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ABSTRACT

Attention is focused on the scalar reaction-diffusion eguation:
u, = Axu + f(u), where f 1is cubic-like and f£(0) = f(1l) = J. Amongst
spherically symmetric solutions it is proved there is a bounded unstable
equilibrium which is decreasing in radial profile. Under a concavity assum -
tion on f this equilibrium is unique. Moreover there 1is a unigue exrandiiag

spherical wave which is defined for all time, positive and negative. As

t -» -» this wave approaches the unstable equilibrium.

Aronson and Weinberger [2] have proved before that, in all space dimen-
sions, there are non-trivial solutions that propagate (u(x,t) - 1 unifornml-
on compact sets as t - +®) and ones that decay (u(x,t) > 0 uniformly as

t > +»). This suggested the existence cof the unstable equilibrium.

There is an interesting global description of this propagation/decav effect.

The set of initial data whose associated solutions approach the unstable caui-

librium as t »> +» splits a natural set of functions into two sets. Data from
one set yields a solution that propagates, and data from the other set, a solu-
tion that decays. This fact is closely related to the uniqueness of the expand-

ing spherical wave.

AMS (MOS) Subject Classifications: 34B25, 34C35, 35B40, 35K55.
Key Words: Reaction-diffusion eguation, spherically symmetric wave, travelling
wave, equilibrium solution, compact-open topology.

Work Unit Number l: Applied Analysis
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SIGNIFICANCE AND EXPLANATION

v

Reaction-Diffusion Ecuations have been used to model nerve impulse pro-

pagation and spatially inhomogeneous situations in chemicallv reacting svstems
] and population genetics. The kind of solutions that are often of interest in
these areas are wave-like and do not die out.

If the underlying spatial domainr for the eguation is one-dimensional, the
description of such wave behaviour amounts to finding a travellinc wave. This
is a solution whose evolution in time under the equation is given by translating
along the axis. A nerve impulse is an example of a travelling wave.

If a wave in higher dimensions is expected, for instance one that is a
function only of radius in a spherical co-ordinate system, this mathematical
approach 1s not available. Such spherical waves look like one dimensional waves
a long way out. 1In this report we invert this idea and deduce spherical wave
behaviour in a model example where there is a stable one dimensional travelling

' wave. This approach also determines the remaining work that is necessary for

a complete picture of the spherical wave behaviour for this ecuation.
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SPHERICALLY SYMMETRIC WAVES OF A REACTICMN-DIFFUSION ENUATICN
Christopher K. R. T. Jones

Chapter 1

Introduction
I. MOTIVATION

Reaction - Diffusion equations often exhibit persistent wave-like
behaviour. Examples of this are the travelling pulses of the Fitzhugnh-
Nagumo and Hodgkin-Huxley equations, travelling fronts in some scalar
eguations such as the Fisher equation and target patterns and spiral
waves in some models of the Belousov-Zhabotinskii reaction. Such phe-
nomena as these usually depend on the underlying spatial domain being
unbounded. This is in sharp contrast to the case of scalar
reaction - diffusion equations on a bounded domain where eneray arqu-
ments show that all solutions decay to some equilibrium.

The wave phenomena in one space dimension, such as the travelling
pulses and fronts mentioned above, are often mathematically tractable.
This approach is to find an appropriate solution to the travelling wave
equations, which are ordinary differential equations, and then try to
prove that they are stable as solutions to the full partial differen-
tial equation. When genuinely higher dimensional effects are involved,
as in the case of target patterns or spiral waves, this mathematical
attach is not available. Results have been obtained in some model
situations derived by making simplifying assumptions, as in the work of
Greenberg, Hassard and Hastings [l] and Kopell and Howard ([1,2,3]. The
main difficulty appears to be that, in general, there is not a specific
mathematical object, like a travelling wave, whose discovery would

prove the existence and supply a description of such behaviour.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and Grant No. DAAG29-77-G-0004.
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In this work we develop a technique for handling spherically svm-
metric waves of reaction - diffusion eguations. If a system has =7, -
ically symmetric waves then it would also have some corresponding
one-dimensional waves, loosely speaking, these would be the spherically
symmetric waves "at infinity". The technique is to invert this idea
and deduce the existence of spherical type wave behaviour from knowir
one~dimensional behaviour. We hope that this approach will give some
general conditions under which such higher dimensional wave behaviour
exists but it cannot give details about the formation of these waves;
this is an inherently higher-dimensional problem and could not be
deduced from knowledge of the one-dimensional mechanisms.

We focus our attention on the bistable equation which is described
in section III below, since that equation has the useful property of
possessing an unambigously stable travelling wave. The result of
applying the technique to this equation is that it guarantees the exis-
tence of spherical waves that are asymptotic to the one-dimensional
travelling wave at infinity and also isolates the work that needs to be
done to get a complete picture of the phenomenon; we also carry out

this work.

II. GENERALITIES

In the most general case, we shall consider a system of reaction -

diffusion equations of the form

(1.1) u, = Au + f(u)
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where u ¢ R, X=(X_,...,x) ¢ RY, &= Z 3 and
1 n . a2
i=1 ox.
i
Au = (Aul,...,Aum). We shall always assume that f : R - R is
smooth.

The natural problem for such a system on all of R is an
initial-value problem, i.e. a solution u(x,t) should be determined bv

its initial condition u(x)
(1.2) u(x,0) = u(x)

We can therefore hope that such a system determines a semiflow on
some appropriate function space. A semiflow on a space Y 1is a func-
tion S : Y X Eg.*-Y (whose domain may not be all of Y x R+, but
must be an open subset) which satisfies (1) S(S(y,t),s) = S(v,t+s)
and (2) S 1is continuous on its domain. S is said to be a local
semiflow if for each y € Y, a set of the form (y,[0,s)) for some
s > 0 1is in the domain of S. S 1is a global semiflow if it is
defined on all of Y x Ec:

For the equation (1.1) Y will be some function space and

S(y,t) u(x,t) where u(x,t) is the solution with initial condition

]

u(x,0) y. The space Y will usually be the space of bounded uni-

formly continuous functions u : R" > R" which will be denoted B.
We are interested in locating parts of B that exhibit certain asymp-

totic behaviour (in particular, wave-like behaviour) when the semiflow

is applied. The following definitions, due to Fife [1,2], clarify this

quest.




The group of transformations that leave the Laplacian invariant, .

and so also the equation, are exactly the rigid motions; call this

a——ey

group R(n). R(n) acts in a natural way on B; if T < R(n) then
- Tu(x) = u(Tx). Therefore one can see that the space B/R(n) inherits
the semiflow which shall also be denoted by S.

Definition 1.1. wu,v € B/R(n) are said to be asymptotically equivalent

if there exists a 1T ¢ R such that

lim ||S(u,t) - s(v,t+1) || = O

tow

where the norm used is the sup norm over all of R".

Definition 1.2. An asymptotic state G < B/R(n) is an equivalence

class of initial data under this relation. G 1is said to be a stable
asymptotic state (SAS) if it is open in B/R(n).

As mentioned earlier one attack on reaction - diffusion equations
is to look for special solutions such as equilibrium solutions, travel-
ling waves etc. In general the least one might expect of solutions

that warrant such attention is that they be defined for all t ¢ R.

Such a solution would certainly be "special" as the equations are para-
bolic and so only forward existence would be expected in general.

Definition 1.3. A solution u(x,t) to (1.1) is said to be a permanent

solution if it is defined for all t ¢ R.

Satisfaction of the ultimate dream for a given reaction -
diffusion equation would be a description of all its SAS's and the
location of all their bounded permanent solutions.

We cannot usually expect to be able to prove that a certain set is

a stable asymptotic state with respect to all of B, but in a given

e ————
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problem there may be a natural subspace of B in which the asymptotic ‘
. state can easily be proved to be open. This will only be meaningful if
that subspace is invariant, or at least positively invariant.

Definition 1.4. A © Y 1is invariant under S, if S(t)A = A for all

t > 0. A is positively invariant if S(t)A ¢ A for all t > 0.
Suppose A ¢ B 1is positively invariant.

- Definition 1.5. A set G 1is an SAS with respect to A if it is an

asymptotic state and it is open in A.
In regard to looking for permanent solutions one of the useful

ideas of dynamical systems is that of an w-limit set. If A < Y then

w(d) = N cl(a - [t.m))* .
>0

The crucial property of w-limit sets is that they are closed and
invariant.

A consequence of this is that points in w(A) have local backward
existence but the solutions may blow up in finite backward time, so
w(A) need not consist entirely of permanent solutions. If however we
knew that S was a compact semiflow on Y (see chapter 4, section I)
then w(A) is a compact, non-empty set that consists entirely of per-
manent solutions.

This compactness property is not satisfied on B if it carries

' the sup-norm topology, however we can replace this with the compact-

open topology, without destroying the semiflow property, and the

*
for notation see section IV
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compactness conditicn is satisfied. Permanent soliuticons Jin o

found by calculating the w-limit set of a bounded connecti-i - o

the SAS in question.

I1I. THE BISTABLE EQUATION

Although the main abstract construction of this work arzl

any system of reaction - diffusion eguaticns the only aprlica<ion

worked out is tc the scalar equation, called the bistabkle ozua

(1.3) u, = du + f(u) ,

where u € R. We split the assumptions on the nonlinearity
two parts:

(H1) £ : R > IR is smooth. £(0) = £(1) = 0 and ther:

~

FECT

cion:

f into

5 &

- unique a, between 0 and 1 such that £(2) = 0.

Furthermore <£'(0) < 0, £'(1) < 0 and f £(u)cu >
o

(H2) For all a < B <1 £"(8) < 0.
Roughly speaking, if £ satisfies (Hl) then it is of %he
shown in Figure 1.1

Y y=£f (u)

Figure 1.1

c.

forn
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where the area of the hump above the x-axis is biager than that of ti.
hump below. If f satisfies (H2) then the hump above is concave dow:.
It will always be assumed that f satisfies (H1), (H2) will be used 1rn
a crucial uniqueness result in chapter 2 and it will be clear wia* T
clusions can be made when (H2) is not satisfied. We shall assume
nothing about f outside the interval ([0,1] as all our attention
will be restricted to data in this set; this is possible as, bv the
maxXimum principle (see Chapter 3, section II): if © < u(x,0) <1

then 0 < u(x,t) <1 for all ¢t > 0.

The crucial property of the scalar equation with this f(u) is
that it has a unique (up to translation) travelling wave in one space
dimension which is stable in a very strong sense. In other words, it
has a unique solution of the form u(x-ct) which satisfies the bound-
ary conditions u(-®) =1 and u(+x) = 0 (see Aronson and Weinberger
[1] and Fife and McLeod [l1]). Fife and McLeod's theorem is the stron-
gest stability statement, it says that the travelling wave is exponen-
tailly stable to all initial data which lie above the middle zero at
-° and below it at +~ (it is reproduced here as our theorem 5.1).

A standard maximum principle argument implies that u = 0 and
u = 1 are stable (this is the source of its name) to perturbations in
the sup-norm, u = o 1is unstable by the same reasoning. The travel-
ling wave determines the asymptotic behaviour of data that are transi-
tions between the two stable states. Heuristically we could take for
initial data characteristic functions of a set; then if wu(x,0) is the

characteristic function of a half-line (-«,a], u(x,t) tends to a

translate of the travelling wave as t > +«=,




In any space dimension we could take u(x,0) to be tne charactoy-
istic function of a compact set D. If D is large enough and morc or
less spherical then at the edge of D u(x,0) will not be too unlike a
plane front and so one might expect it to propagate in the same fashion
as a one-dimensional wave. On the other hand if D were too small we
might expect the solution to tend to zero everywhere. Aronson and
Weinberger [2] have shown that both of these phenomena occur. They
give an integral condition, that will cover some data of the above
form if D is small enough, which ensures decay of the corresponding
soiution. They also give a condition for propagation (u{(x,t} =~ 1
uniformly on compact sets). The latter theorem specialized to the case
under consideration is:

Theorem 1.1 (Aronson and Weinberger [2]). With f satisfying (H1)
there is an indexed family of functions on R’ say {uA!A ¢ A}, each

with compact support, so that if, for some A

u(x,0) > u, (x) for'all x ¢ R"

and u(x,t) is a solution of (1.3) then u(x,t) » 1 uniformly on com-
pact sets.

They also prove that the propagation has an asymptotic speed which
is that of the one-dimensional travelling wave, but we shall not go
into this here.

In particular, from the above theorem we know that there is spher-

ical wave propagation for (1.3), it is this pehnomenon that we shall

analyze.




IV. SYNOPSIS
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From Aronson and Weinberger's results, there is a 'threshold
effect', i.e. some solutions decay and some propagate; this suggests
that there is an unstable eguilibrium solution which demarcates the
boundary between these two regimes of behaviour. In chapter 2 we prove
the existence of such solutions and under the assumption that ¢
satisfies (H2) we prove it is unique. This solution is obviously
unstable and under (H2) we prove that the linearized operator at this
equilibrium solution has one positive eigenvalue which, loosely speak-
ing, represents one dimension of decay and propagation.

The remainder of the work is devoted to giving a global picture of
this propagation/decay behaviour, using the Solution found in chapter 2
as a pivot.

In chapter 3 we compile the necessary information for applying the
concepts and methods of dynamical systems. Except for section IV this
chapter is all standard material.

In chapter 4 we construct the basic machine that gives out spheri-
cal information when we plug in facts about the one-dimensional behav-
iour. 1In this chapter we describe the "spherical attractor" when f
satisfies (H2), this is the set of permanent solutions that are rele-
vant to this propagation/decay effect.

