STAG: A TWO PERSON SIMULATED TACTICAL AIR WAR GAME (U)

J M FOLEY

MAR 80

UNCLASSIFIED
STAG: A TWO PERSON SIMULATED TACTICAL AIR WAR GAME.

THESIS

AFIT/GST/OS/80M-2

John M. Foley
Capt USAF

DTIC ELECTED
MAY 8, 1980

Approved for public release; distribution unlimited.
STAG: A TWO PERSON SIMULATED TACTICAL AIR WAR GAME

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science

by

John M. Foley, B.A.
Capt USAF

Graduate Strategic and Tactical Sciences
March 1980

Approved for public release; distribution unlimited.
Preface

While attending the Combined Air Warfare Course at Maxwell AFB, Alabama, I had the opportunity to participate in the Theater War Exercise (TWX), a theater-level war game. The experience was enlightening and rewarding. However, I was nearly overwhelmed by the tremendous amount of data involved in playing the game. Consequently, I decided to develop a war game with a limited number of factors so that it would be easier for players to determine the impact of their strategies on the outcome of the war.

I wish to thank Lt Col James Havey, my faculty advisor, for his assistance and sound advice throughout this effort. In addition thanks are extended to my readers, Lt Col Tom Clark and Capt Dan Fox, for their time and encouragement; and to my typist, Cindi Prater, for her tireless efforts to produce a quality product.

Finally, I wish to thank my wife, Nani, whose usually gentle prodding ensured the successful completion of this research.

John M. Foley
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Model</td>
<td>4</td>
</tr>
<tr>
<td>Simulation</td>
<td>5</td>
</tr>
<tr>
<td>Game</td>
<td>5</td>
</tr>
<tr>
<td>II GENERAL DESCRIPTION</td>
<td>7</td>
</tr>
<tr>
<td>Assumptions</td>
<td>12</td>
</tr>
<tr>
<td>Limitations</td>
<td>13</td>
</tr>
<tr>
<td>III AIR WARFARE</td>
<td>14</td>
</tr>
<tr>
<td>Air Base Attack</td>
<td>15</td>
</tr>
<tr>
<td>Interdiction</td>
<td>20</td>
</tr>
<tr>
<td>Defense Suppression</td>
<td>21</td>
</tr>
<tr>
<td>Escort</td>
<td>22</td>
</tr>
<tr>
<td>Air Defense</td>
<td>22</td>
</tr>
<tr>
<td>Close Air Support</td>
<td>23</td>
</tr>
<tr>
<td>Reconnaissance</td>
<td>24</td>
</tr>
<tr>
<td>Reinforcements and Logistics</td>
<td>25</td>
</tr>
<tr>
<td>Aircraft Losses</td>
<td>27</td>
</tr>
<tr>
<td>IV GROUND WARFARE</td>
<td>32</td>
</tr>
<tr>
<td>Introduction</td>
<td>32</td>
</tr>
<tr>
<td>Composition and Control</td>
<td>32</td>
</tr>
<tr>
<td>Movement of the FEBA</td>
<td>33</td>
</tr>
<tr>
<td>Troop Casualties</td>
<td>34</td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>37</td>
<td>V VERIFICATION AND VALIDATION</td>
</tr>
<tr>
<td>38</td>
<td>Rationalism</td>
</tr>
<tr>
<td>39</td>
<td>Empiricism</td>
</tr>
<tr>
<td>39</td>
<td>Pragmatism</td>
</tr>
<tr>
<td>40</td>
<td>Utilitarianism</td>
</tr>
<tr>
<td>40</td>
<td>Verification Tests</td>
</tr>
<tr>
<td>43</td>
<td>Validation Test</td>
</tr>
<tr>
<td>46</td>
<td>VI SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS</td>
</tr>
<tr>
<td>50</td>
<td>Appendix A</td>
</tr>
<tr>
<td>50</td>
<td>User's Guide</td>
</tr>
<tr>
<td>50</td>
<td>Annex</td>
</tr>
<tr>
<td>60</td>
<td>Appendix B</td>
</tr>
<tr>
<td>60</td>
<td>Analytical Formulations</td>
</tr>
<tr>
<td>71</td>
<td>Appendix C</td>
</tr>
<tr>
<td>71</td>
<td>Source Listing of Program</td>
</tr>
<tr>
<td>105</td>
<td>Bibliography</td>
</tr>
<tr>
<td>107</td>
<td>Vita</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Theater of Operations</td>
<td>8</td>
</tr>
<tr>
<td>2. Air Mission Interactions</td>
<td>10</td>
</tr>
<tr>
<td>3. Attack Mission Flow</td>
<td>18</td>
</tr>
<tr>
<td>4. Ground Defenses</td>
<td>28</td>
</tr>
<tr>
<td>5. Engagement Ratio</td>
<td>31</td>
</tr>
<tr>
<td>6. Relationship of Ground Casualties to Force Ratio</td>
<td>36</td>
</tr>
<tr>
<td>B-1. Effect of Constants on FEBA Movement</td>
<td>66</td>
</tr>
<tr>
<td>B-2. Cumulative FEBA Movement</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Blue Aircraft Capabilities</td>
<td>16</td>
</tr>
<tr>
<td>II</td>
<td>Red Aircraft Capabilities</td>
<td>16</td>
</tr>
<tr>
<td>III</td>
<td>Daily Aircraft Reinforcements</td>
<td>25</td>
</tr>
<tr>
<td>IV</td>
<td>Blue Logistics Data</td>
<td>26</td>
</tr>
<tr>
<td>V</td>
<td>Red Logistics Data</td>
<td>26</td>
</tr>
<tr>
<td>VI</td>
<td>Results of Multiple Mode Experiment</td>
<td>42</td>
</tr>
<tr>
<td>VII</td>
<td>Results of Validation Experiment</td>
<td>43</td>
</tr>
<tr>
<td>A-I</td>
<td>CAS Destructive Indexes</td>
<td>55</td>
</tr>
<tr>
<td>A-II</td>
<td>ABA Destructive Indexes</td>
<td>55</td>
</tr>
</tbody>
</table>
The model developed in this study is a highly aggregated theater-level game comprised of interaction equations which utilize the allocation of aircraft to various missions on a daily basis to obtain the outcome of an offensive versus defensive systems engagement. The simulation which supports the model consists of an interactive air portion and a parametric ground portion. The theater of operations consists of two sides with their respective air and ground forces. While the model produces credible outcomes, the main objective is to reflect the effect of strategy and employment tactics on the outcome of the battle.

The model is designed to provide individuals an opportunity to plan and conduct an air war and to test various air employment concepts. Existing war games are quite large and contain so many factors that the main effects of a player's employment decisions are confounded by the interactive effects of the factors. The war game described in this report has a limited number of factors so that it is easier for players to determine the main effects of their strategies. Included in the appendices are a user's guide, analytical formulations, and a source listing of the program.
I. Introduction

During the course of a tactical air campaign, the commanders on each side are faced with many decisions which affect the outcome of the campaign. They make decisions such as how many sorties should be flown in offensive, defensive, or support roles; specific targets to be hit; mission profiles; and the mix of aircraft to be sent against each target. Two of the most important and basic decisions in a tactical air war are the apportionment of sorties among the various air tasks and the allocation of aircraft to be sent against each target.

The formidable task of apportioning sorties among offensive, defensive, or support roles and of allocating aircraft within the different air roles (air base attack, close air support, etc.) in a multi-strike campaign can be simulated using a computerized war game. A theater air commander must determine the appropriate mix of forces in various roles to achieve the objectives of tactical air power (Ref 2:16). The decision process employed by a commander can be characterized as a two-sided war game in which the successive decisions which are made each day are based upon the resources available and the status of enemy forces (Ref 3:4).

The magnitude of the problem confronting the tactical air commander is considerable. He will be dealing with
thousands of sorties involving a dozen or more different types of aircraft. Several detailed simulation models have been developed to study the employment of tactical air forces, and these models have continued to increase in size and complexity in an attempt to approach an exact model of the real life situation. The problem with many of these models is their enormous size. The data bases are huge, and the computer storage space required to run these models severely limit where they can be operated. Model verification poses another major problem. For example the IDA TACWAR model (a comprehensive theater-level model developed for the Joint Chiefs of Staff) requires 10,000 data items to be input for model operation. Inconsistencies in input data are difficult to detect and sometimes remain undetected for a number of runs. In one case the user forgot to provide any ammunition to a portion of the ground force. Since that portion was expected to be quickly defeated, the lack of ammunition was undetected for sometime (Ref 11:V-20).

Of the 152 listings described in the most recent edition of the Catalog of War Gaming and Military Simulation Models of the Studies, Analysis and Gaming Agency (SAGA), less than ten used human participants directly (Ref 1:111). The vast majority are machine simulations used mainly for analysis, diagnosis, and
operational applications. The war games that do exist are large and detailed making it difficult for the participants to observe the full impact of their strategies.

Consequently, there is a need for a game which allows students of tactical air operations to create their own battles and to test their own strategies against those of an opponent with a program which is simple to use and inexpensive to run on a computer. Such a war game would deal with the apportionment and allocation decisions and be used as a primer on tactical air operations preparing students for participation in any one of the more complex war games used throughout the DOD (Ref 22:3). The level of detail in the game would be such that participants could readily observe the impact of their allocation decisions, note where they had made mistakes, and formulate new strategies.

The objectives of this research are twofold: to develop such an informal, two-person war game in which the players make decisions and supply input data as the game progresses from one day to the next; and to fully document the game for users and analysts. Since it involves two sides, it is a dynamic game in which the more important aspects of tactical air operations are not solely dependent on predetermined constant data. The primary purpose of the simulation is to provide
individuals an opportunity to plan and conduct an air war and to test various air employment concepts. There are opportunities to capitalize on the mistakes of an opponent, and at the same time, to adjust one's own strategy to accommodate the lessons learned from the previous day's operations. An element of uncertainty is introduced into the game by having two competing sides with differing force structures and operational concepts (Ref 22:11).

Throughout this discussion reference is made to models, simulations, and games. Although these terms are often used interchangeably, they actually have quite different meanings. Some basic definitions are presented to clarify these differences.

Model

As defined by Brewer and Shubik, "a model is a representation of an entity or situation by something else that has the relevant features or properties of the original." There are five basic types: verbal models, analytic models, diagrammatic models, analog simulations, and digital simulations (Ref 5:10). A computerized model contains the rules, methodology, techniques, procedures, and logic required to approximate reality.
SIMULATION

The use of a model under specific conditions to represent and study the behavior of events, processes, or systems is simulation.

GAME

A game employs human beings acting as themselves or playing roles in an environment that is either actual or simulated. As defined by the Department of Defense, a war game is "a simulated military operation involving two or more opposing forces and using rules, data, and procedures designed to depict an actual or hypothetical real life situation" (Ref 5:8). War games are commonly used for three main purposes today: training, operational experience, and research. The game developed in this research is a training game designed to provide the participants with decision making opportunities similar to those they might experience in combat. It is the least complex of the three types (training, operational, or research) of games. An operational game employs current equipment, tactics, and strategy to test operational plans. Games designed for research are the most complex and are used to study future tactics or force structures.

The remainder of this thesis will pursue the objectives previously outlined. The second chapter will present a general description of the game developed in this research. Chapters III and IV describe the simulation for the air and ground portions of the model. The fifth chapter outlines
the verification and validation of the model, while the final chapter contains a summary, conclusions, and recommendations. Included in the appendices are a user's guide detailing the specific directions for playing the game, the formal mathematical foundations used in the algorithms, and a source listing of the computer program defining the variables and arrays.
II. General Description

Included in this chapter is a brief description of the game itself, the eight possible missions which are simulated, and the assumptions and constraints inherent in the treatment of functional areas by the model.

The model STAG - Simulated Tactical Air War Game, is a highly aggregated game comprised of interaction equations which utilize the allocation of aircraft to various missions to obtain the outcome of an offensive vs. defensive systems engagement. The theater of operations involves two sides with their respective air and ground forces. Figure 1 provides a representation of the forces and the types of interactions included in this model.

Each side has three forward operating bases which are vulnerable to attack by the opponent. Aircraft replacements and supplies are generated from a sanctuary base located in the rear of the sector. The sanctuary base is assumed to be invulnerable to attack.

The theater is divided into two fairly well defined territories by a line called the forward edge of the battle area (FEBA). Since only one sector of the ground war is modeled in STAG, the FEBA moves as a unit and may be viewed as the average movement of the entire theater front.

The ground forces are defined in terms of homogeneous divisions with no distinction made between armored, infantry, or tank divisions. The primary purpose of the red side is
FIGURE 1. DEPICTION OF THEATER MODEL
to occupy territory, while blue's goal is to slow the rate of movement of the FEBA as much as possible. The direction and rate of movement of the FEBA depends upon the relative strength of the opposing forces. The supply system may be viewed as a pipeline running from the sanctuary area to the divisions positioned along the FEBA. Logistics is handled by using one aggregated type of supply which is designated as a "spare". Interdicting the supply system will reduce the number of spares delivered that day. The ground forces defend against enemy aircraft by means of anti-aircraft fire and surface-to-air missiles (SAMs).

The air forces consist of three general types: a multi-purpose fighter and two special mission aircraft. The multi-purpose fighter is capable of performing most of the various missions while the special aircraft are limited to a particular role (bomber or attack). The players on each side can allocate their aircraft among eight air missions provided for in the model: (1) airbase attack (ABA); (2) reconnaissance (RECCE); (3) interdiction (INTD); (4) combat air patrol (CAP); (5) close air support (CAS); (6) air defense (AIRDEF); (7) defense suppression (DEFSP); and (8) escort (ESCORT).

In the airbase attack mission (Ref Figure 2), offensive strikes are aimed at enemy air bases to destroy enemy aircraft on the ground, petroleum (POL), munitions, and to disrupt operations of the airbase.
FIGURE 2. THEATER AIR OPERATIONS
The reconnaissance mission improves the accuracy of information about enemy airfields and ground forces. Flying reconnaissance missions against a target will give you the present status of supplies and logistics located at the target.

The purpose of the interdiction mission is to damage, destroy, or delay logistics support for enemy ground units engaged in battle. Successful interdiction missions will create a delay in arrival of resupplies and will also reduce their quantity.

Combat air patrol missions attempt to gain and maintain air superiority over the main battle area. These missions will tend to increase the effectiveness and reduce the losses of close air support.

The CAS missions attack enemy ground units engaged in combat with friendly forces. They have two principal effects. First, they produce casualties among ground units; and second, they influence the movement of the FEBA by causing casualties, disrupting coordination, and slowing troop movement.

The air defense missions are aircraft on alert at designated bases and are used to protect that airbase from attack. In addition, they protect territory behind the forward defenses from enemy aircraft which have penetrated the missile defense belt.

Defense Suppression missions are designed to destroy or suppress enemy ground-to-air defenses by clearing
corridors for subsequent penetration by aircraft on interdiction or airbase attack missions.

Escort missions accompany primary mission aircraft, such as airbase attack, and engage enemy interceptors. These missions are part of a "mission package" concept used by the United States Air Force (USAF) in which attack aircraft are accompanied by properly configured escort and defense suppression aircraft. These escorts will reduce the losses to the primary mission aircraft from enemy interceptors and ground defenses. However, the "cost" is in terms of what one must sacrifice to provide the escort package.

ASSUMPTIONS

The following assumptions are made in this model:

(a) The conflict is a conventional war. Nuclear or chemical weapons are not modeled.

(b) Intangible quantities such as leadership and training are equal for each side and are not treated.

(c) Weather is not treated.

(d) Different types of munitions are not considered.

(e) Command, control, and communications (C^3) are not a factor.

(f) Air refueling, search and rescue, and aircrew training are not modeled.

(g) No distinction is made between a day light cycle or a nighttime cycle.
LIMITATIONS

This game is intended to be an educational tool, and is not meant to give real world results. Data contained in the model are either fictitious or from unclassified models presently in use. Many of the details of war gaming are deliberately suppressed in STAG since it is not meant to be an explicit representation of real-world events. However, the game should allow players to gain insights into the critical elements which must be considered in an effective air campaign.
III. **AIR WARFARE**

A standard force built into the model provides each side with three different types of aircraft. Each type possesses its own performance characteristics and capabilities reflected in a destructive index for that type. In general, the blue side possesses more effective aircraft systems which can counter the numerical advantage of red's ground forces if they are employed effectively. An option in the computer program also allows players to input their own force list (numbers of aircraft, not types) in lieu of the standard force.

The three types of aircraft are distributed at three airbases lying 200 kilometers behind the forward edge of the battle area (FEBA). Prior to the start of each day's activities, players are given the opportunity to move aircraft from one airbase to another. Aircraft beddown is then displayed prior to sortie allocation.

One task confronting the players is to provide support for the ground forces without entirely sacrificing the capability to destroy the enemy's air forces. Each side should base its allocation decisions on its own objectives, previous events, friendly ground forces' requirements, and its own estimate of the situation.

Aircraft may not be allocated to missions for which they are not suited. Tables 1 and 2 list the mission
capabilities for each aircraft for each side. The air defense of a particular base must be performed by aircraft located at the base. For example if blue has 50 F-4 aircraft at base 2, no more than 50 F-4 aircraft can be allocated to the air defense of base 2. In order to allocate more than 50 aircraft for air defense alert at base 2, the player would have to move aircraft from base 1 or 3 to base 2 at the start of the day. Once both sides have finished allocating their sorties, the program calculates losses and provides a quantitative assessment of the air missions.

The missions of tactical air power are air base attack, interdiction, close air support, air defense (including combat air patrol), and special support missions including escort, defense suppression, and reconnaissance. The following paragraphs describe the operational considerations of the various air missions and the manner in which the computerized model simulates the interactions of these air missions. While it is desirable that the model outcomes be credible, primary emphasis is placed on reflecting the effect of strategy and employment tactics on the outcome of the battle.

