WVT-PP-1

DESIGN OF LAMINATED TORSION BAR SPRINGS

BY JOSEPH A. GENTILUOMO

FEBRUARY 1980

PROCUREMENT DIRECTORATE
WATERVLIET ARSENAL
WATERVLIET, N.Y. 12189

TECHNICAL REPORT

Proc No. M1-8P 5282(01)M7-M7

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
DESIGN OF LAMINATED TORSION BAR SPRINGS

This report provides an analytical approach to the design of torsion leaf spring packs for use in cannon breach mechanisms, vehicle suspensions, etc. The design procedure presents an expeditious simple method for determining spring pack dimensions when parameters such as total required torque, spring pack angle of twist, free length of leaf spring, maximum tensile working stress, and maximum torsional working stress are known. The unknown parameters to be determined are leaf spring thickness, leaf spring width, and the number of leaf springs.
required per pack to provide the required total torque. Of interest is the fact that leaf spring thickness is dependent solely on maximum shearing stress, angle of twist per unit length, and shear modulus of elasticity. Also, leaf spring width is dependent solely on maximum tensile stress, angle of twist per unit length, and tensile modulus of elasticity.
TABLE OF CONTENTS

NOTATIONS ii
INTRODUCTION 1
THEORETICAL ANALYSIS 2
EXAMPLE PROBLEM AND SOLUTION 6
REFERENCES 10

ILLUSTRATIONS

1. Longitudinal stress in leaf spring under torsion. 11
2. Representation of torsional shear stress across strip width. 12
3. Shearing and longitudinal stresses in leaf springs under torsion. 13

DISTRIBUTION LIST 14
NOTATIONS

\(\alpha \) Coefficient depending on ratio \(b/c \).
\(\beta \) Coefficient depending on ratio \(b/c \).
\(\theta \) Angle of twist per unit length, Radians/inch.
\(\phi \) Angle of twist, degrees.
\(\sigma_1 \) Maximum principal tensile stress, psi.
\(\sigma_2 \) Maximum principal compressive stress, psi.
\(\sigma_A \) Compressive stress at mid-point of width "b", psi.
\(\sigma_B \) Tensile stress at both ends of width "b", psi.
\(\sigma_W \) Tensile working stress, psi.
\(\sigma_Y \) Tensile yield stress, psi.
\(\sigma_Z \) Tensile or compressive stress at distance "y", psi.
\(\sigma_U \) Ultimate tensile stress, psi.
\(\tau_A \) Maximum shearing stress at mid-point of width "b", psi.
\(\tau_M \) Maximum combined shearing stress, psi.
\(\tau_P \) Shearing stress at distance "y", psi.
\(\tau_W \) Torsional working stress, psi.
\(\tau_Y \) Torsional yield stress, psi.
\(\tau_{ZY} \) Shearing stress at distance "y", psi.
\(b \) Width of rectangular strip, inches.
\(c \) Thickness of rectangular strip, inches.
\(\ell \) Free length of rectangular strip, inches.
\(y \) Distance from Z-axis, inches.
n Number of leaf springs per pack.
E Tensile modulus of elasticity, psi.
G Shear modulus of elasticity, psi.
H Total height of laminated spring pack, inches.
S.F. Safety factor.
T Total torque per laminated spring pack, in-lbs.
T_1 Torque due to torsional shear, in-lbs.
T_2 Torque due to longitudinal stress, in-lbs.
T_n Torque per leaf spring, in-lbs.
INTRODUCTION

The Saint Venant's analysis indicates that when a flat strip is twisted by applying moments at its ends, a plane transverse section therewithin does not remain a plane section after twisting. Said section becomes a warped surface which effectuates an increase in shearing stress in some parts of the section and a decrease in other parts when compared to stresses that would occur if the section did not warp. The center of the strip's long side will experience maximum shearing stress, and the corners will experience zero shearing stress. Also, due to said twisting, the longitudinal edges form a helix whose fibers become longer than the center fibers. Simultaneously, said twisting causes the strip to shorten axially. Therefore, the net effect is the introduction of tensile stresses in the outer fibers, and compressive stresses within the central fibers. These longitudinal secondary stresses introduce a secondary torque which supplements the torque associated with the torsional shearing stresses. It should be noted that these stresses prevail at a sufficient distance from the strip ends, without consideration as to the manner in which the strip's ends are secured.

