
N-1429-ARPA/NBS

November 1979

ARPA ORDER NO.: 3460/3681
OPlO Information Processing Techniques

FORMAL METHODS FOR COMMUNICATION PROTOCOL SPECIFICATION AND VERIFICATION

Carl A. Sunshine

A Rand,_ Note
prepared for the

· DEFENSE ADVANCED RESEARCH PROJECTS AGENCY and the
NATIONAL BUREAU OF STANDARDS

Rand
SANTA MONICA, CA. 90406

The research described in this note was sponsored by the
Defense Advanced Research Projects Agency under Contract
No. MDA903-78-C-0029; and by Purchase Order No. 815662
from the National Bureau of Standards.

Not copyrighted, 17 U.S.C.A. 405 (a)(2). May be freely reprinted
with the customary crediting of source.

The Rand Publications Series: The Report is the principal publication doc­
umenting and transmitting Rand's major research findings and final research
results. The Rand Note reports other outputs of sponsored research for

general distribution. Publications of The Rand Corporation do not neces­
sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

ARPA ORDER NO.: 3460/3681
OPlO Information Processing-Techniques

N-1429-ARPA/NBS

November 1979

FORMAL METHODS FOR COMMUNICATION PROTOCOL SPECIFICATION AND VERIFICATION

Carl A. Sunshine

A Rand Note
prepared for the
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY and the
NATIONAL BUREAU OF STANDARDS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNliMITED

Rand
SANTA MONICA, CA. 90406

-iii-

PREFACE

This is the final report on a Rand study of methods for specifying

and verifying computer communication protocols. The study, which was

jointly sponsored by the Defense Advanced Research Projects Agency and

the National Bureau of Standards, was a small exploratory effort. Its

main purpose was to survey the state of the art, identify promising

directions for future work, and make some initial progress in some of

these directions, rather than to present solutions to major problems.

This document should be of interest to technicians and planners in the

sponsoring agencies, as well as to others concerned with the design,

analysis, procurement, and evaluation of computer networks and

communication protocols.

The author wishes to acknowledge the contributions to this report

of Ming-Yee Lai, who participated in Rand's summer graduate student

program.

-v-

SUMMARY

Increasingly numerous and complex communication procotols are being

employed in distributed systems and computer networks of various types.

The informal techniques used to design these protocols have been largely

successful but have also yielded a disturbing number of errors or

unexpected and undesirable behavior in most protocols. This Note

describes some of the more formal techniques being developed to

facilitate design of correct protocols.

A great deal of confusion surrounds the words "specification" and

"verification" in the domain of computer communication protocols. Hence

our first goal is to define these concepts in the context of a layered

model of protocols. Protocol specification requires a clear definition

of both the services to be provided by a given protocol layer and the

protocol entities within the layer that cooperate to provide the

service. Verification, then, consists of two parts: (1) showing that

the entities ~ollectively do interact to provide the specified services,

and (2) showing that each entity is properly implemented according to

its specification. A useful subset of the first part may be described

as verification of "general properties" such as deadlock, looping, and

completeness. These properties may be checked for most protocols

without requiring any particular service specification.

Most \vork in protocol design and analysis to date has proceeded

without a comprehensive specification of the services to be provided by

a protocol to its users. Hence a major focus of our work has been to

explore techniques for formally specifying protocol services. Two major

-vi-

approaches from the general software specification domain were

identified and applied to a set of example protocols: (1) an "abstract

machine" model that defines operations that may be invoked, and (2) an

"agent" model where the service is an active process with inputs and

outputs.

Abstract machine models successfully handle services that can be

defined in terms of individual operations with specified effects on the

state of the machine. These models provide a convenient means for

handling exception conditions, but they do not easily accommodate

several necessary aspects of protocol se-rvice specifications.

Assertions about sequences of operations are outside the model. Since

they have no explicit output, only "polling-type" interfaces with the

user can be defined. "Prodding-type" interfaces cannot be defined.

Moreover, assumptions must be made about the behavior of the machine's

users in order to talk about termination. To overcome some of these

problems, it appears necessary to include "users" who are really part of

the service, or to include cyclic processes in the specification.

Agent models handle these difficulties more successfully.

Transition-type agents retain most of the benefits of machine models in

defining the handling of individual inputs. Buffer-history-type agents

facilitate assertions about sequences of operations but have difficulty

with state-oriented service features and exceptions. It appears that

both sorts of specification are useful for different aspects of

service--transitions for state-oriented features like connection

establishment, and buffer histories for data transfer.

-vii-

Most of the effort in verification to date may be classified as

either state exploration or program-proving. State exploration is based

on modeling each entity of a protocol layer as a state machine and then

generating all the reachable states of the composite system, starting

from some initial state. This type of analysis is relatively

straightforward and has been automated to some extent, but it can deal

only with the major states or "control" aspects of a protocol.

Program-proving is based on specifying each entity as a program and then

formulating and proving assertions that represent correct operation of

the system (i.e., its service specification). This technique can in

principle verify all features of a specification, but a great deal of

ingenuity is required to construct proofs of even simple systems.

Several newer techniques promise to reduce some of these

difficulties. "Unified" methods use state exploration of a few major

states to facilitate program proofs of additional properties involving

the other state variables of the protocol. Symbolic execution exploits

the ability to group classes of system states in order to minimize the

size of the state space that must be explored. Both design rules and

transformation methods promise to eliminate the need for post-design

verification altogether by constraining the design process to follow

correct paths. All of these techniques require further research before

their effectiveness can be evaluated.

It is clear from the literature that the use of more formal

techniques has already had a positive impact on the protocol design

process. State-exploration techniques for verifying general properties

are fairly well understood and have the potential for routine

-viii-

application in the near future. Use and development o£ more powerful

verification techniques require a high level of skill in formal methods

and must still be considered research problems. A great deal o£ work

remains to be done in developing techniques that are routinely and

widely applicable.

-ix-

CONTENTS

PREFACE ... iii

SUMMARY... v

Section
I. INTRODUCTION...... l

II. THE MEANING OF PROTOCOL SPECIFICATION AND VERIFICATION.... 3
Service Specification................................... 4
Protocol Specification.................................. 5
Abstraction and Stepwise Refinement..................... 6
What a Protocol Definition Should Include............... 7
The Meaning of Verification............................. 8

III. FORMAL SPECIFICATION METHODS 11
Informal Protocol Service Descriptions 12
Service Specifications................ 14
Protocol Specifications 27

IV. VERIFICATION METHODS...................................... 31
What Can be Verified.................................... 31
Verification Methods. 32
Methods for Reducing Complexity 37

V. USES OF FORMAL TECHNIQUES. 40

VI. CONCLUSIONS. 45

BIBLIOGRAPHY 48

Appendix
A. FORMAL SERVICE SPECIFICATIONS 64

B. FOBtlAL PROTOCOL SPECIFICATIONS 84

-1-

I. INTRODUCTION

Increasingly numerous and complex communication procotols are being

employed in distributed systems and computer networks of various types.

The informal techniques used to design these protocols have been largely

successful, but they have also yielded a disturbing number of errors or

unexpected and undesirable behavior in most protocols. This Note

describes some of the more formal techniques being developed to

facilitate the design of correct protocols.

As they develop, protocols must be described for many purposes.

Early descriptions provide a reference for cooperation among designers

of different parts of a protocol system. The design must be checked for

logical correctness. Then the protocol must be implemented. If the

protocol is in wide use, many different implementations may have to be

checked for compliance with a standard. Although narrative descriptions

and informal walk-throughs are invaluable elements of this process,

painful experience has shown that they are inadequate by themselves.

A great deal of confusion surrounds the words "specification" and

"verification" in the domain of computer communication protocols. Hence

our first goal is to define these concepts in the context of a layered

model of protocols. Section II includes a listing of the necessary

elements of a protocol specification. Section III explores methods for

formal specification in detail, focusing on the experience gained from

an attempt to specify several example protocols. In Section IV we

discuss various approaches to protocol verification, identifying the

pros and cons of major techniques, as well as some promising new

-2-

approaches. Section V cites some applications of formal methods that

have been reported in the literature. A comprehensive bibliography

indexed by key phrases is also provided.

-3-

II. THE MEANING OF PROTOCOL SPECIFICATION~~ v~RIFICATION

We assume that the communication architecture of a distributed

system is structured as a hierarchy of different protocol layers. Each

layer provides a particular set of services to the users above. From

those users' view-point, the layer may be viewed as a "black box" or

machine which allows a certain set of interactions with other users (see

Figure 1). A user is concerned with the nature of the service provided,

but not with how the protocol manages to provide it.

USER USER
\ I
\ I

~---'--------'------7
PROTOCOL

SERVICE

Figure 1--User View of Protocol Layer

This description of the input/output behavior of the protocol layer

constitutes a service specification of the protocol. It should be

"abstract" in the sense that it describes the types of commands and

their effects but leaves open the exact format and means for conveying

them (e.g., procedure calls, system calls, interrupts, messages, etc.) A

particular instance of the service which does specify exact formats may

be called an interface specification.

-4-

SERVICE SPECIFICATION

Specifying the service to be provided by a layer of a distributed
communication system presents problems similar to those of specifying
any software module of a complex computer system. Therefore, methods
developed for general software engineering [B,53,75,97,125] should be
useful for the definition of communication services. Usually, a service
definition is based on a set of service primitives that describe in an
abstract manner the operations at the interface through which the

service is provided. In the case of a transport service, for example,
some basic service primitives are Connect, Disconnect, Send, and

Receive. The execution of a service primitive is associated with the
exchange of parameter values between the service-providing entity of one
layer and the service-using entity of the higher layer. The possible
values and the direction of transfer must be defined for each parameter.

Clearly, the service primitives should not be executed in an

arbitrary order and with arbitrary parameter values (within the range of
possible values). At any given moment, the allowed primitives and

parameter values depend on the preceding history of operations. The
service specification must reflect these constraints by defining the
allowed sequences of operations directly, or by defining a "state" of
the service which is used in specifying the results of operations.

In general, the constraints depend on previous operations by the
same user ("local" constraints) and by other users ("global"

constraints). Considering again the example of transport service, a
local constraint is the fact that Send and Receive may be executed only

-5-

after a successful Connect. An example of a global constraint is the

fact that the "message" parameter value of the first Receive on one side

is equal to the message parameter value of the first Send on the other

side. To date, little is known about methods for precisely specifying

computer communication services [21,53,115,125].

PROTOCOL SPECIFICATION

Although the internal structure of a protocol layer is irrelevant

to the user, the protocol designer must be concerned with it. In a

network environment with physically separated users, a protocol layer

must be implemented in a distributed fashion, with entities (modules or

processes) local to each user communicating among themselves via the

services of the lower layer (see Figure 2). The interactions among

entities in providing the layer's service constitute the actual

protocol. Hence a protocol specification must describe the operation of

each entity within a layer in response to commands from its users,

messages from the other entities (via the lower-layer service), and

internally initiated actions (e.g., timeouts).

-6-

USER USER
\ I

~-------'~---------------~----------\ I
~---' ____ ! ____ ~ ---1 I

I I

ENTITY 1 ENTITY 2

\ I
\ I
\ I ---- ----- ---1

I

LOWER LAYER SERVICE

Figure 2--Internal Structure of Protocol Layer

ABSTRACTION AND STEPWISE REFINEMENT

The specifications described above must embody the key concept of

abstraction if they are to be successful. To be abstract, a

specification must include the essential requirements that an object

must satisfy and must omit the unessential. A service specification is

abstract primarily in the sense that it does not describe how the

service is achieved (i.e., the interactions among its constituent

entities) and secondarily in the sense that it defines only the general

form of the interaction with its users (not the specific interface).

A protocol specification is a refinement or "implementation" of the

service specification because it begins to define how the service is

provided by specifying the entities that cooperate to perform it. This

"implementation" of the service is what is usually meant by the design

of a protocol layer. Each entity remains to be implemented in the more

-7-

conventional sense of that term, typically by coding in a particular

programming language. There may be several steps in this process until

the lowest-level implementation of a given protocol layer is achieved

[19,53,55].

WHAT A PROTOCOL DEFINITION SHOULD INCLUDE

Given the above discussion, a complete description of a protocol

layer should include the following items:

1. A general description of the purpose of the layer and the services it provides.

2. An exact specification of the service to be provided by the layer.

3. An exact specification of the service assumed for the layer below and required for the correct and efficient operation of the
protocol. (This may be redundant with the lower layer's definition, but it makes the protocol definition self-contained.)

4. The internal structure of the layer in terms of entities and their relations.

5. A description of the protocol(s) used between the entities
including:

5.1. An overall, informal description of the operation of the
entities.

5.2. A protocol specification which includes

(a) a list of the types and formats of messages exchanged
between the entities;

(b) rules governing the reaction of each entity to user
commands, messages from other entities, and internal
events.

5.3. Any additional details (not included in point 5.2), such as
considerations for improving efficiency, suggestions for
implementation choices, or a detailed description which may
come close to an implementation.

-8-

Reference 15 presents an example of these items for a simple data­

transfer protocol. While the descriptive items of this list are

important, it is the formal items 2 and 5.2 that are the main focus of

this Note. We next consider how this understanding of protocol

specification sheds light on the meaning of verification.

THE MEANING OF VERIFICATION

Verification is essentially a demonstration that an object meets

its specifications. Recalling from above that services and protocol

entities are the two major classes of objects requiring specification

for a protocol layer, we see that there are two basic verification

problems that must be addressed: (1) The protocol's design must be

verified by analyzing the possible interactions of the entities of the

layer, each functioning according to its (abstract) protocol

specification, to see whether their combined operation satisfies the

layer's service specification; and (2) the implementation of each

protocol entity must be verified against its abstract specification.

The somewhat ambiguous term "protocol verification" is usually

intended to mean this first design verification problem. Because

protocols are inherently systems of concurrent independent entities

interacting only via exchange of messages, verification of protocol

designs takes on a characteristic communication-oriented flavor.

Implementation of each entity, on the other hand, is usually done by

"ordinary" programming techniques and hence represents a more common

(but by no means trivial) program verification problem that has received

less attention.

-9-

The service specification itself cannot be verified, but rather

forms the standard against which the protocol is verified. However, the

service specification can be checked for syntax, consistency, or

realizability [53]. It must also properly reflect the users' desires

and provide an adequate basis for the higher levels that use it.

Unfortunately, techniques to achieve these latter goals are still poorly

understood.

It is important to note that protocol verification also depends on

the properties of the lower-layer protocol. A protocol specification is

only a partial specification in that it leaves some actions undefined,

namely, those given by the lower layer's service specification. In

verifying that a protocol meets its service specification, it will be

necessary to assume the properties of the lower layer's service. If a

protocol fails to meet its service specification, the problem may rest

either in the protocol itself or in the service provided by the lower

layer.

In its broadest interpretation, system validation aims to assure

that a system satisfies its design specifications and (ideally) operates

to the satisfaction of its users. At the present time, the validation

of correctness features and that of efficiency features are largely

separate disciplines employing different methods. Efficiency

considerations are outside the scope of this Note. In the realm of

correctness, exploratory techniques such as simulation and testing may

be used, but usually only a limited number of situations can be

examined. We reserve the term "verification" for methods that allow,

-10-

at least in principle, the consideration of all possible situations the

system may encounter during operation.

Most of the verification work to date has focused on protocol

designs without having any precise and comprehensive service definition.

Results have demonstrated what can be verified easily rather than what

needs to be verified. Hence a major focus of the work reported here has

been on the problems of rigorous protocol service specification, at

least in the realm of correctness.

-11-

III. FORMAL SPECIFICATION METHODS

As noted above, three things must be specified for a given protocol

layer: the service it provides to its users, the entities that make up

the layer and comprise the protocol itself, and the implementation of

the entities. We shall assume that implementations will use a suitable

programming language, and we shall have little to say about them. This

section discusses methods for specifying services and protocols.

Although numerous approaches to specifying software systems have

been proposed, two major categories may be discerned. We shall call

these the "abstract machine" model and the 11 agent" model.

In the machine model, the service is defined in terms of a set of

operations that may be invoked by the machine's users. The machine has

a state consisting of the values of variables or value-returning

functions that are defined as part of the machine. An operation may

return a value (some portion of the state) and/or change the state of

the machine, depending, of course, on the current state of the machine.

