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ABSTRACT

A problem arising in taste testing, medical, and

parapsychology experiments can be modeled as follows. A deck of n

cards contains ci cards labeled i, 1 < i < r. A subject guesses at

the cards sequentially. After each guess the subject is told the

card just guessed (or at least if the guess was correct or not). We

determine the optimal and worst case strategies for subjects and the

distribution of the number of correct guesses under these strategies.

We show how to use skill scoring to evaluate such experiments in a

way which (asymptotically) does not dep..nd on the subject's strategy.
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THE ANALYSIS OF SEQUENTIAL EXPERIMENTS
WITH FEEDBACK TO SUPJECTS

Persi Diaconis and R. L. Graham

1. Introduction

For a variety of testing situations the following experiment

is performed: A subject tries to guess the outcome of a sequence of

draws without replacement from a finite population. After each

guess, the subject is given feedback information. This might be the

name of the object just guessed at--complete feedback--or only the

information that the guess just made was correct or not--partial

feedback. We are interested in the subject's optimal strategy and in

methods for scoring subjects which do not depend on the strategy used

by the subject.

The following example illustrates our main results.

1.1. Taste testing and partially randomized clinical trials

Consider Fisher's famous Lady tasting tea (Fisher (1949) p. ll)-

Eight cups of tea were prepared--four of one type and four of a

second type. The cups of tea were presented to the lady in a random

order, and she was to guess the type for each cup. With no ability

and no feedback, the lady is expected to have four of her eight

guesses correct. We propose the following variation: to help cali-

brate her guesses, the lady is told after each guess if it was

correct or not. If the lady has no tasting ability but is, trying to

maximize the number of correct guesses, her optimal strategy, knowing
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that a of type one and b of type two remained, is to guess the type

corresponding to max(a,b). The expected number of correct guesses

under the optimal strategy is 373/70 5.3.

Mathematically, this problem is the same as a problem dis-

cussed by Blackwell and Hodges (1956) and Efron (1971) in connection

with clinical trials. In comparing two treatments on 2n patients,

suppose it is decided that n patients are to get each treatment, the

allocation being otherwise random. Assume that the patients arrive

sequentially and must either be ruled ineligible or assigned one of

the two treatments. A physician observing the outcome of each trial

would know which treatment was most probable on each trial. This

information could be used to bias the experiment if the physician

ruled less healthy patients ineligible on trials when a favored treat-

ment was more probable. A natural measure of the selection bias is

the number of correct guesses the experimenter can make by guessing

optimally. Blackwell and Hodges showed that with 2n subjects the

optimal guessing strategy leads to

1 2n 2n. I n- 1
n +-(2 /n ) - 1) = n + - - + 0(l) correct expected guesses.

The same problem arises in card-guessing experiments. The

usual ESP experiment uses a 25-card deck with the 5 symbols 0, +,

fff, -, * repeated five times each. The deck is shuffled; a

sender looks at the cards in sequence from the top down, and a sub-

ject guesses at each card after the sender looks at it. We discuss

three types of feedback:

2
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case 1--No feedback. If no feedback is provided, then any guessing

strategy has five correct guesses as its expected value. The distri-

bution of the number of correct guesses depends on the guessing

strategy. Several writers have shown that the variance is largest

when the guessing strategy is some permutation of the 25 symbols.

This is further discussed at the beginning of Section 3.

Case 2--Complete feedback. If the subject is shown the card guessed

each time, then the optimal strategy is to guess the most probable

remaining type at each stage. The expected number under the optimal

strategy is 8.65, a result first derived by Read (1962). In Section

2 we give closed form expressions for the expected number of correct

guesses for the optimal and worst case strategies for a deck of

arbitrary composition.

Case 3--Yes or no feedback. The situation becomes complex with par-

tial feedback--telling the subject if each guess was correct or not.

NO simple description of the optimal strategy is known. An example

in Section 3 shows that the "greedy algorithm" which guesses the most

probable symbol at each stage is not optimal. The optimal strategy

and the expected number of correct guesses under the optimal strategy

can be determined by solving a recurrence relation numerically. For

a standard ESP deck the expectation is 6.63 correct guesses. In

Theorems 5 and 6 we show that the greedy algorithm is optimal

for partial feedback experiments with no repeated values (that is,

for a deck labeled (1,2,...,n)). For an empirical attempt to solve

3
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these problems, see Thouless (1977). A thorough discussion of

statistical problems in ESP research may be found in Burdick and

Kelly (1978), and Diaconis (1978).

How should feedback experiments be evaluated? Consider a

numerical example made explicit in Table 1. A deck of 20 cards, 10

labeled "red" and 10 labeled "black," was well mixed. A sender

looked at the cards in sequence from the top down, and a subject

guessed at each card after the sender looked at it. After each trial

the guesser was told whether the guess was correct or not. There

were 14 correct guesses. If this experiment was naively evaluated by

neglecting the availability of feedback information (a widely used

approach, see Tart (1977), Chapters 1,2 for references), each trial

would be regarded as an independent binomial variable with success

probability 1/2. Binomial tables show that P(14 or more correct out

of 20) i .058. The choice sequence that the guesser actually made is

fairly close to the optimal strategy. There were 7 times that the

number of red cards remaining was equal to the number of black cards

remaining. At these trials, red and black have the same probability

of being correct and either choice is optimal. The guesses made

agree with the optimal strategy on 9 of the 13 remaining trials.

Perhaps the 14 correct guesses should be compared with 12.30, the

expected number of correct guesses under the optimal strategy.

Neglecting the availability of feedback information can lead to

crediting a subject using an optimal (or near optimal) strategy with

having "talent." On the other hand, demanding that a subject

4
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TABLE 1

EXAMPLE OF SKILL SCORING IN AN EXPERIMENT WITH
10 RED AND 10 BLACK CARDS AND FEEDBACK

TO THE GUESSING SUBJECT

Trial No. Guess Feedback Optimal pi Card

1 B Yes Tie 1/2 B

2 B No R 9/19 R

3 B No Tie 1/2 R

4 B Yes B 9/17 B

5 R No Tie 1/2 B

6 B Yes R 7/15 B

7 R Yes R 8/14 R

8 B Yes R 6/13 B

9 R Yes R 7/12 R

10 R Yes R 6/11 R

11R No Tie 1/2 B
•12 R Yes R 5/9 R

13 B No Tie 1/2 R

14 R Yes B 3/7 R

15 B Yes B 4/6 B

16 B Yes B 3/5 B

17 B No Tie 1/2 R

18 B Yes B 2/3 B

19 R Yes Tie 1/2 R

20 B Yes B 1 B

14 11.049

Correct

a Column 1 is trial number, Column 2 is subject's guess, Column3 is feedback information, Column 4 is optimal guess (tie means either

color is optimal), Column 5 is probability that subject's guess is
correct, and Column 6 is card actually present.

