
AD-AO84 GS8 BOLT BERANEK AND
NEWMAN INC CAMBRIDGE

MA
F/6 9/2

U UNIX NSW FRONT ENOdU)MAR 80 R H THOMAS F30602"78-C-0242
UNCLASSIFIED RADC-TR-80-44 NL

Ehmmmhmmhhl
Lmmim.illllm

00
0

UNCLASSIFIED

ECU~~~~I. S. I CATINIOfTHISPAGE WhenDaNnfiDeaN

16._ DITRBUIO STATEMEN (ofth.eprt

IDIS R P ORTTEET DOfUMT AT'. I ON en GE 89nR flockIN 20 i ifeet rnRpot

2.. SUPLEENAR NOTES O 111:111ITS AAOGNM

RADCft- Prjc4niee:Cp4ere ros(SP

A. KITE O (Co.Inodo Sutt e) ee iI eeer n Ietf ybok abr

0. T ABS RCT &Cnh N D, on rIe~ lcd. Ifn c eit ~di e tiy b bo k me

aoer H.-l CTomuea onse oth RAE.Ti epr ouet h

DD. 1473RIN EDGAIT~ION P N OV65 ADES 0.ET UNCGRASSIEDEET 1C A

SECRIT CCASSIOICATIO OFIC NAME AAND ADDRESSl. nt

Roe i DvlomntCntr ISC)Jkr /0
Griffiss6& AF/Y/3411. UBE FiAE

Contents

.. introduction

2. Status of the Unix NSW Front End3

APPENDIX: Unix NSW Front End Design -

AL-

EVALUATION

The UNIX NSW Front End Final Report provides a technical

perspective for developments in the user-interface front end

area as it applies to the distributed heterogeneous computer

network known as the National qnftware Works (NSW). The report

identifies and discusses development status, and most importantly,

provides recommendations as to which issues require further

development in order that continued orderly progress may be made

toward NSW Technology Transfer.

This effort applies to TPO R3D, specifically, Project 5581,

"Information Sciences Technology", (C 2 Information Processing

Thrust) and to Project 2526, Task 07, "National Software Works

Technology Demonstration". The results from this development

effort will and have been used in formulating the continued

technical program under Project 5581.

GEORGE~BROOKS, Capt, USAF

Project Engineer

1. Introduction

The NSW Unix Front End project is part of the National

Software Works (WSW) program sponsored jointly by the Air Force

and ARPA. The goal of the NSW program is to develop a network

operating system that provides an eff~ctive environment for

software production, software configuration control, and software

maintenance.

The objective of this contract was to develop a user

int erface to the National Software Works system for a PDP-11 with

the Unix operating system. The interface is called an NSW Front

End.

Development of a Unix NSW front End involved several tasks:

- Designing a user command language for the Unix Front End.

- Designing software to implement the Unix Front End
functions.

- Modifying the Unix operating system to enable it to support
the Front End software.

- Implementing the Unix Front End software.

At the end of the contract the status of these tasks was as

follows:

- The user command language has been designed and documented.
The appendix to this report documents the design.

- The Unix Front End software has been designed and
documented. The software design is also documented in the
appendix.

- The modifications to Unix required to support the Front End
have been completed and debugged, and are now part of the

L A-1-

standard Unix system used, maintaine d and distributed by
BBN. The modifications included enhancements to the Unix
terminal handler, the ARPANET network control program (NCP),
and the TELNET protocol implementation. These changes are
also documented in the appendix.

-The Unix Front End software is partially complete. The Unix
Front End may be used to log into NSW and to invoke most of
the functions provided by the NSW system. Section 2
describes the status of the Front End software In more
detail.

A contract for a follow-on project to complete and enhance

the Unix Front End is exipected. The objectives of the

contemplated project are threefold:

-To enhance the capabilities of the Unix NSW Front End
developed under this contract. This will include completing
implementation of the Front End design as documented in the
appendix, as well as designing and implementing several new
Front End features.

- To install the Unix operating system and the Unix i4SW Front
End on a PDP-11/45 at Warner-Robins Air Force Base.

- To support and maintain the software that implements the
Unix NSW Front End.

At the completion of the follow-on effort the Unix Front End will

be an easy to use, reliable, maintainable software product.

There are two parts to the rest of this report. Section 2

describes the current status of the NSW Unix Front End. The

appendix documents the design for the Front End command language,

the design for the Front End software, and the modifications made

to the Unix operating system to support the Front End.

-2-

2. Status of the Unix NSW Front End

The Unix NS5W Front End is designed to run under the Unix

operating system on a DEC PDP-11/45 or PDP-11/70 connected to the

ARPANET.

As noted in Section 1, the Front End software is partially

complete. It currently runs on the BBN-UNIX host (ARPANET host

number 77 (octal)). The Front End was initially implemented and

debugged to run against release 3.1 of the NSW system. The

current version has been upgraded to run against release 4.1 of

NSW, the most recent release of the system.

In addition to the modifications to Unix, implementation of

the Front End involved software development activity in two

areas.

- Unix MSG.

The Front End must communicate with NS5W software modules on
other hosts. To do so it uses MSG, the NSW interprocess
communication facility. A partial and largely untested
implementation of MSG for Unix, developed under Navy and
ARPA funding, was available at the beginning of the current
contract. This implementation had to be completed and
debugged.

- The Front End software.

The principal software development activity was to implement
the NS5W Front End functions. These functions fall into two
categories: the user interface, which provides the user
with a friendly environment for interacting with NSW by
means of NSW commands; and a network interface, which
communicates with NS5W software modules on other hosts in
order to carry out the user' s commands.

-3-

The status of the software development in these areas at the

end of the contract was:

-Unix MSG.

The MSG implementation is partially complete. Two of the
three communication modes supported by MSG, message
communication and alarm communication, have been
implemented. Implementation of the third mode, direct
connections, is not complete. The partial implementation of
MSG that we started with was in worse shape than we had
thought, and we were'forced to spend significantly more
effort than we had expected to make it usable. In addition,
the current Unix MSG implementation has performance
limitations which must be improved before the Front End
software can be considered a product.-

-The Front End software.

The Unix Front End currently supports all NSW user commands
except those that require the use of MSG direct process to
process connections (see above). That is, all user commands
except those to start and stop tools are supported (1). In
particular, the following commands are supported (see the
appendix for descriptions of the various commands): abort,
alter, copy, delete, describe, fastout, help, job, login,
logout, net, password, quit, rename, semaphore, and show.
The NSW commands not currently supported are: use, quit,
and reuse. In terms of the two aspects of the Front End,
the user interface and the network interface, the user
interface is complete and the network interface is partially
complete.

We recommend that the following tasks be performed as part

of the new contract:

1. All of the code required to communicate with and control tools
has been implemented and tested. The testing was accomplished
by implementing a user TELNET facility in the Front End.
(Management of tool connections is essentially identical to
managing TELNET connections.) Of course, this code cannot be
used for tool interaction until the MSG implementation is
complete.

-4-

- The Unix MSG should be completed by implementing direct
process to process connections.

- The NSW commands for starting and stopping tools on
interactive tool bearing hosts should be implemented.

- The performance of the Unix MSG should be improved.

-5-

UNIX NSW Front End APPENDIX

1. Introduction

This document describes the design for a Front End for the

National Software Works System. The design presented is for a

Front End to run under the UNIX operating system.

The National Software Works (NSW) is a physically

distributed computer operating system designed to run on a

heterogeneous collection of computers (hosts). For the current

implementation of NSW, the computers are linked at the network

level by the ARPANET. NSW is not an operating system in the
ordinary sense. That is, it is not concerned with directly

managing the physical resources (e.g.,, central processors,

memory, i/o channels) of the constituent hosts. Rather, it is a

meta-operating system in that it is built upon the operating

systems of the constituent hosts and acts to manage the host

resources in a way that enables the resources found on the

different hosts to be used together in an integrated fashion.

NSW is a mission oriented system intended to facilitate

software production. To this end it provides for direct user

communication with useful software production aids, called tools.

Typical tools include editors, compilers, loaders and test data

generators, that'are resident on the various hosts. NSW performs

two important functions related to tool support. It provides

users with a uniform means to access any tool regardless of the

host that supports the tool, and it provides both users and tools

a uniform way to access any file regardless of the host location

of the file. Tn addition, NSW provides a framework for the

UNIX NSW Front End APPENDIX

development of "management" tools which can be used by managers

to monitor and control the progress of software production

projects.

The following briefly reviews the NSW system architecture.

More details on the system architecture may be found in (1], [2),

[3], [4], (5] and [6].

The principal NSW system components are the Front End, Works

Manager, Foreman, and File Package. Users access NSW resources

through the Front End component. The Front End mediates between

the user, other NSW components, and tools supported under NSW.

It is the only NSW component that directly interfaces to the j
user.

The Front End communicates with other NSW components by

means of an inter-host interprocess conmunication facility called

MSG. MSG provides for communication between all NSW components.

The resource management and access control functions of NSW are

logically centralized in the Works Manager component. The Works

Manager is responsible for maintaining a central file catalogue,

initiating tool sessions for users, and logging users in and out

of the system.

NSW tools run on tool-bearing hosts (TBHs). The Foreman

component is part of the TBH software. Tt is responsible for

controlling the execution of NSW tools on the TBH. The Foreman

starts tool sessions on its TBH at the request of the Works

Manager. Part of its function is to provide an interface between

the tool on its host and the rest of NSW. There is an NSW File

1-2

UNIX NSW Front End APPENDIX

Package module on all NSW TBHs and on any other NSW hosts that

store NSW files. The role of the File Package is to manage the

physical copies of NSW files, to transport files between hosts,

and to perform file format and data translations in support of

tool execution and other user activity.

1.1 Design Goals

The Front End design we present has two major goals: a

well-engineered human interface and high performance. Possibly

the performance goal is implied by the user interface goal, but

we regard it as sufficiently important to warrant separate

mention. The Front End performance measure we consider most

rritical is responsiveness. Since adequate performance of

distributed systems such as NSW has been difficult to achieve in

the past, the UNIX Front End should from the outset be designed

with this goal in mind.

1.2 Organization of This Document

The purpose of this document is to describe the design for a

UNIX NSW Front End. Section 2 describes broadly the functions

which an NSW Front End must perform. Section 3 describes the

constraints withi~n which the UNIX Front End design must be

developed. The user interface that is to be provided by the UNIX

Front End is described in Sections 4 and 5. Section 1; describes

the approach we plan to take for implementing the Front End.

Sections 7, 8, and 9 describe, respectively: changes to be made

to the UNIX operating system in order to enable it to support the

1-3

uNIX NSW Front End APPENDIX

Front End design; a proposed change to NSW protocol which will

simplify implemenation of the Front End; and some enhancements to

UNIX MSG that are required to support the Front End

implementation. Finally, Section 10 discusses an issue regarding

the implementation of some of the NSW management tools that must

be resolved before the UNIX Front End can be completed.

1-4

UNIX NSW Front End APPENDIX

2. Front End Functions

An NSW Front End (FE) performs several distinct functions.

This section discusses the principal FE functions.

2.1 Command Interpretation

The FE supports the NSW command language, the means by which

a user interacts with NSW. Command interpretation involves

parsing user typein and initiating the NSW system operations

required to satisfy valid commands.

2.2 Interaction with NSW System Components

in order to satisfy user requests the FE interacts with

other NSW system components. These interactions are governed by

a set of NSW protocol "scenarios". These protocol scenarios

specify the system components involved in each NSW system

operation and the communication that occurs among them to perform

the operations (see [71,[81). The intercomponent interactions

themselves are supported by means -of MSG. For the current set of

protocol scenarios, the FE interacts only with the Works Manager

and Foreman components.

2.3 Tool Session Control

The FE provides the user means to control tool execution.

This involves the initiation and termination of tool sessions as

well as supporting direct communication with the tool.

initiation and termination require interaction with other system

components. The result of tool initiation is the creation of a

communication path between the Front End and an active tool (and

2-1

UNIX NSW Front End APPENDIX

its Foreman). Usually the communication path is a TELNET

connection, although it need not be. A user may have multiple

tool sessions active at the same time. To support multiple

tools, the FE must provide means by which a user may switch his

attention back and forth among the various active tools and

between the tools and the NSW command interpreter.

2.4 Terminal Control

The user and the Front End interact by means of the user's'

terminal. The FE exerts control over a number of basic terminal

handling functions, such as the manner in which various

non-printing "control characters" are represented when echoed and

output, the input characters that may cause "program interrupts",

and so forth. The FE makes use of the UNIX terminal handling

modules to control these functions. In addition, the FE provides

the means by which a user may edit his typein before the FE acts

on it.

2-2

UNIX NS5W Front End APPENDIX

3. Constraints on the Front End Design

The FE design for the FE we present is constrained in

several ways. The factors which constrain our design are

discussed in this section.

3.1 Functions Supported by NSW

Unlike the other major system components (i.e., MSG,

Foreman, File Package) there is no System Subsystem Specification

for NSW Front Ends (1). There are, however, some "de facto"

specifications. These specifications derive principally from the

existence of a version of the NSW system. In the current system,

there are a collection of procedures in other system components

(primarily the Works Manager, but including the Foreman) which

are callable by the FE. These FE-callable procedures, in a

sense, define the NSW system functionality in that they represent

the system operations a user can invoke through an FE. The UNIX

FE will provide means for users to invoke these NSW system

'operat ions.

3.2 Existing Intercomponent Protocols

As noted in Section 2.2, there is a set of protocol

scenarios which define how the various system components are to

interact to implement NSW system operations. The operation of

1. There is a document f9l which was written to be a
specification for a minimal function N~SW FE. However, changes
in the NSW system design have rendered that document obsolete.
The document does have limited utility as a guideline for

- general Front End issues.

3-1

UNIX NSW Front End APPENDIX

the UNIX FE must, of course, conform to these protocol scenarios.

Work in the area of NSW performance improvements is likely to

result in changes to certain of the protocol scenarios. The UNIX

FE implementation will be structured so that it can be changed

relatively easily to participate In any modified protocol

scenarios.

