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PREFACE 

This is the final report on a Rand study of methods for specifying 

and verifying computer communication protocols. The study, which was 

jointly sponsored by the Defense Advanced Research Projects Agency and 

the National Bureau of Standards, was a small exploratory effort. Its 

main purpose was to survey the state of the art, identify promising 

directions for future work, and make some initial progress in some of 

these directions, rather than to present solutions to major problems. 

This document should be of interest to technicians and planners in the 

sponsoring agencies, as well as to others concerned with the design, 

analysis, procurement, and evaluation of computer networks and 

communication protocols. 

The author wishes to acknowledge the contributions to this report 

of Ming-Yee Lai, who participated in Rand's summer graduate student 

program. 
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SUMMARY 

Increasingly numerous and complex communication procotols are being 

employed in distributed systems and computer networks of various types. 

The informal techniques used to design these protocols have been largely 

successful but have also yielded a disturbing number of errors or 

unexpected and undesirable behavior in most protocols. This Note 

describes some of the more formal techniques being developed to 

facilitate design of correct protocols. 

A great deal of confusion surrounds the words "specification" and 

"verification" in the domain of computer communication protocols. Hence 

our first goal is to define these concepts in the context of a layered 

model of protocols. Protocol specification requires a clear definition 

of both the services to be provided by a given protocol layer and the 

protocol entities within the layer that cooperate to provide the 

service. Verification, then, consists of two parts: (1) showing that 

the entities ~ollectively do interact to provide the specified services, 

and (2) showing that each entity is properly implemented according to 

its specification. A useful subset of the first part may be described 

as verification of "general properties" such as deadlock, looping, and 

completeness. These properties may be checked for most protocols 

without requiring any particular service specification. 

Most \vork in protocol design and analysis to date has proceeded 

without a comprehensive specification of the services to be provided by 

a protocol to its users. Hence a major focus of our work has been to 

explore techniques for formally specifying protocol services. Two major 
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approaches from the general software specification domain were 

identified and applied to a set of example protocols: (1) an "abstract 

machine" model that defines operations that may be invoked, and (2) an 

"agent" model where the service is an active process with inputs and 

outputs. 

Abstract machine models successfully handle services that can be 

defined in terms of individual operations with specified effects on the 

state of the machine. These models provide a convenient means for 

handling exception conditions, but they do not easily accommodate 

several necessary aspects of protocol se-rvice specifications. 

Assertions about sequences of operations are outside the model. Since 

they have no explicit output, only "polling-type" interfaces with the 

user can be defined. "Prodding-type" interfaces cannot be defined. 

Moreover, assumptions must be made about the behavior of the machine's 

users in order to talk about termination. To overcome some of these 

problems, it appears necessary to include "users" who are really part of 

the service, or to include cyclic processes in the specification. 

Agent models handle these difficulties more successfully. 

Transition-type agents retain most of the benefits of machine models in 

defining the handling of individual inputs. Buffer-history-type agents 

facilitate assertions about sequences of operations but have difficulty 

with state-oriented service features and exceptions. It appears that 

both sorts of specification are useful for different aspects of 

service--transitions for state-oriented features like connection 

establishment, and buffer histories for data transfer. 
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Most of the effort in verification to date may be classified as 

either state exploration or program-proving. State exploration is based 

on modeling each entity of a protocol layer as a state machine and then 

generating all the reachable states of the composite system, starting 

from some initial state. This type of analysis is relatively 

straightforward and has been automated to some extent, but it can deal 

only with the major states or "control" aspects of a protocol. 

Program-proving is based on specifying each entity as a program and then 

formulating and proving assertions that represent correct operation of 

the system (i.e., its service specification). This technique can in 

principle verify all features of a specification, but a great deal of 

ingenuity is required to construct proofs of even simple systems. 

Several newer techniques promise to reduce some of these 

difficulties. "Unified" methods use state exploration of a few major 

states to facilitate program proofs of additional properties involving 

the other state variables of the protocol. Symbolic execution exploits 

the ability to group classes of system states in order to minimize the 

size of the state space that must be explored. Both design rules and 

transformation methods promise to eliminate the need for post-design 

verification altogether by constraining the design process to follow 

correct paths. All of these techniques require further research before 

their effectiveness can be evaluated. 