AIR BASE ATTACK

Traditionally, air base attack (ABA) sorties have been one of the most effective methods of countering enemy air forces; they impact upon an opponent's air field by
TABLE 1
BLUE AIRCRAFT CAPABILITIES

<table>
<thead>
<tr>
<th>TYPE ACFT</th>
<th>SPECIFIC MISSIONS</th>
<th>STANDARD FORCE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10</td>
<td>INTD</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td></td>
</tr>
<tr>
<td>F-4</td>
<td>ABA</td>
<td>AIRDEF</td>
</tr>
<tr>
<td></td>
<td>RECCE</td>
<td>DEFS</td>
</tr>
<tr>
<td></td>
<td>INTD</td>
<td>ESCORT</td>
</tr>
<tr>
<td></td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>384</td>
</tr>
<tr>
<td>F111</td>
<td>ABA</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>INTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
RED AIRCRAFT CAPABILITIES

<table>
<thead>
<tr>
<th>TYPE ACFT</th>
<th>SPECIFIC MISSIONS</th>
<th>STANDARD FORCE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU7</td>
<td>ABA</td>
<td>DEFSP</td>
</tr>
<tr>
<td></td>
<td>INTD</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td></td>
</tr>
<tr>
<td>MIG21</td>
<td>ABA</td>
<td>CAS</td>
</tr>
<tr>
<td></td>
<td>RECCE</td>
<td>AIRDEF</td>
</tr>
<tr>
<td></td>
<td>INTD</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>CAP</td>
<td></td>
</tr>
<tr>
<td>MIG23</td>
<td>ABA</td>
<td>CAS</td>
</tr>
<tr>
<td></td>
<td>RECCE</td>
<td>AIRDEF</td>
</tr>
<tr>
<td></td>
<td>INTD</td>
<td>DEFSP</td>
</tr>
<tr>
<td></td>
<td>CAP</td>
<td>ESCORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320</td>
</tr>
</tbody>
</table>

16
destroying aircraft on the ground and disrupting base support facilities such as runways, taxiways, or maintenance facilities. All of these actions serve to reduce the enemy's ability to generate sorties. However, several defensive measures are employed to minimize the impact of air base attack. Aircraft shelters and revetments protect aircraft on the ground. Improved surface-to-air missiles (SAMs) and a proliferation of anti-aircraft-artillery (AAA) have posed a serious attrition threat to air base attack aircraft. As a result of these defenses, a complex set of strategies are available to the attacker in terms of "mission packages"—protecting the main attack force with escort and/or defense suppression aircraft. The air model in STAG is designed to reflect the impact of mission packages on the outcome of the battle.

The treatment of the air base attack mission in the air model is greatly simplified. Internal computations of the computer are based on highly aggregated interactions between the two opposing forces. Aircraft shelters and revetments are not treated in the model. However, AAA, SAMs, and attrition due to AAA, SAMs and air defenders are modeled. A generalized flow of the attack mission is depicted in Figure 3.

The treatment of attrition from AAA and SAMs embodies a relatively static and predictable array of defenses. AAA loss rates are considered to be the same for all
FIGURE 3. MISSION PACKAGE FLOW SEQUENCE
aircraft, and all aircraft must penetrate the coverage of these weapons. SAM units are deployed in two locations: along the FEBA and in an area between the FEBA and the airbases. Suppression aircraft reduce the number of SAM sites available to fire missiles at the attack force.

Attrition due to air defenders is dynamic since the probability of kill depends upon the size of the opposing forces. Escorts serve to reduce the number of available defenders and is discussed in detail below. Surviving airbase attack sorties which deliver weapons upon an opponents airfield reduce that base's ability to generate sorties.

The maximum number of aircraft which each airbase can support is initially input as data. As the base status is reduced by repeated airbase attack sorties, the number of aircraft which the base can support is proportionately reduced. The amount of reduction is a function of the number of effective sorties which reach the base and the destructive index for the types of aircraft which attack the base. The users guide (Appendix A) lists the destructive index of each type of aircraft.

Effective sorties are defined as those attackers which survive the AAA and SAM threats and are not detected and engaged by the defenders. Attackers who are detected and engaged by air defense aircraft are assumed to jettison their bomb load. Those attackers detected and engaged have some probability that they will be shot down by the defenders.
INTERDICATION

Interdiction (INTD) missions attempt to damage, destroy, or neutralize support and logistics received by enemy ground units (air bases and army). Destruction of POL and munitions in the logistics pipeline has a more immediate effect on the level of intensity of the conflict than the destruction of command and control facilities or third echelon storage depots.

In the game, interdiction sorties may be split into two components: those that attack air base supply routes and those that attack army supply lines. Interdiction sorties are subject to the same threats experienced by the air base attack sorties. The computer model reacts to successful interdiction sorties flown against an airbase's logistics line by reducing the number of spares that base receives from its sanctuary depot. Each day a base utilization factor is computed by dividing the number of spares on hand by the number of spares required to support the number of aircraft presently located at that base. If the number of sorties that can be supported is less than the number of aircraft located at the base, the player must relocate the excess aircraft or else the model will not permit him to use them on the next day's missions.

In a similar manner, the program reacts to successful interdiction missions against the ground forces by either slowing or accelerating the rate of advance of the FEBA.
Interdiction sorties reduce the number of spares the army receives from its sanctuary depot. A slow down factor is computed each day by dividing the number of spares on hand by the number required to support the current number of divisions engaged in battle.

SAM SUPPRESSION

Defense suppression (DEFSP) missions suppress and destroy enemy ground-to-air defenses in the vicinity of the ground combat zone and the area between the FEBA and the air bases. Aircraft allocated to this mission will reduce ground-to-air losses of other mission aircraft. Employment of suppression aircraft will open a corridor for the attack aircraft to penetrate ground defenses. However, by allocating aircraft to the suppression mission, a commander is using aircraft which might be used for one of the other missions (CAS, ABA, etc.). Hence, a trade-off must be made between reducing losses to the attack force with defense suppression and using those suppression aircraft in a more direct role.

The model views the suppression aircraft as preceding the main attack force to clear a corridor for these aircraft (see Figure 3). The number of SAM sites encountered by the main attack force is less than the original deployment of SAM sites because of SAM site suppression. This is taken into account by modifying the expected number of SAMs shot at each aircraft by the fraction of SAM sites surviving suppression.
ESCORT

Escort sorties accompany the primary mission aircraft to the target and engage enemy interceptors. Escorts are used as part of a mission package along with defense suppression in an attempt to counter enemy defenses. The cost is in terms of what one must sacrifice to provide the escort package.

Allocating aircraft to the escort missions in STAG will reduce attacker losses due to air defense aircraft. Escort missions can be assigned to accompany the deep penetrators (ABA or INTD) and the interdiction of the army's supply lines. Each escort sortie reduces the effective number of enemy air defense sorties according to a simple subtractive rule. The use of escort sorties is examined more closely in the section on aircraft losses.

AIR DEFENSE

Air defense sorties may be split into two components: those that are deployed forward near the FEBA (CAP) and those that are used for defense of the rear areas (AIRDEF). CAP missions attempt to gain and maintain air superiority by attacking enemy aircraft which enter the forward combat zone surrounding the FEBA. They are used primarily to protect friendly ground forces from enemy CAS sorties and army logistics lines from enemy interdiction. AIRDEF missions are normally on alert; when early warning radar detects an incoming hostile force, the air defenders are "scrambled" to meet the air threat. Air defense also
protects friendly air bases and supply lines in the rear of the battle area from enemy air attacks. Air Defense aircraft attack enemy interdiction, air base attack, and reconnaissance aircraft and their escorts. Additionally they reduce the effectiveness of those attackers that survive by causing some aircraft to jettison their munitions.

The effectiveness of an air defense sorties is modeled in STAG using a probability of detection. The likelihood that an air defense aircraft detects an intruder is heavily dependent on the assistance the defensive aircraft receives regarding the location of intruder aircraft. The model attempts to capture the situation in which the air defense search process is essentially autonomous and the probability of detection (P_D) is sensitive to the number of intruders in the friendly air space. Hence, P_D is proportional to the number of opportunities for making a detection. The program also assumes that intruders who are detected and engaged but not shot down will jettison their munitions and return to base.

CLOSE AIR SUPPORT

The army depends on CAS to assist in countering large concentrations of enemy forces. CAS missions attack enemy ground units in actual combat with friendly forces. Air power provides the fastest means of significantly affecting the ground battle. Since most CAS sorties require visual acquisition of ground forces, weather and darkness are
significant factors. Normally CAS would be allocated to units faced with a distinct force disadvantage.

Since the model considers only one section of the FEBA, there is no decision on where to allocate the CAS sorties. Weather and darkness are not treated in the model resulting in uniform effectiveness for CAS over the course of the game. The addition of weather or a night cycle would improve the model's treatment of the CAS mission.

RECONNAISSANCE

Accurate intelligence is essential in the successful conduct of an air war especially since resources are limited and attrition is high. Maximum efficiency from limited capability can only be achieved if the information on which decisions are based is timely and accurate.

In STAG information about the status of enemy air bases and ground forces may be obtained through the use of reconnaissance missions. These sorties have no damaging effect on enemy status but are capable of defending themselves if attacked. In order to obtain RECCE information about a particular target, at least one RECCE sortie must survive. For example, if 4 RECCE aircraft were sent against an airbase, and none of them survived, no intelligence information would be delivered on the status of that base. However, if any or all of the 4 returned, the status of the target would be displayed.
REINFORCEMENTS AND LOGISTICS

Beginning on the second day of the game, each side receives the daily aircraft reinforcements listed in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>A-10</th>
<th>SU-7</th>
<th>F-111</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>27</td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>RED</td>
<td>SU-7</td>
<td>MIG-21</td>
<td>MIG-23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24</td>
<td>48</td>
</tr>
</tbody>
</table>

TABLE 3. DAILY AIRCRAFT REINFORCEMENTS

Since each air base starts the game with a surplus of spares and a capability to support more aircraft than it possesses (see Table 4 and 5), the impact of airbase attack and interdiction missions on the overall battle is cumulative and requires several days to manifest itself. Therefore, it would be poor strategy to expend much effort on these missions if it were known that the duration of the game was only going to be a few days.
TABLE 4
BLUE LOGISTICS DATA

<table>
<thead>
<tr>
<th>AREA</th>
<th>AIRBASE</th>
<th>ARMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL FORCE</td>
<td>203</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AIRCRAFT</td>
<td>DIVISIONS</td>
</tr>
<tr>
<td>INITIAL NO. SPARES</td>
<td>250</td>
<td>360</td>
</tr>
<tr>
<td>DAILY SPARE UTILIZATION RATE</td>
<td>1.1/A/C</td>
<td>100/DIVISION</td>
</tr>
<tr>
<td>DAILY RESUPPLY RATE (# SPARES)</td>
<td>209</td>
<td>279</td>
</tr>
<tr>
<td>MAX SUPPORTABLE A/C PER BASE</td>
<td>220</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 5
RED LOGISTICS DATA

<table>
<thead>
<tr>
<th>AREA</th>
<th>AIRBASE</th>
<th>ARMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL FORCE SIZE</td>
<td>187</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>A/C</td>
<td>DIVISIONS</td>
</tr>
<tr>
<td>INITIAL NO. SPARES</td>
<td>232</td>
<td>1080</td>
</tr>
<tr>
<td>DAILY SPARE UTILIZATION RATE</td>
<td>1.1/A/C</td>
<td>100/DIVISION</td>
</tr>
<tr>
<td>DAILY RESUPPLY RATE (# SPARES)</td>
<td>189</td>
<td>846</td>
</tr>
<tr>
<td>MAX SUPPORTABLE A/C PER BASE</td>
<td>220</td>
<td>-</td>
</tr>
</tbody>
</table>
AIRCRAFT LOSSES

Aircraft allocated to the attack of enemy air bases, ground troops, or the logistics network may suffer attrition due to anti-aircraft artillery (AAA) or surface-to-air-missiles (SAMs) located along the FEBA and between the FEBA and the air bases (see Figure 4). The surviving aircraft may then be engaged by enemy air defense aircraft in an air battle where losses are sustained on both sides. Attack aircraft which survive the air defense then proceed to their designated targets.

The ability of the SAM defenses to kill attack aircraft may be reduced by allocating aircraft to the SAM suppression mission. These aircraft precede the main attack force to clear a corridor for the attackers and allow them to penetrate the enemy's defenses. Similarly, allocating aircraft to the escort mission will reduce attack losses due to air defense aircraft. Escort sorties engage the air defenders first and reduce the number of air defenders which can intercept the attackers. SAM suppression and escort missions are critical elements in the air warfare scenario. They serve to reduce overall aircraft losses due to the opponent's defenses.

Air-to-Air losses are computed in terms of the probability of survival of an attack sorties using an exponential of the form:
FIGURE 4. GROUND DEFENSES
\[P_{sA} = e^{-\frac{a}{b}} \]

where,

- \(P_{sA} \) = probability an offensive sortie survives
- \(a \) = function of number of air defense sorties
- \(b \) = function of number of offensive sorties
- \(\frac{a}{b} \) = engagement ratio

This exponential form is derived from the Poisson probability distribution and expresses the concept of diminishing returns per weapon because of multiple hits or overlap effects. Hence, the expected number of attackers or defenders killed is not simply proportional to the number of aircraft used. Figure 5 depicts the concept involved. Once the defender has achieved roughly a two-to-one ratio (engagement ratio equals 2) over the attacker, very little is gained in terms of decreasing the attacker's probability of survival. The attacker should attempt to concentrate his forces as much as possible.

One way of achieving this concentration is with the use of escort sorties. The model assumes that each escort sortie will reduce the number of air defenders available to detect and engage a bomber sortie by a specific number according to a simple subtractive rule. Thus if mission A contained 50 bombers and 20 escorts against 30 defenders, only 10
defenders would be eligible to detect and engage the 50 bombers. The other 20 defenders would be occupied by the escorts. Now suppose mission B contained 70 bombers and no escorts against 30 defenders. All of the defenders would be available to detect and engage the bombers. On mission A the engagement ratio of defenders to bombers would be 10/50 (or .2). On mission B the engagement ratio would be 30/70 (or .43). Figure 5 indicates that the probability of survival for bombers on mission A is .82 and the probability of survival for bombers on mission B is .65. Hence, the use of escorts increase the probability of survival of mission A bombers by .17 over mission B bombers.

The air war impacts not only on the air bases and logistics network but also on the ground forces. The next chapter will describe the interactions between opposing ground forces and the impact of air power on the ground battle.
INTRODUCTION

This section describes the submodel used to assess the interaction of opposing ground forces and the effects of combat air support on the ground battle. The model was developed to satisfy two fundamental objectives:

1) to assess the contributions and interactions of air units on the outcome of ground combat, and
2) to employ a relatively simple methodology so that multi-day theater-level wars could be efficiently simulated.

The basic logic of the model is that the primary purpose of the red side is to occupy territory while blue is attempting to slow the movement of the forward edge of the battle area (FEBA) as much as possible. The model assumes that there is a fairly well defined FEBA.

COMPOSITION AND CONTROL

The ground force strength available to each player for the conduct of STAG is represented in the form of homogeneous equivalent divisions. Homogeneous refers to the fact that elements of a division, such as artillery, infantry, or tank units, are not explicitly differentiated. Equivalent divisions on both sides means that one blue division has the same firepower or destructive capability as one red division.
The intent of STAG is to consider all front-line ground action as a whole, disregarding individual, localized activity. The initial ground force strength is three divisions for blue and nine divisions for red. There is no ground force augmentation during the game.

The game does not allow players to exercise command decisions in deploying and employing ground forces. As a result, the descriptive detail of the ground operations is not as great as that of the air operations. Concentration of forces for breakthrough purposes is simulated by the initial force sizes. Hence, at the start of the game, it is assumed that the red side has already massed its forces for an attack.

MOVEMENT OF THE FEBA

Since the red army starts the game with a substantial size advantage over the blue army, the FEBA always moves in a forward direction (as viewed by Red). The red side is always advancing, and blue is attempting to slow the movement. The rate of FEBA movement will depend on the relative strengths of the opposing forces. Effective close air support sorties as well as logistics will also influence the rate of FEBA movement. CAS sorties produce casualties in proportion to the destructive index of the aircraft involved (see Appendix A). The index accounts for damage due to disrupting troop coordination, slowing troop movements,
and creating an adverse psychological effect on the opponent (Ref 19:30). As mentioned in the previous chapter, a shortage of spares will produce a slowdown of an army's ability to move the FEBA.

A rather simple mathematical expression developed by the Rand Corporation (Ref 8:25) indicates that the average motion of the FEBA may be described using the effective force ratio, \(F \), defined as:

\[
F = \frac{M \text{ (slow) } + S_{\text{cas}} \text{ (DI)}}{M \text{ (slow) } + S_{\text{cas}} \text{ (DT)}}
\]

where

\(M \) = the number of attacking division equivalents

\(\text{slow} \) = the logistics slowdown factor of the attacker

\(S_{\text{cas}} \) = the number of the attacker's effective CAS sorties

\(\text{DI} \) = the destructive index of the attacker's CAS aircraft

\(M, \text{slow}, S_{\text{cas}}, \text{DT} \) = the defender's factors

The daily movement of the FEBA is then expressed as a function of the effective force ratio (see Appendix B for a detailed explanation of this function).

TROOP CASUALTIES

Several possible formulations can be devised to describe troop casualties inflicted by the opposing ground forces. STAG uses a Lanchester-type model adapted from the Rand program, TAGS (Ref 8), in which attrition rates are
proportional to the force ratio of the two ground forces. Figure 6 depicts the relationship of offensive and defensive casualties due to ground combat as a function of the force ratio.

The application of air power in the form of close air support will also produce casualties among ground personnel and the destruction of equipment. A simple linear relationship is used to describe the fraction of a division killed by one CAS sortie assuming that the CAS sortie has survived the AAA and SAM threat and has not been shot down by CAP. This linear relationship is a valid treatment assuming that the number of ground targets available for attack is large in comparison to the number of CAS sorties flown.

Given this model for the employment of tactical air forces, it was necessary to insure that its behavior was as intended. The next chapter will present an introduction to model verification and validation followed by the specific procedures used to verify and validate STAG.
FIGURE 6. RELATIONSHIP OF GROUND CASUALTIES TO FORCE RATIO
V. Verification and Validation

In the development of a simulation model, two of the most important stages the builder must accomplish are verification and validation. Without them the model formulations, preparation, and translation into an acceptable computer language are meaningless. This chapter will present an introduction to the general process of verification and validation followed by the procedures used to verify and validate STAG.