The protocol scenarios prescribe patterns of communication

among NSW system components. Another protocol called NSWTP (for

NSW transaction protocol) prescribes conventions for the contents

of messages exchanged as part of the protocol scenarios. NSWTP

is principally concerned with issues such as how to distinguish

between a request message and a response message, and where in a

message the function requested and its parameters are to be

found. In Section 8 we propose a minor-change to NSWTP that is

inatended to facilitate FE operation.

An FE's communication with other NSW system components is by

means of MSG. The UNIX FE must, of course, use the MSG

conventions when it engages in the various NSW protocol

scenarios. A partial implementation of MSG for UNIX currently

exists; the principal deficiency is that MSG direct connections

are not supported due to limitations in the UNIX NCP (shortly to

be corrected). As part of this project, the UNIX MSG

implementation will be completed. The UNIX FE itself will not

include the MSG functionality but rather will invoke the

communications services of UNIX MSG.

3-2

UNIX NSW Front End APPENDIX

Although the NSW syL4em design does not require it, at

present all communication between NSW tools and FEs is by means

of MSG direct connections. With one exception (the NLS tool)

these connections are TELNET connections. This requires that the

UNIX FE adhere to the TELNET protocol in its interactions with

(most) NSW tools.

3.3 Current NSW TENEX FE

A less stringent constraint on the UNIX FE design is the

current existence of a TENEX NSW Front End. The TENEX Front End

was implemented primarily to serve as a debugging aid; however,

it was for a long time, and still is, the only NSW FE. Apart

from equivalent functionality, no relationship between the TENEX

FE and UNIX FE is required. However, we believe that it is

desirable for the UNIX FE user interface to be compatible, or

nearly compatible, with that of the existing TENEX FE.

3.4 UNIX Operating System

The impact of the UNIX operating system on the FE design is

mostly in the area of the structure of the implementation.

Limitations of the UNIX terminal handler may have a minor impact

on the functions that can be supported at the user interface.

Section 7 outlines modifications to UNIX that are intended to

minimize this impact. This section discusses some of the

constraints imposed by UNIX on the FE implementation.

The UNIX FE will be implemented as a collection of UNIX

processes (see Section 6). The UNIX operating system does not

3-3

UNIX NSW Front End APPENDIX

support shared memory between processes. Consequently, any data

sharing that is required between processes that implement the FE

must be accomplished by some other means. We plan to use shared

files and interprocess pipe transmissions in situations that

require cooperation. Refer to Section 6.4.2 for further

discussion of this point.

UNIX imposes a site-dependent limitation on the number of

active file descriptors allowed per process. Typically, file 1/0

occurs with one read file descriptor and one write file

descriptor, although read-write file I/0 with a single file

descriptor is possible. Two-way inter-process pipes require two

file descriptors; the terminal requires three file descriptors.

The number of file descriptors available affects the FE

implementation by imposing a limit on the number of files and

pipes usable per process. There is no limitation, apart from

those generated by system resources and system loading, on the

number of processes that may be allocated to a user job.

3.5 Future Evolution of the NSW

Whenever possible, the FE design should be flexible enough

to permit easy implementation of projected future modifications

to NSW. Certain proposed NSW system changes, such as

tool-chaining (i.e., the sequential use of more than one tool in

the same tool workspace) , will require more extensive

interactions between the FE and the Foreman. For example, as

part of the tool chaining feature the FE and Foreman will support

commands to manipulate tool workspaces and to move files between

the NSW file system and the workspace.
3-4

UNIX NSW Front End APPENDIX

FE processing of NSW protocol scenarios will be implemented

in a table-driven form, so that any changes to the scenarios may

be easily incorporated into the FE.

At present the specification of the NSW command language is

largely up to the FE designer. The language is likely to change

in response to user feedback and the need for further

standardization in the future. Therefore, provision for easy

modification of the command syntax is part £f the FE design; for

example, the parser for the command language will be

table-driven.

3-5

UNIX NSW Front End APPENDIX

4. New Front End Features

Three major features, not currently supported by the TENEX

NSW Front End, are planned for the UNIX Front End. These

features are:

- Immediate Command Return Mdde.

- Command Procedures.

- User Profile.

Only the first will be supported by the initial implementation of

the UNIX FE.

4.1 Immediate Command Return Node

In the present FE after a user completely specifies an NSW

command the FE retains control until the aommmand is completed.

That is, the user's terminal is disabled for further input until

the NSW completely processes the command. Because most commands

involve interactions with system components resident on remote

hosts which may take a long time to complete, the users often

find themselves in situations where they can do nothing but wait.

The situation, is made worse by the fact that there is no way for

a user to interrupt or abort a command after it is initiated.

This has resulted in a high level of user frustration with the

NSW system.

The UNIX FE is designed to operate in two "command return"

modes: "deferred return" mode for which it retains control until

the command is completed; and "immediate return" mode whereby

control is returned to the user immediately after a protocol

4-1

LJ.

UNIX NSW Front End APPENDIX

scenario for the command is initiated rather than after the

scenario completes.

The immediate return mode permits the user to initiate other

commands while the protocol scenario for a commmand is being

performed. When the scenario completes the user is notified that

the command has completed. The user may display any output

produced as the result of the command execution when, and if, he

wishes by an explicit or implicit "display" command.

The user may specify the command return mode he wishes by an

FE command. When the user profile feature is implemented, the

preferred return mode may be stored in the profile and set

automatically at user login.

When the FE is operating in immediate return mode commands

are, in effect, performed in the "background". Operation in this

mode involves a style of interaction between the user and the FE

which requires communication regarding on-going commands. The FE

must inform the user when such a command completes or needs help;

and, the user must inform the FE when ready to see the output

produced by a completed commmand, when he wants an on-going

command to be canceled, or. when ready to supply help for an

on-going command.

To support this style of interaction, when a command is

initiated by the user the FE will assign it a numeric name and

report the name to the user; e.g.,

NSW: delete a.b.c
Delete (7) initiated.

N SW:

4-2

UNIX NSW Front End APPENDIX

When the command completes the FE will notify the user; e.g.,

Delete [7] competed.
N SW:

or

Show Files (12] completcu; output ready.

N SW:

The user can use the "display" command to see output produced by

completed commands; e.g.,

NSW: display (output for command) 12

When help is needed by *the FE to complete a command the FE will

notify the user; e.g.,

Help for Delete (71 required.

N SW:

The user may supply help at his convenience by means of the

"help-reply" command; e.g.,

NSW: help-reply (for command) 7

When the FE is operating in immediate return mode the

potential for unsequenced execution of on-going commands exists.

That is, if the user has initiated several commands the FE could

in principle execute them in sequence, in parallel, or in any

order. For some sets of commands the order of execution would

not matter, but for others, such as ones that include file delete

and rename commands, the outcome would depend on the order of

execution. For the initiAl implementation of the UNIX FE all

4-3

UNIX NSW Front End APPENDIX

commands will, be executed in sequence. Later implementations may

support various levels of unsequenced command execution.

4.2 Command Procedures

When implemented, the command procedure feature will permit

a user to define *composite" commands which consist of a sequence

of NSW FE commands and which are to be executed as a single

command.

The definition for a composite command or command procedure

will be a text file stored in the NSW file system. When a

command procedure is invoked by the user, the corresponding

definition file will be retrieved from the NSW file system and

interpreted by the FE. Definitions for command procedures may

include conditional command execution as well as transfers of

control.. In addition, command procedures will be able to be

passed arguments when invoked, and will, as part of their

execution, be able to gather input from the user's terminal.

The command procedure feature is not fully designed at this

time.

4.3 User Profile

At some point in the future the NSW will support the concept

of a user profile. The user profile will enable a user to have

the system store information about his preferred use of NSW and

to have it set various system usage parameters for him

automatically when he logs in.

4-4

UNIX NSW Front End APPENDIX

When implemented, the user profile feature will include

means to permit users to enter, modify and display the settings

in their profiles. The feature will require support from the

Works Manager as well as from the Front End.

At present the user profile capability for NSW is not

designed. However, when the capability is designed the UNIX FE

will be enhanced to support it.

4-5

I u i n ...

UNIX NSW Front End APPENDIX

5. User Interface

The UNIX FE is designed to provide a "friendly" interface to

NSW that is well engineered to the needs of NSW users. The user

interface is a reasonably complex entity. For purposes of

documenting it, it is convenient to divide the user interface

into smaller parts. These parts are:

- abstract syntax.

This defines the genexal syntactic structure of the FE
command language.

- command editing conventions.

These are the means by which a user may correct his typein
before it is acted upon by the FE.

- help facilities.

These are the means by which a user may request assistance,
such as prompts, as he interacts with the FE.

- parsing rules.

These define how the FE acts to interpret user typein.

- command return conventions.

These define the way the FE returns control to the user
after a command is entered.

- FE commands.

The specific FE commands invoke the various functions

supported by the FE.

Together these comprise the user interface provided by the FE.

This section discusses each of them in turn after first

describing the two basic modes of FE operation.

5-1

UNIX NSW Front End APPENDIX

5.1 Modes of operation

At any given time during an NSW session the user's FE

operates in one of two modes: exec mode or tool mode. When it

is in exec mode, the FE is receptive to commands from the user.

These commands request either NSW system operations (e.g., run a

tool) or local FE actions (e.g., switch into tool mode). In exec

mode the FE processes all user typein and tries to accumulate a

complete command. When it has a complete command, the FE

"executes" it either by initiating an NSW protocol exchange

scenario with other system components or by performing the

requested action locally. When the FE is in tool mode user

typein is treated as input for a tool and is forwarded by the FE

to the appropriate tool.

5.2 Abstract Syntax for the FE Command Language

This section specifies an "abstract syntax" for the FE

command language. By abstract syntax we mean a definition of the

general structure of the command language without a specification

of language details such as the specific commands it includes or

the particular characters used as punctuation within command

strings.

It is useful to identify an abstract syntax for the FE

because it helps simplify the description of the user interface.

The complete specific FE syntax is defined by the abstract syntax

along with a list of the commands supported by the FE, the

5-2

UNIX NSW Front End APPENDIX

punctuation rules the FE uses, and other special interaction

conventions it uses (e.g., editing, help). The FE commands are

described in Section 5.10, punctuation is described in Section

5.8, and other conventions are described in Sections 5.3, 5.4,

and 5.5.

The particular abstract syntax we propose for the UNIX FE is

motivated by the current TENEX NSW FE. It is presented below

using a variant of BNF. We use the convention that terminal

items (i.e., those which do not appear on' the left side of

productions) begin with lower case letters and non-terminal items

(i.e., those that appear on the left side of productions, and

therefore never appear in strings that are in the language) begin

with upper case letters.

The abstract syntax for the FE command language is:

<Complete-command> = <Command><cc>

<Command> = <Command/params> I
<Command/params><mc><Command-mods>

<Command/params> = <Command-spec> I
<Command- spec> < tc> <Par ams>

<Command-spec> = <command-verb> I
<command-verb><tc>4Command-qual ification>

<Command-qualification> = <qual-item> I
<qual- item><tc><Command-qual ification>

<Params> = <param> I
<par am> < tc> <Par ams>

<Command-mods> = <Mods/params> I
<Mod s/par am s><mc> <Command-mod s>

<Mods/params> = <Mod-spec> I
<Mod-spec>< tc><Params>

5-3

UNIX NSW Front End APPENDIX

<Mod-spec> = <mod-item> I
<mod- item><tc><Mod-qual i fication>

<Mod-qualification> = <qual-item> I
<qual- item><tc><Mod-qual ification>

All of the terminal items are strings of one or more

characters as follows:

Item Tvpe Meaninj

<command-verb> string The name of a command.
<qual-item> string Qualification for a command or

command modifier.
<param> string A parameter.
<mod-item> string The name of a command modifier.
<cc> special char Signals end of complete command.

or string of
special chars

<tc> " Terminates string.
<mc> Signals beginning of command

modification.

If one considers an alphabet consisting of strings (S) and the

special characters <cc>, <mc> and <tc>, the FE abstract syntax

generates the regular expression language:

S [<tc>S}* [<mc>S{<tc>S}*}* <cc>

(where * means "any number of occurrences of, including none")

or, equivalently:

S {<tc>S}* {<tc>S}* {<mc>S {<tc>S}* {<tc>S)*)* <cc>
1 2 3 4 5 6

where 1 is the command name, 2 is a list of command

qualifications, 3 is a list of command parameters, and 4 through

6 is a list of command modifications, where 4 is a command

modifjer, 5 is a list of qualifications to the command modifier,

and 6 is a list of parameters for the modifier.
5-4

UNIX NSW Front End APPENDIX

Some examples may help to clarify the abstract syntax.

Consider:

<command-verb> = {use, show, copy, delete)
<qual-item> = {files, node)
<param> = {NSW Filespecs, Tool Names, Access Types)
<cc> = CR LF
<tc> = SPACE

With these specific additions the following commands are in the

language generated by the abstract syntax:

use teco
show files any foreman...source
copy foreman.encap.source new.foreman.encap.source
delete dispatcher.sav
show node

These commands are quite similar to NSW commands supported by the

current TENEX FE. The sections that follows will show that the

language defined by the abstract syntax together with the editing

and parsing rules is almost identical to the current FE language.

From the point of view of the command language itself, it

makes little difference which terminal items are <qual-item>s and

which are <param>s since the set of commmand strings generated by

the abstract syntax are identical. For example, it makes little

difference to the user in terms of what are legal FE commands

whether FILES and NODE are <qual-item>s or <param>s. However,

there is a difference from the point of view of how the FE

supports the command language. For example, since the

<qual-item>s that are legal in any context are known and

relatively few, the FE can support recognition and completion for

them (See Section 5.4), whereas it cannot for <param>s since all

5-5

UNIX NSW Front End APPENDIX

the legal values a <param> can assume in a particular context

cannot easily be known by the FE.

The TENEX FE does not currently include the notion of

command modification as represented by the <Command-mods> item.