In chapter 5 we refine the machine of chapter 4 to include a mov-
ing co-ordinate frame; this gives finer information about the spherical

waves. We also prove the necessary one-dimensional facts in this

chapter.




In chapter 6 we sum the work up and translate the r. . 11+

language of dynamical systems into terms that are clo=.:

ture on reaction - diffusion equations.

Notation

(1)

(2)

(3)

(4)

(5)

For a set A: Int(A) = interior of A;

cl(A) = closure of A; AO = complement of A.

+ . . +
If S: YXR »Y is a semiflowand Ac Y, I ¢ R

0n
=
e
>
i

{s(t)yly € A}; A - t = S(t)A;

e
.
2
[l

{y » tly e A, t e I}.

B={u:R"» nfllu is bounded and uniformly continuous -

e
¢ =
- W

1]

lull, = sup [ueo|

n ..
. xe R

-
th
o)

H
:js

[ai'bi] is an invariant rectangle (see chapter 3,

i=1
section 2), then M(P) ¢ B is given by:
M(P) = {u(x) = (u(x) = (ul(x),...,um(x))lai Su 0 < b for

every X € Rn} and supplied with the compact-open topolog:.

The dependence on P is usually omitted.

If u(x,t) and u(x) are used together, then u(x,0) = u(x).




Chapter 2

Equilibrium Solutions

I. ONE DIMENSIONAL CASE

In this chapter we shall prove theorems on the existence, unigque-
ness and spectral properties ‘of nonconstant equilibrium solutions of
(1.3). We shall firstly review the well known case of one stace dimci-
sion.

An equilibrium solution in one space dimension satisfies the

equation
(2.1) u + f(u) =0
XX
We a¥2® intefestéd in solutions that decay to 0 at’' x = -=, Trans- ° T

forming (2.1) into a system of ODE's gives

u' = v

(2.2) '=

which is Hamiltonian and so the phase portrait is easily drawn

4
dx
-£(u)
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From this we can see that there is a unigue non-~trivial solution (up to
translation) (u(x),v(x)) which satisfies th2 boundary conditions,
namely the "body of the fish".

Looking for the eigenvalues of the linearization around this solu-

tion leads to the equation

u' = v

d
(2.3) ¢ = ax

(A -~ £'(u))u

vl

Using the fact that (v(x),v'(x)) is a solution for A = 0O, by stan-

dard compariscon arguments it can be shown that there is a unique

XA > 0 for which (2.3) admits a bounded solution.
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In the following sections we shall show that the same structure

shows up in the higher dimensional case.

II. EXISTENCE

We seek spherically symmetric equilibrium solutions of (1.3):
these are solutions of

(2.4) w o+ 2y s E =0
ry Y r

Theorem 2.1. For fixed n and f satisfying (H1l) there is at least

one bounded non-constant solution of (2.4) that satisfies
u(r:+w) = Q0

Proof: Transforming (2.4) into a system, we get

u' =v

(2.5) tE

V' = === v - f(u) .
r

Roughly speaking, when r = +» we have the equilibrium ecuation

for the one-dimensional problem. 1In order to make this precise we per-

; = X
form the transformation p = 1
u' = v
(n-1) (1-p) ' d
(I £ LI T2 Xl L A, = =
(2.6) v 5 v £ (u) . ar
2
p' = (1-p) .

There is a singular surface at p = 0, but otherwise this equa-

tion is well defined on R2 x [0,1]. The phase portrait in the

section p = 1 1is easily seen to be that of Figure 2.1. o
At~ N




Since the solution must be regular at the origin, weo

tion of (2.6) that satisfies the boundary conditions

(2.7) v(0)

[}
(@}

(2.8) u ()

H
o

(2.8) means that the purported solution must lie in the set W aiv.-
by:
W= {(uv,0) | (u(x),v(r),p(xr)) » (0,0,1) as r - +=

and (u(0),v(0),p(0)) = (u,v,p)}

By standard results, see for instance Kelley [1], there is a

local center-stable manifold, call it wcz , at (0,0,1) whose tan-

loc
gent space is generated by Es and (0,0,-1) where Cs is any vector

ih 'u,v space tangent to the stable manifold of (0,0) in Figure 2.1.
Now let T(rf be the solution operator of (2.6), for all r
T(r)wizc c W. Define W=~ = U T(r)WCs , then W°° ¢ W. Since

loc
cs r<0
W n {p=1} contains points in the positive quadrant of the u,v

plane, see Figure 2.1, if r is sufficiently large negative T(r)w;;”

. . , c . .
contains these points. Therefore, since wlsc is a manifold and T(r)

is a diffeomorphism, T(r)wizc n{p = 5 < 1} intersects the positive

quadrant of ¢ = E, for p close to 1.

The points W n {u, v > 0} stay in {u, v > 0} under application

of T(r) for r < 0. To see this we must consider the Hamiltonian of

the one-dimensional equation

v2 u
H(u,v) = > + f f(s)ds .
0
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We compute H along orbits of (2.6) i

-

_ ‘ ﬁ - _ \n—l):L—o) Ve

so if p #1 and v #¥ 0 then é < 0. For the one-dimensional egua-
tion the energy curves arc the sclution curves. If ¢ # 1, the sclu-
tions of (2.6) cross these curves with decreasing energy. We borrow
the two curves C and C in Figure 2.2 belcw from Figure 2.1 (they

1 2

are part of the energy surface H = 0) and setting

1]

. c, ={v=0, y<u=<1l} and C {u=1, v > 0}, it is easy to see that

3

the vector field in the p = p slice is as depicted on

4

C=C1L'C2UC3UC4.

@]

Figure 2.2

so the region bounded by C in the upper half-plane is negatively

2 v invariant. Since H < 0, W°° must lie outside H = 0 and so it




- cs .
crosses C  on C3 for o close to 1. Therefore W intersects

the positive guadrant feor every o > 0.
Let € >0 be a fixed small number and definc a set D bounded
by the four lines

.

v=qa, =€ £ Vv<g;veEczg, 3<u<l;u=1, -c <v<eg

~

o - -
From the above W a0 D n {o=p} # & for everv o > 0. We want to show
- . . cs RN - )
there is a soluticn in W which is in D at some p and stays in
for all 0 < p < P, renormalizing the indeperdent variabie then gives

one that satisfies (2.7).

Let D, = 9D n {v>0} and D = ap n {v<0}, then for every o,
W a {o=p} n DU ¥ % and WS A {p=p} n DL # .

if p is small enough the vector field on 3D is as shown below

N . . - v »
. - . e . - ® N . .
* o as e -

b | ¢

]
¥
—+

Figure 2.3

For this 5, let F be a compact curve in wcs n {c=5} that ir%ter-

sects D, and D,» such a curve clearly exists. Let Fy = {yer |

for some r <0 T(r)y § D but T(r)y € {v>0}} ard F, be the
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corresponding set with v < 0. FU and FL are obviously both open

and from the picture in Figure 2.3 are both non-empty but then

F
F#Fyufly

so there exists vy ¢ F that stays in B for all © such that

0<p < p. This completes the proof of Theorem 2.1.

This solution, u(r), found in theorem 1 satisfies the following

two properties

(d) u'(r) < 0 for all r € {(0,+x),

(B) vy < u(0) <1 where Y : a <y <1 is determined by the

Y
condition | f(s)ds = 0.
o

Property (A) is clear from the fact that the region described in
Figure 2.2 is negatively invariant. Since WSS lies outside H = 0
it is clear that u(0) > y. To see that u(0) < 1 we apply the maxi-
mum principle. Since u = 1 satisfies (2.4), by an application of the

mean value theorem w = l-u satisfies
(2.9) Aw + c(X)w =0

for some bounded function c¢(x). But by (A) and the obvious fact that
u(0) <1 we see that 1-u > 0; but then, by the maximum principle,

see Protter and Weinberger [l], 1l-u cannot have an interior minimum

of zero which it would if u(0) = 1.




III. SPECTRAL ANALYSIS

In this section we consider the eigenvalue problem for tin

rized operator around a solution u of the form found in

rr

Specifically we want to know for which X's the eguation

{2.10) Au + (f'(uw)-Vu =0

e
“
"
<
-
(

admits a bounded solution. 1In particular we want to know
A >0 (2.10) admits a bounded solution.

It follows from standard results, see e.g. Reed and Simon (1] v...
Iv, that any positive eigenvalue must correspond to a svherically =0 -
metric eigenfunction. This comes from the fact that o 1is an eigorn-
value with an associated n-dimensional eigenspace generated by

{ux ,...,Gx } (this is the translation eigenvalue) and each of these

1 ... . . .- - ° ‘
has no zero except at zero. The rest of the spectrum is bounded awa:

from zero to its left.

So we look for solutions of the equation, with Xx > 0,

(2.11) u 4+ 0L

rr " ur + (£ (u) - Mlu=0 .

Theorem 2.2. If f satisfies (H1l) and (H2), there is only one ' > °
for which (2.11) admits a bounded solution and that X 1is positive.

Proof: Converting (2.11) to a system

(2.12)

'= -E:lv + (A~ £r(@))u .
r

<
I

The associated angular eguation is

(2.13) 8 = -n—;l-sin 8 cos 6 + (A - £'(3))cos> 8 - sin® o




where
8 = arctan(—Y-) .
u
We only have to worry about solutions of (2.13).

Roughly speaking, at r = +» (2.,13) is the angular eguation for

the system

(2.14)
"= (A-f'(W))u

<
1

This equation has stable and unstable subspaces which are lines of
e -
slope =-'A- £'(0) and +vA - f'(0) respectively. Let ¢ be the

angle (in the fourth quadrant} that this stable subspace makes with the

u-axis. It is not hard to see that if (2.12) has a bounded solution,

* e . . 3
. . . . .

the corresponding solution 6(r) to (2.13) must satisfy

(2.15) GA(W) = GA (mod ) .

It is also standard that thcore is a unique solution, ék(r) (mod =),
of (2.13) that satisfies (2.15).

The proof requires a study of §A(r) and its limit as r tends
to 0. The solution of the full equation remains bounded only if

GA(O) = ~ (mod 7), so the question is for what MA's can we have
(2.16) 0,(0) = mw for some m ?

We will split the proof up into three parts but firstly we make

some preliminary observations. We must have m > 0 as when 8 = -n/2,
8' = ~1. The X's which work for m are decreasing in m, that is,
if Ai works for mi i=1,2 and ml < m2 then Az < Al. This

o




follows from the fact that if )} > i. and ex(r), Pi(r) are solutions

~

of (2.13) with ) and i respectively then if 2 (R) - 2;(R) (we mav

even have R = +x» here) then ex(r) < Gi(r) for all r < R. This
latter fact is proved by a comparison between the 1 and 3 equations.

From this we know that the set of J)'s giving an affirmative
answer to (2.16) are bounded above and the associated m's are increas-
ing with decreasing \X. The rest of the proof is split up into provina
the following three parts.

(1) For a given m there is at most one X which satisfies
(2.186) .

(2) There is a X > 0 for which 5A(0) = 0.

(3) 0«< éo(o) < .

Once these are proved the proof is complete since, by (3) and the

.« s =
« @ v o® w9 - e e o = °

decreasing p;operty, if (2.16) can be solved for m = 1, the associated
A must be negative and therefore so must all other A's be negative
associated to any m > 1. The only possible X > 0 must therefore
correspond to m = 0, from (1) there is a unique such A and (2) shows
that it exists. The hypothesis (H2) is used in the proof of (3) and
this is perhaps the heart of the theorem.
Proof of (1l): Suppose ) satisfies (2.16) for some m, we firstly
show that 5A(r) is the only solution (mod 7) of (2.13) (with
fixed at this value) which satisfies (2.16).

Suppose it were not, then we would have two solutions (u ,vl)

1

and (u2,v2) of (2.12) with the property that vy TV, 0 as

r - 0, and also that u = u1 - u2, v = v1 - v2 is a solution of




(2.12) . The angular and radial equations of (2.1i2) arc Given by (2.13)

and .

(2.17) o' = -p(sin 5 cos 8(1+\ - £'(u)) -

where
1/2

[

o=(u2+v)

From (2.13) if r 1is small erouch the shaded ceonc belou is nezativelw

invariant (down to r = C)

v
e
u////
y
/
u
AN
/
Figure 2.4

If & solution remained in this cone as r »+ 0, from (2.17) it would
have either p 20 or p + +0 as r = 0, But by assumption we could
choose (“l'vl) and (uz,vz) so that (u,v}) lies in this cone for
some small r. So if v1 - v2 + ¢ we would have to have p 2 0 and

50 (u 'V) = (J.,OV)




Assume that Al < ‘2 then there must be an

€. (R)> 8, (R). But then there cxists a solution %o

A by

1 2
= A, call it & (r), sc that

2 X
- 2
NG (R) - = (R)
1 z z
but then for all r <R ;\ (r) > 2. (r) and since b
1 2

unique solution of (2.13) with 1} = P2 that satisfics
8. (0) >mn and so 6, (0) > mm.

Az Xl

Proof of (2): That such a X exists for m = 0O follcocws Trom o
straightforward shooting argument using the two facts: (i}
then 8,(0) <8, and (ii) if A =0, 8,(0) > =/2.

(i) follows from the fact that if } >> 0, & = 2 im:1:. '

(from (2.13)) and so 5;(r3 < & for all r > 0. For (ii) (I.13

be compared, when A = 0, to the angular eguation of

(2.18)

v' = —Eliv - fr(wu + L u
r 2

r

which has a known solution, namely G'(r). It is easy to see that *..:

forces 60(0) > /2.