It is clear from the literature that the use of more formal 

techniques has already had a positive impact on the protocol design 

process. State-exploration techniques for verifying general properties 

are fairly well understood and have the potential for routine 
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application in the near future. Use and development o£ more powerful 

verification techniques require a high level of skill in formal methods 

and must still be considered research problems. A great deal o£ work 

remains to be done in developing techniques that are routinely and 

widely applicable. 
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I. INTRODUCTION 

Increasingly numerous and complex communication procotols are being 

employed in distributed systems and computer networks of various types. 

The informal techniques used to design these protocols have been largely 

successful, but they have also yielded a disturbing number of errors or 

unexpected and undesirable behavior in most protocols. This Note 

describes some of the more formal techniques being developed to 

facilitate the design of correct protocols. 

As they develop, protocols must be described for many purposes. 

Early descriptions provide a reference for cooperation among designers 

of different parts of a protocol system. The design must be checked for 

logical correctness. Then the protocol must be implemented. If the 

protocol is in wide use, many different implementations may have to be 

checked for compliance with a standard. Although narrative descriptions 

and informal walk-throughs are invaluable elements of this process, 

painful experience has shown that they are inadequate by themselves. 

A great deal of confusion surrounds the words "specification" and 

"verification" in the domain of computer communication protocols. Hence 

our first goal is to define these concepts in the context of a layered 

model of protocols. Section II includes a listing of the necessary 

elements of a protocol specification. Section III explores methods for 

formal specification in detail, focusing on the experience gained from 

an attempt to specify several example protocols. In Section IV we 

discuss various approaches to protocol verification, identifying the 

pros and cons of major techniques, as well as some promising new 
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approaches. Section V cites some applications of formal methods that 

have been reported in the literature. A comprehensive bibliography 

indexed by key phrases is also provided. 
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II. THE MEANING OF PROTOCOL SPECIFICATION~~ v~RIFICATION 

We assume that the communication architecture of a distributed 

system is structured as a hierarchy of different protocol layers. Each 

layer provides a particular set of services to the users above. From 

those users' view-point, the layer may be viewed as a "black box" or 

machine which allows a certain set of interactions with other users (see 

Figure 1). A user is concerned with the nature of the service provided, 

but not with how the protocol manages to provide it. 

USER USER 
\ I 
\ I 

~---'--------'------7 
PROTOCOL 

SERVICE 

Figure 1--User View of Protocol Layer 

This description of the input/output behavior of the protocol layer 

constitutes a service specification of the protocol. It should be 

"abstract" in the sense that it describes the types of commands and 

their effects but leaves open the exact format and means for conveying 

them (e.g., procedure calls, system calls, interrupts, messages, etc.) A 

particular instance of the service which does specify exact formats may 

be called an interface specification. 
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SERVICE SPECIFICATION 

Specifying the service to be provided by a layer of a distributed 
communication system presents problems similar to those of specifying 
any software module of a complex computer system. Therefore, methods 
developed for general software engineering [B,53,75,97,125] should be 
useful for the definition of communication services. Usually, a service 
definition is based on a set of service primitives that describe in an 
abstract manner the operations at the interface through which the 

service is provided. In the case of a transport service, for example, 
some basic service primitives are Connect, Disconnect, Send, and 

Receive. The execution of a service primitive is associated with the 
exchange of parameter values between the service-providing entity of one 
layer and the service-using entity of the higher layer. The possible 
values and the direction of transfer must be defined for each parameter. 

Clearly, the service primitives should not be executed in an 

arbitrary order and with arbitrary parameter values (within the range of 
possible values). At any given moment, the allowed primitives and 

parameter values depend on the preceding history of operations. The 
service specification must reflect these constraints by defining the 
allowed sequences of operations directly, or by defining a "state" of 
the service which is used in specifying the results of operations. 