The idea is that command modification would be used whenever a

user wished to specify more precisely the action he wants the

system to take. Command modification would never be required for

any command but could be added at the user's option. For

example, a user may want to be able to specify in more detail the

information to be displayed by certain SHOW commands. Consider

the following additions to the syntax from the example above:

<mod-item> = ftool-rights, projects, nodes, set-semaphores)
<mc> = COMMA CR LF
<qual-item> = (..., sessions}

The following commands are generated by the abstract syntax:

show files any bbn...sources,
set-semaphores

show node,
tool-r ights

show sessions,
nodes BBN.Schantz MCA.Fanuef,
projects CCN

Here the first command would display only files satisfying the

filespec whose semaphores were set. The second command would

display only the tool rights for the user's node. The third

command would display active user sessions of the indicated nodes

and projects. (None of these functions is currently supported by

the Works Manager.)

5-6

UNIX NSW Front End APPENDIX

The commands to be supported by the UNIX FE are listed in

Section 5.10. For each <command-verb> the valid <qual-item>s and

<mod-item>s are listed.

5.3 FE Command Editing

The command editing functions provide a means for a user to

change his typein before the FE acts upon it.

The following functions will be supported:

- Abort Input.

If the "abort input" character is typed while the FE is
gathering a <Complete-command>, the partially completed command
is deleted in its entirety, and the FE signals the user that it
is ready for a new command by outputting the FE command prompt
(see Section 5.7).

- Erase Character.

The "erase character" character causes the FE to delete the
last character typed and to print the character that was
deleted. This function works until the beginning of the word
(string) is reached. At that point the FE signals the user
that no more characters remain to be deleted.

- Erase Word.

The "erase word" character causes the FE to delete either the
current partially completed word or if the user is at the at
beginning of a word, the previous word. This function works
until the beginning of a command is reached. At that point the
FE signals the user that no moN'e words remain to be deleted.

- Retype Command.

The "retype command" character causes the FE to output the
user's (corrected) typein. If there is no typein the FE
signals the user that there are no characters to be retyped.

5-7

UNIX NSW Front End APPENDIX

5.4 FE Help Facilities

A user may request information from the FE regarding its use

as well as the use of the NSW in several ways. These are:

- By specific command.

The FE will support HELP and DESCRIBE commands. HELP will
print a short message that contains key information regarding
operation of the FE (such as special function characters) as
well as information on how to obtain more specific assistance.
DESCRIBE will print a description of its argument. Neither of
these functions is currently supported by the TENEX FE.

- By requesting a prompt.

At the user's request the FE will prompt for the next field in
a command. The user requests the prompt by typing a special
prompt request character (e.g., ESC). The FE will respond by
printing a prompt string that indicates the type of input it
expects (e.g., "(Access type)").

- By requesting the current options.

At any point in typein the user may ask the FE for the options
available to him. He does this by typing a special option
request character (e.g., question mark). The action taken by
the FE depends upon the position at which the request occurs
within the partially specified command. If the position is at
the beginning of a <command-verb>, <qual-item> or <mod-item>,
the FE types out the list of valid <command-verb>s,
<qual-item>s or <mod-item>s. If it is within a <command-verb>,
<qual-item> or <mod-item> it types out the list of possible
<command-verb>s, <qual-item>s or <mod-item>s that begin with
the string the user has partially typed. If it is at the
beginning of or within a parameter, the FE prints the type of
parameter expected. In all cases the FE resumes its string
gathering operation after outputting the options.

- By requesting recognition and completion.

The user may request the FE to recognize and complete a
<command-verb>, <qual-item> or <mod-Item>. He does this by
typing a special recognition/completion request character
(e.g., ESC). The FE will respond by trying to recognize the
partially specified string. If the partially specified string
unambiguously identifies an item, the FE will recognize it and
complete it by outputting its remainder. If the string does
not, the FE will signal the user. In either case the FE
resumes its string gathering operation.

5-8

UNIX NSW Front End APPENDIX

5.5 FE Parsing Rules

The FE parsing rules define the actions taken by the FE when

a user types <cc>, <tc> and <mc>.

One of the goals in formulating the parsing rules was to

have the FE provide a "friendly" interface to the user in the

sense that the FE should be forgiving rather than vindictive when

the user makes an error. For example, whenever feasible the FE

should assist the user when he makes an error in entering a

command (such as typing <cc> before he has completely specified a

command), rather than admonish him by aborting a partially

specified command and outputting an error message.

The parsing rules designed for the UNIX FE are the

following:

- <tc> - String terminator.

The FE checks the string terminated by the <tc>.

If a <command-verb>, <mod-item>, or <qual-item> is expected,
the string must be one of the known verbs or items; otherwise
the string is an error. If a parameter is expected, the FE
tries to verify that the parameter is of the type expected:
e.g., filespec, access type, integer, scope, arbitrary string.
Of course, it can only check filespecs for syntactic
correctness.

If the terminated string is correct, then the FE attempts to
gather the next string. If it is incorrect, then the FE
outputs an error indicator and a prompt, and tries to gather
the string again.

- <cc> - Command terminator.

If the previous string was not terminated by a <tc>, the FE
first treats the <cc> as a <tc>.

5-9

UNIX NSW Front End APPENDIX

If the string was terminated by a <tc> or if the unterminated
string was determined to be acceptable, the FE checks to see if
the typein so far completely specifies a command. If it does,
the FE asks the user for confirmation prior to performing the
command. The user may respond in one of two ways: he may
instruct the FE to go ahead and "execute" the command, by
typing a second <cc>; or he may use any of the editing
characters (including the abort input character) to edit the
command.

If the command is incomplete, the FE treats the <cc> as a <tc>
(if necessary) followed by a user request for a prompt (i.e.,
the prompt request character) and prompts the user for the next
string.

- <mc> - Command modification indicator.

If necessary the FE first treats the <mc> as a <tc>.

Then it checks to see if complete command (i.e.,
<Command/params>) has been specified. If so, the FE begins to
collect command modifications (i.e., <Command-mods>). -If a
<Command/params> has not been specified, the FE treats the <mc>
as a <tc> (if necessary) followed by a user request for a
prompt.

5.6 Command Return Modes and Command Names

Section 4.1 described two conventions for returning control

to the user after a <Complete-command> is entered and confirmed.

For deferred return, the FE retains control and terminal input is

ignored until the command completes. For immediate return, the

FE returns control to the user as soon as it initiates the

actions required to execute the command, and the user may enter

new commands while the command proceeds to completion.

The UNIX FE will support both modes of operation. Initially

the FE will be in deferred command return mode. After logging

In, the user may, if he desires, specify by command the command

return mode to be used.

5-10

UNIX NSW Front End APPENDIX

As discussed in Section 4.1,, Immediate command return mode

requires that commands be named so that the FE and user can refer

to various on-going commands. The names for commands will be

numbers, and they will be assigned by the FE and reported to the

user when commands are initiated. The FE will support several

commands for dealing with on-going commands while operating in

immediate command return mode. The "display" command will cause

the FE to print the output resulting from the execution of a

specified command. The uhelp-replyu'command can be used to

supply help for a specified command. The "abort" command can be

used to cancel an on-going command. Of course, the outcome of

the abort command is somewhat probabilistic since there is no way

of guaranteeing that the command to be cancelled has not already

completed or progressed to a point where it cannot be cancelled.

5.7 Miscellaneous

This section describes aspects of the user interface which

do not fall neatly into the above five sections.

-FE Command Prompt.

The FE will have a *prompt" which is used when it is in exec

mode to signal the user that it is ready to accept the next

command. The command prompt is output in a number of

situations, such as upon return to exec mode from tool mode and

upon completion of processing for an abort input character.

The command prompt for the current TENEX FE is the string

"NSW:". At present we see no reason to change it for the UNIX

FP.

5-11

UNIX NSW Front End APPENDIX

- Switching Modes.

The TENEX FE recognizes a special character (CNTL-N, for NSW)

as a request to switch from tool mode to exec mode. It uses

another special character (CNTL-U, for use) to switch from exec

mode to tool mode. The UNIX FE will recognize the same special

character (CNTL-N) when in tool mode as a request to switch

modes. It will provide a <command-verb> for switching from

exec mode to tool mode. (It may also support a special

character for this purpose. However, in general, we feel that

the number of special characters in the FE command language

should be minimized.)

- Query mode input.

Certain NSW commands require a large number of parameters. The

NET command for importing, exporting, and transporting files is

a good example. -It seems unreasonable to expect any user to

remember all of the command parameters required, and the order

in which they must be specified for such commands. For these

commands the FE will enter into a query mode after the command

is partially specified (e.g., a <command-verb> and perhaps a

<qual-item> have been specified), whereby it will prompt the

user for the required parameters. After all of the parameters

have been entered, and before command execution begins, the

user will be given an opportunity to confirm or abort the

command.

5-12

UNIX NSW Front End APPENDIX

- Quote Character.

The UNIX FE will support a special quotation character to allow

a user to enter special function characters (e.g. <cc>, "delete

character" character) as parts of strings rather than to

request their special functions..

- User Signal.

Sections 5.4 and 5.5 mentioned several situations where the

UNIX FE will signal the user (e.g., an "erase character"

character has been typed but there are no characters remaining

to be deleted). The FE will have a special output signal to

alert the user in these situations. We have chosen the

character CNTL-G (BELL) for this signal.

- Flush Output.

The Front End will support a "flush output" function. This

will enable a user to cause output intended for his terminal to

be discarded without causing the operation being performed by

the FE to be aborted.

- Interrupt FE.

When the FE is in exec'mode it can be "interrupted" by typing a

special interrupt FE character. This causes the FE to output

the NSW prompt and to begin gathering a new command. If the FE

was operating in deferred command return mode the on-going

command, if any, is allowed to continue execution as if in

immediate command return mode. If desired, the user may cancel

= It by using the "abort" command.

5-13

UNIX NSW Front End APPENDIX

- Login Command.

When the UNIX FE is started for a user it will output an NSW/FE

herald followed by its command prompt. Since at this point the

user has not yet logged in, he will be able to use only a

limited number of commands, including a LOGIN command to login

(see Section 5.10). This differs slightly from the TENEX FE

which does not support a command for login but rather runs in a

special mode when it is started where it prompts the user to

supply login information.

- TELNET Functions.

When the FE is in tool mode a user will be able to cause the FE

to send certain TELNET control characters, such as the TELNET

"erase character" character and the TELNET "erase line

character", by typing special predefined function characters.

In addition, a quote character will he supported to allow the

user to cause the FE to send any of the predefined function

characters to the remote tool.

- Invoking the FE from UNIX.

There are two possibilities he-e. One is to allow the user to

invoke the FE by typing a command, such as "nsw", to the UNIX

shell (command language interpreter). The other is to, in

effect, replace the standard UNIX shell with the FE so that

when a user activates his terminal he finds himself talking to

the FE rather than to the shell. The first approach would be

appropriate for UNIX hosts that support other applications in

5-14

UNIX NSW Front End APPENDIX

addition to the NSW FE, and the second is more appropriate for

hosts that are dedicated to the FE function. The UNIX FE will

be implemented so that it can be invoked in eiLher way.

5.8 Special Character Assignments

The following are the special character assignments for the

UNIX FE:

Function Assignment

<cc> CR LF (= carriage return followed by line feed)

<tc> SPACE, TAB

<mc> COMMA CR LF

abort input CNTL-X

erase character DEL

erase word CNTL-W

retype (CNTL-R

request prompt ESC

request options ?

recognize and ESC
compl ete

quote CNTL-V

return to CNTL-N
exec mode

interrupt FE CNTL-X

signal to user CNTL-G (Output from FE to user)

5-15

UNIX NSW Front End

5.9 Example User Interactions

The examples in this section are chosen to illustrate the

nature of the interactions to be supported by the UNIX FE. The

examples are the five commands from the example in Section 5.2.

Output generated by the FE is underlined; user typein is not

underlined. The examples are annotated for purposes of

explanation; the annotations would not, of course, appear in

actual user/FE interactions.

Example 1.

Command: use teco

Interaction:

us(ESC)e (ESC) (tool named) teco I [Confirm] I
1 2 3 4 5 6 7

Notes:

1. user requests recognition and completion.

2. FE completes "use".

3. user requests prompt.

4. FE outputs prompt.

5. user types <cc> (= CR LF); FE echoes ! for <cc>.

6. FE requests confirmation from user.

7. user confirms with <cc>; FE echoes 1.

c -1 6

UNIX NSW Front End APPENDIX

Example 2.

Command: show files any foreman...src

Interaction:

sho (ESC) (item) fi(ESC)les (ESC) (access typ) (CNTL-R)
12 3 4 5 6 7 8

sho files any (ESC) (filespec) foreman...src ' (Confirm] (CNTL-X)
9 10 1i 12 13 14

Notes:

1. user types <tc> (= SPACE); FE recognizes "show* command.

2. user requests prompt.

3. FE outputs prompt.

4. user requests recognition and completion.

5. FE completes "files".

6. uger requests prompt.

7. FE outputs prompt.

8. user requests retype.

9. FE retypes command line.

10. user requests prompt.

11. FE outputs prompt.

12. user types <cc>; FE echoes 1.

13. FE requests confirmation.

14. user aborts input (and command).

Example 3.

Command: copy foreman.src new.foreman.src

5-17

UNIX NSW Front End APPENDIX

Interaction:

copy ?
1
filespec for source file
2

co2y foreman.src I (to file named) new.foreman.src I [Confirm] I
2 5 6 7

Notes:

1. user requests help.

2. FE outputs help.

3. user types <cc> before command fully specified; FE echoes
I.

4. FE treats <cc> as <tc> followed by ESC and outputs prompt.

5. user types <cc>; FE echoes !.

6. FE requests confirmation.

7. user confirms with <cc>; FE echoes '.

Example 4.

Command: delete dispatcher.sav

Interaction:

del cisp(CNTL-W)dis(CNTL-R)
1 2 3

del dispatcher.sev I [Confirm (DEL)\v(DEL)\eav ((Confirm] I
45 6 7 8 9 10

Notes:

1. FE recognizes "delete" command.

2. user erases word.

3. user requests retype.

4. FE retypes command line.

5-18

UNIX NSW Front End APPENDIX

5. user types <cc>; FE echoes 1.

6. FE requests confirmation.

7. user notices error in filespec and erases characters.

8. after correcting filespec, user types <cc>.

9. FE requests confirmation.

10. user confirms with <cc>.

Example 5.

