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SUMMARY

This report contains results of a study of the new integral method developed
at the Naval Surface Weapons Center (NAVSWC), and its application to three-
dimensional boundary-layer calculations. The work is a part of a theoretical
study of general viscous flow problems. The study is supported by NAVSWC
Independent Research Program.

PAUL R. WESSEL
By direction
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1. INTRODUCTION

The simple integral method developed by the author has been extensively used
to provide approximate solutions to a wide variety of problems in two-dimensional
laminar boundary-layer flows(1 ,2 ) and transient heat conduction with phase
transition( 3 ,4). More recently, application of the method was made by King(5 ) to
give a simple, yet accurate, prediction of the critical Reynolds number for a
heated flat plate in water in connection with the boundary-layer stability studies.

In the previous development and application of the method, various different
schemes( 3) based on the same basic idea have been proposed and used for the
approximate solutions of the different problems mentioned above. Also, different
forms of the approximate profile with a varying degree of complexity were assumed
in the calculation process, and the dependence of the approximate solution on the
assumed profile has been noted and discussed. While the results obtained so far
are all favorable and only weakly dependent on the profiles, the limit of the
capability of the method in accommodating improper profiles has not been studied
before, and the relative merit of the various schemes for a given problem remains
to be determined. From a practical standpoint, some guidelines in choosing an
approximate profile based en the given boundary conditions and the governing
differential equations are very helpful in achieving good results, and a systematic
approach in developing such guidelines appears desirable.

In this report, a study of the method related to the aforementioned questions
is made in section 2. A simple boundary value problem in ordinary differential
equation is used as a model example for the study. Two approximate profiles of
polynomial form are used in conjunction with every different scheme of the integral
method. Corresponding solutions are then compared with the exact solution so as
to determine their accuracy. The qualitative behavior of the exact solution is
also deduced from the differential equation and the given boundary conditions, and
is used to establish certain guidelines for choosing the most appropriate solution
in cases where multiple solutions are generated in the solution process of certain
schemes.

The integral method is next used to yield approximate solutions to some simple
three-dimensional boundary-layer flows in section 3; only laminar incompressible

1. Zien, T. F., "A New Integral Calculation of Skin Friction on a Porous Plate,"
AIAA Journal, Vol. 9, No. 7, Jul 1971, pp. 1423-1425.

2. Zien, T. F., "Approximate Analysis of Heat Transfer in Transpired Boundary
Laver with Effects of Prandtl Number," International Journal of Heat and Mass
Transfer, Vol. 19, No. 5, May 1976, pp. 513-521.

3. Zien, T. F., "Study of Heat Conduction with Phase Transition Using an Integral
Method," AIAA Progress in Astronautics and Aeronautics, Vol. 56, Thermophvsics
of Spacecraft and Outer Planet Entry Probes (Ed. A. M. Smith), Sep 1977,
pp. 87-111.

4. Zien, T. F., "Integral Solutions of Ablation Problems with Time-Dependent
Heat Flux," AIAA Journal, Vol. 16, No. 12, Dec 1978, pp. 1287-1295.

5. King, W. S., "An Approximate Method for Estimating the Critical Reynolds
Number for a Heated Flat Plate in Water," Rand Paper Series P-6176, The Rand
Corporation, Santa Monica, Calif., Aug 1978.
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flows are considered. Examples include flat-plate boundary layers with parabolic
inviscid streamlines, boundary layers over yawed wedges and boundary layers on a
flat plate with circular inviscid streamlines and small turning angles. These
fl,,ws all have the common feature that one lateral velocity component is decoupled
from the other. This simplifies the solution process considerably, and allows
closed-form solutions to be obtained for all the cases treated in the report.
Solutions are presented mainly in terms of skin friction components. Mathematically
speaking, the system of governing equations resembles that pertaining to heat
transfer problems in two-dimensional boundary-layer flows.

Finally in section 4, some remarks are made about the method in general, and
its application to three-dimensional boundary-layer flows in particular.

2. THE INTEGRAL METHOD--A MODEL EXAMPLE

The basic idea of the integral method discussed here lies in the use of the
integrated version of the differential equation as an expression for the boundary
derivatives, after an approximate (guess) solution is substituted for the
(unknown) exact solution in the various integrals. In application to physical
problems, the boundary derivatives are often related to the important quantities
of surface flux, e.g., skin friction (momentum flux), heating rate (heat flux),
etc. on an aerodynamic body, and their accurate and efficient predictions are of
great importance in the design and performance analysis of the body.

In this report, the basic idea of the method is exhibited in an elementary
manner by way of a simple boundary value problem in ordinary differential equation,
and examined in some detail from a mathematical viewpoint. Although this model
example does not simulate the mathematical structure of the physical problems
intended for the application of the method, it is thought to be capable of
allowing the central idea to be presented with ease and clarity without being
obscured by mathematical complexities.

2.1 EXACT SOLUTION. Consider the following problem:

v O[~d- 2 y 0 _' x _' I 1 1

dx 2

y(O) = 0 (1.2a)

y(l) = 1 (1.2b)

The exact solution is easily obtained as

y = sinhx/sinhl (1.3a)

whereby the boundary derivatives can be evaluated as

(dy/dx) = 0.8509; (dy/dx) = 1.3130 (l.3b)
0 1

6
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These exact results will be used later as a standard to determine the
accuracy of various approximate solutions to be generated.

To discuss the qualitative behavior of the exact solution on the basis of the
differential equation and the given boundary conditions alone, we may proceed as
follows. First, rewrite Eq. (1) as the following pair of equations

dy = z (1.4a)
dx

dx - y 
(1.4b)

from which the following equation for the slope, z, results

dz v (1.5)
dy z

Eq. (1.5) is integrated to provide information about the slope of the
solution curve,

z 2 y + c (1.6)

where c is an integration constant. Eq. (1.6) represents families of hyperbolas
in (y,z) plane with the axis either aligned with the y-axis (I, for c < 0) or
with the z-axis (II, for c - 0) (see Fig. 1). Since the solution domain extends
to y = 0, viz., 0 y : 1, family I must be excluded from consideration. In
family II, only the segments in y - 0 are relevant to the desired solution in view
of the specified domain of solution, 0 - y ! 1. Finally, the solution branch is
determined as labeled in Fig. 1 on the basis that z (= dy/dx) must be at -east
positive in a finite region of y within 1 - y 1 1, to accommodate the boundary
conditions of y increasing from 0 to I while x increasing from 0 to 1.