Proof of (3): For the remainder of this section we shall be discus:si:
(2.13) with X = 0 and so, for the sake of notation, will dro; tho

subscript 0 on 60 and §o(r). With A = 0, (2.13) is

(2.19) o' = -Eilsin § cos 8 - £'(3)cos B - sin® ©

B




23

i : h i F 5 ’ 3 1o p
This is also the argular erjuation of the tangent (or first variaticnal)

equation of (2.12) about the solution f{u(r),v(r}) and & 1is the

™

J4
[
re
[¥]
[
[
]
O
v
r.

Kol
&
o]
r
et

angle cf the stable manifoldé to (0,0) in Fi

6(r) is the ancle cf the tangent line to the manifcld

. - R . - -~ . . . % B
W_o=Woa {p=—=% at (u{R),v(R)). We actually have r-t shown that
R R+1

this is a manifcid vet, a vroof of this is in section III, fut we &0
krow it contains a manifold, namely W ~op = =} and

following arguments this sufiices.

R 6 (R)
u(R) ,V(R))

Figure 2.5

We must prove that 6(0) < n, we do this in two steps, it is in
step 2 that the hypothesis (H2) is used.
Remark: (3) is about 8(r) which is a solution of (2.13) asso-

ciated to a ulr) which satisfies (2.4), (2.8) and its derivative
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satisfies (2.7). But in fact we only need that (2.4) and (2.8) are
satisfied to obtain that 5(0) <1 or v(0) > 0. We shall use this
fact in the next sectien.

Step 1: We prove that if é(R) = ¢ then G(R) > a. Define the set

cs cs R . 1 cs .
wW.o =W - n{p=<-=-}, then define D5, = {(u,R))]|W has a horizon-
R R+1 R 1
0 1 R
tal tangent line opposite u and R, < R < +x}. If we assume

0

u(R) < 2 then since also D‘z is closed, there is an R such that

(u,R) € DRo fcr scme u and if (ul'Rl) € DRo ul >u ard if u, = u
then R1 < R.

cs P :
So WR must cross energy levels of H in increasing value

opposite ul close to but less than u. See Figure 2.6.

Figure 2.6

" e~ ——
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W

So then there are points (ul,vl) and (u2,v2) on w;s so that if

(u,(r),v.(r)), i = 1,2 satisfy (u.(R),v.(R)) = (u,,v.), we have
i i i i i'7i
H(ul,vl) > H(uz,vz)

and vet (ui(r),vi(r)) -~ 0 as r - +, Recall that

(n—l)(v.(r))2
-

H(ui(r),vi(r)) = - "

fron the definition of R and the fact that ul < u2 we have
vl(r) < v2(r) and so H(ul(r),vl(r)) < H(uz(r),vz(r)) but then
H(ul(w),vl(m)) > H(uz(W),vz(w)) which is a contradiction and so
u(R) > a.
Step 2: If B(R) =T then V(R) >0 (R > 0).

Consider the angular variation of the full nonlinear equation
(2.5) about the point (a,0) in the wu,v-plane,

P o= arctan(:z—)

u-Q

This quantity satisfies

(2.20) Y' = -E;lsin Y cos P - f'(t_x)cos2 P - sin2 Y + glr)

where g(r) 1is given by the expression

g(r) = - £l (u-a) + f'(a)cos2 v

32+ (5-a) 2

£ (Ba) + £1(0) (5w 2
J 4 -2 - 2
i, v +(u-a)

S (£' (@) (Bma) - £A) . s
v+ (u-a)

{  ii
. dadaSEamate. .. - .. S . L 4—--;--—;

4




Now if £"(u) < O then f'(u)(u-a) - f(u) < C and so 17

have
(2.21) glr) <0

Suppose é(RO) = 0, then G(RO) > a and so n(r) R
(unless v(r) becomes fairly positive, which case does not it
us). By (H2) if U > a,f"(u) < 0 and so if r « R (.21 = .

since u(R)) > a, b(R) > -1/2.

8(r) - 7 satisfies (2.19) and U(r) satisfies (2.23) and sirn-
é(RO) - ™ < (R} we must have €(r) - 7 < y(r) for all r such tio

0O<r<R. Soif B(R) =7, y(R) > 0 and so V(R)) > 0. If ¥, =

6]

we have strict inequality and since B(RO) - 7 < u(RO). as poefor
(in the proof of (1)) yY(r) can be compared to another solution of
(2.19) and so ¢(0) > 0 in this case also. In either case V(R)
and the proof of step 2 is complete.

To complete the proof of (3) notice that we have shown that if
B(R) = m then v(R) > 0, but this is impossible for any solutiorn of

theorem 2.1 as according to property (A) v(r) < 0. So clearly we nmust

always have 8(0) < m.

IV. UNIQUENESS

From the fact that the region bounded by C in Figure 2.2 is
negatively invariant the only solutions to (2.5) that satisfy the

boundary condition u(+®) = 0 and stay between 0 and 1 nust .

satisfy properties (A) and (B) at the end of section I.




cs . . ) cs . N .
W is obtained by iterating wloc in backward r and is cons.-

quently a manifold, but we do not know yet that everything which tends

cs

L cs . . )
to (0,0,1) as r » +» is in W ~, 1i.e. intersects Nloc'

In a neighbourhood of (0,0,1), the equation, by an affine changec

of co-ordinates, has the form:-

(2.22) y' < Ay + g(y) Yy = (Y v,yeyy)
where
Al 0 0
A =10 Az 0 Al > 0, Xz < 0
0 0 o)
and g'{0) =0

Consider the cone Co given by

= = 1
C, {y (Yl.yz,y3) | Iyll > |(y2,y3)[, ,

then let cy =y +C Let ¢(r) Dbe the solution of (2.22) such that

0°
y = ¢(0), ¥(r) be that with 2z = ¢(0).

Lemma 2.1. There exists a neighbourhood U of (0,0,0) so that
if z,y e U and =z ¢ Cy then lﬂl(W(r) - ¢(r))| is increasing so
long as Y(r) and ¢(r) are both in U.

Notice that (0,0,1) of (2.5) is transformed into (0,0,0) of

Ccs cs
also W .
loc loc

cs
loc

(2.22). For the sake of notation call the image of W
Take 2z € U but =z 4 wizc’ clearly there is a y ¢ Un W so that

Z € Cy, but since y(r) » 0 as r - +», we cannot have yY(r) » 0O

=



without it leaving U first, by the lemma. Transforming this state- ‘

. . . cs :
ment back to the original variables gives us that W =W as desired.

Proof of Lemma 2.1.

Take U to be a ball of radius € > 0, so small that
[gw) = g | < &w-w]

for w,w € U. If P(r) is the evolution operator of (2.22) then { can

be chosen so that

P(r) (Cy nuy c C¢(r)

for y ¢ U so long as ¢(r) € U; 1i.e. these cones are invariant under

the flow. Suppose z ¢ Cy then 2~y ¢ CO and the associated solution

Y(r; ~ ¢({r) satisfies the equation
(2.23) (Y=-9)' =a@Y-9) + gy} - g(9)

and since Al > 0, it is clear that if § is small the function on

the right points inward on aco n U. -

The solution ¢(r) is given by the variation of constants formula.

¢(r) = e

r
Ary + f eA(r—s)g(w(s))ds
0

and so,
Alr r A, (r-s)
T(e) - en) =e T m(zmy) + [ e 1 (g(b(s)) - gle(s)))ds
0
1 Because ¥(s) - ¢(s) € C, there must exist a k, > 0 so that

EACITOMER-ITIONE <k 8lm (w(s) - wis))]




"

but then
Alr r Al(r—s)
[m (u(x) = &) | >e " |n (z=y)| - [ e k, 87 (¢(s) - ¢(s))]ds
1 - 1 0 1 1
Now if we assume that Inl(w(s) - w(s)) | < kzexsiﬂl(z—y)l where
A< Al (otherwise we would be done) we get

A.r

lm i) = et ] 2 e b (lm my) | - K8lT (zmy) D)

| v

Xlr
e (l—k6)|nl(z-y)]

If ¢ is chosen small enough the lemma follows.

We can now state and prove the uniqueness theorem.

Theorem 3.3. If f satisfies (Hl1l) and (H2) then the nonconstant solu-

tion of Theorem 3.1 is the unique one between 0 and 1.

Proof. We firstly fix some notation. From lemma 3.1 we know that for

each R, WR is a one-dimensional curve, and so WR\(u,v) has two
connected components call these W:(u,v) and W;(u,v), where they are
determined by the requirement O ¢ wg(u,v). Let TR(u,v) be the tan-

gent line to W. at (u,v) and Tg(u,v) be the half-line of

R
TR(u,v)\{O} that is tangent to wg(u,v), define Ti(u,v) similarly.
It is clear that the evolution map of the equation maps w;(u(R),v(R))

to W;(u(r),v(r)) i=0,1 if (u(r),v(r)) is a solution. A similar

. . . i
statement is true for the action of the tangent equation on TR.




Now let (u(r),v(r)) be a solution of (2.5} 1v.1:

vir) <0 for r <R, some R, and &(r) be th: mwasl

solution of the angular variational eguation (2.1%). 1f
then T;(G(R),;(R)) is the upper half of TR(G(R),G(P,;.

because Ti(0,0) points down and if B(R) > € it must 1 <as

the horizontal at least once if T;(G(R),G(R\) were polintins

would have passed through the horizontal twice. From the jroc?

in Theorem 2.2 it cannot rotate through more than an anzle of - -

but passing through the horizontal twice would require this.

Now suppose (ul(r),vl(r)) and (uz(r),vz(r)) are two s0Lart:
of the problem. Let ul(O) < u2(0) and suppose there 1s no solut:on

u{r) with ul(O) < u(0) < u2(0) nor any with u(0) < u_{0), then

1
either
1
(2.24) (ul(R),vl(R)) € WR(uz(R).vz(R))
or
0
(2.25) (ul(R)'vl(R)) € WR(uz(R),vz(R))

for all R sufficiently small. (2.25) is impossible by comparison
with equation (2.18). If (2.24) holds then since T(uz(R),vz(R)) 13
bounded away from the horizontal and T;(UZ(R),vz(R)) points up, for
R sufficiently small there is a point (u,v) ¢ w;(uz(R),vz(R)) with
v>0 and u > ul(R). Buth then since Tg(ul(R),vl(R)) is pointing
down there must exist another point (u3,v3) with the properties

(1) v

1 . _—
3 <0 and (2) T (u3,v3) is the lower half of T(u3,v3) which

is a contradiction to the Remark on p. 23.




Remark: We could have proved unigueness by reference to the full

PDE (1.3), the spectral properties of Theorem 2.2 mean that 1f there
- was more than one solution their Morse indices would not have added uyp

correctly. What we have done is a geometric version of the same idca

and is done without departure from the ODE.




Chapter 3

Generalities
I. LOCAL EXISTENCE AND UNIQUENESS

In this chapter we compile the appropriate generalities about
systems of reaction - diffusion equations, everything is standard
material except for section 1V. Apart from some reversion to the

scalar case in section II we will consider the system of equations

(1.1).

’

One of the basic spaces (1.1) can be solved in is:

B={u: R > R'|u is bounded and uniformly continuous}

I

where
lall, = lall, -

To be more precise, given u(x) € B there is a unique solution
u({x,t) which is a distributional solution of (1.1) with u(x,t) < B

for sufficiently small t and u{(x,0) = u(x).

The fundamental solution of the heat equation is
(3.1) K(x,t) = (4nt) V2 exp(-lxl2/4t1 .

It is a standard matter to show that u(x,t) ¢ C([{0,T],B) (the con-
tinuous functions from [0,T] 4into B) 1is a solution to (1.1) with

ulx,0) = u(x) if and only if each component ui(x,t) satisfies the

integral equation

t
(3.2) u, (x,t) = K(x,t)*u, (x,t) + [ K(x,t-s)*f_(u(x,s))ds
1 1 0 1

32
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where * denotes convolution with respect to x (it is here that the
boundedness of functions in B enters).

If (3.2) is considered as a system of equations (i = 1,...,m),
the right hand side is a mapping on C([0,T],B). A contraction mapping
argument then shows that for small enough T (3.2) can be solved for
any u(x) ¢ B, and furthermore T only depends on HLﬁlB. An appli-
cation of the Gronwall Inequality shows that the solution is unique and
continuous jointly in time and initial data. For details of these
arguments see, for instance, Rauch and Smoller [1].

To sum this up, the solutions define a local semiflow on B, i.e.

if we define
S{t)u(x} = u(x,t)

then S 1is a local semiflow on B.

IXI. COMPARISON PRIMCIPES

To obtain qualitative information about solutions of a parabolic
equation the main tool is usually the maximum principle. We collect
here some of the corollaries of the maximum principle that give order
relations between the solutions of a reaction - diffusion equation.

The first three principles refer only to the scalar equation, so
we assume u ¢ IR . Any functions u(x,t) mentioned are continuous on
some interval [0,T] into B, in the obvious fashion. Since smooth
functions are dense in B, we can assume u(x,t) is smooth when
proving inequalities such as those below, as the general case then

follows by taking limits.

]

.
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Principle 3.1. Suppose f(0) = ¢ and
(3.3) %% - lu - f(u) <2
in some domain o * [0,T] where R Assume fureioy
(3.4) u(x,t) < 0 on Moo 0T
(3.5) u(x,0) < 0
then
(3.6) u(x,t) <0 on * 10,7
Principle 3.2. Suppose
(3.7) 83U pu-fw) 2 oy - £ (W)
ot — ot
in some domain Q x [0,T] where 2o < Rﬁ Assume further
(3.8) u(x,t) > vix,t) on 37 x [0,T]
(3.9) u(x,0) > v(x,0)
then
(3.10) u(x,t) > vix,t) on . x {0,T]

Proof of Principles 3.1 and 3.2.

