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SECTION I

INTRODUCTION

Even though finite difference fluid mechanics techniques have

matured significantly in recent years, the "computational wind tunnel"

remains a distant vision. Physically complete flow field predictions

have been generally limited, by computer speed and cost (at least), to

relatively small regions on two-dimensional space. However, with the

current rapid evolution of digital hardware technology, the near-term

prospect exists for emergence of a large-scale computational capability

for aerodynamic flowfield prediction. Candidate fourth generation com-

puters include at least the STAR, and CYBER, and the CRAY, and perhaps

a dedicated Navier-Stokes solver (Proceedings of the NASA Workshop

on Future Computer Requirements for Computational Aerodynamics, ref.1).

Numerical algorithms for solution of simplified forms of the three-

dimensional Navier-Stokes equations have historically been based upon

finite difference theory, (ref. 2). MacCormack's explicit

time-split method, PlacCormack and Paullay (ref. 3), emerged as an

efficient second-order accurate algorithm for solution of the inviscid

Euler equations, and combined with shock-capturing has enjoyed world-wide

use. Alternatively, two-dimensional viscous flow computations have

generally employed alternating-direction, implicit, second-order accurate

finite difference algorithms for time (or space) evolution, and suc-

cessive overrelaxation for boundary value problems and/or direct iteration

at steady-state. The Crank-Nicolson algorithm is the representative exam-

ple procedure (ref. 2). An implicit alqorithm circumvents the severe

stability constraint associated with explicit integration procedures ; for

example, Beam and Warming have developed implicit forms for the Euler equa-

tions (ref. 4) and the compressible Navier-Stokes equations (ref. 5).

In recent years, the engineering community has become cognizant of

functional analysis and interpolation theory as an alternative theoretical

foundation for development of numerical algorithms for the Navier-Stokes

equations. The finite element method is the engineering embodiment of

these tools of the mathematician. The apparent fundamental difference

between finite difference and finite elemeot theory is that the former deals

with difference algebra while the latter employs vector field theory and

-1-



calculus. However, as must occur, both concepts belong to interpolation

theory, Prenter (ref. 6). A strong common theoretical foundation is thus

emerging, which is recognized and employed herein to assist in derivation

of optimally-accurate, and efficient algorithms for the highly non-linear

Navier-Stokes equations. For example, use of a linear finite element al-

gorithm applied to the diffusion term in the Navier-Stokes equations on a

uniform grid yields identically the second-order accurate finite difference

form, i.e., the central difference operator. This does not necessarily

extend to initial-value and/or non-linear differential operators however.

For example, finite element theory renders the linear finite element dis-

crete embodiment of the substantial time-derivative,

+ u • V

a fourth-order accurate representation on a uniform grid. Figure la-b

illustrates the accuracy obtainable for implicit solution of the (hyper-

bolic) continuity equation using linear finite element theory. An elemen-

tary rearrangement produces the Crank-Nicolson finite difference form,

which is only a second-order accurate algorithm. The computed results shown

in Fig. 1c illustrate the significant loss in accuracy attendent with this

algorithm for this discretization.

This elementary comparison simply documents that the finite element

embodiment of linear interpolation theory can produce optimally-accurate

finite difference equivalents of differential operators, representative of

those dominating the three-dimensional Navier-Stokes equations. Of perhaps

greater importance, finite element theory also yields a thoroughly standard-

ized procedure for generation of potentially higher-order accurate operators

using quadratic, cubic and/or higher-dimensional interpolation theory.

Confirmation for linear hyperbolic and parabolic equations is presented in

reference 7.

The current objective, for which results of the Phase I effort are reported

herein, is to assess extension of this highly promising theoretical procedure

to solution of the highly non-linear, three-dimensional Navier-Stokes equa-

tions for aerodynamic configurations. The primary requirement of Phase I

was to assess factors controllinq accuracy, convergence and efficiency of the

-2-
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Figure 1. Computed Substantial Derivative Operator for
Continuity Equation, Courant No. = 0.1
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predictions produced by the developed finite element theory for partial

differential equations modeling the important non-linear convection

operator in the Navier-Stokes equations. The specific approach has been

to delete all physical viscosity terms, which yields the Euler simplifi-

cation to Navier-Stokes, to determine algorithm performance in the ab-

sence of the smoothing introduced by viscosity. This corresponds as well

to the large Reynolds number limit of Navier-Stokes, wherein the field of

aerodynamics generally resides. Both linear and quadratic finite element

tensor product formulation have been evaluated and proven viable, as

presented herein.
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SECTION II

THEORETICAL ANALYSIS

1. Overview

The multi-year goal is to derive, implement into a computer

program, and evaluate accurate and economical numerical algorithms for

solution of the three-dimensional Navier-Stokes equations for turbulent

aerodynamic flows. This section introduces the topic with a concise

statement of the appropriate differential equation system requiring solu-

tion. The uniformity pervading this system then yields a concise state-

ment of the dissipative-Weighted Residuals finite element algorithm. A

theoretical analysis of a linearized model equation is discussed that

isolates and estimates acceptable levels for key parameters imbedded

within the basic algorithm that control accuracy and convergence.

2. Navier-Stokes Equation System

The set of partial differential equations governing the transient

three-dimensional flows of interest is the familiar and very non-linear

Navier-Stokes system. All equation systems studied are derived directly

from the Navier-Stokes equations. The non-dimensional conservation form

(in Cartesian tensor notation with summation implied over repeated sub-

scripts) for a compressible, viscous, heat-conducting fluid is

L(p) =2P- + a[.]=0 (1)
at ax~

L(puI ) = at + axj 1 = 0 (2)

B( p H ) aa 
3

u + Piij

L(pH) = - + - ja pH - +(ij + ql tq0 3)at ax. L lu uit 1  at1

In equations I - 3, p is density, pui is the momentum vector, p is

pressure, and the Stokes stress tensor Tij, heat flux vector qj, and stag-

nation enthalpy H are defined as

-5-
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=P 1  +1_LF.ut. + auUk
Ti P6 ReL-- a 1] + + 6ij (4)

qJ -k x.- (5)
ax

H = h + 1-U (6)

Herein, iv is the dynamic viscosity, k is thermal conductivity, T is tem-

perature, h is static enthalpy, 6ij is the Kronecker delta, and Re is the

Reynolds number. An equation of state closes the system.

Equations 1 - 6 are valid for both laminar and turbulent flows.

For the latter, however, their solution becomes tractable in a practical

sense only after time-averaging. While more definitive resolutions are the

subject of current research, conventional mass-weighted time-averaging will

probably serve the aerodynamic requirements. Therefore, the Reynolds de-

composition yields (ref. 9)

u x , t) = () + u ( x, t) (7)

The mass-weighted time-average velocity is defined as

and

t+T

lim J (pui - u1 )dt 0 (9)

t
This operation yields the important relation

PUlU =Ti j + (10)

Equations 7 - 8 are also employed to define the time-averaged and fluc-
tuating components of the scalar fields h, H, and T. Hence, for example,

H + F + lzpuiui/p 1

-6-



Substitution of the defining equations 7 - 8 into 1 - 6, time

averaging and collecting terms yields the time-averaged Navier-Stokes

equation system

9- + --L =u{% ] 0 (12)

+___ + 4- uu 0 (13)
d(i1  -3 9at + i ~ j Pii + j i

= + F " ui.i j ." - = 0 (14)

at ax. 1 at

where

is constituted solely of viscous contribution to the state of stress. The

Reynolds stress tensor Puu represents six additional unknowns that have

been introduced into equations 12 - 14. Various techniques are available

to accomplish closure, references 8 - 10. The primary emphasis in the

current assessment corresponds to the identical vanishing of both stress

- tensors.