In the agent model, the service is viewed as an active agent or

process with explicit inputs and outputs. The agent functions by

consuming its input and producing its output. Two types of agent model

are used. State-transition-type models focus on the processing of

individual inputs and include an internal state for the agent. For each

combination of input and state, a new state and output (possibly null)

are specified. The second type of agent model, which we shall call a

"buffer-history" model, avoids referring to any internal state of the

-12-

agent and attempts to directly specify the relation between the sequence

of outputs and the sequence of inputs.

In the following sections, we shall explore the merits of each of

these models for specifying the services of a set of representative

protocols. These protocols were chosen to include a very simple and

widely used example (the alternating bit protocol (ABP)), a more

sophisticated general-purpose data-transfer protocol (a transport

protocol), and a ''function-oriented" or higher-level protocol (file­

transfer protocol). We first describe each of these protocols

informally to provide a general understanding of their services before

attempting more formal specifications.

INFORMAL PROTOCOL SERVICE DESCRIPTIONS

Alternating Bit Protocol

The ABP provides for one-way transfer of messages from a fixed

sender to a fixed receiver. Messages must be delivered without error

and in the order in which they are sent. The sender must wait until the

receiver accepts a message before sending the next message. The

protocol gets its name from its implementation, where a single bit

sequence number is attached to each message sent over an unreliable

transmission medium. The bit is alternated for each new message sent.

Further details on the implementation may be found in the literature

[13,14,20,82] and, of course, are irrelevant for describing the service

provided.

-13-

Transport Protocol (TP)

TP can accommodate many users, each identified by a port or

address. A pair of users must first request a connection between

themselves before exchanging messages. Once connected, users may

simultaneously transfer messages in both directions. The receiver (in

each direction) controls the flow of messages by giving the sender

explicit "credits" or permission to send some number of messages.

Connected users may also exchange short "interrupts" which are

independent of the data messages exchanged, and which typically travel

faster. When users are finished communicating, they ask to be

disconnected. Messages and interrupts must be delivered without errors

and in the order in which they are sent. Transport protocols are also

called host-to-host, virtual circuit, or interprocess communication

protocols.

File Transfer Protocol (FTP)

The purpose of FTP is to extend the file-system services available

locally into a network environment. The services it provides include

copying or appending from one file to another, deleting or renaming

files, and listing the contents of file directories. The ability to

partially retrieve or replace parts of files may also be provided.

Since FTP operations may take significant amounts of time and resources,

the ability to run them in "background" mode, as well as to inquire

about their status or abort them, is also important.

-14-

SERVICE SPECIFICATIONS

Now we will try to formally specify each of the three protocols

described above, using the specification approaches mentioned. This

will provide further details on each method and will reveal difficulties

that arise in performing real specifications.

SRI's High Level Development Methodology (HDM) [97,107] provides a

well-developed example of the abstract machine model. The specification

language in HDM, which is called SPECIAL, allows a rich variety of data

types to be defined. The state of the machine is defined in terms of

the values of "Vfunctions" which may be visible to users or hidden.

Operations that change the state (set new values for Vfunctions) are

called Ofunctions. Each Ofunction may have a number of "exceptions"

defined which prevent the normal effects of the operation from taking

place, and instead return an error code.

The University of Texas GYPSY system [53,55] provides a well­

developed example of the agent model. The basic elements of Gypsy are

processes and buffers. Processes may interact with each other only by

sending messages through buffers. The effects of processes must be

specified using entry and exit assertions, or with "block" assertions

that are to hold whenever the process is blocked waiting to read or

write a buffer. Typically, these assertions are made in terms of

"buffer histories" or the sequences of messages sent to and received

from particular buffers by particular processes.

-15-

There are numerous examples of transition-type agent models

[13,20,98,125]. Rather than using any of these exactly, we have

introduced our own form of transition model to demonstrate the

similarities to the HDM model. As we shall see below, a machine model

can be converted to a transition model by treating the operations as

inputs and adding explicit outputs.

Alternating Bit Protocol

A simple ABP service specification in SPECIAL is presented in Fig.

A.1 of App. A. (Information on SPECIAL syntax is also given.) The

machine includes the de£inition of an abstract data type "msg," Send and

Receive operations, and a buffer for the "state." This specification

shows that the ABP service is essentially that of a queue of size one.

It is important to note that SPECIAL specifications are not

algorithmic. In particular, Ofunctions do not give a series of

assignment statements, but rather present a set of expressions defining

the new state after the operation completes.

In addition to defining the individual operations, we would like to

specify that the messages delivered by Receive are the same as the

messages given to Send. This requires assertions about sequences of

operations that are beyond the scope of the SPECIAL language. However,

we can make these assertions in either of two ways. First, we could

write a "program" for the ABP machine as follows:

BEGIN
Send(ml);
m2 := Receive();
END

-16-

Then we could assert that m2=ml when this program terminates.

Hopefully, we could prove this assertion from the definition of the

individual operations of the ABP machine, so we are not adding any new

information. However, we may be expressing the service in a more

convenient way.

The second approach is to introduce some additional "ghost"

variables or state to the ABP machine which allow us to write assertions

about the whole sequence of Send and Receive operations. Such an

augmented specification is given in Fig. A.2 of App. A, including

correctness and liveness assertions which are once again outside the

scope of SPECIAL. Note that we have extended the Send and Receive

operations to place their message also into the new ghost variables

Inseq and Outseq, respectively.

Once again, we should be able to prove these assertions from the

definitions of the individual operations. However, an interesting

difficulty arises with the progress assertion. To prove this assertion,

it is clearly necessary to assume that Receive operations are invoked in

a timely fashion. That is, since the machine has no explicit output of

its own, we must make assumptions about the behavior of the users of the

machine in order to talk about progress.

Unfortunately, neither of the above approaches to handling

sequences of operations is directly accommodated in HDM. Assertions

-17-

such as those in Fig. A.2 of App. A are simply outside the scope of

SPECIAL. To use the "program" approach, we would have to specify a

hypothetical higher-level operation called Send_Receive, and then give

its implementation as follows:

OVFUN Send_Receive(msg ml) -> msg m2;
EFFECTS

m2 = ml;

OVFUN FROG Send_Receive(msg ml) -> msg m2;
BEGIN
Send(ml);
m2 :=Receive();
END;

We could then use the verification tools of HOM (see below) to prove

that the program for Send_Receive correctly implemented its

specification, assuming the specification for the lower-level Send and

Receive operations. However, the introduction of this higher-level

operation is at best artificial.

Buffer-history models are intended to facilitate specification of

just such sequences of behavior. Fig. A.3 of App. A shows the ABP

service specified in GYPSY. Note that the concept of buffers is part of

the specification language, as are functions "allto" and "allfrom" on

buffers that return the sequence of all messages sent to or received

from a buffer. The Block statement in Fig. A.3 gives the service

specification solely in terms of the input and output sequences of the

ABP agent, without reference to any internal state. Progress is not

included.

To give a transition-type specification, we need to show the

processing of each individual input. Fig. A.4 of App. A gives such a

-18-

specification in the GYPSY syntax, showing that there is only one type

of input "event" for the transition machine: an arriving message. The

action of the agent consists solely of copying the input message to the

output. No state is necessary, although a temporary variable is used to

hold the received message.

Once again, the transition and buffer-history specifications give

equivalent information, and it should be possible to prove the latter

from the former. However, in this case both are expressable within the

scope of the GYPSY system, and it is possible to deal with termination

without making any assumptions about other agents that interact with

this agent (i.e., its users).

Transport Protocol

A transport protocol includes features such as addressing,

connections, flow control, and interrupts that are not found in the

simple ABP. These services require more complex specifications. Once

again we start with a machine model specification, as shown in Fig. A.S

of App. A.

Send and Receive operations are still present, but they now include

exceptions for flow control and connection features. They also make use

of a separately specified buffer module to allow multiple messages to be

in transit at one time.

Flow control is handled by a state variable that maintains the

difference between credits given and messages sent. Violating the

flow-control constraints is treated as an error, illustrating the use of

-19-

exception conditions and a "non-blocking" interface. However, these

limits could also have been specified to block the operation by

replacing the exceptions with a Delay statement such as "DELAY UNTIL

Credit(me,him) > 0;".

Interrupts provide a parallel channel for short messages with a

simple one-at-a-time flow control, and hence are specified almost

exactly as message transfer in the ABP. A major difference, however, is

the introduction of multiple users and connections. The existence of

multiple users requires inclusion of explicit addresses in all

operations, to indicate which users are involved.

Connections introduce the first service feature that is not data­

transfer oriented, but rather state oriented. Four states are needed to

capture the notion of connection between a pair of users A and B:

neither connected, A requesting connection to B, B requesting A, and

both requesting. These four states are conveniently captured by the two

boolean state functions Pconnected A,B and Pconnected B,A (where P means

partially). These state functions summarize the results of previous

Connect and Disconnect operations and thereby facilitate specification

of the effects of new connection requests.

An important feature of connection operations is that user B should

be "notified" when user A requests a connection with him. Since the

machine model has no explicit outputs, this means that user B must watch

for a change in value of the Pconnected(x,B) Vfunctions. This suggests

that users must interact with the machine model in a "polling" fashion

by constantly invoking Vfunctions to see what has happened, rather than

-20-

being "prodded" by the service. Similar problems arise with interrupts

and even with data messages.

The same difficulties concerning specification of sequences of

data-transfer operations, arise as in the ABP, but the "program"

approach is no longer workable. Since the specification of the

transport protocol allows multiple Sends to be done before any Receives

(unlike the specification for ABP), programs would have to be written

for the many possible permutations. Hence, specification in terms of

input and output sequences seems the only viable solution.

If we wish to specify a buffer-history-type model for TP, message

transfer looks much as it does for the ABP. However, the addition of

addresses makes it necessary to extract the messages between a pair of

users from all the input and output, as shown in Fig. A.6 of App. A.

The function Data transfer OK states that the output is an initial

subsequence of the input between a given pair of users. A similar

statement is also needed for interrupts.

To specify flow control, we must have some way to count the number

of messages sent and credits given. Since no state variables may be

used, specification must be in terms of the size of the input sequences

themselves, as shown in the function Flow control. This formulation is

not totally satisfactory because although it describes correct behavior,

it fails to tell what happens in the case of "bad" inputs. In

particular, if a sender tries to send too many messages before credit is

granted, the specification should state that they are "rejected." Then

the output is no longer equal to the input of messages, but only to the

-21-

"accepted" messages. Thus buffer-history models appear to handle

exception conditions poorly.

Connections pose the most serious difficulties for a buffer-

history specification. It appears to be extremely difficult to describe

the output sequence of Connect and Disconnect messages as any "closed

form" function of the input sequence of those messages. The best that

can be done is to define the handling of individual inputs as in a

transition model. Thus the function Connection~OK in Fig. A.6 describes

the handling of individual Connect and Disconnect inputs. Note that we

have had to define input history sequences that are equivalent to the

partially and fully connected states of the machine model. Expressing

such state-oriented features with buffer histories seems cumbersome at

best. It should also be noted that it is necessary to consider the

relative timing of previous inputs from both users in order to specify

the results of an input from one user.

Figure A.7 in App. A presents a transition model of the TP service

that is derived primarily from the machine model of Fig. A.S. Each

Vfunction remains as a state function. Each Ofunction is converted to

an input-handling routine to process the corresponding input to the

agent. These input handlers produce explicit outputs--typically, a copy

of their input--eliminating the need for the receiving operations of the

machine model. However, since the state of the agent can no longer be

observed by its users, we have had to add Give credit and Int ack

outputs which are given to the sender to inform him of flow-control

limits. Exception conditions are carried over unchanged, except they

now cause an error message output to the sending user.

-22-

Either of the agent-type models allows formulation of assertions

about sequences of operations such as, for example, that matching

connection requests result in being fully connected, or that the number

of Sends accepted must be less than the number of credits given. Both

models also allow specification of "prodding" rather than polling-type

service.

It is interesting to note that the TP specified in Figs. A.S

through A.7 is quite similar to the CCITT X.25 protocol if Resets are

omitted. However, there is an important difference in view~oint. Our

specification might be seen as defining the (end-to-end) service

provided by a public network between its subscribers. This is

definitiely not the intention of X.25, although it does imply some end­

to-end service features. Alternatively, our specification could be used

to define the service provided by an X.25 "machine" whose users were the

subscriber (DTE) on one side and the public network (DSE) on the other.

This is closer to the intention of X.25's designers, but there is still

a difference. Our service specification defines the user interactions

with the X.25 machine which are missing from the CCITT specification.

The X.25 protocol covers only the exchanges between the two entities

which make up the machine, and thus it provides only a partial protocol

specification and no service specification.

File Transfer Protocol

From an abstract service viewpoint, an FTP is not very different

from a local file system. Since the purpose of FTP is to extend the

operations of local file systems across a network, FTP is defined in

-23-

terms of those local operations. The key operation of copying a file

from one system to another requires the definition of equivalence

between files on different systems. To do this, we assume the existence

of a function Canon(file) that transforms equivalent files on different
systems to a canonical form which is identical.

Figure A.8 in App. A presents an abstract machine-model service

specification for FTP. The major state functions are Exist(file name),

which defines whether a file exists, and Cont(file name), which holds

the "contents" of the file. There is also a Status state function which
returns the status of previously requested operations (e.g. done, error,

in progress, etc.). The status is maintained by a separate table

management module. FTP also calls on a TP module to supply data-

transfer service.

The operations include functions to start and stop sessions with

the FTP service (Ftp and Quit) and to request the usual file-system

functions of copying, appending, deleting, and listing names of files.

The results of these operations can be defined conveniently in terms of
the current state or the new file-system state when the operation

completes. A machine model is well-suited to specifying this type of

self-contained operation, complete with numerous exception conditions

that are important for file operations, as shown in Fig. A.8.

The only major difficulty with FTP concerns specification of a

"background" mode of operation. Unlike the "foreground" mode where each

function is completed before control is returned to the caller,

background-mode operations merely initiate functions before returning.

-24-

These functions are then completed by a background demon or server

process, and the user must invoke a status operation to determine when

the function is completed and what its outcome is. To define this type

of service, we need to specify an initiating operation that returns a

transaction id, a status operation, and a background process that

completes the transaction. Then we can assert that if the status of the

initiated transaction is "done," then its end results are true (e.g. for

copying, file A equals file B).

This problem can be handled in three ways: First, we can specify

an initiating operation which "posts" the work to be done as part of the

state, and a separate completing operation that completes the

transactions that are posted. However, this begs the question of who is

going to invoke the completing operation, and when they will do so, and

it leaves us unable to prove termination without assuming the timely

invocation of this operation by some unspecified outside user. A

variation of this approach is to specify a higher-level operation whose

effects are the desired end results and whose implementation is the

parallel calling of the initiating and the completing operations; but

this, too, is outside the machine specification and is somewhat

artificial.

The second approach is to push the definition of the server process

into the implementation that does deal with programs. However, this

leaves the end results of the background operation completely

unspecified at the service level. In effect, we are relying on the

implementation to do more than the service specification states, which

seems highly unsatisfactory.

-25-

The third approach is to extend the machine model to include

definition of cyclic '~rocesses" as part of the machine. Such processes

would be defined just like other operations, with the understanding that

they are constantly invocable (i.e., conceptually, they would be invoked

after every normal operation). This approach is illustrated in Fig. A.B

of App. A, where a Background_Server process is specified to complete

the background-mode Copy and Append operations that are posted to be

done by normal user operations.

As with TP, the machine model of FTP could easily be converted to a

transaction-type agent model. Background functions could be

accommodated easily in the agent model by forking a process to do the

background work and to also produce an immediate output when background

commands were received. When the background process was done, a second

output could be produced, relieving the user of the need to poll for

completion.

As expected for a specialized function protocol, the main portion

of the FTP specification concerns the semantics of the specialized

functions to be performed (e.g., file-system functions). The details of

these functions are outside the scope of the protocol per se and would

be defined in a separate file-system module. The main concern of the

FTP service itself then becomes flow of control. In most cases this is

a simple request/response interaction that is easily modeled with an

abstract machine approach. However, the background mode of operation

presents greater difficulties, as discussed above.

-26-

Swnmary

In this section we have considered two basic models for describing

protocol services: an abstract machine model where operations must be

invoked, and an agent model where the service is an active process with

inputs and outputs. We have used these models to specify three

representative protocols (ABP, TP, and FTP) and have compared them,

largely on the basis of their expressive power or their ability to

completely and conveniently define the services of interest.