Differentiation between verification and validation is difficult since they are not independent processes. However, verification is generally viewed as insuring that the model behaves the way it was designed. Validation consists of testing the agreement between the behavior of the model and the real system (Ref 18:30). To validate a war game, a means of building confidence in the game's ability to achieve its objectives must be devised. An important distinction between verification and validation is that models can be completely verified, while complete validation is impossible. Richard L. Van Horn (Ref 21:247) suggests that a model may be considered valid when it has achieved an acceptable level of confidence. Only the model builder and user can determine what is an acceptable level of confidence.
There are four views concerning the problem of model verification and validation: rationalism, empiricism, pragmatism, and utilitarianism (Ref 18:213). Each of these philosophies will be discussed briefly.

RATIONALISM

Rationalism is closely associated with mathematics and logic. Rationalists contend that a model is simply a system of logical deductions derived from a set of unquestionable truths. Immanuel Kant used the term "synthetic a priori" to describe these premises of unquestionable truth (Ref 13: B-93). Kant and his followers argued that if one accepts the basic premises about a model (which they considered unquestionable) and the formal logic used to deduce the consequences, then one accepts the validity of the model. The problem of verification has then been reduced to the problem of stating the basic assumptions underlying the behavior of the system being modeled.

Unfortunately many of the "synthetic a priori" premises proposed by rationalists are not at all obvious. The premises themselves often reveal the questionable nature of their obviousness. Consider, for example, the premise that more money spent by government will result in increased public service. This premise ignores the impact of increased governmental spending on inflation or the misappropriation of government funds due to fraud. Countering the beliefs of
the rationalists, empiricists deny the very existence of "synthetic a priori" premises.

EMPIRICISM

In direct contrast to rationalism, empiricism refuses to accept any assumption that cannot be verified by experiment or analysis of statistical data (Ref 18:214). Empiricists insist that model verification must begin with facts, not assumptions. Hence, they regard empirical science, and not mathematics, as the ideal form of knowledge. "A sentence the truth of which cannot be determined from possible observation is meaningless" (Ref 17:256). Empiricists often employ formal statistical tests of hypothesis, based on historical data, to validate a model. Rationalists argue that historical data often does not apply to dynamic systems and that statistical tests do not show that a hypothesis can be accepted, only whether or not it can be rejected. The controversy is over matters of emphasis - what a model should be founded upon. A less extreme point-of-view is held by the third group, the pragmatists.

PRAGMATISM

While both the rationalist and the empiricist are primarily concerned with the internal structure of the model, disagreeing over the nature of the internal relationships that are valid, the pragmatist feels that the validity of a model depends upon its ability to properly transform inputs into outputs. If the model fulfills the purpose for
which it was built, then it is a valid model. Proposing that the usefulness of the model be the key to its validation, pragmatists emphasize the question of whether errors in the model render it too weak to serve its intended purpose.

UTILITARIANISM

Perhaps the most practical approach to model verification and validation is taken by the utilitarian. Two important characteristics of this approach are:

1. The objective is to validate a specific set of insights not necessarily the mechanism that generated the insights.

2. There is no such thing as "the" appropriate validation procedure. Validation is problem-dependent. (Ref 21:248)

Hence, this approach advocates the use of any of the verification and validation tests which might apply to the model being tested. The following section describes some of the specific tests which were used to verify and validate STAG.

VERIFICATION TESTS

The following verification tests were used to demonstrate that there are no logical or calculational errors in the computer program (Ref 9:119). The first test of the model was to demand that its behavior not be obviously implausible. In the early development of the model, the implausible results are apt to be of a gross nature. For example, in a tactical situation the model may indicate that
more aircraft returned from a mission than originally started. In a sense the program could be "creating" aircraft. These errors were quite easy to detect and rectify.

Another effective test is to attempt to force additional obvious inadequacies with extreme levels or flows in the system. Model behavior is more unpredictable under normal operating conditions. For example, in STAG the results were observed when no aircraft on either side were launched. The results from such a strategy were easy to predict, since there should have been no losses or damage on either side; this was the actual result.

Once the obvious errors were eliminated, attention was directed at more subtle performance. The multiple mode test considered whether or not the model would provide different behavior when presented with different inputs. In applying this test specifically to STAG, the following experiment was employed. Three airbase attack scenarios were designed to demonstrate that decreasing the number of air defenders at a base in each scenario would result in a corresponding increase in the destruction of the airbase and a decrease in the number of attack aircraft lost. In the first scenario blue had fifty aircraft defending its airbase; red had fifty aircraft attacking this base (Table 6). In the second scenario blue had forty aircraft defending its
airbase; the red attack force remained unchanged. Table 6 indicates that red lost one less aircraft and increased his destruction of the blue airbase. In the third scenario, blue had thirty defending aircraft; again the red attack force remained unchanged. Results of this experiment confirmed that different inputs do indeed produce different behavior.

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>#Blue DEFENDERS</th>
<th>#RED ATTACKERS</th>
<th>#RED A/C LOST</th>
<th>BLUE BASE STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
<td>8</td>
<td>.958</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>50</td>
<td>7</td>
<td>.949</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>50</td>
<td>6</td>
<td>.938</td>
</tr>
</tbody>
</table>

TABLE 6. Results of Multiple Model Experiment
VALIDATION TEST

The objective of STAG is to demonstrate the principles of tactical air warfare to the players. Specifically, a desired result of the model is that the use of escort sorties and SAM suppression sorties will result in a lower aircraft loss rate and a higher number of bombers reaching the target. To test whether or not the model correctly demonstrated this principle, a two-factor, two-level, full factorial experiment was used. In this experiment the two factors were: the use of escort sorties and the use of suppression sorties. There were four possible combinations of these factors:

(a) no escort/no suppression
(b) no escort/with suppression
(c) with escort/no suppression
(d) with escort/with suppression

The results are depicted in Table 7.

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>AIRCRAFT LOSS RATE</th>
<th>NUMBER OF EFFECTIVE SORTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Escort/No Supp</td>
<td>.34</td>
<td>28</td>
</tr>
<tr>
<td>No Escort/With Supp</td>
<td>.25</td>
<td>36</td>
</tr>
<tr>
<td>With Escort/No Supp</td>
<td>.28</td>
<td>38</td>
</tr>
<tr>
<td>With Escort/With Supp</td>
<td>.15</td>
<td>52</td>
</tr>
</tbody>
</table>

TABLE 7. Results of Validation Experiment
The number of aircraft involved in each scenario was 150 bombers, 84 escorts, 84 SAM suppressors, and 150 air defenders. Effective sorties were computed with the following equation:

\[
\left(\frac{\text{NUMBER EFFECTIVE SORTIES}}{\text{NUMBER BOMBERS}} \right) = \left(\frac{\text{NUMBER BOMBERS KILLED BY GROUND TO-AIR WEAPONS}}{\text{NUMBER BOMBERS DETECTED & ENGAGED BY DEFENDERS}} \right)
\]

The assumption is made here that if a bomber is detected and engaged by air defenders, it will jettison its bombs and hence will become ineffective.

The results of this experiment clearly indicate that the model exhibits the desired relations among attackers, escorts, and suppressors. The experimental results do increase confidence in the model and hence serve to validate it. Since STAG is an interactive game, most people will agree to placing a higher "a priori" confidence on a man than on a model of him. In other words, the game would probably hold less face validity if it were played against a pre-programmed strategy instead of another person.

The most sensible approach to model verification and validation is the utilitarian approach. This methodology recommends the use of any verification and validation technique which seems appropriate to the problem. As difficult as verification and validation are for models in general, they are particularly nebulous for tactical
air war games. Very little literature exists on the subject, and the modeler is required to devise appropriate techniques to handle a particular situation. Validation is a never ending process.
VI. Summary, Conclusions, and Recommendations

STAG and the accompanying documentation represent the accomplishment of the objectives of this research. The model is a highly aggregated game comprised of interaction equations which utilize the allocation of aircraft to various missions to obtain the outcome of an offensive versus defensive systems engagement. The simulation which supports the model consists of an interactive air portion and a parametric ground portion. The theater of operations consists of two sides with their respective air and ground forces.

The model contains several features unique among war games. The ability to input the length of the game gives players increased flexibility in formulating new strategies. A player must be able to adjust his strategy to accommodate either a long or short war. Although it is a game, STAG has definite worth as an educational tool.

The model developed in this study was designed to provide individuals an opportunity to plan and conduct an air war and to test various air employment concepts. Existing war games are quite large and contain so many factors that the main effects of a player's employment decisions are confounded by the interactive effects of the factors. The war game described herein, STAG, has a
limited number of factors so that it is easier for players to determine the main effects of their strategies. Players can trade-off numbers and types of aircraft on various missions and observe the impact of these decisions on the outcome of the battle.

The idea of including details of only those factors that are of immediate interest in a particular model suggests the development of a family of models, each appropriate for a specified level of detail. Development of such a hierarchy of war games is an area for future research. When STAG has been exposed to a wide audience many areas for improvement will be found. Some of these areas are listed below:

(1) inclusion of weather, a night cycle, and precision munitions
(2) a variable game length which is stochastically determined
(3) an alternative to an end game score to discourage players from "gaming the game"
(4) inclusion of survivability indices for the various aircraft
(5) a more effective way of handling player force inputs
(6) sensitivity analysis on model parameters

Using STAG as a median, one could develop an even simpler game with one airbase on each side for example. Another
possibility which expands on the detail presented in STAG is the inclusion of a number of different factors (listed above in item one).

A variable game length would be much more realistic. Instead of allowing the player to determine the length of the game, the program would stochastically determine the game length. One day prior to end of the game the program would inform both players that the game will terminate in one day. This modification would discourage extreme strategies employed when the duration of the game is known from the start.

One suggestion for an alternative to an end game score would be the use of a stopping rule devised by the analyst. The game would progress until one side has met or exceeded the criterion set up in the program.

The survivability of each type of aircraft is the same in the present version of STAG. The use of survivability indices to reflect a particular aircraft's ability to survive in a hostile environment would be a more realistic treatment of the situation.

The number of aircraft a player may input at the beginning of the game is currently limited by the data structure. Associated with each base is a maximum number of aircraft which that base can support. Changing this value in the data structure to a percentage of the initial force size would add flexibility to the model.
Performing sensitivity analysis on the model's parameters would be intellectually appealing. It might be interesting to attempt to determine which factors in the model have the most significant impact on the outcome of the game. Readers who are interested in this area should consider the use of multivariate analysis as demonstrated by Danial Nussbaum (Ref 15).

STAG has the potential for being the basis for the development of a family of war games to teach the principles of tactical air warfare. The possibilities and opportunities in this area are almost limitless.
APPENDIX A

User's Guide for STAG
This section is designed to acquaint players with the rules, procedures, and peculiarities of the game. STAG was designed to be played interactively and was implemented in FORTRAN IV on the CDC Cyber 175 INTERCOM system. The reader should consult the annex to Appendix A while reading this guide for a sample listing of data input.

1. Initially the program will request an input for the number of days the game will last. The suggested minimum and maximum length is two and five days respectively; but the program will accept any number of days as an input. Being able to select the length of the game provides a unique feature not found in other war games. A player's strategy must now be partially based on the fact that he knows when the war game will end, and he knows how many days are left in the war.

2. At the end of the game, the program computes a player's score based on the weights displayed at the beginning of the game (see annex). To accommodate players whose utility is different from the programmed weights, players have the option of changing the emphasis placed on FEBA movement and aircraft exchange ratio. For a more detailed description of the scoring system consult Appendix B.
3. The next option offered by the program is the selection of aircraft force size. If a player selects the standard force input (by entering "1"), the aircraft beddown listed in the annex will be displayed. Players desiring to create their own forces can do so by entering "2", and the program will prompt for inputs of force size by type of aircraft and base for each side. If either player chooses to input his own force, then both players will be required to input their own force list.

4. After selecting aircraft force size, the program will list aircraft beddown for each player.

5. To provide a means of preventing an opponent from viewing "privileged" information, the program will print the message, "Enter 1 to continue" and stop after each side has completed an activity. That player should remove his information by tearing off the output. The other player should then enter "1" (actually any value will be accepted) to complete his turn. This procedure is especially critical for sortie allocation since an unfair advantage is gained by seeing an opponent's strategy.

6. Every time aircraft beddown is displayed, players will have the option of moving aircraft from one base to another. When both players are satisfied with the location of their aircraft, sortie allocation will begin.
7. Sortie allocation is the most important aspect of the game. The example in the annex will be explained in detail. Players should consult Tables 1 and 2 (Chapter III) to determine which missions their aircraft are capable of performing. Sorties are allocated by type aircraft, mission, and target. The term "TGT" beneath the target column requests the total number of that type aircraft a player wants to allocate to that mission.

8. In the example, blue has allocated a total of 80 A-10 aircraft (from his available force of 128) to interdiction. The second line then asks how many of those 80 aircraft blue wants to send against red base one (RB1). The example shows that blue has sent 20 A-10 aircraft against each target (RB1, RB2, RB3, RARMY). Since there are no designated targets for the close air support (CAS) mission (also the case for the combat air patrol (CAP) mission), blue only allocated a total number of aircraft to CAS. The program will not allow a player to allocate more aircraft than the number available listed under the column MAX AVAILABLE. However, it will not prevent a player from losing sorties by allocating too few aircraft.

9. Air defense and defense suppression missions require additional comments. Although the program lists the opponents' bases under the TARGET column for the air defense mission, these sorties will be used to protect the friendly bases.
from attack. In the example blue has allocated 40 F-4 sorties for the air defense of each "target" (RB1, RB2, RB3). Actually these sorties will be used for the air defense of BB1, BB2, and BB3. Defense suppression sorties allocated to targets RB1, RB2, and RB3 in the example are used for suppression of area SAMs. Sorties allocated to the target RARMY are used for suppression of FEBA barrier SAMs.

10. After a player has finished allocating his sorties, the program will list the number of sorties allocated to each mission and the percentage of effort allocated to each mission.

To assist players in deciding which aircraft are most effective on a particular mission, tables A-I and A-II list the destructive indices of aircraft capable of performing the CAS and air base attack (ABA) mission. Interdiction results depend on the number of aircraft attacking a target and not the type of aircraft. Hence, there are no destructive indices listed for this mission.
TABLE A-I

CAS DESTRUCTIVE INDICES

<table>
<thead>
<tr>
<th>AIRCRAFT TYPE</th>
<th>DESTRUCTIVE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-10</td>
<td>.0003</td>
</tr>
<tr>
<td>F-4</td>
<td>.00015</td>
</tr>
<tr>
<td>F-111</td>
<td>.0003</td>
</tr>
<tr>
<td>SU-7</td>
<td>.00015</td>
</tr>
<tr>
<td>MIG-21</td>
<td>.0001</td>
</tr>
<tr>
<td>MIG-23</td>
<td>.00015</td>
</tr>
</tbody>
</table>

TABLE A-II

ABA DESTRUCTIVE INDICES

<table>
<thead>
<tr>
<th>AIRCRAFT TYPE</th>
<th>DESTRUCTIVE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU-7</td>
<td>.0015</td>
</tr>
<tr>
<td>MIG-21</td>
<td>.001</td>
</tr>
<tr>
<td>MIG-23</td>
<td>.002</td>
</tr>
<tr>
<td>F-4</td>
<td>.002</td>
</tr>
<tr>
<td>F-111</td>
<td>.003</td>
</tr>
</tbody>
</table>
SEED 14.08.07.

1. **ENTER NUMBER OF DAYS THAT YOU WISH TO PLAY**(MINIMUM OF 2, MAXIMUM OF 5).

 450000 **CM STORAGE USED**
 4.931 CP SECONDS COMPIIATION TIME

2. **PLAYERS' SCORES ARE BASED ON THE FOLLOWING WEIGHTS:**
 - **FEDA MOVEMENT**...50%
 - **A/C LOSS RATIO**...50%

3. **DO YOU WANT DIFFERENT WEIGHT FACTORS?? TYPE **1** FOR YES...**7** FOR NO**

4. **ENTER 1 FOR STANDARD FORCE INPUT**
 ENTER 2 FOR FORCE INPUT BY PLAYER

 XX

5. **ENTER 1 TO CONTINUE**

<table>
<thead>
<tr>
<th>BASE</th>
<th>TYPE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD1</td>
<td>A10</td>
<td>43</td>
</tr>
<tr>
<td>BD1</td>
<td>F4</td>
<td>123</td>
</tr>
<tr>
<td>BD1</td>
<td>F111</td>
<td>32</td>
</tr>
<tr>
<td>BD2</td>
<td>A10</td>
<td>32</td>
</tr>
<tr>
<td>BD2</td>
<td>F4</td>
<td>123</td>
</tr>
<tr>
<td>BD2</td>
<td>F111</td>
<td>32</td>
</tr>
<tr>
<td>BD3</td>
<td>A10</td>
<td>43</td>
</tr>
<tr>
<td>BD3</td>
<td>F4</td>
<td>123</td>
</tr>
<tr>
<td>BD3</td>
<td>F111</td>
<td>32</td>
</tr>
</tbody>
</table>

TOTAL: 663

XX
<table>
<thead>
<tr>
<th>BASE</th>
<th>TYPE</th>
<th>TOTAL ACFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1</td>
<td>SU7</td>
<td>32</td>
</tr>
<tr>
<td>RB1</td>
<td>NIC21</td>
<td>40</td>
</tr>
<tr>
<td>RB1</td>
<td>NIC23</td>
<td>104</td>
</tr>
<tr>
<td>RB2</td>
<td>SU7</td>
<td>43</td>
</tr>
<tr>
<td>RB2</td>
<td>NIC21</td>
<td>43</td>
</tr>
<tr>
<td>RB2</td>
<td>NIC23</td>
<td>104</td>
</tr>
<tr>
<td>RB3</td>
<td>SU7</td>
<td>32</td>
</tr>
<tr>
<td>RB3</td>
<td>NIC21</td>
<td>43</td>
</tr>
<tr>
<td>RB3</td>
<td>NIC23</td>
<td>123</td>
</tr>
</tbody>
</table>

TOTAL: 563

ENTER 1 TO CONTINUE

1

DOES BLUE WANT TO MOVE A/C FROM ONE BASE TO ANOTHER?? TYPE 1 FOR YES...

TYPE 0 FOR NO....0

DOES RED WANT TO MOVE A/C FROM ONE BASE TO ANOTHER?? TYPE 1 FOR YES...

TYPE 0 FOR NO....0
BLUE SORTIES WILL BE ALLOCATED NOW.
ENTER NO. OF BLUE SORTIES BY TYPE AIRCRAFT TO EACH MISSION (AS IT IS DISPLAYED).