Based on the above discussion, some important properties of the solution can
be deduced, and are listed in the following for use in determining a profile in
the approximate solution:

(i) y(x) " 0 in 0 < x 1
(ii) y'(x), particularly y'(0), is positive in 0 ' x i 1

(iii) y"(1) - 0 (because y"(1) = y(l) = 1 from Eqs. (1.1) and (l.2b))

In deciding the desired solution for the profile parameter in case of multiple
solutions in certain solution schemes, the above listed properties will be used as
a guideline. This approach is also suggested for the application of the method to
other physical problems.

One way to construct profiles as approximate solutions to the problem is to
use polynomials which are formed to satisfy the given boundary conditions, and
satisfy the differential equation in an averaged sense, but not locally. Two such
polynomials are given below and will be used in the various approximate solution
schemes.

7
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fl = Ax + (l-A)x (1.7)
9 3

f2 = Ax2 + (l-A)x (1.8)

In these profiles, A is a constant profile parameter to be determined. The

cubic polynomial, f2 , is obviously ill-chosen because it gives zero slope at x = 0.

It is included here to test if reasonable solutions of the boundary derivatives can

be achieved with the present integral method even if the assumed profile is an

improper one.

The properties (i), (ii) and (iii) of the exact solution as enumerated above

can now be used to establish certain conditions to be imposed on the profile
parameter A for such polynomial profiles. For example,

(i) leads to A 0 for both f and f2'

(ii) leads to A 2 for fl

and A < 3 for f2

(iii) leads to A < 1 for f1

and A < 1.5 for f2

The above conditions can be summarized as

f 1 0 < A < 1 (1.9)1

f2 0 < A - 1.5 (1.10)

Eqs. (1.9) and (1.10) will be considered to be the desirable ranges of the

solution of A.

2.2 CLASSICAL INTEGRAL METHOD. The simplest kind of the integral method

makes use of the integrated form of the original differential equation alone, and

the idea is the same as that of the well-known Karman-Pohlhausen momentum integral
technique for solving boundary-layer flow problems.

A direct integration of the differential equation, (1.1), gives

1
i ( 0 ydx (1.11)

0

In the classical integral method, y is replaced by f, the assumed profile, in

all terms of Eq. (1.11), including both derivatives and integrals. Thus

(df df =  1
i 0 fdx (1.12)

0
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(i) f f1 : Eq. (1.12) gives the following solution:

10

13

(4) 0 = A = 0.7692 (-9.6%)
dx0

dx 1 = 2-A = 1.2308 (-6.3%)

Here, and in all the following results, the percentage errors are indicated in
the parenthesis.

(ii) f = f2: Eq. (1.12) for this case leads to the following solution:

A = .3 .538513

= V) 0 (-100%)

(x)1 = 3-A = 0.4615 (-64.9%)

It is noted here that this purposely ill-chosen profile, f2, indeed leads to
unacceptable accuracy in the boundary derivative predictions.

In the following, the same profiles will be used in conjunction with the new
integral method, and improved accuracies will be demonstrated which indicate the
potential of the present method in, among other things, tolerating improper
profiles.

2.3 PRESENT INTEGRAL METHOD. As a refinement of the classical integral method,
various moment equations are generated from the original differential equation and
used in conjunction with the directly integrated form of the original equation. F
This way the boundary derivatives can be expressed in terms of the integrals
involving the approximate profile (assumed) via the integrated equation, Eq. (1.11).
This idea forms the basis of the present integral method.

Depending on how the moment equations are generated, the present integral
method further divides itself into various different schemes which will be
described in the following.

2.3.1 x-Moment Scheme. In this scheme, the additional equation is generated
as follows,

1 2 1

f x d dx f xvdx (1.13)
0 dx 0

which reduces to

9
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- I xvdx (1.14)d x I1

where the boundary conditions, Eqs. (1.2a,b), have been used.

Eqs. (1.11) and (1.14) form the basic system of equations for the solution of
the boundary derivatives, v'(1) and v'(O), and the parameter A. f will be substi-
tuted for v only in the integrals of Eqs. (1.11) and (1.14). Some assumptions
regarding either v'(0) or y'(1) will be required for a solution.

Wi v' (1 = f' (1).

In this case, we have two equations for the two unknowns, y'(O) and A, after
f is substituted for y inside the integrals. The solutions are summarized below

(a) f = f 1: A =  0.6921,
y'(0) = 0.8589 (+0.971)

v'(1) = 1.3077 (-0.45/,

(b) f = f,: A = 1.7143

y'(O) = 0.8929 (+4.9%)5L
v'(1) = 1.2857 (-2.1%)

Note that in view of the discussion in,§.1, the solution of A corresponding
to f-) falls somewhat beyond the range specified in Eq. (1.10). However, this
solution is still used here because there is no other solution available in this
scheme. It perhaps should be remarked that the relatively large errors of this ,
solution may well be a result of this difficulty. Nevertheless, the solution is
still much more accurate than the classical integral solution corresponding to the
same profile.

(ii) y'(0) =  f'(0).

In this case, the two equations, (1.11) and (1.14), are used to determine
y'(1) and A. Only fl is appropriate for this calculation, as t-() = ) which in
turn leads to v'(0) = 0 in this case. This obviously incorrect result (see dis-
cussion on the qualitative behavior of the exact solution in 2.1) should be
avoided, if possible.

For f = fl, the results are summarized below:

A 1 0.8462

y'(0) = 0.8462 (-0.6%)

7 1
v'(l) 6 A + - = 1.3205 (+0.6%)

The accuracy is seen to be equally good as in case (i).