Machine models successfully handle services that can be defined in

terms of individual operations with specified effects on the state of

the machine. These models provide a convenient means for handling

exception conditions, but they do not easily accommodate several

necessary aspects of protocol service specifications. First, assertions

about sequences of operations are outside the model. Since they have no

explicit output, only "polling" interfaces with the user can be defined;

prodding-type interfaces cannot be defined. Also because outputs are

lacking, it is necessary to make assumptions about the behavior of the

machine's users in order to talk about termination. Finally, in order

to specify background modes of operation, it is necessary to include

"users" who are really part of the service, or to include cyclic

processes in the specification.

Agent models handle these difficulties more successfully.

Transition-type agents retain most of the benefits of machine models in

defining the handling of individual inputs. Buffer-history-type agents

facilitate assertions about sequences of operations but have difficulty

-27-

with state-oriented service features and exceptions. It appears that

both sorts of specification are useful for particular aspects of

service--transitions for state-oriented features like connection

establishment, and buffer histories for data transfer. Fortunately,
these approaches can be mixed within the framework of agent models such

as the GYPSY system.

We have focused on comparing the expressive power of different

service-specification methods in this section. However, ease of

implementation and verification are also important considerations, and

we shall return to these subjects later.

PROTOCOL SPECIFICATIONS

The distinction between abstract machine and agent models carries

over to protocol specifications. In the SRI HDM machine model, each

Vfunction of the service machine must be "mapped" to Vfunctions in

lower-level machines, and each Ofunction in the service machine must be

implemented as a program which invokes operations of lower-level

machines. Hence the protocol specification consists of a combination of

these programs, plus some of the lower-level machine definitions. In

the agent model, each service agent is typically implemented as a set of

cooperating lower-level agents. Hence the protocol specification is

just another agent specification.

This section presents protocol specifications in both of these

models and compares the results. Since the protocol specification is

several times longer than the service specification, we have limited

-28-

detailed discussion to the ABP. This is sufficient to reveal the major

differences, and examples from the other protocols are included when

useful.

Figure B.l of App. B shows an abstract machine specification that

implements the ABP service shown in Fig. A.l. The first part of the

example gives the program for each of the Ofunctions in the ABP service.

This program calls functions in the lower-level machines which are

defined next. These include a Send Station and a Receive Station which

form part of the protocol. These trivial machines are needed to hold

the sequence number and message-text-state information for the protocol.

There are specifications for a medium in both directions (sender to

receiver and receiver to sender). These define the service provided by

the lower-level protocol--in this case, a simple link which can lose

packets (it is assumed that damaged packets are discarded). We have

included a limit on the number of messages that may be lost to

illustrate one method for constraining loss to facilitate termination

proofs. There are also specifications for a timer machine used by the

sender, and finally a mapping of the state functions which show that the

buffer at the service level actually corresponds to the buffer in the

Receive Station at the protocol level.

The non-determinism of the medium introduces an interesting

problem. In the machine model, each operation invoked at the service

level may lead to a sequence of operations at lower levels, but all of

the low-level operations must complete before the top-level operation

returns. Thus the top-level Send operation leads to a series of

-29-

Send~Data operations until a proper acknowledgment is received. The

receiver needs to execute a corresponding series of Receive Data

operations, but he has no way of knowing when he can stop trying to

receive~ because although he may receive a proper data message and

acknowledge it, his acknowledgment may be lost. Hence he must continue

to accept messages and acknowledge them to satisfy the sender v1ho is

waiting for an acknowledgment.

Such a receiver can be specified only as a cyclic process that runs

across the boundaries of individual Send operations. We have taken the

liberty of extending the machine model to include a program for such a

process which does not correspond to any operation at the service level,

but rather runs continuously once the service machine is initialized.

Figure B.2 of App. B shows an agent-model specification that

implements the service shown in Fig. A.3. The ABP agent's

"implementation" is just a skeleton that starts five other agents in

parallel and sets up the appropriate interconnection of their inputs and

outputs. The sender and receiver agents define the protocol and make

use of the two medium agents and a timer as before.

It is interesting to note that while the high-level service is

specified with a buffer-history-type model, the protocol agents are

specified with a transition-type model. This is convenient because the

outputs of the protocol agents are much more complex functions of their

inputs than are those at the service level.

-30-

While this transition specification is convenient for descriptive

and perhaps implementation purposes, it is probably insufficient for

verification purposes; some additional assertions relating the inputs

and outputs of each protocol agent would be needed for verification. We

have tried to include a few examples of such buffer-history assertions,

but those given are probably inadequate. The construction of such

assertions is one of the known difficulties of most program­

verification methods.

Most existing protocol-specification efforts fall into the agent

category, although the explicit distinction between abstract machine and

agent models has not been made at the protocol level. A variety of

transition models have been adapted and/or applied to protocol problems

[13,85,115). Most of these define a limited explicit state with

additional "context" information or state variables. There have also

been a number of protocol specifications using more-or-less abstract

programming-language approaches [11,108].

In reality, these approaches are not so different. On the

programming-language side, it is possible to define a "state" variable

in a program and dispatch to different processing routines, on the basis

of state and input type; transition models, however, often depend on

program-language descriptions to define their use of context

information. Thus a number of hybrid models that use transition models

for a limited set of explicit major or control states and programs to

define the use of additional state information have been proposed

[20,39].

-31-

IV. VERIFICATION METHODS

This section presents an extensive, high-level review of approaches

to protocol verification. After discussing the general outlines of what

can be verified, we review each major approach and discuss various

methods for dealing with protocol complexity.

WHAT CAN BE VERIFIED -----

The overall verification problem may be divided along two axes,

each with two categories. On one axis, we distinguish between general

and specific properties. On the other, we distinguish between partial

correctness and termination or progress.

General properties are those properties common to all protocols

that form an implicit part of all service specifications. Foremost

among these is the absence of deadlock (the arrival in some system state

or set of states from which there is no exit). Completeness, or the

provision for all possible inputs, is another general property which

requires only the specification of the input set in order to be checked.

Progress or termination also require minimal specification of what

constitutes "useful" activity or the desired final state.

Specific properties of the protocol, on the other hand, require

specification of the particular service to be provided. Examples

include reliable data transfer in TP, copying a file in FTP, and

clearing a terminal display in a virtual terminal protocol. Definition

of these features make up the bulk of service specifications.

-32-

On the other axis, partial correctness usually means that if the

protocol service performs any action at all, it will be in accord with

its specifications. For example, if TP delivers any messages, they will

be to the correct destination, in the correct order, and without errors.

Termination or progress means that the specified services will actually

be completed in finite time. In the case of logical verification, which

is the subject of this Note, it is sufficient to ascertain a finite time

delay. In cases where the efficiency and responsiveness of the protocol

must be verified, it is clearly necessary to determine numerically the

expected time delay, throughput, etc.

VERIFICATION ~:IETHODS

Verification efforts to date have largely started from protocol

specifications, without having any comprehensive service definition;

therefore they have generally been shaped by the approach to protocol

specification used. As a result, two major verification methods have

evolved: reachability analysis for protocols expressed with state­

transition models, and program proofs for protocols expressed in

programming-language models.

Reachability analysis is based on exhaustively exploring the

possible interactions of two (or more) entities within a layer. A

composite or global state of the system is defined as a combination of

the states of the cooperating protocol entities and the lower-layer

service connecting them. From a given initial state, all possible

transitions (user commands, timeouts, message arrivals) are generated,

leading to a number of new global states. This process is repeated for

-33-

each of the newly generated states until no new states are generated

(some transitions lead back to already generated states). For a given

initial state and set of assumptions about the underlying protocol (the

type of service it offers), this type of analysis determines all of the

possible outcomes that the protocol may achieve. References 13 and 21

provide a clear exposition of this technique.

Reachability analysis is particularly straightforward to apply to

transition models of protocols which have explicit states and/or state

variables defined. It is also possible to perform a reachability

analysis on program models by establishing a number of "break points" in

the program that effectively define control states [65]. Symbolic

execution (see below) may also be viewed as a form of reachability

analysis.

Reachability analysis is well-suited to checking the general

correctness properties described above, because these properties are a

direct consequence of the structure of the reachability graph. Global

states with no exits are either deadlocks or desired termination states.

Similarly, situations ~'here the processing for a receivable message is

not defined or where the transmission-medium capacity is exceeded are

easily detected. The generation of the global state space is easily

automated, and several computer-aided systems for this purpose have been

developed [39,65,94,98].

The major difficulty of this technique is "state explosion." The

size of the global state space may grow rapidly with the number and

complexity of protocol entities involved and the underlying layer's

-34-

services. Therefore, to keep the state model manageable (and

comprehensible), in most cases only the major "control" variables are

explicitly represented as states as described in Section II. Hence only

the control portion of the protocol services is verified by reachability

analysis. For example, state exploration of the ABP as in Refs. 13 and

20 can show the absence of deadlocks and can show that each message sent

results in a message delivered, but the equality of the text of the

input and output messages must be verified by other means, since the

text of the message is not part of the explicit state. Techniques for

dealing with this problem are discussed below.

The program-proving approach involves the usual formulation of

assertions that reflect the desired correctness properties. Ideally,

these would be supplied by the service specification, but as noted

above, services have not been rigorously defined in most protocol work,

so the verifier must formulate appropriate assertions on his own. The

basic task is then to show (prove) that the protocol programs for each

entity satisfy the high-level assertions. This often requires the

formulation of additional low-level assertions at appropriate places in

the programs [11,108].

A major strength of this approach is its ability to deal with the

full range of protocol properties to be verified, rather than with only

general properties. Ideally, any property for which an appropriate

assertion can be formulated can be verified, but formulation and proof

often require a great deal of ingenuity. Only modest progress has been

made to date in the automation of this process.

-35-

While a large body of work on general program proof exists, several

characteristics of protocols pose special difficulties in proofs. These

include concurrency of multiple protocol modules and physical separation

of modules so that no shared variables may be used. A further

complication is that message exchange between modules may be unreliable,

requiring methods that can deal with nondeterminism.

A particular form of proof that has been used for protocols with

large numbers of interacting entities (e.g., routing protocols) has been

called "induction on topology" [85]. The desired properties are first

shown to be true for a minimum subset of the entities, and then an

induction step is proved showing that if the properties hold for a

system of N entities, they also hold for N+l entities.

As with specification, a hybrid approach promises to combine the

advantages of both techniques. By using a state model for the major

states of the protocol, the state space is kept small, and the general

properties can be checked by an automated analysis. Other properties,

for which a state model would be awkward (e.g., sequenced delivery), can

be handled by assertion proofs on the variables and procedures that

accompany the state model. Such combined techniques are described in

Refs. 9 and 12.

When an error is found by some verification technique, the cause

must still be determined. Many transitions or program statements may

separate the cause from the error which results, for example, when the

acceptance of a duplicate packet at the receiver is caused by the too

rapid reuse of a sequence number at the sender. In some cases, the

-36-

protocol may be modeled incorrectly, or the correctness conditions

(i.e., service specification) may be formulated incorrectly. In other

cases, undesired behavior may result from transmission-medium properties

that were not expected when the protocol was designed (e.g. reordering

of messages in transit). Even when an automated verification system is

available, considerable human ingenuity is required to understand and

repair any errors that are discovered.

Another, more recent approach to achieving correct protocols may be

described as development of design rules or sufficiency criteria. In

this method, design rules are formulated which are sufficient to

guarantee that a set of interacting entities designed according to the

rules will obey certain properties. As an example, to guarantee

completeness, each Send transition added to one entity should have a

corresponding Receive transition added to its partner(s). Further

examples are provided in Ref. 136. While the use of such rules avoids

the need for any post-design verification of the properties covered,

rules for only a limited set of properties have been developed to date.

A related approach that also builds correctness into the design

process may be described as a "transformational" method. In this

approach, a set of previously defined transformations are applied to the

service specification, each one carrying it closer to the desired

protocol design. Each transformation has been verified to maintain

"equivalence" of the system, so the final result is guaranteed to

properly implement the original specifications. An example of such a

transformation might be the converting of a copy or assignment operation

at the service level into a pair of sending and receiving processes that

-37-

use a positive acknowledgment/retransmission protocol between

themselves. While this technique has been applied to other software

design problems, its use with protocols is still untested.

~lliTHODS FOR REDUCING COMPLEXITY

A major difficulty for protocol verification by any method is the

complexity of the global system of interacting protocol entities, also

termed "state space explosion." The following methods may be used to

reduce this complexity and facilitate verification (several of these

points are due to Bachmann [14)).

(1) Partial description and verification: Depending on the

description method used, only certain aspects of the protocol are

described. This is often the case for transition diagram descriptions

which usually capture only the rules concerning transitions between

major states, ignoring details of parameter values and other state

variables.

(2) Choosing large units of actions: State space explosion may

result from the interleaving of the actions executed by the different

entities. For example, the preparation and sending of a protocol data

unit by an entity may usually be considered an indivisible action which

proceeds without interaction with the other entities of the system. The

execution of such an action may be considered a single "transition" {75]

in the global protocol description.

A particularly powerful application of this idea is that of

considering only states where the transmission medium is empty. Such an

-38-

"empty medium abstraction" [19] is justified when the number of messages

in transit is small. In this case, previously separate sending and

receiving or sending and loss transitions of different entities can be

combined into single joint transitions of both entities.

(3) Decomposition into sublayers: The decomposition of the

protocol of a layer into several sublayer protocols simplifies the

description and verification, because the protocol of each sublayer may

be verified separately. An example of this idea is the decomposition of

HDLC into the sublayers of bit-stuffing, check-summming, and elements of

procedure, and the division of the latter into several components as

described in Ref. 19.

(4) Classifying states by assertions: Assertions which are

predicates on the set of all possible system states may be formed.

These define a set of states for which each predicate is true. One may

then consider each set of states collectively in reachability analysis

instead of considering individual states. By making an appropriate

choice of predicates (and therefore classes of states), the number of

cases to be considered may be reduced considerably. This method is

usually applied for protocol descriptions involving program variables.

Typically, the assertions depend on some variables of the entities and

the set of messages in transit (through the layer below) [108,11].

Symbolic execution [24] may be viewed as a form of reachability

analysis which reduces the number of distinct global states by using

symbolic variables to define large classes of states that may be

considered together. In symbolically executing the global system, new

-39-

states are created at each decision point. Each new state corresponds

to a possible outcome of the decision, with predicates associated with

it reflecting the conditions necessary for this state to be reached.

Whenever possible, the predicates are simplified (symbolically), using

axioms that define the types of the variables (e.g., integers, strings,

etc.). As an example of the savings which may result, instead of

treating all possible values of a sequence countervariable explicitly as

different states, it may be possible to consider only the three

conditions where the variable is "less than", "equal to", or "greater

than" some symbolic value.

(5) Focusing search: Instead of generating all possible states,

it is possible to predetermine potential global states with certain

properties (e.g., deadlocks) and then check whether they are actually

reachable [39].

(6) Automation: Some steps in the analysis process may be

performed by automated systems, a few of which have been developed

[24,39,53,65,94,98,125]. However, the use of these systems is not

trivial, and much work goes into representing the protocol and service

in a form suitable for analysis. Human intervention is needed in many

cases for distinguishing between useful and undesired loops, or for

guiding the proof process.

-40-

V. USES OF FORMAL TECHNIQUES

This section presents a (certainly incomplete) list of cases where

formal methods were successfully used for designing data communication

and computer network protocols. In some cases, the formal description

was made after the system design was essentially finished, and served

for an additional analysis of correctness and efficiency or as an

implementation guide. In other cases, the formal description was used

as a reference document during the system design. The references,

indexed by keyword, provide further details on these and other examples.

The end-to-end transport protocol of the French computer network

Cyclades was first specified in a semiformal manner, using a high-level

programming language. This specification was the basis for the

different protocol implementations in different host computers. Some of

these implementations were obtained through a description in a macro­

language, derived from the original protocol specification [138]. The

same specification was also the basis for simulation studies which

provided valuable results for the protocol validation and performance

evaluation [81,X48]. A formalized specification of the protocol has

also been given using a hybrid model with state machines augmented by

context information and processing routines [40].

The procedures for the internal operation of the Canadian public

data network Datapac were described by a semiformal method using state

diagrams and a high-level programming language for the specification of

the communicating entities [X49]. This description was very useful for

doing semiformal verifications of the protocols during the design phase

-41-

and served as a reference document during the implementation and testing

phases of the system development.

A formal description method was used during the design of several

interface standards for the interconnection of minicomputers with

measurement and instrumentation components [126,127]. The relatively

concise description of the protocols was used as a means for

communication between the members of the standards committees and for

the verification of the design. It is also part of the final standard

documents.