In general, the constraints depend on previous operations by the 
same user ("local" constraints) and by other users ("global" 

constraints). Considering again the example of transport service, a 
local constraint is the fact that Send and Receive may be executed only 
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after a successful Connect. An example of a global constraint is the 

fact that the "message" parameter value of the first Receive on one side 

is equal to the message parameter value of the first Send on the other 

side. To date, little is known about methods for precisely specifying 

computer communication services [21,53,115,125]. 

PROTOCOL SPECIFICATION 

Although the internal structure of a protocol layer is irrelevant 

to the user, the protocol designer must be concerned with it. In a 

network environment with physically separated users, a protocol layer 

must be implemented in a distributed fashion, with entities (modules or 

processes) local to each user communicating among themselves via the 

services of the lower layer (see Figure 2). The interactions among 

entities in providing the layer's service constitute the actual 

protocol. Hence a protocol specification must describe the operation of 

each entity within a layer in response to commands from its users, 

messages from the other entities (via the lower-layer service), and 

internally initiated actions (e.g., timeouts). 
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USER USER 
\ I 

~-------'~---------------~----------\ I 
~---' ____ ! ____ ~ ---1 I 

I I 

ENTITY 1 ENTITY 2 

\ I 
\ I 
\ I ---- ----- ---1 

I 

LOWER LAYER SERVICE 

Figure 2--Internal Structure of Protocol Layer 

ABSTRACTION AND STEPWISE REFINEMENT 

The specifications described above must embody the key concept of 

abstraction if they are to be successful. To be abstract, a 

specification must include the essential requirements that an object 

must satisfy and must omit the unessential. A service specification is 

abstract primarily in the sense that it does not describe how the 

service is achieved (i.e., the interactions among its constituent 

entities) and secondarily in the sense that it defines only the general 

form of the interaction with its users (not the specific interface). 

A protocol specification is a refinement or "implementation" of the 

service specification because it begins to define how the service is 

provided by specifying the entities that cooperate to perform it. This 

"implementation" of the service is what is usually meant by the design 

of a protocol layer. Each entity remains to be implemented in the more 
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conventional sense of that term, typically by coding in a particular 

programming language. There may be several steps in this process until 

the lowest-level implementation of a given protocol layer is achieved 

[19,53,55]. 

WHAT A PROTOCOL DEFINITION SHOULD INCLUDE 

Given the above discussion, a complete description of a protocol 

layer should include the following items: 

1. A general description of the purpose of the layer and the services it provides. 

2. An exact specification of the service to be provided by the layer. 

3. An exact specification of the service assumed for the layer below and required for the correct and efficient operation of the 
protocol. (This may be redundant with the lower layer's definition, but it makes the protocol definition self-contained.) 

4. The internal structure of the layer in terms of entities and their relations. 

5. A description of the protocol(s) used between the entities 
including: 

5.1. An overall, informal description of the operation of the 
entities. 

5.2. A protocol specification which includes 

(a) a list of the types and formats of messages exchanged 
between the entities; 

(b) rules governing the reaction of each entity to user 
commands, messages from other entities, and internal 
events. 

5.3. Any additional details (not included in point 5.2), such as 
considerations for improving efficiency, suggestions for 
implementation choices, or a detailed description which may 
come close to an implementation. 
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Reference 15 presents an example of these items for a simple data­

transfer protocol. While the descriptive items of this list are 

important, it is the formal items 2 and 5.2 that are the main focus of 

this Note. We next consider how this understanding of protocol 

specification sheds light on the meaning of verification. 

THE MEANING OF VERIFICATION 

Verification is essentially a demonstration that an object meets 

its specifications. Recalling from above that services and protocol 

entities are the two major classes of objects requiring specification 

for a protocol layer, we see that there are two basic verification 

problems that must be addressed: (1) The protocol's design must be 

verified by analyzing the possible interactions of the entities of the 

layer, each functioning according to its (abstract) protocol 

specification, to see whether their combined operation satisfies the 

layer's service specification; and (2) the implementation of each 

protocol entity must be verified against its abstract specification. 