10
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2.3.2 y-Moment Scheme. In this scheme, the additional equation is obtained
from the y-moment integral of the original differential equation, i.e.,

y dx f y2dx (1.15)
0 dx 0

Since

dy I d 2 d2

dx dx x

Eq. (1.15) can be rewritten as

2df 1 ( d-)2 dx f d
1 x2dx (1.16)
0 dx2  0 0

It should be noted here that the y-moment scheme invariably leads to a
nonlinear equation even if the original equation is linear. Also, in this scheme,
a term

f (dY)2 dx
0 d

appears, and its calculation can be done in two different ways.

The simplest way is to substitute dy/dx by df/dx inside the integral, and this
scheme will be referred to as the Yd-moment scheme, where "d" signifies differential
expression for y'(x)

-mmet chme f1 y 2dx - f f ( 2 dx= f f2 d (1.17)
1 2 f 2 f

Ydmoment scheme: )0 dx 2  0 0

The other way which is perhaps more consistent with the basic idea of the
method is tu obtain an integral expression for dy/dx from an integration of the
original differential equation, i.e.,

dy 1

d dx) l f ydx (1.18)
x

If we now assume y'(1) = f'(1), this scheme which will be referred to as the
yj-moment scheme ("i" signifies integral expression for y'(x)) makes use of the
following equation

1 C. d 2 1. 1 2 12
S - y 2dx - J f'(1) - f f(x)dxl dx = J f 2dx (1.19)
0 dx2  0 x 0

11
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It is important to note that the yi-moment scheme couples the two basic

equations, (1.11) and (1.16) in determining the solution of A whereas the Yd-moment

scheme determines the solution of A by Eq. (1.16) alone.

In the following, Yd- and yi-moment schemes will be used separately, but
y'(l) = f'(1) is assumed in all calculations.

(i) Yd-moment Scheme

Eq. (1.11) gives
I

y'(0) = f'(1) - f fdx, (l.20a)
0

and Eq. (1.17) gives

f'(I) - f f'2 (x)dx = f 2 (x)dx (l.20b)

0 0

(a) f = fI

2
Letting f = f = Ax + (l-A)x , we get from Eq. (1.20b) the solution of A as

A = 0.6826

where the other solution A = -1.8644 has been disregarded in view of Eq. (1.9).
Eq. (1.20a) then gives

y'(0) = 0.8703 (+2.3%)
and

y'(l) = fl(l) = 1.3174 (+0.3%)

The accuracy is comparable to that found in §2.3.1.

(b) f = f2

Eq. (1.20b) gives

A = 1.5725, -4.7058

Although none of the above satisfies Eq. (1.10), the solution

A = 1.5725

is chosen because it is closer to the desired range.

Eq. (1.20a) then gives

y'(0) = 1.0465 (+23%)

and
y'(1) = 1.4275 (+8.7%)

12
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While the accuracy here is still better than that of the corresponding

classical integral solution (52.2, (ii), it is far less satisfactory than the

accuracy of the previous results of the present method. It will be shown later

that the yi-moment scheme with the same profile will yield much improved results.

(ii) yi-moment Scheme

Eq. (1.11) and Eq. (1.19) are the basic equations in this scheme. These

equations, written explicitly, have the following forms
1

y'(O) = f'(1) - f fdx (l.20a)
0

and

f'(l) - I (f'(1) f f2 (x)dx]2dx =f f2(x)dx (.21)

0 x 0

(a) f = fI

Eq. (1.21) reduces to the following algebraic equation for A:

A2 
- 2.2157A + 1.0505 = 0

from which we have

A = 0.6873, 1.5284

Here, the underlined solution is obviously preferred because of Eq. (1.9).

The boundary derivatives then follow immediately from Eq. (1.20a) and y'(1) = fl(l)

as

y'(0) = 0.8648 (+1.6%)

and

y'(1) = 1.3127 (-0.02%)

The accuracy is seen to be excellent.

(b) f = f2

Here, the equation for A is, from Eq. (1.21),

A2 
- 4.3389A + 4.4814 = 0,

and

A = 1.6949, 2.6440.

13
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Again, none of the above solutions falls in the desired range, Eq. (1.10),

and the underlined solution is chosen because it is closer to the desired range.
We then have

y'(0) = 0.9139 (+7.4%),

and
y'(1) = 1.3051 (-0.6%).

These results show substantial improvements on the corresponding results

based on the yi-moment scheme.

2.3.3 Combined x-Moment and yd-Moment Scheme. A more consistent variation
of the present integral method makes use of two additional equations generated by
taking the x-moment and y-moment integral, respectively, of the original differen-
tial equation. The direct integral of the original differential equation is still
used as the basic equation in the system. The three equations so obtained then
determine the three unknowns, y'(O), y'(1) and A, and no assumptions such as
y'(0) = f'(0) or y'(1) = f'(1) would be necessary.

In this section, the simpler version involving the use of the Yd-moment
scheme will be discussed first. The three equations are given below:

1
Direct integration: y'(1) - y'(0) = f f(x)dx, (1.22a)

0

x-moment integral: y'(l) - 1 = f xf(x)dx, (1.22b)
0

and

Yd-moment integral: y'(1) - (f(x)) 2dx = f1 2 (x)dx. (1.22c)
0 0

Eqs. (1.22) form a system for the solution of A, y'(0) and y'(1).

(a) f = fl

For this profile, the solutions of A are obtained as

A = 0.7727, 1

The underlined solution is used because of Eq. (1.9). The boundary derivatives
corresponding to this choice of A are

y'(0) = 0.8523 (+0.2%)

y'(l) = 1.3144 (+0.1%)

The accuracy is found to be excellent.

14
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(b) f f 2

The use of this profile leads to the following algebraic equation for A:

A2 - 4.2167A + 5.2 = 0

for which there is no real solution. Therefore, solution of the problem
corresponding to this profile does not exist.

2.3.4 Combined x-moment and yi-moment Scheme. In this scheme, Eq. (1.22c) is
replaced by Eq. (1.21), and Eqs. (1.22a,b) and (1.21) determine the unknowns
y'(O), y'(1) and A. Solutions are indicated in the following:

(a) f = fl

The equation for A is

A 2 + 0.7243A - 1.1189 = 0

for which

A = 0.7559, -1.4802.

Obviously A = 0.7559 is the preferred solution in view of Eq. (1.9). The
boundary derivatives are determined to be

y'(0) = 0.8537 (+0.3%)

y'(1) = 1.3130 (almost exact)

The results are seen to be almost exact.

