AD-A083 266 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG «~~ETC F/6 9/2

CONCERNING CLASSES WITHIN CLASSES.{(U)

JAN 79 R J ORGASS AFOSR=79=-0021
AFOSR=TR=80-0282 NL

......... el

UNCLASSIFIED VPX=TM=79=1
1

|
|

s 28

o

m
e 1 W32
E—— :— = M22
c i =
[5
e "2.0
| | s =

|.8

=4 Y 1

'M

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 01 STANDARIS (903 A

ADAOB83266

CoPY.

&
E

AFOSR-TR- 80 - 0282 @5 perason oson

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE T P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRG (' r.,b-'-m(.;o:. c‘ 71%

CONCERNING CLASSES WITHIN CLASSES

Richard J. Orgass

Technical Memorandum No. 79-1 Vs

January 15, 1979 o

A0 77- 007

ABSTRACT

Two examples are used to show how the SIMULA restriction
on the use of dot notation to reference attributes of classes
limits the abstraction mechanism provided by classes.

Key Words: SIMULA, program abstraction .

CR Categories: 4.22, 5.24 DTI(:
ELECTE
™, APR 2 21980]

E

approved for public release}
1c~*ribution unlimited,

Loonted at Dulles Imtsrmational Airport—400 West Service Roed

Copyright, 1979

by
Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-1, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

CONCERNING CLASSES WITHIN CLASSES

The SIMULA Common Base Definition [1], Section 7.1.2, restricts the
i use of dot notation to refer to attributes of classes as follows:

:3 The remote identifier X.A is valid if the following comditions are
satisfied: '

1) The value X is different from none.

2) The object referenced by X has no class attribute declared at
any prefix level equal or outer to that of C.

While the restriction (2) makes it a great deal easier to implement
SIMULA, it also serves to make it much more difficult to use classes as
an abstraction mechanism and to share concepts implemented as classes.

I'd 1like to 1llustrate the difficulty with two examples. The first
is from a program that I have been working with for some time. In this
program, there is a need for linear lists of unknown length. Different
lists have different kinds of nodes and different attributes are of in-
terest. All of these lists share some attributes which are not acces-
sible outside the structures. Thus, it is reasonable to declara:

class linked list;

Accession For
protected 1 1 node, NTIS GRi.l >
insert, DDC TAB Lo
. Unarnoue o
head; Jusiidie ~
begin e
class 1 1 node; . ‘ e
begin - I
ref(l_1 node) link . '
. — R : . 1
end of 1_1 node; A j !
' ! ! !

procedure insert (element); ref(l 1 node) element;
begin
element.link :- head;
head :~ element
end of insert; ' :

’ > s \Au)'

ref(l 1 node) head; g

end of linked_list; A. v. ! .tion Gafieer

Toctniculd a.. -

This class declaration is used for many structures which include
stacks of tokens and stacks of reals. The class token_ stack might be
declared as follows:

linked list class token_stack;

not protected push,

pop;
begin
1_1 node class exp_node(v); ref(token) v;
begin end;

procedure push(id); ref(token) id;

insert (mew exp_node(id));

ref(token) procedure pop;
if head =/= none
then begin
pop :- head qua exp_node.v;
head :- head.link
end
else pop :- nome;

end of token_stack;

This declaration provides stacks of tokens and a pop executed on an empty

stack returns the object none. This return value is tested by the pro-
gram that uses the stack.

A similar declaration of class real stack is:

linked_list class real stack;

not protected push,

PoP;
begin
1_1 node class real node(v); real v;
begin end;

procedure push(val); real val;
insert(new real node(val)):

real procedure pop;
if head =/= none

then begin
pop := head qua real node.v;

head :- head.link
end
else ("popping empty real stack.");

end of real_stack;

The nodes placed on this stack differ from the nodes on the token stacks.
In addition, popping an empty stack of reals is a fatal run time error
and execution is terminated in this case.

These declarations make it possible to state the difficulty clearly.
It is possible to use the push and pop attributes of either a token_stack

or a real_stack as follows:

inspect new token_stack do
begin ... end;

or

inspect new real_stack do
begin ... end;

4.