3. The Dissipative-Weighted Residuals Algorithm

The time-averaged Navier-Stokes equations are established. This system

encompasses the Euler equations for inviscid flows as a subset, as well as

the various simplified forms including parabolic Navier-Stokes, boundary

layer, and incompressible flows including the streamfunction-vorticity form.

Independent of the particular sub-class, each of the partial differential

equations of the various coupled systems is of the form

L(q)= + [uiqj + ij + f6i =0 (16)

L. 3 3 aX

In equation 16, q. is a generalized dependent variable (which could be a

vector, e.g., pu ui is the convection velocity, oij is a stress tensor

(if present), and f is any non-homogeneity. The n-dimensional problem is

-7-
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defined on the Euclidean space Rn, spanned by the x coordinate system with

scalar components xi, 1 < i < n, and T is a generalized initial-value

coordinate. The solution domain s is defined as the product of Rn and T,

for all elements of X belonging to Rn and all elements of t belonging to the

open interval measured from To, i.e.,

P Rn X T = {(X,T): ERn and 'TE[0,T)}

The boundary 3 of the solution domain is the product of the boundary R of

Rn, spanned by x, and T, i.e., Q AR x T. Thereupon, a differential con-

straint may be applied of the form

k(qj) = alqj + a2 Lqjni 
+ a3 = 0 (17)

In equation 17, the ai are specified coefficients and ni is the outwards

pointing unit normal vector. Finally, an initial distribution of qj on

0 -_ Rn X T o

q(',To) = q0(') (18)

The basic concept of a (finite element) numerical solution algorithm is

to subdivide 0 into non-overlapping sub-domains oe' such that their union

forms Q, i.e.,

S F e -- URn x T (19)

and to enforce approximate satisfaction of equations (16) - (18) on UQe* The

finite element approach is to assume every member of the set qj interpolated

on Qe as

qe(x,t) = {Nk( T{Q(T)}e (20)e Nk(x)}

In equation (20), the elements of the row matrix {Nk(X)}T are typically assumed
polynomials on ?, complete to degree k, and the elements of {Q(T)} e are the

(unknown) expansion coefficients that are required determined by numerical

procedures. The resultant solution q*, which is the numerical approximation to

ML
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q(xT), is then the summation of the individual qe over the total number

of elements (M) spanning o as

Miq ',) q*('X,T) E q (XT) (21)

e=1 e

The fundamental requirement in formulation of a numerical solution

algorithm is to render the "distance" between q* and q a minimum, i.e., to

make the error in the approximate solution q* as small as possible.

Since the approximate solution q* lies in the domain spanned by the
interpolation basis {Nk}, then the error can be minimized by requiring

it to be orthogonal to this space. The measurable error is L(q*) 0,

as results from substitution of equation 21 into 16. From varia-

tional boundary value theory (ref. 11), this error is minimized (in an

appropriate norm) by requiring it to be orthogonal to {Nk}. Quite simply,

then,

x )L(q*) E {0} (22)

R
n

is the desired statement. (It is of considerable interest that, with exten-

sion of the "weights" {Nk} to include other specified parameters, equation

22 can be a theoretical basis for derivation of most finite difference algor-

ithms, reference 12. However, selection of weights other than {Nk} normally

does not enhance solution accuracy, as discussed herein, and in reference 7.)

An addition to equation 22 is desired, as becomes apparent from the theoreti-
cal analysis i--the next sectior, since equation 22 can yield a neutrally

stable algorithm with no inherent dissipative mechanisms for damping generated

numerical error The desired form can be achieved by requiring the gradient

of L(q*) to also be orthogonal to {Nk} , i.e.,

*J ~{N }VL(q*) {0} (23)

where is an n-dimensional vector to be determined. Finally, for consis-

tency, the error on aQ must also be minimized; hence,

IN kN}l(q*) {0} (24)

where A is a scalar to be determined.

-9-
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I
The dissipative Weighted-Residuals algorithmic statement is the

linear combination of equations 22 - 24. Since the INk( )} are defined

non-zero only locally on each subdomain (finite element) Qe' the globaln
integrations indicated are replaced by integration on Re, and their indi-

vidual contributions appropriately summed ("assembled") to yield the algo-

rithmic statement

S ef{Nk}L(qe) - S {Nk }VL( q e ) + XJ {Nk}l(qe) {0} (25)

n RRn DR uR n

e e e

In equation 25, Se is the defined assembly operator which amounts to

row-wise element summations within the defined element matrices. Similarly,

L(q*) etc. has become replaced by an element of its definition L(q e), see

equation 21.

Since the matrix elements of {Nk} and the various errors L(q e), VL(qe)

and k(q e) all possess known functional dependence on -, the indicated in-
tegrals are readily evaluated. The sole unknown dependence is on the ini-

tial value coordinate T; hence, equation 25 is a system of ordinary

differential equations which express the T-derivative of q*( ,r) in terms

of its current distribution of nodal values {Q(T)}. Therefore, equation 25

takes the form of the matrix ordinary differential equation system.

Se[[C]e{Q}e + [U] eQIe + [K]{QIe+ (26)

The terms in equation 26 correspond one-to-one with those in equation 16,

i.e., the first accounts for evolution, the second convection, the third the

stress field, and the fourth contains all non-homogeneities. The [Ume and

[]e matrices in equation 26 are general non-linear functions of IQe;

only the dominant non-linearity is explicitly expressed.

These theoretical proceedings have thus transformed a single non-linear

partial differential equation into a much larger system of non-linear or-

dinary differential equations. The requirement is to integrate this system.

For efficiency, a single-step implicit algorithm is preferred, and all are

expressed within the expression

IN - a
-71
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E{)+ h JQ1+1 + (1 -o(ll(27)

where 0 < 6 < 1 controls implicitness, stability and accuracy, and j is the

integration step index and h is the step size. Equation 26 provides the

(implicit) expression for the IQ}' column matrices. While not acceptable

in practice, equations 26 - 27 can be combined using a formal inverse operation,

yielding

{Q IQ}~ he[C]I. 1 1f[ulj+l + [K].+1J {Q}j+1 + f fj+i

-h(l - 6)[C] 1[U]j + [K] J){Q1j + Mfl (28)

Combining like terms and letting I signify the identity matrix, equation 28

can be rewritten as

[+he[C]_ 1 frulj~ + [KJ1]{Ql1~1

[I h(l - 0)[CJ) [U]Ji + []j]Q

16- h([C l{flj+1 + (1 - 0)[C]{f) J (9

which is a non-linear algebraic equation system for {Q}j+1"

Therefore, the final algorithmic requirement is to establish a suitable
equation solving technique for equation 29. One approach, preferred by

.• * * I I . . . . . . . . . . . . I .. . . . .. . .

some in the finite difference community, is to linearize the terms in the

left matrix of equation 29, and achieve a direct solution. The alterna-

tive approach is to employ a matrix iteration procedure with full non-

linearity retained. To accomplish the former, the inverse operation [c.C 11

and indicated matrix multiplications in equation 30 must be completed.

Only if [C] is a diagonal matrix is the inverse trivial, and the matrix multi-

plied [Ulk and [Kk matrices for k = j,j+l, become modified in an elementary

t manner, say LU]k and [KJk" (Of course, this diagonalizing operation destroys

the order-of-accuracy intrinsic to the basic finite element algorithm and is

to be avoided.) Formally, however, the solution algorithm for equation

29 can be made non-iterative, assuming a Taylor series expansion for the

modified matrix terms as, e.g.

-11-
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=6jl7,13 + 6 (rnj+l I Q} + . (30)

The second expression is obtained assuming the dominant non-linearity has

already been extracted in equation 26. Then, assuming 0 = 1/2 for

simplicity, equation 30 becomes expressible as

T ]j [i]j{j+

= - ([161j + -~~j~ ({f}j+l + (fij (31)

which is a linear algebraic equation system for {Q}j+I and directly solvable.