The somewhat ambiguous term "protocol verification" is usually 

intended to mean this first design verification problem. Because 

protocols are inherently systems of concurrent independent entities 

interacting only via exchange of messages, verification of protocol 

designs takes on a characteristic communication-oriented flavor. 

Implementation of each entity, on the other hand, is usually done by 

"ordinary" programming techniques and hence represents a more common 

(but by no means trivial) program verification problem that has received 

less attention. 
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The service specification itself cannot be verified, but rather 

forms the standard against which the protocol is verified. However, the 

service specification can be checked for syntax, consistency, or 

realizability [53]. It must also properly reflect the users' desires 

and provide an adequate basis for the higher levels that use it. 

Unfortunately, techniques to achieve these latter goals are still poorly 

understood. 

It is important to note that protocol verification also depends on 

the properties of the lower-layer protocol. A protocol specification is 

only a partial specification in that it leaves some actions undefined, 

namely, those given by the lower layer's service specification. In 

verifying that a protocol meets its service specification, it will be 

necessary to assume the properties of the lower layer's service. If a 

protocol fails to meet its service specification, the problem may rest 

either in the protocol itself or in the service provided by the lower 

layer. 

In its broadest interpretation, system validation aims to assure 

that a system satisfies its design specifications and (ideally) operates 

to the satisfaction of its users. At the present time, the validation 

of correctness features and that of efficiency features are largely 

separate disciplines employing different methods. Efficiency 

considerations are outside the scope of this Note. In the realm of 

correctness, exploratory techniques such as simulation and testing may 

be used, but usually only a limited number of situations can be 

examined. We reserve the term "verification" for methods that allow, 
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at least in principle, the consideration of all possible situations the 

system may encounter during operation. 

Most of the verification work to date has focused on protocol 

designs without having any precise and comprehensive service definition. 

Results have demonstrated what can be verified easily rather than what 

needs to be verified. Hence a major focus of the work reported here has 

been on the problems of rigorous protocol service specification, at 

least in the realm of correctness. 
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III. FORMAL SPECIFICATION METHODS 

As noted above, three things must be specified for a given protocol 

layer: the service it provides to its users, the entities that make up 

the layer and comprise the protocol itself, and the implementation of 

the entities. We shall assume that implementations will use a suitable 

programming language, and we shall have little to say about them. This 

section discusses methods for specifying services and protocols. 

Although numerous approaches to specifying software systems have 

been proposed, two major categories may be discerned. We shall call 

these the "abstract machine" model and the 11 agent" model. 

In the machine model, the service is defined in terms of a set of 

operations that may be invoked by the machine's users. The machine has 

a state consisting of the values of variables or value-returning 

functions that are defined as part of the machine. An operation may 

return a value (some portion of the state) and/or change the state of 

the machine, depending, of course, on the current state of the machine. 

In the agent model, the service is viewed as an active agent or 

process with explicit inputs and outputs. The agent functions by 

consuming its input and producing its output. Two types of agent model 

are used. State-transition-type models focus on the processing of 

individual inputs and include an internal state for the agent. For each 

combination of input and state, a new state and output (possibly null) 

are specified. The second type of agent model, which we shall call a 

"buffer-history" model, avoids referring to any internal state of the 
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agent and attempts to directly specify the relation between the sequence 

of outputs and the sequence of inputs. 

In the following sections, we shall explore the merits of each of 

these models for specifying the services of a set of representative 

protocols. These protocols were chosen to include a very simple and 

widely used example (the alternating bit protocol (ABP)), a more 

sophisticated general-purpose data-transfer protocol (a transport 

protocol), and a ''function-oriented" or higher-level protocol (file­

transfer protocol). We first describe each of these protocols 

informally to provide a general understanding of their services before 

attempting more formal specifications. 