The HDLC link protocol has been specified with a regular grammar

model [68] that incorporated an indexing technique to accommodate

sequence numbering. The same protocol has also been specified with a

hybrid model combining state transitions with context variables and

high-level language statements [19]. The latter technique also heavily

employed decomposition to partition the protocol into seven separate

components and was used in obtaining an implementation of the HDLC

link-level procedures of X.25 [18].

IBM's SNA has been specified with a hybrid model using state

machines augmented by context information and processing routines

[14,73]. Hierarchical decomposition is heavily used to create a large

number of more manageable modules.

Call establishment in the CCITT X.21 protocol has been modeled with

a state-transition-type model and analyzed with a form of reachability

analysis [131]. The analysis checked for general correctness properties

of completeness and deadlock, and uncovered a number of completeness

-42-

errors (i.e., a protocol module received a message for which no

processing was defined).

Virtual circuit establishment in the CCITT X.25 protocol has been

modeled with a state transition model and analyzed with a manual

reachability analysis [13]. The analysis showed that the CCITT

specification was ambiguous and that several cycles with no useful

progress could persist if the protocol once entered certain

unsynchronized states.

Connection establishment in the transport protocol for the ARPANET

(TCP [X29]) has been partially modeled with a hybrid state-transition

model and validated with a manual reachability analysis [114]. An

automated reachability analysis [65] was also used on a simplified model

and revealed an error in sequence-number handling and incorrect modeling

of the transmission medium.

A general-purpose data-transfer protocol has been modeled with a

high-level programming language and verified using manual program-

proving techniques [11,108]. (However, Hajek [65] has identified

several flaws in the verification in [11].) The protocol includes

window-based flow control and a large but finite sequence number space.

A simple data-transfer protocol has been analyzed with a transition

model augmented with time constraints to show that proper data transfer

requires certain time constraints to be maintained between

retransmission, propagation, and processing times [88].

-43-

A simplified version of the ARPANET communications subsystem has

been modeled with a high-level programming language and verified using

partially automated program-proving techniques [53,55]. Program modules

can be both comprehensively verified in advance and checked against

their specifications at run time for the particular inputs that occur.

A complete software engineering system called GYPSY provides a unified

language for expressing both specifications and programs, so that high­

level specifications in the design can be progressively refined into

detailed programs. A management system maintains the implementation and

verification status of all system components under development.

Connection establishment between a requester and a shared server

process (the ARPANET Intial Connection Protocol) has been modeled with a

state-transition model and analyzed by an automated reachability

analysis [94]. The analysis showed that one of a pair of simultaneous

requests for service might be rejected. A revised version of the

protocol was shown to eliminate this error. The same analysis technique

was also used to validate a simple data-transfer protocol.

A basic data-transfer protocol has been specified using a formal

language model (BNF) to describe the syntax of both interactions bet~veen

protocol modules and the detailed structure of individual messages

[121]. This specification may be directly used to drive a "recognizer"

for the language (protocol). Additional processing routines to perform

the "semantics" of the protocol must be added to the grammar-driven

recognizer.

-44-

A simple link protocol has been specified with a specialized flow­

chart-type model, along with a means for automatically converting the

flowcharts to equivalent data and control networks that are directly

realizable in hardware [60].

-45-

VI. CONCLUSIONS

Protocol specification requires a clear definition of both the

services to be provided by a given protocol layer and the protocol

entities within the layer that cooperate to provide the services.

Design verification then consists of showing that the interaction of

entities is indeed adequate to provide the specified services, while

implementation verification consists of showing that the implementations

of the entities satisfy their (abstract) protocol specifications. A

useful subset of design verification may be described as verification of

"general properties" such as deadlock, looping, and completeness. These

properties may be checked for most protocols without requiring any

particular service specification.

Most protocol design and analysis work to date has proceeded

without a comprehensive specification of the services to be provided by

a protocol to its users. Hence a major focus of our work has been to

explore techniques for formally specifying protocol services. Two major

approaches from the general software-specification domain were

identified and applied to a set of example protocols: an abstract

machine model that defines operations that may be invoked, and an agent

model where the service is an active process with inputs and outputs.

Machine models successfully handle services that can be defined in

terms of individual operations with specified effects on the state of

the machine. These models provide a convenient means for handling

exception conditions, but they do not easily accommodate several

necessary aspects of protocol service specifications. Assertions about

-46-

sequences of operations are outside the model. Since they have no

explicit output, only "polling" and not "prodding"-type interfaces with

the user can be defined. In addition, it is necessary to make

assumptions about the behavior of the machine's users in order to talk

about termination. To overcome some of these problems, it appears

necessary to include "users" who are really part of the service, or to

include cyclic processes in the specification.

Agent models handle these difficulties more successfully.

Transition-type agents retain most of the benefits of machine models in

defining the handling of individual inputs. Buffer-history-type agents

facilitate assertions about sequences of operations but have difficulty

with state-oriented service features and exceptions. It appears that

the two sorts of specification are useful for different aspects of

service--transitions for state-oriented features like connection

establishment, and buffer histories for data transfer.

f'lost verification efforts to date fall into either state­

exploration or program-proving categories. The former type is

straightforward to accomplish and has been automated to some extent, but

it can deal only with the major states or "control" aspects of a

protocol. The latter technique can in principle verify all features of

a specification, but a great deal of ingenuity is required to construct

proofs of even simple systems.

Several newer techniques promise to reduce some of these

difficulties. "Unified" methods use state exploration of major states

to facilitate program proofs of additional properties involving the

-47-

other state variables of the protocol. Symbolic execution exploits the

ability to group classes of system states in order to minimize the size

of the state space that must be explored. Both design rules and

transformation methods promise to eliminate the need for post-design

verification altogether by constraining the design process to follow

correct paths. All of these techniques require further research before

their effectiveness can be evaluated.

It is clear from the references that the use of more formal

techniques has already had a positive impact on the protocol design

process. State-exploration techniques for verifying general properties

are fairly well understood and have the potential for routine

application in the near future. Use and development of more powerful

verification techniques require a high level of skill in formal methods

and must still be considered research problems. A great deal of work

remains to be done in developing techniques that are routinely and

widely applicable.

-48-

BIBLIOGRAPHY

The following references are the results of a comprehensive
literature search for items relevant to protocol specification and
verification, ending in July 1979. They were compiled with the help of
the working group on Formal Protocol Specification and Verification of
IFIP Technical Committee 6.1, chaired by John Day. The items are listed
alphabetically by author. Each item includes a list of key phrases
describing its subject, chosen from the following list. An index of all
items relevant to each key phrase follows the reference citations.

KEY PHRASES

State machine and related models
Petri Net and related models
Formal language/grammar models
Programming language models
Graphical techniques

Simple data transfer protocols
Link control protocols
Transport protocols
High-level protocols
N-party protocols
Synchronization protocols

Formal architecture specification
Formal service specification
Formal protocol specification
Formal interface specification
Program proof
State exploration
Implementation
Complete development methodology
Testing
Sufficiency criteria and design rules
Simulation
Symbolic execution
Resiliency
Efficiency
Informal case analysis
Survey
Design methodology
Combined models

-49-

1. Azema, P., Ayache, J. M., and Berthomieu, B., Design and
Verification of Communication Procedures: A Bottom-Up Approach, Proc. of
Third International Con£. on Software Engineering, 1978. (Petri Net and
related models, Simple data transfer protocols, Transport protocols,
Complete development methodology, Implementation]

2. Azema, P., Valette, R., and Diaz, M., Petri Nets as a Common Tool
for Design Verification and Simulation, 13th Design Automation Conf.
1976. [Petri Net and related models, Simulation, Sufficiency criteria
and design rules]

3. Bachman, Charles, Data Structure Diagrams, Data Base Quarterly,
ACM-SIGBDP Vol. 1, No. 2, 1969. [Formal architecture specification,
Formal language/grammar models, Programming language models, Formal
protocol specification, Complete development methodology]

4. Bachman, Charles, Architecture Definition Technique: Its Objective,
Theory, Process, Facilities and Practice, Tech. Rpt. Honeywell
Information Systems, Billerica, MA, 1978. [Formal architecture
specification, Formal language/grammar models, Programming language
models, Formal protocol specification, Complete development methodology]

5. Bartirssek, W., and Parnas, D. L., Using Traces to Write Abstract
Specifications of Software Modules, Report No.TR77-012, Univ. of N.
Carolina; Chapel Hill, NC, 1977.

6. Bartlett, K. A., Scantlebury, R. A., and Wilkinson, P. T., A Note on
Reliable Full-Duplex Transmission over Half-Duplex Links, CACM Vol. 12,
No. 5, May 1969. [State machine and related models, Simple data
transfer protocols, Informal case analysis]

7. Belsnes, D., Single Message Communication, IEEE Trans. Comm. Vol.
COM-24, No. 2, February 1976. [Simple data transfer protocols,
Informal case analysis]

8. Benice, R. J., and Frey, A. H., An Analysis of Retransmission
Systems, IEEE Trans. on Comm. Technology, December 1964. [State machine
and related models, Simple data transfer protocols, Informal case
analysis, Efficiency]

9. Birke, D. M., State-Transition Programming Techniques and Their Use
in Producing Teleprocessing Device Control Programs, Proc. 2nd Symp. on
Problems in the Optimization of Data Communications, 1971. [)

10. Bjorner, Dines, Finite State Automation--Definition of Data
Communication Line Control Procedures, Fall Joint Computer Conference,
AFIPS 1970. [State machine and related models, Link control protocols,
Implementation, Formal protocol specification]

11. Bachmann, G. V., Logical Verification and Implementation of
Protocols, Proceedings of the 4th Data Comm. Symp., IEEE, 1975. [State
machine and related models, Programming language models, Link control
protocols, Program proof, Formal protocol specification, Implementation]

-so-

12. Bachmann, G. V., Communication Protocols and Error Recovery
Procedures, ACM SIGCOMM/SIGOPS Interprocess Communications Workshop,
1975. [State machine and related models, Simple data transfer
protocols, State exploration, Formal protocol specification]

13. Bachmann, G. V., Finite State Description of Communication
Protocols, Proc. Symp. on Computer Comm. Protocols, Liege, Belgium,
1978. Also in Computer Networks (North Holland), Vol. 2, No. 4/5, 1978.
[State machine and related models, Simple data transfer protocols, Link
control protocols, Survey, Transport protocols, State exploration]

14. Bachmann, G. V., Specification and Verification of Computer
Communication Protocols, Dept. d' I.R.O., Univ. de Montreal, Rpt. 294.
Montreal, Canada, 1978. [Survey}

15. Bachmann, G. V., Synchronization in Distributed System Modules,
Proc. 4th Berkeley Workshop on Distributed Data Management and Computer
Networks, August 1979. [Combined models, N-party protocols, Sufficiency
criteria and design rules, Synchronization protocols]

16. Bachmann, G. V., Distributed Synchronization and Regularity,
Computer Networks, Vol. 3, No. 1, 1979. [Combined models, N-party
protocols, Sufficiency criteria and design rules, Synchronization
protocols]

17. Bachmann, G. V., Towards an Understanding of Distributed and
Parallel Systems, Dept. d'I.R.O., Univ. de Montreal, Publ. No. 317,
Montreal, Quebec, Canada, 1978. [Combined models, N-party protocols,
Formal protocol specification, Sufficiency criteria and design rules,
Program proof]

18. Bachmann, G. V., and Joachim, T., Development and Structure of an
X.25 Implementation, IEEE Trans. on Software Engineering, Vol. SE-5, No.
5, September 1979. [Combined models, Link control protocols, Transport
protocols, Implementation, Complete development methodology]

19. Bachmann, G. V., Chung, R. J., A Formalized Specification of HDLC
Classes of Procedures, Tech. Report No. 265, Dept. d'I. R. 0., Univ.
Montreal, 1976. Also in Proc. National Telecomm. Con£., 1977. IEEE.
Reprinted in Advances in Computer Communication, W. Chu (ed.) 1979.
[Combined models, Link control protocols, Formal protocol specification]

20. Bachmann, G. V., and Gecsei, J., A Unified Method for the
Specification and Verification of Protocols, Proc. IFIP Congress, 1977.
[Combined models, Simple data transfer protocols, Formal protocol
specification, State exploration, Program proof]

21. Bachmann, G. V., and Vogt, F. H., Message Link Protocol­
Functional Specification, ACM SIGCOMM Computer Communication Review,
Vol. 9, No. 2, 1979. [Combined models, Transport protocols, Formal
protocol specification, Formal service specification]

-51-

22. Bachmann, Gregor V., A General Transition Model for Protocols and
Communication Services, Rpt. 322, D. I. R. 0., Univ. Montreal, Canada,
1979. Also to appear in IEEE Trans. Comm. [Combined models, Link
control protocols, Transport protocols, Formal protocol specification,
Formal service specification, Program proof, State exploration]

23. Boebert, W. E., Franta, W. R., and Berg, H.,
Specification Technique for Distributed Software,
Specifications of Reliable Software, IEEE, 1979.
Informal case analysis]

NPN: A Finite State
Proc. Conf. on

(Implementation,

24. Brand, D., and Joyner, W. H., Verification of Protocols Using
Symbolic Execution, Proc. Symp. on Computer Comm. Protocols, Liege,
Belgium, 1978. Also in Computer Networks (North Holland), Vol. 2, No.
4/5, 1978. [Formal language/grammar models, Simple data transfer
protocols, Symbolic execution]

25. Brand, Daniel, Algebraic Simulation Between Parallel Programs, IBM
Tech. Rpt. RC 7206, Thomas J. Watson Research Center, Yorktown Heights,
NY, 1978. [Formal language/grammar models, Simple data transfer
protocols, Symbolic execution]

26. Bredt, T. H., Analysis of Operating System Interactions, Proc.
AICA Congress on Theoretical Informatics, Univ. Pisa, 1973. [State
machine and related models, State exploration]

27. Bremer, J., Representation axiomatique d'un protocole, Description
du programme REDUCTION, S.A.R.T. 76/19/10, September 1976, Univ. de
Liege, Belgium. [State machine and related models, Programming language
models, Transport protocols, State exploration, Program proof]

28. Bremer, J., Representation axiomatique d'un protocole, Notice
d'utilisation du programme REDUCTION, S.A.R.T. 76/18/10, October 1976,
Univ. de Liege, Belgium. [State machine and related models, Programming
language models, Transport protocols, State exploration, Program proof]

29. Bremer, J., Verification de la logique d'un protocole, Description
du programme VERIFY, S.A.R.T. 77/03/10 January 1977, Univ. de Liege,
Belgium. [State machine and related models, Programming language
models, Transport protocols, State exploration, Program proof]

30. Bremer, J., Verification de la logique d'un protocole, Notice
d'utilisation du programme VERIFY, SART 76/20/10 December 1976, Univ.
de Liege, Belgium. [State machine and related models, Programming
language models, Transport protocols, State exploration, Program proof]

31. Campbell, R. H., Habermann, A. N., The Specification of Process
Synchronization by Path Expressions, Proc. Int. Syrup. Held at
Rocquencourt on Operating Systems, 1974. []

32. Chandersekaran, C. S., and Shankar, K. S., Towards Formally
Specifying Communications Switches, Proc. NBS Conf. on Computer
Networks, 1976. (Formal protocol specification, Implementation]

-52-

33. Chen, R. C., Represenation of Process Synchronization, Proc. ACM
SIGCOMM/SIGOPS Interprocess Comm. Workshop, 1975. [Petri Net and
related models]

34. Chow, T. S., Analysis of Software Design Modeled by Multiple Finite
State Machines., Proc. COMPSAC, IEEE, 1978. [State machine and related
models, State exploration, Sufficiency criteria and design rules]

35. Chung, Paul, and Gaiman, Barry, Use of State Diagrams to Engineer
Communications Software, Proc. Third Int. Conf. on Software Engineering,
1978. [State machine and related models, Link control protocols,
Transport protocols, Implementation]

36. Danthine, A., Petri Nets for Protocol Modelling and Verification,
Proc. European Symposium on Data Comm., Budapest, 1977. [Petri Net and
related models, Simple data transfer protocols, Formal protocol
specification, State exploration]

37. Danthine, A. S., and Bremer, J., Communication Protocols in a
Network Context, Proc. ACM SIGCOMM/SIGOPS Interprocess Comm. Workshop,
1975. [State machine and related models, Programming language models,
Implementation, Formal protocol specification, Complete development
methodology, Transport protocols]

38. Danthine, A., and Bremer, J., Definition, Representation, et
Simulation de Protocoles dans un Contexte Reseaux, Journ. Intern.
Mini-ordinateurs et Transm. de Donnes, January 1975. [State machine and
related models, Programming language models, Implementation, Formal
protocol specification, Complete development methodology, Transport
protocols, Combined models]

39. Danthine, A., and Bremer, J., Modelling and Verification of End­
to-End Transport Protocols, Univ. de Liege, Belgium, S. A.R.T.
77/11/13, 1977. Also in Computer Networks (North Holland), Vol. 2, Nos.
45, 1978. [State machine and related models, Programming language
models, Implementation, State exploration, Program proof, Transport
protocols, Combined models]

40. Danthine, A., and Bremer, J., An Axiomatic Description of the
Transport Protocol of CYCLADES, Prof. Conf. on Computer Networks and
Teleprocessing, 1976. [State machine and related models, Programming
language models, Formal protocol specification, Implementation, Complete
development methodology, Transport protocols, Combined models]

41. de Meer, J., and Henken, G., Spezifikation und portable
Implementierung des X.25 packet level Protokolls, Diplomarbeit am
Fachbereich Informatik, TU Berlin, 1978.