AIRCRAFT ALLOCATED TO EACH BASE (UNDER HEADING OF...TARGET) FOR AIR DEFENSE WILL BE USED TO PROTECT THAT AIRBASE FROM ATTACK.
FOR EXAMPLE, IF YOU ONLY HAVE 20 F4 A/C AT BASE 2 YOU CANNOT ALLOCATE MORE THAN 20 F4 A/C TO THE AIR DEFENSE OF BASE 2.

<table>
<thead>
<tr>
<th>SIDE</th>
<th>TYPE A/C</th>
<th>MISSION</th>
<th>MAX AVAIL</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>INTD</td>
<td>128</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>INTD</td>
<td>60</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>INTD</td>
<td>60</td>
<td>R2</td>
</tr>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>INTD</td>
<td>40</td>
<td>R2</td>
</tr>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>INTD</td>
<td>20</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>A10</td>
<td>CAS</td>
<td>43</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>ARR</td>
<td>384</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>ARR</td>
<td>60</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>ARR</td>
<td>60</td>
<td>R2</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>ARR</td>
<td>30</td>
<td>R3</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>RECCE</td>
<td>284</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>RECCE</td>
<td>24</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>RECCE</td>
<td>15</td>
<td>R2</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>RECCE</td>
<td>3</td>
<td>R3</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>INTD</td>
<td>270</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>INTD</td>
<td>8</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>CAS</td>
<td>203</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>CAS</td>
<td>203</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>AIRDEF</td>
<td>222</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>AIRDEF</td>
<td>129</td>
<td>R1</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>AIRDEF</td>
<td>40</td>
<td>R2</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>AIRDEF</td>
<td>40</td>
<td>R3</td>
</tr>
<tr>
<td>BLUE</td>
<td>F4</td>
<td>DEFSP</td>
<td>102</td>
<td>TOT</td>
</tr>
<tr>
<td>BLUE</td>
<td>DEFSP</td>
<td>64</td>
<td>RB1 ...16</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>DEFSP</td>
<td>43</td>
<td>RB2 ...16</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>DEFSP</td>
<td>32</td>
<td>RB3 ...16</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>DEFSP</td>
<td>16</td>
<td>RB4 ...16</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ESCORT</td>
<td>33</td>
<td>TOT ...33</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ESCORT</td>
<td>33</td>
<td>RB1 ...9</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ESCORT</td>
<td>29</td>
<td>RB2 ...9</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ESCORT</td>
<td>20</td>
<td>RB3 ...9</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>ESCORT</td>
<td>11</td>
<td>RB4 ...11</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>F111</td>
<td>53</td>
<td>TOT ...53</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>F111</td>
<td>53</td>
<td>RB1 ...32</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>F111</td>
<td>64</td>
<td>RB2 ...32</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>F111</td>
<td>22</td>
<td>RB3 ...32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOEOT</th>
<th>ADD</th>
<th>RECCE</th>
<th>INTD</th>
<th>CAP</th>
<th>CAS</th>
<th>AIRDEF</th>
<th>DEFSP</th>
<th>ESCORT</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>24</td>
<td>63</td>
<td>40</td>
<td>43</td>
<td>123</td>
<td>64</td>
<td>38</td>
<td>603</td>
</tr>
<tr>
<td>PERCENT</td>
<td>.306</td>
<td>.039</td>
<td>.145</td>
<td>.686</td>
<td>.079</td>
<td>.157</td>
<td>.165</td>
<td>.083</td>
<td>1.000</td>
</tr>
</tbody>
</table>

ENTER 1 TO CONTINUE
APPENDIX B

Analytical Formulations
APPENDIX B

Analytical Formulations

AIR EQUATIONS

The interaction equations for the offensive/defensive engagements in the air battle are presented below in the approximate order of their occurrence in the program. Many of the approaches used in the air model were adopted from routines in the Lulejian theater-level model (Ref 14), while the ground model structure was adopted from the Rand model TAGS (Ref 8).

1. SAM Suppression and AAA

The following assumptions apply:

(a) Suppression aircraft precede attack aircraft.

(b) Sites being suppressed get first shot at attackers.

(c) SAM sites are suppressed for one day only. A specific fraction of those sites suppressed are assumed destroyed.

Equations for SAM Suppression mission:

\[
\begin{align*}
\text{Expected Number of SAMs shot at Suppressor Aircraft} & = \text{Fraction of FEEA Barrier Covered by SAM Sites} \\
& \times \text{Probability a SAM Site acquires a Penetrator} \\
& \times \text{Simultaneous Missile Firing Capability of the SAM Site} \\
& \times 1/4
\end{align*}
\]

where
Fraction of FEBA = \[
\frac{-(\text{number of Barrier SAM Sites})(2)(\text{SAM Site Radius})}{\text{Length of Barrier SAM Deployment}}
\]

Number of Aircraft Surviving SAM Site = Number of Aircraft that Survive to Perform SAM Suppression \times [1 - \text{Prob a SAM Kills a Supp}]

Number of Aircraft that Survive to perform SAM Suppression = \[
\frac{\text{Number of A/C} \times \text{Probability of Surviving Deployed AAA}}{\text{Allocated to Suppression}}
\]

Number of Aircraft Suppressed by Suppression A/C = \[
\frac{\text{Number of SAM Sites} \times [1 - \exp(-\text{number of suppressors})]}{\text{number of SAM Sites}}
\]

Number of Attack Aircraft Surviving SAM Fire = \[
\frac{\text{Number of Attack A/C Entering SAM Area} \times [1 - \text{Prob a SAM Kills a Attacker}]}{\text{Surviving Ground Defenses}}
\]

Expected No. of SAMs Shot = \[
\text{Expected No. of SAMs Shot at Supp A/C} \times [1 - \text{Fraction of SAM Sites Suppressed}]
\]

2. Air Defense

Defending A/C Engagement Potential = \[
\frac{\text{Number of Defending A/C} \times \text{Potential of a Defending A/C to Detect and Engage an Offensive A/C}}{\text{Defending A/C}}
\]

Number of Attackers Detected and Engaged = \[
\frac{\text{Number of Attackers Surviving Ground Defenses} \times \text{Probability an Attacker is Detected and Engaged by a Defender}}{\text{Surviving Ground Defenses}}
\]

Probability and Attacker is Detected and Engaged = \[
1 - \exp\left(-\frac{\text{Defending A/C Engagement Potential}}{\text{Number of Attackers Surviving}}\right)
\]

Prob an attacker is killed by a Defender = \[
1 - \exp\left(-\frac{\text{Defender P_k} \times \text{No. of Defenders Engaged}}{\text{Number of Attackers Engaged}}\right)
\]

Prob a Defender is killed by an Attacker = \[
1 - \exp\left(-\frac{\text{Attacker P_k} \times \text{No. of Attackers Engaged}}{\text{Number of Defenders Engaged}}\right)
\]
3. Aircraft Losses

The program uses the subroutine RANDOM to determine the number of aircraft killed given the number of aircraft engaged and the probability an aircraft is killed. RANDOM computes kills using a binomial criterion. Each encounter is treated as an independent Bernoulli trial. For each encounter a random number is drawn; if the random number is less than the P_k of the attacker, the aircraft is considered killed. Otherwise the aircraft survives but is assumed to have jettison its ordinance load. The attacking aircraft which survive the ground-to-air defenses and are not engaged by the air defenders are sent against the opposing air base or logistics system for the final computations. For the air base attack mission, base status, STAT, is reduced in the following manner:

$$\text{STAT} = \text{STAT} - \sum_{i=1}^{3} (f_i n_i)$$

where,

- $\text{STAT} = \text{base status}$
- $f_i = \text{destructive index for type i aircraft}$
- $n_i = \text{number of type i aircraft}$

The number of sorties an airbase can support is then computed:

$$\text{NSORT} = \text{MAX} \times \text{STAT}$$
where,
\[NSORT = \text{number of sorties an airbase can support} \]
\[MAX = \text{maximum number of sorties an airbase can support if fully operational} \]
\[STAT = \text{base status} \]

Interdiction sorties reduce the number of spares received by an opponent in the following manner:
\[\text{SPARES}_i = \text{SUPPLY} \times (0.995)^{\text{INTD}_i} \]

where,
\[\text{SPARES} = \text{number of spares received daily by base i} \]
\[\text{SUPPLY} = \text{maximum supply capability of the logistics network} \]
\[\text{INTD} = \text{number of effective interdiction sorties against base i} \]
\[i = 1 \text{ for Base 1} \]
\[i = 2 \text{ for Base 2} \]
\[i = 3 \text{ for Base 3} \]
\[i = 4 \text{ for Army} \]

GROUND EQUATIONS

The daily movement of the FEBA, FVEL, is expressed as a function of the effective force ratio, \(F \), in the form:
\[\text{FVEL} = \text{VMAX} \sin \left[\frac{\pi}{2} \left(\frac{F - X_1}{X_2 - X_1} \right) \right]^{2X_3} \]

where,
\[\text{VMAX} = \text{maximum velocity of the FEBA against negligible opposition} \]
\[X_1, X_2, X_3 \text{ are constants input by the analyst.} \]
(Ref 8: 11)
Figure B-1 indicates how the movement rate is affected by selection of the constants. In the present version of STAG, the value of the constants X_1, X_2, and X_3 have been adapted from the Rand model TAGS to achieve approximately the same FEBA movement in comparable situations as achieved by more detailed ground warfare models.

Daily troop casualties inflicted by CAS are a function of the number and type of aircraft involved. The total casualties per day produced by CAS sorties, C_{cas}, is given by

$$C_{\text{cas}} = M \left[1 - \exp \sum_{i=1}^{3} \left(\frac{D_i S_i}{M} \right) \right]$$

where

- $M = \text{number of enemy divisions}$
- $D_i = \text{destructive index for type } i \text{ aircraft}$
- $S_i = \text{number of successful friendly CAS sorties of type } i \text{ aircraft}$

SCORING SYSTEM

The score given to each player at the end of the game is computed using two results of the game: the cumulative FEBA movement and the aircraft exchange ratio for each side. Unless the players choose differently, the two factors are weighted equally in computing a total score:

- FEBA Movement weight is 50 percent
- Exchange Ratio weight is 50 percent
FIGURE B-1. Effect of Selected Constants on FEBA Movement Rate
The program first computes a FEBA ratio, \(FRATIO \), based on the ratio of cumulative FEBA movement to nominal FEBA movement:

\[
FRATIO = \frac{TFEBA}{NOM}
\]

where,

- \(TFEBA \) = the cumulative FEBA movement during the game
- \(NOM \) = the nominal FEBA movement listed in the program

To determine the values of the nominal FEBA movement contained in the program, the following analysis was conducted. First, the model was run with no CAS sorties allocated by either side. Table B-2 depicts the cumulative FEBA movements over a five day period under three different scenarios. The last column lists the nominal values computed using the other three.

<table>
<thead>
<tr>
<th>DAY</th>
<th>NO CAS</th>
<th>BLUE CAS</th>
<th>RED CAS</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.31</td>
<td>7.16</td>
<td>7.34</td>
<td>7.25</td>
</tr>
<tr>
<td>2</td>
<td>15.02</td>
<td>14.66</td>
<td>15.19</td>
<td>14.92</td>
</tr>
<tr>
<td>3</td>
<td>23.23</td>
<td>22.54</td>
<td>23.62</td>
<td>23.08</td>
</tr>
<tr>
<td>4</td>
<td>31.96</td>
<td>30.83</td>
<td>32.72</td>
<td>31.76</td>
</tr>
<tr>
<td>5</td>
<td>41.29</td>
<td>39.59</td>
<td>42.42</td>
<td>40.98</td>
</tr>
</tbody>
</table>

FIGURE B-2 CUMULATIVE FEBA MOVEMENT UNDER CONTROLLED SCENARIOS
The values listed under the blue and red CAS column were produced by allocating 25 percent of that side's force to the CAS mission each day and noting FEBA movement. The nominal values were computed from the following equations:

\[
\frac{\text{NOM}}{\text{BMOV}} = \frac{\text{RMOV}}{\text{NOM}} \quad \text{or,} \quad \text{NOM} = \sqrt{(\text{BMOV})(\text{RMOV})}
\]

where,

- \(\text{NOM}\) = the nominal FEBA movement
- \(\text{BMOV}\) = FEBA movement with no red CAS and a set percentage (25%) of blue's forces allocated to CAS
- \(\text{RMOV}\) = FEBA movement with no blue CAS and a set percentage (25%) of red's forces allocated to CAS

The values listed in the first column (no CAS) could not be used to compute scores for FEBA movement because the structure of the model makes it easier for blue to slow the movement of the FEBA than for red to accelerate it. Scores based on values would be based in favor of the blue side. By using nominal values as a standard of comparison, the score for FEBA movement reflects the degree to which the ground support portion of one player's strategy was superior/inferior to his opponent's.

Once the FEBA ratio has been computed, it is a simple matter to compute each player's score for the ground portion of the game:

\[
\text{RED GROUND SCORE} = \text{FRATIO} \times 50
\]

\[
\text{BLUE GROUND SCORE} = \frac{1}{\text{FRATIO}} \times 50
\]
Scores for the air portion of the game are computed using the loss ratios for each side:

\[
\begin{align*}
BRATIO &= \frac{BLOST}{BTOT} \\
RRATIO &= \frac{RLOST}{RTOT}
\end{align*}
\]

where,

\[
\begin{align*}
BRATIO, RRATIO &= \text{loss ratio for each side} \\
BLOST, RLOST &= \text{number of aircraft lost by each side} \\
BTOT, RTOT &= \text{original number of aircraft plus daily reinforcements for each side}
\end{align*}
\]

The program then computes the Echange Ratio, \(ERATIO\), defined as the blue loss rate divided by the red loss rate:

\[
ERATIO = \frac{BRATIO}{RRATIO}
\]

Exchange ratio has traditionally been used to express relative success in air-to-air combat in terms of enemy aircraft killed per friendly aircraft killed. The exchange ratio used in STAG is a slight variation on the traditional interpretation. Scores for the air portion are computed as follows:

\[
\begin{align*}
\text{RED AIR SCORE} &= ERATIO \times 50 \\
\text{BLUE AIR SCORE} &= \frac{1}{ERATIO} \times 50
\end{align*}
\]

Total scores are then computed by summing the air and ground scores.

It should be noted that the measures of merit used in this game are but two of many possibilities. Depending upon the situation and the utility of the commander, a host of
other measures would be equally valid. Examples include rate of kill, force drawdown, and enemy casualties.
Appendix C

Source Listing of Program
Glossary

The following is a list of the program's major arrays and variables and their meanings. Names followed by a $ have a dual counter part for the red side. For example, the counter part for the array BARMY is the array RARMY.

AV........Nominal cumulative daily feba movement
BA$........No. blue divisions remaining after current day's losses
BARMY(I)$..blue army array:
 1=original no. divisions
 2=current no. divisions
 3=no. spares on hand
BBASE(K)$..name of blue forces: TOT, BB1, BB2, BB3, BARMY
BFORCE(I,M,K)$..blue force array—no. of type I A/C flying mission M against target K
BFRAC(I)$..destructive index array for type I A/C on CAS
BBITORY(K)$..no. spares at each airbase I
BLOSS(I,M,K)$..blue loss array—no. of type I A/C lost flying mission M against target K
BLOST(I)$..no. blue divisions lost today
BSAM(I,K)$..blue SAM array for type I SAM with characteristic J
BSLOW$....slowdown rate for blue army
BSTAT(I)$..status of blue base I
BTYPE(I)$..blue aircraft type I
CRATIO.....current force ratio
day.........current day of the war
ENMS.......expected no. area sams shot
ENSS.......expected no. feba sams shot
FACT.......aba destructive index for red
A/C I=1,2,3—for blue A/C I=3,4
FRATIO.....force ratio at beginning of day
IBFORCE(I,M,K)$..standard input blue array
IDAY.......no. days the war will last
IWT(I)......weight of feba movement and A/C loss ratio for scoring system
C *** MISSN.....NAME OF MISSIONS ***
C *** MOST........MAXIMUM RESUPPLY RATE ARRAY I=1 ***
C *** FOR BLUE I=2 FOR RED; J=1 FOR ***
C *** AIRBASES J=2 FOR ARMY ***
C *** NADD......NUMBER A/C ADDED TO INVENTORY ***
C *** EACH DAY ***
C *** NAS(I).......NUMBER OF ATTACK SORTIES ***
C *** NBACLS$....CUMULATIVE TOTAL OF A/C LOSSES ***
C *** NBIEFS......NUMBER OF EFFECTIVE BLUE INTD ***
C *** SORTIES AGAINST ARMY ***
C *** NBIF(I)$..NUMBER OF EFFECTIVE BLUE INTD ***
C *** SORTIES AGAINST RED BASE (I) ***
C *** NBREFS.....NUMBER OF EFFECTIVE BLUE RECCE ***
C *** SORTIES AGAINST ARMY ***
C *** NBRF(I)$..NUMBER OF EFFECTIVE BLUE RECCE ***
C *** SORTIES AGAINST RED BASE (I) ***
C *** NBSORT(I)$..MAX NO. BLUE SORTIES AVAILABLE ***
C *** FROM BASE (I) ***
C *** NDS(I)....NO. DEFENSIVE SORTIES FROM BASE (I) ***
C *** NES(I)....NO. ESCORT SORTIES FROM BASE (I) ***
C *** NFEBAS.....NO. SUPPRESSION SORTIES AGAINST ***
C *** FEBA BARRIER SAMS ***
C *** NINTDS...NO. SUPPRESSION SORTIES AGAINST ***
C *** AREA DEPLOYED SAMS ***
C *** NIS(I)....NO. INTD SORTIES FROM BASE (I) ***
C *** NLOSE(I)....TOTAL NO. SORTIES LOST DUE TO BASE ***
C *** (I) DEGRADATION ***
C *** NLOST(I,K)..TOTAL NO. SORTIES OF TYPE I LOST ***
C *** FROM BASE K ***
C *** NRS(I)....NO. ESCORT SORTIES AGAINST BASE (I) ***
C *** TFEBA.....CUMULATIVE MOVEMENT OF THE FEBA ***
C

