flow theory is




K
Ly -

LS

R el Y LS e adtaea R e e A

Y z /(x-c)” + z2 x -1z -1 2
u=o-fclo < |tan T T - tan T 37T (1)
2 2
X + z
/ 2 2
w=Xl1+Z%|tan" 2 —tanl—z +510g———(xc) tz (2)
2m X=-C c
2 2
X + z

where v is the vortex strength along the panel. The solution procedure is
similar to those for conventional airfoils except that the Kutta condition
is applied differently. For a rounded trailing edge, which is typical in

a CC airfoil, the Kutta condition is replaced by an equation which

specifies the value of the total circulation I' around the airfoil

(Y1+Yi+1)]
T = 2 [21—7-——- (3)

where li is the length of the ith panel. The value of I', together with the
blowing coefficient Cu, has direct bearing on the lift coefficient. A
detailed description of the potential flow solution can be found in

Reference 10.

Laminar and Turbulent Boundary Layers

The forward and aft stagnation points obtained by the potential flow
solution divide the flows between the upper and lower surfaces of the air-
foil. Based on pressures obtained from the potential flow solution;
calculation of boundary layers starts with the Hiemenz stagnation flow
solution.ll Curle's12 integral method is employed for calculating the
laminar boundary layers downstream of the stagnation point for both upper
and lower surfaces. After the transition predicted by Granville's
empirical formula,13 the turbulent boundary layers for the remaining lower

surface to the separation point, and the upper surface to the blowing slot




are calculated using the Nash-Hicks integral met:hod.14 At the slot, the

turbulent boundary layer mixes with a wall jet of a uniform velocity
distribution. A finite difference scheme is used in solving the mixed flow.
The flow proceeds around a highly curved surface with very strong adverse
pressure gradients. The effect of surface curvature downstream of the
blowing slot is accounted for by including the normal momentum equation for
radial variation of static pressure in the finite difference procedure.

The flow eventually separates after passing the blunted trailing edge and a

separation pressure is noted.

Viscous-Potential Flow Interaction
The viscous effects produced by the boundary layer development are
modeled by a source distribution along the airfoil surface. The source

strength 9y at any junction point of a surface panel is obtained by

=4 5" 4

arc length

where s

\
e
*

[}

local external velocity

§ = boundary-layer displacement thickness
Equation (4) applies to the conventional boundary layers as well as to the
wall jet. In the latter case, the product VEG* tends to decrease, yielding
a nega’ {ve source strength (i.e., sink).
The contribution of qy is then implemented in the potential flow
solution which alters the results of the pressure distribution. The entire

procedure is then repeated with subsequent values of the total circulation

estimated by




*

where the numerical constant k has a value from 0.1 to 0.3. The calcu-
lations are terminated when the 1lift coefficient, which is directly

related to the Fm+1 value, remains within a specified tolerance and, at the
same time, the differences in pressure coefficients at the upper and lower

ends of the separation bubble, (C -C ) diminish.
sepu ‘“sepl

The lift and pressure drag coefficients are then evaluated by inte-

grating the surface pressure distribution using the trapezoidal rule

N+1 (C +C )(x 41751

p P
c = E ' i+l i
n 2

i=1

N+1 (C +C )(z -z .)
pi+l pi i+1 1

c, = Z ! (6)

i=1

CL = Cn cos QO - CC sin a3 CDr = Cn sin o + Cc cos Q * |

where x and z are airfoil coordinates normalized by the chord length, and
N is the number of panels. The total drag is the sum of the pressure drag

and skin friction, less the blowing momentum coefficient

c,.=¢C, +¢C -C €))

p
C sz—l— (8)

where ij§ is the momentum flux of the blowing jet and h is the jet height
at the slot.




COMPUTER PROGRAM
The method has been coded in FORTRAN and is known as the CIRCON

program. It has been written in an overlay form to reduce core require-

ments. A detailed description of the code can be found in Reference 15.