When a pack of flat strip springs are twisted while secured within rectangular type end restraints, localized stresses develop where said strips emerge from the end restraints. Depending on the particular type of end restraint design, stress of considerable magnitude can exist at the juncture to cause fatigue failure. Since sections perpendicular to the strip spring's torsional axis warp when twisted, the strip ends should be allowed to warp freely within the rectangular cavity of the end restraints in order to
minimize operational stresses. Therefore, strip spring working stresses should be established with due consideration given to the type of end restraint design used.

Due to friction between unlubricated strips of a laminated torsion bar spring pack during twisting, hysteresis will prevail between the loading and unloading action of the spring pack. To reduce inter-strip friction damping, liquid or solid film lubricant may be used.

THEORETICAL ANALYSIS

The analytical treatment of solid noncircular members in torsion, as presented herein, is based on the following assumptions:

(1) The strip is straight, of uniform rectangular section, and of homogeneous isotropic material.

(2) The strip is loaded only by equal and opposite twisting couples which are applied at its ends in planes normal to its longitudinal axis.

(3) The strip is stressed within the elastic limit of the material.

(4) The condition of loading is such that the end sections of the strip are free to warp within the end restraints.

Torque Due To Torsional Shear

\[T_1 = \alpha bc^2 \tau_A \]
\[T_1 = \beta bc^3 G\theta \]

Data indicates that \(\alpha \) and \(\beta \) are approximately equal to 1/3 for \(b/c \geq 10 \).

\[T_1 = \frac{1}{3} bc^3 G\theta \quad (1) \]

\[T_1 = \frac{1}{3} bc^2 \tau_A \quad (2) \]
Thickness of Rectangular Strip

Equating Eqs. (1) and (2) and solving for \(c \).

\[
\frac{c}{\alpha} = \frac{\tau_A}{G\theta}
\]

(3)

Longitudinal Stress Distribution in Rectangular Strip

\[
\sigma_z = \frac{E\theta^2}{b} \left[y^2 - \frac{b^2}{12} \right]
\]

(4)

When \(\sigma_z = 0 \)

\[
y = \sqrt{\frac{b^2}{12}}
\]

(5)

When \(y = 0 \)

\[
\sigma_A = -\frac{E\theta^2 b^2}{24} \quad \text{(Max. Compressive Stress)}
\]

(6)

When \(y = \pm \frac{b}{2} \)

\[
\sigma_B = \frac{E\theta^2 b^2}{12} \quad \text{(Max. Tensile Stress)}
\]

(7)

\[
\sigma_B = -2\sigma_A
\]

(8)

Solving Eqs. (6) and (7) for \(b^2 \)

\[
b^2 = -\frac{24\sigma_A}{E\theta^2}
\]

(9)

\[
b^2 = \frac{12\sigma_B}{E\theta^2}
\]

(10)

Torque Due to Longitudinal Stress

\[
T_2 = \frac{1}{360} Ec b^5 \theta^3
\]

(11)
Total Twisting Torque Per Strip Spring

Combine Eqs. (1) and (11)

\[T_n = T_1 + T_2 \]

\[T_n = \frac{1}{3} bc^3G\theta + \frac{1}{360} Ecb^5\theta^3 \]

(12)

Number of Strip Springs Required Per Pack

Neglecting inter-spring friction between strip springs of equal width and thickness, it has been determined that the developed total torque is essentially that of a single strip spring multiplied by the number of strip springs in the pack.

\[n = \frac{T}{T_n} \]

(13)

Total Height of Laminated Spring Pack

\[H = nc \]

(14)

Shearing Stress Distribution in Rectangular Strip

With reference to Fig. 2, the maximum shearing stress \(\tau_A \) exists at point "A", the center of side "b". Assume the shearing stress to vary from "A" to "B" approximately as the ordinates of a parabola. Therefore, the stresses along AB are represented by the ordinates of the portion HMB of a parabola.