PROGRAM STAG(INPUT,OUTPUT,TAPE6=OUTPUT)
INTEGER BFORCE,RFORCE,DAY,RLOSS,BLOSS
COMMON/A/ RSAM(2,6),BSAM(2,6),RSTAT(3),BSTAT(3),DAY
COMMON/ESORT/ NBREF,NBIEF,NRREF,NRIF,TFEBA,CRATIO
COMMON/MAIN/ BFORCE,RFORCE,BLOSS,RLOSS,BRARY(3),RARMY(3),
1BA,RA
COMMON/FIN/ NBACLS,NRACLS
DIMENSION BBASE(5),RBASE(5),BTYPE(3),RTYPE(3),MISSN(9),
1BFORCE(3,9,5),RFORCE(3,9,5),IBFORCE(3,9,5),IBFORCE(3,9,5),
2ICOLB(3,7),ICOLR(3,7)
DIMENSION BITORY(3),RITORY(3),BBF(3),RRF(3),IWT(2),AVG(5)
DIMENSION BLOSS(3,9,5),RLOSS(3,9,5),NRSORT(3)
DIMENSION NBIF(3),NBRF(3),NRIF(3),NRRF(3),NBSORT(3)
data (MISSN(M),M-1,9)"TOT","ABA","RECCE","INTD","CAP",
1"CAS","AIRDEF","DEFS?","ESCORT"/
DATA BTYPE/"A10", "F4", "F111"/
DATA RTYPE/"SU7", "MIC21", "MIC23"/
DATA BLUE/"BLUE"/
DATA RED/"RED"/
DATA BSLO,RSLO/1.,1./
DATA BITORY/3*250./
DATA RITORY/3*232./
DATA NBSORT/220,220,220/
DATA NRSORT/220,220,220/
DATA BSTAT/3*1./
DATA RSTAT/3*1./
DATA AVG/7.25,14.92,23.08,31.76,40.98/
DATA IWT/2*50/
DATA BSAM/14.,10.,2.,25.,4.,5.,1.,2.,3.,8.,1.,1./
DATA RSAM/16.,12.,2.,3.,4.,6.,1.,2.,4.,10.,1.,1./
DATA BBASE/"TOT", "BB1", "BB2", "BB3", "BARMY"/
DATA RBASE/"TOT", "RBI", "RB2", "RB3", "RARMY"/
DATA((IBFORCE(I,M,K),K=-1,5),I=1,3)/128,48,32,48,0,
 110*0.5,5*1.0,19*1.0,38*3.0,5*0.0,-1.11*0.4*1.0,4*1.0,
 24*0.0,-1.0*0.0,96.0*3.0,32.0*5.0,-1.5*1.5*0.5*1.0,19*1.0/
DATA((IRFORCE(I,M,K),K=-1,5),M=1,3)/128,48,32,48,0,
 16*0.5,5*1.0,9*0.0,10*0.0,120.3*40.5*0.0,-1.11*0.4*1.0,4*1.0,
 24*0.0,11*1.0,328.2*1.0,120.5*0.0,-1.11*0.4*1.0,4*1.0,4*0.0,-1,
 310*0.0/
DATA((ICOLB(I,K),K=1,7),I=1,3)/6,2,3,5,7,8,9,2,5,6,4*0.6,
 13,5,6,7,8,9/
DATA((ICOLR(I,K),K=1,7),I=1,3)/4,3,5,6,7,0,0,4,5,6,8,9,0,
 10,2,5,6,0,0,0,0/
DATA BARMY/3.,3.,360./
DATA RARMY/9.,9.,1080./

*** SET DAY EQUAL 1 ***
DAY=1
NBACLS=0

*** SET RANDOM NUMBER GENERATOR ***
*** SEED WITH CLOCK TIME ***
NRACLS=0
CALL TIME(SEED)

1300 FORMAT(1H1,"SEED= ",A10)
WRITE(6,1300) SEED
CALL RANSET(SEED)
IFLAG=0
WRITE(6,121)

121 FORMAT(5X,"ENTER NUMBER OF DAYS THAT YOU WISH TO PLAY"
 1"(MINIMUM OF 2, MAXIMUM OF 5)..."
 READ*,IDAY

74
WRITE(6,122)
122 FORMAT(5X,"PLAYERS SCORES ARE BASED ON THE FOLLOWING ",
1 "WEIGHTS:","/15X,"FEEBA MOVEMENT...50%","/,15X,
2"A/C LOSS RATIO...50%")
52 WRITE(6,123)
123 FORMAT(5X,"DO YOU WANT DIFFERENT WEIGHT FACTORS?? TYPE ...1"
1 "FOR YES...TYPE ...0 FOR NO"
READ*,IDE"IDE
IF(IDE"IDE.EQ.0) GO TO 41
IF(IDE"IDE.EQ.1) GO TO 51
WRITE(6,25)
GO TO 52
51 WRITE(6,124)
124 FORMAT(5X,"ENTER THE WEIGHT OF FEEBA MOVEMENT (INTEGER "
1 "BETWEEN 0 AND 100)"
READ*,IWT(1)
IWT(2)=100-IWT(1)
IF(IWT(1).GE.0.AND.IWT(1).LE.100) GO TO 41
WRITE(6,26)
26 FORMAT(5X,"INPUT VALUE UNREASONABLE--TRY AGAIN"
GO TO 51
41 WRITE(6,125)
125 FORMAT(5X,"ENTER 1 FOR STANDARD FORCE INPUT","/5X,"ENTER 2"
1 "FOR FORCE INPUT BY PLAYER"
25 FORMAT(2X,"INCORRECT RESPONSE--TRY AGAIN")
C C *** CHOOSE STANDARD FORCE INPUT ***
C READ*,MODE
IF(MODE.EQ.1) GO TO 63
IF(MODE.EQ.2) GO TO 45
WRITE(6,25)
GO TO 41
C C *** READ IN STANDARD FORCE INPUTS ***
C 61 DO 70 I=1,3
 DO 70 M=1,9
 DO 10 K=1,5
 BFORTE(1,M,K)=1BFORTE(1,M,K)
 BFORTE(1,M,K)=1BFORTE(1,M,K)
 IF(I,M,K).EQ.0
 VI"="(:,M,K)=0
 END IF
 READ*(BLUE,BLUE,RTYPE,BFORTE)
 READ*(BLUE,BLUE,RTYPE,BFORTE)
 75
READ*, LETSGO
68 WRITE(6,888) BLUE
888 FORMAT(1X,"DOES ",A5," WISH TO MOVE A/C FROM ONE BASE"
 1"TO ANOTHER?? TYPE 1 FOR YES...TYPE 0 FOR NO....")
READ*, MOVE
IF(MOVE.EQ.0) GO TO 95
IF(MOVE.EQ.1) GO TO 69
WRITE(6,25)
GO TO 68

C *** INPUT BLUE PLAYERS FORCE LIST ***
C
69 CALL LOAD(BTYPE,BFORCE,BBASE,1,BLUE)
CALL STATUS(BLUE,BBASE,BTYPE,BFORCE)
GO TO 68
95 WRITE(6,888) RED

C *** DECIDE ON MOVING AIRCRAFT ***
C
READ*, MOVE
IF(MOVE.EQ.0) GO TO 65
IF(MOVE.EQ.1) GO TO 13
WRITE(6,25)
GO TO 95

C *** INPUT RED PLAYERS FORCE LIST ***
C
13 CALL LOAD(RTYPE,RFORCE,RBASE,1,RED)
CALL STATUS(RED,RBASE,RTYPE,RFORCE)
GO TO 95
45 CONTINUE

C *** INITIALIZE FORCE ARRAYS ***
C
DO 10 I=1,3
DO 10 M=1,9
DO 10 K=1,5
BFORCE(I,M,K)=0
RFORCE(I,M,K)=0
RLOSS(I,M,K)=0
BLOSS(I,M,K)=0
10 CONTINUE
DO 20 I=1,3
J=ICOLB(I,1)
DO 21 IJ=1,J
NC=ICOLB(I,1,J)
DO 22 K=1,5
22 BFORCE(I,NC,K)=1
21 CONTINUE
20 CONTINUE
BFORCE(1, 6, 1) = 0
BFORCE(2, 6, 1) = 0
BFORCE(3, 6, 1) = 0
DO 30 I = 1, 3
JR = ICLR(I, 1)
DO 31 J = 1, JR
NCR = ICLR(I, J)
DO 32 K = 1, 5
RFORCE(I, NCR, K) = -1
32 CONTINUE
30 CONTINUE
RFORCE(1, 2, 5) = -1
RFORCE(1, 6, 1) = 0
RFORCE(2, 2, 5) = -1
RFORCE(2, 5, 1) = 0
RFORCE(2, 6, 1) = 0
RFORCE(2, 7, 5) = -1
RFORCE(3, 2, 5) = -1
RFORCE(3, 5, 1) = 0
RFORCE(3, 6, 1) = 0
RFORCE(3, 7, 5) = -1
IF(IFLAG.EQ.0) WRITE(6, 700) BLUE
CALL LOAD(BTYPE, BFORCE, BBASE, IFLAG, BLUE)
IF(IFLAG.EQ.0) WRITE(6, 700) RED
CALL LOAD(RTYPE, RFORCE, RBASE, IFLAG, RED)
700 FORMAT(5X, A5, " SIDE WILL INPUT FORCE NOW")

C *** PRINT OUT AIRCRAFT BEDDOWN ***
C CALL STATUS(BLUE, BBASE, BTYPE, BFORCE)
WRITE(6, 49)
49 FORMAT(1HO,"ENTER 1 TO CONTINUE",//)
READ*, LETSGO
CALL STATUS(RED, RBASE, RTYPE, RFORCE)
GO TO 68
65 IFLAG=1
C *** ALLOCATE BLUE AND RED SORTIES ***
C CALL FRAC(BLUE, BTYPE, BFORCE, BBASE, NBSORT)
WRITE(6, 49)
READ*, LETSGO
CALL FRAC(RED, RTYPE, RFORCE, BBASE, NRSORT)
C
*** AIR BASE ATTACK SUBROUTINE ***

CALL ABA(BFORCE, RFORCE, 1, RSAM, BLUE, RLOSS, BLOSS, NBIF, NBRF)
WRITE(6, 49)
READ*, LETSGO
CALL ABA(RFORCE, BFORCE, 2, BSAM, RED, BLOSS, RLOSS, NRIF, NRRF)

*** GROUND WAR SUBROUTINE ***

CALL GNDWAR(BSLO, RSLO)

*** PRINT OUT DAILY SUMMARY ***

CALL RECAP(1, BFORCE, BLOSS, BLUE, NRIF, BA, NRIF, BSLO, BBF,
IBITORY, BTYPE, BARMY, BBASE, NBSORT)
WRITE(6, 49)
READ*, LETSGO
CALL RECAP(2, RFORCE, RLOSS, RED, NBIF, RA, NBIF, RSLO, RBF,
IBITORY, RTYPE, RARMY, RBASE, NRSORT)

*** CHECK FOR LAST DAY OF WAR ***

IF(DAY.LE.IDAY) GO TO 71

*** COMPUTE RED AND BLUE SCORES ***

HELP=TFEBA/AVG(IDAY)
HELP1=1./HELP
RGPTS=IWT(1)*HELP
BGPTS=IWT(1)*HELP1
NTRAC=560+((IDAY-1)*96)
HELP2=FLOAT(NRACL5)/FLOAT(NTRAC)
NTBAC=608+((IDAY-1)*105)
HELP3=FLOAT(NBACL5)/FLOAT(NTBAC)
HELP4=HELP3/HELP2
HELPs=1./HELP4
RAPTS=IWT(2)*HELP4
BAPTS=IWT(2)*HELP5
RSCORE=RGPTS+RAPTS
BSCORE=BGPTS+BAPTS
WRITE(6, 127)
WRITE(6, 126) IDAY, BSCORE, RSCORE
126 FORMAT(7X,"GAME OVER ON DAY ",I2," FINAL RESULTS:","
1"/,16X,"BLUE...",F6.2,/,16X,"RED....",F6.2)
127 FORMAT(1HO,50(IHX))
WRITE(6,128)
128 FORMAT(1HO,"***THANK YOU FOR PLAYING STAG!!!***")
STOP
END
*** THIS SUBROUTINE ALLOWS PLAYERS ***
*** TO INPUT THEIR OWN INITIAL FORCES ***

SUBROUTINE LOAD(TYPE, FORCE, BASE, IFLAG, SIDE)
INTEGER FORCE
DIMENSION TYPE(3), FORCE(3,9,5), BASE(5)

20 FORMAT(2X,"INPUT VALUE UNREASONABLE--TRY AGAIN")
701 FORMAT(5X,"ENTER TOTAL NO. OF ",A5,"A/C....")
702 FORMAT(2X,/,1X,"ENTER NO. OF ",A5," A/C AT ",A5","....")
703 FORMAT(2X,A5," HAS ",I4,2X,A5," A/C")
DO 50 I=1,3

*** IFLAG EQUALS 1 AFTER FIRST DAY ***

*** AFTER FIRST DAY, LOAD ALLOWS ***
*** PLAYERS TO MOVE A/C FROM ONE ***
*** BASE TO ANOTHER ***

IF(IFLAG.EQ.1) GO TO 56
WRITE(6,701) TYPE(I)
READ*, FORCE(I,1,1)
GO TO 55
56 WRITE(6,703) SIDE, FORCE(I,1,i), TYPE(I)
55 ISUM=0
DO 51 K=2,4
WRITE(6,702) TYPE(I), BASE(K)
READ*, FORCE(I,1,K)
ISUM=ISUM+FORCE(I,1,K)
IX=FORCE(I,1,1)-ISUM
IF(K.EQ.4.AND.IX.NE.0) GO TO 52
IF(IQ.GE.0) GO TO 51
52 WRITE(6,20)
GO TO 55
51 CONTINUE
50 CONTINUE
RETURN
END

*** LISTS A/C BY TYPE AND BASE FOR ***
*** EACH OF THE PLAYERS ***

SUBROUTINE STATUS(SIDE, BASE, TYPE, FORCE)
INTEGER FORCE
DIMENSION BASE(5), TYPE(3), FORCE(3,9,5)
DATA BLUE,"BLUE"/
DATA RED,"RED"/
WRITE(6,991)
991 FORMAT(1X,50(1HX))
ALLOWS PLAYERS TO ALLOCATE SORTIES BY*

TYPE A/C TO TARGETS OF THEIR CHOICE*

SUBROUTINE FRAG(SIDE, TYPE, FORCE, BASE, NSORT)
INTEGER FORCE, SUM
DIMENSION MISSN(9), TYPE(3), FORCE(3,9,5), BASE(5), NSORT(3)
DIMENSION SUM(3), NLOST(3), NLOSE(3,3), NTRY(3)
DATA MISSN/"TOT", "ABA", "RECCE", "INTD", "CAP", "CAS", "AIRDIF", "DEFSP", "ESCORT"/
WRITE(6,141) SIDE
WRITE(6,140) SIDE
141 FORMAT(5X," SORTIES WILL BE ALLOCATED NOW")
140 FORMAT(5X,"ENTER NO. OF ",A5," SORTIES BY TYPE AIRCRAFT TO "
1"EACH MISSION (AS IT IS DISPLAYED)"
WRITE(6,145)
WRITE(6,148)
WRITE(6,142)
WRITE(6,992)
992 FORMAT(IX, "---")
145 FORMAT(5X," AIRCRAFT ALLOCATED TO EACH BASE (UNDER HEADING
1"OF... TARGET) FOR AIR DEFENSE WILL BE USED TO PROTECT THAT"
2" AIRBASE FROM ATTACK.")
148 FORMAT(2X," FOR EXAMPLE, IF YOU ONLY HAVE 20 F4 A/C AT BASE"
1" 2 YOU CANNOT ALLOCATE",/," MORE THAN 20 F4 A/C TO THE"
2" AIR DEFENSE OF BASE 2."
1"AVAIL",3X,"TARGET")
M2=M3=M4=M5=0
M6=M7=M8=M9=0
NTRY(1)=NTRY(2)=NTRY(3)=0
SUM(1)=FORCE(1,1,2)+FORCE(2,1,2)+FORCE(3,1,2)
SUM(2)=FORCE(1,1,3)+FORCE(2,1,3)+FORCE(3,1,3)
SUM(3)=FORCE(1,1,4)+FORCE(2,1,4)+FORCE(3,1,4)
DO 10 1=1,3

C *** NLOST IS SORTIES LOST DUE TO DEGRDED ***
C *** BASE CAPABILITY--EITHER LOGISTICS ***
C *** SHORTAGES OR AIRBASE DAMAGE ***
C
NLOST(I)=AMINO(NSORT(I)-SUM(I),0)
IF(NLOST(I).LT.0) NLOST(I)=-NLOST(I)
DO 15 K=1,3
N=K+1
IF(SUM(I).EQ.0) SUM(I)=1
C
C *** NLOSE IS SORIES OF TYPE I LOST ***
C *** FROM BASE K ***
C
NLOSE(I,K)=NLOST(I)*FORCE(I,1,N)/SUM(I)
15 CONTINUE
10 CONTINUE
DO 20 I=1,3
DO 25 K=1,3
NTRY(I)=NTRY(I)+NLOSE(I,K)
25 CONTINUE
20 CONTINUE
DO 139 I=1,3
NAC=FORCE(I,1,1)-NTRY(I)
DO 149 M=2,9
NTOT=0
DO 159 K=1,5
IF(ABS(FORCE(I,M,K)).EQ.1) GO TO 159
144 IF(K.EQ.1) WRITE(6,143) SIDE,TYPE(I),MISSN(M),NAC,BASE(K)
IF(K.GE.2) WRITE(6,143) SIDE,TYPE(I),MISSN(M),NTOT,BASE(K)
143 FORMAT(2X,A4,6X,A5,6X,A6,6X,I3,8X,A5,"....")
READ*,FORCE(I,M,K)
IF(K.EQ.1)NTOT=FORCE(I,M,K)
C
C *** CAN'T ALLOCATE MORE THAN YOU HAVE ***
C
IF(NTOT.GT.NAC) GO TO 49
IF(M.EQ.5.OR.M.EQ.6) NAC=NAC-FORCE(I,M,K)
IF(NAC.LT.0) GO TO 39
IF(NTOT.EQ.0) GO TO 169
IF(K.GE.2) NTOT=NTOT-FORCE(I,M,K)
IF(NTOT.LT.0) GO TO 29