COMPARISON BETWEEN THEORY AND EXPERIMENT

Previous results of the Dvorak-Kind method, reported in Reference 7
show good agreement between the theory and the experiment. Cases con-
sidered in Reference 7 include comparison of the computed results with

- experimental data of a cambered 20-percent ellipse.

The method has been applied to other cases at DINSRDC on different
airfoils with various flow conditions, among which is discussed the case
of a 15-percent cambered ellipse at M_ = 0.3 and o = -0.01 deg. The
computed results are compared with experimental data* obtained at the
DTNSRDC 7 ft x 10 ft transonic wind tunnel where the blockage effects can
be considered insignificant at moderate blowing conditions. The results

A are given in Table 1. Figures 2 and 3 show the calculated lift and drag
coefficients at various blowing conditions between Cu = 0.0073 and

0.0384, along with experimental data. Qualitative agreement between the

theoretical and experimental lift coefficients is obtained. However,
serious discrepancies in drag coefficients are observed. 1In particular,
the dip in the theoretical drag curve is not detected in the experiment.
Some representative pressure distributions (for Cu = 0,0111, 0.0160, and
0.0220) are given in Figure 4, which may reveal the disagreement.

The results indicate that although the Dvorak-Kind method is the
most sophisticated approach available for analyzing the flow over a CC
airfoil, it is still inadequate, Efforts in numerical optimization here,
discussed later, will be restricted to the cases using the lift co-
efficient as the objective function to obtain optimal shapes. Nonetheless,
the approach is capable of achieving qualitative results which may be used

- to guide the design engineers.

*Experimental data were provided by J.B. Wilkerson and J.S. Abramson
of DTNSRDC.
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OPTIMIZATION PROGRAM
The aforementioned analysis method has been coupled with a numerical
optimization scheme developed by Vanderplaats.9 A brief description of
the optimization technique is given here and the procedure for automating
the CC airfoil design is outlined.

VANDERPLAATS METHOD
The optimization program is based on the method of feasible directions
for constrained problems. The optimization problem is stated mathematical-

ly as

Minimize OBJ = F(X)
which is subject to:

G (X) <0 (3=1,m) (9

X5 <xZ2X (j=1,n) (10)

where OBJ is the objective function. The vector X contains n design
variables. The function G (X) defines the constraints which the designer
wishes to impose on the optimization problem. Functions F(X) and G X)
may be either implicit or explicit of the design variables X but must be
continuous. Variables x? and X define the lower and upper bounds,
respectively, on the design variable and are the limits over which F(X)
and G (X) are defined. If the inequality condition of Equation (9) is
violated (Gj(X) > 0) for any constraint, the constraint is said to be
violated. If the equality condition is met (Gj(X) = 0), the constraint is
called active, and if the strict inequality is met (Gj(X) < 0), the
constraint is inactive. Because a precise zero is seldom meaningful in

the digital computation, a constraint is called active if its value is

within a specified tolerance.

WA s il




The n-dimensional space spanned by the design variables X is referred
to as the design space. Any design which satisfies the inequalities of
Equations (9) and (10) is referred to as a feasible design. If a design
violates on: .r more of these inequalities, it 1s said to be infeasible.
The minimum feasible design is said to be optimal. Note that if one wishes
to maximize some function such as lift, it can be done simply by minimizing
the negative of 1ift. Thus, any design problem can be cast in the fore-
going form.

The optimization program begins with an initial X vector which is
input to the program and may or may not define a feasible design. The

optimization process then proceeds iteratively by the following recursive

relationship i !
_mtl % M
X =X+aSs (11)

where m = jteration number :é

S (vector) = direction of search in the n-dimensional :
design space

* |

o = scalar which defines the distance of

n travel in direction S
The S 1is obtained by moving in the direction of the steepest descent (the
negative gradient of the objective function) without violating constraints.
The scalar a* is determined by a one-variable search based on a polynomial
fit of several trial values.

The procedure is repeated with the aid of a conjugate direction
algorithm16 in determining the new search direction. When the constraint
is encountered in the searching process, the new search direction is found
using Zoutendijk's method of feasible directions.17 The optimum point is
achieved where no direction can be found that will reduce the objective

without violating the constraints.

