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I. INTRODUCTION

Hydrodynamic ram“refers to the high pressures that are developed
in a fluid when a fluid reservoir is penetrated by a K,E. (kinetic
energy) projectile. Hydrodynamic ram in aircraft fuel cells can damage
structural components or rupture tank walls which in turn can lead to
fuel starvation, fire and explosion, Hydrodynamic ram is a paramount
threat to today's combat aijrcraft..

The hydrodynamic ram event is generally considered to consist of
a shock phase, a drag phase, a cavitation phase and an exit phase,
The shock phase occurs during initial impact with the fluid at which
time the projectile impulsively accelerates the fluid and generates
an.intense pressure field boundcd by & hemispherical shock wave. This
shock -;ave expands radially away from the impact point and may produce
petaling of the entrance panel, As the projectile traverses the fluic
it transfeirs a portion of its momentum to the fluid as it is decelerated
due to viscous drag. If the projectile tumhles in the fluid, a
significantly larger portion of the projectile's momentum will be trans-
ferred to the fluid. The radial velociti~s imparted to the fluid
during the drag phase lead to the formation of a cavity behind the pene-
trator, This is often termed the cavitation phase, As the fluid
seeks to regain its undisturbed condition, the cavity will oscillate,
The time interval during which the exit panel of the fluid cell is per-
forated by the K.E. projectile is referred to a5 rh~ .xit phase,
All of the above phases of hydrodynamic ram have teen obscrved experi-
mentally!=3, The collection of papers presented in Reforence 4 provides a
portrait of the state-of-the-art of analytical and empirical approaches
to understanding the hydrodynamic ram phenomenon.

This report presents the results cf a numorical simulation of a
K.E. projectile with an L/D (length to diameter) ratio of 3 impacting
at nornal obliquity a cylindrical fuel cell simulator. Section II
presents a description of the numerical model and Section III provides
a discussion of the results and comparison with available experimental
data.

1Ba1l, R, E., "Structural Reeponae of Fluid~Containing-Tanke to Pene-
tnatzng Projectiles (Hudraulic Ram) - A Compariaon of Experimental and
Anclytical Results”, Naval Postgraduate School, Monterey, Califormia,
NPS-57Bp76051, My 1376,

“Stepka, F.S. and Morse, C.R., "Preliminary Investigation of Catastrophic
Fracture of Liquid-filled Tanke Impacted by High=Velocity Particles",
NASA TN D1537, May 1963.
3Stepkc PS., Morese, C.R., and D@ngler, R.P,, "Investigation of Character-
tatics of Pressure Waves Generated in Water Filled Tunks Impacted by
Hzgh—VbZoczty Projectiles", NASA TN D1343, December 1365,

“Hydrodynamic Ram Seminar, Univeraity of Dayton, Dayton Ohio, May 1977,
Technical Report AFFDL-TR-77-32.




II. NUMERTCAL MODEL

Dynamic analysis of a K, P projectile penctrating a fluid- filled

ctylinder has been performed using the two-dimensional EPIC=2 code®,

The hydrodynamic ram event simulated consists of an S7 st2el penetrator

with an L/D of 3 striking a cylindrical fuel cell simulator, The fuel

cell walls are composed of 1.8mm of 2024-T3 Al with a tank depth of 15,24cm
~and an outside diameter of 50,8cm, The 50 zram, hemispherically capped -

projectile impacts the aluminum entrance panel wlth a striking velocity,

V_, of 914 m/s,

Initially the projectile was modeled as a deformable continuum. After
perforating the entrance panel negligible deformation of the projectile
.could be detected. At later times, approximately 35 us, in the penetration
process the projectile exhibited unrealistic distortions due to the finite .
elements adjacent to the penetrator '"locking-up". This "locking-up" re-
sults from the artificially high hydrostatic pressure which is gencrated
in elements that are severly distorted when the Mie-Gruneisen equation
of state is used to predict hydrostatic pressures, This "locking-up"
of water elements tends to transform the hemispherical cap into a conical
cap at late times, Therefore, it was felt that a better numerical simu-
lation wonld be obra1ned by modeling the penetrator as a nondeformable
cont*nuum. : .