Command: show node

Interaction:

show ?
1
node
files
scopes

show nos(DEL)\sd(CNTL-R)
2 3 4 5
show nod(ESC)e I [Confirm] I
6 7 10 11

Notes:

1. user requests options.

2. FE outputs options,

3. user erases character.

4. FE prints character deleted.

5. user requests retype.

6. FE retypes command line.

7. user requests recognition and completion.

8. FE completes "node"

9. user types <cc>; FE echoes 1.

5-19

L n I II I I

UNIX NSW Front End

10. FE requests confirmation.

11. user confirms with <cc>; FE echoes I1.

.5.10 UNIX FE Commands

This section lists the commands to be supported by the

initial implementation of the UNIX FE. The list includes all

commands currently supported by the TENEX FE, as well as a few

additional commands.

- ABORT command.

Purpose: Cancels an NSW command which has been issued.

Syntax:

<command-verb> = abort

<qual-item>s none

<mod-item>s = none

parameters: Command number.

Command including prompts:

NSW: abort (command) CommandNumber

Notes:

The command number is assigned by the FE when the command
is issued, and it is made known to the user at that time.

- ALTER command.

Purpose: Alters scopes of NSW files.

Syntax:

<command-verb> = alter

<qual-item>s = add, drop

5-20

UNIX NSW Front End APPENDIX

<mod-item>s = none

parameters: Access type (copy, delete, enter or all)
followed by a list of scopes to be altered.

Command including prompts:

NSW: alter (add or drop) add (access type) ScopeList

- COPY command.

Purpose: Makes a copy of an NSW file..

Syntax:

<command-verb> = copy

<qual-item>s = none

<mod-items> = none

parameters: Filespec for the file to be copied;
Entryname for the copy to be made.

Command including prompts:

NSW: copy (from file named) Filespec (to file named) Entryname

- DELETE command.

Purpose: Deletes an NSW file.

Syntax:

<command-verb> = delete

<qual-item>s = none

<mod-item>s none

parameters: a list of (i.e., one or more) Filespecs for
the files to be deleted.

Command including prompts:

NSW: delete (files named) Filespecl ... FilespecN

5-21

UNIX NSW Front End APPENDIX

Notes:

The FE will type out the complete file name corresponding
to each of the filespecs and the user will be asked to

confirm or abort each delete operation.

- DESCRIBE command.

Purpose: Prints a short description of NSW terms and commands.

Syntax:

<command-verb> = describe

<qual-item>s = none

<mod-item>s = none

parameters: Command name or NSW term.

Command including prompts:

NSW: describe (item) CommandName

DISPLAY command.

Purpose: Displays output resulting for a completed command.

Syntax:

<command-verb> = display

<qual-item>s = none

<mod-item>s none

parameters: Command number.

Command including prompts:

NSW: display (output for command) CommandNumber

Notes:

The command number is assigned by the FE when the command

is issued, and it is made known to the user at that time.

5-22

UNIX NSW Front End APPENDIX

- FASTOUT command.

Purpose: Aborts all interactive tool session and logs out of
NSW.

Syntax:

<command-verb> - fastout

<qual-item>s = none

<mod-item>s = none

parameters: none

Command including prompts:

NSW: fastout

- HELP command.

Purpose: Displays a "help" string to guide user.

Syntax:

<command-verb> = help

<qual-item>s = none

<mod-item>s = none

parameters: none

Command including prompts:

NSW: help

- HELP-REPLY command.

Purpose: Used to supply a reply to a help call made by another
NSW component.

Syntax:

<command-verb> = help-reply

<qual-item>s = none

5-23

L

UNIX NSW Front End APPENDIX

<mod-item>s = none

parameters: Command number.

Command including prompts:

NSW: help-reply (for command) CommandNumber

Notes:

The command number is assigned by the FE when the command
is issued, and it is made known to the user at that time.
The help-reply command prints the message associated with
the help call before it begins to gather the reply from the
user.

- JOB command.

Purpose: Determines status of batch job.

Syntax:

<command-verb> = job

<qual-item>s = none

<mod-item>s - none

parameters: Job id

Command including prompts:

NSW: job (status of job) JobID

- LOGIN command.

Purpose: Creates an NSW user session.

Syntax:

<command-verb> = login

<qual-item>s = none

<mod-item>s = none

parameters: Project name (PName); Node name (NName); Node
password.

5-24

UNIX NSW Front End APPENDIX

Command including prompts:

NSW: login (project) PName (node) NName (password) Password

Notes:

The node password is not echoed by the front end.

- LOGOUT command.

Purpose: Logs out of NSW.

Syntax:

<command-verb> = logout

<qual-item>s = none

<mod-item>s = move

parameters: none for unmodified command; for the
<mod-item> move the parameters are: Project name
(PName), Node name (NName), and password.

Command including prompts:

NSW: logout

or

NSW: logout,
move (project) PName (node) NName (password) Password

Notes:

1. If there are any active tool sessions the logout will fail.

2. If the move <mod-item> is used, a new NSW session will be
created for the specified node after first logging out the
old session.

- MOVELOG command.

Purpose: Logs out of NSW and creates a new user session without
breaking the connection to NSW.

5-25

UNIX NSW Front End APPENDIX

Syntax:

<command-verb> = movelog

<qual-item>s = none

<mod-item>s = none

parameters: Project name (PName); Node name (NName)-;
Node password.

Command including prompts:

NSW: movelog (project) PName (node) NNam (password) Password

Notes:

Identical to a logout command with the move <mod-item>.
Movelog is retained for compatibility with the TENEX FE.

- NET command.

Purpose: Moves files into and out of the NSW file system.

Syntax:

<command-verb> = net

<qual-item>s = import, export, transport

<mod-item>s = none

parameters: After the <qual-item> is specified the FE
enters query input mode wherein the user is prompted
for the parameters required to specify the external
(non-NSW) file(s). For "net import" the parameters
collected in query mode are the filespec for the NSW
destination file and the information necessary to
access the external file. For "net export" they are
the filespec of the NSW source file and the
information necessary to store the destination
external file. For "net transport" the parameters
collected in query mode are the information necessary
to access the source external file and store the
destination external file.

Command Including prompts:

5-26

UNIX NSW Front End APPENDIX

NSW: net (direction) import
[query mode dialogue]

or

NSW: net (direction) export
(query mode dialogue]

or

NSW: net (direction) transport
(query mode dialogue]

- PASSWORD Command.

Purpose: Changes password for currentnode.

Syntax:

<command-verb> = password

<qual-item>s = none

<mod-item>s = none

parameters: Old password (Pwdl); New password (Pwd2); New
password (Pwd3).

Command including prompts:

NSW: password (current password) Pwdl (new password) Pwd2
(repeated) Pwd3

Notes:

1. The passwords are not echoed by the FE.

2. The new password is required. twice to minimize the chance
that the user has mistyped it.

- QUIT command.

Purpose: Ends an active tool.

5-27

UNIX NSW Front End APPENDIX

Syntax:

<command-verb> = quit

<qual-item>s = abort, terminate

<mod-item>s = none

parameters: Tool name

Command including prompts:

NSW: quit (action) abort (tool name) ToolName

or

NSW: quit (action) terminate (tool name) ToolName

- RENAME Command.

Purpose: Changes the name of an NSW file.

Syntax:

<command-verb> = rename

<qual-item>s = none

<mod-items>s = none

parameters: Filespec for file to be renamed; Entryname
for new name for the file.

Command including prompts:

NSW: rename (file named) Filespec (to have name) Entryname

- REUSE Command.

Purpose: Switches from exec mode into tool mode, connecting the
user to the specified tool.

Syntax:
<command-verb> = reuse

<qual-item>s = none

5-28

UNIX NSW Front End

<mod-item>s = none

parameters: Tool name

Command including prompts:

NSW: reuse (tool name) ToolName

Notes:

1. This command is equivalent to the CNTL-U function in the
TENEX FE.

2. If tool name is null, the last active tool is assumed to be
the tool name parameter.

- SEMAPHORE command.

Purpose: Controls semaphore on an NSW file.

Syntax:

<command-verb> = semaphore

<qual-item>s = read, set, unset

<mod-item>s = none

parameters: Filespec

Command including prompts:

NSW: semaphore (action) read (file name) Filespec

or

NSW: semaphore (action) set (file name) Filespec

or

NSW: semaphore (action) unset (file name) Filespec

- SHOW command.

Purpose: Prints information about files, node, or scopes.

5-29

UNIX NSW Front End APPENDIX

Syntax:

<command-verb> show

<qual-item>s f files, node, scopes

<mod-item>s = none

parameters: none for "show node"; for "show scopes" the
parameter is an access type; for "show files" the
parameters are an access type followed by filespecs
for the files of interest.

Command including prompts:

NSW: show files (access type) AccessType (file) Filespec

or

NSW: show node

or

NSW: show scopes (access type) AccessType

- USE command.

Purpose: Opens a connection to an interactive tool and switches
from exec mode to tool mode.

Syntax:
<command-verb> = use

<qual-item>s = none

<mod-item>s = none

parameters: Tool name

Command including prompts:

NSW: use (tool name) ToolName

5-30

UNIX NSW Front End APPENDIX

6. Implementation Approach

This section sketches the approach we plan for the Front End

implementation. The UNIX FE will be implemented in the C

programming language.

6.1 Decomposition into Tasks

The FE will be built from three logically distinct tasks: a

user interface task, a protocol interface task, and a tool

interface task. These tasks are described in this section.

Section 6.4 discusses how UNIX processes will be used to

implement these tasks.

6.1.1 User Interface Task

The main responsibility of the user interface task, or user

task for short, is to handle all interactions with the NSW user.

Its direct interface to the user is through the UN4IX terminal

handler. The user task implements all control character

functions, performs command editing, and parses the user's input.

It maintains the user's exec mode/tool mode context. When in

exec mode it decides whether a command requires interaction with

other system components (through the protocol task) or can be

executed directly. When the FE is in tool mode, it forwards the

user's type in to the correct tool.

6.1.2 Protocol Interface Task

The protocol interface task, or protocol task for short, is

responsible for initiating and participating in NSW protocol

scenarios. it initiates protocol scenarios at the request of the

6-1

U4TX NJSW Front End APPENDIX

user interface task as required-to satisfy user commands, it

responds to requests from other NSW system components to engage

in protocol scenarios, and it initiates protocol scenarios when

certain exceptional conditions are detected (e.g., the autologout

scenario is invoked neither by use' request nor by remote

request, but rather by the FE when necessary) . The protocol task

engages in protocol scenarios by sending and receiving MSG

messages and alarms, and by opening and closing MSG direct

connections. Thus the protocol task is activated by requests

from the user task, by (MSG) messages from other system

components, and by the occurrence of exceptional events. The

protocol task treats each on-going protocol scenario as a set of

separate transactions and maintains status information regarding

the progress of each scenario. Thus it is capable of engaging in

several scenarios simultaneously. When a protocol scenario

completes or when user intervention is required to continue with

a scenario (e.g., to disambiguate an NSW filespec) the protocol

task interacts with the user task. In these cases the protocol

task signals either the completion of a scenario (possibly along

with some text to be displayed to the user) or the need for more

information from the user.

6.1.3 Tool Interface Task

The tool interface task, or tool task for short, is

responsible for the maintenance of all Front End-to-tool

communication. As previously noted, FE-tool communication will

for the most part be via the TELNET protocol. When a user is

6-2

UNIX NSW Front End APPENDIX

Interacting with a tool, the connection to that tool is said to

be active; at other times, it is said to be suspended. The tool

task suspends and activates connections, buffers output (from

remote tools) for suspended connections, and handles TELNET or

other ARPANET protocol obligations required to support tool

communication.

For the initial implementation of the UNIX FE, the tool task

will support only TELNET communication with tools.

6.2 Communication Between Tasks

operation of the FE will, of course, require communication

between the three tasks. The principal communication patterns

are described below.

-User*Tnterface - Protocol Interface Communication

The protocol task and user task interact with each other to
initiate and carry out NSW protocol scenarios. After a user
has completely specified a command that requires a protocol
scenario, the user task communicates with the protocol task to
cause it to initiate the corresponding scenario. Certain
protocol scenarios may require further user interaction to be
completed. Text to be displayed to the user is sent to the
user task from the protocol task, and any user responses are
sent back to the protocol task by the user task.

-User Interface - Tool Interface Communication

The user and tool tasks communicate with each other to handle
user/interactions with tools. Changes in context between exec
mode and tool mode require communication between these tasks.
Changes in tool connection status initiated by the user must be
communicated to the tool task. For example, activating a
suspended tool connection, suspending an activated one, or
setting an echo option Involves this communication. The
information transmitted between the tasks is typically an
indicator of the tool-managing action to be taken and a
connection identifier (e.g., the UNIX file descriptor
corresponding to the tool connection involved).

6-3

UNIX NSW Front End APPENDIX

-Protocol Interface -Tool Interface Communication

When the protocol scenario to initiate a tool session has
completed, the protocol task passes the tool task the
information necessary to support communication with the remote
tool. The tool task manages the tool connection until it is to
be closed, at which time the protocol task assumes
responsibility for it. The tool task and protocol task must
communicate in order to pass responsibility for the connection
back and forth.

6.3 Principal FE Data Bases

The FE uses a number of internal data bases or tables to

support its operation. This section describes the principal

ones.

6.3.1 Protocol Scenario Tables

As noted in Section 6.1.2, the protocol task is capable of

engaging in multiple independent NSW protocol scenarios

simultaneously. This capability is supported by several related

data bases: the protocol scenario definition table, the active

scenario tah7,;e, and the MSG transaction table. There is an entry

for each instance of a protocol scenario in the active scenario

table. The entry contains all the informnation required by the

protocol task to pterforin the particular scenario instance. it

holds a pointer to an entry in the protocol scenario definition

table; that entry in the protocol scenario definition table

identifies the particular protocol scenario (e.g., RIJNTOOL,

DELETE FILE) and defines the FE's protocol obligations for it In

terms of a sequence of steps (e.g., send a generic message,

receive a specific message) . A complete NSW protocol scenario

involves the execution of one or more MSG operations. The

6-4

UNIX NSW Front End APPENDIX

information associated with MSG operations is stored in

transaction blocks. This information includes that required to

perfo rm the MSG operations as well as information relevant to the

protocol scenario that is extracted from data transferred by the

operations. As a particular protocol scenario instance

progresses, a collection (list) of transaction blocks associated

with it grows. The active scenario table entry for a particular

scenario instance points to the list of related transaction

blocks, as well as to the current transaction block.