Based upon work reported herein, the steps necessary to achieve equation

(31) are undesirable in terms of accuracy. In addition, formation of

[C]k and CC]-' are to be avoided at all cost. While [C]-'1 can be cleared

from the left of equation 29 by a premultiplication by [C]j+ 1 , whereupon

[Cj+1II ] = [C]j+I, difficulty appears on the right with terms in [C]j+1[C]l'
[I]. This is removable however, by limiting e = 1/2 which produces the
trapezoidal rule. Formally, using equation 26 assembled and evaluated at

the mid-interval, equation 28 then becomes reexpressed for a = 1/2 as

~j+l - j 2 :+ [u]j + [KL+ ] .+.. .

{Q1~ - L [C]-1 ((U]~+ + [K]j+1) {Q}j+1 + {~~

+ I[U] + [K]j) {Q}j + {f1i] (32)

No difficulty is then encountered in clearing the inverse, and equation 32

takes the form

[j+ h ~(u~ + [K~] {QI.+1

C C]+ - [ (U~j + [K)j)]{Qlj If) + {f.j) (33)

By assumption,

CC] J+!, ([cj+l + I[cj) (34)

-12-
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and the Taylor series expansion yields

i

The second term vanishes identically for the Euler equations in conserva-

tive form, and the linearized direct solution form for equation 33 is

S[c]~ + h (EU] + [K]jI {cQ)j~1

= [C]~- (lu i + (K]]{Q}i ({f+ + Mf~ (6

Equation 36 retains the accuracy of the basic algorithm and is uncondi-

tionally stable according to a linearized analysis.

A_ The desirable feature of equation 36 is that it is linear, hence

solvable in a non-iterative manner using any direct procedure, e.g., Gaussian

elimination, Cholesky decomposition, etc. The price extracted for this

4feature is that, while the [Cl, [U], and K] matrices are banded, they be-

come block-banded for solution of systems of partial differential equations.

Of course, direct solutions are rarely used for the sake of computer cost and

storage, but are replaced by partial factorization of the matrix (ref. 4).

At the expense of extraneous terms being added to the differential equation,

this operation produces block tridiagonal matrices which can be efficiently

solved. Hence, the order of accuracy of the basic algorithm, equation 29,

is retained, while there may be a specific degradation of accuracy level at.. *.

any given solution point.

The alternative approach is to matrix solve equation 33 as non-linear,

Letting {F {0} be the hormogeneous form of equation 33, the Newton

iteration algorithm is

[(QP+1)]6Q)' {F(QP+,Ij (37)i p+l Q

-13-
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The dependent variable in equation 37 is the iteration vector, defined

by the relation

Qp+l QP +

+ 1 j+ (38)

where p is the iteration index. The right side of equation 37 is

equation 33 evaluated with the pth iterate, i.e.,

{f} S [[ re{QIp - {Q} j) + h(39)
J+1 e L j+1 }j {V +1 + j (39)

where

{ge}p (Me + LK1e){Q}Z + {f}k (40)

The vanishing of {F} to within definition of computed zero renders equation

37 homogeneous, hence convergence of the iteration. By definition, the

Jacobian is the derivative of equation 39 with respect to {Q}I+I. Hence,

[j] = S + + rriEU + rll e) fQ}1  (41)
J]:Ser[C] + ILU]I +L[KeJ + a EU]e + LK]el

eEIe +7(le + He]e2{Q} (41e

where the final term accounts for contributions stemming from implicit non-

linearity. The rank of [J] equals the order of {6Q}; Dirichlet boundary

constraints are applied within the evaluation of {F}.

The ostensible key feature of the iterative solution algorithm, equa-

tions 37 - 41 is accuracy and elimination (potertially) of the block-

banded Jacobian matrix structure for multiple variable sysItems. Several.......

other potentially attractive attributes emerqe on closer analysis. First,

as discussed for the non-iterative algorithm, three-dimensional solution

requirements demand a spatial factorization that permits replacement of the

large, sparse-matrix Jacobian operations with elementary banded-matrix

procedures. This can be accomplished in the present instance by replacing

the multi-dimensional interpolation basis {Nk( )}, equation 20, with the

tensor product basis (ref. 13)

{Nk(O )} 4{Nk(X,)}(D®{Nk(X()} {Nk(Xy)} (42)

-14-



where ® signifies the tensor product. The Greek letter subscripts are

not summation indices but refer instead to scalar components of the

resolution of X on to the coordinate system spanning Rn. Using equation 42,

the original finite element algorithm statement, equation 26, becomes

replaced by the tensor matrix product form. For example, the first matrix

becomes of the form

[C] [Ce * ® [Cle ® C3]e (43)

Hence, the Jacobian can be evaluated as the tensor matrix product,

[J] 4 [J, 11O [J 21CX [J 3 (44)

and each of the [J ] exhibit the desired narrow band matrix structure. Spe-

cifically, for k = 1 in equation 42, [J ] is tridiagonal, while for k = 2

it is pentadiagonal with a cyclic profile.

This factorization yields a highly efficient solution algorithm upon

application of the concept of fractional steps (ref. 14). Specifically, eval-

uation of the homogeneous solution statement {F}, equation 39, is replaced

by the tensor product form, and the Newton algorithm becomes

[3(+]® [J. (=)~+ X~ [J 1 (Q).] {6Q}. +

{Fj(Q) +}{(g+,.Q)P+ 1}® [F3(Q)..J (45)

Here, and ) represent intermediate iterates, and 6Q is interpreted as the

iteration vector for each respective iterate. If required for accuracy,

evaluation of the right-side of equation (45) may be replaced with conven-

tional multi-dimensional operations.

4. Accuracy and Convergence, Stability

A von Neumann stability analysis (ref. 2) can quantify the formal order

of accuracy of the developed algorithm for a linearized one-dimensional

-15-
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equation, hence predict an appropriate value for a equation 25. There-

fore, consider the inviscid x, momentum equation 2 with constant ad-

vection velocity Uo.
= u + u

= -U ax (46)

The analytical solution for equation 46 is the Fourier expansion

u(x,t) = V exp [i W(x - U0t)] (47)

where i = Y/T--, w = 2IT/X is the wave number where X is wavelength, and V is

the initial velocity distribution.

A rearrangement of equation 25 yields the desired form for analysis.

Using a Green-Gauss theorem, the second term in equation 25 can be trans-

formed to

n{Nk }VL(q e =e v.) [R {Nk}L(qe)j + {Nk}L(qe) (48)

R e Re eR

Since the tensor product algorithm form is to be utilized, from reference 15
let H v A5 , where v is a scalar to be determined and P is the measure

a ea a e
of the discretization of the one-dimensional domain Re spanned by x with

unit vector i . Under this assumption, the second term in equation 48

vanishes identically. Setting A _ 0 for convenience for this analysis,

equation 25 can be written in the compact tensor product form

eLS c [(I + Aaxa)(Nk)x{N jL(qe) -O (49)

It is an elementary exercise to evaluate equation 49 for any differen-

tial equation. Recalling equation 26 as the required final form, the

initial-value and convection matrices are defined as

1 T[C~ _ !+ {N k(X. ) (N k(X )}Tdx C (50)

-16-
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+ {N} {Nk}{Nk }Tdx (51)

For equation 46, and limitinq the interpolation basis to linear, i.e.,

k -- 1 in equation 42, equation 50 yields

[C]e = + 2 ] (52)

for v assumed a constant. For a uniform discretization, the assembly of

this term in equation 26 over the two elements sharing node j yields the

finite difference recursion relation

Se [C~e{Q}ej = --l(1+3v) Q'_I + 4Q + (1-3v)Qj+ (53)

where AO is the measure of the uniform discretization of Rc. Similarly, the

convection operator in equation (46) produces (ref. 7)

[U la]e = -6 oU } 
(54) ef l

For a constant advection velocity, {Uo} = U {1} ; the assembly yields theo e o
finite difference recursion relation

Se IN]1e{Q)e] -- (1+2v)Qj-l + 4vQj + (1-2v)Qj+

= U [jl+ Q+j] + UovLQj1l + 2%j - Qj+i] (55)

In equation 55, the first term is the familiar second order accurate

central difference convection operation. The second term is equally familiar

as the second-order accurate diffusion operator with UovAL as the "viscosity"
level.