The alumisum entrance panel offers negligible resistance to the
stecl penetrator which is modeled as a rigid body. The V -V curve,

which has been obtained using Lambert's_equations, shown in Figure 1 shows
this to' be an overmatch situation insofar as the fuel cell walls are
concerned, Perforation of the entrance panel reduces the penetrator's
velocity by less than one percent giving a residual velocity, Vs of

909 m/s. 1In light of this '"over-kiil" condition a plug with a diameter
slightly larger than one projectile diameter has been removed from the
entrance panel, and the simulation has been initiated with the nose of
the penetrator tangent to the fluia surface. The initial configuration
of this hydrodynamic ram simulation is shown schematically in Figure 2,

EPIC-2 usvs constant strain triangles to discretize a continuum
and the hydrostatic pressure in a given element is computed using the
Mie-Gruneisen equation of state, For this particular application
of the EPIC-2 code the finite element model consists of 5424 elements
and 2943 nodes, The fluid is simulated as water and sliding is
permitted between the projectile and the water as well as between
the water and the "wet" side of the entrance and exit panels,

SJohneon, G.R., "EPIC=-2 A Computer Program For Elastic Plastic Impact
Computations ir. 2 Dimensions Plus Spin", Honeywel! Ine,, Defense

System Divieton, Contract Report ARBRI=CR-00373, June 1878, (AD #A058786)
8Lambert, J.P., "A Reaidual Velocity Fredictive Modal for Long Rod
Penetrators, Ballistic Regearch Laboratory Report ARBRL-MR-08328, April 1378,

(AD #B027660L) 8
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PENETRATOR TANK

S$7 STEEL RIGHT CIRCULAR CYLINDER

L/D=3 O.D. 250.8 ¢m

L =24.26cm HEIGHT =15.2¢cm

Vo 2909 m/s WALLS - 2024-T3 AL

50g THICKNESS = 1.8 mm
FLUID = WATER

NOT 10 SCALE

Figure 2. 1Initial conditions of hydrodynamic ram simulation
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The 3liding surface technique incorporated in the Lagrangisn
formulation of EPIC-2 evolves around the designation of master and slave
nodes, The technique has the effect of assuming a frictionless surface.
In the event a slave node penetrates a master surface element, during
& given integration time increment, it is repositioned onto the master
surface by conserving translational and rotational momenta and matching
the slave node normal velocity with the normal velocity of the master
surface at the location of the slave node5, For the hydrodynamic ram
simulation the projectile has Leen designated the master surface and a
column of water with a radius of 1,3 projectile radii running the sntire
tank depth, has been designated as slave nodes, DNesignation of the in-
terior nodes of the water elements to he slave nodes permits the water
elements. to be completely failed (i,e. the element produces no stresses
or pressures) upon exceeding an equivalent strain of 2,5, and permits
- the simulation of the eroding process or cavity formation of the hydro-
" dynamic ram phenomenon.

III. RESULTS AND CONCLUSIONS

All phases except the exit phase of the hydrodynamic ram event have
been simulated with the EPIC-2 code, Figures 3 - 7 present a collage
of pressure contour maps in the water. It should be noted that the
analysis is an axisymmetric solution and the projectile is restrained-
from tumbling. Tumbling frequently occurs in experiments with small
L/D ratios unless drag flares or other means of stabilization are provided.

The formation of a hemispherical shock wave is clearly delineated in
Pigure 3, This snap shot of the shock phase shows that slight petaling
. of the entrance panel has occured as a result of the impulsive acceleration
imparted to the entrance panel which has heen observed in velocity vector
maps, see Appendix A. The impulsive acceleration of the fluid during the
shock phase generates peak pressures which are much higher (an order of
magnitude) than those observed during the drag phase, see Figures 4 - 7,
The duration of the pressure pulses generated during the drag phase is
considerably longer than that observed during the shock phase.

The simulation has been terminated at 180 us at which time the exit
panel has been sufficiently loaded to initiate bulging prior to per-
foration by the projectile, The entrance panel has been deflected
considerably and an additional cavity Detween the entrance panel and the
water has formed (Figure 7). The radial velocity imparted to the water
(see velocity vector maps Appendix A) as the projectile penetrates the
water leads to the formation of a cavity behind the projectile, The
development of this cavity is portrayed in the computationa grid maps
in Appendix B, This cavity appears narrower than those which have been
reported in the literature, However, quite frequently in experiments
the projectile tumbles in the fluld thereby transferring more momentum
to the fluid which generates a larger cavity than would be generated if
the projectile did not tumble, Thus, for the axisymmetric solution pree
sented here a narrow cavity prediction was anticipated,

11
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The computational grid maps presented in Appendix B display those elements
which have an equivalent strain less than 2.5. Flements which have under-
gone an equivalent strain greater than 2.5 are severely distorted and real-
istically would plsy no role in determining projectile response. These
elements have therefore been eliminated or failed, Failure of an element
implies that the element definition is destroyed, although the nodes and
their associated mass and velocity are retained to conserve mass, energy,
and momentum. Furthermore, those elements which have an "F" inside them
identify those elements that have exceeded an equivalent strain of 0,02.