5
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significantly exceed the expected number under the optimal strategy

can lead to failure to detect a "talented" subject who doesn't use

the feedback information. In Section 4 we describe a method of eval-

uation called skill scoring. The skill score compares the number of

correct guesses to a base line score calculated from the conditional

th
expectation of the i guess given the feedback information. The

statistic is particularly simple in the present example. If at the

time of the i th guess there are ri red cards and bI black cards

remaining in the deck, then the probability of the next card being
r.

(say) red is i The numbers pi--the probability of the

t.t
_ i h guess being correct--are gl,- in the fifth column of Table 1.

If Z is one or zero as the ith guess is correct or not, then the

2n
skill score statistic S is defined as S =i=l {Z i-pi). For this

example S = 14- 11.049 = 2.95.

In Theorem 7 we show that for any guessing strategy

S/v'2n/4 has a limiting sLandard normal distribution. In the example

of Table 1, S/fv 1  1.32. Further discussion of this example is in

Section 4.

Clearly experiments which combine feedback with sampling with

replacement are easier to analyze. Our motivation for considering

sampling without replacement is twofold. First, reanalysis of a

previously performed feedback experiment done without replacement may

be desirable. Second, experiments are often designed without

replacement to insure balance between treatments for moderate

samples. Efron (1971) gives a nice discussion of these issues and

references to standard literature.

6
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2. Complete Feedback Experiments

In this section we consider experiments with a deck of n cards

rcontaining ci cards labeled i, 1 < i < r, so n Z= ci. We write

c = (lC 2,...,cr) for the composition vector. A subject tries to guess

what card is at each position and after each guess is shown the card at

this position. The optimal strategy for a subject trying to maximize

the total number of correct guesses is to guess the most probable symbol

at each stage. (This is easily proved by backward induction.) Let

H = H(c) be the number of correct guesses when the optimal strategy is

used. We can derive the distribution of H when r= 2 by using variants

of an argument in Blackwell and Hodges (1957). We give the limiting

distribution of H here, the exact distribution is derived in the course

of the proof.

Theorem 1.

If c and c2 tend to infinity in such a way that

c C/(C+C2 ) p, 0 < p < 1, p # 1/2, then
1 2

(2.1) E(H) -- max(clc 2 ) + - 1) + 0()

k(2.2) P(H-max(cC 2) = k) y(-y)

for k= 0,1,2,... where y = l p - 1.

Ni MIf c C2  k (so p=) then,, as k tends to infinity,
1 2

2k,

I(2.3,) EH ) k+1Tk -

2 2k 22 k

8
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(24k0 if x<O
(2.4) p < "

424 (x) -1 ifX>0

where 4(x) is the standard normal cumulative distribution.

Results (2.3) and (2.4) are essentially given by Blackwell

and Hodges (1957). The results show that there is a big difference

between balanced decks where c1 = c and unbalanced decks. In the

unbalanced situation the optimal strategy does not do much better

than the strategy which always guesses the type corresponding to

max(cl,c2). An intuitive explanation is that when c >> c 2  the

optimal guess will almost always guess type 1.

When r > 2, we have not actively pursued the problem of

finding the distribution of H, but we have determined the mean of H.

If h(c) E(H(c)), then elementary considerations show that when
- r

Si= c. > 0, h satisfies the recursion

c. c. ~ max() h
(2.5) h) Z 1 h(c-6) + l "c0

12.)..+)=c C + +...+cir r

11
where 6.has a one in the i thposition and zeros elsewhere, and 0is

2

the vector of all zeros. M
We will show that h(c) has the following closed form

expression:

Theorem 2. The solution of the recursion (2.5) is

c1  c I + +C._
"'" Cr max(i

(2.6) h(c) =max(c) + E .. )},
r r

c |:_)
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Of course, Theorem 3 agrees with (2.3) when r 2. When k = r = 5,

the approximation given by Theorem 3 is about 9.08 as compared with

8.65 from exact evaluation.

In the complete feedback problem it is possible for a subject

to try to minimize the expected number of correct guesses by guessing

the least probable symbol on each trial. We call this worst case

guessing. This can lead to strategies with a strange appearance.

For example, with n cards labeled ,l,2,...,n) the worst strategy

guesses any card, (say 1) on the first trial and thereafter guesses

a card known not to be in the deck. This leads to 1/n as the expected

number of correct guesses. Analysis of worst case guessing is val -

ble in determining how widely the distribution of correct guesses can

vary as a function of strategy. The arguments are similar to best

case guessing and will not be given in detail. Here are some results:

Theorem 4. Let d(c) denote the expected number of correct

guesses when the worst case strategy is used with complete feedback.

c I  I~+ + c.-

d(c) = min(c) Z il+...+ir
0Ni<cr

where mi (i) = min()(mul(i)- 1), mul(i) is the number of j such

that i = min(i).
j

As k tends to infinity,

d(kl) = k - 2 k V + o rk()

where M was defined in Theorem 3.

r

11
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Some numerical values for d are d(3,3,3) = 1.48690

d(5,5,5,5,5) = 2.29606+. When r = 2, min(clc 2) - d = h - max(c ,c2)

so (2.1) and (2.3) can be used for similar computations involving d.

Theorems 3 and 4 show that with a bounded number r of

distinct types the deviation of either best or worst case guessing

from guessing with no feedback is of order Vk compared to a lead

term of k. This is crucial to results in Section 4 involving the

skill scoring statistic.

Proofs for Section 2

Proof of Theorem 1. To determine the distribution of H we follow

Blackwell and Hodges (1957) in considering an associated random walk.