Let AH represent \(\tau_A \), and MP represent \(\tau_p \)

\[AH = BK = \tau_A \]

\[PM = \tau_p \]
Equation of Parabola:

\[y^2 = kx' \]

When \(y = b/2; \ x' = BK \)

\[(b/2)^2 = k(BK) \]

\[k = \frac{(b/2)^2}{BK} \]

When \(y = HN; \ x' = (BK-MP) = NM \)

\[y^2 = \frac{(b/2)^2}{BK} x' \]

\[y^2 = \frac{(b/2)^2}{BK} (BK-MP) \]

\[\frac{BK-MP}{BK} = \frac{y^2}{(b/2)^2} \]

\[1 - \frac{MP}{BK} = \left[\frac{2y}{b} \right]^2 \]

\[1 - \frac{\tau_p}{\tau_A} = \left[\frac{2y}{b} \right]^2 \]

\[\tau_p = \tau_A \left[1 - \left(\frac{2y}{b} \right)^2 \right] \quad (15) \]

Combination of Longitudinal and Shearing Stresses

With reference to Fig. 3, note that the portion of the parabola AP'B' represents the portion of the parabola HMB shown in Fig. 2.

(a) At point "A", the longitudinal stress "\(\sigma_A \)" is maximum compressive, and the shearing stress is "\(\tau_A \)".
\[
\sigma_1 = \frac{\sigma_A}{2} + \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2} \quad \text{(Max. Principal Tensile Stress)} \tag{16}
\]

\[
\sigma_2 = \frac{\sigma_A}{2} - \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2} \quad \text{(Max. Principal Compressive Stress)} \tag{17}
\]

\[
\tau_M = \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2} \quad \text{(Max. Combined Shearing Stress)} \tag{18}
\]

(b) At point "P", the longitudinal stress is zero, and the shearing stress is "\(\tau_P\)."

\[
\sigma_1 = \tau_P \quad \text{(Max. Principal Tensile Stress)} \tag{19}
\]

\[
\sigma_2 = -\tau_P \quad \text{(Max. Principal Compressive Stress)} \tag{20}
\]

\[
\tau_M = \tau_P \quad \text{(Max. Combined Shearing Stress)} \tag{21}
\]

(c) At point "B", the longitudinal stress "\(\sigma_B\)" is maximum tensile, and the shearing stress "\(\tau_B\)" is zero.

\[
\sigma_1 = \sigma_B \quad \text{(Max. Principal Tensile Stress)} \tag{22}
\]

\[
\sigma_2 = 0 \quad \text{(Max. Principal Compressive Stress)} \tag{23}
\]

\[
\tau_M = \sigma_B/2 \quad \text{(Max. Combined Shearing Stress)} \tag{24}
\]

EXAMPLE PROBLEM AND SOLUTION

Given: \(T = 3600 \text{ in-lbs.}\) \hspace{1cm} \(G = 11.5 \times 10^6 \text{ psi}\)

\(\phi = 135^\circ\) \hspace{1cm} \(E = 30 \times 10^6 \text{ psi}\)

\(\xi = 11.75''\) \hspace{1cm} \(\sigma_U = 256,000 \text{ psi}\)

\(\theta = .2005 \text{ Rad./in.}\)

Material: AISI 1095 Clock Spring Steel

Find: \(c, b, T_n, n, H, \sigma_1, \sigma_2, \text{ and } \tau_M\)
Tensile Yield Stress
\[\sigma_Y = 0.85 \sigma_U = 0.85 \times 256,000 = 217,600 \text{ psi} \]

Compressive Yield Stress
\[\sigma_Y = 392,000 \text{ psi} \]

Torsional Yield Stress
\[\tau_Y = 0.6 \sigma_Y = 0.6 \times 217,600 = 130,560 \text{ psi} \]

Tensile Working Stress (At Pt. B)
\[\sigma_W = \sigma_B = \frac{\sigma_Y}{S.F.} = \frac{217,600}{1.38} = 157,681 \text{ psi} \]

Maximum Combined Shearing Stress (At Pt. A)
\[\tau_M = \frac{\tau_Y}{S.F.} = \frac{130,560}{1.8} = 72,533 \text{ psi} \]

From Eq. (8):
\[\sigma_A = -\frac{\sigma_B}{2} = -\frac{157,681}{2} = -78,840 \text{ psi} \]