COMPUTER PROGRAM
The optimization procedure is coded in FORTRAN known as CONMIN.9 The

program has been expanded since its first appearance in 1973. A main




control program known as COPES having four modes of application, namely,

ANALYSIS, SENSITIVITY STUDY, TWO-VARIABLE SPACE, and OPTIMIZATION is now
A available. Also an approximation optimization procedure is added using a

truncated Taylor's series to reduce the number of required analyses.

Both old and new versions have been widely used in various engineering

disciplines.

OPTIMIZATION OF CIRCULATION CONTROL AIRFOIL
The subject problem is to optimize the airfoil for maximum lift, or
for minimum drag, or for maximum lift-to-drag ratio. Various constraints
including minimum lift range, maximum drag range, angle of attack, lift
augmentation ratio, thickness ratio, jet detachment, and linear 1lift-

momentum flux relations are to be imposed to generate optimal airfoil
shapes.

The optimization model for the problem contains the objective, the
constraints, and the design variables. For example, if we want to

optimize the airfoil for maximum 1ift subject to thickness ratio and 1lift-

|

to-drag ratio constraints, the optimization model would be

Objective - F(X): - L
Constraints - G(X): (tfe)pyy S tle 2 (efe) 0 (12)
(€ /¢p) 2 C/Cy < (G /Cy) (13)
min max

Design Variables - X: aj, ij=1,n

where the variables aj are the coefficients of a linear combination of n

baseline airfoils that represent the design airfoil:

I'. Y = z aj Y:j (14)




The 1ift coefficient CL and the drag coefficient C_ are nonlinear implicit

functions of the design variables to be obtained b? the analysis method
- ‘ and the thickness ratio is a linear function of the design variables
determined directly by Equation (14).

The model is implemented numerically by interaction between the
optimization and airfoill analysis programs. The program flow chart for
such an operation is shown in Figure 5. In so doing, the airfoil analysis
program CIRCON is merged with the optimization code CONMIN on the CDC 7600
computer at the NASA Ames Research Center to form an airfoil design 1
capability. The overlay of the combined program is shown in Figure 6.
The program can be operated either at Ames or at DTNSRDC using a remote

terminal.

AIRFOIL REPRESENTATION
Trailing Edge Contouring

The trailing edge geometry has direct bearing on the jet deflection
characteristics and, therefore, our first effort is to contour the blunt
trailing edge of the CC airfoil. Three baseline shapes, i.e., those of a
1 cambered ellipse, a cambered ellipse with a drooped trailing edge, and a

cambered ellipse with a logarithmically spiralled trailing edge,* are S‘
employed in test cases. These shapes (shown in Figure 7), representative
of airfoils suitable for circulation control purposes, allow special
contouring of the trziling edge geometry which directly affects the air-
foil performance. Equation (10), therefore, simplifies to

Y=a Y +a, ¥, +a; ¥, (15) %

The exact coordinates of these baseline airfoils are listed in Table 2. i

All three shapes have identical coordinates up to x/c = 0.95.

A Variation is allowed between 0.95 §_x/c < 1.00. For this special case,

- since the thickness of the resulting airfoil remains constant, we have
. *These baseline shapes are provided by E.O. Rogers of the Aviation
! and Surface Effects Department, DTNSRDC.
g 11
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a, +a, +a, =1 (16)

Accordingly, Equation (15) can be written as

Y=a, Y, +a Y2 + (1-a1-a2) Y3 (17)

171 2

The new form of Equation (17) reduces the actual number of design
variables from three to two (but still three baseline shapes). It, in
turn, reduces the number of gradients and, thus, simplifies the search
process, It also eliminates the thickness constraint, which is auto-
matically satisfied. Note that since negative values of a,;, a,, or a, are
allowed, the resulting airfoil shape can be drastically different from
these original profiles.

Overall Airfoil Shaping

The ultimate purpose of the present work is to derive a CC airfoil
for optimum performance. The work involves overall airfoil shaping based
on more general representation of baseline profiles. The computer program
has been set up to accept as many as twenty-five (25) baseline shapes,
although practically six would be sufficient to cover a broad range of

interest.