Without loss of generality suppose c1 > c2. Following the notation

of Chapter 3 of Feller (1968), consider a random path composed of

lines of slope ± 1. The walk moves up if a card of type I is turned

up, and down if a card of type 2 turns up. The walk begins at (0,0)

and ends at (ci+c 2 , ci-c 2). The optimal strategy is to guess

type~~ 21 1 2 us ye2i h
1type if the path is below the line y = c guess type 2 if the

path is above this line, and guess arbitrarily at points where the

path touches the line. This is because when the path touches

-1 l the number of cards of type I remaining equals the num-

ber of cards of type 2 remaining. Let T be the number of times the

Y| random path touches the line y = cI - c2. It is not hard to show by

12
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induction that for any path the number of correct guesses that theI optimal strategy makes at time c1 + c2 equals c1 + Z where Z is a

binomial random variable with parameters 1/2 and T. Thus all ran-

domness in the outcome of a run through the deck using the optimal

strategy can be attributed to the outcome of guesses when the

remaining numbers of each type were the same.

T takes values 0,1,2 ,...,c 2 and a straightforward variant

of the proof of Theorem 4 in Section 7 of Feller (1968) shows

that

c c , t =
c l1-2t c+2-t /(cl+c2)

(2.7) p(T=t) 2 t 1 2C t c t0,l,. ..,c2.

Notice that when cI = c2, T cannot take on the value 0 and

(2.7) is equivalent to equation (2.3) of Blackwell and Hodges (1957).

They argue that T/A' tends in distribution to the absolute value of a

standard normal, and this implies (2.4). Passing to the limit in

(2.7) when cI and c2 tend to infinity with cl/(Cl+C2 ) p
0 <p < 1, p # - yields that T has a limiting geometric distribution

1

with p(T=t) = y(l-y) t=0,1,2,...,y= Ip-qj. The limiting distri-

bution of H is obtained from the limiting distribution of T by using

the fact that, if H given T= t is binomial with parameters 1 and t,

then H unconditionally has the distribution specified by (2.2). The

equation for the mean of H can be derived as a special case of (2.6).

Thus, when r=2, max (ii,i2 )=0 unless il=i 2  Then (2.6) becomes

(2.8) E(H) = max(clc 2) + l (c2)/cl 2)

13
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EX When c1=c2=k, we have

i) CC

so (2.3) follows. Taking the limit in (2.8) as Cl~4p yields

E(H) =max(c ,c) +.I z (2 i)(pq)i + o(l)

=max(c ,c) + I ~'...1 + 0(1)

max(c ,c2)+- (1~ + act)

Proof of Theorem 2. Let f~c h(c) - max(c ). The recursion (2.5)

translates into

{ f(c-6.) +max(c-&) nx ) -mxc

(c) + cx&)

c + c (C +...+c

(c+ +c fC) c) -Cc~c

The recurssion becomues bakt sesl eeoeulmx()a

defied i Therem . No, wrt14

(c + +
____ ___ fLAC c

z ~ r
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(c + . . + c ) *+r "max (c)
(2.9) g(c) E g(c-6 1 ) + ,' max.(c

c1 .... c c1 r- ir r

It is clear from (2.9) that g(c) can be expressed as a sum over the

nonnegative orthant O O T < c of the function! ! ma
A(1) =(il, ... i +  +i

1 r 1r

At each lattice point i the function X(i) must be multiplied by the

number of paths from c to i. This number is

((c I - 1 I) + . + (c r  - Jr))!'

...( (cr  r  -

Thus,

NU + (c - ) + . ( c r - i ) )

1 1

i g(c) = E >.(i) i
~(c

l - I .  . (c r - i r )  _-
_ ; 0Ni<i

Transforming g back to f and f back to h completes the proof of

Theorem 2.

By considering a multidimensional random walk, taking a step

in the direction of the ith coordinate when a card of type i is exposed,

we can give a direct probabilistic interpretation to the max of

Theorem 2 and min of Theorem 4. Just as when r= 2, the only random-

ness in the number of correct guesses under the optimal strategy comes

from lattice points i where max (i) > 0. The number of correct guesses

from lattice points where max (i) 0 being max(c). The probability

of a correct guess for a lattice point where max (i) > 0 is

max (i)
, and the sum in (2.6) is just a sum of these

15
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probabilities multiplied by the probability that the path passes

through i.

Proof of Theorem 3. We are considering a deck of n = rk cards

containing k cards marked i, 1 < i < r. For j l,2,...,n, let V. be

an r-dimensional random vector which counts how many of each type

have been called before time j. Thus, Vi= 0 and V.(i) is the number

of cards marked i which have appeared before time j. At the jth trial

the optimal strategy is to choose any value k such that V.(2) =

min V.(i). The probability of a correct guess is then
i J

k - min V.(i)
i j

(2.10) n - i + 1

To work with (2.10) we use weak convergence techniques from Chapter 4

of Billingsley (1968). The first step is to transform the random

vectors Vi,...,V into a random function which will be shown to con-

verge to an appropriate Brownian bridge. Let

-. r
j k(r-1) j r

The components of X. have E(X.(i)) = 0, Var(X.(i)) = 1. Form a
ci ci

nt
vector valued continuous function nt:[,]+R

components X.(i) by straight lines as in Billingsley ((1968), pp. 8-15).