From Eq. (18):
\[\tau_A^2 = \tau_M^2 - \left[\frac{\sigma_A}{2}\right]^2 = (72,533)^2 - \left[\frac{-78,840}{2}\right]^2 \]
\[\tau_A = 57,338 \text{ psi} \]

From Eq. (3):
\[c = \frac{\tau_A}{G} \frac{57,338}{11.5 \times 10^6 \times 0.2005} \]
\[c = 0.0249 \]

Let
\[c = 0.025" \]
From Eq. (10):

\[b^2 = \frac{12 \sigma_B}{E\theta^2} - \frac{12(157,681)}{30 \times 10^6 (.2005)^2} \]

\[b = 1.2526 \]

Let

\[b = 1.250'' \]

From Eq. (12):

\[T_n = \frac{1}{3} b c^3 G\theta + \frac{1}{360} E c^5 \theta^3 \]

\[T_n = \frac{1.250(.025)^3}{3} \times 10^6 \times .2005 + \frac{30 \times 10^6 \times .025(1.25)^5 \times (.2005)^3}{360} \]

\[T_n = 66.2564 \text{ in-lbs.} \]

From Eq. (13):

\[n = \frac{T}{T_n} = \frac{3600}{66.2564} = 54.3343 \]

Let

\[n = 54 \]

From Eq. (14):

\[H = n c = 54 \times .025 \]

\[H = 1.350'' \]

From Eq. (16):

\[\sigma_1 = \frac{\sigma_A}{2} + \sqrt{\left[\frac{\sigma_A}{2}\right]^2 + \tau_A^2} \]

\[\sigma_1 = \frac{-78,840}{2} + \sqrt{\left[\frac{-78,840}{2}\right]^2 + (57,338)^2} \]

\[\sigma_1 = 30,161 \text{ psi (Max. Principal Tensile Stress)} \]
From Eq. (17):

\[
\sigma_2 = \frac{\sigma_A}{2} - \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2}
\]

\[
\sigma_2 = \frac{-78,840}{2} - \sqrt{\left(\frac{-78,840}{2}\right)^2 + (57,338)^2}
\]

\[
\sigma_2 = -109,000 \text{ psi (Max. Principal Compressive Stress)}
\]

From Eq. (18):

\[
\tau_M = 72,533 \text{ psi (Max. Combined Shearing Stress)}
\]

From Eq. (22):

\[
\sigma_1 = \sigma_B
\]

\[
\sigma_1 = 157,681 \text{ psi (Max. Principal Tensile Stress)}
\]

From Eq. (23):

\[
\sigma_2 = 0 \text{ (Max. Principal Compressive Stress)}
\]

From Eq. (24):

\[
\tau_M = \frac{\sigma_B}{2}
\]

\[
\tau_M = \frac{157,681}{2}
\]

\[
\tau_M = 78,840 \text{ psi (Max. Combined Shearing Stress)}
\]

\[
\text{S.F.} = \frac{\tau_Y}{\tau_M} = \frac{130,560}{78,840} = 1.66
\]
REFERENCES

3. High Carbon Strip Steels, Brochure Form No. 900, Wallace Barnes Steel, Bristo, CT.

LONGITUDINAL STRESS IN LEAF SPRING UNDER TORSION

FIG. 1
REPRESENTATION OF TORSIONAL SHEAR STRESS ACROSS STRIP WIDTH

FIG. 2
Shearing & Longitudinal Stress in Leaf Springs Under Torsion

FIG. 3
<table>
<thead>
<tr>
<th>Role</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Director, Benet Weapons Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Development Engineering Branch</td>
<td>1</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-DA</td>
<td></td>
</tr>
<tr>
<td>-DM</td>
<td>1</td>
</tr>
<tr>
<td>-DP</td>
<td>1</td>
</tr>
<tr>
<td>-DR</td>
<td>1</td>
</tr>
<tr>
<td>-DS</td>
<td>1</td>
</tr>
<tr>
<td>-DC</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Engineering Support Branch</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Research Branch</td>
<td>2</td>
</tr>
<tr>
<td>Attn: DRDAR-LCB-RA</td>
<td></td>
</tr>
<tr>
<td>-RC</td>
<td>1</td>
</tr>
<tr>
<td>-RM</td>
<td>1</td>
</tr>
<tr>
<td>-RP</td>
<td>1</td>
</tr>
<tr>
<td>Technical Library</td>
<td>10</td>
</tr>
<tr>
<td>Director, Operations Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Procurement Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Product Assurance Directorate</td>
<td>1</td>
</tr>
</tbody>
</table>
External Distribution List