6.3.1.1 Protocol Scenario Definition Table

The protocol scenario definition table (or protocol table

for short) stores in tabular form the prescribed steps of each

NSW protocol scenario the FE may be called upon to participate

in. Consequently, protocol changes are easil~y absorbed by the FE

by merely making alterations to the protocol scenario definition

table. The active scenario table entry corresponding to a

scenario instance points to a particular step of some entry in

the protocol table. That step describes the state of the

protocol scenario instance.

Each step in a protocol scenario definition includes:

- an operation (e.g., Send primitive)
- an operation modifier
- an argument (e.g., the name of a procedure)
- an argument modifier

Operations are either instructions to the pc,)tocol manager (e.g.,

a conditional or unconditional "goto" operation to modify the

position of the pointer in the active scenario table entry to

6-5

UNIX NSW Front End APPENDIX

point to some other protocol step), or they directly correspond

to MSG primitives being issued and completed. The procedure name

names a local internal FE procedure that is to be called when the

step is executed.

6.3.1.2 Active Scenario Table

The active scenario table holds information that records the

progress of each active instance of a protocol scenario from

start to finish. It is used by the protocol task to track

multiple simultaneous scenarios and to enforce the sequencing of

protocol scenarios where required.

For each active protocol scenario, the following information

is stored in the active scenario table:

- scenario identifier.
The scenario identifier serves to uniquely identify the
scenario instance to the FE. It is identical to the
FE-assigned transaction identifier, if one exists; if there
is no FE-assigned transaction identifier, the foreign
transaction identifier or null idenfifier is converted to an
appropriate FE-compatible form. (See Section 8 for further
discussion of scenario identifiers.)

- pointers to previous and next scenarios.
These pointers are used to link scenarios that must be
executed in sequence. The pointers point to other entries
in the active scenario table.

- pointer to entry in protocol scenario definition table.
This identifies the particular scenario in progress.

- pointer to the current step in protocol scenario definition
table entry.

- pointer to current transaction block.
Provides reference to transaction block associated with
current protocol step.

6-6

UNIX NJSW Front End APPENDIX

6.3.1.3 Transaction Table

The structure of a transaction block is a function of the

MSG primitive to which it corresponds. The following information

is stored in every transaction block, regardless of the MSG

primitive involved:

- pointer to the active scenario table.
This identifes the protocol scenario instance for which the
MSG primitive was executed.

- the corresponding MSG primitive.

- primitive completed flag.
This flag is set to indicate that MSG has completed the
primitive.

- pointers to previous and next transaction blocks, if any,
that are part of the protocol scenario.

- event handle returned by MSG.
After the primitive has been issued, MSG returns an event
-handle by which to identify the pending event. The event
handle is later used to determine whether the pending event
has completed or not. (Refer to the UNIX MSG User Manual
for details.)

- disposition.
Disposition field used in MSG primitive calls.

- signa. used.
Signal used in MSG primitive calls.

- process name.
MSG primitive operations have source and destination process
names. This name is the name of the destination process.

- type, tid.
These are the first two fields of an MSG message in NSWTP
format. They are message type and transaction identifier,
respectively.

- pointer to an MSG message buffer (send or receive, as
appropriate).

The remaining information in a transaction block is

dependent on the MSG primitive associated with the transaction.

The remaining information maintained for each primitive is:

6-7

UNIX NSW Front End APPENDIX

- SendGeneric.
The name of the remote procedure called and its arguments
are stored. The timeout parameter and boolean wait flag
(qwait) are always stored.

- SendSpeci fic.
For SendSpecific calls which initiate protocol scenarios,
the name of the remote procedure called and its arguments
are stored. The timeout parameter and special handling flag
are always stored. For tool-termination scenarios,
accounting information is also stored.

- ReceiveSpecific.
For ReceiveSpecific calls which initiate protocol scenarios,
the name of the local procedure called and its arguments are
stored. The timeout parameter and special handling flag are
always stored. For a Help call, the help code (which
identifies the kind of help sought) is stored. For
tool-initiation scenarios, tool-related parameters are
stored. For tool-termination scenarios, accounting
information, reason for termination, and termination
scenario type are also stored.

- SendAlarm.
The alarm code is stored.

- OpenConn and CloseConn.
The connection identifier, connection type, and connection
handle returned by MSG (a UNIX file descriptor) associated
with the connection are stored.

With the exception of pointers, event handles, and the UNIX

file descriptors for open connections, note that the information

stored in the transaction blocks are either arguments to MSG

primitives or components of MSG messages.

6.3.2 Active Session Table

The active session table holds data that describes the state

of the user's NSW session as perceived by the FE. It holds the

user's project name, node name, and user ID. In addition, it is

used to keep a record of the status of user commands which have

not been completed. This command information is used in part to

6-8

UNIX NSW Front End APPENDIX

support the immediate command return mode feature discussed in

Section 4.1. It is important to have this information readily

accessible to the user task (since the user may at any time query

the FE for the status of outstanding commands).

For each outstanding, or active, command, the following

information is stored:

- command.
The particular command being performed.

- scenario identifier.
The identifier for the protocol scenario instance, if any,
corresponding to the command.

- command identifier.
The command identifier is a number assigned by the FE w hich
is used to identify outstanding commands to the user.

- command status.
The status indicates whether the command has been
"requested" (of the protocol task) , "initiated" (by the
protocol task) , or "completed".

- pointer to previous and next commands.
These are used to link commands which must be executed in
sequence; they are pointers to other command entries in the
active session table.

- parameters.
Parameters stored.

6.3.3 Active Tool Table

The active tool table contains all FE information relevant

to handling tools. For each active tool, the following

information is stored:

-generic tool name.
ouring each user session on NSW, a number of too.ls are
available for use by the user. The user may determine which
tools are available (by querying the WM) and may invoke
their use. Tools are invoked by generic tool name, e.g.,
TECO or SOS.

6-9

UNIX NSW Front End APPENDIX

- tool instance name.
When a tool is invoked according to its generic tool name,
an instance of that tool is.allocated to the user. Each
tool instance has a tool instance name associated with it;
this name is assigned by the FE and contains the generic
tool name as a substring. For example, a representative
tool instance name is "3TECO".

- tool address.
The MSG process address for the tool Foreman process.

- tool identifier.
The tool id is a W-determined integer that uniquely
identifies a tool instance.

- tool connection handle..
The connection handle for the connection to the tool that is
returned by MSG (i.e., a UNIX file descriptor for the
connection).

- connection management data.
This data represents the current state of the tool
connection. Elements of the vector are: connection type,
connection identifier (the preceding two are arguments from
FE-OPENCONN), a "lnd saved" flag, character count of
buffered output, pointer to the output buffer, and an "in
use" flag.

The FE maintains a pointer to the active tool table entry

for the most recently activated tool. When the FE is in tool

mode this is the entry for the currently active tool, otherwise

this is the entry for the tool used last. This pointer is the

"current tool" parameter. It is used to select a default tool

when the user omits the tool name parameter for the "reuse"

command.

6.3.4 Terminal Input and Parding Tables

An input buffer and several tables are used to support the

processing of terminal input from the user when the FE is in exec

mode. They are described below.

6-10

UNIX NSW Front End APPENDIX

6.3.4.1 Terminal Input Buffer

The user task maintains a terminal buffer to hold exec mode

user typein until a string has been verified to be a complete and

valid command. This buffer is manipulated by user

command-editing functions.

6.3.4.2 Grammar Tree

The grammar tree stores the FE command language in a tabular

form. Each node of the tree stores user prompt strings, the type

of input expected next (e.g., <qual-item>, <param>), and (where

appropriate) further information to enable the FE to query the

user for elements of the command.

6.3.4.3 Parse Tree

The parse tree is a data structure built as the user s

typein is parsed. It contains "tokens" for the syntactic items

(e.g., <command-verb>s, <qual-item>s, etc.) that have been

recognized in the terminal input buffer. For each token in the

parse tree there is a pointer to the corresponding position in

the terminal input buffer. There is, in addition, a pointer to

the grammar tree to indicate the current state of the "parse" of

the user's input.

6.3.5 Buffers

In addition to the tables described above, the FE maintains

a number of buffers.

6-11

L

UNIX NSW Front End APPENDIX

6.3.5.1 Message Buffers

The protocol task maintains message buffers for outgoing and

incoming MSG messages. Buffer space for messages is allocated

and deallocated as needed. Since the FE at all times has a

ReceiveSpecific primitive? outstanding, there is always be at

least one receive buffer allocated.

6.3.5.2 Terminal Output Buffers

All terminal output originating in the protocol task is sent

to the user task where it is buffered prior to printing. For

each buffer, the following information is stored:

- scenario identifier.

- command identifier.

- sequence number.
This number enables the user task to distinguish between
buffered strings having the same scenario identifier.

- display only/Help reply flag.
This flag specifies whether the string should be displayed
with or without expecting a user response.

- the buffered ASCII string.

6.3.5.3 Tool Buffers

For each tool, there is a tool buffer which is used to hold

terminal output from remote tools prior to printing on the user's

terminal. Each tool buffer consists of header information and

space to hold the output for the terminal. The tool buffers are

maintained by the tool task.

For each tool 'uffer, the following information is stored:

-associated active tool table entry.

6-12

UNIX NSW Front End APPENDIX

- the number of characters buffered (held in active tool table
entry).

- pointer to last character written into buffer (held in
active tool table entry)

- the buffered data itself

6.4 Tasks and UNIX Processes

We plan to use separate UNIX processes to implement the

three tasks described above. The user task will be realized by a

user process, the tool task will be realized by a tool process,

and the protocol task will be realized by a protocol process.

The mapping of tasks onto UNIX processes will be "approximate" in

that some tasks will be implemented across process boundaries.

As examples: when the FE is in tool mode, the tool process will

accept user input; and, when a tool is started, the protocol

process will be responsible for entering a large portion of the

tool data kept in the active tool table. The former function was

specified as part of the user task, and the latter function was

specified as part of the tool task.

The particular realization of the tasks by processes (and

across process boundaries) was chosen to minimize communication

between the processes and to separate functions which must occur

concurrently into separate processes.

The discussion of the protocol task noted that protocol

scenarios may be initiated by user requests to the protocol task,

by remote calls to the FE, or by the occurrence of internal FE

conditions whose handling requires protocol scenarios (see

Section 6.1.2). In principle, these events may occur in any

6-13

LJ--

UNIX NSW Front End APPENDIX

order. The FE will also support user type-ahead and an immediate

command return mode. It follows from these considerations that

the protocol task must perform many functions independently of

the user task. Hence, the decision to implement the protocol

task and user task by two UNIX processes.

Since there is a very limited degree of concurrent operation

required among the user and tool tasks, the need to realize them

by separate UNIX processes is less clear. However, we believe

that partitioning the functions of the user task and the tool

task into separate processes will facilitate implementation.

6.4.1 Process Structure

The three processes will be hierarchically structured. The

user process will create the protocol and tool processes as its'

inferiors.

6.4.2 interprocess Communication

UNIX interprocess pipes will be used for communication

between the protocol process and the user process, and between

the user pcocess and tool process. Since communication between

the protocol process and the tool process is expected to be

r elatively infrequent and of short duration (see Section 6.2),

there will be no direct pipe between them. Instead, the

communication between them will be through the user process.

6-14

UNIX NSW Front End APPENDIX

6.4.3 Interprocess Protocol.

All communication between the user process and protocol

process is related to protocol scenarios. The user process

transmits MSG messages in NSWTP format to the protocol process

either to initiate scenarios or to supply help for on-going ones.

The protocol process transmits text strings to the user process

that are to be displayed to the user and, in some cases,

parameters to the user process. When a protocol scenario has

completed, the protocol process will notify the user process;

after modifying its tables, the user process will in3truct the

protocol process to discard information relevant to the scenario

from its tables. Since there may be multiple simultaneous

on-going protocol scenarios, scenario identifiers are required in

the messages exchanged between the user and protocol process.

Communication between the user process and the tool process

is always related to tools and therefore includes the index for

the active tool table entry for the tool. Communication from the

user process to the tool process is typically to "begin" a new

tool (i.e., to perform any table management actions required

before the tool connection can be used), to "finish" a tool being

terminated (i.e., to perform any table management actions

required to clean up before a tool connection can be closed in an

orderly fashion), to activate an existing tool connection, or to

perform some connection protocol function, such as setting an

echo option. The tool process sends the user process

acknowledgments and informs it when a tool has been suspended (as

the result of a control-N from the user).

6-15

UNIX NSW Front End APPENDIX

In general, all interprocess communication is structured on

a request-acknowledgment basis. That is, one process requests

another process to perform a given task; the second process

returns a message that acknowledges either the completion of the

requested task or the receipt of the request.

A interprocess request includes the following information:

- instruction (e.g., discard a protocol scenario)
- identifier (e.g., scenario identifier or active tool table

entry)
- parameters (optional)
The number, type, and format of parameters, if there are
any, are dependent on the instruction.

An acknowledgment includes the following:

- acknowledgment verb
- instruction being acknowledged.
- identifier in request being acknowledged.

6.5 Modular Decomposition of the Processes

The structure of the FE processes is described in this

section. All three processes are event driven and share the same

basic structure: a set of procedures (to implement either

protocol-, user-, or tool-handling functions) which are called by

routines that interface to the events that drive the process.

6.5.1 The Protocol Interface Process

The driving events for the protocol interface process are

input from the user process pipe and the completion of MSG

operations. When an event occurs, the process executes the same

main loop regardless of the event. The loop is described below

according to the sequence of steps taken.