-17-
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The occurrence of these two difference expressions is to be expected,

as confirmation of the assertion that linear finite element methodology
yields optimal order-accuracy difference relations for the same degree

interpolation. The full impact of the algorithmic development becomes

apparent upon completion of the von Newman stability analysis. For the

complete algorithm applied to equation 46, formal order-of-accuracy is

assessed using the semi-discrete Fourier expansion

u*(Ax,t) E zeue = V exp [i w(jAx - Xt)] (56)

where Ax is the measure of the uniform discretization of RI and X H + i6,

where and 6 are real numbers. Direct substitution of equation 56 into

equations 53 and 55, and expanding the resultant expressions for and s

in a Taylor series yields (ref. 15)

U + [_j + 3d 4 + O(d6)]57

6 = d['~ + 0(d') (58)

Here, d = wAx and 0( ) indicates the order of the truncated term. The phase
accuracy of the discrete solution u* agrees with U to sixth order in Ax by

requiring v-1 _ Vi/'. For v > 0, correspondingly 6 < 0, and an artificial

damping is introduced of the form,

exp[ - IWkt + 0(AxS)] (59)

where k =_ U (Ax) 3/12V7 is the damping coefficient. The damping is highly

selective due to the W4 factor.

Setting v - 0 eliminates 6, and the derived algorithm is a fourth-
order accurate representation of the differential equation 46. This high
order accuracy, obtained with use of the simplest linear interpolation, re-
sults directly from the finite element-derived initial-value matrix [Cae.
In distinction, finite difference practice replaces equation 53 with AQ.'
which immediately degrades the algorithm to second order accuracy. In

S-18-
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addition, the conventional finite difference approach to introduce

dissipation is to add an "artificial viscosity" term p 3 2
u/3x

2 to

equation 46. The resulting dissipation term directly comparable to

equation 59 is

exp F-W2it + 0(AX2 ) (60)

The resultant artificial damping is less selective due to the wave number

exponent of 2 and the appearance of the term of order Ax2 .

Using a fully discrete Fourier analysis, see reference 16, the ampli-

fication factor for the dissipative finite element algorithm for 0 _ - is

1+ cos(wAx) - 3Cv sin 2 ( x) - i:(C+2v)sin(wAx)

1+ cos(wAx) + 3Cv sin 2( w x) + i (C-2v)sin(wAx) (61)

where C H U0 t/Ax is the Courant Number. The numerator and denominator are

complex conjugates for v H 0, hence the basic (non-dissipative) algorithm is

neutrally stable for all Ax and At. Therefore, error induced by a solution

will propagate undamped and unmagnified throughout the solution domain.

Selecting v > 0 destroys the neutral stability, and damping of both induced

error and the physical solution will result.
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SECTION III

DISCUSSION OF RESULTS

1. Overview

The convergence and stability analyses are strictly limited to the

elementary differential equation studied. In particular, the practical

instance of a constant imposed velocity is negligible. Nevertheless,

they do help interpret the predictions of numerical solutions regarding

indicated error sources and their modification. Extension of the elemen-

tary analysis to include use of the quadratic basis within the algorithm

is complicated by the fact that a simple finite difference nodal recursion

relation does not result. Therefore, the analysis of carefully executed

numerical tests appears the appropriate method to refine and extend the

scope of these predictions. For this purpose, linear and non-linear dif-

ferential equations, that model the convection operator intrinsic to the

Navier-Stokes equations, have been selected for study. Primary emphasis is

an assessment of factors affecting solution accuracy and economy. Key

results of the study are discussed in this section.

2. Accuracy and Error Control

The developed finite element solution algorithm requires evaluation

with respect to parameters to be selected for error control. Specifically,

these include

a) discretization/integration steo (Courant Number), C

b) finite element interpolation degree, k

c) phase error control, v

Recall the definition of Courant Number, C = UAt/Ae9 which is available of

course in any numerical algorithm. The last two are more uniquely expressed

within the structure of the developed algorithm.

A demanding test problem corresponds to the two dimensional form of

equation 46,

L(u) -au Oo.vu = 0 (62)at to.
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where 11 = r corresponds to a solid body rotation with angular velocity

, and the initial distribution for u is the "cosine hill." The initial

distribution would appear identical to Figure la), moved to the 9 o'clock

position, and the exact solution is diffusion- and dispersion-free con-

vection clockwise around the solution domain. From reference 16, Figures

2a) - c) illustrate a typical linear element solution at the quarter, three-

quarter and full-rotation time step, for the non-dissipative form of the

algorithm. The peak value remains within 1% of its original level of 100,

although the lagging phase error retards its relative displacement. The

ripple structure in the background plane is pure dispersion error, which

propagates generally undissipated throughout the solution, in agreement with

the basic neutral stability. The results shown in Figure 2d) were obtained

using a digital filtering technique that effectively dissipates the back-

ground error structure. However, the concentration peak was also diffused

well below its initial-value. Hence, these solutions are quite good inI

comparison to standard finite difference results, yet exhibit significant

error upon a closer examination.

A comprehensive numerical evaluation of this problem, for variation of

parameters a) -c), can firmly quantize algorithm performance and has been

completed. For comparison, Figure 3 shows the appropriate portion of the

actual initial distribution of u, which also corresponds to the exact final

solution. Figure 3b) shows the distribution computed for k = 1, v = 0 and

C = 0.25 (at the center of the solution distribution; since U0 varies

linearly with r, 0 < C < 0.4 on the field). As noted, the peak lags by

about tAe of occurring at the correct node point. The background ripple

structure, obseWed in Figure 2, occurs as nominal rows of positive and nega-

tive concentrations in Figure 3b). This phase error induced extremum level

is -10 and the nominal wavelength is 4Ae. As a consequence, the symmetries

of the correct solution are not apparent. However, if two additional time

steps were taken, the symmetries would nominally reappear and a peak value

of 99 would occur at the circled location. Hence, the solution visually

appears a close approximation to the correct solution, Figure 2c).