Thus, X = X". It follows from Rosen's (1967) results for depen-
n j/n j*

dent vector valued random variables that the r-dimensional analog of

SD -
Theorem 24.1 of Billingsley (1968) holds. That is, nXt --+W where

W is an r-dimensional mean 0 Gaussian process with the following
t

covariance:

16
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-s(1-t) when i #j

for s < t, E (i)i(j)) = s-i
S t s(l-t) when i =

Thus, each component process V() is a Brownian bridge and, for

fixed t, coy Ut = t(l-t) 1 where

This implies that Z W (i)=0. Returning to (2.10) and summing yields
t

n k-- min X. (i)
(2.11) /k(r-) ij=l1 n-j+l r j-l n-j+l

The first sum in (2.11) is easily seen to equal k + 0 log k) (ther\

notation 0r means that the implied constant depends on r). We will

argue that we may take expectations in (2.11) and pass to the limit

as k tends to infinity. Then,

I min X.(i)
(.2n fl E(min dt

iit ( 2 .2) Z - j  +  10 J-O t

Assuming the validity of (2.12) for the moment, we have shown that the

expected number of correct guesses is

r r

where

1 E(min -)

M~ __ tdt
r r r

We now show that M = - M . where M was defined in Theorem 3. To
r 2r r

prove this note that one way of constructing W from r independent
tM w(r)

1-dimensional Brownian bridges W (  I ... is as follows.t '' " t

17



Let W W ) and let i4(i) ::r::_ (Wi)-W for 1<1< r.Le W =r j t t r- I t ) fo i_

It is easy to check that f~t has the correct covariance, t(l-t)t. Now,

-I for fixed t the symmetry of mean 0 Gaussian variables implies that

i * i t i

Moreover,

2E{max h ' (i)} = E{Range{W"(i)}} E{Range w(i)
i t t rWt 1I

21rr E{max W(i) }

For fixed t the variables W i) are independent Gaussian variables

t

with mean 0 and variance t(l-t). It follows that

=- M dt as claimed.
r r 0

We now show that the limit step in (2.12) is valid. We will
D -0

argue in the function space D[0,11. Note first that X W
n t t

implies min X (i) min W (i) in D[0,11. Next consider the contin-
i n t i tI-E 

A

uous functional TE: D[0,1] R i defined by TE(f) = I dt.

Since min X (i) is piecewise constant and eguals min X.(i) on the

interval I < t < J- , we have thatn - n

i+l

T (min X M)) min(X M) n ___

E n t Ej<-E n nj/n 1t

n

- min(X(i))(-log 1
En~j<(l-E)nn-

min X.(i) rin X.(i)

n- cf + 0En<j<(l-E)n (n- j)

18



To apply Harkov's inequality we need to bound E(Imin Xji)J).

(2.13) Elmin X.(i)j <rE(IX(l) )<r(E( r/ r

Thus, for any y > 0,

min .1/2P{12: x: I> Y} < r4-r Z <
2j (j) - k(r-1) 3/2 1/2 -

where the positive constant c is independent of k and y- Thus, we

have shown that the error converges to 0 in probability and the

continuous mapping theorem yields

min MX.(i) D f1-E mn W(i)
I (2.14) E _1dt

En<j<(1-E)n n-j+1

To take expectations in (2.14) we must show that the left side is

uniformly integrable. Write N. = min X.(i) and consider
3 i 3

(2.15) E {( < MI•
n- -- i j +I(n-i+l)(n-j+l)

i ,j

When i it j, E(IMi mj[) < {E(M2)E(M")}1/2 and
13

2 r 1 _i"
(2.16) E(42 ) <rE(X(I)) = r

n+ --

Using these bounds in (2.15) shows that

E (E< E J <c as n- cn-+ - k(n -1) 1~ n-i+l n-j+l

This implies uniform integrability and thus shows that

19
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E(M) 1-E E(mint)d
(2.17) i+1t

En<i<(1-E)n n-i+I f

To prove (2.12) note that

lE(min Wi)) V

is a convergent integral so the right side of (2.17) approximates

this arbitrarily well for E sufficiently small. Further

E(M.) E( IM. 1)
n-i+n -i+l1 n n- i

i<En i<En i<En

for some positive c. The last sum is a Reimann sum for

and so can be made arbitrarily small for small E. The same argument

works for

E (M.

(l-E)n<i -~

This completes the proof of (2.12) and thus of Theorem 3.

R,_ I
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In this section we discuss problems concerning. a aeck of

n cards with c i cards of type 1, 1 < i < r. We again write f or che

composition vector c =(c 1 , . . . ,c r )  on each trial the subject is

told if the previous guess was correct or not. We refer to this

situation as yes-no feedback. The problem is complicated when

max(c) > 1, so we first state results for a deck of n cards labeled

1,2,...,n. We begin with no feedback and complete feedback guessing

Ei

MIN

3nd Yeor Fhs osneedback.

UNoml feedback. If hec sjectidedw the ard ustn

nrcards wh sh c a evia of typhe nur. er agai worec guo ee

121M

guessed each time, then the optmal strategy is to guess a card known

to remaiina the deck. The number of correct guesses has the same

distribution as a sum of n independent random variables Xi1 < i <

we l, 2 ., eI I - P(Xi nO) For large n the number of correct

-- I

guesses is approximately normally distributed with mean log n and !

standard deviation /-og n.-

o f If the subject is only given yes-no feedback, then the

optmal and worst case strategies are described by the followng

pair of theorems.

21
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Theorem 5. For a deck containing n cards labeled {l,2,...,n) a

guessing strategy which maximizes the expected number of correct

guesses when yes-no feedback is available is the strategy which

guesses type I until the guess is correct, then guesses type 2 until

the guess is correct (or the end of the deck is reached) and so on.

If G denotes the number of correct guesses under this strategy, then

(3.1) P(G>k) k= 1,2.....n

(3.2) E(G) 1 + + + e +

Theorem 6. For a deck containing n cards labeled "l,2,...,n) a

guessing strategy which minimizes the expected number of correct

guesses when yes-no feedback is available is the strategy which

guesses type i on the ith trial until a guess is correct and then

repeats the correct guess for the remaining trials. If g denotes the

number of correct guesses under this strategy, then g takes values

zero and one with probabiltiy:

(3.3) 1g 0) 1 .
e n!

(3.4) E(g) = 1 + 0(l)

Theorems 5 and 6 deal with the only type of deck where we can pro-

vide a simple description of the optimal strategy. In each case the

optimal stratey is the "greedy" strategy which guesses the most

probable (for Theorem 6 the least probable) type. We do not know if the

greedy strategy is optimal for decks of 2n cards with compositioa

22



vector (2,2,...,2). We will show that the greedy strategy Is not

optimal for the 9-card deck with composition vector (3,3,3). We first

need some notation.

Let p = (plP 2 ,..,r) be a vector with integer components

p > 0. Define

(3.5) N(c;p) the number of permutations of cI + ... + c symbols
r

which do not have symbol 1 in the first p1 positions, nor symbol 2

in positions p1 + 1"."P2" etc.

