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N DISCLAIMER
The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other author-
ized documents.
The use of trade name(s) and/or manufacturer(s) does not consti-

tute an official indorsement or approval,
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A portion of the ring between two adjacent cross sections
is cut out, If the ends of the ring are joined again,
stresses thus produced may simulate the residual stresses
due to autofrettage.

Temperature distributions to simulate residual stresses
caused by 30%, 60% and 100% overstrain in a cylinder
witha =1, b=2, v=0,3, E= 30x10° psi, o, =

170 ksi, a = 6.8x10~* in/in/°F.

Thermal stresses obtained from Eq. (14) using temper-
ature distributions shown in Figure 2 simulating
30%, 60% and 100% overstrain.




NOTATIONS AND NUMERICAL VALUE USED

a . inner radius, 1"
- b outer radius, 2"
¥ r,q cylindrical coordinates )
(o] normal stress -
’ %o yield stress, 170 ksi
¢ Airy stress function
A,B,C,D superposition constants
u displacement
d coefficient of dislocation V?
G shear modulus
v Poisson's ratio, 0.3
V] thermoelastic potential
T temperature at r
Ta'Tb temperature at r=a, r=b
E Young's modulus, 30x10°® psi
o coefficient of thermal expansion, 6.8x10-% in/in/°F
o} radius of the autofrettaged interface
Tp temperature at r=p
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FULLY AUTOFRETTAGED CASE

The plane strain stress distribution of a fully autofrettaged
tube using von Mises yield condition and the incompressibility condi-

tion is given by

20, T a? ‘bz b
Op = 5= {log = - —— (1 - 2310g 2} (1
r 3 b b2-a2 r? a
204 r a? b2 b
Og = —=— {1l + log = - —2—(1 + 2)10g 2} (2)
® 3 b bz_az( r? a

This distribution can be simulated either by a dislocation, Figure 1,

or by a steady state thermal loading.

Figure 1. A portion of the ring between two adjacent cross sections
is cut out. If the ends of the ring are joined again,
stresses thus produced may simulate the residual stresses
due to autofrettage.
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‘Dislocation Solution:

Using biharmonic Airy stress function1 the dislocation solution
can be obtained by
¢ =Alogr + Br®+Cr®logr (3)
The dislocation is expressed by the jump condition
0=27
(2Gug] =der 4
6=0

This condition together with traction free conditions at the inner and

outer radii gives

21,2
A= d a‘b log b
4m(1-v) b*-a? a
' . 2
B=-. d {28 log bi1as2 log b}
16m(1-v)  (b2-a?) a
C=—9S__ (5)
8w (1-v)

Using the formulas

[+ -La_zi*l_ai

T r232 roar

(6)
g - 28

or?

lTiloshonko. S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill
Co., 1951, 2nd Edition, p. 56.




The stress distribution is then obtained from (3) and (5) as

2 2
o, =—9  {logZ-_2_(1 -5 108k} (7
r 2 2 2
4m(1-v) b b“-a T a
. o = —4 {1og Z+1 - a’ (1 + Eig log 9& (8)
8" an(1-v) b b2-a? r? a

The equivalence between (7), (8) and (1), (2) is easily seen with

dislocation and yield stress related by

3 d B 20, (9)
S 4w (1-v) %3

% Solution of Thermal Loading:
Using the superposition of Airy stress function ¢ and thermo-

elastic potential ¢ (ref. 2), the solution can be symbolically written

as i
[S] = Aj[y-r?] + B, [y-r®logr] + C,[v-logr] + D, [¢-r?] (10)

with T, and T, as steady state temperatures at the inner and outer

radii respectively and using the traction free boundary conditions we

have

A - _Ea_(p , (+loga) (Ta-Th)

4(1-v) log(b/a)

B. = —_Ea (Ta-Th)

1 41-v) log(b/a)

2a?p? (11)

p—
[

C; = - enpY B, log(b/a)
! 2 :
! 1 2a b !
L D, = A; + = B 1 + 2logb + log (= i
: 1 1+ 581 [ gb + 5 log (a)] :

L 2Sadowsky, M. A. and Hussain, M. A., "Thermal Stress Discontinuities

in Microfibers,' Watervliet Arsenal Technical Report WVT-RR-6401,
April 1964. ]




Using the formulas

1 azgl; 13y
g = - -
r T2 38 T °r
g, = - 220 42
) arz
The stress distribution is obtained from (6), (10), (11) as
Ea(T,-Ty,) 2 2
. a_’b {log 2 - 2 (1 - E?)log by (13)
2(1-v)log(b/a) b b*-a T a
E - 2 2
g = %(Ta-Tb) {1+1ogl-2 _(1+ b—-)log by (14)
2(1-v)log(b/a) b p2-a? r? a

The equivalence between (13), (14) and (1), (2) is easily seen with

the temperature gradient and yield stress related by
' Ea(Ta-Tp)  _ 20g
2(1-v)log(b/a) V3

(15)

PARTIALLY AUTOFRETTAGED CASE

The plane strain stress distribution of a partially autofrettaged

tube, using the same von Mises and incompressibility conditions as

before, is
9o T 2 1 1
ﬁ {(210g 7 1+ s—z) - Pl(g-z- - ;;)} a<r<p (16)
g =
T
c
[o] 2 1 1
— Py (— - = <r<b 17
/3- (p 1) (bz rz) p_r_ ( )
99 T 2 1 1
— 210 ...+1+.L-P_._+_ a<r< 18
= {@leg oD TP Py e (18)
Oe =

% , 1 1
R P-PGCT+ D) p<r<b (19)




_ azbz 2
whefe P1 = 223:337[(1 - %7-+ Zlog(D/a)],

Solutions of Thermal Loading:

Using the superposition of Airy stress function ¢ and thermo-
elastic potential y, it is sufficient to write the solution symbolically

as

Ay[¥-1%] + B,[Y-r’logr] + C,[y-logr] + D,[¢-r?] , a<r<p (20)
[s] = |
As[y-12] + Cz[y-logr] + Dg[¢-r?] , p<r<d (21)

In order to obtain stress distribution given by (16)-(19) we must have

= 1 . 2 e
Dy = 3 [2+ 21oge - = (0°-P))]

1 2 %o
D, = - —— -p.y) =2

(e}
(pz'Pl) 'T;

The temperature profile from (20) and (21) is
EaT . 4A2 + 482(1 + logr) , a<r<p
(1-v) 4A4 p<r<b

It is seen that the temperature is constant in the outer region,

P<r<b, and logarithmically distributed in the inner region, a<r<p.

Let Ta, Tp be the temperatures at r = a, and r = p respectively. These

temperature boundary conditions give the equivalence between the

temperature gradient and the yield stress




-t 2

Ea (Tg~Tp) i 20, 20
2(1-v)log(p/a) V3

The temperature profile of (23) is then given by

T=T, - ESI%:;E% log(r/a) a<r<p

og(p/a

s (25)
T = Tp p<r<b

Once the temperature distribution is known, all the remaining super-
position constants can be specifically determined. It should be noted
that we have neglected the axial stress computation which can easily
be taken care of by the method discussed on page 409 of Reference 1.

A NUMERICAL EXAMPLE

Consider a tube of inner radius a = 1, outer radius b = 2, with
material constants E = 30x10® psi, v = 0,3, a = 6.8x10~® in/in/°F,
Op = 170x10% psi; the temperature distribution was computed from (25)
for 30%, 60% and 100% autofrettaged cases, shown in Figure 2. Using
these temperature distributions as temperature input in a finite
difference computer program based on the theory of thermal stress in
section 9-10 of Reference 3 we obtain the stress distributions. The
results are compared in Table I with the exact solution given by (14),

and are also graphically shown in Figure 3.

1Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill
Co., 1951, 2nd Edition, p. 56.

3Boley, B. A. and Weiner, J. H., "Theory of Thermal Stresses,'" John
Wiley & Sons, 1960.




[T

L RS < e £ AT L et it TV

"4 UT/UT _0TX8"9 = © ‘Ts} 0T = %0 ‘1sd ,01X0§ = 3 ‘§°0 = &

‘T=9q ‘7T = B Yl1TM J9PUTITAD B UT UTBIISIBAO %001 PU®B %09 ‘%0€
Aq posne> s$3sS3I1S [EnpISAaI S3B[NUIS 03 SUOTINQTIISTP danieradus]

‘S0 %001 (X)L

*S°0 %09 OF,

‘s'0%0¢ 9,

*Z @andry

N
|




" TABLE I. COMPARISON OF oy (PSI) WITH FINITE DIFFERENCES

Percent Overstrain T Exact Solution Finite Difference
i 1.0 - 92190 - 92897
1.1 - 48446 - 49567
1.2 - 12325 - 13636
1.3 18205 16825
| 1.4 16442 15236
30% 1.5 15020 13948
1.6 13856 12890
1.7 12891 12010
1.8 12083 11271
1.9 11398 10643
2.0 10814 10106
1.0 -143955 i 2145316
1.1 - 95719 - 97552
1.2 - 56182 - 58225
1.3 - 22993 | - 25102
1.4 5422 3323
. 60% 1.5 30153 . 28107
1 1.6 51978 | 50007
1.7 48359 i 46593
1.8 45326 ' 43724
1.9 42759 f 41289
2.0 40568 l 39205
o
1.0 -166539 ! -168854
1.1 -116343 : -119099 g
1.2 - 75316 . - 78246 ‘
1.3 - 40966 ; - 43929 ;
1.4 - 11631 i - 14550 :
100% 1.5 13842 : 11005 !
1.6 36275 33539 :
1.7 56267 53640 i
- 1.8 74269 71749 .
1.9 90621 i 88206 :
2.0 105590 J 103274 5




100}
60% O. 8.
SO 30%O.S. —
L
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Figure 3. Thermal stresses obtained from Eq. (14) using temperature
distributions shown in Figure 2 simulating 30%, 60%, and
100% overstrain.
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The same temperature distribution was also used in the finite
elément NASTRAN program using a TEMP (LOAD) request in the case control
deck. The results are again compared with the exact solution in
Table II.

CONCLUSION
A simple method has been devised to simulate partial autofrettage

residual stresses in thick walled cylinders.

10




TABLE II. COMPARISON OF Og (PSI) WITH FINITE ELEMENTS

Percent Overstrain T Exact Solution Finite Element (NASTRAN)

1.025 - 80392 - 80638

1.125 - 38795 - 38981

1.225 - 4231 - 4375

1,325 17727 17818

1.425 16058 16143

30% 1,525 14707 14782
1.625 13597 13671

1.725 12675 12740

1.825 11900 11964

1,925 11243 11307

1.025 -130910 -131102

1,125 - 85128 - 85261

1.225 - 47361 - 47454

1.325 - 15490 - 15558

. 1.425 11915 11872

60% 1,525 35856 35827
1.625 51010 51136

1,725 47551 47660

1.825 44645 44754

1.925 42179 42283

1.025 -152950 -153095

1.125 ~-105342 -105430

1.225 - 66178 - 66228

1,328 - 33215 - 33240

1.425 - 4938 - 4941

100% 1,525 19709 19716
1.625 41482 41496

1,725 60939 60972

1.825 78500 78538

1,925 94484 94519
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