(b) f - f2

For this profile, the equation for A is

A2 + 0.11832A - 5.0887 = 0

for which the solutions are

A = 2.1930, -2.3113.

Actually, none of the above solutions of A satisfies the requirement,
Eq. (1.10). However, A - 2.1930 is used because it is the closer of the two to
the desired range.

The boundary derivatives are found to be

y'(0) = 0.8769 (+3%)

y' (1) = 1.3097 (-0.3%)

15
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These solutions are very accurate, in spite of the value of A being outside
the desired range. In particular, the improvement in the accuracy of boundary
derivatives over the previous solutions corresponding to the same profile is
remarkable. This suggests that this more consistent scheme of calculation has the
potential of accommodating improperly chosen profiles, and further exploration of
the potential appears warranted.

2.4 REMARKS. The results of j2.2 and §2.3 clearly demonstrate the superiority
of the present integral method over the classical method. For a given guess
(approximate) solution, the various schemes of the present method all lead to more
accurate solutions of the boundary derivatives than the classical method. The
results also indicate that some understanding in the qualitative behavior of the
exact solution is important and can be very helpful in determining the approximate
solution. The more consistent version of the method, i.e., the combined x-moment
and y-moment scheme, appears more accurate than the single moment schemes
(x-moment or y-moment). However, the higher accuracy is achieved at the expense
of simplicity.

In the y-moment scheme, differential and integral expressions of the term

f (dy/dx) 2dx
0

are possible, leading, respectively, to the Yd-moment and vi-moment schemes.
It appears that the yi-moment scheme provides more accurate results. This is
significant in application to physical problems such as transient heat conduction,
boundary layer flows, etc., because here a term of this kind usually exists in
the original equation (e.g., the frictional heating term in thermal boundary-layer
equations).

A conclusive comparison of the relative merit of the various schemes of the
present integral method does not seem possible at present, because the results
reported here are somewhat limited in generality. In addition, they do not seem to
indicate any definitive preference of one scheme to the other. However, the com-
bined x-moment and y-moment scheme appears to give better results, whenever results
are obtainable, than the other one-moment type of schemes.

The results are mainly presented and discussed in terms of the boundary

derivatives, with little emphasis on the solution in the entire region. To be
sure, the primary motivation of the present modification of the classical method is
to improve the accuracy of the boundary-derivative calculations. To give some idea
as to the accuracy of the approximate solutions in the entire range, some results
are presented in Figs. 2-4. It is clear from these figures that present solutions
have practically the same degree of accuracy as the classical integral solutions,
although the new idea of calculating boundary derivatives gives substantially
improved accuracy in the boundary-derivative results. Table I summarizes the

results of this model problem.
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Table 1. Summary of Results of Model Problem

dx2 = y: y(O) = 0, y(1) = 1

2x 22

Calculation f = fl Ax + (l-A)x
2  f = f2 

= Ax
2 + (l-A)x3

Method y'(0) y'(1) A y'(0) y'(l) A

x-moment
y'(1) = f'(l) 0.8589 1.3077 0.6923 0.8929 1.2857 1.7143

(+0.9%) (-0.4%) (+4.9%) (-2.1%)

x-moment
y'(0) = f'(O) 0.8462 1.3205 0.8462 Not Applicable

(-0.6%) (+0.6%) (f'(0) = 0)

Yd-moment
y'(1) = f'(1) 0.8703 1.3174 0.6826 1.0465 1.4275 1.5725

(+2.3%) (+0.3%) (+23.0%) (+8.7%)

yi-moment
y'(1) = f'(l) 0.8648 1.3127 0.6873 0.9139 1.3051 1.6949

(+1.6%) (-0.02%) (+7.4%) (-0.6%)

x-mom. + Yd-mom. 0.8523 1.3144 0.7727 No Solution
(+0.2%) (+0.1%)

x-mom. + Yi-mom. 0.8537 1.3130 0.7559 0.8769 1.3097 2.1930
(+0.3%) (0%) (+3.1%) (-0.3%)

Classical 0.7692 1.2308 0.7692 0 0.4615 2.5385
Integral (-9.6%) (-6.3%) (-100%) (-64.9%)

EXACT Solution: sinhx, y'(O) = 0.8509, y'(l) = 1.3130
sinhl'

Percentage error = (APPRO.) - (EXACT) (indicated in parentheses)(EXACT)

In the following, the method is applied to some simple three-dimensional
boundary-layer flow problems. For such problems, the boundary conditions are
similar to the model problem just studied, except that only one boundary
derivative i.e., the derivative at the wall, is of interest. The boundary
derivative of any flow variables at the edge of the boundary layer is taken to be
zero because of the boundary-layer flow is supposed to join smoothly to the other
inviscid flow at the edge. For this reason, the more complicated version of the
combined scheme is not used in most cases. However, it is used in one example in an
effort to cope with the difficulty of homogeneous boundary conditions which require
two parameters in the assumed profiles.
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3. APPLICATION TO THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS

Application of the present method to the solution of two-dimensional
boundary-layer flows and one-dimensional transient heat conduction problems was
reported in various previous publications, e.g., Refs. 1-4. For general three-
dimensional boundary-layers, the present method will still lead to a coupled set
of nonlinear partial differential equations whose solution would require numerical
computations. As a first step to determine the feasibility of such applications,
we are interested in obtaining only simple solutions without the expenditure of
extensive numerical effort. Therefore, some relatively simple three-dimensional
flows are studied in the following for which closed-form solutions can be obtained
by the present method.

3.1 PARABOLIC INVISCID STREAMLINES ON A FLAT PLATE. Consider the boundary-
layer flow past a semi-infinite flat plate with an infinite span (z dimension
extends to ±). Suppose that the inviscid velocity on the plate has the components
u0 and bx in x and z directions, respectively. The inviscid surface streamlines
are given by the equation

dz bx (3.1)

dx u0

from which the streamline equation is obtained as

lIb 2 (3.2)z 0  2 u Uo0

Euler's equation then determines the pressure field as

u !P u b (3.3a)
p dz 0

and

,P= 0 (3.3b)

This problem was first solved by Loos (6 ) who obtained the exact solution in
similarity form.