3.1 clearly follows from 3.2 bv

setting v{(x,t) = 0 and reversing the inequalities. 3.2 follows fruor

the standard linear maximum principle since, by the mean value theor.r

f(u) - £(v) = £'(n) (u~v) and so (3.7) becomes
2 (u-v) = A{u=-v) - f'(n)(u-v) > 0
it -
This is the standard argument, see Protter and Weinberacr [1]. {




A function wu(x,t) that satisfies (3.10), for anv soluticons
v(x,t) that satisfy (3.8) and (3.9) is called a subsclution. It :is

obvious that if {ul,...,un} are subsolutions then

u(x,t) = max u, (x,t)
. i
i=l,...,n

is also a subsolution. The analogous statements hold for super-
solutions.

Principle 3.3. Suppose we have Kk solutions of the inequality

(3.11) Aa + f(u) > 0
n k 1
say u,(x),-..,u (x) on &.,...,% . Suppose K = U 7  where
1 k 1 k .
1 10 =1
ct(.l)) © Int(8,) and 2, n 2, = ¢ for all 1i,j. Define
i i i 3j
- . 1
u(x) = u, (x} if x € 2]
i i

k
and suppose there is a neighbourhood U of ) 891 so that in U
i=1

u(x) = max u, (x)
i=l,...,k

then if wu(x,t) is the solution of

ut = Au + f(u)
(3.12)

u(x,0) = u(x)

it is nondecreasing in t and if 1lim u(x,t) = v(x), v(x) 1is the
£
minimal solution (if such exists) of

Av + £(v) = 0

. (3.13)
% vix) > u(x) .




Proof. Let vi(x,t) = u{x) then vix,t) 1is a subsoluticn for (3.12).

So u(x,h) > u(x,0), if wu(x,t) satisfies (3.12). Consider the func-
tion wi(x,t) = u(x,t+h), since it satisfies
=w + f .
W w (w)
by Principle 3.2 u(x,t+h) > u(x,t). wu(x,t) is therefore nondecrcas-

ing and if there is a solution w(x) to (3.13) we obviously must have

u{x,t) < w(x) and so 1lim u(x,t) = v(x) exists and v{x) < w(x). It
o
remains only to show that vi(x' satisfies Av + f(v) = 0.
We have
t
u(x,t+1) = K(x,t)*u(x,7) + f K(x,t-s)*f(u(x,s+1))ds
0

By repeated applications of the dominated convergence theorem
t

v(x) = lim u(x,t+1) = K(x,t)*v(x) + | R(x,t-s)*f(v(x))ds
T 0

Since wv(x) 1is then smooth it must satisfy
= +fv
ve Av (v)
But Vv is independent of t, so v(x) satisfies Av + f(v) = 0.

This proof is essentially that of Aronson and Weinberger's

proposition 2.2 [2].

We now return to the full system of equations (1.1) and define

invariant rectangles for the semiflcw S(t) on B. Suppose

m
. . m : . :
p = WT- [ai’bi] is a rectangle in R . P 1is an invariant rectangle
i=1
if the set




M(P) = {u(x) = (U, (x),...,u (x)) ~a, <u.(x) <b, i=1,...,m }
1 m 1

and all x ¢« R

is positively invariant (see definition 1.4). Weinberger [1] and

Chueh, Conley and Smoller [l1] have given sufficient conditions for a

/
rectangle to be invariant, we give these as Principle 4.
Principle 3.4. A rectangle P = TW" [ai,bi] is invariant for the 4
i=1
semiflow of (1.1) if, for all i =1,...,n
f.(u) <0 if u, = b
i - i i
£.(u) >0 if u, = a,
i i i
Remark: The condition says that f does not point out on the
boundary of D.
III. GLOBAL EXISTENCE AND SMOOTHING
For equation (l1.1l) it was remarked in section I that the local
time of existence depends only on lh}“m and so an a priori estimate
on |lu(x,t)|[m will suffice to prove global existence. If there is an

invariant rectangle P then there is a constant C, so that if
u{x) € M(P) then Hu(x,t)H°° < C. This means that S(t) induces a
global semiflow on an invariant rectangle. From now, we shall assume

that (1.1) admits an appropriate invariant rectangle and the semiflow

will be restricted to it.

b




Now suppose u(x,t) 1is a smooth solution of (1.11 wit!

u(x,0) € M(P) on aset D= _x [(0,T] or .. - [u,») ‘wire

1 . . 1 L
closed. Let D < int D with D closed, a standard «=oirmat:
sup[Vul in terms of supiui and information from th. . -iatri oo,
Dl D

the author does not know of a proof in the literaturs>, =short of
Schauder estimates which are unnecessarv here, we sketoh a @
Theorem 3.1. Under these assumptions, there is a constanu Zereiii:

the distance between Dl and 23D and P, say C, so that

(3.14) sup|“uj < ¢  suplul
Dl D
where |vu| =) l?ui] etc.
) i

Proof. Let Z(x,t) be a smooth cut off function so that

if (x,t) ¢ Dl Z(x,t)

]
=

if (x,t) ¢ D  r(x,t)

1]
O

and z(x,t) € [0,1] always. Consider the system of equations

(3.15) vt N
k . k : -
on D, where g is smooth and let v be a smooth solution. Set
2
w = C2 Z leklz + A z Vi
k k

Let K be a constant (bigger than 1) that satisfies

K> |p%z]?

*
I am grateful to Professor L. C. Evans for teaching me this method, it

is also related to an estimate in Chueh, Conley and Smoller [1].




S

w
L

where o is a multi index |, <2 and 1 < J < 2. At a noint of

maximum interior to D we must have

- Aw >
W w >0

computing and estimating, we get

0 j_Cz(wt ~ Aw) j_C2 z |Vvk}2(6K2 - 2X) + 2;2A

k

&~
<
Q

+ 2C4 z Vvk-ng + 8K2§2 E lekfz + BAL 2 ukVuk'Ti

k k k

where the last two terms are arrived at by using the fact that W, = a

for all 1i. For the last term

CZlVVkJZ . a(vk)Zval2
2

oievevg = (@od) - g < L >

for any a > 0, so let a = 4, then

0 < c® 7 Jov™2aak? - ) o+ 208 T VKR v 20t T aukeegk
K

k k

k2

+ 16AK ) (v
k

Now let gk(x,t) = fk(u(x,t)) and vk = uk, since u(x,t) € M(P)
for all t >0 and f is smooth it can be seen that there are con-

stants L1 and L2 so that

2
E Vu VE (u(x,t)) <L, E l7u, 17 .

Plugging these into the above

[
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2 2 | !
0 <27 |vu [2((214 + 2L)K° = V) + (2KAL, + 163K)§ lu, |°
k 2 1 “ k
k k
Taking A large enough the quantity
2KL1 + 16AK
2
A - (14+2L2)K
is positive and so
2 2 2
k k
This is true at a point of maximum, so throughout D
2 7 Ivu %+ Y ful? < e sup | tu )
k - k D k
but in Dl Z =1 and (3.14) follows.
As an application we can set D = R" x [0,») and
Dl = R" x [to,m). If u(x,t) 1is a smooth solution of (1.l) we get a
bound, on sup|Vu(x,t)| for all t 2t since ul(x,t) stays in M.
n
R

Suppose we replace the sup-norm topology on B with the compact-
open topology, then this says that M * [t,») is precompact in M for
each positive t, where M consists of smooth functions in M. Since

clo(M) =M and

clo(M) + [t,®) < clo(M ¢ (t,®)) c clc(M + [t,®))

B TR
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where cl and clC

0 refer to the sup norm and compact open topologies

respectively, M + [t,») 1is precompact in M, with the compact-open

topology.

To complete this picture we must show that the topology can be

switched without destroying the semiflow property. The only property

to be proved is continuity, this will be done in the next section.

IV. CONTINUITY IN THE COMPACT-OPEN TOPOLOGY

Given an invariant rectangle P for the semiflow S(t) on B,

when referring to the associated positively invariant set M(P) ¢ B we

shall assume it is endowed with the compact-open topology.

In this section we show that if P 1is an invariant rectangle the

mapping

S : [0,2}) x M(P) -~ M(P)

given by S(t)u{x) = u(x,t) 1is continuous. We could not replace the

topology on all of B and get a continuous mapping. The a priori

bound implicit in M is essential.

Suppose G = {Gi} is a sequence of compact subsets of Rr" so

C 8

that R = . Gi then the following quantity is a metric on M

@
1
dG(u,v) = z ~j Sup Ju(x) - vix)| .
i=0 2 xeG,

To prove continuity of S on [0,2) X M it suffices to prove

continuity of S(t) on M which is uniform with respect to t

in some




compact interval. This follows from the fact that for Fixecd
S(t)u 1is continuous in t, from section 1.
We will find a sequence of compact sets G = (G, 5o that

0 <t <T we have an estimate of the form

(3.16) d,(ulx,t),vix,t)) < c(T,N)d_ (u(x),v(x)) + ST,

with N a positive integer and

s(T,N) » 0 as N » ®
A

c(T,N) = = as N » =

Such an estimate clearly performs the desired function and we nrove it
in the following theorem.
Theorem 3.2. In the above notation, S : [0,®) X M - M is continuous.
Proof. Recalling the heat kernel K(x,t) from section I, with an
abuse of notation we think of K(x,t) as an m x m diagonal matrix
with this kernel as each diagonal element

t

(3.17) ulx,t) = | Kx-y,t)uly)dy + [ [ K(x-y,t-s)f(uly,s))dyds

mp 0 IRn

Let A © B both be compact sets and use the notation

lgt) [, = sup g ] = sup Zfg, (0]
Xe€A XEA

| A

lu(x,t) - v(x,t)lA [+ x(x-y,t)(uly) - V(y)]dyiA

B
Bc

t
+ [ 1] + [ Rix-y,t=s) (£(uly,s)) - £(v(y,s)))dy]|, ds
0 B B




F 33
s
———, A S —— .

< |ux) - v(x)lB + ce(A,B,t) +

. t
S f (kju(x,s) - V(x,s)[B + ce(Ad,B,t-s))ds
0
where
c > {sup |u(x)| : u(x) ¢ M’
and
k > {sup ]Du f(w] : 1 <i<m and u < M;

Now let the {Gi} be concentric balls of radius Ri. We use the nota-

(-]

ti G
ion (N) for the sequence of sets {Gi+N}i=O and dG(N) for the

associated metric, then

N
(3.18) dG(N)(u,v) <2 dG(u,v) .
For each 1, substitute A = Gi and B = Gi+N and sum over i with
the appropriate weighting.
1
+ =
diulx,t), vix,t)) j_dG(N)(u.v) c ? i e(G,,G, )

t
1
+ [ (kag o (ulx,s), vix,s) + ¢ I 7 e(6,,6;, ))ds
0 i2
whexre ¢€(A,B) = ¢(A,B,T) and we have used the fact the ¢(A,B,t) is

increasing in t. Using (3.18)




N : L
d;lulx,t), vix,t)) < 273 (u,v) + c(l+t) I — iS4
12
N
+ k 2 f d_(u(x,s), v(x,s))ds
0G

By Gronwall's Ineguality

N N
dG(u(x,t), v(ix,.t)) < 2Nek2 TdG(u,V) + c(1+T)ek2 Ty

s X e6..6. )
. 1 1
1

1+N
2

N
In the notation of (3.16) c¢(T,N) = 2Nekz T

k2Vr_ 1
c(l+T)e I — e(Gi,Gi+N). It remains to show that as N » «

i 2
§(T,N) - 0 for fixed T.

and §&(T,N) =

-n/2 f sup exp(- Ix-y|2/4T)dy

c XeG,
G,
i+N .

E(Gi'Gi+N) = (47T)

recalling that Gi is a ball of radius Ri

= (4rm) 2 / exp (- (]yI-Ri)2/4T)dy
GC
i+N
= ™2 ™ (- (r-Ri)2/4T)dr
Risn
= (4HT)-n/2 f (q+Ri)m_lexp(—q2/4T)dq .
R -R
i+N i

It is a simple matter to obtain estimates of the form

o

2
f qse-cq dq < p(R)e_c
R

R

a1




where p(R) 1is a polynomial in R of order s - 1 (unless s =1,
then it is of order 1l). These are straightforward if s = 0,1, for
larger s one integrates by parts and reduces to one of these cases.

From this we see that

m-1 i+N i
.G, < _ -
e (G i) SR

i .
We now choose Ri = 2 33, then

SO

. . i+l  _N
i+l m-1 i+l _N 3 (37-1)
a(Gi,Gi+N) < (3 -1) p(3 (37 =1))exp(-

We must show that

no matter which order the limits are taken in, since

N
_ k2T -i
§(T,N) = C(1+T)e g 27 (6,6, )

this will finish the theorem. For some constants cj(T) >0

. N
k2T
e e(Gi,Gi+N) A

i+l , N

3(i+1)(m-1)3(i+N+l)(m-2)exp[c2(__3 3¥-1)) + c32N]

= c,exp[ln 3((i+1) (m-1) + (i+N+1) (m-2)) +c2(-3i+1(3N-1)) + c32N1 i

Lot

-

[N

h o Tl o - W2'S)

—




If m# 1, and if m =1 it is even simpler. Dividing i riar

: i+N+ )
in parentheses by 3 1 we reach the desired conclusiorn. ﬁ




Chapter 4

Spherically Symmetric Solutions

I. MAIN CONTINUATION ARGUMENT

The construccion given in section II will allow us ©o pass struc-
ture between different invariant subflows of the semiflow for the
reaction - diffusion equation. These subflows will be related to
symmetries of the equation, whence their invariance. 1In particular we
shall pass from one space dimensional behaviour to spherically symmet-
ric behaviour.