Reference 7 presents the following equation relating the striking
and residual velocity of a projectile penetrating a water-filled con-
tainer without tumbling:

Vr - CD p"t

Ve 2 o Lecos 8 (1)

<
'

Residual velocity of the penetrator

Vs - Striking velocity of the penetrator
Cp - Drag coefficient of the penetrator
Py = Density of the water
pp - Density of the penetrator material
t - Effective separation distance of the entrance and exit panels
of the tank
8 - Obliquity angle

L - Penetrator length,

Equation (1) is used therein to compute residual velocities for a series
of L/D of 5 projectiles penetrating 15.24cm of water. Striking vel-
ocities were reported to range from 0.9 km/s to 3 km/s and for tests at
zero degrees obliquity, no appreciahle change in angle of attack at the
exit panel was observed. Generally, the calculated residual velocity was
somewhat higher than the measured values, a discrepancy attributed to the
projectile pitching slightly in the tank thereby increasing its drag
coefficient.

Tpgrminal Ballistics of Rod Pemetratore,' AVCO Systems Divieton, AVSD-
0201- ?6=RR.
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The drag coefficient for the L/D of 3, hemispherically capped pro-
jectile discussed in this report is estimated to be between 0.7 and 0.8,
These drag coefficients predict a 15% and a 17% reduction in projectile
velocity respectively, At 180 us, see Figure 7, the projectile is
near the exit panel and EPIC-2 predicts a 13,6% reduction in projectile
velocity or a residual velocity of approximately 776 m/s. The projectile's
velocity will be further reduced in penetrating the remaining Iluid and
the exit panel, The velocity decay predicted using EPIC-2 appears to
be in line with that which has been measured in experiments with pro-
jectiles of similar design.

The use of EPIC-2 in understanding the Lydrodynamic ram phenomenon
looks promising. In this analysis EPIC-2 has confirmed that the entrance
panel petaling results from the water impulsively accelerating the en-
trance panel, Figures3 - 4, Furthermore, the hydrostatic pressures
generated in the water initiate bulging of the exit panel prior to per-

‘foration by the projectile, Figure 7,

Additional damage can occur to the exit panel after it has been per-
forated by the projectile and a complete analysis <f a hydrodynamic ram
event should include the response of the exit panel until it reaches
equilibrium. Perforation of the exit panel for the analysis presented
here can be readily performed. Predicting the steady state response of
the exit panel in this analysis wovld not be cost cffective. The exit
panel would reach a steady state condtion in the millisecond regime
while the integration time increment at 180 us is 72 nanoseconds. It
is clear thal it would take an unreasonable amount of computing time to
predict the steady-state response of the exit pancl., However, Reference
9 describes a time increment criterion based on the rate of deformation
which would permit the total number of integration cycles to be dependent
on the total amount of deformation and not the wave transit time across
the minimum altitude of the most deformed element as is the case with
the present explicit scheme in 1PIC-2, Incorporation of such a strain
rate dependent time increment critericn would make predicting the steady-
state response of the exit panel feasible.

Numerical simulation to assess the influence of projectile yaw and
tumbling on the hydrodynamic ram effect would have to be carried out with
the three-dimensional version of the EPIC code!®s!!,

*Dr. P. Nietzel, private communication.

*Johnson, G. R., "Dyramic Analysis of Incompressible Viscous Fluids,"
Journal of Applied Mechanics, Vol 46, No 2, 18789.

'%ohnson, G. R., "Further Development of the EPIC-3 Computer Program
Sfor Three=Dimensional Analysis of Intensive Impulsive Loading,"”
AFATL-TR-78-81, July 1978.

Y rohnsen, G. R., "Further Development of EPIC-3 for Anisotropy, 8liding
Surfaces Flotiing and Materials Models,” BRL Contractor Report to be
published.
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USER EVALUATICN OF REPORT

Please take a few minutes to answer thc questions below; tear out
this sheet and return it to Directur, US Army Ballistic Research

Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground,

Maryland 21005, Your comments will provide us with information

for improving future reports, :

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, maunagement procedure, source of
ideas, etc.)

4, Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.
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