The laminar boundary-layer equations in the rectangular cartesian coordinate
system (x,y,z) are

6. Loos, H. G., "A Simple Laminar Boundary Layer with Secondary Flow," Journal
of the Aeronautical Sciences, Vol. 22, 1955, pp. 35-40.
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J u + = 0 (3.4a)
) x ay

u mI + V = 2 (3.4b)
' x 3y Dy2

3w 3w 32 w

u - + v 2y =bu + v - . (3.4c)
x ) 0 3y2

The boundary conditions are

y =O: u v = w = 0 (3.5a)

y .. _: u 1 w w= bx (3.5b)

x= 0: u =u0 w = bx (3.5c)

Note that 2-_ 0 because of the infinite extent of the flow field in
3z

z-direction. Eqs. (3.4a,b) represent the well-known Blasius flow which has been
solved approximately by the present integral method in Ref. I. The approximate
solutions will be used in the solution of the spanwise flow, w.

3.1.1 Present Method. The present procedure of solving the spanwise flow
is as follows. First, the spanwise momentum equation, Eq. (3.4c), is integrated
across the spanwise boundary-layer thickness, 6z, resulting in the spanwise
momentum balance integral,

wz = (d-x)J (u0 -u)dy + - f u (wl-W)dv (3.6)
p uxw 1 -wxd

where iT is the spanwise skin friction.wz {

Eq. (3.6) is to be used in conjunction with either the y-moment integral of
Eq. (3.4c),

f f  z 1 62

yuwdy + y -- uwdy =- bu 0  z

z 32

+ V y 2 w dy (3.7a)

0 3y

or the w-moment integral of Eq. (3.4c),
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w - uwdy + w -- uwdy bu 0 fzwdy
f 3x f l

0 0 0

of Z 32

+ v w 2 w dy (3.7b)
0 y

The use of Eq. (3.7a) corresponds to the y-moment scheme whereas the use of
Eq. (3.7b) is referred to as the w-moment scheme.

The y-moment scheme will be used first. We assume the following simple
(linear) profiles for u and w:

u/u 0 = r1x ; rix Y/6x (3.8a)

w/bx = n ; r y/S (3.8b)

where S is the chordwise boundary-layer thickness.

The chordwise-flow solution by the present method has been given in Ref. 1 as

R x x 4R- = S~(3.9a)

R x 

and

I i (3.9b)

uS ux

Uox U0 X 1 2
where R R = and - C 2

wv x v 2 f wx 0

Substituting Eqs. (3.8a) and (3.8b) into Eq. (3.7a) and assuming that

A - /Sx 1 (3.10)

we obtain an ordinary differential equation:

Id 2 3 d1 ( Ax) - 1 6zx d x(Az

d

1 Z 1 2 \)x-xS A- =- --6 v (3.11)
4 z dx 2 z u0

Eq. (3.11) admits the simple solution of A = const, with A determined from
the algebraic equation

3A 3 
- %2 + 1 = 0 (3.12)
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The only self-consistent solution of A is

A = 0.382, (3.13)

The other two solutions, A = 2.618, -1/3 are discarded.

The corresponding solution for the spanwise skin friction is

CfzRx 0 Rx = 1.382 , (3.14)

(6) 1compared to the exact solution of 2 Cfz R = 1.414.

The problem is next solved using the w-moment scheme. Two spanwise velocity
profiles

Sz 
(3.15a)

.= f. 2 2r- + q (3.15b)
bx 4 z z z

are used in the calculation to determine the sensitivity of results to the profiles
chosen. The chordwise flow is still solved approximately by the present method,
using the linear profile, Eq. (3.8a). It is noted here that the approximate
solution for the chordwise flow using the u-moment scheme is the same as that
using the y-moment scheme.

The w-moment integral has the following form:

d 2 2 dzz f f wz
dx 0 uw dy - (bx) T-0 udy = 2bu0 f wdy - 2v j (-) 2dy (3.16)

000 0

The last term on the right-hand side of Eq. (3.16) can be evaluated by two
different approximations, leading to the so called wd-moment scheme and wi-moment
scheme, respectively, discussed in §2.3.2. In the wi-moment scheme,

3w bu ( y) - w udy + bx d f udy uwdy (3.17)
3Y V 0Z Xf dx- Dx f1

0 0 y

The calculation based on wi-moment scheme is obviously much more complicated,
and is not included in the present report. Only wd-moment scheme is used in the
following calculation.

For w bxf and u = u0 x, Eq. (3.16) reduces to

dA2  32 1
R -4A + - (3.18)

dR 2A
X
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for A 1.

Eq. (3.18) again admits the solution A = const., and the equation for A is

3A3 - 8A2 + I = 0 (3.19)

which is identical to the equation for the y-moment scheme, Eq. (3.12).

The solution is thus the same as that of the y-moment scheme,

A = 0.382 (3.20a)

1
2 Cfz /Rx = 1.382 

(3.20b)

For w = bxf 4 and u = uonx, Eq. (3.16) reduces to

2.9365A 3 - 5.6A 2 + 0.7429 = 0 (3.20)

after assuming A = const. < 1. The self-consistent solution is determined to be

A = 0.411' (3.21)

where the other two solutions, A = 1.832, -0.336, are discarded.

The spanwise skin-friction coefficient is obtained from Eq. (3.6),

1I Cfz Rx = 1.374. (3.22)

3.1.2 Karman-Pohlhausen Method. The solution with the classical Karman-

Pohlhausen (K-P) integral method makes use of the momentum integral, Eq. (3.6)
alone, with T given by

wz . 0 "

Of course, the chordwise-momentum equation needs to be solved first. Here, the

K-P solution based on the linear profile is taken from Ref. 1, i.e.,

R6 2Y'34R (3. 23a)

and

I2 Cf4R = 0.2887 (3.23b)

For the linear spanwise velocity profile. Eq. (3.15a), the quantity A is
determined by the equation

3A - 12A 2 + 1 =0 (3.24)
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The self-consistent solution is

A = 0.3 , (3.25)

and the other two solutions, A 3.979; -0.279 are rejected.