We firstly express this in the abstract setting of a compact semi-
flow on a fiber bundle.

Definition 4.1. A semiflow S(t) on a space Y will be called compact

if Y « [t,») is precompact in Y for every t > O.

We shall consider a compact semiflow on a fiber bundle but the
structure to be continued will lie entirely within a certain subspace.
For the purpose of continuation the relevant features of the subspace
are given by the following definition.

Definition 4.2. Suppose 7 : E > A is a fiber bundle. A subspace

F c E is said to be continuous if (1) F 1is closed and (2) F is

an open map.

Note that any fiber bundle is a continuous subspace of itself. If

) EA = n—l(k), continuation involves deducing behaviour in the fibers
: E from that in E, , if ) is close to A_. If A, =E.  n A, that
y . A AO 0 A A
g A is continuous guarantees that this can be done from Ax to AA'
0
47
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The pieces of structure we shall continue are isolated invariant sets
and attractors (see Conley [1] and Yung [1]).
Let S(t) be a semiflowon Y and N be any closed subset of Y,

define the closed set
0 -
N =f{yeN:vy - [0, cN

A set I ¢ Y is an isolated invariant set if I < int(N) for some
closed set N and w(NO) = I, N is then called an isolating neigh-
bourhood for 1I. An isolated invariant set I 1is an attractor if it
possesses an isolating neighbourhood N with the property that

w(N) = I, such an N is called an attracting neighbourhood.

It is the property of being an isolating (or attracting) neigh-
bourhood that is stable under perturbation not that of being an iso-
lated invariant set or an attractor. If N is an isolating neighbour-
hood we call the set it isolates I(N). Even though N remains an
isolating neighbourhood for nearby semiflows, I(N) may change.

Now suppose we have a compact semiflow S(t) on the total space
E of a fiber bundle and that each fiber is invariant. If F c E is
invariant, that it be a closed subspace of E means the induced semi-
flow on F 1is also compact. In the following theorem, N is a closed
set with non-empty interior.

Theorem 4.1. Suppose A 1is a continuous invariant subspace of a

bundle, which carries a compact semiflow, if NA =Nn AA is an iso-
0 0
lating (attracting) neighbourhood in AA then NA =N~n AA is a non-
o]
empty isolating (attracting) neighbourhood in AA for A sufficiently

close to ko.




Proof. If N

A is an isolating neighbourhood then there exists a
0
closed set K and an open set V both in A} such that

A
0 AO 0

w(Ng ) < Int(Kx ) < Vx c NA .
0 0 0 0 k

But then there is a closed K ¢ E with int(K) # ¢ and an open set

VvV ¢ E so that K = KnA and V =V nA, , so that K -~V < N
A X X 3
0 0 0 0
and
0 .
(4.1) w(NX ) € Int(K n A) )y ¢ Vo AA < NA
0 0 0 0
Let NA =NNA, since A 1s continuous NA Ao (X)) is non-empty
for X sufficiently close to AO. Now NA n n-l(l) =NnA so it

suffices to show that

(4.2) w(NZ n n_l(B)) < Int(K n A)

for some neighbourhood B ¢ A of AO.

Suppose (4.2) were not true then there would be a decreasing
sequence of closed sets Bn so that n Bn = AO and (4.2) were false
for Bn' For each n, pick a Y, in w(NZ n n-l(Bn))
n(NA\Int(K N A)). Since the semiflow is compact on A, w(Nz n n—l(Bl))
is compact and since A 1is closed in E, w(N: n n-l(Bl))
n(NA\Int(K n A)) 1is also compact. But then the set {yn} has a limit

point y and by the product structure vy ¢ w'l(x ) and clearly also

0
y € N n Int(K n A) which implies y ¢ N, \Int(K n A, ). But
A AO AO
y € w(Ng n ﬂ-l(B)) n AA . It is not hard to see that w(Ng n n‘l(B)) =
0 -1 0 0 1 0
U (N, nm (X)) and so y € w(N_ nm “(A.)) = w(N, ) but this is a
AeB A 0 Ao -

contradiction to (4.1).




The same argument proves the theorem for attractin: rn.o: .l
hoods, one only need go through the proof removina all th..

of O.

A much stronger statement is really truc hero, namelw oo o
generalized Morse index (see Conley 1], Yuno [1]) shouli containu
through the fibers of such a subspace but that the akove twe @i

structure continue is sufficient for our purposes.

II. GENERAL APPLICATION

In this section we will construct a product space (i.e. a triv:ial
fiber bundle) which portrays both the spherically symmetric behaviour
in (1.1) and its one-dimensional behaviour and further, allows contirnu-
ation between the two.

We start with the product space E = M x [0,1] and extend the
semiflow on M by leaving the second co-ordinate fixed. We will
describe the continuous subspace A, that is of interest, by its
fibers.

If the underlying spatial domain in (1.1) is R  then fix a co-
ordinate system x = (xl,...,xn) on it. We describe A, = A Mo

in two different cases.

A <1 u € AA if u 1is spherically symmetric with the

origin considered as being at (igk, 0,0...0)




> =1 u < A. if u only depends on x

»

1"
Note that as & - 1, the origin approaches -* along the

this 1=

xl-axis and so the functions in A; tend to those in Al,

what makes A a continuous subspace and so is the essential contenst of

Proposition 4.1. All the functions in AA are functions of esscentialle

one independent variable, if X < 1 this is the radial variakle, if

L=1 it is x For each *» < 1 let

1
)A

X' =r-

A X
where r is the radial distance from the origin at (E:Tv 0,...,0).

A . .
If X =1 let x = x Considered as a function of x, for every

1°
A . . S
) we have that x = xl on the xl-ax1s. Given any u{x) - A, it is

clear that it can be seen as a function of xx so we often write u(x)
X
as ul(x ).

Proposition 4.1. A, as described above, is a continuous invariant

subspace of M x [0,1] - [0,1].
Proof. A is obviously invariant since A 1is invariant under rigid
motions. We need to show that 7 Al A > [0,1] is an open map and
that A 1is closed.

To show that “‘A is an open map, an open set C around u has

the following lengthy description

™
S

c={(v,\) : Iv’x) - u(x)l < e for x € K, K compact, v

X eI where I ¢ [0,1) is open}.




If u ¢ AA it must be shown that < intersects all other fibers A,

0
for A sufficiently close to ]O' This is clearly only a problem if
AO = 1. Suppose u - Al, then u 1is a function of Xy alone, sav
. . A b .
u = u(xl). Then consider v, - A, given by v {x) = u{x") if
A A ) Y X
x > - - Each vy and u agree on the half line x > = -y ¥°

it is clear that for a given compact set K, }» can be chosen suffi-
ciently close to 1 so that ivA(x) - u(x)f < ¢ for x « K.
To show that A is closed, again we need only worry about

un(x) € AA with Xn > 1. We must show that there is a u(x) « Al
n

such that un(x) ~ u({x) uniformly on compact sets if un(x) converges

in M. Restricting each un(x) to the x,-axis we get a sequence of

1
. 1 : 1 .
functions un(xl) that converge to a function u (xl), we define
u(x) = ul(xl), then it is obvious by the nature of AA that
n

un(x) »> u({x) 1in this topology. This completes the proof.

This seemingly innocent and simple result has fairly strong conse-
quences, for it says that attractors will continue from Al to AA

where A < 1. 1In Al we have effectively one-dimensional behaviour,
while in AA for X < 1 we have spherically symmetric behaviour. So
if there is an attractor for the one~dimensional equation we automati-
cally obtain a corresponding attractor for the spherically symmetric

equation. In other words, some stable behaviour in the one-dimensional

case yields associated stable behaviour for the spherically symmetric .

case.




i

There is, however, a drawback as we have on Al the compact-open
topology, which is guite inappropriate for discussing stability. The
remedy for this is actually restricting the discussicn to ancther
invariant subspace of A in which stable behaviour does occur. As we
shall see in the next section, in the application to the bistable equa-
tion the topology restricted to the invariant subspace will be close
enough to the sup-norm topologv to render an attractor.

So, if we have an attractor for the one-dimensional equation the
above procedure pulls one in from "infinity" for the spherically sym-
metric equation but it tells us nothing about the structure of the
attractor except that it is the maximal invariant set in some given
neighbourhood. For a particular situation the problem then is to
describe this maximal invariant set, for it contains the asymptotic

information about spherical propagation. In the next section we shall

do this analysis for our standing example, the bistable equation.

IIT. SPECIFIC APPLICATION
We consider again the bistable equation
(4.3) u, = Au + f(u)
where ue¢ R and f satisfies (Hl). We base the set M on the tri-
vial rectangle P = [0,1l], which is easily seen to be invariant. Con-

sequently (4.3) generates a global compact semiflow on M which,

collecting the pieces, is given by

M= {u: r" > nzl u(x) is uniformly continuous and 0 < u(x) < 1} . i

T U S S 0 s 1052 .. T
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The construction of section II of this charter autcrmit. i,
supplies us with the continuous subspace A of M < [0,1]. &
remarked at the end of section 11 to find an atiractor i1 & we
rest:rict the space further. In particular we roequ:re that o Iono°o
u € AA be nonincreasing in xx, which 1s an invariant corndic: oo,
Proposition 4.1 was not proved for this A but the prool ro:uire
only trivial modifications to cover this case, so A 1s a continur .-
subspace of M x [0,1].

For the one-dimensional version cof (4.3)

(4.4) u, =u o+ f (u)

we krow there is a travelling wave u(x-ct) with u(-=} = 1, u(+»} =

and ¢ > 0, which is monotone decreasing and so lies in A,. Becauro

of the topology in A this solution appears as a compact curve in A

1 1

running from 0 to 1,

Figure 4.1

let us call this compact set W.
In this section we shall apply a theorem that is proved in chapter

5 which says that W is an attractor in Al and analyse its ccntinua-

tion to AA' .




"

Theorem 4.3. With respect to the space Al, u T £ 1is an 1solat«d

invariant set, u Z 1 and the set W are both attractors. Mor<over,

for any ¢ < a and any a <« R the set

(4.5) Ula,e) = {ulx)) < A | u(a) < ¢

1

is an isolating neighbourhood. There exists a f < 1 so that for any

*
be R and 1 > ¢ > §

(4.6) V(b,8) = {ulx)) € A, | u(b)y > &}

is an attracting neighbourhood of u = 1. Finally if

W c U(a,e) U V(b,§)

then U UV is an attracting neighbourhood of W.

(Notation: as above, the dependencies of U and V will some-
times be suppressed.)
Proof. This follows from Lemmas 5.1, 5.2 and Theorem 5.2 in chapter 5,
section 2.

Let us now plug this information into A and analyse the continucd

sets. Consider the following three subsets of M x [0,1]

Uta,e) = {(u(x),x) | ula,0,...,0) <€, » ¢ [0,1]}
V(p,8) = {(u(x),A\) | u(b,0,...,0) > &, & e [0,1]}
N=UulV .

Then U n Al = U(a,e), V n Al = v(b,§) and N n Al =Uu V. So if

a, €, b and 6 satisfy the hypotheses in Theorem 4.3 we can conclude

by Theorem 4.1 that U n A, is an isolating neighbourhood, V n a

A A

and N n AA are attracting neighbourhoods for A sufficiently close

to 1. We can clearly write




ot
(22

A, 0 Ulae) = {ux’) ¢ A | ul@) <o)
A, 0 V(ib,8) = {u(xx) € A, | u(b) > &

As long as X < 1 we are already amongst spherically symmetric func-
tions and so the above statements about U, V and N can be trans-
n

lated into ones about functions u : R -+ R which depend only on r.

We set

u (a,e) = {u(r) | u(a) < e}

v (0,8) = {u(r) I utp)y > 8}

if a and b are large enough Us is an isolating neighbourhood and
Vs is an attracting neighbourhood, as is Us U Vs if b -a 1is
sufficiently large. We assume that these conditions on a and b are

satisfied and analyse the invariant sets.

Proposition 4.2. I(Vs(b,é)) =1 if § 1is close enough to 1 and b

is sufficiently large.
Proof. One can check easily that under these circumstances one of the
comparison functions in Aronson and Weinberger {2], see our theorem 1.1,

will be less than every element of Vs(b,d).

Since the semiflow is compact and US U Vs is connected,
m(Us u Vs) is connected and since O € Us’ I(Us) # ¢. The usual argu-

ment then shows that w(US U Vs) contains I(Us), 1 and orbits

running from the former to the latter. In particular I(Us) is not an




attractor, however we do have the following proposition; recall that
AO is just the set of spherically symmetric functions which are non-

increasing in r.

Proposition 4.3. u = 0 is an attractor in A

0"

Proof. It is a standard maximum principle argument that u 2 0 1is an
. n

attractor in the sup-norm topology. Take any compact set K ¢ R

which contains the origin, if functions in A satisfy an estimate on

0
K they satisfy it everywhere and so a neighbourhood in the compact

open topology is contained in a sup~-norm neighbourhood which 0

attracts.