81
IF(FORCE(I,7,2).GT.FORCE(I,1,2)) GO TO 29
IF(FORCE(I,7,3).GT.FORCE(I,1,3)) GO TO 29
IF(FORCE(I,7,4).GT.FORCE(I,1,4)) GO TO 29
IF(NTOT.GE.0) GO TO 146
150 IF(FORCE(I,M,K).GE.0.AND.FORCE(I,M,K).LE.NAC) GO TO 146
29 PRINT 21
21 FORMAT(2X,"INPUT VALUE UNREASONABLE--TRY AGAIN")
NTOT=NTOT+FORCE(I,M,K)
GO TO 144
39 PRINT 21
NAC=NAC+FORCE(I,M,K)
GO TO 144
49 PRINT 21
GO TO 144
146 IF(K.GE.2) NAC=NAC-FORCE(I,M,K)
C
C *** M IS COUNTER ON NO. OF SORTIES ALLOCATED ***
C *** TO EACH MISSION ***
C
169 IF(M.EQ.2.AND.K.GE.2) M2=M2+FORCE(I,M,K)
IF(M.EQ.3.AND.K.GE.2) M3=M3+FORCE(I,M,K)
IF(M.EQ.4.AND.K.GE.2) M4=M4+FORCE(I,M,K)
IF(M.EQ.5) N5=N5+FORCE(I,M,K)
IF(N.EQ.6) M6=M6+FORCE(I,M,K)
IF(M.EQ.7.AND.K.GE.2) M7=M7+FORCE(I,M,K)
IF(M.EQ.8.AND.K.GE.2) M8=M8+FORCE(I,M,K)
IF(N.EQ.9.AND.K.GE.2) M9=M9+FORCE(I,M,K)
IF(NAC.EQ.0) GO TO 139
IF(NTOT.EQ.0) GO TO 149
159 CONTINUE
149 CONTINUE
139 CONTINUE
NSRT=M2+M3+M4+M5+M6+M7+M8+M9
IF(NSRT.EQ.0) GO TO 11
C
C *** P IS PERCENTAGE OF SORTIES ALLOCATED ***
C *** TO EACH MISSION ***
C
P2=FLOAT(M2)/NSRT
P3=FLOAT(M3)/NSRT
P4=FLOAT(M4)/NSRT
P5=FLOAT(M5)/NSRT
P6=FLOAT(M6)/NSRT
P7=FLOAT(M7)/NSRT
P8=FLOAT(M8)/NSRT
P9=FLOAT(M9)/NSRT
GO TO 12
11 P2=P3=P4=P5=P6=P7=P8=P9=0.
12 P9T=P2+P3+P4+P5+P6+P7+P8+P9
SAM Suppression Computes Losses To

Suppression A/C and Reduces No. of SAM Sites Available To Kill Other A/C

Subroutine SAMSUP(SAM, FORCE1, FORCE2, ALOSS, DLOSS)

```fortran
SUBROUTINE SAMSUP(SAM, FORCE1, FORCE2, ALOSS, DLOSS)
    INTEGER FORCE1, FORCE2, ALOSS, DLOSS
    COMMON/RSAM1(2,6), BSAM1(2,6), RSTAT(3), BSTAT(3)
    COMMON/RENN, ENSS
    DIMENSION FORCE1(3,9,5), FORCE2(3,9,5), SAM(2,6)
    DIMENSION ALOSS(3,9,5), IJLOSS(3,9,5)
    REAL NINTDS=0
    REAL NFEBAS=0
    DO 15 I=1,3
        IF(FORCE1(I,8,5).LE.0) GO TO 15
        NFEBAS=NFEBAS+FORCE1(I,8,5)
    CONTINUE
    REAL PSFAAA=.95
    REAL RN1=RANF(D)
    IF(RN1.GT..25) PSFAAA=.96
    IF(RN1.GT..50) PSFAAA=.97
    IF(RN1.GT..75) PSFAAA=.98
    REAL NDAC=0
    DO 18 I=1,3
        IF(FORCE2(I,5,1).LE.0) GO TO 18
        NDAC=NDAC+FORCE2(I,5,1)
    CONTINUE
    REAL DAP=.8*NDAC
    REAL PNED=EXP(-DAP/100)
    REAL NFEBAS=NFEBAS*PSFAAA
    REAL NSKFBAS=NFEBAS-NFEBAS
    REAL FRAC=1.-EXP((-SAM(1,1)*2.*SAM(1,5))/100.)
    REAL ENSS=FRAC*SAM(1,3)*SAM(1,4)*.25
    REAL NSACSF=NFEBAS*(1.-SAM(1,2))*ENSS
    REAL NSKCAP=NFEBAS-NSACSF
    IF(SAM(1,1).GT.0.) GO TO 20
    REAL NSSUPF=0
    GO TO 21
    CONTINUE
    REAL NSSUPF=SAM(1,1)*(1.-EXP((FLOAT(-NSACSF)*.25)/SAM(1,1))
    REAL NSDESF=-3*NSSUPF
```

83
*** Computes No. of SAM Sites Suppressed ***

*** These Sites are at the FEBAs ***

\[
\text{SAM}(1,6) = 1 - \left(\frac{\text{NSSUPF}}{\text{SAM}(1,1)} \right)
\]
\[
\text{SAM}(1,1) = \text{SAM}(1,1) - \text{NSDESI}
\]
\[
\text{PSIAAA} = 0.95
\]
\[
\text{RN2} = \text{RANF}(D)
\]
\[
\text{IF} (\text{RN2} \geq 0.25) \text{PSIAAA} = 0.96
\]
\[
\text{IF} (\text{RN2} \geq 0.50) \text{PSIAAA} = 0.97
\]
\[
\text{IF} (\text{RN2} \geq 0.75) \text{PSIAAA} = 0.98
\]
\[
\text{DO 19 I=1,3}
\]
\[
\text{IF} (\text{FORCEI}(1,8,1) \leq 0) \text{GO TO 19}
\]
\[
\text{NSUM} = \text{FORCEI}(1,8,1) - \text{FORCEI}(1,8,5)
\]
\[
\text{NINTDS} = \text{NINTDS} + \text{NSUM}
\]
\[
\text{19 CONTINUE}
\]
\[
\text{NINTD} = \text{NINTDS} \times \text{PSIAAA}
\]
\[
\text{NSKAAA} = \text{NINTDS} - \text{NINTD}
\]
\[
\text{FRAC} = 1.0 - \exp\left(\frac{-\text{SAM}(2,1) \times 2.0 \times \text{SAM}(2,5)}{100.0}\right)
\]
\[
\text{ENMS} = \text{FRAC} \times \text{SAM}(2,3) \times \text{SAM}(2,4) \times 0.25
\]
\[
\text{NSACSI} = \text{NINTD} \times \left(1.0 - \text{SAM}(2,2)\right) \times \text{ENMS}
\]
\[
\text{NSK} = \text{NINTD} - \text{NSACSI}
\]
\[
\text{IF} (\text{SAM}(2,1) \geq 0) \text{GO TO 30}
\]
\[
\text{NSSUPI} = 0
\]
\[
\text{GO TO 31}
\]
\[
\text{30 NSSUPI} = \text{SAM}(2,1) \times (1.0 - \exp\left(\frac{\text{FLOAT}(\text{-NSACSI}) \times 0.25)}{\text{SAM}(2,1)}\right))
\]
\[
\text{31 SDESI} = \text{FLOAT}(\text{NSSUPI}) \times 0.3
\]

*** Computes No. of SAM Sites Suppressed ***

*** These are Area Deployed SAMS ***

\[
\text{SAM}(2,6) = 1 - \left(\frac{\text{NSSUPI}}{\text{SAM}(2,1)} \right)
\]
\[
\text{SAM}(2,1) = \text{SAM}(2,1) - \text{SDESI}
\]
\[
\text{NSK} = \text{NSKFB} + \text{NSKCAP} + \text{NSKA} + \text{NSKI}
\]
\[
\text{NTOTS} = \text{NFEBAS} + \text{NINTUS}
\]
\[
\text{NSR} = \text{NTOTS} - \text{NSK}
\]
\[
\text{IF} (\text{NTOTS} \leq 0) \text{GO TO 173}
\]
\[
\text{RATIO} = \frac{\text{FLOAT}(\text{FORCEI}(1,8,1))}{\text{FLOAT}(\text{NTOTS})}
\]
\[
\text{IF} = \text{NSK}
\]

*** Updates Loss Arrays with No. A/C Killed ***

*** Losses Distributed in Proportion to No. ***

*** Of Type A/C Performing Mission ***

\[
\text{DO 170 I=1,JF}
\]
\[
\text{RN3} = \text{RANF}(D)
\]
\[
\text{IF} (\text{RN3} \geq \text{RATIO}) \text{GO TO 171}
\]
\[
\text{ALOSS}(1,8,1) = \text{ALOSS}(1,8,1) + 1
\]
\[
\text{GO TO 170}
\]
\[
\text{171 RATION} = \frac{\text{FLOAT}(\text{FORCEI}(1,8,1) + \text{FORCEI}(2,8,1))}{\text{FLOAT}(\text{NTOTS})}
\]

84
IF(RN3.GT.RATIO3) GO TO 172
ALOSS(2,8,1)=ALOSS(2,8,1)+1
GO TO 170
172 ALOSS(3,8,1)=ALOSS(3,8,1)+1
170 CONTINUE
173 WRITE(6,180)
WRITE(6,182)
180 FORMAT(1X,3(1IX))
182 FORMAT(1H0,-"SAM SUPPRESSION MISSION")
WRITE(6,181) NTOTS,NSK,NSR
181 FORMAT(1X,"TOTAL A/C ALLOCATED...",13/,' A/C LOST...")
1".............",13," A/C REMAINING............",13/)
RETURN
END

ABA COMPUTES DAMAGE TO AIRBASES AND LOSSES
DUE TO SAMS, AAA, AND AIR DEFENSE

SUBROUTINE ABA(ATTACK, DEFEND, NCHECK, SAM, SIDE, DLOSS, ALOSS, INIF, NRF)
INTEGER ATTACK, DEFEND, DLOSS, ALOSS
COMMON/A/ RSAM(2,6), BSAM(2,6), RSTAT(3), BSTAT(3)
COMMON/B/ ENSS, ENMS
DIMENSION ATTACK(3,9,5), DEFEND(3,9,5), NAS(3), NDS(3), NES(3),
1SAM(2,6), DLOSS(3,9,5), ALOSS(3,9,5), PK(2,2), NASSA(3),
2NESSA(3), NASS(3), NASSS(3), NASSS(3), NEK(3), NAK(3), NDK(3),
3NAS(3), NASS(3), NEFF(3), NREFF(3), RAKF(3), BAKF(3)
DIMENSION FACT(5), NIS(3), NSW(3), NIK(3), NRF(3),
2NF(3), NASSA(3), NASS(3), NASS(3), NES(3), NES(3), NES(3),
3NES(3), NES(3), NES(3), NES(3)
DATA PK/1.,1,1,1,1/ DATA FACT/.0015,.002,.002,.003/.003/.003/.003/
WRITE(6,175)
WRITE(6,176)
WRITE(6,150) SIDE
WRITE(6,176)
WRITE(6,175)

SAM SUPPRESSION RESULTS COMPUTED HERE

IF(NCHECK.EQ.1) CALL SANNISUP(RSAM, ATTACK, DEFEND, ALOSS, DLOSS)
IF(NCHECK.EQ.2) CALL SANNISUP(BSAM, ATTACK, DEFEND, ALOSS, DLOSS)
IA=1
ID=2
IF(NCHECK.EQ.2) IA=2
IF(NCHECK.EQ.2) ID=1
NAS(1)=NAS(2)=NAS(3)=0
NES(1)=NES(2)=NES(3)=0
NDS(1)=NDS(2)=NDS(3)=0
NIS(1)=NIS(2)=NIS(3)=0

85
NRS(1)=NRS(2)=NRS(3)=0
NIF(1)=NIF(2)=NIF(3)=0
NRF(1)=NRF(2)=NRF(3)=0

*** COMPUTES NO. A/C BY TYPE I ATTACKING ***
*** TARGET K ***
*** ALSO COMPUTES NO. OF ESCORT, RECCE, ***
*** INTERDICTION, AND DEFENSIVE SORTIES HERE ***

DO 110 K=1,3
 J=K+1
 DO 115 I=1,3
 IF(ATTACK(I,2,J).GT.0) NAS(K)=NAS(K)+ATTACK(I,2,J)
 IF(ATTACK(I,9,J).GT.0) NES(K)=NES(K)+ATTACK(I,9,J)
 IF(DEFEND(I,7,J).GT.0) NIDS(K)=NIDS(K)+DEFEND(I,7,J)
 IF(ATTACK(I,4,J).GT.0) NIS(K)=NIS(K)+ATTACK(I,4,J)
 IF(ATTACK(I,3,J).GT.0) NRS(K)=NRS(K)+ATTACK(I,3,J)
 115 CONTINUE
110 CONTINUE

175 FORMAT(23X,"****************************")
176 FORMAT(23X,"**",20X,"*")
150 FORMAT(23X,"**",2X,A4," AIR RESULTS",2X,"**")
WRITE(6,151)
 DO 120 J=1,3
 PROB=.95
 RN1=RANF(D)
 IF(RN1.GT..25) PROB=.96
 IF(RN1.GT..50) PROB=.97
 IF(RN1.GT..75) PROB=.98
 120 CONTINUE

*** LOSSES DUE TO AAA ***

NASSA(J)=NAS(J)*PROB
NESSA(J)=NES(J)*PROB
NISA=NIS(J)*PROB
NRSSA=NRS(J)*PROB
NAMIA=NAS(J)-NASSA(J)
NEKAAA=NES(J)-NESSA(J)
NIAAA=NIS(J)-NISA
NRKAAA=NRS(J)-NRSSA
ENSA=ENSA*2.*SAM(1,6)
ENMA=ENMA*2.*SAM(2,6)

*** LOSSES DUE TO SAMS ***

NASSS(J)=NASS(J)*(1.-SAM(1,2))**ENSA
NASS(J)=NASSS(J)*(1.-SAM(2,2))**ENMA
NESSS(J) = NESSA(J) * (1. - SAM(1,2)) ** ENSA
NESS(J) = NESSS(J) * (1. - SAM(2,2)) ** ENMA
NISSS = NISSA * (1. - SAM(1,2)) ** ENSA
NISS = NISSS * (1. - SAM(2,2)) ** ENMA
NRSSS = NRSSA * (1. - SAM(1,2)) ** ENSA
NRSS = NRSSS * (1. - SAM(2,2)) ** ENMA
NAKSAM = NASSA(J) - NASS(J)
NEKSAM = NESSA(J) - NESS(J)
NIKSAM = NISSA - NISS
NRKSAM = NRSSA - NRSS
IF (NESS(J).LE.0) GO TO 99
ND = AMINO(NESS(J), NDS(J))
IF (ND.LE.0) GO TO 99

C

*** COMPUTE ESCORT LOSSES TO AIR DEFENSE ***
*** COMPUTE DEFENDER LOSSES TO ESCORTS ***

C

FRAC = NESS(J) / ND
PEK = 1. - (1. - PK(ID,2)) ** FRAC
PDF = 1. - (1. - PK(ID,2)) ** (1. / FRAC)
CALL RANDOM(NESS(J), PEK, NEKA(J))
NEK(J) = NEKA(J) + NEKAAA + NEKSAM
CALL RANDOM(ND, PDF, NDKE)
NDSE = AMAX0(0, NDS(J) - ND)
GO TO 100

99 NEKA(J) = 0

C

*** COMPUTE ATTACKER LOSSES TO AIR DEFENSE ***
*** COMPUTE DEFENDER LOSSES TO ATTACKERS ***

C

NEK(J) = NEKA(J) + NEKAAA + NEKSAM
NDKE = 0
NDSE = NDS(J)
100 DEP = FLOAT(NDSE) * .6
DEP = AMAX1(0.0, DEP)
IF (NASS(J).GT.0) GO TO 60
PADE = 0.
NADE = 0
PAK = 0.
GO TO 61

60 PADE = 1. - EXP(-DEP / FLOAT(NASS(J)))
NADE = FLOAT(NASS(J)) * PADE
IF (NADE.GT.0) GO TO 62
PAK = 0.
GO TO 61

62 PAK = 1. - EXP((-PK(ID,2) * DEP) / NADE)
61 CALL RANDOM(NADE, PAK, NAKA(J))
NAK(J) = NAKA(J) + NAKAAA + NAKSAM
IF (DEP.GT.0.) GO TO 70
PDK=0.
GO TO 71

70 PDK=1.-EXP((-PK(IA,1)*NADE)/DEP)
71 NEP=DEP
 CALL RANDOM(NEP,PDK,NDEK)
 IF(NISS.GT.0) GO TO 300
 NIDE=0
 PIDE=0.
 PIK=0.
 GO TO 301

C C *** COMPUTE INTD LOSSES TO AIR DEFENSE ***
C C *** COMPUTE DEFENDER LOSSES TO INTD ***
C
300 PIDE=1.-EXP((-.9*DEP)/FLOAT(NISS))
 NIDE=FLOAT(NISS)*PIDE
 PIK=1.-EXP((-PK(ID,2)*DEP*.9)/NISS)
301 CALL RANDOM(NIDE,PIK,NIKA(J))
 NIK(J)=NIKA(J)+NIKAAA+NIKSAM
 NIF(J)=NIS(J)-NIKAAA-NIKSAM-NIDE
 IF(DEP.GT.0) GO TO 310
 PDK=0.
 GO TO 311

C C *** COMPUTE RECCE LOSSES TO AIR DEFENSE ***
C
310 PDK=1.-EXP((-PK(IA,1)*NIDE)/(.9*DEP))
311 NEP=9*DEP
 CALL RANDOM(NEP,PDK,NDEK)
 NDEK(J)=NDEK+NDEK+NDEK
 IF(NRSS.GT.0) GO TO 400
 NRDE=0
 PRDE=0.
 PK=0.
 GO TO 401