The corresponding solution for skin friction is

Cfz = 0.962 (3.26)

For f = f4 (Eq. 3.15b), the equation for A is

2.4A3 6A2 + I = 0 (3.27)

and the self-consistent solution is

A = 0.4509 (3.28)

The other solutions, A = 2.915, -0.3802, are discarded.

Corresponding to this solution, we have

Cf I 1.2804 (3.29)

These K-P solutions are obviously inadequate in accuracy.

Results of this example are summarized in Table 2. It is clear that the
present solutions are considerably better than the classical integral solution
both in accuracy and in profile-sensitivity.

Table 2. Spanwise Skin-Friction Results for Parabolic Streamlines

W PROFILE PRESENT MEfHOr CLASSICAL K-P F

(u = u0 y/1) 1/2CfZRx1 /2  ERROR 1/2CfzRx1/2  ERROR

1.382(w-mom.) -2.3% 0.962 -32.0%w _= /6
w z 1.382(y-mom.)

-- = 2(y/6)

1.374(w-mom.) -2.82% 1.280 -9.5%

-2(y/6 z ) 3 +(y/6 z 4
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3.2 INFINITE SWEPTBACK WINGS. We next consider the laminar boundary-layer on
an infinite sweptback wing (Fig. 5) . Only the special case where the inviscid
chordwise velocity varies as a power of x, i.e., u1 = cxm and the inviscid spanwise
velocity is a constant, i.e., w1 = w , is solved. Exact solutions and classical
K-P solutions of the problem can be found in Cooke( 7).

Again, the chordwise flow is independent of the spanwise flow and can be
solved separately. The exact solution (Falkner-Skan flow) is available in
Smith(8).

The y-moment scheme is used here to give the approximate solution for the
chordwise flow. A fourth degree polynomial profile

= , - 2 .3 + 4 + - ( n - 3 ( 3 . 3 0 )
U x x x 6 x x

is used in the calculation, where

9
3- du

1 (3.31)
dx

Note that = (m) for u1 = cxm

The y-moment integral reduces to the following algebraic equation:

m 1 K(\) (3.32a)
m-1 (

where

k(l) = 2(1 - 0.1677N + 0.005172 2 + 0.00010085\ 3) (3.32b)

A(,) = 0.06135 - 0.001336 - 0.00006779A (3.32c)

The chordwise momentum balance integral gives the skin friction coefficient as

ux
wR - I ) 1 m-l1 (3.33a)

S1

7. Cooke, J. C., "Pohlhausen's Method for Three-Dimensional Laminar Boundary
Layers," Aeronautical Quarterly, Vol. 3, 1951, pp. 51-60.

8. Smith, A. M. 0., "Rapid Laminar Boundary-Layer Calculations by Piecewise
Application of Similar Solutions," Journal of the Aeronautical Sciences,
Vol. 23, No. 10, Oct 1956, pp. 901-912.
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where

= 0.11746 - 0.0010582A - 0.00011023A2  (3.33b)

and

6 = 0.3 - 0.0083333A (3.33c)

Eqs. (3.32) and (3.33) combine to give the solution of

2Cfxx

as a function of m. The results are shown in Figs. 6 and 7 for 6 > 0 and 6 < 0,
respectively. (6 = 2m/m+l = pressure gradient parameter). Exact solutions and
classical K-P solutions are also included for comparison. As expected, the
classical integral solution for the accelerating flows (B > 0) is very accurate,
and the improvement by the present method is rather insignificant especially for
large 6. In the case of adverse pressure gradient, however, the present method
appears to offer substantial improvements except near separation (6 = -0.1988).

The spanwise boundary layer is then studied. A polynomial profile

w= 2n - + n (3.34)

W, z z

is assumed, and the y-moment integral of the spanwise momentum equation reduces
to the following algebraic equation for A(7 6 /1 )

z x

A 14 (1 + 12 -14 +  (- 1 + ')A + (1- A 3 (3.35)

Eq. (3.35) is derived on the assumption of A < I which corresponds to the
case of adverse pressure gradient, 6 < 0. This is the case for which an improve-
ment on the older integral solution is most desired.

The spanwise momentum balance integral yields an expression for the spanwise
skin friction

1 _ _ I
Cf zFR x  A A-- kI(X,A) (3.36a)

where
=1 ) 1 3 + X 2+ 1 3

k(X,A) (2 + X) - A + ( + X)A 2+ (I - )A 3  (3.36b)

Eqs. (3.32), (3.35) and (3.36) then give the solution of

2 Cfz R x
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as a function of the pressure gradient parameter, 3(= 2m/(m+l)). The results are
shown in Fig. 8, along with exact solutions and older integral solutions(7). The
present solutions only show a modest improvement on the classical integral solutions
for moderately adverse pressure gradients in this class of flow.

3.3 CIRCULAR INVISCID STREAMLINES ON A FLAT PLATE.

3.3.1 Formulation Using Inviscid Streamline Coordinates. Consider the
boundary-layer flow on a semi-infinite flat plate with circular inviscid streamlines
(Fig. 9). We use the inviscid streamline as one of the coordinate axis so that the
cross flow, w, caused by the centrifugal force would vanish at both ends of the
spanwise boundary layer. Only the case of small total turning angle, 6, is con-
sidered, so that the cross-flow velocity is an order of magnitude smaller than the
main flow velocity. This problem was studied earlier by Mager and Hansen( 9), and
the exact solution is available in Ref. 9. The boundary-layer equations in the
streamline coordinate system for small turning angle, (cx)2 <<l, are given below:

a u + 2- (1 + cz)v = 0 (3.37a)
Dx y

u u u _2u

- -+ v-v =3.37bl+cz ax 3y D y 2 (3.37b)

___w c 2 2 2w
+cz -3x + vy l+cz -U u)+V 2 (3.37c)3 y

The boundary conditions are:

y =O: u v = w = 0 (3.38a)

y - _: u U Ul(Z), w 0 (3.38b)

x = 0: u = Ul(Z), w = 0 (3.38c)

Note that the cross flow, w, has homogeneous boundary conditions in this
formulation.