Increasing the integration time step (or, equivalently, decreasinq the

mesh measure) increases the Courant number which adds truncation error to

the numerical solution. Comparing Figure 4b), obtained using C = 0.5, k = I

-21-
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a) nAt = 80
One-Quarter Turn

b) nAt =240
Three-Quarter Turn

~c) nAt = 320

Ful Turn

d) nAt - 240
FilItered

I

Figure 2. Advection of Cosine 1111 in a Solid-Body
Rotation Velocity Field, C = 0.1 (Reference 16)
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 10 15 10 2 0 0 0
0 0 2 20 41 50 41 20 2 0 0
0 0 10 41 72 S 72 41 10 0 0
0 0 15 50 85 85 50 15 0 0
0 0 10 41 72 72 41 10 0 0
0 0 2 20 41 50 41 20 2 0 0
0 0 0 2 10 15 10 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 OkO 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 - 0 0 0 0 0
0 0 0 0 0 oU 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0\0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Figure 3. Advection of Cosine Hill in Solid Body Rotation,
Initial Condition, Exact Final Solution
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 3 5 3 1 0 0 0
0 0 1 7 12 16 14 7 2 0 0
0 0 6 19 32 38 32 19 6 0 0
0 1 12 32 56 58 34 12 1 0

-1 2 15 44 77 (3 80 46 15 1 0
-1 0 12 43 78 80 44 12 -1 0
-1 -2 4 26 54 69 56 26 2 -3 0
0 -4 -3 5 21 28 19 3 -5 -5 0
1 -2 -6 -7 -4 -3 -6 -9 -6 -1 2

2 1 -2 -6 -8 -9 -10 -7 0 3 1
1 3 2 0 0 -1 -1 0 4 3 0
0 2 2 3 2 4 4 3 2 0 0
0 0 0 1 1 1 2 1 0 -2 -1
0 -1 -1 -1 0 -1 -1 -1 -1 -1 0
0 0 -2 -2 9 0 -2 -1 0 0 1
0 0 0 -1 0 1 0 0 0 1 0
0 0 0 -1 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 -1 0 0
0 0 0 0 0 0 0 0 -1 -1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

a) C = 0.25, v 0

0 0 0 0 2 2 1 0 0 0 0
0 0 1 2 4 5 5 2 1 0 0
0 0 3 8 13 15 13 8 3 0 0
0 2 7 15 26 33 28 18 6 1 0
0 2 11 28 46 '# 51 31 12 1 0
0 3 15 39 66 -{82) %72 44 16 1 0
-1 2 14 41 74, 81 47 3 o -1
-2 0 9 32 64 -81- 69 34 4 -4 -1
-2 -4 0 14 36 47 35 9 -6 -7 0
0 -5 -7 -4 4 9 0 -10 -13 -4 2
1 -2 -7 -11 -11 -12 -16 -17 -9 1 4
2 0 -2 -7 -10 -12 -11 -8 0 7 4
1 3 3 0 -1 -1 0 2 6 6 0
0 2 4 4 3 4 6 6 4 0 -2
-1 0 1 2 2 2 2 2 0 -2 -3

0 0 0 0 0 0 -1 -2 -2 -2 0
0 0 0 -1 -2 -1 -1 -2 -2 0 0
0 0 0 0 -2 -1 0 0 0 0 1
0 0 0 0 0 -2 9 2 1 0 0
0 0 0 0 0 -1 -1 0 1 0 -1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

b) C 0.5, v = 0

Figure 4. Advection of Cosine Hill in Solid Body Rotation,
Linear Tensor Product Algorithm
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and v = 0, to Figure 4a) shows the noticeable degradation. The computed

peak lags by one full mesh interval, and the associated dispersion error

has reduced its level to 93. However, the solution symmetry about the

indicated peak is quite good, (note dashed contour), and it would appear

acceptable visually. The trailing dispersion error wake extremum is

increased to -17, and the wavelength is nominally centered on 5Ae. For

comparison, Figure 4c) shows the final solution as predicted using the Crank-

Nicolson finite difference algorithm at C = 0.25. The result is much poorer

than the linear element tensor product solution at twice the Courant number,

i.e., half the computer CPU. The peak is only 47 and the extremun dispersion

error level is -24. This popular algorithm is obtained by the elementary

change of equation 52 to

[ Dc A 'e (63)

As seen, the consequence is introduction of unacceptable error levels at mod-

est Courant Number.

A prime requirement is to evaluate the efficiency of %, the introduced

dissipation parameter, to alter (improve) the error levels in these solutions.

Elementary one-dimensional studies, references 16 - 17, have confirmed

that the optimal linear analysis value of v = 1/VT!T = 0.258 is entirely too

large. The loop test case is much more demanding, and confirmed the viability

of separate and distinct value of v, for use in the initial-value and convec-

tion matrices, see equations 52 and 53. Terming them correspondingly

i and d, Table 1 summarizes the results of the cosine hill tests for the
linear tensor product algorithm. All data are for the final station. For

comparison, case 1 is the summary for the solution shown in Figure 4b,

in terms of computed solution peak, displacement (in Ae) of the peak from its

correct location, and fore/aft levels, hence symmetry about the peak. The

dispersion wake error is quantized on extremum level and nominal wavelength

of the dominant trailing wave. Using v d = 0.06 alone, case 2, which

amounts solely to an artificial diffusion, the wake error is decreased by

two while the solution peak is decreased by 15% to 78. Introducing vi < d

-25-
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1 1 4 2 4 4 4 3 2 1 1
1 3 4 4 7 5 6 5 3 3 1
2 3 5 8 9 9 9 8 5 4 1
4 5 9 12 13 14 14 12 8 5 2
5 7 11 15 19 -( 18 16 12 7 3
6 8 14 20 24 (20 26 23 15 8 3
6 9 17 25 31 36 35 28 20 10 3
4 10 18 27 37 42 42 35 24 11 0
1 8 17 27 39 46 47 42 28 10 -2
-1 5 12 24 37 47 50 44 29 10 -6
-5 0 5 16 29 40 47 42 28 7 -11
-8 -4 -4 4 15 27 35 34 24 5 -13
-9 -8 -11 -7 0 9 17 20 15 1 -14
-8 -10 -15 -17 -14 -8 -2 2 1 -4 -12
-4 -9 -15 -20 -21 -21 -19 -14 -12 -12 -12
0 -5 -9 -15 -20 -23 -24 -23 -21 -17 -12
2 0 -2 -6 -9 -13 -17 -17 -17 -14 -9
2 2 2 1 1 0 0 -3 -4 -3 -1
0 2 3 4 8 10 12 13 13 11 11
0 0 1 3 6 12 16 18 16 14 12
0 0 0 0 1 5 11 17 19 16 7
0 0 0 0 0 0 0 0 0 0 0

c) C = 0.25, v = 0, Crank-Nicolson [C]

0 0 0 0 1 1 1 0 0 0 0
0 0 1 2 4 5 4 2 0 0 0
0 0 3 7 12 14 13 7 2 0 0
0 1 6 15 26 32 28 17 6 0 0
0 2 11 28 47 5B 52 32 11 1 0
0 2 15 39 68--85_ --,75 45 15 1 0
-1 1 14 43 7K 99 85 48 13 -1 -1
-2 -1 8 34 67 -86-- 71 34 3 -5 -1
-2 -5 -1 14 37 49 36 9 -8 -8 0
-1 -6 -9 -5 4 8 0 -13 -15 -5 2
1 -3 -8 -13 -13 -14 -18 -19 -10 1 4
2 1 -2 -8 -12 -13 -13 -9 0 7 4
1 4 3 0 -1 -1 0 3 7 7 1
0 3 4 5 4 5 7 7 5 1 -2
0 0 1 3 3 3 3 2 0 -3 -4
0 -1 0 0 0 0 -1 -2 -3 -3 -1
0 0 -1 -1 -2 -2 -1 -2 -2 0 0
0 0 0 0 -2 -1 0 0 0 1 1
0 0 0 0 0 -1 0 2 1 0 0
0 0 0 0 0 0 0 0 1 0 -1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

d) C = 0.5, vi = 0.012, vd = 0.072

Figure 4. Advection of Cosine Hill in Solid Body Rotation,
Linear Tensor Product Algorithm (Concluded)
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TABLE 1

SUMMARY OF COSINE HILL SENSITIVITY STUDY

LINEAR TENSOR PRODUCT ALGORITHM, C = 0.5

Case Dissipation Solution Wake Dispersion Error
No. i Vd Peak Displacement* Symmetry Peak Wavelength*

1 .0 .0 93 -1 81/82 -17 4

2 .0 .06 78 -1 71/66 -9 5

3 .012 .06 102 -1 87/89 -21 6

4 .012 .072 98 -1 85/86 -19 6

5 .015 .06 110 -1 92/98 -26 6

6 .012 .09 93 -1 81/80 -16 6

7 .03 .06 117 -1 61/161 -74 **

*Units are Ae, the uniform discretization measure.