INFORMAL PROTOCOL SERVICE DESCRIPTIONS 

Alternating Bit Protocol 

The ABP provides for one-way transfer of messages from a fixed 

sender to a fixed receiver. Messages must be delivered without error 

and in the order in which they are sent. The sender must wait until the 

receiver accepts a message before sending the next message. The 

protocol gets its name from its implementation, where a single bit 

sequence number is attached to each message sent over an unreliable 

transmission medium. The bit is alternated for each new message sent. 

Further details on the implementation may be found in the literature 

[13,14,20,82] and, of course, are irrelevant for describing the service 

provided. 
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Transport Protocol (TP) 

TP can accommodate many users, each identified by a port or 

address. A pair of users must first request a connection between 

themselves before exchanging messages. Once connected, users may 

simultaneously transfer messages in both directions. The receiver (in 

each direction) controls the flow of messages by giving the sender 

explicit "credits" or permission to send some number of messages. 

Connected users may also exchange short "interrupts" which are 

independent of the data messages exchanged, and which typically travel 

faster. When users are finished communicating, they ask to be 

disconnected. Messages and interrupts must be delivered without errors 

and in the order in which they are sent. Transport protocols are also 

called host-to-host, virtual circuit, or interprocess communication 

protocols. 

File Transfer Protocol (FTP) 

The purpose of FTP is to extend the file-system services available 

locally into a network environment. The services it provides include 

copying or appending from one file to another, deleting or renaming 

files, and listing the contents of file directories. The ability to 

partially retrieve or replace parts of files may also be provided. 

Since FTP operations may take significant amounts of time and resources, 

the ability to run them in "background" mode, as well as to inquire 

about their status or abort them, is also important. 
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SERVICE SPECIFICATIONS 

Now we will try to formally specify each of the three protocols 

described above, using the specification approaches mentioned. This 

will provide further details on each method and will reveal difficulties 

that arise in performing real specifications. 

SRI's High Level Development Methodology (HDM) [97,107] provides a 

well-developed example of the abstract machine model. The specification 

language in HDM, which is called SPECIAL, allows a rich variety of data 

types to be defined. The state of the machine is defined in terms of 

the values of "Vfunctions" which may be visible to users or hidden. 

Operations that change the state (set new values for Vfunctions) are 

called Ofunctions. Each Ofunction may have a number of "exceptions" 

defined which prevent the normal effects of the operation from taking 

place, and instead return an error code. 

The University of Texas GYPSY system [53,55] provides a well­

developed example of the agent model. The basic elements of Gypsy are 

processes and buffers. Processes may interact with each other only by 

sending messages through buffers. The effects of processes must be 

specified using entry and exit assertions, or with "block" assertions 

that are to hold whenever the process is blocked waiting to read or 

write a buffer. Typically, these assertions are made in terms of 

"buffer histories" or the sequences of messages sent to and received 

from particular buffers by particular processes. 
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There are numerous examples of transition-type agent models 

[13,20,98,125]. Rather than using any of these exactly, we have 

introduced our own form of transition model to demonstrate the 

similarities to the HDM model. As we shall see below, a machine model 

can be converted to a transition model by treating the operations as 

inputs and adding explicit outputs. 

Alternating Bit Protocol 

A simple ABP service specification in SPECIAL is presented in Fig. 

A.1 of App. A. (Information on SPECIAL syntax is also given.) The 

machine includes the de£inition of an abstract data type "msg," Send and 

Receive operations, and a buffer for the "state." This specification 

shows that the ABP service is essentially that of a queue of size one. 

It is important to note that SPECIAL specifications are not 

algorithmic. In particular, Ofunctions do not give a series of 

assignment statements, but rather present a set of expressions defining 

the new state after the operation completes. 

In addition to defining the individual operations, we would like to 

specify that the messages delivered by Receive are the same as the 

messages given to Send. This requires assertions about sequences of 

operations that are beyond the scope of the SPECIAL language. However, 

we can make these assertions in either of two ways. First, we could 

write a "program" for the ABP machine as follows: 



BEGIN 
Send(ml); 
m2 := Receive(); 
END 

-16-

Then we could assert that m2=ml when this program terminates. 