Thus, N(c;O) = (c + .. + c)!. The numbers N(cp) allow

computation of the most probable type at any stage of an experiment

with yes-no feedback. They are closely related to rook polynomials

described in Chapters 7 and 8 of Riordan (1958) and are discussed

further in Diaconis, Graham, and Mallows (1979).

Algorithm to compute probabilities with yes-no feedback. Suppose an

thexperiment started with composition vector c0 and that after the j

guess there have been Y. (i) yes answers on type i and p. (i) no

answers on type i, I < i < r. The deck now has composition vector

c = c0 - J. We will call c the reduced composition vector.

Writing 6. for the vector (0 ... I... 0) with a 1 at poition I and 0

elsewhere, the conditional probabilities of a correct (or incorrect)

guess on type i on the j + 1st trial given Y and p. are:

(3.6) P(yes on type ilYp) c N(c-i
N(C;p.)

23



(3.7) P(no on type ilY.;p.) = __

For 1 < i < r.

As implied by (3.6) and (3.7), the function N satisfies the

recursion

(3.8) N(c;p+ 6k) = N(c;p) - ck N(c+3 k;p), I < k < r

with N(c;0) (c + ... c+C)'
1 r

This recursion can be solved in closed form to allow computation of N:

(3.9) N(c;p) Z (-I) 1.. ( l i ) , .. c r  r ,

\1/ r/ r ri<c

The proof of (3.9) is given in Diaconis, Graham, and Mallows along

with a host of other properties of N(c;p).

Let E(c;p) be the expected number of correct guesses under an

optimal strategy starting from the reduced composition vector c.

E(c;p) is well defined since there are only a finite number of stra-

tegies and one (or more) of them maximizes the expected number of

correct guesses. It is straightforward to show that E satisfies the

recurrence:

(3.10) E(c;p)N(c;p) = max{E(c;p+.Sk)N(c;p+6 k)
k

+ E(c- k;p)ck N(c -6p) + Ck N(c k;p)

where N(c;p) was defined in (3.5). We have not bcn able to solve
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this recurrence for E(c;O) in ciosed form even though N is known

through (3.9). The recurrence can be solved numerically. For

example, Mary Ann Gatto (Gatto (1978)) generated values for all

composition vectors smaller than (5,5,5,5,5). Some results are:

E(3,3,3;0) = 4.26, E(4,4,4,4;0)= 5.47, E(5,5,5,5,5;0) = 6.63

The details of computing a number like E(5,5,5,5,5;0) are not simple.

The computation required 15 hours of cpu time on a Honeywell 6070

computer along with clever use of both recursions (3.8) and (3.10).

The optimal strategy at each stage is determined by finding a

k which maximizes the right side of (3.10). Formula (3.6) implies

that the greedy strategy at each stage is determined by choosing a

k maximizing ck N(c- 6 k;p). We now give an example which shows that

the greedy strategy is not optimal.

Consider a 9-card deck with 3 each of 3 different types of

card. A complete listing of N(c;p) and E(c;p) for all (c;p) that

arise with this 9-card deck is given in Diaconis and Graham (1978).

In the situation summarized by (231;003) the optimal strategy is to

choose type 3 on the next guess. However, type 2 is more probable

than type 3 on the next guess. The situation summarized by (231;003)

*could arise under the optimal strategy from starting position

(333;000) as follows: the first guess is type 1, and this is correct.

The next three guesses are type 3, and all three guesses are wrong.

The next guess on type 3 is correct. At this point the situation is

summarized by (232;003) and the optimal guess is type 3. If this is

correct, then the situation is summarized by (231;003).

II 25



Even though the greedy strategy is not optimal, computations

reported in Diaconis, Gatto, and Graham (1979) show that the expected

number of correct guesses under the greedy strategy is extremely

close to the expected number under the optimal strategy for decks

with composition vector (3,3,3) or (5,5,5,5,5).

If e(c;p) is the expected number of correct guesses for the

worst possible strategy, then e(c;p) satisfies a recurrence obtained

from replacing max by min in (3.10). We have not pursued the problem

of numerical computation of e.

Even though the optimal strategy seems to be extremely

complex, we believe that the following simple persistence conjecture

holds: In any problem with partial feedback, if symbol 1 is the

optimal guess on trial i and a guess of 1 is answered by "no," then

symbol 1 is optimal on guess i + 1.

Proofs for Section 3.

Proof of Theorem 5. When the given strategy is used, the permutations

with k or more correct guesses are those in the set

Sf7r :T (1) < ir (2) < ... <r (k)1. Thus, P{G>k} =P(reAk) =k-m

This proves (3.1) and implies (3.2).

We now argue that the outlined strategy is optimal. In this

problem a strategy S may be regarded as a sequence of n functions

S = (SI,S2,.,S n ) where Si: {0,1}i-l + fl,2,...,n}. The interpreta-2°'S i
tion is that a point in f0 ,1 1

-  represents a sequence of i-1 yes or

no answers, 0 standing for no and 1 for yes. The expected value of a 2

n

strategy is E(S) = Z E()S where S.j is one or zero as i =j
i=l Tr S
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or not. We will say that strategy S dominates strategy S' if

E(S) > E(S'). Strategies S and S' will be called equivalent if

E(S) = E(S').

We first argue that the given strategy calls the most

probable symbol at each stage. This is implied by the following

monotonicity property of the function N:

(3.11) p >p. if and only if N(l;P+ 6i)<N(l;p+ ) .

This property of N is proved and further discussed in Diaconis,

Graham, and Mallows (1979). Inequality (3.11) implies, and is

implied by, the following combinatorial fact which was first

established by Efron (1963).

(3.12) (Efron's Lemma). Let two decks of n cards be prepared. The

first deck labeled (l,2,...,n), the second deck labeled (al,a2,...,a)

with a e l,2,...,n}. Each aeck is mixed and the cards Lurned over
i

simultaneously, one pair at a time. The probability of no matches is

largest if and only if there are no repeated symbols among the ai-

That is, if {aj = {l,2,...,n}.

We have thus argued that the given strategy calls a most

probable symbol at each stage. We want to show that any strategy

which achieves the maximum number of correct guesses in this problem

has this property. We note that a maximizing strategy exists since

there are only finitely many strategies.