42. Donnelley, James, and Yeh, Jeffrey, Interaction Between Protocol
Levels in a Prioritized CSMA Broadcast Network, Proc. 3rd Berkeley
Workshop on Distributed Data Management and Computer Networks, Lawrence
Berkeley Laboratory, 1978. Also in Computer Networks, Vol. 3, No. 1,
1979. [Link control protocols, Efficiency]

-53-

43. Ellis, D. J., Formal Specification for Packet Communication
Systems, Tech. Rpt. MIT, Lab for Computer Science, MIT/LCS/TR-189, 1978.

44. Fayolle, G., Gelenbe, E., and Piyolle, G., An Analytic Evaluation
of the "Send and Receive" Protocol, IEEE Trans. on Comm. , Vol. COM-26,
No. 3, March 1978. [Programming language models, Simple data transfer
protocols, Efficiency]

45. Feiertag, Richard J., Shostak, Robert E., and Lamport, Leslie B.,
Verification of Communications-Oriented Language Problems, SRI
International, 1978. [Programming language models, N-party protocols,
Formal protocol specification, Program proof]

46. Feldman, J. A., Synchronizing Distant Cooperating Processes, Tech.
Report TR26, Computer Science Dept., Univ. of Rochester, October 1977.
[State machine and related models, Programming language models,
Synchronization protocols, Program proof]

47. Finn, S. G., Resynch Procedures and a Fail-Safe Network Protocols,
IEEE Trans. Comm., Vol. COM-27, No.5, 1979. [Formal language/grammar
models, Link control protocols, Transport protocols, Sufficiency
criteria and design rules]

48. Fong, N. P., NTS- A Protocol Test and Development System, NBS
Computer Networking Symposium, IEEE, December 1978. [State machine and
related models, Formal language/grammar models, Link control protocols,
State exploration, Implementation, Testing]

49. Furtek, F. C., The Logic of Systems, MIT LCS TR-170, 1976.
Net and related models]

[Petri

50. Gallager, R., A Minimum Delay Algorithm Using Distributed
Computation, IEEE Trans. on Comm., Vol. COM-25 No. 1, January 1977.
[Programming language models, N-party protocols, Efficiency, Program
proof]

51. Gilbert, P., and Chandler, W. J., Interference Between
Communicating Parallel Processes, CACM 15, 6, June 1972. [State machine
and related models, State exploration]

52. Goldman, Barry, Deadlock Detection in Computer Networks (Master's
Thesis), Computer Science Dept., MIT, Cambridge, MA, 1977. [Formal
language/grammar models, Programming language models, High-level
protocols, Formal protocol specification, Sufficiency criteria and
design rules, Simulation, Symbolic execution]

53. Good, D. I., Constructing Verified and Reliable Communications
Processing Systems, ACM SIGSOFT Softw. Eng. Notes Vol. 2, No. 5, October
1977, p. 8-14. [Programming language models, Simple data transfer
protocols, Formal protocol specification, Program proof, Implementation,
Complete development methodology, Testing]

-54-

54. Good, D. I. (ed.), Constructing Verifiably Reliable and Secure
Communications Processing Systems, ICSCA-CMP-6, Univ. of Texas, Austin,
1977. [Programming language models, Simple data transfer protocols,
Formal protocol specification, Program proof, Implementation, Complete
development methodology, Testing, Synchronization protocols]

55. Good, Don I., and Cohen, Richard, Verifiable Communications
Processing in GYPSY, ICSCA-CMP-11, Univ. of Texas, Austin, June 1978.
Also in Proc. 17th COMPCON, IEEE, 1978. [Programming language models,
Simple data transfer protocols, Formal protocol specification, Program
proof, Implementation, Complete development methodology, Testing]

56. Good, Don I., Cohen, Richard M., and Keeton-Williams, Jim,
Principles of Proving Concurrent Programs in GYPSY, ICSCA-CMP-15, Univ.
of Texas, Austin, January 1979. [Programming language models, Simple
data transfer protocols, Formal protocol specification, Program proof,
Implementation, Complete development methodology, Testing]

57. Gord, E. P., Hopwood, M.D., and Rowe, L.A., Language Constructs
for Message Handling in Decentralized Programs, Proc. ACM National
Conf., 1974. [Formal language/grammar models]

58. Gouda, Mohamed G., Protocol Machines: Towards a Logical Theory of
Communication Protocols (Ph.D. Thesis), Univ. of Waterloo, Waterloo,
Ontario, Cananda, 1977. [State machine and related models, Petri Net
and related models, Simple data transfer protocols, Link control
protocols, N-party protocols, Formal protocol specification, State
exploration, Implementation, Complete development methodology,
Efficiency]

59. Gouda, Mohamed G., and Manning, Eric G., On the Hodelling,
Analysis, and Design of Protocols--A Special Class of Software
Structures, Proc. 2nd Int. Conf. on Software Engineering, 1976. [State
machine and related models, Simple data transfer protocols, Link control
protocols, Formal protocol specification, State exploration,
Implementation, Complete development methodology]

60. Gouda, Mohamed G., and Manning, Eric G., Protocol Machines: A
Concise Formal Model and Its Automatic Implementation, Proc. 3rd Int.
Conf. Computer Comm., 1976. [State machine and related models, Simple
data transfer protocols, Link control protocols, Formal protocol
specification, Implementation]

61. Gouda, Mohamed G., and Hanning, Eric G., Toward Nodular
Hierarchical Structures for Protocols in Computer Networks, Proc.
COMPCON, IEEE, 1976. [State machine and related models, Simple data
transfer protocols, Link control protocols, Formal protocol
specification, Implementation, Complete development methodology]

62. Grotsch, E., and Schlurick, T., Protokollbeschreibung und
Protokollmaschine-Entwurf fur Rechnerkopplungen mit Hilfe einer
Datenstrukturorientierten Ent"~rfsmethode, Siemens AG, Erlangen, 1978.
[Graphical techniques, Implementation]

-55-

63. Gunther, K. D., Prevention of Buffer Deadlocks in Packet Switching
Networks, IIASA Workshop on Data Comm., Laxenburg, Austria, 1975.

64. Habermann, A. N., Path Expressions, Tech. Rpt. Computer Science
Dept., Carnegie-Mellon University 1975.

65. Hajek, J., Automatically Verified Data Transfer Protocols, Proc.
Int. Conf. on Computer Comm., Kyoto, Japan, 1978. [Programming language
models, Simple data transfer protocols, Link control protocols,
Transport protocols, State exploration, Synchronization protocols]

66. Hajek, Jan, Self-synchronization and Blocking in Data Transfer
Protocols, Eindhoven Univ. of Technology, The Netherlands, April 1977.
[Programming language models, Simple data transfer protocols,
Synchronization protocols, N-party protocols, State exploration]

67. Hajek, Jan, Protocols Verified by APPROVER, SIGCOM Computer Comm.
Rev., Vol. 9, No. 1, January 1979. [Programming language models, Simple
data transfer protocols, Link control protocols, Transport protocols,
State exploration, Synchronization protocols]

68. Harangozo, J., Protocol Definition with Formal Grammars, Proc.
Symp. on Computer Comm. Protocols, Liege, Belgium, 1978. [Formal
language/grammar models, Link control protocols, Formal protocol
specification]

69. Harangozo, J., An Approach to Describing a Data Link Level Protocol
with a Formal Language, Proc. 5th Data Comm. Symp., IEEE, 1977.
[Formal language/grammar models, Link control protocols, Formal protocol
specification, Implementation]

70. Hewitt, C., and Baker, H., Laws for Communicating Parallel
Processes, Proc. IFIP Congress, 1977. [Formal language/grammar models,
Programming language models]

71. Hoffman, H. J., On Linguistic Aspects of Communication Line Control
Procedures, IBM Report RZ 345, 1970. [Formal language/grammar models,
Link control protocols]

72. Hopper, K., Kugler, H. J., and Unger, C., Abstract Machines
Modelling Network Control Systems, Computer Science Dept., Massey Univ.
Palmerston North, New Zealand. 1977. []

73. IBM, Systems Network Architecture Format and Protocol Reference
Manual: Architectural Logic, IBM Report SC30-3112-l, June 1978. [State
machine and related models, Link control protocols, Formal protocol
specification, State exploration]

74. Ideguchi, T., et al., An Abstract Protocol Machine for
Communications and Its Application, TGEC IECE, 1977 (in Japanese).
[State machine and related models, Programming language models, Simple
data transfer protocols, Link control protocols, Transport protocols,
Formal protocol specification, Implementation]

-56-

75. Keller, R. M., Formal Verification of Parallel Programs, CACM, Vol.
19, No. 7, July 1976. [Petri Net and related models, Formal protocol
specification, Program proof]

76. Krogdahl, S., Verification of a Class of Link-Level Protocols, BIT,
Vol. 18, 1978. [Programming language models, Link control protocols,
Program proof, Sufficiency criteria and design rules]

77. Kuemmerle, K., and Port, E., Towards a
Computer Network Architectures, Proc. Int.
Kyoto, Japan, 1978. [Graphical techniques,
models, Formal architecture specification]

Methodology for Representing
Conf. on Computer Comm.,
State machine and related

78. Lamport, Leslie, Time, Clocks, and the Ordering of Events in a
Distributed System, CACM, Vol. 21, No. 7, Jul. 1978. [Synchronization
protocols, Sufficiency criteria and design rules]

79. Lamport, Leslie, The Implementation of Reliable Distributed
Multiprocess Systems, Computer Networks, Vol. 2, No. 2, May 1978.
[Programming language models, Resiliency, Sufficiency criteria and
design rules, Program proof, N-party protocols]

80. Le Moli, G., A Theory of Colloquies, First European Workshop on
Computer Networks, 1973. Also in Alta Frequenza, Vol. 42, No. 10, 1973.
[State machine and related models, Formal protocol specification, Simple
data transfer protocols]

81. LeLann, Gerard, and LeGoff, Herve, Verification and Evaluation of
Communication Protocols, Computer Networks, Vol 2, No. 1, 1978.
[Programming language models, Transport protocols, Simulation]

82. Lynch, W. C., Reliable Full-Duplex Transmission Over Half-Duplex
Telephone Lines, CACM, Vol. 11, No. 6, June 1968. [State machine and
related models, Simple data transfer protocols, Informal case analysis]

83. Merlin, P., A Study of the Recoverability of Computing Systems,
Tech Report #58 (Ph.D. Thesis), Computer Science Dept. Univ. of Calif.,
Irvine, 1974. [Petri Net and related models, Simple data transfer
protocols, State exploration, Sufficiency criteria and design rules]

84. Merlin, P.M., A Methodology for the Design and Implementation of
Communication Protocols, IEEE Trans. Comm. COM-24, 6 June 1976. [Petri
Net and related models, Simple data transfer protocols, State
exploration)

85. Merlin, P.M., Specification and Validation of Protocols, accepted
for publication in IEEE Trans. Comm. [Survey}

86. Merlin, P.M., and Farber, D. J., Recoverability of Communication
Protocols- Implications of a Theoretical Study, IEEE Trans. on Comm.,
Vol. COM-24, 1976. [Petri Net and related models, Simple data transfer
protocols, State exploration]

-57-

87. Merlin, P.M., and Segall, A., A Failsafe Distributed Routing
Protocol, Report EE 313, Technion, Haifa, Israel, 1978. [Petri Net and
related models, N-party protocols, State exploration]

88. Merlin, P., and Farber, D. J., Recoverability of Communications
Protocols, IBM Research Rpt. RC 5416, (23664) 1975. [Petri Net and
related models, Simple data transfer protocols, State exploration]

89. Mezzalira, L., and Scheiber, F. A., Designing Colloquies, First
European Workshop on Computer Networks, 1973. [State machine and
related models, Programming language models, Simple data transfer
protocols, Transport protocols, Formal protocol specification]

90. Morgan, D. E., and Taylor, D. J., A Survey of Methods of Achieving
Reliable Software, Computer, Vol. 10, No.2, 1977. [Program proof,
Testing]

91. Morino, K., et al., On the Specification of High Level Data Link
Control Procedures, Proc. 17th Annual Convention of IPSJ, 1976 (in
Japanese). [State machine and related models, Link control protocols,
Implementation, Formal protocol specification]

92. Neumann, Peter G., Boyer, RobertS., and Levitt, Karl N., A
Provably Secure Operating System: the System, its Applications, and
Proofs, SRI International, February 1977. [Programming language models,
Formal protocol specification, Program proof, Implementation, Complete
development methodology]

93. Pease, M., Shostak, R., and Lamport, L., Reaching Agreement in the
Presence of Faults, to appear in JACM. []

94. Postel, J. B., A Graph Theory Analysis of Computer Communications
Protocols, (Ph.D. Thesis) UCLA-ENG7410, 1974. [Graphical techniques,
State machine and related models, Transport protocols, State
exploration]

95. Postel, Jon B., and Farber, D., Graph Modeling of Computer
Communications Protocols, Proc. 5th Texas Con£. on Computing Systems,
Austin, Texas, 1976. [Petri Net and related models, Simple data
transfer protocols, State exploration]

96. Robinson, L., and Levitt, K. N., Proof Techniques for
Hierarchically Structured Programs, CACM, Vol. 20, No. 4, April 1977.
[Programming language models, Formal protocol specification, Program
proof, Implementation, Complete development methodology]

97. Robinson, Lawrence, The HDM Handbook, Vol. I: The Foundations of
HDM, SRI International, June 1979. [Progran~ing language models, Formal
protocol specification, Program proof, Implementation, Complete
development methodology]

-58-

98. Rudin, H., West, C. H., and Zafiropulo, P., Automated Protocol
Validation: One Chain of Development, Proc. Symp. on Computer Comm.
Protocols, Liege, Belgium, 1978. Also in Computer Networks (North
Holland), Vol. 2, Nos. 4/5, 1978. [State machine and related models,
Link control protocols, State exploration]

99. Rusbridge, R. E., and Langsford, A., Formal Representation of
Protocols for Computer Networks, Report AFRE-R-7826, UKAEA, Harwell,
England, 1974.