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address Details</th>
</tr>
</thead>
</table>
| 1 | ASST SEC OF THE ARMY
 RESEARCH & DEVELOPMENT
 ATTN: DEP FOR SCI & TECH
 THE PENTAGON
 WASHINGTON, D.C. 20315 |
| 1 | COMMANDER
 US ARMY MAT DEV & READ. COMD
 ATTN: DRCDE
 5001 EISENHOWER AVE
 ALEXANDRIA, VA 22333 |
| 2 | COMMANDER
 US ARMY ARRADCOM
 ATTN: DRDAR-TSS
 DOVER, NJ 07801 |
| 1 | COMMANDER
 US ARMY ARRCOM
 ATTN: DRSAR-LEP-L
 ROCK ISLAND ARSENAL
 ROCK ISLAND, IL 61299 |
| 1 | COMMANDER
 US ARMY MOBILITY EQUIP R&D COMD
 ATTN: TECH LIB
 FT BELVOIR, VA 22060 |
| 1 | COMMANDER
 US ARMY TANK-AUTMV R&D COMD
 ATTN: TECH LIB-DRDTA-UL
 MAT LAB-DRDTA-RK
 WARREN, Michigan 48090 |
| 1 | COMMANDER
 US MILITARY ACADEMY
 ATTN: CHMN, MECH ENGR DEPT
 WEST POINT, NY 10996 |
| 1 | COMMANDER
 ROCK ISLAND ARSENAL
 ATTN: SARRI-ENM (MAT SCI DIV)
 ROCK ISLAND, IL 61202 |
<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDSTONE ARSENAL</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: DRSMI-RB</td>
<td></td>
</tr>
<tr>
<td>DRSMI-RRS</td>
<td>1</td>
</tr>
<tr>
<td>DRSMI-RSM</td>
<td>1</td>
</tr>
<tr>
<td>ALABAMA 35809</td>
<td></td>
</tr>
<tr>
<td>HQ, US ARMY AVN SCH</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: OFC OF THE LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>FT RUCKER, ALABAMA 36362</td>
<td></td>
</tr>
<tr>
<td>US ARMY FGN SCIENCE & TECH CEN</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRXST-SD</td>
<td></td>
</tr>
<tr>
<td>220 7TH STREET, N.E.</td>
<td></td>
</tr>
<tr>
<td>CHARLOTTESVILLE, VA 22901</td>
<td></td>
</tr>
<tr>
<td>US ARMY MATERIALS & MECHANICS RESEARCH CENTER</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: TECH LIB-DRXMR-PL</td>
<td></td>
</tr>
<tr>
<td>WATERTOWN, MASS 02172</td>
<td></td>
</tr>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td>1</td>
</tr>
<tr>
<td>P.O. BOX 1211</td>
<td></td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
<td></td>
</tr>
<tr>
<td>US ARMY HARRY DIAMOND LAB</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: TECH LIB</td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td></td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
</tr>
</tbody>
</table>
EXTERNAL DISTRIBUTION LIST (CONT)

<table>
<thead>
<tr>
<th>NO. OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPIES</td>
</tr>
</tbody>
</table>

DIRECTOR
US NAVAL RESEARCH LAB
ATTN: DIR, MECH DIV
CODE 26-27 (DOC LIB)
WASHINGTON, D.C. 20375

1

NASA SCIENTIFIC & TECH INFO FAC
P.O. BOX 8757, ATTN: ACQ BR
BALTIMORE/WASHINGTON INTL AIRPORT
MARYLAND 21240

1

COMMANDER
DEFENCE TECH. INFO. CTR.
ATTN: DTIC-TCA
CAMERON STATION
ALEXANDRIA, VA 22314

15

MPDC
13919 W. BAY SHORE DR.
TRAVERSE CITY, MI 49684

1

MATERIEL SYSTEMS ANALYSIS ACTV
ATTN: DRXSY-MP
ABERDEEN PROVING GROUND
MARYLAND 21005

1