**No discernable dominant wavelength.

-27-



over a range, case Numbers 3 - 7 can remarkably increase the computed

solution peak and affect solution symmetry as well as dispersion error.

Case 4 corresponds to the "numerically optimized" combination, and

the complete final solution station is shown in Figure 4d. Comparing to

Figure 4b, and to the correct solution in Figure 3, the v- modified

solution is a uniform improvement except for the modest increase in wake

error level. Importantly, the peak of 98 and the surrounding level near 85

are both substantial improvements. The ability of a small proportion of

vi to totally alter the solution, and the pure diffusive character of d,

should be of considerable use and certainly requires a definitive study.

The same test sequence has been completed for the quadratic tensor

product algorithm. Figure 5a is the base solution for C = 0.25 and v = 0.

Comparing to Figure 3, it is an excellent approximation to the correct

solution. The peak occurs exactly at the correct node, and the surrounding

solution symmetry and levels are excellent. Furthermore, the extremum wake

error level is only -2. On all assessment bases, the improvement over the

linear tensor product results, see Figure 4a, and for the Crank-Nicolson

results Figure 4c, is impressive. Equally impressive is the observation

that only 1% additional computer storage was required and the increase in

CPU was only 16% (due mainly to a pentadiagonal rather than tridiagonal

Jacobian). Doubling the Courant number produced the results shown in Figure

5b), which are a nominal improvement over the linear tensor product results

at C = 0.25, Figure 41. Hence, comparable accuracy is attained at a 40%

decrease in CPU. Finally, Figure 5c displays the results obtained using

the quadratic diagonalized initial-value matrix equivalent of Crank-Nicolson.

The results are uniformly poorer on all bases of comparison.

Table 2 summarizes the results of the v sensitivity study for the quad-

ratic tensor product algorithm. Since the non-dissipative results maintained

a larger peak value, the algorithm can withstand somewhat larger levels of
d
v in comparison to the linear element form. Case 5 results were the

"best" improvement and the entire solution is shown in Figure 5d). In

comparison to the linear element case, the improvement is not quite as

substantial (since the error requiring improvement was smaller), but never-

theless uniformly positive.
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 10 14 10 4 0 -1 0
0 0 2 15 36 44 37 19 2 -2 0
0 0 10 34 68,--4-..70 40 9 -1 0
o 0 15 50 87 (105) 87 50 14 0 0
0 0 11 41 73 " - 70 40 10 0 0
0 -2 4 22 43 48 40 20 3 0 0
0 0 -1 5 14 17 12 4 -1 0 0
0 0 -2 -3 -2 -1 -2 -1 -2 1 0
0 1 0 0 -2 -2 -1 0 0 1 0
-1 0 1 1 1 1 1 2 0 0 0
0 -1 0 0 0 1 0 0 -1 -1 0
0 -1 0 -1 -2 -1 -1 -1 0 1 1
0 0 0 1 0 0 1 1 1 1 0
0 0 0 1 0 0 0 0 0 -1 -1
0 0 0 0 0 -1 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 -1 -1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

a) C 0.25, v 0

0 0 0 1 1 2 1 0 0 0 0
0 0 1 3 4 5 3 1 1 0 0
0 1 2 6 11 14 12 7 1 0 0
0 0 5 13 26 31 28 17 3 -1 0
0 1 9 25 50 58 33 9 0 0
0 2 13 38 75(95) 84 49 13 0 0
0 0 12 42 80 81 44 12 0 0
0 -1 7 32 62 74 53 26 4 -1 0
-1 -4 0 12 29 30 16 5 -2 -1 1
0 -3 -6 -5 1 0 -6 -6 -4 -1 1
0 0 -4 -8 -7 -9 -9 -4 -2 0 1
0 1 0 -4 -6 -5 -4 0 1 1 0
0 1 1 1 0 1 1 2 2 0 0
0 0 1 3 2 3 3 1 0 -1 -1
0 -1 -1 0 1 0 0 0 -1 -1 0
0 0 -1 -1 -1 -1 -2 -1 -1 0 1
0 1 0 -1 0 0 0 0 1 1 0
0 0 0 0 0 1 2 0 1 0 -1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

b) C = 0.5, v = 0

Figure 5. Advection of Cosine Hill in Solid Body Rotation,
Quadratic Tensor Product Algorithm
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0 0 0 1 1 2 0 0 0 0 0 0
0 0 1 1 4 7 6 4 0 0 0 0
0 0 4 9 14 16 14 10 4 0 0 -1
0 0 7 15 24 29 26 18 8 0 0 0
0 2 13 27 44 46 31 13 2 0 0
0 3 17 37 62 7 66 43 17 2 0 0

- 1 1 16 39 67 74 46 16 -2 -1 0
-2 0 13 36 65 86 71 38 9 -8 -3 2
-3 -6 9 15 40 56 45 19 -4 -14 -3 4
-2 -7 -8 -5 10 21 11 -3 -16 -15 0 7
0 -4 -10 -14 -10 -5 -9 -15 -16 -8 3 7
2 -1 -7 -13 -18 -21 -18 -17 -10 1 9 6
4 4 2 -2 -7 -9 -7 -4 0 8 8 4
1 4 7 9 4 2 6 8 9 10 3 -1
0 1 3 8 6 5 8 7 6 3 -3 -6
-1 -1 0 3 2 1 3 1 0 -1 -5 -5
0 -1 -2 -1 -2 -3 -2 -4 -5 -3 -3 0
0 -1 0 -2 -4 -7 -4 -3 -4 -1 0 4
0 0 0 0 -2 -3 0 1 2 2 0 2
0 0 1 0 -1 -4 0 1 5 6 2 1
0 0 0 0 0 -2 -1 -1 1 2 0 -3
0 0 0 0 0 0 0 0 0 0 0 0

c) C = 0.5, v = 0, Finite Difference [C]

0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 2 3 4 3 2 0 0 0 0
0 0 2 5 11 13 11 6 1 0 0 0
0 I 5 13 25 33 28 16 3 -1 0 0
0 1 9 25 51 58 34 9 0 0 0
0 1 13 39 7619 85 49 14 0 0 0
0 0 12 43 81 82 44 12 0 0 0
-1 -2 7 33 63 74 54 25 4 -1 0 0
-1 -3 0 12 29 31 17 3 -2 -2 0 0
0 -3 -6 -4 0 -2 -6 -7 -5 -1 1 0
0 0 -5 -8 -8 -10 -10 -5 -2 0 0 0
0 2 0 -4 -5 -6 -4 0 2 1 0 0
0 1 2 0 0 0 1 2 2 0 0 0
0 0 1 2 2 3 3 2 0 -1 -1 0
0 0 0 0 0 0 0 0 -1 -1 0 1
0 0 -1 -1 -1 -1 -1 -1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

d) C = 0.5, vi = 0.012, vd  0.09

Figure 5. Advection of Cosine Hill in Solid Body Rotation,
Quadratic Tensor Product Algorithm (Concluded)
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TABLE 2

SUMMARY OF COSINE HILL SENSITIVITY STUDY

QUADRATIC TENSOR PRODUCT ALGORITHM, C = 0.5

Case Dissipation Solution Wake Dispersion Error
No. i d Peak Displacement*Symmetry** Peak Wavelength*

1 .0 .0 99 -.2 - - 9 5

2 .0 .06 69 - 0 - - 2 -0

3 .012 .06 128 - -20 5

4 .012 .072 116 - -14 5

5 .012 .09 101 -.2 - -10 5

6 .015 .114 100 -.2 - -10 5

*Units of "e, the uniform discretization measure.