400 PRDE=1.-EXP((-.7*DEP)/FLOAT(NRSS))
 NRDE=FLOAT(NRSS)*PRDE
 PK=1.-EXP((-PK(ID,2)*DEP*.7)/NRSS)
401 CALL RANDOM(NRDE,PRK,NRKA(J))
 NRK(J)=NRKA(J)+NRKAAA+NRKSAM
 NRF(J)=NRS(J)-NRKAAA-NRKSAM-NRDE
 JX=J+1
 IF(NDS(J).LE.0) GO TO 80
 RATIO=FLOAT(DEFEND(2,7,JX))/FLOAT(NDS(J))
 JD=NDK(J)

C C *** UPDATE DEFENDERS LOSS ARRAY ***
C
DO 130 I=1,JD

88
STAG: A TWO PERSON SIMULATED TACTICAL AIR WAR GAME. (U)
MAR 80 J M FOLEY
UNCLASSIFIED AFIT/GST/OS/80M-2
RN2=RNF(D)
IF(RN2.GT.RATIO) GO TO 131
DLOSS(2,7,JX)=DLOSS(2,7,JX)+1
GO TO 130
131 DLOSS(3,7,JX)=DLOSS(3,7,JX)+1
130 CONTINUE
80 JY=J+1
IF(NAS(J).LE.0) GO TO 90
RATIO=FLOAT(ATTACK(2,2,JY))/FLOAT(NAS(J))
JE=NAK(J)
C
*** UPDATE ATTACKERS LOSS ARRAY ***
C
DO 140 I=1,JE
RN3=RNF(D)
IF(RN3.GT.RATIO) GO TO 141
ALOSS(2,2,JY)=ALOSS(2,2,JY)+1
GO TO 140
141 RATION=FLOAT(ATTACK(3,2,JY)+ATTACK(2,2,JY))/FLOAT(NAS(J))
IF(RN3.GT.RATION) GO TO 142
ALOSS(3,2,JY)=ALOSS(3,2,JY)+1
GO TO 140
142 ALOSS(1,2,JY)=ALOSS(1,2,JY)+1
140 CONTINUE
90 JZ=J+1
IF(NES(J).LE.0) GO TO 500
RATIO=FLOAT(ATTACK(1,9,JZ))/FLOAT(NES(J))
JE=NEK(J)
C
*** UPDATE ESCORT'S LOSS ARRAY ***
C
DO 160 I=1,JF
RN4=RNF(D)
IF(RN4.GT.RATIO) GO TO 161
ALOSS(1,9,JZ)=ALOSS(1,9,JZ)+1
GO TO 160
161 RATION=FLOAT(ATTACK(1,9,JZ)+ATTACK(2,9,JZ))/FLOAT(NES(J))
IF(RN4.GT.RATION) GO TO 162
ALOSS(2,9,JZ)=ALOSS(2,9,JZ)+1
GO TO 160
162 ALOSS(3,9,JZ)=ALOSS(3,9,JZ)+1
160 CONTINUE
109 JA=J+1
IF(NIS(J).LE.0) GO TO 500
RATIO=FLOAT(ATTACK(1,4,JA))/FLOAT(NIS(J))
JE=NIK(J)
C
*** UPDATE INTD LOSS ARRAY ***
C
DO 501 I=1, JM
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 502
ALOSS(1,4,JA)=ALOSS(1,4,JA)+1
GO TO 501
502 RATIO2=FLOAT(ATTACK(1,4,JA)+ATTACK(2,4,JA))/FLOAT(NIS(J))
IF(RN.GT.RATIO2) GO TO 503
ALOSS(2,4,JA)=ALOSS(2,4,JA)+1
GO TO 501
503 ALOSS(3,4,JA)=ALOSS(3,4,JA)+1
501 CONTINUE
500 IF(NRS(J).LE.0) GO TO 600
RATIO=FLOAT(ATTACK(2,3,JA))/FLOAT(NRS(J))
JN=NRK(J)
C C UPDATE RECCE LOSS ARRAY ***
C DO 601 I=1, JN
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 602
ALOSS(2,3,JA)=ALOSS(2,3,JA)+1
GO TO 601
602 ALOSS(3,3,JA)=ALOSS(3,3,JA)+1
601 CONTINUE
C C *** PRINT OUT AIRBASE ATTACK RESULTS ***
C 600 N1=NAKAAA+NAKSAM
N2=NIKAAA+NIKSAM
N3=NRKAAA+NIRKSAM
N4=NEKAAA+NEKSAM
WRITE(6,152) J
152 FORMAT(2X, "TARGET--AIRBASE NO.",12)
NAR=NAS(J)-NAK(J)
WRITE(6,153) NAS(J),N1,NAKA(J),NAR
153 FORMAT(1HO,IOX,"TARGET",8X,14,10X,14,7X,14,7X,14)
NRR=NRS(J)-NRK(J)
WRITE(6,154) NRS(J),N3,NRKA(J),NRR
154 FORMAT(1HO,10X,"INTDEN",8X,14,10X,14,7X,14,7X,14)
NER=NES(J)-NEK(J)
WRITE(6,155) NES(J),N4,NEKA(J),NER
155 FORMAT(1HO,10X,"ESCORT",8X,14,10X,14,7X,14,7X,14)
IF(NCHECK.EQ.1) NBEFF(J)=NAS(J)-NAKAAA-NAKSAM-NADE
IF(NCHECK.EQ.2) NBEFF(J)=NAS(J)-NAKAAA-NAKSAM-NADE
IF(NAS(J).LE.0) GO TO 119
JA=J+1
IF(NCIECK.EQ.1) GO TO 860
SUM1=(ATTACK(1,2,JA)*FACT(1))+(ATTACK(2,2,JA)*FACT(2))
1+(ATTACK(3,2,JA)*FACT(3))
RAF(J)=(SUM1*NREFF(J))/NAS(J)
BSTAT(J)=BSTAT(J)-RAF(J)
IF(NRR.GT.0) WRITE(6,156) BSTAT(J)
IF(NRR.LE.0) WRITE(6,157)
GO TO 120
860 SUM2=(ATTACK(2,2,JA)*FACT(4))+(ATTACK(3,2,JA)*FACT(5))
BAKF(J)=(SUM2*NREFF(J))/NAS(J)
RSTAT(J)=RSTAT(J)-BAKF(J)
IF(NRR.GT.0) WRITE(6,156) RSTAT(J)
IF(NRR.LE.0) WRITE(6,157)
156 FORMAT(5X,"TARGET STATUS IS ",F6.3)
157 FORMAT(5X,"NO INFO ON THIS TARGET")
GO TO 120
119 WRITE(6,157)
120 CONTINUE
RETURN
END
C
*GIVEN THE NO. A/C AT RISK AND *
*THEIR PK, RANDOM DETERMINES NO. A/C KILLED *
SUBROUTINE RANDOM(N,PROB,NK)
NK=0
IF(N.LE.0) GO TO 200
DO 199 I=1,N
RN=RANF(D)
IF(RN.GT.PROB) GO TO 199
NK+1
199 CONTINUE
200 RETURN
END
C
* GNDWAR COMPUTES DAILY FEBA MOVEMENT, *
* LOSSES DUE TO GROUND FORCES, CAS SORTIES, *
* CAP SORTIES, AND SLOW DOWN FACTOR DUE TO *
* LOGISTICS SHORTAGES *
SUBROUTINE GNDWAR(RSLOW,RSLW)
INTEGER BFORCE,RFORCE,BLOSS,BLOSS,DAY
COMMON/A/ RSAI(2,6),BSAM(2,6),BSTAT(3),RSTAT(3),DAY
COMMON/ESORT/ NREF,RREF,BREF,TREF,TFEBA,CRATIO
COMMON/MAIN/ BFORCE(3,9,5),RFORCE(3,9,5),BLOSS(3,9,5),
BLOSS(3,9,5),BARMY(3),RARMY(3),DA,RA
DIMENSION NBCAS(3),NRCAS(3),NBSS(3),NRSS(3),NRKAAA(3),
NRKAAA(3),NRSS(3),NRKKS(3),NRKKS(3),NRKAM(2),
ZCAPET(3),NCAS(3),BCAS(3),JCSS(3),RCAS(3),BFRA(3),RFRAC(3)
DATA CAPEP/.8,.7,.8/
DATA BFRAC/.0003,.00015,.0003/
DATA RFRAC/.00015,.0001,.00015/

*** INITIALIZE VARIABLES ***

NBCAS(1)=NBCAS(2)=NBCAS(3)=0
NRCAS(1)=NRCAS(2)=NRCAS(3)=0
BSUM=RSUM=YSUM=ZSUM=0.
NBREC=NBITD=NBES=0
NRREC=NRTID=NRES=0
VMAX=30.
X1=-0.75
X2=8.75
X3=1.3
IF(DAY.EQ.1) TFEBA=0.

*** COMPUTE NO.CAS,CAP,ESCORT,RECCE,AND INTD ***

*** SORTIES FOR BLUE AND RED ***

DO 110 I=1,3
IF(BFORCE(I,6,1).GT.0) NBCAS(I)=NBCAS(I)+BFORCE(I,6,1)
IF(RFORCE(I,6,1).GT.0) NRCAS(I)=NRCAS(I)+RFORCE(I,6,1)
IF(BFORCE(I,9,5).GT.0) NBES=NBES+BFORCE(I,9,5)
IF(BFORCE(I,3,5).GT.0) NBREC=NBREC+BFORCE(I,3,5)
IF(RFORCE(I,9,5).GT.0) NRES=NRES+RFORCE(I,9,5)
IF(RFORCE(I,3,5).GT.0) NRREC=NRREC+RFORCE(I,3,5)
IF(RFORCE(I,4,5).GT.0) NRITD=NRITD+RFORCE(I,4,5)

*** COMPUTE LOSSES TO AAA ***

NBSAAA(I)=NBCAS(I)*.97
NBKAAA(I)=NBCAS(I)-NBSAAA(I)
BLOSS(I,6,1)=BLOSS(I,6,1)+NBKAAA(I)
NRSAAA(I)=NRCAS(I)*.97
NRKAAA(I)=NRCAS(I)-NRSAAA(I)
RLOSS(I,6,1)=RLOSS(I,6,1)+NRKAAA(I)

*** COMPUTE LOSSES TO SAMS ***

FRAC=1.-EXP((-RSAM(1,1)*2.*RSAM(1,5))/100.)
ENS=FRAC*RSAM(1,3)*RSAM(1,4)*.5*RSAM(1,6)
NBSS(I)=NBSAAA(I)*(1.-RSAM(1,2))**ENS
NBKS(I)=NBSAAA(I)-NBSS(I)
BLOSS(I,6,1)=BLOSS(I,6,1)+NBKS(I)
FRAC=1.-EXP((-BSAM(1,1)*2.*BSAM(1,5))/100.)
ENS=FRAC*BSAM(1,3)*BSAM(1,4)*.5*BSAM(1,6)
NRSS(I)=NRSAAA(I)*(1.-BSAM(1,2))**ENS

92
NRKS(I) = NRSAAA(I) - NRSS(I)
RLOSS(I,6,1) = RLOSS(I,6,1) + NRKS(I)
110 CONTINUE

*** COMPUTE LOSSES TO AAA ***

NBRSA = NBREC* .98
NBISA = NBITD* .98
NRRSA = NRRREC* .98
NRISA = NRITD* .98
NBESSA = NBES* .98
NRESSA = NRES* .98

*** COMPUTE LOSSES TO SAMS ***

NBRSS = NBRSA*(1. - RSAM(1,2))**ENS
NBISS = NBISA*(1. - RSAM(1,2))**ENS
NBESSS = NBESSA*(1. - RSAM(1,2))**ENS
NRRSS = NRRSA*(1. - BSAM(1,2))**ENSR
NRISS = NRISA*(1. - BSAM(1,2))**ENSR
NRESSS = NRESSA*(1. - BSAM(1,2))**ENSR
NBCAP = BFORCE(2,5,1) - BLOSS(2,5,1)
DO 200 I = 2, 3
J = I - 1
IF(RFORCE(I,5,1).LE.0) GO TO 201
NRCAP(J) = RFORCE(I,5,1) - RLOSS(I,5,1)
GO TO 200
201 NRCAP(J) = 0
GO TO 202

*** BLUE CAS KILLED BY CAP ***

599 PD = 1. - EXP(-REP/BCASEP)
ND = BCASEP*PD
PCASK = 1. - EXP((- .2*REP)/BCASEP)
CALL RANDOM(ND, PCASK, NBCASK)
202 NBTOT = NBSS(1) + NBSS(2) + NBSS(3)
IF(NBTOT.LE.0) GO TO 13
RATIO = FLOAT(NBSS(1))/FLOAT(NBTOT)
JF = NBCASK
*** UPDATE BLUE LOSS ARRAY ***

DO 400 I=1,JF
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 401
BLOSS(1,6,1)=BLOSS(1,6,1)+1
GO TO 400

401 RATIO=FLOAT(NBSS(1)+NBSS(2))/FLOAT(NBTOT)
IF(RN.GT.RATIO) GO TO 402
BLOSS(2,6,1)=BLOSS(2,6,1)+1
GO TO 400

402 BLOSS(3,6,1)=BLOSS(3,6,1)+1
400 CONTINUE

13 NDR=AMINO(NBESSS,NRCAP)
IF(NDR.LE.0) GO TO 11
CALL RANDOM(NDR,.2,NRKE)
NRD1=NTOT-NDR
CALL RANDOM(NRD1,.1,NRKI)
GO TO 12

11 NRKE=0
NRKI=0

12 IF(NBESSS.LE.0) GO TO 10

CALL RANDOM(NBESSS,.15,NBEK)
CALL RANDOM(NBRSS,.1,NBRK)
CALL RANDOM(NBISS,.1,NBIK)
GO TO 15

10 NBEK=0
CALL RANDOM(NBRSS,.15,NBRK)
CALL RANDOM(NBISS,.2,NBIK)

15 NBEK=NBEK+(NBES-NBESSS)
NBRK=NBRK+(NBREC-NBRSS)
NBIK=NBIK+(NBITD-NBISS)
NBREF=.5*(NBREC-NBRF)
NBIEF=.5*(NBITD-NBIK)
BLOSS(2,9,5)=NBEK
BLOSS(2,3,5)=NBRK
IF(NBITD.LE.0) GO TO 22
RATIO=FLOAT(BFORCE(1,4,5))/FLOAT(NBITD)
JA=NBIK

*** UPDATE BLUE ESCORT, INTD, AND RECCE KILLED ***

CALL RANDOM(NBESSS,.15,NBEK)
CALL RANDOM(NBRSS,.1,NBRK)
CALL RANDOM(NBISS,.1,NBIK)
GO TO 15

10 NBEK=0
CALL RANDOM(NBRSS,.15,NBRK)
CALL RANDOM(NBISS,.2,NBIK)

15 NBEK=NBEK+(NBES-NBESSS)
NBRK=NBRK+(NBREC-NBRSS)
NBIK=NBIK+(NBITD-NBISS)
NBREF=.5*(NBREC-NBRF)
NBIEF=.5*(NBITD-NBIK)
BLOSS(2,9,5)=NBEK
BLOSS(2,3,5)=NBRK
IF(NBITD.LE.0) GO TO 22
RATIO=FLOAT(BFORCE(1,4,5))/FLOAT(NBITD)
JA=NBIK

*** UPDATE BLUE LOSS ARRAYS ***

DO 25 I=1,JA
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 26
BLOSS(2, 4, 5) = BLOSS(2, 4, 5) + 1

GO TO 25

26 RATIO1 = FLOAT(BFORCE(1, 4, 5) + BFORCE(2, 4, 5)) / FLOAT(NBITD)
 IF(RN.GT.RATIO1) GO TO 27
 BLOSS(2, 4, 5) = BLOSS(2, 4, 5) + 1
 GO TO 25

27 BLOSS(3, 4, 5) = BLOSS(3, 4, 5) + 1

CONTINUE

22 NBD = AMINO(NRESSS, NBCAP)
 IF(NBD.LE.0) GO TO 21
 CALL RANDOM(NBD,.15,NBKE)
 NBD1 = NBCAP - NBD
 CALL RANDOM(NBD1,.1,NBK1)
 GO TO 20

21 NBKE = 0
 NBKI = 0

20 IF(NRESSS.LE.0) GO TO 30

C
C *** RED ESCORT, INTD, AND RECCE KILLED ***
C *** BY BLUE CAP ***
C
 CALL RANDOM(NRESSS,.15,NREK)
 CALL RANDOM(NRRSS,.1,NRRK)
 CALL RANDOM(NRISS,.1,NRIK)
 GO TO 35

30 NREK = 0
 CALL RANDOM(NRESSS,.15,NREK)
 CALL RANDOM(NRISS,.1,NRIK)

35 NREK = NREK + (NRES - NRESS)
 NRRK = NRRK + (NREC - NRESS)
 NRIK = NRIK + (NRITD - NRISS)
 NRREF = .5*(NRREC - NRRK)
 NRRIEF = .5*(NRITD - NRIK)
 IF(NRITD.LE.0) GO TO 40
 RATIO = FLOAT(RFORCE(1, 4, 5))/FLOAT(NRITD)
 JB = NRIK

C
C *** UPDATE RED LOSS ARRAYS ***
C
 DO 41 I = 1, JB
 RN = RANF(D)
 IF(RN.GT.RATIO) GO TO 42
 RLOSS(1, 4, 5) = RLOSS(1, 4, 5) + 1
 GO TO 41

42 RATIO2 = FLOAT(RFORCE(1, 4, 5) + RFORCE(2, 4, 5))/FLOAT(NRITD)
 IF(RN.GT.RATIO2) GO TO 43
 RLOSS(2, 4, 5) = RLOSS(2, 4, 5) + 1
 GO TO 41

43 RLOSS(3, 4, 5) = RLOSS(3, 4, 5) + 1

95
CONTINUE

IF(NRES.LE.0) GO TO 50
RATIO=FLOAT(RFORCE(1,9,5))/FLOAT(NRES)
JC=NREK
DO 51 I=1,JC
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 52
RLOSS(1,9,5)=RLOSS(1,9,5)+1
GO TO 51
52 RLOSS(3,9,5)=RLOSS(3,9,5)+1
51 CONTINUE

IF(NRREC.LE.0) GO TO 60
RATIO=FLOAT(RFORCE(2,3,5))/FLOAT(NRREC)
JD=NRRK
DO 61 I=1,JD
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 62
RLOSS(2,3,5)=RLOSS(2,3,5)+1
GO TO 61
62 RLOSS(3,3,5)=RLOSS(3,3,5)+1
61 CONTINUE