The new variables

v = (l+cz) 'v, y = (l+cz) -y (3.39)

are then used to reduce Eqs. (3.37) to the following form:

9. Mager, A. and Hansen, A. G., "Laminar Boundary Layer Over Flat Plate in a
Flow Having Circular Streamlines," NACA TN 2658, Mar 1952.
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3u av+ 0 (3.40a)Dx
y

u L + I- v 2  (3.40b)

aw w 2 22 w

+ = - c(u u2 ) + v (3.40c)
ax + -- c 1 -u)2

Obviously, Eqs. (3.40a) and (3.40b) correspond to the Blasius flow in the
(x,y) plane, and the approximate solution by the present method has been obtained
earlier(l), i.e., for

1i

u/uy/ 6 , '+cz x = 3 "

£his solution will be used in the cross-flow calculations.

The cross-flow moment balance integral is first obtained by integrating

Eq. (3.40c) across the cross-flow boundary layer, i.e.,

V( ) = -f cf u - u2 )dy - uwdy (3.41a)

9y 0 0

where the boundary conditions of vanishing w at y 0, W have been used.

In dimensionless form, Eq. (3.41a) can be written as

1 f+-c 1 _c1 2)~ 1 % u2 wd f
Cf Vi+Y = -c' f (- dnqz - 4 f 6 - i- dn (3.41b)

2Ul! z d 0 z u I uI1 z

11

T1 wz
where- C 2

2 fz~ 2
Pu1

The y-moment integral of the cross-flow equation reduces to

df z ,uzu 2 2dy + w d f u dy - c y dy -2 (3.41)
dx 0  u Iu1  0 u 1  ax0 1 0 1

and the w-moment integral of the cross-flow equation is

d z f z(wd f y -2c I d + 2c (u )2w dy - (3.42)
dx u u u f u w 3

0 1 1 0 1 0 1 1 u 1 0 ay
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where y ='z represents the edge of the cross-flow boundary layer.

We assume the following profiles for use in the calculations, (i z  z'

A /6 ); z YZ9
Z X

U f(ri r = An , (3.43a)
LI  x

Uw g(ti) = kn (Iz-1) (3.43b)
u 1cx z z z

so that the boundary conditions of zero velocity at y = 0 and y =z are satisfied.
Also, we assume that A < 1 so that Eq. (3.43a) can be used to represent u in the
entire interval 0 ! y z" The additional profile constant, k, in Eq. (3.43b)
is the special feature peculiar to the problem with homogeneous boundary conditions
(k = 1 is only a special profile in this family). Because of the additional
constant, an additional equation is required to solve the problem. Therefore, in
this formulation, the combined y-moment and wd-moment scheme and the combined
v-moment and zeroth-moment scheme will be used in the solution. The so-called
zeroth-moment scheme is the same as the familiar K-P equation (i.e., momentum
balance integral).

Consider the combined y-moment and wd-moment scheme first. Substitution of
Eqs. (3.43) into Eq. (3.41) and Eq. (3.42) leads, respectively, to the following

equations:

A2 + - kA - 2 = 0 (3.44a)
20

and

1284 + 5kA 3 
- 40A 2 + 5k = 0 (3.44b)

The solution of the above equations with A in the range of 0 _ A_ 1 is found
to be

20
A %, k = 2- (3.45)

7

We note that the actual solution of A is slightly greater than 1, but A 1
is considered acceptable as a solution.

With Eqs. (3.43), Eq. (3.41b) yields the cross-flow skin friction result as

1 n 1 4 2f l+cz = - cxA(4 -kA - (3.46)2 Cfz"+ 3 x

which, upon substituting the solution, Eq. (3.45), gives

2 .c f/Rx/cx = 1.238 (3.47)

28



NSWC TR 79-139

The exact solution (9) gives

i l+cz VR /cx = 1.082 (3.48)- z Cf

The accuracy of the present solution is not very satisfactory.

Next, we us, the combined y-moment and zero-moment scheme. Here the same
profiles, Eqs. (3.43) are used, but Eq. (3.41a) is used to replace Eq. (3.42).
Eq. (3.41a) leads to the following algebraic equation:

k(l + 2A 3) = 16A2(l - 1 A) (3.49)

where (3w/y)w is taken to be cxul (g/)y)
w I 1

Eqs. (3.44a) and (3.49) give the following solution for A in the range
0 < A - 1:

A = 0.891, k = 3.868 (3.50)

and the skin friction follows from Eq. (3.41b):

- Cf l+ czRc = 1.0857 (3.51)

The accuracy is seen to be remarkably good. We note that the same profile was
also tried with the combined wd-moment and zeroth-moment scheme, but no solution
for A in the range 0 < A < 1 exists.

Also, a different profile

g(n z) = -knz (nzl)
2

has been tried with both the combined y-moment and wd-moment scheme and the
combined zeroth-moment and wd-moment scheme. Again, no solution in the range
0 < A < I can be obtained.

The above results indicate the disturbing difficulty of the present calcula-
tion procedure, namely, the strong dependence of the solution on the calculation
schemes. Although the combined y-moment and zero-moment scheme gives almost
exact solution for the cross-flow skin friction, the method itself when applied to
this problem in its present formulation must be considered as somewhat unreliable
in view of the unsatisfactory result with the combined y-moment and wd-moment
scheme. The difficulty is thought to be the homogeneous boundary conditions on w
in the present streamline coordinate formulation. In the following, a different
formulation will be used where the cross-flow velocity component is transformed
into another variable which takes on a finite value at the edge of the boundary
layer.
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3.3.2 Modified Formulation. To avoid the aforementioned difficulty, we
introduced a modified cross flow velocity, w, defined by

w = - w + cxu, (3.52)

so that w(y - 0) = 0 and wy ') = cxu I.

Eq. (3.40c) is then transformed into the following form:

w 3 w 2cu2 + V 2 w (3.53)
u x 1y Q

which resembles Eq. (3.4c) for the case of parabolic streamlines, as expected
(see Ref. 6).

The present method is then successfully applied to solve for the modified
cross-flow skin friction, Cfz. The original skin-friction coefficient, Cfz, is
easily deduced from C fz by observing

fz m - Cfz + cx Cfx (3.54)

where Cfx is assumed known (Ref. 1).