MODIFICATION OF ANALYSIS PROGRAM

A major difficulty in using the viscous-inviscid interaction mechod
together with the optimization code, however, is its inability in
providing fairly smooth gradients of the objective function when the
design variables are perturbed in the course of optimization. The problem
is a common one in most viscous-inviscid interaction methods in which the
viscous and inviscid flows are calculated separately and the final solution
is reached by the iterative process. In addition, as mentioned earlier,
the correlation between the analysis method and the experiment requires
further improvement. The problem is, therefore, twofold, i.e., con-

vergence and accuracy.

12
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To circumvent the problem, some modifications to the analysis program
need to be carried out. The approach is to make the program operational
with the least modification required and then to refine it as necessary.

The first step is, therefore, to smooth out some irregularities in
aerodynamic force coefficients, which might be partially caused by the
simple trapezoidal rule used in integrating the surface pressure distri-
bution on a limited number of panels. Equation (6) is thus replaced by a
second-order Lagrangian interpolation scheme for the integrand, which

results in

Ml X -X X,=-X :
c = E C —————“Ex -1 ol c T i _;"l +2
n Pyl *i™%i-1 Pit1 | %i+17%1-1
1=1
(x,,,-x,)° (x,, %)
i+17%4 i+17%4
-C CRTRYCTET0) 3 (18)
Pi1 i7%1-17 Y 7¥-1

For evaluating Cc’ x's are replaced by z's.

The difference between the two schemes can be appreciable in drag
values attributed to the leading and trailing edge regions where change in
sign of the pressure coefficient takes place. Figures 8a and 8b indicate
the CD values (the net areas, which are the differences of the shaded
regions) resulting from these two schemes. The advantage of using the
Lagrangian scheme is twofold: (a) improving the convergences of CL values
and (b) improving the accuracy for both CL and Ch- This is shown in

Figure 9. The slope of the C. variation during the iteration for the

] L
Lagrangian scheme is smaller than that for the trapezoidal rule. After
eight iterations by using Equation (18), the resulting CL (converged since
ACL/CL-ﬁ € where € 1s a specified tolerance) is smaller, but CD is larger,
L and CD has

been improved since the theory overpredicts the lift but underpredicts the

than it would be if using Equation (6). The accuracy of both C

drag (see Figures 2 and 3). It is anticipated that if a large number of

panels is used, the difference between the two schemes should be minimal.

13
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The modification (although a minor one), when coupled with the recast

equation for airfoil representation (Equation (17)), allows performing
optimization runs for maximizing the lift without substantial difficulty;
but for minimizing the drag, further improvement of the analysis method is
required. This will be discussed further in the next section.

The second phase of the effort, which is now in progress, will be
concentrated on modifications of the analysis program including (a) remodel-
ing the potential flow solution to consider the effect of the large wake
associated with the blowing jet and (b) removal of the assumption of
constant pressure inside the separation bubble which has caused some
arbitrary variation in aerodynamic force coefficients. Although only
slightly noticeable in lift coefficients, these variations produce wide-
spread differences in drag values. Finally, (c) rearrangement of the
viscous-potential flow interaction procedure to improve convergence of the

overall solution.

RESULTS AND DISCUSSION

Numerical results were calculated on the NASA Ames CDC 7600 computer
using a remote terminal at DTNSRDC. The merged program was first checked
by the ANALYSIS, SENSITIVITY STUDY, and TWO-VARIABLE SPACE runs in
accordance with the control options of the main program COPES before ex-
tensive OPTIMIZATION runs were performed. Results of the ANALYSIS runs are
tabulated in Table 1, plotted in Figures 2, 3, and 4, and have been
discussed previously in the Analysis Method section. Results of other
typical runs are summarized in Table 3 and presented in Figures 10 through

. 16,

The first optimization run was a simple case for minimizing the
frictional drag with the angle of attack as the design variable. The
results of this run yield a slight decrease in skin friction correspond-

- ing to a change of the design variable o from -5 deg to -4.9 deg. The
purpose of the run was to test the status of the program rather than
actually design for minimum skin friction, which is just a small portion

of the total drag and has only a small range of variation.