6-16

UNIX NSW Front End APPENDIX

if there is pipe input from the user process, the pipe

interface module processes it (see Section 6.5.1.3). The input

may cause a new protocol scenario to be initiated, a new step in

an existing protocol scenario to be initiated or a completed

scenario to be deleted from the active scenario table. if there

is input from MSG (signalled by the completion of an M4SG

primitive), the MSG interface module processes it (see Section

6.5.1.2). Next, a check is made to see whether any exceptional

conditions exist that require the FE to initiate a protocol

scenario; if so, the Initiate-Scenario procedure is called (see

Section 6.5.1.1). The procedure Modify-ProtocolTable is then

invoked to advance any of the protocol scenarios that are ready

to be advanced as the result of the event(s) that occurred (see

Section 6.5.1.1). Finally, the Issue-Primitive procedure is

called to issue MSG primitives that are ready to be issued as the

result of the event(s) that occurred (see Section 6.5.1.1).

The protocol interface process is built from the following

major functional entities: proto col manager, MSG interface

module, pipe interface module, and tool table handler.

6.5.1.1 Protocol Manager

The protocol manager is a collection of procedures which

implement various protocol handling tasks. These p,:ocedures are

called by the protocol process as it executes its main loop, as

well as by the MSG interface module, the pipe interface module,

and other procedures in the protocol manager.

6-17

UNIX NSW Front End APPENDIX

A protocol scenario instance is described by an entry in the

active scenario table and a series of scenario steps (a set of

linked transaction blocks). Thus, there is an entry in the

active scenario table for each instance of a protocol scenario

that has been initiated, and there is a transaction block

associated with each protocol scenario step that has been

initiated. MSG Receive operations are exceptions in that the

scenario and scenario step corresponding to a Receive are

determined and initiated (if necessary) when the Receive

completes.

Initiating a scenario is accomplished by creating an entry

in the active scenario table and setting a pointer in it to an

entry in the protocol definition table. Initiating a scenario

step causes a transaction block for the step being initiated to

be allocated and filled. If the protocol step being initiated

involves sending a MSG message, then initiating the step will

also require that the message be assembled and made ready to

send. It is important to note that initiating a step is

logically distinct from issuing the primitive corresponding to

the step. This is the case because the constraints imposed by

scenario sequencing may require the primitive to be issued at a

later time than that of the initiation of the scenario step.

Thus, in neither case (initiating a scenario or initiating a

scenario step) is a MSG primitive issued; the primitive is

issued later by a call to the Issue-Primitive procedure.

6-18

UNIX NS9W Front End APPENDIX

The procedures will nov be described.

-Initiate-Scenario

This procedure creates an entry in the active scenario
table, given a scenario identifier and a pointer to an entry
in the protocol definition table. Based on sequencing
requirements for the scenario, the newly created entry may
be linked with the entries for previously initiated
scenarios.

-Initiate-Step

This procedure initiates a protocol scenario step. It
allocates and fills a transaction block for the scenario
step. If the scenario step involves sending an MSG message,
procedure Initiate-Message is called to incorporate
message-related data and pointers into the information

-Issue-Primitive

This procedure scans the active scenario table, examining
each entry. If a protocol scenario has completed, it
notifies the user process. If a protocol scenario has been
initiated, but the protocol step has not been initiated (see
discussion above) , Issue-Primitive initiates the scenario
step by calling Initiate-Step. The final step of
issue-Primitive is to check whether an MSG primitive can be
issued; if so, it is issued.

The next group of procedures deals specifically with MSG message

handling.

- Initiate-Message

This procedure prepares an MSG message for transmission. It
stores message parameters in the transaction block and links
the transaction block with the message buffer. On input
from the user process, the message is assumed to exist in
NSWTP form in a MSG send buffer. if no message exists, this
procedure first calls Assemble-Message. Initiate-Message is
called by procedure Initiate-Step.

- Assemble-Message

This procedure is called by Initiate-Message when the
protocol process must initiate a scenario unilaterally in
response to the occurence of an exceptional event (e.g., the
AUTOLOGOUT scenario). Given a pointer to an entry in the
active scenario table, Assemble-Message will assemble the

6-19

UNIX NSW Front End APPENDIX

appropriate MSG message in a M4SG send buffer. It returns a
pointer to the message buffer, a message length, and the
corresponding command sequencing information.

-Receive-Message

This procedure handles MSG messages from other system
components when they are received. First it attempts to
find an entry in the active scenario table corresponding to
the message. If none can be found, the message represents
the beginning of a protocol scenario and Initiate-Scenario
is invoked to create the new scenario. Next, a transaction
block is allocated and filled from the message and the
"completed" flag in the transaction block is set so that the
scenario can be advanced. Receive-Message examines the
contents of the MSG message to determine how the message
should be handled. Possible handling includes: transmission
of an ASCII string to the user process, storing arguments
into the transaction block, or calling the tool table
handler to modify information in the active tool table.

The final group of procedures modifies the tables which

store the protocol scenario information.

-Modify-ProtocolTable

Recall from above that entries in the protocol scenario
definition table is composed of a series of four-element
entries, where each entry corresponds to a protocol step in
a protocol scenario or to an instruction to the protocol
manager. Procedure Modify-ProtocolTable handles all
instructions in the protocol table which are for the
protocol manager, i.e., those operations in the table which
do not correspond to MSG primitive operations. It is called
by Receive-Message to verify the protocol validity of a
received message, and it is called after a MSG pending event
has completed. In the latter case, the scenario is advanced
to the next step of the definition in the protocol scenario
definition table by Modify-ProtocolTable; any operations in
the table which may additionally alter the pointer's
position are also executed.

-Flush-Scenario

Given a scenario identifier as input, this procedure
discards all data and pointers for the scenario from the
process tables. It is called by the pipe interface module.

6-20

UNIX NSW Front End APPENDIX

- Send-UserProcess

This procedure is called by Receive-Message when information
must be transmitted to the user process. Based on its input
arguments, it extracts from the MSG receive buffer certain
information (this usually includes an ASCII string to be
displayed to the user) and sends it to the user process.

6.5.1.2 MSG Interface Module

This module is used by the protocol process to deal with

MSG. It processes MSG communication from remote processes and

monitors the disposition of MSG pending events. When MSG

communication to the FE is detected, the protocol process calls

the MSG primitive RequestSignal to determine the MSG operation

(pending event) that completed.

If the completed event was a MSG Receive primitive, the

protocol process immediately issues a new ReceiveSpecific

primitive and then calls the procedure Receive-Message.

If the completed event was some other operation, the MSG

interface module determines the scenario in,':c' and sets the

"completed" flag in the appropriate transactir block. For MSG

OpenConn and CloseConn primitives, the tool Lable handler is then

called to add or delete tool-related information from the active

tool table.

6.5.1.3 Pipe Interface Module

The pipe interface module handles pipe communication from

the user process to the protocol process.

The user process sends two kinds of messages to the protocol

process: requests to remove (flush) scenarios from the active

6-21

UNIX NSW Front End APPEDIX

scenario table, and requests that result in the transmission of

MSG messages to other system components. If the user process

requests that a scenario be flushed, the pipe interface module

calls the procedure Flush-Scenario in the protocol manager.

Requests to send MSG messages contain the message in NSWTP

format.

When a request from the user process requires the

transmission of an MSG message, the pipe interface module

allocates a buffer and loads the message into it. Three types of

messages may be sent: messages that initiate scenarios (e.g.,

calls on M procedures), replies to HELP calls, and replies to

FE-PREDISPLAY calls. The first type involves initiating a step

in a new protocol scenario, whereas the replies involve

initiating steps ii existing protocol scenarios.

6.5.1.4 Tool Table Handler

To minimize interprocess communication, the active tool

table is accessible directly to the protocol process, as well as

to the tool process and to the user process. The protocol

process, by means of the tool table handler, enters and deletes

most of the information stored in the active tool table.

The tool table handler is called to add entries to the table

when MSG OpenConn primitives that are part of RUNTOOL scenarios

complete, and to delete entries from it when relevant MSG

CloseConn primitives complete. On receipt of an FE-LND-SAVED

from the WM, the tool table handler sets the "lnd saved" flag in

the connection state vector of the tool table entry.

6-22

UNIX NS91 Front End APPENDIX

After it creates a new tool table entry, the tool table

handler requests the tool process (via the user process) to begin

the tool (see Section 6.4.3). For tool termination, a request is

sent to the tool process (via the user process) to finish the

tool (see Section 6.4.3). An acknowledgement from the tool

process for a finish request is required before the tool table

handler is called to delete the entry from the active tool table.

6.5.2 The User Interface Process

In exec mode the driving events for the user interface

process are user terminal activity, input from the protocol

process, and input from the tool process. In tool mode terminal

input is disabled as a driving event for the user process, but

input from the tool and protocol processes remains.

In either mode, when input from any driving event occurs,

the user process executes the following main loop, regardless of

the event. If there is terminal input, the terminal interface

module processes it (see Section 6.5.2.1). If there is input

from the protocol process, the protocol process interface module

processes it (see Section 6.5.2.3). If there is input from the

tool process, the tool process interface module is invoked (see

Section 6.5.2.4). Finally, the procedure Notify-User is called

to output any messages to the user that are ready to be printed

as the result of the event(s) that occurred (see Section

6.5.2.2).

The user interface process is built from the following major

functional entities: terminal interface module, user interface

6-23

UNIX NSW Front End APPENDIX

manager, protocol process interface manager, and tool process

inter face manager.

6.5.2.1 Terminal Interface Module

The terminal interface module is the direct FE interface to

the user's terminal. When the FE is in exec mode terminal input

may occur in several contexts: command context, HELP reply

context, and query reply context. The terminal context may be

viewed in pai #% determining an input grammar for the FE; that

is, depending upon the context, the FE will expect different

kinds of input from the user. In command context, terminal input

is interpreted as input to form a NSW command. In HELP reply

context, terminal input is interpreted as a user response to a

HELP query, and in query reply context, it is interpreted as a

user reply to a FE query for a command parameter. Terminal

output-resulting from command execution (e.g., the output

signalling the user that a DELETE command has completed) is done

when the terminal context is "free"

The terminal interface module includes a collection of

routines which implements those features of the user interface

common to all terminal contexts and three procedures which

implement terminal input processing actions specific to one of

the terminal input contexts.

The collection of routines adds characters to and deletes

characters from the terminal input buffer. It implements the

command-editing functions of the FE, as described in Section 5.3.

It also supports the exec mode quote character, user signal, and

6-24

UNIX NSW Front End APPENDIX

"flush output" functions described in Section 5.7. The "flush

output" function involves interaction with the user interface

manager and with the terminal output buffer manager.

The following describes the procedures which implement the

three terminal input contexts.

-Command-Parse

This procedure implements terminal input processing in
command context. It seeks to accumulate a complete NSW
command. To do so, it must reference the grammar tree,
which stores the grammar in a tabular form. Command-Parse,
in effect, determines whether the contents of the terminal
input buffer constitute a valid sentence of the command
language, a valid but incomplete sentence of the command
language, an ambiguous sentence of the command language, or
an invalid sentence of the command language. As it
recognizes syntactic items (e.g., <command-verb>s, <paramis)
it places tokens for them into the parse tree along with
pointers to the locations of the corresponding user typein
in the terminal input buffer. it modifies the parse tree in
response to command-editing functions which change the
contents of the terminal input buffer.

The general terminal interface calls Command-Parse to
implement command-recognition and completion, options
typeout, and command prompting. The prompt strings which
the user may request are stored in the grammar tree. The FE
parsing rules described in Section 5.5 are implemented by
procedure Command-Parse in conjunction with the general
terminal interface.

When a complete command is detected, the procedure
Command-Dispatch is called and appropriate action is taken.

- Help-Reply

This procedure processes user replies to HELP calls from the
WM. These user replies are entered in Help reply terminal
context. The help code received by the FE in the HELP call
sent by the WM indicates the kind of response expected
(i.e., type of data to be supplied by the user) and is
supplied to to Help-Reply as a parameter. After the reply
has been gathered, it is sent to the protocol process.

- Query-Input

6-25

UNIX NSW Front End APPENDIX

This procedure supports command entry in the query mode.
The procedure Query-Input tries to accumulate a
syntactically correct command by querying the user for each
element of the command which has not been entered by the
user. The procedure generates its queries on the basis of
information in the grammar tree.

It is not expected that query reply context will be used to
enter a <command-verb> or a <qual-item>; rather, its use is
expected to be in entering command parameters. For example,
query reply context will be supported for entering long
commands, such as the "NET" commands. The commands for
which the context is supported are limited in number, i.e,
it is not intended to be a widely-used means of-command
entry.

If a complete command has been accumulated, the
Command-Dispatch procedure is called.

6.5.2.2 User Interface Manager

The user interface manager is a collection of procedures

which implement various functions in the user process. These

procedures are called by the user process as it executes its main

loop, as well as by by the terminal interface module, by the

protocol process interface manager, and by other procedures in

the user interface manager.

The procedures are:

-Notify-User

This procedure is called by the main loop of the user
process to inform the user that a command has completed or
that a command requires further user interaction before it
can be completed; e.g., the WM has made a HELP call on the
FE. Completed commands may result in the output of a text
string, e.g., SHOW FILES! All text strings received from
remote NSW processes are buffered in the user process before
being displayed to the user.

The procedure examines the terminal output buffers and

notifies the user each time a new instance of terminal 1
activity is required. Tt uses the FE-assigned command
number, which is stored in the active session table, in its
notification. For example, if a DELETE command has been

6-26

UNIX NSW Front End APPENDIX

assigned to be command number 4 and if the command requires
further user assistance, the procedure will later output
"Help for Delete [4] needed".

- Command-Dispatch

When a <Complete-command> has been detected by Command-Parse
or Query-Input, it is necessary to determine the action to
be taken. A complete command may require the initiation of
a NSW protocol scenario; it may require that the FE perform
a task "locally"; or it may require that some action
requiring communication with the tool process be taken. The
procedure Command-Dispatch determines the action called for
and then calls an appropriate pRrocedure. If an NSW protocol
scenario is to be initiated, procedure Send-ProtocolProcess

is called; if the complete command in the parse tree
specifies an action to be taken by the FE, the procedure
Execute-Local is invoked; and if an action related to
tool-handling is called for, the procedure Send-ToolProcess
is called.