Hopefully, we could prove this assertion from the definition of the 

individual operations of the ABP machine, so we are not adding any new 

information. However, we may be expressing the service in a more 

convenient way. 

The second approach is to introduce some additional "ghost" 

variables or state to the ABP machine which allow us to write assertions 

about the whole sequence of Send and Receive operations. Such an 

augmented specification is given in Fig. A.2 of App. A, including 

correctness and liveness assertions which are once again outside the 

scope of SPECIAL. Note that we have extended the Send and Receive 

operations to place their message also into the new ghost variables 

Inseq and Outseq, respectively. 

Once again, we should be able to prove these assertions from the 

definitions of the individual operations. However, an interesting 

difficulty arises with the progress assertion. To prove this assertion, 

it is clearly necessary to assume that Receive operations are invoked in 

a timely fashion. That is, since the machine has no explicit output of 

its own, we must make assumptions about the behavior of the users of the 

machine in order to talk about progress. 

Unfortunately, neither of the above approaches to handling 

sequences of operations is directly accommodated in HDM. Assertions 
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such as those in Fig. A.2 of App. A are simply outside the scope of 

SPECIAL. To use the "program" approach, we would have to specify a 

hypothetical higher-level operation called Send_Receive, and then give 

its implementation as follows: 

OVFUN Send_Receive(msg ml) -> msg m2; 
EFFECTS 

m2 = ml; 

OVFUN FROG Send_Receive(msg ml) -> msg m2; 
BEGIN 
Send(ml); 
m2 :=Receive(); 
END; 

We could then use the verification tools of HOM (see below) to prove 

that the program for Send_Receive correctly implemented its 

specification, assuming the specification for the lower-level Send and 

Receive operations. However, the introduction of this higher-level 

operation is at best artificial. 

Buffer-history models are intended to facilitate specification of 

just such sequences of behavior. Fig. A.3 of App. A shows the ABP 

service specified in GYPSY. Note that the concept of buffers is part of 

the specification language, as are functions "allto" and "allfrom" on 

buffers that return the sequence of all messages sent to or received 

from a buffer. The Block statement in Fig. A.3 gives the service 

specification solely in terms of the input and output sequences of the 

ABP agent, without reference to any internal state. Progress is not 

included. 

To give a transition-type specification, we need to show the 

processing of each individual input. Fig. A.4 of App. A gives such a 
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specification in the GYPSY syntax, showing that there is only one type 

of input "event" for the transition machine: an arriving message. The 

action of the agent consists solely of copying the input message to the 

output. No state is necessary, although a temporary variable is used to 

hold the received message. 

Once again, the transition and buffer-history specifications give 

equivalent information, and it should be possible to prove the latter 

from the former. However, in this case both are expressable within the 

scope of the GYPSY system, and it is possible to deal with termination 

without making any assumptions about other agents that interact with 

this agent (i.e., its users). 

Transport Protocol 

A transport protocol includes features such as addressing, 

connections, flow control, and interrupts that are not found in the 

simple ABP. These services require more complex specifications. Once 

again we start with a machine model specification, as shown in Fig. A.S 

of App. A. 

Send and Receive operations are still present, but they now include 

exceptions for flow control and connection features. They also make use 

of a separately specified buffer module to allow multiple messages to be 

in transit at one time. 

Flow control is handled by a state variable that maintains the 

difference between credits given and messages sent. Violating the 

flow-control constraints is treated as an error, illustrating the use of 
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exception conditions and a "non-blocking" interface. However, these 

limits could also have been specified to block the operation by 

replacing the exceptions with a Delay statement such as "DELAY UNTIL 

Credit(me,him) > 0;". 

Interrupts provide a parallel channel for short messages with a 

simple one-at-a-time flow control, and hence are specified almost 

exactly as message transfer in the ABP. A major difference, however, is 

the introduction of multiple users and connections. The existence of 

multiple users requires inclusion of explicit addresses in all 

operations, to indicate which users are involved. 