This proposition shows that I(US) contains something other than
just u = 0. However we can show that the flow on I(Us) induced by
the semiflow of the equation is a gradient flow, that is there is a
functional V(u) which is decreasing along orbits except on constant
solutions. The functional V(u) 1is the standard energy functional

1 2 M
4.7 V(u) = | (5 [vul© - [ £(s)ds)dx
r" 0

It is a standard computation to show that along orbits

(4.8) SV = - [ ulax .
IR

The only reason (4.7) is not used more often is that the integrals are

often unbounded. However, here we can show that I(Us) c Hl(Rn)

£ 3
g
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which is in the domain of V(u) and so it irterits o o0 0 0 v : i

1
Theorem 4.4. I(Us) c H (Rn)-
Proof. We actually show much more, namely if we defin~ ti. = ¢

UT = {u e Us u - te US for all t < T-

then UT « T 1is contained in some set ZT which is clesed arid

consists of functions that are exponentially decreasing. 3inco
T S hl
I(Us) €U T for all T > 0, elements of I(Us) are exionentialley
decreasing and we can then estimate the derivatives to rrove the nroi .-
sition.
We will define a supersolution to the eguation u(r,t) with the

following properties

(4.9) u(r,0) > e

(4.10) lim u(r,t) <C e—mr some constants C, m > O
1>

(4.11) u(a,t) > ¢ for all t >0 .

Suppose that these three properties can be satisfied, then the function
min{a, u(r,t)} is also a supersolution on the unbounded annulus r > oa.
If ue Ulr then wu(a,t) < e for t < T and since u(r,0) = u(r) <«

for all r

u(r,T < min{oa, u(r,T} . .

So define ZT as the set of v(r) € AO that satisfy

v(r) < min{a, u(r,M} . ' |




From (4.10) o ZT consists of exponentially decreasing functiorn:z.
T>0

To define u(r,t) we use a method of Fife and McLeod's [1] from
their Lemma 4.1. Let v(x) be any solution of vXx + f(v) that is
nonconstant but lim v(x) = 0, i.e. the body of the fish in Figure 2,

X+t

that also satisfies v{(a) > €. Set

B(r,£) = v(r-p(t)) + ce"’

where c, k and p(t) are to be chosen. If p(t) >0 for t >0
and p(t) is bounded as t >, ¢ > ¢ and k < O then 4.9 - 11 are
satisfied.

We only need show that u(r,t) is a supersolution if u < a and

only on the half-line [c,») where v(c) = a and v'(c) < 0. We
compute
Li=u, -4 -24 -fQ) >4, -a_ - £(2)
t rr r r -t rr
(4.12)
= -p'v' + kcekt - v" - f(v + cekt) .

Consider two sets separately u ¢ [0,8] and u ¢ (§,a] where, for

constants 9 and q,
£'(u) < q, < 0 for u e [0,6)]
v'(r) < q, <0 for ue (§,a] .

From (4.12)

kt

Lu > -p'v' + kce (f(v + cekt) - £(v}) .

If u e [0,8)




Lu > -p'v' + ekt(kc - qlc)
If p'(t) > 0 then
L > ceftik - q,)

so pick k <0 but k >gq; then Lu>0. If uc [§,a] there isa

K so that
= k
Lu > —p'q2 + ce t(k - K)
SO we can set

. c(k~-k) kt
P —_— e
9

since k < K and a, <0, p'

| v

0, we can then set

p(t) = cgf-K) ekt + 2
95

to get Lu > 0 for all u ¢ [0,a]. Pick 2z so that p(t) > 0 for
t > 0, clearly p(t) >z as t >« and choose c¢ = ¢.

From this it follows that I(Us) consists of exponentially
decreasing functions and therefore these functions are in Lz(Rﬁ). To
estimate |Vu(x)| for u(x) ¢ I(u), take Q= {r | x> RO} and

Q' ={r | r> R} with Rj > R, then from Theorem 3.1 with

D=Q x [0,») and D' = Q' x [0,®)

sup |Vu| < c sup |u|
D' D

and so
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sup ITuI < ¢ sup jul
2 N ‘
for any u ¢ I(US). Since ¢ depends only on RO - Rl and iu} is
exponentially decreasing it follows that |7ul is also, which proves
the theorem.
That I(US) inherits the semiflow as a gradient flow means that

it consists of equilibrium solutions and orbits connecting them. All
the equilibrium solutions must be ones that would satisfy the boundary
conditions in Theorem 3.1.

If we suppose that f satisfies (H2), then there is a unique non-
constant equilibrium solution satisfying u(+®) = O (Theorem 3.3). 1In

this case I(Us) consists of u = 0, this equilibrium solution, call

it u, and orbits connecting them.
In w(US U VS) there are orbits running from I(US) to 1. Let

u(r,t) Dbe such an orbit, then 1lim u{r,t) c I(Us). If t is a large
tor—-x

enough negative number we can show that wu(r,t) is exponentially

decreasing in r and u(r,t) ¢ Hl;Rn). Pick T, a large enough

negative number so that wu(r,t) € U for all t < T, then there is a

sequence u so that u *« t > u(r,T) and u +* t € U for all
n & n n s
t <t so u *t €2 ™ but then u{r,T) ¢ N ZT and the above
~— n n n
T>0
follows as before.

oty

A consequence of the fact that u(r,t) € Hl(Bp) if t 1is large

]
£
3
;

negative is that 1lim u(r,t) is an equilibrium point in I(US) and f
tr-o

; - . : 2
now this limit can be considered in the L norm or the sup-norm.

»
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Suppose agair that { satisfies (H2) then the onlwy
solution uir,t) can approach in backward time is wu. Moreowve:r,
Theocrem 2.3 we know the spectrum of the linearized
and so we can apply the invariant manifold theorems in infinite Il

sions. For the equaticn

(4.13) ut = fAu + f£(u)

the linearized operator around u acting cn v is
(4.14) Av + £'(U)v = Lv .

We consider o(L) with respect to the space Lz(EQW with thae
measure zn-ldr, then it is standard that o(L) € R and the
essential spectrum is contained in {-=,b] where b = f'(0) and s»

b <0 (by Hl). But then from Theorem 2.3, o(L) n [0,®) consists or
only one point X and XA > 0. Then from Theorem 5.2.1 in Henrv 1},
there is locally at u  a one-dimensional unstable manifold which con-
sists of all solutions that approach u in negative time.

From this we see that there are only two solutions leaving u,
one must go to O and the other to 1. So if £ satisfies (H2) we

have a complete description of the spherical attractor ws, pictori-

ally.

O

Figure 4.2

b,
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Charter 5

Spherically Symmetric Solutions in a Moving Frame

I. EXTENSION OF CONTINUATION ARGUMEN

The space A < M x [0,1] of chapter 4, section II inherited 1it=z
semiflow from M x [0.1] which comes from the equation in question.
In this chapter we endow A with a family of semiflows that do not
leave the fibers invariant. Studying the behaviour in Al and 1ts
relationship to the rest of these semiflows will give much finer I:7..0-
mation about the propagating solutions. We will not present this
application until section III of this chapter, but the construction of
the semiflow should serve as motivation for the generality of the
theorems and propositions in section II. The statements in this section
are to be understood in the context of a general system of reaction -
diffusion equations, but the remainder of the chapter is exclusively
about the bistable equation (1.3) where f satisfies (H1).

Let us call the basic semiflow on M, S(t). We shall define a
semiflow, called H(t), on the space A x [0,»). Firstly we define a

translation map on A,

T : RXA>A

by the formula (recall A c M x [0,1])

(5.1) T(a, u(xl,...,xn),X) = (u(xl+a, x2,...,xn),A')
where
a+ (\/ )
1-X .
(5.2) A=
1+ at+ (x/l-k) :
63
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It is clear that if u(xl,...,xn) < A\ then u(xl+a, xz,...,xn) AL
where ' is given by (5.2), so T is well defined. Since transla-
tion is continuous on M and X' is a continuous function of * and
a, from inspection of (5.2), T : R x A -+ A is continuous. Intu-

itively T translates functions in the Xy direction and moves them

over to the appropriate fiber. Notice, from (5.2) that Al is
invariant under T, as it should be.

For ¢ ¢ [0,=), we use T to define a semiflow H _(t) on A.
(&

Let (u(x).)) ¢ A, define

(5.3) Hc(t)(u(x).k) = T(ct) (S(t)ulx),r) .

If ¢ >0, as t > «, Hc(t) pushes all of A onto A intuitively

1[
it pushes the origin out to -=». Consequently the asymptotic analysis
for this semiflow will depend on its behaviour in Al' Hc(t) gives

the evolution of the egquation but viewed while moving out in a radial

direction with speed c¢. Restricted to A the semiflow is that of

ll
the one-dimensional equation in a moving co-ordinate frame, so we will
see how the asymptotic behaviour of the spherical solutions is deter-

mined by the one-dimensional equation at different speeds.

For each t > 0, define H(t) on A x [0,x) by
H(t) ((u,r),c) = (Hc(t)(u,A),c)
It is clear that H defines a semiflow on A x [0,») that contains

Hc(t) by restricting to A x {c}.

We must turn now to analysing the asymptotic behaviour of the one-

dimensional bistable eguation in various moving co-ordinate frames.




m
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II. ATTRACTOR IN ONE DIMENSIONAL CASE

For the standing example we assume again that f satisfies (H1)

(see chapter 1). 1In Al there are functions of a single variable,

call it £, which are nonincreasing in £ and stay between 0 and 1.

The semiflow Hc(t) when restricted to Al is that of the equation

(5.4) u = u +cu, + f(u)

t £g £

where & = xl—ct, so this agrees with previous notation when ¢ = 0.
The set W is the union of O, 1 and all translates of the
travelling wave, which is invariant under each of the semiflows H (t).

The main goal of this section is to prove that W is an attractor for

* * -
ce¢ [0,c], some ¢ > c¢, relative to A

1

The strongest stability results for the travelling wave are due to
Fife and McLeod [1]. Specialising some of their results to the present
case reads as follows.

Theorem 5.1, (Fife and McLeod). If £ satisfies (H1) and

0 < u(x) <1 is uniformly continuous, x ¢ R, and satisfies

lim inf u(x) > a and 1lim sup u(x) < a
X>=—-00 X>+4c0

then there is a constant xo such that

lim ||u(x,t) - u (x - ct +x )|l =0
oo 1 0" e

where ul(g) is the one-dimensional travelling wave. Further, the

limit is uniform over a sup-norm neighbourhood of u

1"




This could be described as uniform asymptotic stabil:t @ -
travelling wave. Fife and McLeod actually rtrove a much stront. :
namely exponential stability, but we shall not use this.

Before proving that W is an attractor, the local dynamical
perties of the constant solutions u = 0 and u = 1 must be ztaiio:,

In the topology of A a closed neighbourhood cf >, 1i.e. 2

1

with non-empty interior containing O, 1is a set which deprends on a
compact set K and a positive function g(f) defined on K. Such a

set is then defined as (recalling A, < M)

1

UiK,g) = {u e A u(g) < g(g) for & e K3

L |
A neighbourhood of 1 is given similarly

V(K,g) = {v e A v(g) > g(g) for £ e K}

L |

If K = {a}, then we write U(a,e) and V(a,e) where ¢ = g(a),
this is consistent with the notation of chapter 4.

Throughout this chapter we shall apply the comparison principles
of chapter 3, section II to the equation (5.4), it is trivial to ext;nd
each one to cover this case.

Lemma 5.1. If € < a, for any a, in the c-semiflow on Al,
u =0 1is an

(A) isolated invariant set if ¢ > c > 0

(B) attractor if ¢ > ¢

and U(a,e) 1is an isolating (in case (A)) and attracting {(in case (B))

neighbourhood.




Proof. To deal with Case {(A) define

Uo(a,s) = {u ¢ U(a,e) : u*r (0,®) < U(a,e)}
c c

"y n

where refers to the action of the c-semiflow. From chapter 3,
it suffices to show that wC(Ug(a,E)) = {0}, where wc refers to the
w-limit set in the c-semiflow. This will follow if we can show that
given any neighbourhood U of 0 there is a T so that

US(a,e)'C t ©U for all t > T. By Comparison Principle II it is

obviously adequate to find a solution to (5.4) so that if

v(g) € Ug(a,e) then

v(g) < u(g,0)

and u(f{,t) > 0 in Al.

From theorem 5.1, if ¢ < ¢, then V(&) ¢ Ug(a,s) implies that

lim v(§) < a. So we need only construct a solution with u(%,0) > 2
£>—0

if £ <a and u(g,0) > e if & > a.

Transforming (5.4) into a system yields

w' =2
(5.5)
z' = ~cz - f(w) .
If ¢ = 0, the phase portrait is in Figure 2.1, for ¢ > 0 it is

L3




Tigure 5.1

The important fact here is that for aay 0 < € < & the soluticn with
w(0) = ¢ and 2{0) = O must cross the line w = ¢ in the lower half

plane, let d be the point that gives w(d)

o and z{c) < 0. DNow

J’ a if £<a+
u(g) = (w(-a) if a+d <€ <a

€ if £€>a .

define u(f) by

[

Then u(f) satisfies the hypotheses of Comparison Principle III and so
clearly u(g,t) >0 as t =~ = uniformly on compact sets. Bat also if
£ <a, u(,0) = u(f) =a and u(g,0) > ¢ if £ > a. So u(gf,t) per-
forms the desired function.

Now suppose c > c, for case (B), to show O is an attracter we
need wc(U) = {0}. As before we construct u({f) so that v(§) € U

implies v(£) < u(f), and u(f,t) » 0 in A But by thcorem 5.1

lu
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any function in Al which satisfies (i} ¢ < 1lim u{i) < a and (ii)
X+

u(g) =1 if § < a (of which there are obviously many) will have

u(f,t) - 0 in Al, since such a function will obviously majorise U,

the Lemma is proved.

* -
Lemma 5.2. There is a ¢ > ¢ so that u = 1, 1in the c¢-semiflow

on Al, is an

(A) attractor if 0 < ¢ < c

* -
(B) 1isolated invariant set if ¢ > ¢ > ¢

and if 1 > 8§ > o then, for any b, V(b,8) is an isolating neighbour-

hood in case (A). For each ¢ in (B), there is a § so that V(b,3)

is an attracting neighbourhood, for any b.

