
AD-A083 266 VIR6INIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG --ETC F/6 9/2
CONCERNING CLASSES WITHIN CLASSES.(U)
JAN 79 R J OR6ASS AFOSR-79-0021

UNCLASSIFIED VPI-TM-79-1 AOSR-TR-80-0282 NL

El mmi~mmND

~ 1.8
Ji.1.25 1.4 11.8

NAItNAI AHI AU' (1 I]ANPApIIAN'll, A

TR. 8282ENSIODVIN

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE 1I .- P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRG IFudthivgs D. C. 20041

(703) 471.4600

CCONCERNING CLASSES WITHIN CLASSES

Richard J. Orgass

Technical Memorandum No. 79-1

January 15, 1979

'(2 .,i - 4

ABSTRACT

Two examples are used to show how the SIMULA restriction
on the use of dot notation to reference attributes of classes
limits the abstraction mechanism provided by classes.

Key Words: SIMULA, program abstraction

CR Categories: 4.22, 5.24 DTICAft E.T:- : E

APR f "I',1980

E

P1 0i

L,

Approved for publi ri.,

LsumI at DdE lammeuomI Akgn-4 Wm Su' m le

Copyright, 1979

by

Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-1, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

CONCEINING CLASSES WITHIN CLASSES

The SIMULA Common Base Definition El], Section 7.1.2, restricts the
use of dot notation to refer to attributes of classes as follows:

The remote identifier X.A is valid if the following conditions are
satisfied:

1) The value X is different from none.

2) The object referenced by Z has no class attribute declared at
any prefx Zlevel equal or outer to that of C.

While the restriction (2) makes it a great deal easier to implement
SIMULA, it also serves to make it much more difficult to use classes as
an abstraction mechanism and to share concepts implemented as classes.

I'd like to illustrate the difficulty with two examples. The first
is from a program that I have been working with for some time. In this
program, there is a need for linear lists of unknown length. Different
lists have different kinds of nodes and different attributes are of in-
terest. All of these lists share some attributes which are not acces-
sible outside the structures. Thus, it is reasonable to declard:

class linked list;

Accession For
protected 1 1 nods NTIS C-FEj . ; " 7

insert, DDC TAB

head; Un:nn '-

begin -

class 11 node;

begin

ref(l_Inode) link

end of llnode; A
procedure insert (element); ref(l_1_node) element;

begin

element.link :- head;

head :- element

end of insert;

ref(lIl node) head; _

end of linked list; A. I-u.

2.

This class declaration is used for many structures which include
stacks of tokens and stacks of reals. The class token-stack might be
declared as follows:

linked-list class token stack;

lot -rotected push,

pop;

begin

11inode class exp node(v); jef(token) v;

begin end;

procedure push(id); ref(token) id;

insert (new expniode(id));

ref(token) procedure pop;

if head -/-n none

then basin

pop :-head qua expnpode.v;

head :-head.link

end

else pop :- none;

end of token stack;

This declaration provides stacks of tokens and a pop executed on an empty
stack returns the object none. This return value is tested by the pro-
gram that uses the stack.

3.

A similar declaration of class real-stack is:

linkedlist class real stack;

not protected push,

pop;

begin

1_1_node class realnode(v); real v;

begin end;

procedure push(val); real val;

insert (new realnode (val)):

real procedure pop;

if head -/- none

then begin

pop :- head qua real node.v;

head :- head.link

and

else ("popping empty real stack.");

end of real stack;

The nodes placed on this stack differ from the nodes on the token stacks.
In addition, popping an empty stack of reals is a fatal run time error
and execution is terminated in this case.

These declarations make it possible to state the difficulty clearly.
It is possible to use the push and pop attributes of either a tokenstack
or a real stack as follows:

inspect new token stack do

begin ... end;

or

inspect new real stack do

beg~in ... end;,

4.