- Execute-Local

A "local command" is one which can be performed locally by
the FE without the assistance of other NSW system
components. Examples are the HELP and DESCRIBE commands,
which invoke termnal output of specified help strings to
assist the user. Another kind of local command is *a user
request to display a buffered string associated with a
previously issued command. Execute-Local implements this
capability and is called by the Command-Dispatch procedure.

- Send-ProtocolProcess

This procedure assembles MSG messages for transmission by
the protocol process. It is called with an argument
specifying whether the MSG message is to be an initial call
to the WM or a HELP call reply.

Send-ProtocolProcess assembles the appropriate MSG message
in NSWTP format and assigns a scenario identifier. It
computes the message length of the message and determines
what command sequencing, if any, is required with respect to
existing scenarios. The MSG message, message length,
scenario identifier, and sequencing information are then
nont to the protocol process. For an initial call to the
WM, a new entry is also made in the active session table.

Tno-Tol Proce3s

- P' ire handles the communication of the user process
..... process. It is called by procedure

-~ tch.

6-27

UNIX NSW Front End APPENDIX

If the interaction with the tool process involves no change
of context to tool mode, it assembles the message to the
tool process and sends it; an example of such a message is a
request to set an echo option. If the interaction with the
tool process involves a change in context to tool mode, the
procedure displays a tool-initiation or tool-resumption text
string to the user, disables terminal I/0 in the user
process, and performs all FE change-of-context protocols
with the tool process and the protocol process. An example
involving change of context is the REUSE command.

6.5.2.3 Protocol Process Interface Manager

The protocol process interface manager handles pipe

communication with the protocol process. It uses the active

session table in its operation. For example, it may set the

command status field for an entry in the table to indicate that a

command that requires the intiation of a protocol scenario has

been acknowledged by the protocol process. When the user process

process interface manager will request the protocol process to

clear its tables of all entries for the protocol scenario. When

the protocol process sends a message that requests a string to be

displayed on the user's terminal, the protocol process interface

manager will buffer the string for subsequent output by

Notify-User.

The protocol process interface manager also handles the

mediation of tool-initiation and tool-termination messages (for

beginning and finishing tools) between the protocol process and

the tool process.

6-28

UNIX NSW Front End APPENDIX

6.5.2.4 Tool Process Interface Manager

The tool process interface manager handles pipe

communication with the tool process. Three forms of input are

expected: a "tool finished" message, a "suspend tool" message,

and acknowledgments to previous messages from the user process.

The "tool finished" message acknowledges a request from the

protocol process to perform all functions in the tool process

needed to terminate a tool. In this case the tool process

interface manager sends a message to the protocol process,

reenables the terminal for the user process, and signals a return

to exec mode.

The "suspend tool" message is received after the user has

typed control-N in tool mode. It causes the terminal to be

reenabled for the user process and a signals a return to exec

mode.

653Teeet hc rv he tool interface process dfe

6.3The ets hc rv h ool nterface rocess dfe

slightly between exec and tool modes.

In exec mode, the tool process responds to input from any

tool connection which may exist and to pipe input from the user

process. Since the user is not directly communicating with a

tool in exec mode, the tool process does no terminal I/0.

Consequently, no data is sent to tools over tool connections,

and any tool connection activity that occurs will be output from

the tools. The tool process will buffer output from the tool

connections and handle any TELNET protocol obligations.

6-29

UNIX NSW Front End APPENDIX

Pipe input from the user process triggers other activity.

The user process may instruct the tool process to begin a new

tool, finish a tool, activate an existing tool connection, or set

an echo option. Beginning and finishing tools do not open and

close tool connections (since those operations are performed in

the protocol process), but invoke tool-related data management

functions. Beginning new tools and activating suspended ones

involve a change in context from exec mode to tool mode.

In tool mode, the user terminal becomes an additional source

of input for the tool process. Most user typein is sent directly

to the tool. Control-N causes a change in context to exec mode

and hence disables further terminal input to the tool process. A

limited set of TELNET commands may be entered by the user in tool

mode by typing specified characters. Output from tools other

than the one in use is buffered as in exec mode.

The tool interface process is built from the following major

functional entities: TELNET connection handler, tool mode command

processor, and pipe interface module.

6.5.3.1 TELNET Connection Handler

The TELNET connection handler does I/O on TELNET connections

to tools and performs certain tool-related data management

functions. The tool process interface to TELNET connections is

provided by a collection of UNIX TELNET library routines (see

Section 7 and appendix A for details).

The TELNET connection handler is a set of procedures, each

of which implements a tool connection handling function; these

6-30

UNIX NSW Front End APPENDIX

functions typically involve calls upon the UNIX TELNET library.

The procedures include:

-Beg in-Connect ion

In the NSW scenario to start a tool, the Foreman instructs
the FE to open a TELNET connection to the tool. MSG returns
the FE a UNIX file descriptor as the handle for the opened
connection. This file descriptor is the argument to
procedure Begin-Connection.

Begin-Connection allocates a tool buffer for the new tool
and enables the user terminal and TELNET connection for I/0.
Following completion of Begin-Connection, the TELNET
connection to the tool is ready for use for tool
communication. The internal FE synchronization protocol
assumes that control of the user's terminal may be taken by
the tool process upon invocation of Begin-Connection.
Begin-Connection also sets the "connection in use" flag in
the active tool table entry for the tool and sets the
"current tool" pointer to the active tool table entry for

- Read-Connection

Read-Connection reads from a specified tool connection. if
the user is currently using the connection (i.e., if-
"connection in use" is set), the data read from the
connection is output directly to the user's~ terminal. If
the user is not currently using the connection, the data
from the connection is buffered, the buffer pointer and
character count are appropriately updated, and the "output
waiting" flag is set in the tool's entry in the active tool
table.

- Write-Connection

Write-Connection writes into a specified tool connection.

- Send-Command

By typing specified control characters the user may cause
certain TELNET commands to be written into the connection.
"Erase Line" and "Erase'Character" are two examples.
Send-Command implements this capability.

- Suspend-Connection

This procedure "suspends" but does not close a specified
tool connection. When Suspend-Connection is called, the

- tool process turns off the "connection in use" flag in the

6-31

Ll

UNIX NSW Front End APPENDIX

active tool table entry for the tool and returns control of
the user's terminal to the user process. Suspend-Connection
is invoked when the user types coitrol-N in tool mode.

- Activate-Connection

Activate-Connection reactivates a specified suspended
connection. It sets the "connection in use" flag in the
tool's active tool table entry. The FE internal
synchronization protocol assumes that control of the user's
terminal may be taken by the tool process. If output has
been buffered for the tool connection, the user is informed,
is given a character count of the buffered data, and is
given opportunity to either flush the buffer or type out the
buffer.

- Finish-Connection

The termination of a tool session is handled by the protocol
process. The protocol process, having engaged in the
tool-halt scenario, i.e., FM-ENDTOOL followed by
FE-TOOLHALTED or FE-TOOLHALTED followed by FM-ENDTOOL, then
issues a MSG CloseConn primitive to close the direct network
connection.

After the connection has been closed Finish-Connection is
invoked by a message from the protocol process (through the
user process). It deallocates the tool buffer associated
with the tool and clears all tool buffer information. When
complete, Finish-Connection responds with a message to the
protocol process (through the user process), confirming that
the tool session has been finished by the tool process. The
protocol process then clears the corresponding active tool
table entries.

- Negotiate-Option

TELNET option negotiation is performed by this procedure.
In the initial implementation, only local/remote echo option
negotiation (supported in exec mode by a command) will be
supported.

6.5.3.2 Tool Mode Command Processor

The tool mode command processor handles terminal I/O in tool

mode. Terminal input in tool mode falls into the following

classes:

6-32

L_

UNIX NSW Front End APPENDIX

- Control-K.
Typing control-K in tool mode causes the tool buffer for the
connection in use to be flushed.

- Control-N.
Typing control-N in tool mode causes the procedure
Suspend-Connection to be invoked. Control of the user
terminal is transfered to the user process.

- TELNET Command Control Characters.
A predefined set of control characters are defined in tool
mode to cause TELNET commands to be sent over the connection
currently in use. Typing any of these characters invokes
procedure Send-Command.

- Tool Quote Character.
Typing the tool quote character in tool mode causes the
character following it to be sent to procedure
Write-Connection without performing any special action the
character might otherwise invoke.

- All Other Characters.
All remaining characters in tool mode are treated as tool
input and are conveyed directly to Write-Connection. For
alphabetic characters, no case conversion is performed.

6.5.3.3 Pipe Interface Module

The pipe interface module handles pipe transmissions from

the user process to the tool process. When a transmission is

received, the pipe interface module determines an appropriate

procedure to call.

6-33

UNIX NSW Front End APPENDIX

7. Changes to UNIX

We believe that changes to UNIX system software in the areas

of terminal handling, user TELNET support, and the NCP should be

made to support the UNIX NSW Front End. This section describes

the changes required. Familiarlity with the UNIX operating

system is assumed.

7.1 Terminal Handler Modifications

The UNIX terminal handler must be modified to give the

following capabilities:

a. User can set or unset any of 16 break character classes; the
break classes are predefined and-cannot be changed by user.

b. User can specify that the break character should or should
not be echoed.

c. User can specify that the text up to, but not including, the
break character should or should not be echoed.

d. User can specify that echoing should occur at the time the
character is read by the user program ("deferred echoing"),
or when the character is received by the terminal handler.

e. User can override the UNIX convention of throwing away
terminal input to a full terminal buffer (256 characters);
the capability to instruct the terminal handler to reject
further terminal input until buffer is cleared will be
provided (a warning character, e.g., <bell>, will be
echoed).

Capabilities (a), (b), and (c) are specified in the TELNET

Repote Controlled Transmission and Echoing (RCTE) option (NIC

19859). The first nine break classes will be those specified in

the RCTE specification. The remaining seven classes are to be

determined according to UNIX and NSW needs.

These capabilites will be implemented by means of a new UNIX

system call ttymod, having the following C language interface:

7-1

UNIX NSW Front End APPENDIX

ttymod(fd,get/setop, ptr, len),

where:
fd is file descriptor of terminal,
get/set is 0 or 1, respectively,
op is code to indicate operation,
ptr is pointer to user parameter block,
len is length of user parameter block.

The ttymod system call will incorporate all capabilities

present in the current UNIX stty call, in addition to the

capabilities stated above.

7.2 TELNET Program Interface

Implementation of user TELNET functions of the UNIX FE will

be facilitated by utilizing TELNET library routines which are

called to perform all TELNET I/O and protocol handling. The

specifications for the library routines are given in Appendix A.

In addition to the routines specified in the appendix, we

suggest that the following three additional functions are to be

added to the TELNET library routines:

- telinit

Given an already open connection, telinit initializes the
TELNET library routines to work on this connection.

Synopsis:
result = telinit(fd)

where:
fd is the file descriptor of the open connection;
result is a success (0) or failure (-l) flag returned.

7-2

UNIX NSW Front End APPENDIX

- telfinish

This function does the inverse of telinit, i.e., it clears all
tables and entries used by the TELNET library routines for the
connection, but does not close the connection.

Synopsis:
result = telfinish(fd)

where:
fd is the file descriptor of the connection;
result is a success (0) or failure (-1) flag returned.

- telstatus

This function is used to determine if a given TELNET option is
in effect on a given connection or not.

Synopsis:
result = telstatus(fd,option)

where:
fd is the file descriptor of the connection;
option is the option whose status is desired;
result is a flag that the option is in effect (1) or

is not in effect (0).

7.3 UNIX NCP Modifications

The NSW FE design calls for all TELNET handling to be done

by one process. However, at present no user process on UNIX can

support more than one open TELNET connection-pair at a time.

The problem is the following. Host-to-host protocol

interrupts (INS and INR) are processed by the UNIX NCP and are

forwarded by means of a signal (software interrupt) to the user

TELNET process. If the user TELNET process has more than one

connection open at the time a host-to-host interrupt arrives, the

user process will be unable to determine which connection is

responsible for the interrupt.

The solution we propose is the following. The UNIX NCP will

maintain a count of the number of INSs and INRs received on each

7-3

UNIX NSW Front End APPENDIX

connections this count will be kept in the socket fields of the

open parameter block for each special network file. It will be

the responsibility of the user program to explicitly ignore

signals.

The UNIX system call fstat will be modified so that it can

return the INS and INR counts maintained in the socket fields and

then zero these fields.

Another UNIX NCP problem exists which has prevented the

implementation of the MSG OpenConn and CloseConn operations.

These operations are required by the FE in order to establish

connections with NSW tools. The implementation of these

primitives requires that MSG be able to determine ARPANET socket

numbers in advance of opening the connection. These socket

numbers must be communicated by the local MSG to the remote MSG

prior to opening the connection.

The UNIX NCP currently does not provide any way for a

process to determine in advance the socket number to be used for

a connection, and must therefore be modified to do so.

The solution we propose is the following. Add a new open

type bit to the open parameter block for the connection that

means "do a dummy open". If used with a zero local socket

number, this will result in a block of eight sockets being

reserved and a file descriptor being returned that can be used

for relative opens. The file descriptor returned is associated

with the base socket of the block of eight. This base socket

number can be determined using the UNIX system call fstat. MSG

7-4

UNIX NSW Front End APPENDIX

can thus determine what local socket number will be used when it

does a relative open and can send this information to the remote

NSG before doing the open.

The socket associated with the dummy open file descriptor

will be treated as if it were in a special pre-open state,

similar to the listening state except that any incoming RFC

matching the socket number will not cause any change of state,

but will be treated as any other unmatched RFC. Other operations

using the file descriptor will either hang, do nothing, or cause

an error as appropriate.

The block of eight sockets will remain allocated to the

process until all associated file descriptors have been closed

(or the process dies). This is consistent with current practice.

Note that when other file descriptors are associated with the

block, it will be possible to close the dummy file descriptor and

reopen it (with offset zero) as an actual connection.

If an open occurs with the dummy bit set and with a local

socket specified, the NCP will essentially act as it does

currently. If the socket number is greater than or equal to

1024, it will do nothing and give an error indication. if it is

less than 1024, it will return a file descriptor associated with

that specified socket (which is in the dummy open state). The

user process can then presumably use that file descriptor to do

relative opens. No more checking for conflicts with other

processes will be done than is presently done.