To begin with we may restrict attention to strategies which

do not guess symbols known not to be left in the deck since such

27
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strategies may be improved uniformly over all permutations by modi-

fying them to guess only symbols which have not been definitely

eliminated.

We will argue by backward induction that any strategy can be

strictly improved by being modified to choose a most probable symbol

at each stage. This is clear at trial n since modifying a strategy S

so that it chooses the most probable symbol on the final guess can

only increase E(S). Consider a strategy S which chooses the most

probable symbol on trials n-k, n-k+ 1,...,n, for fixed k > 0.

Consider a history h E {0,i}n
- k2 for which Sn-k-l (h) = a where b # a

is the most probable guess and strictly more probable than a. By

(3.11) we must have Pb > Pa' i.e., 1b Pa + i. No matter what the

outcome of the guess Snkl(h) = a is, no symbol is more probable

than b just before trial n- k. Thus, by induction we may assume

S(h,O) = S(h,l) = b (i.e., we can modify S to have this prop, ".y

without decreasing E(S)).

Consider the portion of the "strategy tree" of S following h

A 
A

(see Figure 1). Form the strategy S from S by defining S _kl(h) = b ,

S (h,O) = Sk(h,l) = a and interchanging the two parts TOI and

of S which follow (h,0,l) and (h,1,0) (see Figure 1).

We claim that for each permutation iT of the deck there is a

unique permutation iT of the deck such that the number of hits that S

has for W is the same as the number of hits that S has for 7T. This

correspondence is given by switching coordinates n- k- 1 and n- k:

28
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a b

00 1 10 11 00 10 01 11

h 

I

Tr(i) wr(n -k -1) for i=n-k

ir Mri otherwise

It is now a simple matter of checking the four cases r(n -k -1)

7r~n- Qto ee hatS has the desired property or 'rY. For

example, if ?r(n -k -1) =a, 'r(n -k) #b (and, of course, 'ir generates

the history h), then nr generates the history (h,1,0), collects one

more hit (at the question Snk(h) =a) and exits into T10
A A ?

However, in S, 7r gets a no at the question Snkl (h) = b, a yes at
A

the question S (h,O) a (collecting one hit) and also exrits into
n-k

T .0 Thus,
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E(S) > E(S)

However, by induction if we replace Sk(h,O) a by Sk(h,O) b,

then since b is (still) more probable than a, this gives a strict

improvement to S. This shows that an optimal strategy must also

guess the most probable symbol on trial n-k-1. This completes the

induction step and the theorem is proved.

Proof of Theorem 6. Under the given strategy the number g of

correct guesses is either zero or one. The probability of one cor-

rect guess is the probability that two permutations have one or more

matching coordinates. This probability is well known (Feller 1968,

p. 100) to be

1 €. 1 n'l 1
P(g 1) 1l-P(g=O) 1I +._+'' +(-I) n - I 1. =l-1- + 0 .

This proves (3.3) and (3.4).

We now show that the strategy given in Theorem 6 achieves

the minimum number of expected correct guesses.

Using the notation established in the proof of Theorem 5,

a strategy S is a sequence of functions S =(SS ... S

Si: {0,ii-l -} {1,2,...,n}. To begin with, it is easily shown that

the expected value of any strategy can be decreased by modifying it

so that

(3.13) S (0....01) Si1 (0O ... ,00) for i=2,3,...,n

and so that S never achieves more than 1 correct guess.
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Restricting attention to strategies which satisfy (3.13) we

see that the strategy S is determined by the n numbers

sits MIS (0 ,'s (0). The excpected value of S is the probability

of one or more matches of a random permutation 7T to n symbols labeled

sits (0),.. .,s (0). Efron's Lemma (3.12) shows that this probability

is smallest when {S1,S (0),...'s(O)) {1,2,...,n}. This proves

Theorem 6.
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4. Evaluation of Feedback Experiments

The evaluation of feedback experiments is problematic because

it is impossible to know what use a subject will make of the feedback

information. In this section we introduce an evaluation approach

called skill scoring. The idea is to compare the number of correct

guesses with a base line rate calculated from the conditional expected

number of correct guesses given the available information.

One example of skill scoring in the present setting was given

in Table 1. To motivate the abstract definitions we are about to

present, we review this example. The problem considered was card

guessing with two types (call them type I and type 2), k of each type

(so n= 2k cards in all) and complete feedback. We can model this by

considering the basic probability space to be Sn, the set of permuta-

tions on (l,2,...,n}, with the uniform probability measure. A permu-

tation w is chosen at random and the ith trial is declared "type 1"

if w(i) is odd and "type 2" if w(i) is even. On the ith trial the

guessing subject is given feedback.

J 1 ith guess is correct,

f 2 ith guess is incorrect.

This particular feedback function only depends on the current

coordinate. Some possible variations are:

(4.1a) Feedback might depend on previous outcomes. This is realis-

tic in card guessing experiments with unconscious cuing due to sub-

jects being within sight or earshot of one another. If there were
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few correct guesses in the early stages, more active feedback might

be made available as the experiment progressed.

(4.1b) In addition to telling if the previous guess was correct or

not, feedback might indicate if incorrect guesses were "close."

Fisher (1924), (1928), and (1929) gives some examples of measures of

closeness.

(4.1c) Feedback might only be available on some outcomes. For

instance, the subject might be given feedback after red guesses but

no feedback after black guesses.

We formulate the general situation in terms of S the set of

permutations of {l,2,...,nl 9 To model a pack of cards with c.n I

cards labeled i we need the idea of an evaluation function.

For example, to model red-black card guessing we might consider

1{ 1 if Ir(i) is odd

2 if 7r(i) is even

(4.2a) An evaluation function 2 is a sequence of functions

= ( .. , ) where A.(7) = i(7r(i)) for wcS Let the range of

A. be denoted by Ri = {A7(r(i)) :c S 1. An evaluation function is

of type r if X (T) - 1 7(i) (mod r). Let A denote the algebra in

= ngenerated by l, 2,.....