100. Schindler, S., de Meer, J., and Henken, G., Formal Specification
and Portable Implementation of the X.25 Packet Level Protocol, to be
published. [State machine and related models, Link control protocols,
Transport protocols, Formal protocol specification, Implementation]

101. Schindler, S., Didier, J., and Steinacker, M., Design and Formal
Specification of an X.25 Packet Level Protocol Implementation,
Technische Univeritat Berlin, Proc. COMPSAC, IEEE, 1978. [State machine
and related models, Link control protocols, Transport protocols, Formal
protocol specification, Implementation]

102. Schindler, S., de Meer, J., and Henken, G., Flow Control in the
X.25 Packet Level Protocol - A Formal Description, Workshop uber
Rechnernetze und Datenfernverarbeitung, Berlin, 1978. [State machine
and related models, Link control protocols, Transport protocols, Formal
protocol specification, Implementation]

103. Schindler, S., Didier, J., and Steinacker, M., Design and Formal
Specification of an X.25 Packet Level Protocol Implementation, Proc.
COMPSAC Conference, 1979. []

104. Schreiber, Fabio A., Some Linguistical Problems about Colloquies,
ACM SIGCOMM Computer Comm. Review, 1975. [State machine and related
models, Programming language models, Formal protocol specification,
Transport protocols]

105. Shankar, C. S., and Chandersekaran, C. S., Data Flow, Abstraction
Levels and Specifications for Communications Switiching Systems, 2nd
Int. Conf. on Software Engineering, 1976. [Programming language models,
Link control protocols, Transport protocols, Informal case analysis]

106. Siedler, J., A Method of Analysis of Discrete Communication
Feedback Systems, Information and Control, Vol. 29, No. 2, October
1975. [State machine and related models, Graphical techniques, Simple
data transfer protocols, Link control protocols, Transport protocols]

107. Silverberg, Brad A., Robinson, Lawrence, and Levitt, Karl N., The
HDM Handbook, Vol. II: The Languages and Tools of HDM, SRI
International, June 1979. [Programming language models, Formal protocol
specification, Program proof, Implementation, Complete development
methodology]

-59-

108. Stenning, N. V., A Data Transfer Protocol, Computer Networks, Vol.
1, No. 2, September 1976. [Programming language models, Simple data
transfer protocols, Program proof]

109. Stenning, N. V., Definition and Verification of Computer Network
Protocols (Ph.D. Thesis), Univ. of Sussex, England, 1978. [Programming
language models, Transport protocols, Program proof]

110. Sundstrom, R. J., Formal Definition of IBM's System Network
Architecture, Proc. Nat. Telecomm. Conf., December 1977. [State machine
and related models, Formal protocol specification, Implementation]

111. Sunshine, C. A., Interprocess Communication Protocols for Computer
Networks, Tech. Rpt. #105 (Ph.D. Thesis), Digital Systems Lab, Stanford
Univ., 1975. [State machine and related models, Transport protocols,
State exploration, Program proof, Sufficiency criteria and design rules,
Combined models]

112. Sunshine, C. A., Survey of Communication Protocol Verification
Techniques, The Rand Corporation, P-5725, 1976. Also in Proc. NBS Symp.
on Computer Networks, IEEE, 1976. [Survey]

113. Sunshine, C. A., Survey of Protocol Definition and Verification
Techniques, Proc. Symp. on Computer Network Protocols, Liege, Belgium,
1978. Also in Computer Networks, Vol. 2 No. 4/5, 1978. [Survey]

114. Sunshine, C. A., and Dalal, Y. K., Connection Management in
Transport Protocols, Computer Networks, Vol. 2, No. 6, December 1978.
[State machine and related models, Transport protocols, Program proof,
State exploration, Sufficiency criteria and design rules, Combined
models]

115. Sunshine, C. A., Formal Techniques for Protocol Specification and
Verification, IEEE Computer Magazine, Vol. 12, No. 9, 1979. [Survey]

116. Symons, F. J. W., A Generalized Model of Processing Systems Using
NPN's, A Generalisation of Petri Nets, Telecom Group Rpt. No. 141, Elec.
Eng. Dept., Univ. of Essex, England, 1976. [Petri Net and related
models, State machine and related models, Transport protocols, Formal
protocol specification, State exploration, Implementation]

117. Symons, F. J. W., Modelling and Analysis of Communication
Protocols Using Petri Nets, Telecomm. Group Report No. 140, Elec. Eng.
Dept., Univ. of Essex England, 1976. [Petri Net and related models,
State machine and related models, Transport protocols, Formal protocol
specification, State exploration, Implementation]

118. Symons, F. J. W., The Application of Numerical Petri Nets to the
Analysis of Communication Protocols and Signalling Systems, Tech. Rpt.
144, Elec. Eng. Dept., Univ. of Essex, England, May 1977. [Petri Net
and related models, State machine and related models, Transport
protocols, Formal protocol specification, State exploration,
Implementation]

-60-

119. Symons, F. J. W., Modelling and Analysis of Communications
Protocols Using Numerical Petri Nets, Telecommunications Systems Group
Rpt. 152, Univ. of Essex, England, May 1978. [Petri Net and related
models, State machine and related models, Transport protocols, Formal
protocol specification, State exploration, Implementation]

120. Tajibnapis, William, A Correctness Proof of a Topology Information
Maintenance Protocol for a Distributed Computer Network, CACM, Vol. 20,
No. 7, July 1977. [State machine and related models, Programming
language models, Transport protocols, N-party protocols, State
exploration, Program proof, Sufficiency criteria and design rules]

121. Teng, AlbertY., and Liu, Ming T., A Formal Model for Automatic
Implementation and Logical Validation of Network Communication Protocol,
NBS Computer Networking Symposium, IEEE, 1978. [Formal
language/grammar models, Link control protocols, Formal protocol
specification, Implementation]

122. Teng, AlbertY., and Liu, Ming T., A Formal Approach to the Design
and Implementation of Network Communication Protocol, Proc. COMPSAC,
IEEE, 1978. [Formal language/grammar models, Link control protocols,
Formal protocol specification]

123. Tomonaga, M., et al., A Study of Protocol Description Technique,
WG C NET IPSJ, 1977 (in Japanese). [Petri Net and related models,
Simple data transfer protocols, Link control protocols, Transport
protocols, Implementation]

124. Valette, R., Sur la description, l'analyse en la validation des
systemes de comrnande paralleles, These d'Etat, Universite Paul Sabatier,
Toulouse, France, 1976.

125. van-Mierop, D., Design and Verification of Distributed Interacting
Processes, UCLA-ENG-7920 (Ph.D. Thesis), Computer Science Dept., UCLA,
1979. [Petri Net and related models, Programming language models,
Simple data transfer protocols, Formal service specification, Formal
protocol specification, State exploration, Implementation, Complete
development methodology, Symbolic execution]

126. Vissers, C. A., Interface, a Dispersed Architecture, Proc. 3rd
Annual Syrnp. on Computer Architecture, 1976. [Formal interface
specification, State machine and related models, Implementation, Formal
protocol specification]

127. Vissers, Chris, Formal Description with Asynchronous State
Machines, IEC TC65A WG6, Twente Univ. of Technology, November 1978.
[State machine and related models, Simple data transfer protocols,
Implementation, Formal protocol specification]

128. Wells, R. E., Specification and Implementation of a Verifiable
Communications System, (Master's Thesis) ICSCA-CMP-4, Univ. of Texas,
Austin, 1976. [Programming language models, Simple data

-61-

transfer protocols, Formal protocol specification, Program proof,
Implementation, Complete development methodology, Testing,
Synchronization protocols]

129. West, C. H., An Automated Technique of Communications Protocol
Validation, IEEE Trans. on Comm. Vol. COM-26, No. 8, August 1978.
[State machine and related models, Simple data transfer protocols, State
exploration]

130. West, C. H., General Technique for Communications Protocol
Validation, IBM Journal of Research and Development, Vol. 22, No. 4,
July 1978. [State machine and related models, Simple data transfer
protocols, State exploration]

131. West, C. H., and Zafiropulo, P., Automated Validation of a
Communications Protocol: the CCITT X.21 Recommendation., IBM Journal of
Research and Development, Vol. 22, No. 1, January 1978. [State machine
and related models, Link control protocols, State exploration]

132. Whitby-Strevens, C., Towards the Performance of Distributed
Computing Systems., Proc. COMPSAC, IEEE, 1978. [State machine and
related models, Petri Net and related models, Formal language/grammar
models, Efficiency, State exploration]

133. Wolfinger, B., and Drobnik, 0., Simulation of Protocol Layers of
Communication in Computer Networks, in Computer Networks and Simulation,
S. S. Shoemaker (ed.), North-Holland Publishing Co., 1978. [State
machine and related models, Simulation, State exploration]

134. Yaegashi, S. et al., A Consideration about Description and
Implementation of Communication Control Protocols, Proc. 19th Annual
Convention of IPSJ, 1978 (in Japanese). [State machine and related
models, Implementation, Simple data transfer protocols, Link control
protocols, Transport protocols]

135. Zafiropulo, P., Protocol Validation by Duologue-Matrix Analysis,
IEEE Trans. on Communications Vol. COM-26, No. 8, August 1978. [State
machine and related models, Link control protocols, Simple data transfer
protocols, State exploration]

136. Zafiropulo, P., Design Rules for Producing Logically Complete
Two-Process Interactions and Communications Protocols, Proc. COMPSAC,
IEEE, 1978. [State machine and related models, Simple data transfer
protocols, Sufficiency criteria and design rules]

137. Zafiropulo, Pitro, A New Approach to Protocol Validation, Proc.
Int. Comm. Con£., 1977. (State machine and related models, Link control
protocols, State exploration]

138. Zimmermann, H., "The Cyclades End-to-End Protocol," Proc. 4th Data
Comm. Symp., IEEE, 1975. [Transport protocols, Implementation, Informal
case analysis]

-62-

Key Phrase Index

State machine and related models
28, 29, 30, 34, 35, 37, 38, 39,
77, 80, 82, 89, 91, 94, 98, 100,
116, 117' 118, 119, 120, 126,
136' 137

6, 8, 10, 11, 12, 13, 26, 27,
40, 46, 48, 51, 58, 59, 60, 61, 73, 74,
101, 102, 104, 106, 110, 111, 114,
127, 129, 130, 131, 132, 133, 134, 135,

Petri Net and related models 1, 2, 33, 36, 49, 58, 75,
86, 87, 88, 95, 116, 117, 118, 119, 123, 125, 132

Formal language/grammar models
69, 70, 71, 121, 122, 132

3, 4, 24, 25, 47, 48, 52,

83, 84,

57. 68'

Programming language models 3, 4, 11, 27, 28, 29, 30, 37, 38, 39,
40, 44, 45, 46, so, 52, 53, 54, 55, 56, 65, 66, 67, 70, 74, 76, 79, 81,
89, 92, 96, 97, 104, 105, 107, 108, 109, 120, 125, 128

Combined models
111, 114

Graphical techniques

15, 16, 17, 18, 19, 20, 21, 22, 38, 39, 40'

62, 77, 94, 106

Simple data transfer protocols 1, 6, 7, 8, 12, 13, 20, 24, 25,
36, 44, 53, 54, 55, 56, 58, 59, 60, 61, 65, 66, 67, 74, 80, 82, 83, 84,
86, 88, 89, 95, 106, 108, 123, 125, 127, 128, 129, 130, 134, 135, 136

Link control protocols 10, 11, 13, 18, 19, 22, 35, 42, 47, 48,
58, 59, 60, 61, 65, 67, 68, 69, 71, 73, 74, 76, 91, 98, 100, 101,
102, 105, 106, 121, 122, 123, 131, 134, 135, 137

Transport protocols 1, 13, 18, 21, 22, 27, 28, 29, 30, 35, 37,
38, 39, 40, 47, 65, 67, 74, 81, 89, 94, 100, 101, 102, 104, 105, 106,
109, 111, 114, 116, 117, 118, 119, 120, 123, 134, 138

High-level protocols 52

N-party protocols 15, 16, 17, 45, 50, 58, 66, 79, 87, 120

Synchronization protocols 15, 16, 46, 54, 65, 66, 67, 78, 128

Formal architecture specification 3, 4, 77

Formal service specification 21, 22, 125

Formal protocol specification 3, 4, 10, 11, 12, 17, 19, 20,
21, 22, 32, 36, 37, 38, 40, 45, 52, 53, 54, 55, 56, 58, 59, 60, 61,
68, 69, 73, 74, 75, 80, 89, 91, 92, 96, 97, 100, 101, 102, 104,
107, 110, 116, 117, 118, 119, 121, 122, 125, 126, 127, 128

Formal interface specification 126

-63-

Program proof 11, 17, 20, 22, 27, 28, 29, 30, 39, 45, 46, 50, 53,
54, 55, 56, 75, 76, 79, 90, 92, 96, 97, 107, 108, 109, ll1, 114, 120,
128

State exploration 12, 13, 20, 22, 26, 27, 28, 29, 30, 34, 36, 39,
48, 51, 58, 59, 65, 66, 67, 73, 83, 84, 86, 87, 88, 94, 95, 98, ll1,
114, 116, 117, 118, 119, 120, 125, 129, 130, 131, 132, 133, 135, 137

Implementation 1, 10, 11, 18, 23, 32, 35, 37, 38, 39, 40, 48, 53,
54, 55, 56, 58, 59, 60, 61, 62, 69, 74, 91, 92, 96, 97, 100, 101, 102,
107, 110, 116, 117, 118, 119, 121, 123, 125, 126, 127, 128, 134, 138

Complete development methodology 1, 3, 4, 18, 37, 38, 40,
55, 56, 58, 59, 61, 92, 96, 97, 107, 125, 128

Testing 48, 53, 54, 55, 56, 90, 128

Sufficiency criteria and design rules
76, 78, 79, 83, 111, 114, 120, 136

Simulation 2, 52, 81, 133

Symbolic execution 24, 25, 52, 125

Resiliency 79

Efficiency 8, 42, 44, 50, 58, 132

2, 15, 16, 17, 34,

Informal case analysis 6, 7, 8, 23, 82, 105, 138

Survey 13' 14' 85' 112' 113' ll5

53, 54,

47' 52,

-64-

Appendix A

FORMAL SERVICE SPECIFICATIONS

-65-

MODULE AB Protocol $ "Alternating bit" is an implementation detail
not visible in this specification.

TYPES
msg: VECTOR OF CHAR EMPTY;

PARA1'1ETERS
msg EMPTY; $ Reserved value of message buffer

FUNCTIONS

VFUN Buf() -> msg m;
HIDDEN;
INITIALLY m = EMPTY;

OFUN Send(msg m);
DELAY UNTIL Buf()
EFFECTS

'Buf() = m;

EMPTY;

OVFUN Receive() -> msg m;
DELAY UNTIL Buf() -= EMPTY;
EFFECTS

m = Buf();
'Buf() = EMPTY;

E~~ MODULE AB_Protocol;

Notes:

All text following $ is comment. Keywords are written in upper case.

The Types paragraph defines abstract data types from known types.

The Parameters paragraph defines constants or functions set outside
this module.

The Functions section defines value-returning functions (VFUNs) which
represent the state of the machine, and value-setting functions (OFUNS).
Functions which both set and return values (OVFUNs) are also allowed.

VFUNs may be visible (the default) or hidden from the users of the
machine. Each VFUN must have its initial value defined.

OFUNS may have an Exceptions section defining named exception conditions
which cause an error return, a Delay condition which causes the
operation to wait until the condition is satisfied, and an Effects
section which defines the effects of the operation in terms of the new
values given to VFUNs. New values for VFUNs (after the operation is
complete) are denoted with a single quotation mark (').

Fig. A.l--Alternating bit protocol service specification in SPECIAL

-66-

MODULE AB_Protocol

TYPES
msg: VECTOR OF CHAR;

DEFINITIONS
Append(msg m, VECTOR OF msg v) IS

VECTOR(FOR i FROM 1 TO LENGTH(v) + 1:
IF i <= LENGTH(v) THEN v{i] ELSE m);

FUNCTIONS

VFUN Buf() -> rnsg m;
HIDDEN;
INITIALLY m = EMPTY;

OFUN Send(msg m);
DELAY ~~IL Buf() = EMPTY;
EFFECTS

'Buf() = m;
'Inseq() = Append(m,Inseq()); $ Ghost variable

OVFUN Receive() -> msg m;
DELAY UNTIL Buf() -= EMPTY;
EFFECTS

m = Buf();
'Outseq() = Append(Buf(),Outseq());
'Buf() = EMPTY;

$ Ghost variables for use in assertions.
\~UN Inseq() -> VECTOR OF msg v;

HIDDEN;
INITIALLY v =VECTOR ();

VFUN Outseq() -> VECTOR OF msg v;
HIDDEN;
INITIALLY v =VECTOR ();

END MODULE AB_Protocol;

$ Ghost variable

Fig. A.2--Alternating bit protocol service specification in SPECIAL,
with added assertions

-67-

Assertions

Notes:

$ Correctness: Output is initial subsequence of input
FORi FROM 1 TO LENGTH(Outseq()): Outseq[i) = Inseq[i];

$ Progress: All input reaches output in finite time
IF (SOME INTEGER i l i ; LENGTH(Inseq())) > LENGTH(Outseq())

THEN "after finite time" LENGTH(Outseq()) = i;

The Definitions paragraph defines "macro"-type substitutions for use
in the body of the module.

The built-in Vector data type is indexed from 1.

Fig. A.2 (cont'd)

-68-

SCOPE AB Protocol =
BEGIN

TYPE msg_unit = SEQUENCE OF CHARACTER; *Basic unit for transmission*
TYPE info buf = BUFFER OF msg_unit;

PROCEDL~ AB Protocol (info sent: info buf <INPUT>
info delivered: info_buf <OUTPUT>) =

BEGIN
BLOCK ALLFROM(info_sent)

END;

END;

Notes:

ALLTO(info_delivered);

Keywords of GYPSY are written in upper case.