14
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The next two runs were aimed at minimizing the total drag subject to

constraints of CL/Cu’ CD /CL’ and t/c values (Runs 6 and 7 in Table 3).
T
The angle of attack was used as the design variable for Run 6, and the

coefficients aj, a,, and a, for Run 7. Unfortunately, there was no
change in the objective function for either case.

Since the skin friction values remain fairly constant, the variation
of the total drag is basically attributed to the variation of the pressure
drag. From Runs 8 through 10, therefore, the pressure drag, which is more
direct than the total drag, was employed as the objective function under
similar constraints. With the aid of the recasted airfoll equation and
the modifications in the integration scheme of the analysis method,

a moderate change in the pressure drag is obtained in Run 10b, as shown in
Figure 10. The advantage of using the Lagrangian scheme is clearly
demonstrated in Figure 10 although the general outcome in these cases
appears not as good as anticipated.

The problem in minimizing the drag can best be understood by the plot

of the CD value in two-variable space given in Figure 11. The zigzag CD

4 P
distribution throughout the a; - a, space cannot provide smooth values of

gradients SCD /Bal, and aCD /8a2 and, therefore, the optimization technique

fails tv respond properly when a, and a, are perturbed. There are, how-

ever, still some regions where lical coitinuity of the gradients exists.
These permit changes in the objective function during the course of
optimization, such as those shown in Figure 10. Nevertheless, the result
of Figure 10 can only be regarded at best, as locally optimal; its useful-
ness is very limited.

Subsequent efforts were concentrated on cases using the 1lift co-
efficient as the objective. Numerical results were obtained for maximizing
CL with a blowing coefficient Cu of 0.04, at a Mach number of 0.3, and at
angles of attack of -5 deg and -2 deg. Constraints of the lift augmen-
tation ratio, 50 _f_CL/Cu < 60, and the lift-to-drag ratio, -0.014 < CD/CL
< -0.006, were imposed. Figure 12 shows the values of CL versus the

search position during the course of optimization for the case of

15
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o = =5 deg. The search starts with a = 0.3333 and a, = 0.3334, which

yields CL = 2,054. The search stops after the change of the objective

function within a specified tolerance, consecutively for three times. A
final lift coefficient of 2.34, is achieved (Run 12 in Table 3) with
design variables a) = 0.4084, a, = 0.4798, and aq = 0.1180. A similar run
with less restrictive constraints, but using three design variables along
with the original trapezoidal rule integration (Run lla in Table 3), is
also plotted in Figure 12, Again, it indicates that the advantage of
using the recast airfoil equations along with the Lagrangian scheme is
distinctive.

Figure 13 shows the CL values in the two-variable design space.
Continuity of CL values in most regions is maintained, as marked by solid
lines. Some uncertainty is involved in the region with broken lines. As
a double check, the intermediate CL values of Run 12 are superimposed in
Figure 13, Figure 13 indicates that the optimal value approaches the
true maximum fairly closely. The CL value tends toward but terminates
before the maximum because the termination criterion has been met. The
test warrants further extension to more baseline shapes in representing
the airfoil so that greater versatility may be achieved.

The resulting airfoil profile, which is shown in Figure 14, is
somewhat between baseline shapes Y1 and Y2' The result agrees quali-
tatively with the available experimental data for which the airfoils
having cambered elliptic and drooped trailing edge contours exhibit better
performance than the spiralled one. It is of interest to note that at
negative angles of attack, where the CC airfoils normally operate, high CL
values are usually accompanied by low drag coefficients.

Figure 15 shows CL values during the optimization process for the
case of M_ = 0.3, Cu = 0.04, and o = -2 deg. The calculation was
terminated after five searches: the CL values gained from 2.255 to 2.740
(Run 13 in Table 3). The final design ended up with a; = 0.499,
= 0.624, and a, = -0.123. The resulting airfoil is depicted in

) 3

Figure 16. Note that a, has a negative value, which yields a more drooped

3
trailing edge than the previous case of a = -5 deg.