However, it is not possible to use both stacks simultaneously because
the following is illegal by restriction (2).

ref(token) y;

real z;

ref(tokenstack) t a;

ref (real stack) r s;

if res.pop < 0

then t s.push(y)

else rs.push(z);

There are many obvious technical devices for avoiding this diffi-
culty but they all make it difficult to define objects in terms of other
objects. For example, one could rearrange the declarations and duplicate
code or replace

t_s.push(y)

with

inspect t s do push(y)

Both of these solutions as well as others make it difficult to use class-
es as an abstraction mechanism and they are forced by restriction (2).

As a second example, which is typical of data structure definitions,
arises as follows. Suppose a stack of integers is to be implemented with
four procedure attributes push, pop, full and empty. The class declara-
tion, as it concerns the user of these stacks is:

5.

class stack(n); value n; integer n

not protected push,

Pop,

full,

empty;

procedure push(x); value x; integer x;

integer procedure pop;

boolean procedure full;

boolean procedure empty;

end of stack;

In some cases, it may be desirable to implement this kind of stack with
an array and in other cases it may be desirable to implement this kind
of stack using linked lists.

If the stacks are implemented as arrays, the procedure declarations
would be followed by:

integer stackjpointer;

integer array stackstore[l:n];

stack_pointer :- 1

and the procedure bodies would be filled in in the obvious way.

On the other hand, if the stacks are implemented as linear lists
the parameter n would be ignored and the procedure declarations would
be followed by:

I

6.

class stack nodelement); value element; integer element;

begin

ref (stack.node) link

en.d;

ref(stack node) head

and the procedure bodies are filled in in the appropriate way. Here is
an example of the declaration of push:

procedure push(x); value x; integer x;

begin

ref(stack node) teup;

temp :- new stack node(x);

temp.link :- head;

head :- link

end of push;

This second declaration of stack violates restriction (2) (as en-
forced by the DEC-10 implementation). In spite of the fact that the
accessible attributes of these two classes are the same (except, of
course, in the second version the procedure full always returns true)
the two class declarations are not interchangable!

The array implementation permits the use of dot notation to refer
to the four accessible attributes and the second prohibits the use of
dot notation. This means that the two implementations are not inter-
changable inspite of the fact that they are functionally equivalent.
This is a consequence of restriction (2).

These examples illustrate my claim that restriction (2) limits the
use of classes for program abstraction. In my opinion, this evidence
supports the removal of restriction (2).

REFERENCE

[1] 0.-J. Dahl, B. Myhrhang and K. Nygaard. Common Base Langage.
Publication No. S-22, Norwegian Computing Center, October 1970.

SL.L I$'FfJl 4 e $]

SECURITY CLASSIFICATION OF THIS PAGE (WIhen Data Entered)
* PAG READ INSTRUCTIONS'

REP DOCUMEhTA.IONq PAGE 1 BEFORE COMPLETING FORM

RW~j 2. G.VT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

.- .M.TI TL E (and Subtitle) S. T-PE Or RF'PORT & PERIOD COVERED

CONCERNING CASSES WITHIN CLASSESo 7nterim

AuTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Richard J Orgass

--- I AFdSR-79-#21
9. PERFORMING ORGANIZATION NAME AND ADDRESS I. PROGRAM ELEMENT, PROJECT, TASKAREA & WORK L!T NUMB

Virginia Polytechnic Institute and State Univ. AN

Department of Computer science / 7Washington, DC 20041 (61102F /23
It. CONTROLLING OFFICE NAME AND ADDRESS ATE

Air Force office of Scientific Research/2 04Ja179

Bolling AFB, Washington, DC 20332

14. MONITORING AGENCY NAME & AODRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

VF VPI-T1- 71-. I5a. DECLASSIFICATIONWDOWNGRADING. SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identity by block number)

SIMULA, program abstraction

24 ABSTRACT (Continue on reverse side if necessary end identify by block number)

Two examples are used to show how the SIMULA restriction on the use of dot

notation to reference attributes of classes limits the abstraction mechanism

provided by classes.

DD I JAN7 1473 ED ITION OF I NOV 6s IS OBSOLETEUNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enttd)