The parameters of a process in GYPSY define the buffers that
interconnect it with other processes. In this case, process AB Protocol
has one buffer of msg_units which it uses only for input, and one buffer
of msg_units which it uses only for output.

The term "block" is shorthand for the condition "when blocked waiting to
receive from an input buffer."

The functions Allfrom and Allto return, respectively, the sequences of
all messages received from and sent to the buffer given as argument.
(The "activation ID" parameter which selects for a specific process
has been omitted throughout.)

Fig. A.3--Alternating bit protocol service specification in GYPSY-­
buffer-history-type model

-69-

SCOPE AB_Protocol ~

BEGIN

TYPE msg_unit
TYPE info buf

SEQUENCE OF CHARACTER; *Basic unit for transmission*
BUFFER OF msg_unit;

PROCEDURE AB Protocol (info sent: info buf <INPUT>
info_delivered: info buf <OUTPUT>) =

BEGIN
VAR msg: msg_unit;
LOOP

AWAIT
ON RECEIVE msg FROM info sent THEN (

SEND msg TO info_delivered;)
END;

END;

END;

Notes:

The "var" statement declares a local variable msg of type msg_unit.

The "await" statement waits until one of its receive clauses is satisfied
(i.e., until input is available from the specified buffer) and then
performs the "then" portion of the clause.

Send and Receive are defined as blocking operations on the buffers
available to a process (i.e. Receive blocks until its buffer is not empty,
and Send blocks until its buffer is not full).

Fig. A.4--Alternating bit protocol service specification in GYFSY-­
transition-type model

MODULE Transport_Station

TYPES
interrupt: INTEGER 0 .. 255;
port: INTEGER;

PARAMETERS

-70-

buffer B(port i,j); $ Mapping from ports to buffer id;
INTEGER empty;

EXTERNALREFS
from Buffer:

buffer: DESIGNATOR;
msg: VECTOR OF CHAR;
OFUN Put(msg m; buffer b);
OVFUN Get(buffer b) -> msg m;
BOOLEAN Full(buffer b);
BOOLEAN Empty(buffer b);

FUNCTIONS

VFUN Pconnected(port i,j) -> BOOLEAN n;
INITIALLY n = FALSE;

VFUN Connected(port i,j) -> BOOLEAN n;
DERIVED; n = Pconnected(i,j) AND Pconnected(j,i);

VFUN Credit(port i,j) -> INTEGER n;
EXCEPTIONS

no connection: -Connected(i,j);
INITIALLY n = 0;

VFUN Int(port i,j) -> interrupt x;
HIDDEN; INITIALLY x = empty;

OFUN Connect(port me,him);
EXCEPTIONS

already: Pconnected(me,him);
EFFECTS

Pconnected(me,him) = TRUE;

OFUN Disconnect(port me,him);
EXCEPTIONS

no connection: -Pconnected(me,him) AND -Pconnected(him,me);
EFFECTS

'Pconnected(me,him) = FALSE; $ one side disconnects both;
'Pconnected(him,me) =FALSE;
'Int(me,him) = empty;
'Int(him,me) =empty;
EFFECTS OF Clear buf(me,him);
EFFECTS OF Clear=buf(him,me);

Fig. A.5--Transport protocol service specification in SPECIAL

-71-

OFUN Send(port me,him; data_msg m);
EXCEPTIONS

no_connection:
flow limit:

EFFECTS

-Connected(me,hirn);
Credit(me,him) = 0;

EFFECTS OF Put(B(me,him,),m);
'Credit(me,him) = Credit(me,him) ~ 1;

OVFUN Receive(port me,him) -> msg m;
EXCEPTIONS

no connection: -Connected(me,him);
empty: Empty(B(him,me));

EFFECTS
m = Get(B(himjrne));

OFUN Give_Credit(port me,him);
EXCEPTIONS

no_connection: -Connected{me,him);
EFFECTS

'Credit(him,rne) = Credit(him,me) + 1;

OFUN Send Int(port rne,him; interrupti);
EXCEPTIONS

no connection: -Connected(rne,him);
fl~~'i'_limit: Int(me,him) -= empty;

EFFECTS
'Int(rne,him) = i;

OVFUN Receive_Int(port me,him) -> interrupt i;
EXCEPTIONS

no connection: -Connected(me,him);

$ no blocking

empty: Int(him,me) = empty; $ no blocking
EFFECTS

i = Int(him,me);
'Int(him,me) =empty;

END MODULE Transport_Station;

Notes:

See notes for Fig. A.l.

The Externalrefs paragraph lists operations and data types defined in
other modules--in this case, a separate buffer module which follows.

The Designator type used for buffers allows creation of buffer objects
with the New operation, which returns a pointer to the object.

Fig. A.S (cont'd)

-72-

MODULE Buffer

TYPES
buffer; DESIGNATOR;
msg; VECTOR OF CHAR;

DEFINITIONS

BOOLEAN Full(buffer b) IS LENGTH(b) >~ Max_size(b);

BOOLEAN Empty(buffer b) IS LENGTH(b) = 0;

VECTOR OF msg Append(msg m, VECTOR OF msg v) IS
VECTOR(FOR i FROM 1 TO. LENGTH(v) + 1:

IF i <= LENGTH(v) THEN v[i} ELSE m);
FUNCTIONS

VFUN Buf(buffer b) -> VECTOR OF msg buf;
HIDDEN; INITIALLY buf =VECTOR();

VFUN Max_size(buffer b) -> INTEGER i;
HIDDEN; INITIALLY i = D;

OVFUN Create_buf(INTEGER sz) -> buffer b;
EXCEPTIONS

resource error: RESOURCE ERROR;
EFFECTS

b = NE\V'(buffer);
'Max_size(b) = sz;

OFUN Clear_buf(buffer b);
EXCEPTIONS

nonexistent: Max_size(b) = 0;
EFFECTS

'Buf(b) =VECTOR();

OFUN Put(buffer b; msg m);
EXCEPTIONS

nonexistent: Max size(b) = 0;
DELAY UNTIL -Full(b)i
EFFECTS

'Buf(b) = Append(m, Buf(b));

OFUN Get(buffer b) -> msg m;
EXCEPTIONS

nonexistent: Max_size(b) = 0;
DELAY UNTIL -Empty(b);
EFFECTS

m = Buf (b) [1] ;

$ empty vector

'Buf(b) =VECTOR(FORi FROM 2 TO LENGTH(Buf(b)): Buf(b)[i]);

END MODULE Buffer;

Fig. A.5 (cont'd)

Scope Transport_Protocol =
Begin

type msg:record(from: portid;
to: portid;
text: string;);

type int:record(from: portid;

-73-

to: portid;
interrupt:integer;);

type control:record(
op: one of (credit, ack, connect, disc, error);
from: portid;
to: portid;);

type msgbuf: buffer of msg;
type intbuf: buffer of interrupt;
type cntrlbuf; buffer of control;

process Transport_Protocol(

Begin

msg_in: msgbuf <input>;
msg_out: msgbuf <output>;
int_in: intbuf <inbuf>;
int_out: intbuf <output>;
cntrl_in: cntrlbuf <input>;
cntrl_out: cntrlbuf <output>;) =

Block

End;

Data transfer OK();
Flow-control OK();
Conn~ction_OK();

function Data transfer OK() =
* Mes;ages delivered from S to D are initial subsequence of

messages sent from S to D *
forall adr:source

forall adr:dest
extract msg out(source, dest) is an initial sequence of

ext~act=msg_in(source,dest);

function extract_msg_out(adr: from, to) =
subsequence of msg m in allto(msg_out)

m.from = source and m.to = dest;

Fig. A.6--Buffer-history-type transport protocol service specification

-74-

function extract msg in(adr: from, to) ~
subsequence of msg m in allfrom(msg_in)

m.from = source and m.to = dest;

function Flow_control_OK() =
* Number of messages sent from S to D <= number of credits

sent from D to S ~
forall adr:source

forall adr:dest
size(extract msg out(source, dest)) <=

size(ext~act=credit_in(dest,source);

function extract credit in(adr: from, to) =
subsequence of contr~l c in allfrom(cntrl_in) :

m.op = credit and m.from = source and m.to = dest;

function Connection OK() =
* results of connect *

if Last(extract con in(i,j)) = connect(i,j) and
Rest(extract co-;:;: in(i,j)) = connect(j,i)•<- connect(i,j) !!
then Last(extract err out(i)) = "already connected"
else Last(extract=con=out(i,j)) = connect(i,j);

* results of disconnect *
if Last(extract con in(i,j)) = disc(i,j) and

Rest(extract con in(i,j)) = disc(i,j) or disc(j,i)
then Last(extract err out(i)) = "not connected"
else Last(extract-con=out(i,j)) = disc(i,j);

function extract con in(adr: i,j) =
subsequence ~f c~ntrol c in allfrom(cntrl in) :

(c.op=connect or c.op=disc) and -
((c.from=i and c.to=j) or (c.from=j and c.to=i));

function extract con out(adr: i,j) =
subsequence ~f c~ntrol c in allto(cntrl out) :

(c.op=connect or c.op=disc) and c.f~om=i and c.to~j;

function extract err out(adr: i) =

End;

subsequence ~f c~ntrol c in allto(cntrl_out)
c.op~error and c.to~i;

Fig. A.6 (cont'd)

-75-

Notes:

Text between * is comment.

The character : means "such that."

Functions Last and Rest on sequences return the last element and
all but the last element, respectively.

The right side of the line marked with!! defines a regular
expression where * means zero or more occurrences of an item.

The terms "sequence," "initial sequence," and "subsequence" are
assumed to be part of the specification language.

Fig. A.6 (cont'd)

AGENT Transport_Station

TYPES
interrupt: INTEGER
port: INTEGER

-76-

command: DYNAMIC STRUCT {opcode op; port me,him; $... other parameters}
opcode: ONE OF {data, int, int_ack, give_credit, connect, disconnect}
msg: VECTOR OF CHAR;

STATE

Pconnected(port i,j) -> BOOLEAN n
INITIALLY n = FALSE

Connected(port i,j) -> BOOLEAN n
DERIVED
n = Pconnected(i,j) AND Pconnected(j,i)

Credit(port i,j) -> INTEGER n
INITIALLY n = 0

Int_Pending(port i,j) -> BOOLEAN n
INITIALLY n = FALSE

INPUT HANDLERS (DISPATCH ON op OF command c)

connect (port me,him)
EXCEPTIONS

already: Pconnected(me,him)
EFFECTS

'Pconnected(me,him) = TRUE
OUTPUT c

disconnect (port me,him)
EXCEPTIONS

no_connection: -Pconnected(me,him) AND -Pconnected(hirn,me)
EFFECTS:

'Pconnected(rne,him) ~ FALSE /* one side disconnects both
'Pconnected(him,me) = FALSE
'Int(rne,him) =FALSE
'Int(him,me) =FALSE
OUTPUT c

give_credit (port me,him)
EXCEPTIONS

no_connection: -Connected(me,hirn)
EFFECTS

'Credit(hirn,rne) = Credit(him,rne) + 1
OUTPUT c

Fig. A.7--Agent-type transport protocol service specification

-77-

data (port me,him; msg m)
EXCEPTIONS

no connection:
flow limit:

EFFECTS
OUTPUT c

-Connected(me,him)
Credit(me,him) = 0

'Credit(me,him) = Credit(me,him) - 1

int (port me,him; interrupt i)
EXCEPTIONS

no connection: -Connected(me,him)
pending: Int_pending(me,him)

EFFECTS
OUTPUT c
'Int_pending(me,him)

int_ack (port me,him)
EXCEPTIONS

TRUE

no connection: -Connected(me,him)
no int: Int_pending(him,me)

EFFECTS
OUTPUT c
'Int_pending(him,me)

default
EXCEPTIONS

bad command: TRUE

END AGENT Transport_Protocol

Notes:

FALSE

A dynamic structure is a record containing some number of <name,type,value>
triplets. Input and output are in this format for convenience.

The operation of the agent is to continuously read commands from its input
and to invoke the handler corresponding to the op field of the input.
The parameters of each handler are the command fields expected. Their
absence causes an error exception.

Exceptions are handled by outputting an error message addressed to the
sender of the offending message and containing the name of the exception.

Output c means send the dynamic structure c to the output buffer.

Fig. A.7 (cont'd)

MODULE FTP $ See Notes at end

TYPES

record: VECTOR OF BIT;
file: VECTOR_OF record;
user_id: INTEGER;
trans_id; INTEGER;
name_spec: VECTOR OF CHAR;
host_name: VECTOR=OF CHAR;
file name: VECTOR_OF CHAR;

-78-

path name: STRUCT OF (host name hn; file name fn);
pass;ord: VECTOR_OF CHAR; -
account: INTEGER;
access mode: ONE OF {"read", "write", "append", "delete"};
dest stat: ONE OF {"must", "can't", "don't care"};
acc_crl: STRUCT_OF (user_id u; password pw; account ac);
action: ONE OF {"ftp", "quit", "abort", "status", "listname",

- "copy", "append", "delete", "replace"}
data type: CHAR;
trans_mode: CHAR;
file_struct: CHAR;
data_spec: STRUCT_OF (file data type ty; trans mode md; file struct st);
partial_spec: STRUCT_OF (INTEGER upper; INTEGER lower);
new_data: record;
message: record;
parm: STRUCT_OF (BOOLEAN f/b; dest stat ds; acc_crl al,a2;

data_spec d; path name pl,p2; trans id id;
partial_spec ps);-

DECLARATIONS

INTEGER j;
BOOLEAN b, f/b;
file f;
user_id uid;
trans_id id;
message msg, msgl, msg2;
name_spec ns;
path_name p, pl, p2;
access_mode c, cl, c2;
dest_stat ds;
acc_crl a, al, a2;
data_spec d;
partial_spec ps;
new_data n;
stat_despt s;
VECTOR_OF path_name vp;
stat st;

Fig. A.8--File transfer protocol service specification in SPECIAL

-79-

DEFINITIONS

VECTOR OF path name Match(a; ns) IS
$"return all pathnames matching ns for which user has access".

BOOLEAN Access_check(a; p; c) IS ...
$"check the access control information a for permission to

access file pin mode c".

BOOLEAN Data_spec_check(d; pl, p2; cl, c2) IS ...
$"check if the data specification is accepted".

file Canon(£) IS
$"return the canonical form of file f".

INTEGER Length(p) IS
$"return the length of the file specified by p".

EXTERNALREFS

FROM Transport_Protocol:
connect id: k, kl,k2;
VFUN On=net(p.hn) -> b;

FROM Table_Management:
Type stat: ONE_OF {"done", "error", "in_progress", "aborted",

"suspended"};
Type stat_descpt: STRUCT_OF (action act; stat st; parm pa;

connect id k; errorcode errcode);
Type errorcode: ONE OF {"bad_message11 , ...);
VFUN Stat table(id)--> s;
OFUN Stor-table(s);
VFUN Uniq~e_id() -> id;

$"return a unique id for a transaction".

FROM System:
VFUN Get_uid() -> uid;

FUNCTIONS

VFUN Error(id) -> b; $"true if error of any kind during operation".
EXCEPTIONS

no_such_trans: Stat_table(id) = ?;
HIDDEN;
INITIALLY b = FALSE;

VFUN In_session(uid) -> b;
HIDDEN;
INITIALLY b = FALSE;

$"is user uid in an FTP session?".

Fig. A.8 (cont'd)

VFUN Exist(p) -> b;
INITIALLY

b = FALSE;

VFUN Cont(p) -> f;
EXCEPTIONS

nonexist file: -Exist(p);
INITIALLY -

f;:::; ?;

OFUN Ftp();
EXCEPTIONS

-80-

$"does file named p exist?".

$"content of file named p".