16
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Finally, the effect of the constraint on the resulting CL values
is examined. This is shown in Figure 15, where the results of Run 14
(with constraints encountered during the course of optimization) are
compared with those of Run 13 (without constraints encountered).

Considerable penalty due to the active constraints are realized.

CONCLUSIONS 4

A numerical procedure for optimizing circulation control airfoils is
developed. Based on the first phase of work in the continuing effort of
improving aerodynamic performance of the circulation control airfoil--the
following conclusions may be drawn:

1. A significant gain (about 12 to 15 percent) in 1lift coefficients
of CC airfoils may be achieved by optimizing the trailing edge contour.
It was found that, in the range of small negative angles of attack, the
drooped trailing edge yields better aerodynamic performance than the
spiralled one.

2. A major difficulty in using the viscous-inviscid interaction
method along with the optimization code is its inability to provide fairly
smooth gradients of the objective function. It is possible, however, to
make optimum calculations for maximum lift by reducing the number of
design variables to the minimum and removing some irregularities in the
integration of aerodynamic force coefficients from the surface pressure
distribution. For minimizing the drag, further improvement of the
analysis method is required.

3. Based on a limited comparison of the theoretical results with
experimental data obtained with negligible wall blockage effect, it was
found that the Dvorak-Kind method overpredicts the lift but underpredicts

the drag.
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Figure 11 - Pressure Drag Coefficients in Two-Variable Space
at M_ = 0.3, Cu = 0.04, and o = -5 Degrees
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2 TABLE 1 - LIFT AND DRAG COEFFICIENTS OF MODEL 103 CIRCULATION CONTROL
AIRFOIL AT M_ = 0.3 AND a = -0.01 DEGREE

DTNSRDC Experiment

] CIRCON Results (7 ft x 10 ft Transonic
?' * Run o Wind Tunnel)
C (o C C C C C
L Dp D¢ D L Dp D

212 | 0.0073 1 0.6842 | 0.0048 | 0.0047 | 0.0022 | 0.4980 | 0.0084 0.0117

213 | 0.0105] 0.8641 {0.0079 | 0.0048 | 0.0021 0.7008 | 0.0148 | 0.0208

214 1 0.0111 | 0.8835| 0.0115| 0.0047 | 0.0051 0.7542 | 0.0181 0.0211

- 215 1 0.0160 [ 1.1695[0.0067 | 0.0043 | -0.0050| 1.0932 | 0.0556 | 0.0236

216 | 0.0220{ 2.1620 { 0.0227 | 0.0044 | 0.0050 1.3634 | 0.1112 | 0.0413

217 0.0384 | 3.1714 | 0.0698 | 0.0043 | 0.0357 1.9203 | 0.1797 0.1106

218 | 0.0291 { 2.5010 | 0.0308 | 0.0046 | 0.0063 1.6575 | 0.1714 -

NOTES: 1. (Cp) = Cp_+ Cpe - C.
! Theory

2. (CD)E is obtained by integrating the wake rake survev,
Xp

independent of surface pressure distribution.

3. Cp and Cp versus C._ are plotted in Figures 2 and 3.
p "
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TABLE 2 - COORDINATES OF BASELINE AIRFOILS