Proof. The proof is very similar to that of Lemma 5.1. 1In case (A) a

function u(f§) below everything in V(b,§) can easily be found if

§ > a and by Theorem 5.1 u(f,t) > 1 in Al.
For case (B), by Theorem 5.1, Vg consists of functions v(§)

which satisfy v(g) > o for all ¢g. If c* is not too much bigger

than ¢ the unstable manifold of (1,0) intersects the line w = a

- *
in the lower half-plane for the system (5.5) with ¢ < c < ¢ .

>

B

3




Pigure 5.2

- *
So for each ¢, ¢c < ¢ < ¢ there is a &8 = §(¢) such that if

(w(€),2(£)) satisfies w(0) §, 2(0) = 0 then there exists d > 2

so that w(d) = a and z(d) < 0. Now define u(f) by

8 if £<a-d
u(g) = (w(f - (a-qd)) a>g>a-d
o if £>a

u(f) satisfies the hypotheses of Comparison Principle III and so

u(¢,t) +1 in A But also if wv(f) < Vg(b,S) then v(£) < u().

1°

This completes the proof.
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Remark: The conditions under which Lemma 5.2 gives an isolating
neighbourhood of u Z 1 are a little cumbersome, but the following
three simple points will help.

(1) If Vv(b,8) is an isolating neighbourhood for a given ¢ > ¢
then it is for all c¢' which satisfy ¢ < ¢' < c.

(2) If V(b,8) is an isolating neighbourhood for c¢ > ¢, then
so is V(b,8') if &' satisfies 1 > &' > &,

(3) If the solution to (5.5) with z(0) = 0, w(0) = ¢ crosses
the line u = a in the lower half-plane then V(b,d8) 1is an isolating
neighbourhood for the c-semiflow.

Before proving that W is an attractor we must consider some
slightly more exotic neighbourhoods of 0 and 1. For each c € [O,c*],
where c* is the same as in Lemma 5.2, and each € < a sufficiently
close to o the solution of (5.5) with w(0) = € and z(0) = 0 must
cross the w-axis between a and 1 in backward time. Let d < 0 be
the largest number such that z(d) = 0 and set § = w(d). Let
Ka = [a,a-d] and ga(é) = w(f - (a-d)) with domain K. Suppose

e-d < a, then we will use the sets Uc(Ka,ga) and Vc(Ke,ge) given

by

{fuea

u(g) < w(f - (a=-d)) for a

A
™
| A
j+!]
]
[oN)
o

Uc(Ka'ga) 1 ‘

{fuea u(g) > w(g - (e-d)) for

1
| A
fiasd
| A
1]
]
Q
o

vc(Ke'ge) 1 l

The picture is
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Figure 5.3

Uc(Ka,ga) consists of functions kelow the right hand curve and

Vc(Ke,qe) of those above the left hand curve.

*
For each c € [C,c ] these sets are isolating neighbourhcods of

0 and 1 respectively as they are ccntained in sets of the form found

in Lemmas 5.1 and 5.2. Namelv, Uc(Ka,ga) c U(a-d,e) and
Vc(Ke,ge) c V(e,8), the fact that w exists implies that § is clcse
enough to 1 for V(e,8) to be an isolating neighbourhood by remark
(3) after Lemma 5.2. The crucial property of these sets is that they
give us a positively invariant neighbourhood of W.

Lemma 5.3. For any 0 < ¢ <a and any ¢ € [O,c*], if e-d < a

then the set
UC (Ka,ga) 8] vC (Ke ,ge)

is positively invariant in the c-semiflow.

Proof. Let u(f) ¢ Uc(Ka,ga) then we must show that

, ol .
ul{g,t) ¢ Uc(Ka.qa) v \C(Ke,ge) for all positive t. So there are two

things to prove:




i
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(1) If ul(E,m) e U (K_,g) but u(g,t) ¢ U.(K_,g) for t >
but close to 1 then wu(f,1) ¢ Vc(Ke,ge) and (2) the same as (1) with
the roles of Uc and VC reversed. The proofs of (1) and (2) are,
not surprisingly, almost identical, so we only prove (1).
Now suppose u(§,t) is a solution of (5.3) with u(f,7) ¢ UC(Ka,ga).
Since g on K is a solution of (5.3) itself then wu(f{,t) ¢ U (K_,g}
a a c a'’a

for all t

| A

T unless, by comparison principle I, u(f,t) ¢ Uc(Ka,qa)

for 1 < t

A

TO and u(E,ro) = qa(ﬁ) for & «¢ BKa, i.e. £ = a or

]
>

£ = a-d. Since u € A is nonincreasing, if u(a,TO) = ga(a) we

1

have u(i,TO) € VC(Ke,ge)-

Suppose u(a-d,TO) = w(0) = € then the following inequality holds

(a‘d,TO) + f(u(a—d,ro)) < wgg(O) + cwE(O) + £(w(0))

u g(a-d,ro) + cu

£ £

the last terms on each side are equal. Since wE(O) 0 and ug < 0,

if the inequality were not true we would have

(a—d,ro) > w,.(0)

Yee £E

but this is impossible since u(a-d,ro) = w(0), ug < 0 and
u(g,ro) < w(g) for £ < 0 and close to it.
The above inequality implies that ut(a-d,ro) < 0 and so this

does not provide an escape from UC(Ka,ga). This completes the proof

of Lemma 5.3.
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We will show that the set UC L Vc of Lemma 5.3 13 1n attra o
neighbourhood for W for each c-semiflow, the travelling wav
and 1 attached). But for the sake of hygiene, we give a more .

described set that is contained in UC L Vc. In the definition -7

)
/

(]

’

and Vc' § = w(d), so S depends on ¢ and setting = = “(

define

- *
§ = sup{8(c) : c ¢ {0,c 1:

ol

which is clearly less than 1. With b = e-d, if & >

U(a,e) v V(b,8) < Uc(Ka,ga) v Vc(Ke,ge)

*
for all c¢ which satisfy O < c < c . Note also that if b is

sufficiently smaller than a then W < U(a,e) u V(b,8). We are free

to choose € < o as this is free to be chosen in Uc and VC, but
must satisfy & 3.3, which depends on €. We will see in chapter 6
that it is useful to have no restriction on €, the restriction on ?

is unimportant.

Theorem 5.2. If c € [0,c*] then W 1is an attractor in the c-semiflow

and there exists a & > a so that for any € < a if
W c U{a,e) U V(b,9$)

then Uu V is an attracting neighbourhoocd for W in each of these
semiflows.

Proof. Consider mc(U uv) = D since Uy V< U_ U v (the depend-
encies on Ka,a etc. are being suppressed, it is assumed they satisfv

the requirements in the preamble for the theorem) we have

D ¢ .3. .
c wc(Uc v Vc) cu_ v Vc' by Lemma 5.3. O ¢ D and 1 ¢ D_




e
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Suppose a solution u(£,t) 1is in Dc' then it is defined for all

t ¢« R and u(f,t) ¢ Uc U Vc for all t. (Recall that 1 = xl—ct.)

Consider the case ¢ < ¢, either (A) u(f,t) -0 as t -~ or
(B) wu(¢,t) > 1 as t -+ «, If (A) happens we cannot have

lim u(f,t) = 0 unless there exists a T such that u(%,71) 4 Uar 1.0,
t>-o

u(g, 1) € Vc but then 1im u(f,t) = 1 since Vc is an attracting
£

neighbourhood of 1, which contradicts (A). So (A) implies that

lim wu({,t) =1, which is impossible, so (A) is impossible and (B)

tr—-x

holds. We cannot have 1lim u{f,t) = 1 as it is an attractor, =c
tr—-

lim u(g,t) = 0.

tr—-

By analogous arguments, if ¢ > E, we must have 1lim u(f,t) = O
oo
and lim u(§,t) = 1.
t>—w
Since the same statements obviously hold for wC(UC v Vc) , a con-

sequence is that for c¢ # c

w (UuvvVv) =w (U uvuv)
c c ¢ c

The inclusion from left to right is trivial but if u(f,t) ¢ LuC(Uc L VC)

for all t then 1lim u(f,t) =0 (if c < ¢c) and since U is a
t>->

neighbourhood of 0, wu(f{,t) must be in wc(U U V) as well, it is a

similar argument for c¢ > c.

Suppose vVv{(£) € Dc then clearly v(&+a) will also be in DC

1 1

lim v(£,t) = lim v(f+a,t). Also there is a vT(E;) €eD cU vV
tr=c0 tF>=c0 cl 1 1

such that




V() = Hcl(T)VT(;)

- but then VT (5 - (cz-cl)T) € Dcl and

1

HC2(T)VT(€ - (cz—cl)T) T((cz-cl)T)Hcl(T)VT(E - (c2-cl)T)

HC (T)T((Cz—cl)T)VT(E - (c

-c_)T)
1 1

2

Hcl(T)VT(E)

=1e]

V(g) = HC (T)VT(E - (c

-c)T)
2 1

2

this implies v(£) € wc (Uc v VC ), but by the same argument as above
2 1

1
w (U vV )} =uw (UC u Vc ) = W (Uu V). So vI(E) ¢ Dc implies
2 ‘1 4 ‘2 “2 2 2 1

v(Eg) € Dc if c. #c¢ i =1,2, call this common set D. We must
2

show that DE = D. Let u(g,t) be an orbit in DE' then either
u(g,tn) € UE n VE for a sequence tn -+ =o, u{f,t) ¢ U for all large
negative t or u(f,t) ¢ V for all large negative t. In the former
case, it is a simple consequence of Theorem 5.1 that wu(f,t) would be
the travelling wave and so in D. In either of the latter cases
Hc(t)u(g,o) would lie in U or V respectively for some c # ¢ and
large negative t. This is either impossible or it puts u(g,t) in D.
The proof will be complete if we can show that D = W. We con-
sider D in the c-semiflow (for the sake of notation, we shall drop

the ¢ in "+."}.

y
i
i
H

§
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Define the set s(U), for a given set U, to be the set of u(”
where wu(f+s) ¢ U. We firstly show that if u < D either (1)
u € s(Uc n VC), for some s, or (2) wu(§) < ¢ for all I or (3)

u(g) > 6 for all £.

Suppose necither (2) nor (3) are true then there is a ¢ so that
€ < u(f) < §. It must be true that 1lim u(f) < = and lim u(i) ~ -,
E,-‘,,\.oo T-ecx

otherwise some translate of u(f£) would not lie in u_ v and this
<
is impossible as D is translation invariant (argued above for @b,

c # E) and D c U~ L V-
c C
It follows that the set

G={p+ R | u)« s(v2)]

is non-empty. Let s = inf G, then s ¢ G as VC is closed. We

claim that u(f) < S(UE)' if this were not true there would exist a
p so that both ul(§) % p(VE) and ul(f) 4 p(UE) by minimality of s
and the fact that UE is closed. But this is a contradiction as we

would then have u(f+p) ¢ Uz U Vo, and u(f+p) ¢ D € Uz v Vo.

So one of the alternatives (1), (2) or (3) above is true of
u(f) ¢ D. If either (2) or (3) were true, since D is invariant, we

would have u(§) ¢ {0,1}. So we have shown that

(5.6) Dc {0,1} U ( U s(U=n V=2))
c c
se R
But it follows easily from theorem 5.1 that wE( U s(UE n VE)) W

se€ R

and so mE(D) = W. Since wE(D) =D, D=W.




From above D = WC(U Lt V) for anyv ¢ - {I,c ] and this oo

the proof of the theorem.

Remark: (1) 1In lemmas 5.2 and 5.3, 2 ard 1  are nos o
for the case ¢ = E, this is because thev obviously are -
in that semiflow, the travelling wave 1is a string ~f -ri-:-al
that approaches both of them. (2) From Lemmas 5.1, 3.0 ani Ti. »o-

we have all we need for the theorems of chapter 4, sectiocr 11
specialising to the case c¢ = 0. Note however that we Jid not v -
this case in isolation, the above proof depended crucially on us_r: *:

spectrum of semiflows.

III. APPLICATION OF EXTENDED CONTINUATION

Again we consider the bistable equation (1.3) where f sativ::i.:
! (H1) ((H2) is not needed in this section at all).

We will apply the semiflow of section I and the results of =seccti
II to the question of how solutions behave when followed out in a
radial direction with speed c¢. If wu(r,t) is a solution, for a iw.:
¢, we want to study its behaviour along lines r - ct = constant. -
for any pe€ R set r = p+ct and we get a function v(p,t)
u(p+ct,t) whose domain is time dependent i.e. p > -ct. However, fo:

each p ¢ R there is a T so that if t > T v(p,t) 1is defined ani

so it makes sense to try and determine

e Tl o g .




(5.7) lim u(p+ct,*)

o

for every p ¢ R and this reprecents meving out in a radial dirc-ocion

with speed c. We can use the scmiflow construct«d in seztion T of
this chapter to determine (5.7).
. *
From secticn [ we have a semiflow H({%) on the space A x [I,c 1.

iet us consider the results of section IJ in this context.

b
i

*
In Al x [0,c ] <there is a two-dimensicnal invariant nanifcld,

*
namely W « [0,c ] with the following flow on it

AN

AN

A 4

h g

Fiqure 5.4

where ¢ is the speed of the one-dimonsional wave, as usual. This

*
rar fold is an attractor in Al x [0,c ], by theorem 5.2, with an

t* ¢ r3 reighbourhood given by




1)

*
{Uta,e) v V(b,8)] x [2,c ]

where a, ¢, b, & satisfy all the conditions given in section II.