However, it is not possible to use both stacks simultaneously because
the following is illegal by restrictiomn (2).

ref(token) y;

real z;
ref(token_stack) t_s;
ref(real _stack) r_s;

if r s.pop < O

then t_s.push(y)
else r_s.push(z);

There are many obvious technical devices for avoiding this diffi-
culty but they all make it difficult to define objects in terms of other
objects. For example, one could rearrange the declarations and duplicate

code or replace
t_s.push(y)

with

inspect t_s do push(y) .

Both of these solutions as well as others make it difficult to use class-
es as an abstraction mechanism and they are forced by restriction (2).

As a second example, which is typical of data structure definitioms,
arises as follows. Suppose a stack of integers is to be implemented with
four procedure attributes push, pop, full and empty. The class declara-
tion, as it concerns the user of these stacks is:

e

class stack(n); value n; integer n
not protected push,

pop,

full,

empty;

begin

procedure push(x); value x; integer x;

.

integer procedure pop;

boolean procedure full;

boolean procedure empty;

end of stack;

In some cases, it may be desirable to implement this kind of stack with
an array and in other cases it may be desirable to implement this kind
of stack using linked lists.

If the stacks are implemented as arrays, the procedure declarations
would be followed by:

integer stack pointer;
integer array stack_store[l:n];
stack_pointer := 1

and the procedure bodies would be filled in in the obvious way.

On the other hand, if the stacks are implemented as linear lists
the parameter n would be ignored and the procedure declarations would
be followed by:

class stack _node(element); value element; integer elemeat;

begin
ref(stack_node) link

r end;

ref(stack_node) head

and the procedure bodies are filled in in the appropriate way. Here is
an example of the declaration of push:

procedure push(x); value x; integer x;

begin
ref(stack node) temp;

temp :- new stack node(x);
temp.link :- head;
head :- link

end of push;

This second declaration of stack violates restriction (2) (as en-
forced by the DEC-10 implementation). In spite of the fact that the :
accessible attributes of these two classes are the same (except, of
course, in the second version the procedure full always returns true)
the two class declarations are not interchangable!

The array implementation permits the use of dot notation to refer
to the four accessible attributes and the second prohibits the use of
dot notation. This means that the two implementations are not inter-
changable inspite of the fact that they are functionally equivalent.
This is a consequence of restriction (2).

These examples illustrate my claim that restriction (2) limits the

use of classes for program abstraction. In my opinion, this evidence
supports the removal of restriction (2).

REFERENCE

(1] o0.-J. Dahl, B. Myhrhang and K. Nygaard. Common Base Lan
Publicacion No. $-22, Norwegian Computing Center, October 1970.

VL LAJD AL LLU 2, ° %
SECURITY CLASSIFICATION OF THIS PAGE (When Data Emcnd)
. . . READ INSTRUCTIONS’
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

fi T2, GovT ACCESSION NO,
SRATR=89 - 0282/,

3. RECIPIENT’'S CATALOG NUMBER

& TITLE (and Subtitle)

CONCERNING CLASSES WITHIN CLASSESs
- = =

—

$. TVPE OF REPORT & PERIOD COVERED

Interim

TIRFORMING ORu AEF- o s 223

7. AUTHOR(s)
Richard J ./Opgass

@\

e |

8. CONTRACT OR GRANT NUMBER(s)

AF3SR~7 9-}/;121

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Virginia Polytechnic Institute and State Univ.
Department of Computer Science ./ T
Washington, DC 20041

10. PROGRAM ELEMENT PROJECT TA3K

AREA & \vom(
61102F / 23P9)4A2 %

(13,) 7
AN
11, CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332

ﬂ_.? ar”?g 7
W

“Eight

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

)V PT-Ta-19-1

e

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

N

1

emh ol as ’ o brsdis

ad

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditlerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neceseary and identify by block number)

SIMULA, program abstraction

f

24 ABSTRACT (Continue on reverae alde If necessary and identify by block number)

notation to reference attributes of classes limits
provided by classes.

\

_

3

Two examples are used to show how the SIMULA restriction on the use of dot

the abstraction mechanism

DD 3R, 1473

EDITION OF 1 NOV 883 IS OBSOLETE

uncrasstFzep 4oL 01§

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entered) "5&

* e e RN -
SRS 8

Ab