We will restrict attention to guessing strategies which take

values in R.. For each sequence of guesses and each history up to1
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r- time i, we must define a feedback function f For complete feedback

guessing, f. = i(7). For yes-no feedback f = where G. is
i 1

th 1the i guess.

(4.2b) A feedback function f is a sequence of functions

f= fl''"' In) where fi : R1 xR 2,..., xR i xSn  I Sn " For each fixed

r (rl,r2,... r) we may regard f. as a function f (rl,... ,ri; )

from S into Q . This function is to be measurable when S is
n n n

equipped with the algebra A. defined in (4.2a) for any r. We also

define the algebra () {f(rl;-),f2(rlr

f. fi(rl,...,ri;-}

This frightening terminology has the following interpretation:

that f is measurable means that f. only depends on the first i guesses
I

and the values Ai),...,)i(). A function from S will be measura-
1" n

ble with respect to 3(rl,...,r.) if it only depends on the first i

components of the permutation through the feedback information given

when guesses rl,r2,.. .,r are made on trials 1,2,...,i.

(4.2c) A feedback function is adapted if 6 ri is 3(rl,..

measurable for each rl,r2 ,.. .,ri, < i < n. Adaptability means

that the feedback includes the information that the last guess was

correct or not.

(4.2d) A guessing strategy g is a sequence of functions

g = where g, is a constant and

g, Rx... xR_ xS Ri satisfies gi(rl... is

3(rl,. ..,ri_) measurable. The value of g. will be denoted G1 .

34
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(4.2e) The collection of functions X,f will be called an experiment.

We define the skill scoring statistic for an experiment by

n
(4.3) S =Eis {6G X -E{6G X 15(Ol,...,Gi_l) .

i=l ii i i

The main motivation for considering S is that for a wide

variety of experiments S can be normed to have an approximate standard

normal distribution uniformly in guessing strategies. This is made

precise in:

Theorem 7. For an experiment as defined in (4.2e) and any

guessing strategy g, the skill scoring statistic S defined by (4.3)

satisfies

(4.4) E (S) d0f

If the evaluation function is of type r as defined by

- (4.2a) and the feedback function adapted as defined by (4.2c),

then as n tends to infinity,

A2
(4.5) p 1 <x)+I fe2dt

n 12(5IEG

Convergence in (4.5) is uniform in guessing strategies g.

We now discuss some motivation and properties of S. In the

absence of "talent," the distribution of 6 given the feedback

Iinformation is the conditional permutation distribution. S will be

large when there are more successful guesses than chance predicts.
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To compute S, only the observed guesses 01G 2,...,G need be known,

not the entire guessing strategy.

For definiteness consider the example in Table 1-card

guessing with complete feedback from a deck containing k red and

k black cards. As shown in Theorem 1, a subject using the optimal

(or worst case) strategy expects to obtain approximately k + 1ij

(or k - ) correct guesses. The statistic S compensates for this
2

by subtracting a random correction factor with mean value k +1 r

(or k --I An-). This allows us to see if the subject scored more

than chance when the strategy has been adjusted for. The conditional

expected value in (4.3) may be complicated to compute if f is

complex. For yes-no partial feedback the conditional expectations

may be computed using (3.6) and (3.7).

One penalty that must be paid for the close tracking of

by its expected value is as follows: If the feedback information at

some stage determines the composition of the remainder of the deck,
I

none of the subjects' guesses from that trial on have an effect on S.

This can be seen in the last guess in Table 1 when the feedback

information determined that the last remaining card was black.

Similarly, the possible corrections due to feedback are less pro-

nounced at the beginning of the deck and more pronounced toward the

end of the deck.

Theorem 7 holds because the terms in the sum for S are a

Martingale difference sequence with well-bebaved variance. The

Martingale central limit theorem is in force. If there was a prac-

tical reason for doing so, the result could be extended to scoring

functions of the form
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(4.6) S fW (Gl''"'G

! !~~~ ; _ p,(Gl...'G l.. )IF((l,...,.il)]

where the functions WI could be chosen to give desired weights to

correct or incorrect guesses depending on previous results.

We note that the form and motivation for the statistic S are quite

similar to the form and motivation for the Viantel-Haenszel statistic

as discussed (for example) by Tarone and Ware (1977). It should be

possible to show that S is locally most powerful by arguments

similar to those used to show that the Mantel-Haenszel statistic is

locally most powerful against Lehmann alternatives.

We now illustrate the hypothesis of Theorem 7 through some

examples.

(4.7) Example of the need of adaptability assumptions.

The adaptability assumption (4.2c) simply means that the

feedback includes the information that the last guess was correct or

not. To see that there is no hope of a normal limiting result with-

out this assumption, consider an experiment with no feedback

information, for example, f B 1. To be specific, suppose there are

n each of two types, and that the guessing strategy always guesses

type 1. Then the number of correct guesses will always be n, and

the conditional probability subtracted off at each stage will always

equal 1/2 so that S E 0. This example presents a fundamental problem

for the widely used normal approximation to classic-l card guessing
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experiments without feedback (this is discussed by Greville (1941),

(1944)). It underscores the need for common sense even when

Theorem 7 is in force since, if a subject always guesses the same

type of card, the randomness captured by the limiting normality will

be due to the fluctuation of the conditional expectations in S.

The next example shows the need for the assumption of a deck

of type r by exhibiting several non-normal limits (depending on the

guessing strategy) for a deck labeled (l,2,...,n).

(4.8) Example: Partial Feedback guessing for a deck labeled

1,2,3, ... n).

In this problem, as discussed in Section 3, a deck of n cards

is labeled {l,2,...,n). A subject guesses the value of each card

sequentially and is told if each guess is correct or not. Here

X= 7 i), fi( G 1  G r(1),..., r(i)) = 6 (i)Gi , and S can be

represented as

n n
G~ 1 )M

i=l in-i+l j

To see that the distribution of S depends on the guessing strategy we

consider three cases:
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Case I. Worst case guessing. If the guessing strategy is the worst

case strategy established in Theorem 6, we will show that the

limiting distribution of S converges to a beta distribution on

_2 (i+I)to 1 with an atom at - I (i- ). More precisely,
e e

(4.9) P(S< t) G(t) as n tends to infinity where the distribution

function G(t) is defined by

G(t) =0 for t < U
e

for_ _e=2 - e -2 <t< 1+ 2)
e e

1/2

e

=1 for t>
forf

Case II. Gi -l. We will show that when Gi always guesses 1, the

distribution of S converges to an exponential distribution on

More precisely,

(4.10) P{I-S<xl 1 - eX for 0 < x <

Note that while the expected value of S agrees with the limiting

expected value of 0, computation shows that

Var(S) = 2 log n + o(l° (n)), as n tends to infinity.