$"start FTP session".

already_in session: In_session(Get_uid());
EFFECTS

'In_session(Get_uid()) = TRUE;

OFUN Quit(); $"quit FTP session".
EXCEPTIONS

not in session: In_session(Get_uid());
EFFECTS

'In session(Get_uid()) =FALSE;

OFUN Abort(id); $"abort transaction id".
EXCEPTIONS

not in session: -In session(Get uid());
unknown: Stat table(id) = ?; -
bad command: Stat table(id).op -=''copy" or "append";
finished: Stat_table(id).st ="done";

EFFECTS
Stat_table(id).st ="aborted";

VFUN Status (id) -> s; $"status of transaction id".
EXCEPTIONS

not in session: In session(Get uid());
unknown: Stat_table(id) = ?; -

EFFECTS
s = Stat_table(id);

VFUN Listname(a; ns) -> vp; $"list file names matching name spec ns".
EXCEPTIONS

not in session: In session(Get uid());
nom;tch: Match(a, n;) = \~CTOR();
error: Error(Unique_id());

EFFECTS
vp = Match(a, ns);

Fig. A.8 (cont'd)

-81-

OVFUN Copy(f/b; ds; al, a2; d; pl, p2) -> id;
$"copy file pl to p2".

EXCEPTIONS
not_in_session: In_session(Get_uid());
no_a;:::cess: -Access_check(al, pl, "read") or

-Access_check(a2, p2, "write");
source file nonexist: -Exist(pl);
dest file nonexist: -Exist(p2) and ds ::;= "must";
dest-file-exist: Exist(p2) and ds = "can't";
unconnected_host: -On_net(pl.hn) or -On_net(p2.hn);
bad data spec: -Data spec check(d, pl, p2, "read", "write");
error: Error(id); -

EFFECTS
id = Unique_id();
s.id = id;
s.act = "copy";
s.parm = {f/b, ds, al, a2, d, pl, p2, id, -};
IF (f/b = foreground) THEN($"foreground".

IF (-Exist(p2)) THEN 'Exist(p2) = TRUE;
Canon('Cont(p2)) = Canon(Cont(pl));
s.st = "done";

) ;
ELSE(

s.st = "in_progress";
) ;
EFFECTS_OF Stor table(s);

OVFUN Append(f/b; al, a2; d; pl, p2) -> id;

$"background".

$"append file pl to p2".
EXCEPTIONS

not_in_session: In_session(Get_uid);
no_access: -Access_check(al, pl, "read") or

-Access_check(a2, p2, "append");
source file nonexist: -Exist(pl);
unconnected-host: -On net(pl.hn) or -On net(p2.hn);
bad data spec: -Data ;pee check(d, pl, p2, "read", "append");
error: Error(id);

EFFECTS
id =Unique id();
s.id = id;
s.act = "append";
s.parm = {f/b, ds, al, a2, d, pl, p2, id, -};
IF (f/b = foreground) THEN($"foreground".

IF (-Exist(p2)) THEN (
'Exist(p2) =TRUE;
Canon('Cont(p2)) = Canon(Cont(pl));

) ;

Fig. A.8 (cont'd)

-82-

ELSE
(Canon('Cont(p2)) = Canon(Cont(p2)) & Canon(Cont(pl));
$ "&indicates the concatenation".
s.st = "done";

) ;
ELSE(

s.st = "in_progress";
) ;
EFFECTS OF Stor_table(s);

OVFUN Delete(a; p) -> id;
EXCEPTIONS

$"delete file p".

not in session: -In session(Get uid());
no acc;ss: -Access check(a, p, "delete");
no-such file: -Exi;t(p);
er~or: Error(id);

EFFECTS
'Exist(p) = FALSE;
id =Unique id();
'Cont(p) = ?;
s.st = "done";
s.id = id;
EFFECTS OF Stor_table(s);

$"background".

OVFUN Replace(a; p; ps; n) -> id; $"replace portion ps of file p by
new data n".

EXCEPTIONS
not in session: In session(Get uid());
no_acc~ss: -Access_check(a, p, "write");
no such file: -Exist(p);
bad spec: ps.lower < 0 or ps.upper > Length(p);
err~r: Error(id);

EFFECTS
Canon('Cont(p)) = VECTOR(FOR j FROM 1 TO Length(p)

IF ps.lower =< j =< ps.upper
THEN Canon(n[j -ps.lower +1]);
ELSE Canon(Cont(p)[j]));

id = Unique_id();

PROC Background_Server();
EFFECTS

FORALL s=Stat table(id) l s.st = "in_progress"
IF -Error(id) THEN(

IF Stat table(id).act ="copy" THEN(

) ;

IF (-Exist(p2)) THEN 'Exist(p2) = TRUE;
Canon('Cont(p2)) = Canon(Cont(pl));

Fig. A.8 (cont'd)

-83-

ELSE IF Stat table(id).act "append" THEN(
IF (-Exi;t(p2)) THEN (

'Exist(p2) = TRUE;
Canon('Cont(p2)) Canon(Cont(pl));

) ;
ELSE
(Canon('Cont(p2)) Canon(Cont(p2)) & Canon(Cont(pl));

) ;
s.st ="done";
EFFECTS OF Stor_table(s);

) ;

Notes:

All text following $ is comment.

The Declarations paragraph declares the types of parameters and
variables used in the rest of the module.

The value ? means "undefined."

The Proc paragraph defines a "process"-type cyclic operation, as
discussed in the text.

The & operator (for the Append function) means concatenation.

The following table shows the FTP commands and the parameters that are
needed for each command.

Command Parameters

Fore/ Data Source Dest. Trans-
Back- Dest. Authen. Xfer Path Path action
ground Status Control Spec. name name ID

Listname -·- *
Copy * ;', ·k ··k ·k ·k

Append '"' '"k ';~ * -!:

Delete ·{-: *
Replace * ·-k -!(

Abort '"l(

Status ·l:

Ftp
Quit

Authentication control contains the user's login name,
password, and account number.

Part.
Spec.

;':

Data Transfer Spec. specifies the data type, transmit mode, and
file structure.

Fig. A.8 (cont'd)

-84-

Appendix B

FORMAL PROTOCOL SPECIFICATIONS

-85-

PROGRAM MODULE AB Protocol
$ This is an "implementation" of each OFUN in the service spec.

TYPES $ These types used in all modules
msg: VECTOR OF CHAR;
seqnum: INTEGER 0 .. 1 OR empty;
data_pkt: STRUCT OF (msg text; seqnum sq);

DEFINITIONS
INTEGER empty is -1;

EXTERNALREFS
$ These 5 modules are used by the AB Protocol implementation.

FROM Send station:
VFUN Sendseq() -> seqnum s;
OFUN Inc_sendseq();

FROM Receive station:
VFUN Rcvseq() ->-seqnum s;
OFUN Inc_rcvseq();
VFUN Rbuf() -> msg m;
OFUN Store(msg m);

FROM Medium StoR:
OFLW Send_data(data_pkt d);
OVFUN Wait_data() -> data_pkt d;

FROM Medium RtoS:
OVFUN Wait_ack() -> seqnum a;
OFu~ Send_ack(seqnum a);

FROM Timer
OFu~ Start_timer();

IMPLEMENTATIONS

OVFUN FROG User_Receive() -> msg m;
BEGIN

END;

WAIT UNTIL Rbuf() = empty;
m <- Rbuf();
Store(empty);

Fig. B.1--Alternating bit protocol specification in SPECIAL

OFUN PROG Send(msg m);

DECLARATIONS
data_pkt p;
seqnum a;

BEGIN
p.text <- m;
p.sq <- Sendseq();
UNTIL done DO

OD;
END;

Send data(p);
Start_timer();
a<- Wait_Ack();
IF a = Sendseq() THEN

Inc_sensdseq();
SIGNAL done;

ELSE FI;

PROC Receiver();

DECLARATIONS
data_pkt p;

BEGIN
WHILE TRUE DO

p <-Receive data();
Send ack(p.sq);

-86-

$ Wait for ack or timeout

IF p~sq = Rcvseq() AND Rbuf() = empty THEN
Store(p.text);

OD;
END;

ELSE FI;
Inc_rcvseq();

END PROGRAM MODULE AB_Protocol;

MODULE Send station

VFUN Sendseq() -> seqnum s;
INITIALLY s = 0;

OFUN Inc_sendseq();
EFFECTS

'Sendseq() = (Sendseq() + 1) MOD 2;

END MODULE Send_station;

Fig. B.l (cont'd)

MODULE Receive station

VFUN Rcvseq() -> seqnum s;
INITIALLY s = 0;

OFUN Inc_rcvseq();
EFFECTS

-87-

'Rcvseq() = (Rcvseq() + 1) MOD 2;

VFUN Rbuf() -> msg m;
INITIALLY m = empty;

OFUN Store(msg m);
EFFECTS

'Rbuf() = m;

END MODULE Receive_station;

MODULE Medium StoR
$ Used to send data packets from sender to receiver

PARAMETERS
INTEGER maxerrs;

EXTERNALREFS
from Mise:

VFUN Random() -> BOOLEAN t;

FUNCTIONS

VFUN StoRbuf() -> data_pkt d;
HIDDEN;
INITIALLY d.sq = empty;

VFUN Error_count -> INTEGER e;
HIDDEN;
INITIALLY e = 0;

OFUN Send_data(data_pkt d);
EFFECTS

IF Error count() < maxerrs AND Random() THEN $ lost
1 stoRbuf() = StoRbuf; $ no change
'Error count() =Error count() + 1;

ELSE 'StoRbuf() = d; -
FI;

Fig. B.l (cont'd)

-88-

OVFUN Wait_data() -> data_pkt d;
DELAY UNTIL StoRbuf().sq -=empty;
EFFECTS

d = StoRbuf();
'StoRbuf().sq =empty;

END MODULE Medium StoR;

MODULE Medium_RtoS
$ Used to send acknowledgements from receiver to sender

PARAMETERS
INTEGER maxerrs;

EXTERNALREFS
from Mise:

VFUN Random() -> BOOLEAN t;

from Timer: $ Don't like this here
VFUN Time() -> INTEGER t;

FUNCTIONS

VFUN RtoSbuf() -> seqnum a;
HIDDEN;
INITIALLY a = empty;

VFUN Error_count -> INTEGER e;
HIDDEN;
INITIALLY e = 0;

OFUN Send_ack(seqnum a);
EFFECTS

IF Error count() < maxerrs AND Random() THEN $ lost
1 RtoSbuf() = RtoSbuf; $ no change
'Error_count() = Error_count() + 1;

ELSE 'RtoSbuf() = a;
FI;

OVFUN Wait_ack() -> seqnum a;
$ Includes timeout which should really be in send_station, not here

DELAY UNTIL RtoSbuf() -= empty OR Time() = 0;
EFFECTS

a :;; RtoSbuf () ;
'RtoSbuf() = empty;

End MODULE Medium_RtoS;

Fig. B.l {cont'd)

MODULE Timer

PARAMETERS
INTEGER timeout;

VFUN Time() -> INTEGER t;
INITIALLY t = 0;

OFUN Start_timer();
EFFECTS

'Time() = timeout;

OFUN Tick();
EFFECTS

-89-

IF Time() > 0 THEN 'Time() = Time() - 1;
FI;

PROC Clock(); $Hardware process
BEGIN

WHILE TRUE DO
$Wait for clock period
Tick();

OD;
END;

END MODULE Timer;

MAP AB Protocol TO Receive_station;

EXTERNALREFS
from AB Protocol:

VFuN Buf() -> msg m;
from Receive station:

VFUN Rbuf() -> msg m;

MAPPINGS
Buf(): Rbuf();

END_MAP;

Fig. B.l (cont'd)

-90-

* Alternating_Bit_Protocol in Gypsy *

ALT-BIT PROTOCOL AGENT

;---~

:--> clock in ---> TIMER
I
! I
:<-- clock out <~---/

I I
! I

info sent ---->l--SE~~ER ---->

I
I

\
\<-----

!------>
I

msg_send

ack_send

ack rev

----------->
<--\

\
\

MEDIUM RS
I

-->!

\

info rcvd <----l--RECEIVER <--- msg~rcv <----------!
I
I

\
\

\
MEDIUM SR

I -
I

I

:---:

Scope Alt Bit Protocol =
begin

Type msg_unt = sequence of character; *Basic unit for transmission*
Type msg_pkt = record (message ; msg_unt; seqnum : integer);

Type msg_buf = buffer of msg_pkt;
Type elk buf = buffer of integer;
Type inf buf = buffer of msg_unt;

Procedure AB Protocol (info sent: inf buf<input>,
info-rcvd: inf=buf<output>) =

begin
block allfrom(info_sent) = allto(info_rcvd) *Service Specification*

var msg_send, msg rev, ack_send, ack_rcv: msg_buf;
var clock_in, clock out: clk_buf;

co begin
Sender (info_sent, msg_send, ack_send, clock_in, clock_out);
Medium sr (msg send, msg rev);
Medium-rs (ack-rcv, ack ;end);
Receiver (info-rcvd, msg rev, ack_rcv);
Timer (clock_i~, clock_o~t);

end;
end;

Fig. B.2--Alternating bit protocol specification in GYPSY

-91-

Procedure Sender (var info_sent: inf_buf<input>;
var ack send: msg_buf<input>;
var msg_send: msg_buf<output>;
var clock_in: clk_buf<output>;
var clock_out: clk_buf<input>)

begin
block <input> all sent(info sent, msg send); *service spec*

*Sender only-sends next message lf last was acknowledged,
and seqnum of next message is incremented *

Code
var i: integer := 1;
var msgy ack: msg_pkt;
var tick, start: integer;
var m: msg_unt;

fu~
receive m from info_sent;
msg.message := m;
msg.seqnum := i mod 2;
send msg to msg send;
if not empty(clock_out) then receive tick from clock_out;
send start to clock_in;

assert pending;

loop
await

on receive ack from ack send then
if ack.seqnum i mod 2 then

begin
i :~ i + 1 mod 2;
quit;
end;

on receive tick from clock out then *timeout and retransmit*
begin
send msg to msg_send;
send start to clock_in;
end;

assert seq_num_advanced(i,ack_send);
end;

assert unique_seq_num(msg_send);
end;

end;

Fig. B.2 (cont'd)

-92-

Procedure Medium sr (var msg_send: msg_buf<input>;
var msg_rcv: msg_buf<output>) =

begin
block subseq(msg_send, msg_rcv);

end;

Procedure Medium rs (var ack rev: msg_buf<input>;
var ack_~end: msg_buf<output>)

begin
block subseq(ack_rcv, ack_send);

end;

Procedure Receiver(var info_rcvd:inf_buf<output>;
var msg rev: msg buf<input>;
var ack=rcv: msg=buf<output>) =

* Receiver only accepts message if seqnum is the successor of
last accepted, but always acknowledges *

begin
block pending;

var i: integer := 1;
var msg: msg_pkt;
var exp: integer;

loop
receive msg from msg_rcv;
send msg to ack rev;
if exp = msg.seqnum then (

send msg.message to info_rcvd;
exp := exp + 1 mod 2
) ;

assert pending;
end;

end;

Procedure Timer(var clock_in: clk_buf<input>;
var clock out: clk_buf<output>) =

begin
block size(allto(clock_out)) = size(allfrom(clock_in))

var tick, start: integer;

loop
receive start from clock_in;
pause(timeout);
send tick to clock_out;

end;
end;

Fig. B.2 (cont'd)

-93-

Function lost: boolean = pending;
* returns random T/F value -'·

Function pause(set time: integer): boolean= pending;
* pauses fo; given time *

Function all sent(info sent:inf buf; msg send:msg buf) : boolean=
begin - - - - -

exit assume all j: integer, j <= size(allfrom(info_sent)
-> some k: integer,

end;

allfrom(info sent)[j] allto(msg_send)[k].message;
* all input ;ere sent *

assume all j: integer, j <= size(allto(msg_send)
-> some k: integer,
allto(msg send)[j].message = allfrom(info_sent)[k);
* all sent were input *

Function unique_seq_num(buf: msg_buf) : boolean =
begin

exit assume all k: integer! k <= size(allto(buf)) and
allto(buf)[k-l].seqnum = allto(buf)[k].seqnum

end;

-> allto(buf)[k-l).message = allto(buf)[k].message
*succeeding messages with same seqnums have same texts *

Function seq num advanced(i:integer; ackbuf:msg buf) : boolean=
exit assum~ la;t(allfrom(ackbuf)).seqnum -= i-

* send seqnum is advanced after getting a current ack *
end;

Function subseq(bufl, bu£2: msg_buf) : boolean=
begin

end;

exit assume all j,k < size(allfrom(bufl)),
some j2,k2: integer t j2 < j, k2 < k, and
allfrom(bufl)[j) = allto(buf2)[j2] and
allfrom(bufl)[k] = allto(buf2)[k2] and
j > k

<==> j2 > k2;
* allto(bu£2) is subsequence of allfrom(bufl) *

end Alt_Bit_Protocol;

Fig. B.2 (cont'd)

RAND/N-1429-ARPA/NBS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