IF(REP.LE.0) GO TO 598
PRK=1.-EXP(2ND)/REP)
NEP=REP

*** COMPUTE RED CAP KILLED ***

CALL RANDOM(NEP,PRK,NRCAPK)
RATIO=FLOAT(NRCAP(1))/FLOAT(NTOT)
JM=NRCAPK+NRKE+NRKI
DO 500 I=1,JM
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 501
RLOSS(2,5,1)=RLOSS(2,5,1)+1
GO TO 500
501 RLOSS(3,5,1)=RLOSS(3,5,1)+1
500 CONTINUE
GO TO 590

IF(RCASEP.LE.0) GO TO 622
PD=1.-EXP(-BEP/RCASEP)
NRD=RCASEP*PD
PCASK=1.-EXP(-.25*BEP)/RCASEP)
CALL RANDOM(NRD,PCASK,NRCASK)
NRTOT=NRSS(1)+NRSS(2)+NRSS(3)
RATIO=FLOAT(NRSS(1))/FLOAT(NRTOT)
JN=NRCASK
DO 600 I=1,JN
RN=RANF(D)
IF(RN.GT.RATIO) GO TO 601
RLOSS(1,6,1)=RLOSS(1,6,1)+1
GO TO 600

601 RATIOM=FLOAT(NRSS(1)+NRSS(2))/FLOAT(NRTOT)
IF(RN.GT.RATIOM) GO TO 602
RLOSS(2,6,1)=RLOSS(2,6,1)+1
GO TO 600

602 RLOSS(3,6,1)=RLOSS(3,6,1)+1
600 CONTINUE
GO TO 624

622 NRCASK=0
NRD=0
624 IF(BEP.LE.O) GO TO 623
PBK=1.-EXP((-.2*NRIW)/BEP)
NEP=BEP

*** COMPUTE BLUE CAP KILLED ***

CALL RANDOM(NEP, PBK, NBCAPK)
BLOSS(2,5,1)=BLOSS(2,5,1)+(NBCAPK+NBKE+NBKI)
GO TO 699

623 NBCAPK=0

699 DO 700 I=1,3
NCAS(I)=NBCAS(I)-BLOSS(I,6,1)
RCAS(I)=FLOAT(NCAS(I))*BFRAC(I)
BSUM=BSUM+BCAS(I)
JCAS(I)=NRCAS(I)-RLOSS(I,6,1)
RSUM=RSUM+RCAS(I)

700 CONTINUE

*** COMPUTE FORCE RATIO ***

FRATIO=(RARMY(2)*RSLW+RSLL)/(BARMY(2)*BSLOW+BSLM)
VAR=SIN(1.5708*((FRATIO-X1)/(X2-X1)))
VEL=VAR**2.*X3

*** COMPUTE DAILY FEEBA MOVEMENT ***

FEEBA=VMAX*VEL

*** COMPUTE TOTAL FEEBA MOVEMENT ***

TFEEBA=TFEEBA+FEEBA
RCASUI=1.-EXP(-BSUM/RARMY(2))
RCASU2=RARMY(2)*RCASUI

*** RED ARMY CASUALTIES ***
RCASU3=2.75- (.25*FRATIO)
RCASU4=RCASU3/100.
RCASU5=ARMY(2)*RCASU4
BCASU1=1-EXP(-RSUM/ARMY(2))
BCASU2=ARMY(2)*BCASU1

*** BLUE ARMY CASUALTIES ***

BCASU3=1.5*FRATIO+ .5
BCASU4=BCASU3/100.
BCASU5=ARMY(2)*BCASU4
TRATIO=ARMY(2)/ARMY(2)
BLOST=BCASU2+BCASU5
RLOST=RCASU2+RCASU5
BA=ARMY(2)-BLOST
RA=ARMY(2)-RLOST

*** CURRENT FORCE RATIO ***

CRATIO=RA/BA
NBCR=NBCAP-NBCAPK
NRCR=NTOT-NRCAPK
NTBCAS=0
NTRCAS=0
DO 900 1=1,3
NTBCAS=NTBCAS+NBCAS(I)
NTRCAS=NTRCAS+NRCAS(I)
900 CONTINUE

*** NO. OF EACH TYPE REMAINING ***

NRTOT=NRSS(1)+NRSS(2)+NRSS(3)
NBTOT=NBSS(1)+NBSS(2)+NBSS(3)
NBKILL=NTBCAS-NBTOT+NBCASK
NBREM=NTBCAS-NBKILL
NRKILL=NTRCAS-NTOT+NRCASK
NRREM=NTRCAS-NRKILL
NB1=NBES-NBEK
NB2=NBREC-NBRK
NB3=NBTD-NBK
NR1=NRES-NREK
NR2=NRREC-NRRK
NR3=NRTD-NRIK

*** PRINT OUT RESULTS ***

WRITE(6,800)
WRITE(6,801)
WRITE(6,802)
WRITE(6,803) DAY
WRITE(6,801)
WRITE(6,800)
WRITE(6,804)
WRITE(6,805) BARMY(2), RARMY(2)
WRITE(6,806) BLOST, RLOST
WRITE(6,807) BA, KA
WRITE(6,808) TRATIO
WRITE(6,809) CRATIO
WRITE(6,815) FEBA
WRITE(6,816) TFEBA
WRITE(6,810)
WRITE(6,49)
49 FORMAT(110,"ENTER 1 TO CONTINUE",/,,)
READ*, LETSGO
WRITE(6,811) NSCAP, NBCAPK, NBCR
WRITE(6,812) NTBCAS, NBKILL, NBREM
WRITE(6,817) NBES, NBEK, NB1
WRITE(6,818) NBREC, NBRK, NB2
WRITE(6,819) NBITD, NBIK, NB3
IF(NBREF.GT.0) WRITE(6,823) RSLOW
IF(NBREF.LE.0) WRITE(6,824)
WRITE(6,49)
READ*, LETSGO
WRITE(6,813) NTOT, NRCAPK, NRCR
WRITE(6,814) NTRCAS, NRKILL, NRREM
WRITE(6,820) NRKES, NREK, NR1
WRITE(6,821) NRREC, NRRK, NR2
WRITE(6,822) NRITD, NRIK, NR3
IF(NRREF.GT.0) WRITE(6,823) RSLOW
IF(NRREF.LE.0) WRITE(6,824)
WRITE(6,49)
800 FORMAT(23X,"***********")
801 FORMAT(23X,"**",25X,"**")
802 FORMAT(23X,"**","GROUND BATTLE RESULTS",2X,"**")
803 FORMAT(23X,"**","DAY",13,9X,"**")
804 FORMAT(1H0,35X,"BLUE ARMY",6X,"RED ARMY")
805 FORMAT(5X,"NO. OF DIVISIONS",14X,F6.2,9X,F6.2)
806 FORMAT(5X,"NO. DIVISIONS LOST",12X,F6.2,9X,F6.2)
807 FORMAT(5X,"NO. DIVISIONS REMAINING",7X,F6.2,9X,F6.2)
808 FORMAT(5X,"BEGINNING FORCE RATIO",3X,F6.2)
809 FORMAT(5X,"CURRENT FORCE RATIO",5X,F6.2)
1"REMAINING")
812 FORMAT(5X,"BLUE CAS",9X,I4,9X,I4,11X,I4)
813 FORMAT(5X,"RED CAP",9X,I4,9X,I4,11X,I4)
814 FORMAT(5X,"RED CAS",9X,I4,9X,I4,11X,I4)
815 FORMAT(5X,"TODAY'S FEBA MOVEMENT",3X,F6.2," KILOMETERS")
816 FORMAT(5X,"TOTAL FEBA MOVEMENT",5X,F6.2," KILOMETERS")
817 FORMAT(5X,"BLUE ESCORT",6X,14,9X,14,11X,14)
818 FORMAT(5X,"BLUE RECC",7X,14,9X,14,11X,14)
819 FORMAT(5X,"BLUE INTXN",6X,14,9X,14,11X,14)
820 FORMAT(5X,"RED ESCORT",6X,14,9X,14,11X,14)
821 FORMAT(5X,"RED RECC",7X,14,9X,14,11X,14)
822 FORMAT(5X,"RED INTXN",6X,14,9X,14,11X,14)
823 FORMAT(5X,"TARGET STATUS IS ",F6.3,/)
824 FORMAT(5X,"NO INFO ON RED ARMY STATUS",/)
825 FORMAT(5X,"NO INFO ON BLUE ARMY STATUS")

RETURN
END

C *** UPDATES FORCE ARRAYS, BASE STATUS, ***
C *** LOGISTICS, AND SLOWDOWN ***

SUBROUTINE RECAP(NCK, FORCE, LOSS, SIDE, NIEF, PA, NIE, SLOWDN, IBUF, XITORY, TYPE, ARMY, BASE, NSORT)
INTEGER FORCE, DAY
COMMON/Al RSAM(2,6), BSAM(2,6), RSTAT(3), BSTAT(3), DAY
COMMON/FIN! NBACKL, NACLS
DIMENSION NT'S(3), PART(3), NSUM(3), MOST(2,2), SUM(3), NIE(3)
DIMENSION BUF(3), XITORY(3), TYPE(3), ARMY(3)
DIMENSION FORCE(3,9,5), LOSS(3,9,5), BASE(5), NSORT(3)
DATA MOST/210, 190, 280, 850/
PART(1)=PART(2)=PART(3)=0.
DO 10 I=1,3
 NS=0
 DO 15 M=2,9
 IF(FORCE(I,M,1).GT.0) NS=NS+FORCE(I,M,1)
 15 CONTINUE
 NTS(I)=NS
 IF(FORCE(I,1,1).GT.0) PART(I)=NTS(I)/FORCE(I,1,1)
10 CONTINUE
 DO 20 J=2,4
 K=J-1
 NSUM(K)=(FORCE(1,1,J)*PART(1))+(FORCE(2,1,J)*PART(2))+(FORCE(3,1,J)*PART(3))
20 CONTINUE

C *** BASE SPARES - ON HAND - USED + ***
C *** RESUPPLY ***
C
DO 40 I=1,3
 XITORY(I)=XITORY(I)-(1.1*NSUM(I))
 XITORY(I)=XITORY(I)+(MOST(NCK,1)*(.995**NIE(I))
40 CONTINUE

C *** SAME FOR ARMY ***
ARMY(1)-ARMY(1)-(100.*ARMY(2))+(MOST(NCK,2)*(.995*N1EF))
SLOWDN-ARMY(1)/(100.*PA)
SLOWDN-AMIN(1.,SLOWDN)
DO 100 I=1,4
DO 110 N=2,9
DO 120 K=2,5
LOSS(1,N,1),LOSS(1,N,1),LOSS(1,N,K)
120 CONTINUE
110 CONTINUE
100 CONTINUE
C
C *** SUM LOSS ARRAYS ***
C
DO 200 I=1,4
DO 210 N=2,9
LOSS(1,N,1),LOSS(1,N,1),LOSS(1,N,1)
210 CONTINUE
200 CONTINUE
DO 400 I=1,4
JN=LOSS(1,N,1)
DO 420 J=1,JN
IF(FORCE(I,N,1),1.E,0) GO TO 100
RATIO=FLOAT(FORCE(I,N,1))/FLOAT(FORCE(I,1,1))
RN=RANF(0)
IF(RN.GT.RATIO) GO TO 121
LOSS(I,N,1),LOSS(I,N,1)
GO TO 420
121 RATIO=FLOAT(FORCE(I,N,1))/FLOAT(FORCE(I,1,1))
IF(RN.GT.RATIO) GO TO 122
LOSS(I,N,1),LOSS(I,N,1)
GO TO 420
122 LOSS(I,N,1),LOSS(I,N,1)
120 CONTINUE
400 CONTINUE
SUM(1),FORCE(I,N,1),FORCE(I,N,1),FORCE(I,1,1)
SUM(2),FORCE(I,N,1),FORCE(I,N,1),FORCE(I,1,1)
SUM(3),FORCE(I,N,1),FORCE(I,N,1),FORCE(I,1,1)
C
C *** CHECK FOR LOGISTICS SHORTAGES ***
C
DO 500 I=1,4
BUF(I),XITORY(I)/SUM(I)*1.1
IF(BUF(I),GE,1.) GO TO 410
IF(BUF(I),LT,1.) NSORT(I),SUM(I)*1.1,BUF(I)
IF(NCK.EQ.1) BUF(I),AMINI(BUF(I),BSTAT(I))
IF(NCK.EQ.2) BUF(I),AMINI(BUF(I),BSTAT(I))
GO TO 500
110 IF(NCK.EQ.1) BUF(I),AMINI(BUF(I),BSTAT(I))
IF(NCK.EQ.2) BUF(I),AMINI(BUF(I),BSTAT(I))
101
NSORT(I) = 220. * BUF(I)

500 CONTINUE

C *** PRINT OUT SUMMARY ***
C
WRITE(6, 189)
WRITE(6, 190) SIDE
WRITE(6, 191)
WRITE(6, 192)
WRITE(6, 191)
DO 900 I = 1, 3
NRREM = FORCE(I, 1, 1) - LOSS(I, 1, 1)
IF (NCK .EQ. 1) NBACLS = NBACLS + LOSS(I, 1, 1)
IF (NCK .EQ. 2) NRACLs = NRACLs + LOSS(I, 1, 1)
WRITE(6, 193) TYPE(I), FORCE(I, 1, 1), LOSS(I, 1, 1), NRREM
900 CONTINUE

WRITE(6, 189)
WRITE(6, 194) SIDE
WRITE(6, 191)
WRITE(6, 195)
WRITE(6, 191)
DO 901 I = 1, 3
K = I + 1
WRITE(6, 196) BASE(K), XITORY(I), BUF(I), NSORT(I)
901 CONTINUE

IFAKE = 0
WRITE(6, 196) BASE(5), ARMY(3), SLOWDN, IFAKE
WRITE(6, 189)
189 FORMAT(1X, 50(IHX))
190 FORMAT(15X, A5, " AIRCRAFT STATUS")
191 FORMAT(1X,"---")
192 FORMAT(4X, "TYPE", 6X, "STARTING", 6X, "LOSSES", 6X, "REMAINING")
193 FORMAT(4X, A5, 8X, I3, 10X, I3, 11X, I3)
194 FORMAT(15X, A5, " BASE STATUS")
196 FORMAT(4X, A5, 7X, F8.3, 7X, F6.3, 8X, I4)
DO 400 I = 1, 3
DO 410 K = 1, 5
FORCE(I, 1, K) = FORCE(I, 1, K) - LOSS(I, 1, K)
410 CONTINUE
400 CONTINUE

C *** UPDATE FORCE ARRAY ***
C
DO 600 I = 1, 3
DO 610 M = 2, 9
DO 620 K = 1, 5
IF (FORCE(I, M, K) .GT. 0) FORCE(I, M, K) = 0
620 CONTINUE
*** RE-INITIALIZE LOSS ARRAY ***

DO 700 I=1,3
DO 710 M=1,9
DO 720 K=1,5
LOSS(I,M,K)=O
720 CONTINUE
710 CONTINUE
700 CONTINUE

*** UPDATE SAM ARRAYS ***

BSAM(1,6)=1.
RSAM(1,6)=1.
BSAM(2,6)=1.
PSAM(2,6)=1.
RSAM(1,1)=RSAM(1,1)+.5
RSAM(2,1)=RSAM(2,1)+.5
BSAM(1,1)=BSAM(1,1)+.5
BSAM(2,1)=BSAM(2,1)+.5
ARMY(2)=PA
IF(NCK.EQ.1) GO TO 800
DO 810 I=1,3
IF(DAY.GT.1) RSTAT(I)=RSTAT(I)+.07
RSTAT(I)=AMIN1(1.,RSTAT(I))
810 CONTINUE

*** RED A/C REINFORCEMENTS ***

DO 815 K=2,4
NADD=8
IF(I.EQ.3) NADD=16
FORCE(I,1,K)=FORCE(I,1,K)+NADD
815 CONTINUE

*** ADVANCE THE DAY ***

DAY=DAY+1
GO TO 850
800 DO 820 I=1,3
IF(DAY.GT.1) BSTAT(I)=BSTAT(I)+.07
BSTAT(I)=AMIN1(1.,BSTAT(I))
820 CONTINUE
C *** BLUE A/C REINFORCEMENTS ***

C

DO 825 K=2,4
NADD=9
IF(I.EQ.2) NADD=17
FORCE(I,1,K)=FORCE(I,1,K)+NADD
825 CONTINUE
820 CONTINUE
 FORCE(1,1,1)=FORCE(1,1,1)+27
 FORCE(2,1,1)=FORCE(2,1,1)+51
 FORCE(3,1,1)=FORCE(3,1,1)+27
850 RETURN
END
Bibliography

Vita

John Matthew Foley was born in Laconia, New Hampshire, on October 19, 1949. He graduated from Laconia High School in 1967 and attended the University of New Hampshire from which he graduated in 1971 with a Bachelor of Arts degree in Mathematics. He entered the Air Force in 1971 and attended Undergraduate Navigator Training. Upon successful completion of navigator training in 1972, he was assigned as a combat crewmember on the C-130E cargo transport aircraft at Ching Chuan Kang Air Base, Taiwan; Clark Air Base, Philippines; and Yokota Air Base, Japan. He entered the Air Force Institute of Technology's Graduate Program in Strategic and Tactical Sciences in August 1978.

He is married to the former Huang Chu Chin of Taipei, Taiwan. They presently have two children: Alice and Sherril.

Permanent Address: 2398 SE Aneci St.
Port St. Lucie, FLA 33452
The model developed in this study is a highly aggregated theater-level game comprised of interaction equations which utilize the allocation of aircraft to various missions on a daily basis to obtain the outcome of an offensive versus defensive systems engagement. The simulation which supports the model consists of an interactive air portion and a parametric ground portion. The theater of operations consists of two sides with their respective air and ground forces. While the model produces credible outcomes, the major objective is to reflect the effect of strategy and employment tactics on the outcome of the battle.
The model is designed to provide individuals an opportunity to plan and conduct their war and to test various air employment concepts. Existing war games are quite large and contain many factors that the main effects of a player's inflight decisions are confounded by the interactive effects of the factors. The scenario described in this model has a limited number of factors so that it is easier for players to discern the main effects of their strategies. Included in the appendices are a user's guide, analytical formulations, and a source listing of the program.