NUMKER fF AIRFNILSs NAFOSL . 3
NUMBER OF X=STATIONSe NXSTA e 30
XeLOCATIONS OF COORDINATES
0,0000 «0050 «0200 <0400 +0700 «1000 «1500 +2000
2500 03250 4000 25000 25750 6500 «7000 + 7500
8000 +8500 «8750 «9000 9250 29500 9600 9700
«9800 9878 «9925 9968 +9990 140000
BASIS VECTORS
VECTOR NUFBER |
BASIS AIRFOIL A
LOWER SUHFACE COORDINATES
4360856002 =,11485E=0) =,23991F=0] =,33318Ee() =,424]15E=0]1 =,487956=0) =,562T77€=0]1 =,614]0€=0]
«e65097E«01 «,6BR02E=0] =4 709T0E=0] =4 721156 ] «oT71826€=0]1 «oT70529E=0] »¢69005€=01 ~+66028E=0]
* ©e63903E0] «,59615€=0] =¢56927E=01 =,53708E=C] «c49534F=0] =,43420E=0] «,40048E~0] »,3ISA72€=0)
2930313E201 =,26535E=0] =,19174E=0]1 = )2653E=C] =¢60935E=92 +I6000E=02
.. UPPER SURFACE COORDINATES
. 2J6085Ew02 ,17548€=0) o33288E=01 (46812E=01 o61805E=01 (T7ITI0E=0] 09564£=01 +10197€e00
«111BBE+00 ,12280E«00 .12995Ee00 L123BSE4C0 o1IZBREC00 o12846E000 ,12353£400 o11687E000
v10828E400 o95T481E=01 o91070E=01 +BIRG2E=C] +75162E=01 +%3562E«0]) 57696E=0] +50832€«01
042280E00] ,I6066E=0]1 426963E=01 ,19180E~C1 +11501E=01 +36000E-02
VECTOR NUVBER 2
BASIS AIRFOIi 8
LOWER SUPFACE COORDINATES
¢36089E=02 =,11485E=0] =¢23991€e0] ao39310E~01 =,42415€=0] «,48795E=0] =,5627T7€=0]1 =,61410£=~0]
= 65097EeD] =,68R02E~0]1 =4T70970E=01 «472115E=01 =,T1826E=0) =,70529€=01 «.69005E=0]1 =¢66828€~0]
©063803Fn0] »,59615E«0] =,56927Ee0]) «,546018E=0] «,49806E=0] =,43395E=0] =,39933€=0] «.I5247E~0])
2029085€=01 =,2247SE=0]1 =,16590E«0) «,90999E~02 «,138968E~02 ,89000E<02
UPPER SURFACE COORDINAYES
+36085Ee02 L17S4AE=0] +332B8E«0] L468.28=01 ,61805E=01 o7ITI9E=01 L89564f=71 +10197€¢00
211188E600 .1228REeD0 (12995E+00 133 9Es00 ,13288Ee00 ,12R46Ee00 +12353ket) o11687E«D0
+10B2AE«00 ,ST7481E=01 +91070E=01 o+B83363FE=0] 75692801 ,66235E=01 L61809E=Ct ,56373E-01
049356Ee0] (42)77E=01 ¢34969€01 27514E=01 ,19944E=01 +89000E=02
VEZTOR NUMBER 3
. BASIS AIRFOIL €
LOw» 'R SURFACE COORDINATES
«16085€a02 =, 11485€=0] #423991E=01 =,332 8F€=0] =,42415€=0] «,48795¢=0]) =,56277E=0) =+61410€=0)
© 1 A509T7Eal]l «,68802E=0] *oT09T0E=0) ©,72).:57«0] =¢71826E=0]) =.70529E=01 =069005Z°0]) =.66820£~0]
. 65003€=01 =,59615E20] ~¢56927E=0] «453747€20] =,49401E=0]1 «,41826€~«0]1 = ITA9]1E~0]) «¢31649C=0)
« 23928E«0] =,16004E=0] »,83T705€-02 «,10980€«01 ,80892E=02 19477TE=01
UsPFR SURFACE COORDINATES
¢36095E002 ,17568E=01 ¢33268RAE«01 (468126001 +61805E€=01 +73I719€=01 ,89564€-0)1 +10197€e00
«11188E¢00 ,12288E¢00 +12995E400 o13389E¢00 (13288E400 +12846%¢00 1235300 +11087E¢00
010028E¢00 o97481E=01 .91070E=0] +8386IE=01 o75669E«0] +66082E=01 +6171SE-01 oS6952E<0)
Y
. ¢S1101E«01  A5T43E=0] +00697E«D] (3464TE=D1 27302E=01 194T77E=01 1
, THIS PAGE IS BEST (UALITY PRACIICADLLE
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