We will compute (5.7) for initial data u(r) - AO that satisy
(5.8) lim u(r) < «
>+
(5.9) u(r,t) 1 as t -~ «, uniformly on

compact sets.

Theorem 5.3. Suppose ufr) ¢ A satisfies (5.8) and (5.9) then there

0
is a function ¢(t) = o(t) so that
(5.10) Lim [ju(ptet+#(t),t) - u (p) ' =0
t>oo

where ul is the one-dimensional travelling wave and its speed is c.

Remarks: (1) The theorem says that any spherically symmetric
solution (with the restriction of bz2ing in AO) which propagates
(condition (5.6)) takes the shape of the one-dimensional travelling
wave as t > +«,

(2) The function u(p+5t+¢(t),t) is actually defined on
a time-dependent domain of p's. For the norm to make strict sensec we

can extend the function to be constant for » < -ct-¢(t) .

(3) An alternative way to stating (5.10) would be

(5.11) lim [lutr,e) - u (e=Ct-v(e) |[ =0 ,

tro

+ R .
where the supremum is now taken over r ¢ R . This is how the state-

ment of theorem 5.1 was made. It is clear that (5.10) and (5.11) are

equivalent.
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The main idea in the proof of theorem 5.3 is a shooting argument

for the semiflow H(t). From knowing the behaviour of 1lim Hc(t)u
ot
for ¢ < ¢ and ¢ > ¢ we shall make a conclusion about lim Ha(t)u.
tteo

(Notation: we shall denote an element of A by the component that is
a function in M, the A-co-ordinate is implicit in the symmetry of
this function.)

We will need a perturbation statement similar to theorem 4.1 but
for this extended semiflow on A X [0,®). A neighbourhood of a function
vi{x) € A,, depending on a compact set K, contained in the xl—axis,

1

and an € > 0, 1is of the form
(5.12) {ux) | |lux)-v(x)| < e for x ¢ K}

Let U be such a set, or a union of such sets. Let UcM be defined

by the same inequalities. Set

(5.13) U= (ux [0,1]) n A

(5.14) vh=Un o ox (1) .

(It is to be understood that if a Roman letter refers to a set, the
corresponding script letter refers to the associated set given by (5.13).
Similarly, if a superscript A appears.)

Let I ¢ [0,) Dbe compact and N =U x I c A x [0,»). N and NA
have their obvious meanings. In the following "+" refers to the
action of H(t) on A x I.

Lemma 5.4. If, for some 1 > 0

(5.15) c2(N ¢« [T,»)) < Int(N)

o B




[

‘ then there is a X < 1 so that !
LA B
(5.16) ci{N + [1,=)) < Int(N)

Proof of Lemma 5.4. It suffices to show that for each -, - - o

there is a A < 1 so that
3 N
(5.17) clL(N" [Tl,rzl) = Int(N )

Setting T, =T T, = 2t in (5.17) and iterating yields (5.1¢).

sC thav

We can pick an open set V and a closed set C, in Al'

Vc Cc Int(N) and

(5.18) cl(N - [Tl,TZ]) cv

Now suppose there is no A for which (5.17) is satisfied. Then
b

: . n
there is a sequence {un} with u € U, An + 1, sequences {cn

and {t } so that (u_,c ) * t_ ¢ V.
n n’'n n
H(t) 1is a compact semiflow as compactness was proved by a global
derivative estimate which is obviously preserved under translation. It
follows that {(un,cn) . tn} has a limit point. We can assume that
(u,c) e+t >u,c +c' and t_=- t'. Using the fact that
n n n n n

{(un,cn) . Tl} is precompact, it is a standard argument to see that

. ' . [} -
(un,cn) tn and (un,c ) t have the same limit.

| Let {vn} be a sequence in U so that u,-vo> 0, for instance
let vn agree with u on the xl—axis above -An/l-xn. In theorem
3.2 we actually proved that the semiflow is uniformly continuous with

respect to initial data, this is a consequence of estimate (3.16).

e et it el
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is then evas

It follows that this is also true for H(t) on A. It
check that (vn,c') + t' » u, but u ¢ VvV and so this contradicts
(5.18) .
Proof of Theorem 5.3. Let u(r) « AO satisfy (5.%) ard (5.9) Fecalli-
ing c* from section II, if ¢, 1is between 0O and c, set
*
I=/{c,,c] and E =u x I.
There is a set N = (Ut V) x I which is an attracting neichbcur-
hood for the two dimensional invariant manifold of Figure 5.4. Bv
Lemma 5.4, there is a X <1 and 1 > 0 so that
cQ(Nx o [1,°)) < Int(Nk). Since c* > 0, w(N)) c Al and so NE iz an
attracting neighbourhood.
If b is large enough T(b)E < NA by condition (5.8). Conse-
quently w(T(b)E) c W x [c*,c*].
Let d be a metric on M. Pick any B so that 0 < g < d4d(0,1).
separates M into two open sets, its

The sphere S = {u | d(u,1) = B}
*
interior and exterior D = (S x [0,1]) x [c,,c ] also separates

*
A x [c,,c ] into two disjoint open sets, with O in one of them and
t H(t)(T(b)E) inter-

1f we can show that for large

1 in the other.
sects both these sets, then by connectedness it must intersect D.

We will show that for any fixed b > 0
71 if c<c
Lim H_(t) (T(b)u) =<
lo if e>c . v

(5.19)
£t
b it is true for every b, by

If (5.19) is true for one particular

To prove the second part, with the c-semiflow

translation invariance.




on A, O 1is an attractor by lemma 5.1 with U as an attracting *
neighbourhood. By lemma 5.4 there is a Ux which is an attractinc
neighbourhood for 0. If b is large enouah T(b)lu < Uu ard so the
limiting behaviour follows.

For the first part, consider the set G = {u(r,t) ' u{r,0) = ulr)-
By lemmas 5.2 and 5.4 there is an attracting neighbourhood of 1, VX,
for the c-semiflow if 0 < ¢ < c. If b is large enough
T(b)G n Vx # %, since 1 ¢ ci(T(b)G) by (5.9) and translaticn invari-
ance. But then lim Hc(t)(T(b)g) =1 for some g ¢ G. Since

trtoo

g = ulr,t), for some T, the first part of (5.19) must hold.

We now know that for each large -, ®#{t)(T™MbfL)’ " intersects D.
Then there is a function c¢(t) such that Hc(t)(T(b)u) € D. As
tr+o, H (T(blu) > W x (c*,c*], but D 1is closed and there is only

c(t)

one point in W that is a distance £ from 1, so (T(b)u) con-

Ho (o)

verges to this point, which is not 0 or 1 and therefore is a

travelling wave, call it uy -

Rewriting this quantity by restricting to the x, 6 -axis and letting

1
y(t) = c(t)t, we get

(5.20) lim u(x, + v(t).t) = u,(x,) .
oo 1 171

(5.20) is actually in the compact-open topology but since everything is

nonincreasing in xl (if it is > =-y(t)) then (5.20) also holds in

the sup-norm. Letting vy(t) = ct + v(t) and p = X, we have (5.10).

1

That ¢(t) = o(t) 1is an easy consequence of (5.19).




Uy
n

1

Remarks: (1) What 1s most interesting in Thecrem 5.3 1s that onlv
knowledge of one-dimensional behaviour is used. We prove nothina
directly about the spherically symmetric solutions exceprt by rerturba-
tion from their one-dimensional limiting behaviour.

(2) It is not hard to see that #(t) = -» as t~+», s0 the
spherical wave may lag behind the one-dimensional wave, but dces not
get ahead. This follows from the fact that any solution to the one-
dimensional equation is a supersolution for the spherically symmetric

equation and such a solution can easily be found which majorises ul(r)

and tends to the travelling wave (by Theorem 5.1).




Chapter 6 !

Conclusion
I. INTERPRETATION OF RESULTS

In the first two sections of this chapter, we shall Jdiscus: o 0 -
sively the bistable equation (1.3) with the nonlinearity satizfy i
(H1) and (H2).

At the end of chapter 4 we found a set, called ws, £rat 1i:
attractor in the semiflow on AO (the world of spherically syvmmesric
data). It is perhaps not clear what the fact that this set is an
attractor means for the behaviour of the solutions of the ecuation. I
this section we shall give an interpretation of this statement in mor.
traditional terms.

Recall that AO consists of functions in B that are sphericall-

symmetric, between 0 and 1, nonincreasing in r. Define the set

U= {u(r) ¢ A u(+e) < ol

o |
ws being an attractor translates into the following theorem.

Theorem 6.1. U=U_u U-U U where
_— 0 u 1

U, = {ulx) | u(r,t) >0 as t >« uniformly}
Uy = {u(r) | u(r,t) »u as t -« uniformly}
u, = {u(r) | u(r,t) »1 as t -+« uniformly .

on compact sets} .

Further UO and U1 are both open and connected.

86




¢ Prcof. Given any u(r) U, there is an a and an ¢ 30 that

u ¢ Ug(a,e), pick a correspondirg Vs(b,S) then Us L Vs “1s an

attracting neizhbourhood for ws

Figure 6.1

and so everything in US U Vs tends to one of 0, u and 1, there-
N fore so does ufr), it is obvious that in the first two cases the con-
vergance is uniform.
Since 0 and 1 are attractors in their own right, Uo and Ul
must both be open and since neightourhoods of 0 and 1 are connected

they must also be connected. This completes the proof.

Since U is obviously connected the theorem says tha*t the removal
of Ua disconnects the set into these two components that give the
propagation and decay behaviour respectively. So Ui separates the
two regimes and, in some sense, gives the optimal set of comparison
functions for both propagation and decay. This is, practically speak-

£ ing, not particularly useful as these are hard to locate except near u

t ’ but they do give an exact picture of the situatioa.




Another way to express these facts is that Ua is a codimension
one set and so it is "small". The two pieces it separates are the

regimes of propagation and decay respectively.

II. ASYMPTOTIC STATES AND PERMANENT SOLUTIONS

We have not quite shown that the propagation regime Ul is an SAS

with respect to AO (see definition 1.4). It is open in the compact-
open topology and so also in the sup-norm but it would regquire an esti-
mate on how ¥(t) varied across initial data to show that elements of
Ul had the same sup-norm asymptotic behaviour, (5.10) is not quite
enough. If a definition were formulated which bore the relation to

definition 1.2 that orbital stability does to stability in qualitative

ordinary differential equations, Ul would be an SAS in this other sense.

Ao has thrce, albeit invariant, conditions on it. As far as Ul
being an asymptotic state is concerned, it is not hard to drop the con-
dition 0 < u(r) <1, and it may be possible to drop the monotonicity
condition. But the major open question is whether the condition of
spherical symmetry is necessary. For instance it is not known whether
there could be a wave that propagates in ‘R2 with an elliptical
wave-front.

For the above, the only feature of ws used is that it contains

three equilibrium points and orbits joining them. We did not use the

fact that there are only two connecting orbits in it. This was proved

in chapter 4. In terms of theorem 6.1, there is one in Uo and one in




Ul' Each of these connecting orbits is a permanent solution (see defi-
nition 1.3). Consequently there is a unigue permanent solution in cach

SAS UO and Ul.

These permanent solutions are "special” solutions of the equation
as we would generally only expect forward existence in parabolic equa-
tions. Nevertheless, it is not clear what the real significance of
their being unigque is. Such permanent solutions as equilibria and
travelling waves supply the asymptotic information for their SAS. If
we consider the SAS U this information is given by the one-dimen-

1

sional travelling waves, not this permanent solution in Ul' This
solution may however be relevant to the asymptotic behaviour of non-

spherically symmetric data since it contains spherical information

and the travelling waves do not.

ITI. COMMENTS ON THE TECHNIQUE

The main technique in this work is the construction of the space
A which relates the one-dimensional and spherically symmetric
behaviour of a reaction - diffusion equation. The space realises the
intuition of the one-dimensional world living out "at infinity" in the
spherical world. By constructing a concrete mathematical object, such
as A, we can see exactly what is forced on the spherically-symmetric
solutions by this relationship.

The presentation of this construction here treats this as a homo-

topy-continuation method. But, in many respects, it is more closely

related to the technique in 'Ordinary Differential Equations' of




pasting a manifold onto phase space which represents some imis i
behaviour. From studying the induced flow on this maniinli,

sions can be made, by continuity, about the flow on th. or:iairl
space. A recent example of the power of this technigue s 110 M
[1), and this work is partially responsible for insvirvina ti. -
this idea here.

It is a drawback in the technique that the underlvinz

t
-

A 1is the compact-open topology because stability statements are o
easily made in the sup-norm topology. This topology is used in *w
essential ways, for compactness of the semiflow and to make the spale

tie together so that perturbation is possible from Al to A..

The way to circumvent the problem is to restrict the semiflow to
an invariant subspace. This subspace should have the property that an
open neighbourhood of the solution whose stability is in guestion with
the inherited topology should be effectively the same as that set with
the sup-norm topology. For example, if the stable one-dimensional
behaviour expected is given by a travelling pulse or front then the
invariant subspace should consist of functions that look like the wave
as Xx -+ i®o, So the invariant subspace makes the data be close to the
wave at *o and consequently being close in the compact-open topolog:
implies the same in the sup-norm topology. This also shows the
necessity of considering an interval of different speeds. The wave can

move, metaphorically, "out of sight" in the compact-open topologyv unless

we focus on it at the correct speed.




-
| [}
! So the key to applving the technique lies 1In firnd:ins »Xa vl -
|
right places where the syace should be tichtened to the sut-norm o0 =
loyy or looscned to the compact-open torology.
A
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