**Not directly evaluable from available data.
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Comparison sensitivity studies have been essentially completed for

the non-linear form of the model equation 62, i.e.,

L(u) = au+ t.Vu = 0 (64)

where i = ui" + vi and v satisfies an identical equation. The test case is

the two-dimensional square wave propagating parallel to the principal
diagonal of the solution domain. Figure 6a shows the initial condition,

iwhile Figure 6b shows the final solution obtained for k = 1, v = v =
dV = 0.182 and C = 0.125. This solution is a close approximation to the

exact solution, wherein the dominant wave front remains interpolated

across only one element, the trailing plateau remains at unity with no

overshoot, and the solution gradient perpendicular to the left boundary

vanishes. Increasing vd > 0.182 levels the indicated overshoots but also

diffuses the wave front across three or more Ae. The action of a separately

evaluated vi t vd in correcting this trend needs to be evaluated. Figure 6c

is the comparison finite difference solution, which is essentially identical

to that in reference 4, page 96. It is obtained by use of equation 63 instead of

equation 52, and replacement of the v-modified term in equation 54 wiih

an artificial viscosity term. The influence of the degraded selectivity of

the diffusion operator, compare equations 59 and 60, is quite apparent.

Again, the interpolation theory-derived algorithm appears superior to the

equivalent complexity finite difference algorithm.

The action of v > 0 within the dissipative Weighted-Residuals theory

is crucial. Specifically, Figure 7a shows the solution generated by the
non-dissipative k = 1 algorithm, which has become completely nonsensical.

Hence, it is imperative that the basic neutral stability be modified by

v > 0 for a non-linear problem involving steep field gradients, e.g. , shocks.
The same holds for the quadratic embodiment of the algorithm. Figure 7b

shows the final solution obtained for k = 2, vd = 0.182, vi = 0 and C = 0.125.

Solution fidelity is comparable to that of the k = 1 solution, with a slight

improvement in steepness of the dominant wave front. A sensitivity study for

vi > 0 should also be completed.
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a) Initial Condition, t 0

b) nAt =120, v2 = 0.182

c) nAt =120, Finite Difference Form

Figure 6. Two-Dimensional Square Wave Convection,
Linear Tensor Product Algorithm, C = 0.125
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3. Matrix Iterative Solution Efficiency

The solutions discussedwere generated employing the Newton iteration
algorithm, equations 37 - 41, as embodied within the tensor product

formulation, equation 45. This matrix solution algorithm can be rendered
non-iterative by the elementary modifications to {F}, equation 39, of

changing the sign of h/2 and removing all terms involving matrix products on
{Q}P+. The Jacobian is unaltered. Most of the linear cosine-hill convec-

tion problems were solved using the non-iterative form. With a con-
vergence requirement of 10-3, the iterative algorithm required two iterations

to produce solutions essentially identical to the direct solution. Hence, a
CPU savings of 50% can be expected for a single scalar equation. The intro-
duction of multiple dependent variables would introduce a block-banded

structure into [J] that would moderate this basic advantage. The iterative

form would employ multiple right-side back-substitutions into the LU de-
composition of the basic tri- or pentadiagonal Jacobian [J]. At some point

a trade-off might occur, and the test problem must correspond to solution

of multiple equations.

In anticipation, the fully iterative non-linear algorithm has been

evaluated for the turbulent boundary layer equation using both mixing
length and turbulence kinetic energy-dissipation function turbulence clo-
sures. The fundamental question was whether an economical prediction tech-

nique, based upon finite differences, could yield a reduced number of

iterations for this rather non-linear equation system. One procedure was
the non-uniform-step extension of the finite difference method used by

Soliman (ref. 17). A second order accurate estimate of q! is obtained
using the leap-frog finite difference equation for non-uniform grid

9j+1 qj [1 - 2(1 + n) + (1 + n)21 + q' [1 + TiAj+ I

+qj 1 [( + n) - (1 +n)J (65)

where n Aj+,I/Aj is the non-uniformity of the integration step. A second-
order accurate difference formula for q' = qj(qj, qj 1, qj 2) was employed.

i
I
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Hence, this approach constitutes a second-order accurate leap-frog pre-

dictor, followed by the second-order accurate trapezoidal integration

corrector. The intent is to accurately predict q! such that fewer

corrections are needed for convergence. No equation solution is required

but computer CPU cost is incurred from the finite difference evaluations.

The second predictor technique is conceptually opposite, in that no
attempt is made to predict qj1 but instead a maximum evaluation of 6q!

is sought. Assuming the second and fourth terms in equation 39 are

stored separately, and further that {ffj+l ff1. then specifying that
q!+1 E q. eliminates the first term in equation 39 and the estimate of

{F}' is constructed directly on qj. This method is termed 6Q-predict,j+1 .
requires a matrix solution of equation 37 but eliminates the element DO

loop to form {F}~+I, equation 39. The comparison method is straight-

forward application of the Newton algorithm. As with Q-predict, qj+1 qj

but a computer program pass is made to correctly evaluate {g}j1l, hence

{F(Q! 
+)P .

The results are summarized in Table 3 and categorized with respect to

predictor type and input solution parameters. Decreasing the convergence

requirement to 10"4, Tests 1-2, reduced the number of fF} evaluations and

matrix solves by about 40% and did not measurably affect accuracy, as measured

in the shape factor norm. The accuracy of both predictor-type procedures

was identical to the Newton solution as measured in both the energy and

shape factor norms, Test 2. Surprisingly, the Q-predict using the finite

difference formula did not reduce the number of F evaluations, i.e., IQ}!

could not be predicted with sufficient accuracy. As a consequence, its

solution CPU cost was maximum. The 6Q-predict required fewer solution steps

and F1 evaluations, but more equation solutions (207 + 80 = 287 vs 272) than

the Newton algorithm for a net 13% savings. Increasing the maximum

T-step by a factor of six does not change the overall solution accuracy,

compare tests 2-3, nor the overall comparison among the solution methods.

Hence, the Q-predict method can be discarded. For test 4, the maximum r-step

was reached earlier in the solution, and the increase in truncation error

has decreased the solution energy by about a percent. Hence, the mathemati-

cal measure of the solution is degraded, but the engineering measure of

-36-
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shape factor norm is negligibly different. Here, the 6Q-predict was

optimized to allow maximal early steps which reduced the total solution

steps by seven to 30. However, the increased number of matrix solutions

(30 + 111 = 141) reduced solution efficiency improvement to only 5%.

Enhancing the no-predict procedure could reduce this modest superiority

to zero; hence the 6Q-predict method is only marginally attractive. There-

fore, neither prediction method holds particular promise for economizing an

iterative algorithm, and the storage and logic required for their execution

can be deleted.

4. Resolution of Gradients, Shocks

An important requirement is the capturing of imbedded flowfield shocks.

The performance criteria for an algorithm include shock steepness, strength,

and location. By and large, the addition of artificial diffusion to an

Euler algorithm permits prediction of interpolated approximations of a shock.

Use of conservative or non-conservative forms of an algorithm affects shock

strength.

The results shown in Figures 6 - 7, for the two-dimensional Burger's

equation, indicate differences in travelling wave front steepness for two

forms of the tensor product algorithm in comparison to a finite difference

algorithm. Additional insight can be obtained from examination of a solu-

tion of the Euler equations for one-dimensional shocked duct flow. The

axial momentum equation in non-conservative form is

L(pu) = p -+)uaA = 0 (66)
at p ax ax +u 2 ax

where A(x) is the duct cross-sectional area distribution. Figure 8a shows

the initial distribution of u(x) with a shock located in a region of fine

discretization; each symbol corresponds to a node point. Figure 8b shows

the u distribution resulting from application of a perturbation to p(x) that

moves the shock a modest distance upstream.