Now, define the modified cross-flow boundary-layer thickness 'iz by requiring

w(y= lz ) = cxu 1 , (3.55)

and assume that 2 lz < where u(= ) = u Note that this definition of iz
would generally imply

w# z 0. (3.56)

Therefore, Wiz is not the actual thickness of the cross-flow boundary layer.

Introducing dimensionless velocities

w* - (3.57)uI  uI  u

we rewrite Eq. (3.53) as

x u'w* +-- v*w* = c + U 2 (3.58)
y~

Note that

_ = + _ aw 1 Cf + cx Cfx) l+/iCz (3.59)
u 1 2 yO + CX y 2
Say u I y3
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where, as before,

-f wz i - Tx1 2 1 Cfx 2 (3.60)
2 fz 2 2 fx 2PuI  Pu1

Integrating Eq. (3.58) across the modified cross-flow boundary-layer thickness

iz leads to the expression for the modified cross-flow skin friction,

.l+cz = cu w- *dy + cx d lz u*dy (3.61)
2 fz lz -dxf 0x

It is a straightforward procedure to apply the present method to the solution
of the cross-flow equation. The cross-flow skin friction then follows from Eq.
(3.61). Recall that the chordwise flow solution based on the linear profile

u % yI=A1 =?

u lz lz (3.62)

is given by

2
R = 16R (3.63a)x

and

1 Cfx1x 1 (3.63b)

where R F ul /v and Rx U 1 X/V.

The y-moment integral solution gives the following equation

28A3 flzg(z)dz - 4A3 = 8A2_ (3.64)
0

where

g(n iz)  */cx

is the modified cross-flow velocity profile.

(i) g -lz: A = 0.382; 2 fzl+czVR/cx 4A - A 1.382
%3 %4nl: 044; f -f(ii) g 2nlz - 2lz + fl 4 = 045; .l+cz. ~ /cx = 4A - 582SA 1.356

-n , -n 8 2~'-A =.6
(ii) g -2%n 2n + . A = 0.397; ; Vu .lCczRxcx 4A 721.53iz 2z z 2fz Rx 5
(iii) g - Viz - iz: A = 0. 397; vrl+cz 'R/cx = 4A 1.367

The results are summarized in Table 3. Note that different profiles for
w are employed to determine the sensitivity of results to profiles. The results
for the wd-moment scheme are taken directly from §3.1 (see Table 2).

31



NSWC TR 79-139

Table 3. Cross-Flow Skin Friction, Cfz, for Circular Streamlines

(Small Turning);- = 9

lrUU
1

w/cxu I  Scheme fz /l+cz x/cx - -fz /+CZ x/cx Error

nlz wd-moment 1.382 1.049 -3.0%

2 %3 -34 %
2I -nlT +n w -moment 1.374 1.041 -3.8%

lz lz lz d

0lz y-moment 1.382 1.049 -3.0%

-%3 %4
2lz-2 lz+ lz y-moment 1.356 1.023 -5.5%

3y 1 %3
Plz- 2 lz y-moment 1.367 1.034 -4.4%

EXACT 1.082

Error = (Approx.) -- (Exact)
(Exact)

It is obvious that the present method yields very satisfactory results to
tne problem in the new formulation.

4. SUMMARY AND CONCLUDING REMARKS

The formulation of the new integral method is demonstrated in various
schemes, and a model problem of ordinary differential equation is used as an
example of application of these schemes. Extensive comparisons are made of the
approximate solutions and the exact solution to determine the strengths and
weaknesses of various calculation schemes. Emphasis is placed on the calculation
of boundary derivatives which in physical applications are related to quantities
of the greatest practical interest. While the results appear insufficient to
yield a conclusive assessment of the relative merits, they do seem to indicate
the superiority of the more complicated scheme of combined moments, i.e., use of
two moment equations in addition to the integrated version of the original
differential equation. Also, the study clearly demonstrates the importance of a
qualitative understanding of the behavior of the exact solution in achieving good
results. In all cases studied, the present solutions are all found to be
substantially better than those of the classical integral method.

Preliminary results of application of the integral method developed by the
author to three-dimensional boundary layers are also reported. Only simple flows
are studied in this paper, and the results are presented in terms of the spanwise
(or cross flow) skin friction. The results continue to be encouraging, although
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in cases where the classical Karman-Pohlhausen method already proves to be
adequate, the improvement over the classical integral solution does not seem to
be significant.

These preliminary studies seem to suggest that the application of the present
method to cross flows in the streamline coordinate system requires special care.
The choice of a proper velocity profile which vanishes at both ends of the
boundary layer requires careful consideration.

In the application to turbulent boundary layers, the momentum balance
integral remains applicable if the mean velocity is used and if the normal
components of the Reynolds stress are small, as they usually are. Therefore,
the classical K-P method makes no distinction between turbulent flows and laminar
flows. However, the moment equations that appear in the present method do require
a knowledge of the turbulent stress distribution in the boundary layer when
applied to turbulent flows. Therefore, the present integral method can be used
with different turbulence models in the turbulent boundary layer calculations.
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FIGURE 1 BEHAVIOR OF EXACT SOLUTION OF MODEL PROBLEM
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f. 0.7692 1.2308
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FIGURE 2 CLASSICAL INTEGRAL SOLUTION OF MODEL PROBLEM
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FIGURE 3 PRESENT INTEGRAL SOLUTION OF MODEL PROBLEM (COMBINED X-MOMENT
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36



NSWC TR 79,139

1.0

x - MOMENT SCHEME

EXACT
0.8

+ Yt2 =Ax 2 +0 -A)x3

0.6+

0.4

o 1 y(0) y 10)-f1 (1)
0.2 +EXACT 0.8509 1.3130

+ f1 0.8589 1.3077

f+ 0.8929 1.2857

0 0.2 0.4 0.6 0.8 1.0

x

FIGURE 4 PRESENT INTEGRAL SOLUTION OF MODEL PROBLEM (X -MOMENT SCHEME)
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FIGURE 9 FLAT PLATE BOUNDARY LAYER WITH CIRCULAR STREAMLINES COORDINATE SYSTEM
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