7-5

UNIX NSW Front End APPENDIX

8. Proposed Change to NSWTP

There are two situations which arise in currently defined

NSW protocol scenarios that indicate a fundamental deficiency in

the NSW Transaction Protocol (NSWTP). These situations arise in

connection with tool-startup and with the processing of HELP

messages.

Tool Startup

In NSW RUNTOOL scenarios after the Works Manager has arranged
with a Foreman to start a tool, the Foreman instructs the FE to
open a connection to it to support tool communication. The
Foreman makes the request by sending the FE an FE-OPENCONN
message. The message has a null NSWTP transaction identifier
(since FE-OPENCONN does not require a reply) and its NSWTP type
field indicates that the message is an "initial call". The
FE-OPENCONN message by itself does not provide the FE with
enough information to identify the RUNTOOL scenario, if any, it
corresponds to. That is, if the FE has multiple RUNTOOL
scenarios in progress, it is not possible for it to determine
the one that the FE-OPENCONN message corresponds to. After the
FE receives a reply from the Works Manager it can match the
FE-OPENCONN message with the correct scenario.

-HELP calls

In certain NSW scenarios the FE may be queried for "help" in
order to permit the scenario to proceed to completion.
Typically these HELP calls come from the Works Manager and
involve file operations. A HELP call message contains an NSWTP
transaction identifier selected by the process requesting help
(e.g., a Works Manager) and a type field that indicates that it
is an "initial call". There is nothing in the message itself
that enables the FE to determine the NSW scenario it
corresponds to. Unlike the RUNTOOL situation described above,
the NSWTP transaction identifier is not null. However, it is
assigned by the requesting process, and cannot be related to a
previously FE assigned transaction identifier for the message
that initiated the scenario r~quiring help.

Solutions to both the tool-startup and HELP call problems have

been devised.

8-1

UNIX NSW Front End APPENDIX

-Tool Startup

one approach is for the FE to defer attempting to match
FE-OPENCONN messages with protocol scenarios until the
corresponding reply from the Works Manager is received. The FE
can, of course, open the tool connection requested when the
FE-OPENCONN message arrives, but it must defer associating the
connection with an entry in the active tool table.

Alternatively, the FE may impose upon itself the constraint
that at most one RUNTOOL scenario be in progress at a time. In
this case any FE-OPENCONN corresponds to the only active
scenario.

-HELP calls

One solution to the problem of matching HELP messages with
on-going scenarios is to limit the context of FE operations in
a way that makes it possible to deduce the proper scenario for
a HELP call message. This may be done by imposing the
restriction that the FE have at most one HELP-call producing'
scenario in progress at any time. This is done in the current
TENEX FE.

Alternatively, the HELP call protocol could be modified to
provide the information necessary to match calls with
scenarios, for example as recently proposed by Kirk Sattley of
Massachusetts Computer Associates.

In our view these problems reflect the same underlying

deficiency in NSWTP. We believe that this deficiency, even if it

can be overcome in specific situations as described above, is

likely to reappear in different contexts as new protocol

scenarios are defined. The basic deficiency is that NSWTP does

not support the notion of system-wide scenario identifiers. The

current use of transaction identifiers is adequate for simple

protocol scenarios, such as send-receive interactions involving

only two NSW components, but proves inadequate for more

complicated scenar ios.

8-2

7 A A084 088 BOLT BIERANEK AN. NEWMAN INC CAMBRIDGE MA F/B 9/2
UNIX NSA FRONT ENO.U

M4AR 80 R H THOMAS F30602-78C-0242
UNCLASS7FIED RADCTR-8044 ML2 fllllllffffff

FNm

UNIX NSW Front End APPENDIX

A system-wide scenario identifier would enable any NSNTP

message to be matched with the on-going protocol scenario to

which it belongs based only on the message itself. The scenario

identifier would be assigned by the NSW component initiating the

scenario and would be included in a scenario iden~tifier field in

all NSWTP messages sent by any NSW component participating in the

scenario. The principal requirement for scenario identifiers is

that they be unique; i.e., no component should use the same

identifier for two active scenarios, and no two components should

ever generate the same identifier.

In this document we propose no specific implementation of

scenario identifiers within NSWTP. Our objective is merely to

suggest that they would be very helpful in simplifying the

processing of messages in several situations, and in increasing

the flexibility with which system components can participate in

protocol scenarios.

8-3

UNIX NSW Front End APPENDIX

~9. UNIX MSG Enhancements

The implementation of MSG on UNIX is incomplete and will

currently not support all required FE functionality. In

particular, the MSG OpenConn and CloseConn operations have not

been implemented yet. These MSG operations will be implemented

as part of the UNIX FE implementation effort. Their

implementation depends upon the UNIX NCP modifications described

in Section 7.3.

9-1

L...,.

UNIX NS9W Front End APUIDIX

10. Support for Management Tools

NSW permits project managers. to create and delete project

nodes, and to assign access rights to and remove them from

project nodes. These functions are supported by a collection of

tools known as "management' tools. The management tools

currently supported are create-node, delete-node, assign-rights,

and remove-rights.

In the current NSW system the management tools are actually

implemented largely within the TENEX FE. That is, although the

management tools are invoked by a "use" command, and although it

appears to the user that such a tool is executing on a tool

bearing host, in fact the FE recognizes the tool name as the name

of a management tool and interacts directly'with the user as if

it were the tool, rather than initiating a RUNTOOL scenario with

the Works Manager to start the tool. The FE interacts with the

user to gather the information required, and then issues a call

upon a Works Manager procedure to perform the management function

by sending the Works Manager a generically addressed message.

The issue here is not whether this implementation approach

for management tools could be supported by the UNIX FE. It could

be in a straight forward manner. The query mode input mechanism

described in Sections 5.7 and 6.5.2.1 could be used within the

UNIX FE to support the currently defined NSW management tools.

The FE would enter query mode when it recognized a management

tool name and would behave like the TENEX FE from that point.

10-1

UNIX N8W Front End APPENDIX

The issue here is what the proper iaplementaion approach for

NSW management tools should be: should they be implemented

within NSW FE's or is there a better implementation approach.

Two major problems with the FE implementation approach are:

- Every full function FE must support management tools.
New FEA5 must, in effect, reimplement all the management
functions.

- As new management functions are specified all full function
FE's will have to be modified to support them.

We believe that management tools should be implemented

either as standard tools that run on tool bearing hosts, or as

"pseudo" tools that are implemented by some NSW system component

(e.g., the Works Manager or some new component). Regardless of

the approach selected, the FE should be able to treat management

tools in the same way it treats any other tool. For example, to

start a management tool it would engage in a RUNTOOL scenario

with the Works Manager to establish communication with the tool

(or the system component that implements the "pseudo" tool).

We believe that the issue of management tool implementation

is an important one and that it must be settled before NSW is

released for operational use. our current plan for dealing with

management tools within the UNIX FE implementation effort is to

defer implementation of the management tool functionality within

the FE in the expectation that the issue will be resolved and

that FE's will not be required to provide special support for

management functions. If the issue is not resolved as our

implementation effort nears completion, we will provide

10-2

UNIX NSW Front End APPENDIX

management tool support within the UNIX FE by means of the query

mode input and flexible protocol scenario definition mechanisms.

10-3

L-AWL

UNIX NSW Front End APPENDIX

* 11. References

1. R. Millstein, "The National Software Works: A Distributed
Processing System", Proceedings 1977 Annual AC4 Conference,
Oct 1977.

2. H. Forsdick, R. Schantz, R. Thomas, "Operating Systems for
Computer Networks", IEEE Computer Magazine, Jan 1978.

3. S. Schaffner, S. Sluizer, "Works Manager Subsystem
Specificiation", Massachusetts Computer Associates Report No.
CADD-7709-2712, Nov 1978 revision.

4. R. Schantz, R. Millstein, "The Foreman: Providing the Program
Execution Environment for the National Software Works
System", BBN Report No.. 3442, Massachusetts Computer
Associates Report No. CADD-7701-011, Jan 1977.

5. P. Cashman, R. Faneuf, C. Muntz, "File Package: The File
Handling Facility for the National Software Works",
Massachusetts Computer Associates Report No. CADD-7612-2411,
Dec 1976.

6. R. Thomas, "MSG System/Subsystem Specification", BBN Report,
Aug 1978.

7. R. Millstein, R. Shapiro, "Interim NSW Reliability Plan",
Massachusetts Computer Associates Report No. CA-7701-2111,
Mar 1977 revision.

8. Massachusetts Computer Associates, "Third Semi-annual
Technical Report for the National Software Works",
Massachusetts Computer Associates Report No. CADD-7702-2811,
Feb 1977.

9. R. Rom, "Minimum Front End Specification", SRI Report, NIC
No. 28672, Sept 1976.

11-1i

UNIX NSW Front End "mr

eAppendix A: Specification of TELNET Library Subroutines

A. TELNET Library Routines

The following routines are intended to make the task of
interfacing to a TELNET connection simpler. They eliminate the
need for the programmer to be aware of such details as socket
numbers and the particular type of open required. They also
reduce the need for the programmer to know about the low-level
aspects of the protocol -- e..g., the actual numeric
representation of DO, WILL, WONT, DONT, and individual options.

A.l. Telopen

The telopen routine is used to open a standard TELNET
connection to a specified host. The programmer must know the
number of the host on the network. Once the connection has been
opened, the routines telwrite and telread should be used to
transmit and receive over the connection.

Synopsis:

fd = telopen(hostnum);

where:

hostnum is the numeric address of the host;

fd (returned) is the file descriptor for- the newly
opened connection, or -1 if the connection could
not be opened.

Note: this routine sets up a handler for the NCP signal
SIGINR. If the signal occurs during a system call, the system
call may abort prematurely. Any system call which can be aborted
by a signal (for example, reading or writing a terminal should be
checked to see if it returned -1. If it did, 'errno' should be
checked to see if it is equal to 4 (EINTR); if so, the system
call was interrupted by a signal and the appropriate action
should be taken. An appropriate action might be retrying the
system call, if it was a read, or merely giving up on it, if it
was a write. See the description of SIGNAL in section II of the
UNIX manual.

A-1

L

UNIX NSW Front End APPENDIX

A.2. Telread

The telread routine is called to read from the file
descriptor returned by telopen. It performs a read system call
on the file descriptor, and scans for TELNET comands. If any
are found, it takes the appropriate action, which usually
includes writing a reply back. It returns the remaining
data.

Synopsis:

nactual = telread(fd, buffer, nreq);

where:

fd is the file descriptor returned from a call to
telopeno;

buffer is a pointer to a buffer to be filled in by tel-
read;

nreq is the number of bytes to be read;

nactual (returned) is the actual number of bytes read.
This may be fewer than the number of bytes
requested. If it is 0 (EOF), the foreign host has
closed the connection. If -1, some error has
occurred. As with the system read and write
calls, the external variable 'errno' has been set to
indicate the error. Under most circumstances, the
program should assume that the connection has been
closed.

This routine performs a system read call to read the
requested number of bytes into the user's buffer. It then
scans the buffer for 0377 octal, which flags a TELNET command.
If any are found, it processes the command, possibly writing
data onto the file descriptor, and then deletes the command
from the buffer. When it has finished processing all commands,
it will return the remaining data to the user.

A.3. Telwrite

The telwrite routine is called to write onto the file
descriptor returned by telopen. Its sole task is to prevent user
data from appearing to be TELNET commands, by scanning for bytes
with a value of 0377 octal. If any are found, they are sent
doubled, as specified by the protocol. The TELNET software on
the foreign host will pass a single 0377 byte to the user program
for each such pair of bytes it sees.

A-2

UNIX NSW Front End APPENDIX

Synopsis:

nactual- telwrite(fd, buffer, nrequested)l

where:

fd is the file descriptor obtained from the telopen
call;

buffer is a pointer to the data to be written;

nreq is the number of bytes to be written;

nactual (returned) is the actual number of bytes written.
It should be regarded as an error if this is not
the same as the number of bytes requested.

A.4. Telclose

The telclose routine is called to close the TELNET
connection. The termination of a process closes the TELNET
connection automatically; this routine is provided for those
circumstances where it is desired to close the connection and
continue the process.

Synopsis:

telclose (fd);

where:

fd is the file descriptor returned from the telopen
call.

A.5. Setopt

The setopt routine provides the user control over the
option negotiation process carried out by telread. It permits
the user to specify what option requests presented by the foreign
host are to be accepted. By default, all option requests will -;e
refused.

Synopsis:

oldaction = setopt(option, action);

where:

option is the number of the option whose action is to be
changed.

A-3

UNIX NSW Front End APPENDIX

action is 0 to cause this option to be negatively ack-
nowledged; 1 to cause this option to be positively
acknowledged, but otherwise ignored; or the
address of a function td be called when the option
is negotiated (see below);

oldaction (returned) is the action previously set for this
option, or -1 if an action cannot be set.

If a function is specified, it will be called as follows:

ack = function(fd, flag, option);

where:

fd is the file descriptor of the connection which
requested the option;

flag is either 0, 1, 2, or 3 depending on whether the
foreign host sent a WILL, DO, WONT, or DONT
respectively;

option is the option requested; this permits the same
routine to handle more than one option;

ack (returned by the function) should be 0 if the
option should be negatively acknowledged, or any
nonzero value if the option should be positively
acknowledged.

A.6. Sendopt

The sendopt routine is used to send option requests over a
TELNET connection. A program wishing to know whether the request
was successful should first call setopt to set up a handler for
the option. When the handler is called for a reply, its returned
value is ignored.

Synopsis:

error = sendopt(fd, flag, option);

where:

fd is the file descriptor returned by the telopen
call;

flag is either 0, 1, 2, or 3 to send a WILL, DO, WONT,
or DONT respectively;

option is the option requested;

A- 4

UNIX NSW Front End
APPENDIX

error is 0 if there was no error, -1if an error

occurred.

A- 5

L

MY rpoppoomb:

......

its

Who 1 -W

SANI-Bto
As, 0,

A. A

f A

jp

Ar

0.00