39



Case III. Best case guessing. In Theorem 5 the rule for

maximizing the expected number of hits was shown to be the rule which

guesses the most probable card at each stage. When this rule is

used, we will show that, as n+', the statistic S tends to a countable

mixture o! continuous distributions:

00

(4.11) P(S <t) p F Pi(t)

i l

where

i+li Ii

i = r- (i..-l). ' jF(t) = P{ 11 Li < e
J=l

where LI,L2,...,L i are the lengths of the i + 1 intervals the unit

interval is partitioned into by dropping i points at random.

Proofs for Section 4.

Proof of Theorem 7. Consider the basic probability space S with the
n

uniform distribution. Let GI,...,G be any sequence of guesses.nS
S

nLtB 0  BI •'n~ B • n=2tLet~ ~~ B 'n B (G1,..,G i+1) for i=l1,2,...,n-1, Bn 2

Thus,B CB C . C B Let
0 1 n

1 i

Zi = i - }and X= E Z.

/ i
r r

Because f is adapted, Xi is a 13 Martingale with E(Xi) = 0. To prove

(4.5), we first show that (4.5) holds when fi= Ai and Gi is the result

of best case guessing. Further, and without real loss, suppose that

n = rk. Let Mi denote the minimum of the number of each type seen
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before time i, so M 0 The probability of a correct guess on thef

jt trial is p1i n-i 1 so Z takes values

1 (1 -p )with probability p

1 1

/p with probability 1 -p

r r

According to the Martingale Central Limit Theorem (Hall (1977)) the

limiting normality will be demonstrated if we can show that

nI

1 Prob

n -(lI ) ~
r r I

We show that

nI

1 n Prob 1j
(4.12a) -= E p

(4.12b) 1

To demonstrate (4.12a) write

k- --
pi - r i with M =M

i ri
Then

ln ___

n r= n n- i+lI
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The inequality (2.13) implies that there is a positive constant c such thatr

E(IMi) < c/i(n/ n Using this and Markov's inequality it

follows that for any E > 0,

1n  } c r
-- nl n-i+l --} E r

so that (4.12a) is true. The proof of (4.12b) is similar. Hence, we

have shown that (4.7) holds when f, = X and " is best case guessing.
ii i

A similar proof works if f1 = X and G is worst case guessing. If
i -i

now f is an arbitrary measurable feedback sequence and i an arbi-i

trary guessing strategy, let pi E{ XlB I. Recall i defined in
i i

(4.2a). Let pi= E{% f iIAi, 6-E6p= IAI]. Then i < P < P

and since (4.12a) and (4.12b) hold for and pi, they must hold for

pi* This completes the proof of Theorem 7.

Proofs for example (4.8).

Proof of (4.11). For worst case guessing S takes values which depend

on T, the time of the first correct guess. Let N(i,n) denote the

number of permutations re S which do not have ir(j) =j,l < j < i.
n -Equation (3.9) implies that N(i,n) = Z (l)i)(n-j)! and we

0

see that PITk})=., N(k-l, n-l) and P{i th guess is correctlpast)=

N(i-1, n-l) Thus, S takes values

1(--) with probability 1
nn

1 n-2 n-2with probability
(n-i) nnl
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k
n) T Ni-l,

E N(i-1, ni) with probability - N(n-l, n-i)

n
1 E N(i-. n) with probabilty j--N(n-, n)

N(i-l, n)

1 ~i
We now show that - N(i,n) t 1-) + 0(-) uniformly in i.nn

Indeed,

n. n n

Thus, for any k, 1 < k < n,

N(i-l, { Ii (Z~lk1 + 1 2

so that S takes values

~ k ~kA+ () with proailt (- )

1 1 1for 1 < k < n and S takes the value - i(l--L) + 0(-!) with probability2 n

e n

Using these estimates shows that P(S <0)- G(t) for

-2 < +(l---) For larger t we have
e
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P(S<t) e+ - .

= -e +  - T n < log(2(t- 1 ) + 0()1 + 0
e n 2 tn n

e n - 2tnn

1 1 14 +1 1 j-1 1
e ( n n

0<j<nf (t)

S1/2

=T2 (t -) + o l)

where we have written f(t) = 1 log 2(t-al). This completes the

proof of (4.9).

Proof of (4.10). When the guessing strategy has Gi = 1, then S takes

values 1 - (Hn-HT), k= 0,1,2,...,n-1, where T is uniformly dis-

tributed on {0,l,2,...,n-l1 and Hk = l+...+I/k. So,

H -H
P{l-S>t} = P{e Tn < e- }

H -
P{eT n -Tn < i/T < n Tn))(1 +o0)1 + 0(-)

log T-log n+0(1)"

T 1

S= P{e < e ln < T < n- n} + 0 )'

= P{-(l + o()) < e-tin < T < n - }1 + 0(-)
n T - -.-

+ e as n tends to infinity.
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Proof of (4.11). With best case guessing it was shown in Theorem 5

that the number of correct guesses, G, takes value i with

probability p (i)' < i< n-l. When G = i, let T be

the waiting time for the jth correct guess, for 1 < j < i. The

random variables !(T,...,Ti, n-T 1 + ... T+ are easily shown to

have as limiting distribution the distribution of the lengths

L1,L2, ... ,Li+ of the i + I intervals that the unit interval is

partitioned into by i random points. de Finetti (Feller 1971, p. 42)

has shown that PfL > X1,...,Li+I >x = (l-Xl+ ... +x i+l) where

+ denotes positive part. When G = i, write T = =T then

OT.
3 1 n-T 1

P{S<tlG=il= P{i- . 1 T <t
j=l k=O n-j-k =nik

+ P{L1 L2 -- ° Li+1

by an easy argument. This completes the proof of (4.11).
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