The influence of the levels of the dissipation parameters v and v

on the solution of u(x,t) in the immediate vicinity of the perturbation have

been studied. Particular interest focuses on the dispersion error amplitude
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on the supersonic side of the shock, and on the decay of the downstream

traveling wave. Figure 9a shows the preponderance of error generated by the

non-dissipative form of the algorithm after twenty time steps. In contrast,

for i = Vd = 0.0645, Figures 9b - 9c show the linear element solutions at
20 and 200 time steps. The dispersion error waveform on the supersonic

side remains essentially stationary throughout, and the amplitude of the

travelling wave decays rapidly.

The final shock strength is overpredicted by about 10%, and depends

primarily on the level of vd. Figure 10 illustrates the influence of various

d for vi 0 for the linear element algorithm at nAt = 20. In comparison to

Figure 10a, which is the correct solution, and the dashed curves, decreasing

vd in the range 0.2582 > vd > 0.0645 improves shock strenoth accuracy,

while admitting a larger dispersion error envelope on the supersonic side and

a diminished dissipation of the downstream travelling wave. Introduction of

i > 0 has very little effect on shock strength or dispersion error envelope,

but does introduce destructive interference into the travelling wave. Figure

11 illustrates the results obtained for the linear element algorithm for

d = 0.0645, 0.0322 < i < 0.193. Comparing Figure 11d with lOd, it appears

that a further decrease in vd to improve shock strength would be permissible.

5. Transformation to Arbitrary Domains

For the tensor product algorithm to be viable, it must be operable for

general geometries. Geometric versatility was the original key feature of

the finite element concept, but use of coordinate transformation to map non-

regular shaped domains onto the unit square will supplant this. Thompson

and co-workers, references 18 - 20, pioneered the concept of solution of

non-self-adjoint Poisson equations to generate the mappings. An alternative

procedure, using an analytical transformation on a local basis, appears most

useful for the tensor product algorithm, while enjoying direct extension to

three-dimensional space.

Figure 12 illustrates the concept for a straight-sided domain on two-

dimensional space. The origin of the "natural" ni coordinate system is

defined at the centroid. The coordinate curves of n, remain straight lines,

but the system is not orthogonal in the Ri plane. However, the ni system
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is defined as orthogonal and normalized in the transform plane. The tool

for accomplishing this, on a local basis, is contained within the standard

finite element isoparametric coordinate transformation {Ni+ (rli)}, see j
references 12 and 21, where

- 1l)(1 - n2)1
(1 + nl)(1 - 12)1

{Nj+ (ni4)} ' ( + n1)(1 + n2) (67)
- n1)(l + n2)

Employing the classical concept of finite element interpolation theory, the

global i coordinate system is interpolated on R2 in terms of the global node
1 e

coordinates {XI} e of the finite element domain as

R, = {N+ (ni)}T{xile

2 = {NI+ (ni)}T{X2}e (68)

The tensor product algorithm requires establishment of the vector

gradient, equations 1 - 3. Hence, using the chain rule

x-qe(xi) : N,+ (ni)}T{O}e

L-T{N1+ (ni)} Ni (69)

where ej are unit vectors of the xj coordinate system. The elements of

{N1+ (ni)l are readily differentiated by ni, but the backwards transforma-

tion ni = ni(x j ) is not available for formation of .ni/ax.. However, the

forward transformation yields elements of the Jacobian [Jj as

[axI ax2l
[J] I~ 111(70)E x I x2

Lan2  an2j
The elements of [J] are easy to form and are linear polynomials in ni, ie.
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_a(1 - n2 ) + b(1 + n2) , c(O - n2) + d(1 + n2)]

LJ La(1 - nh) + a(1 + nj) , y(1 - n) + 6(1 +ni)j (71)

where a-d and a-6 are specified constants that depend solely on the global

node coordinates {XJ}e"

Equation 69 requires the inverse operation, ie.

1 X x (72)

From equation 71, and the definition of a matrix inverse,

] 1 [(1 - n) + 6(1 + ni) , -a1 - ni) - W + n1)d'et m -c(1 l - d ( 1 + n2) , a ( 1 - n12) +  b( 1 + n2)

where det [J] is the determinant of the Jacobian, equation 71. Hence, since

a-d and a-6 are known constants, equation 69 is formally evaluated as

a-- e(Xi) = ^Cj[ r {1+ (n)T{Q W (74)

The finite element algorithm requires integral operations, see equation

25. The differential element becomes

dT -dx dx2 a -- j a dnjdnk

- det [J] dnldn2  (75)

For the single vector operation within the tensor product algorithm, det [J

in equations 75 and 73 will cancel, leaving [J]- 1 in the form of poly
nomials. The unit vector Ej is contracted with the convection velocity;

the inner product is an invariant and should be evaluated in the local ni

coordinate system.

No fundamental change is involved In going to curved-sided or three-

dimensional element domains. The extension in concept is illustrated in

Figure 13 for a two-dimensional general domain the xi coordinate system is

interpolated quadratically as

-45-
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13

X2

1X

Figure 12. Plane-Quadrilateral Two-Dimensional Finite Element for [N14.

i2 112

X3 7

X2

gFigure 13. Generalized Quadrilateral Two-Dimensional
Finite Element for [ 2J
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x = {N2+ (n i)}T{Xl)e

2 N2, (ni))T(X2 e  (76)

where {XI} contains eight elements equal to the respective global nodal

coordinates. The matrix elements of the isoparametric quadrilateral basis

are expressed in the ni coordinate system as (ref. 21).

(1 - I)(1 - n2)(-nl n2 - 1)
(1 + hi)(1 - n2 )( n, - 1)

(1 + 9i)(1 + n2)( n, + n2- 1)

) 1 (1 - n)(l + n2)(-n1 + n2- 1)N2+ (ni) 4 2 (l -n2)(1-

2(1 + nj)(1 - n2)

2(1 - n2 )(l + n2)

2(1 - n1 )(l + n2) (77)

Then

q (xi) = j[J]- i{N2+ (n)}T{Q~e (78)

and the number of matrix elements in {Q1e now equals eight. Numerical

integration procedures will undoubtedly be required to evaluate equation

25 in the tensor product form using equation 78.
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The objective of this research project was to develop a highly accurate

and efficient numerical solution algorithm for the non-linear three-dimen-

sional Navier-Stokes equations in aerodynamics applications. A candidate

algorithm has been derived employing finite element interpolation theory,

the non-linear extension of quasi-variational principles, and the concept

of tensor product bases. The resultant solution statement is rendered

soluable using an implicit integration algorithm, and the replacement of

the standard Jacobian of a Newton iteration algorithm with a tensor matrix

product form.

A linearized stability analysis indicates the basic algorithm is spa-

tially fourth-order accurate in its most elementary embodiment. The control

of an added dissipation mechanism can elevate this to sixth order, but

numerical experimentation indicates the resultant artificial diffusion is

unacceptably large. By the same measure, this additional accuracy is in-

trinsic to the quadratic element embodiment of the algorithm with freedom

from artificial diffusion. The results of several numerical experiments

for single- and multi-dimensional convection-dominated test problems confirms

the basic viability of the developed algorithm and its tensor product formu-

lation. The latter is of paramount importance in rendering the algorithm

nominally as efficient as familiar lower-order accurate finite difference

formulations.

These results of the first year's research on the topic are highly

encouraging. Specific recommendations include:

1. A computer program test bed should be constructed for solution
of the multi-dimensional, multi-dependent variable Navier-Stokes
equations. This program should contain both the linear and
quadratic element embodiments for solution comparisons.

2. Evaluation of the transformation of arbitrarily shaped solution
domains to a regular grid, using the isoparametric mapping, should
be accomplished in this program.

3. The developed numerical procedures should be evaluated for solu-
tion of several Navier-Stokes problems for which accurate com-
parison results are available.
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