Connections introduce the first service feature that is not data­

transfer oriented, but rather state oriented. Four states are needed to 

capture the notion of connection between a pair of users A and B: 

neither connected, A requesting connection to B, B requesting A, and 

both requesting. These four states are conveniently captured by the two 

boolean state functions Pconnected A,B and Pconnected B,A (where P means 

partially). These state functions summarize the results of previous 

Connect and Disconnect operations and thereby facilitate specification 

of the effects of new connection requests. 

An important feature of connection operations is that user B should 

be "notified" when user A requests a connection with him. Since the 

machine model has no explicit outputs, this means that user B must watch 

for a change in value of the Pconnected(x,B) Vfunctions. This suggests 

that users must interact with the machine model in a "polling" fashion 

by constantly invoking Vfunctions to see what has happened, rather than 
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being "prodded" by the service. Similar problems arise with interrupts 

and even with data messages. 

The same difficulties concerning specification of sequences of 

data-transfer operations, arise as in the ABP, but the "program" 

approach is no longer workable. Since the specification of the 

transport protocol allows multiple Sends to be done before any Receives 

(unlike the specification for ABP), programs would have to be written 

for the many possible permutations. Hence, specification in terms of 

input and output sequences seems the only viable solution. 

If we wish to specify a buffer-history-type model for TP, message 

transfer looks much as it does for the ABP. However, the addition of 

addresses makes it necessary to extract the messages between a pair of 

users from all the input and output, as shown in Fig. A.6 of App. A. 

The function Data transfer OK states that the output is an initial 

subsequence of the input between a given pair of users. A similar 

statement is also needed for interrupts. 

To specify flow control, we must have some way to count the number 

of messages sent and credits given. Since no state variables may be 

used, specification must be in terms of the size of the input sequences 

themselves, as shown in the function Flow control. This formulation is 

not totally satisfactory because although it describes correct behavior, 

it fails to tell what happens in the case of "bad" inputs. In 

particular, if a sender tries to send too many messages before credit is 

granted, the specification should state that they are "rejected." Then 

the output is no longer equal to the input of messages, but only to the 
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"accepted" messages. Thus buffer-history models appear to handle 

exception conditions poorly. 

Connections pose the most serious difficulties for a buffer-

history specification. It appears to be extremely difficult to describe 

the output sequence of Connect and Disconnect messages as any "closed 

form" function of the input sequence of those messages. The best that 

can be done is to define the handling of individual inputs as in a 

transition model. Thus the function Connection~OK in Fig. A.6 describes 

the handling of individual Connect and Disconnect inputs. Note that we 

have had to define input history sequences that are equivalent to the 

partially and fully connected states of the machine model. Expressing 

such state-oriented features with buffer histories seems cumbersome at 

best. It should also be noted that it is necessary to consider the 

relative timing of previous inputs from both users in order to specify 

the results of an input from one user. 

Figure A.7 in App. A presents a transition model of the TP service 

that is derived primarily from the machine model of Fig. A.S. Each 

Vfunction remains as a state function. Each Ofunction is converted to 

an input-handling routine to process the corresponding input to the 

agent. These input handlers produce explicit outputs--typically, a copy 

of their input--eliminating the need for the receiving operations of the 

machine model. However, since the state of the agent can no longer be 

observed by its users, we have had to add Give credit and Int ack 

outputs which are given to the sender to inform him of flow-control 

limits. Exception conditions are carried over unchanged, except they 

now cause an error message output to the sending user. 
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Either of the agent-type models allows formulation of assertions 

about sequences of operations such as, for example, that matching 

connection requests result in being fully connected, or that the number 

of Sends accepted must be less than the number of credits given. Both 

models also allow specification of "prodding" rather than polling-type 

service. 

It is interesting to note that the TP specified in Figs. A.S 

through A.7 is quite similar to the CCITT X.25 protocol if Resets are 

omitted. However, there is an important difference in view~oint. Our 

specification might be seen as defining the (end-to-end) service 

provided by a public network between its subscribers. This is 

definitiely not the intention of X.25, although it does imply some end­

to-end service features. Alternatively, our specification could be used 

to define the service provided by an X.25 "machine" whose users were the 

subscriber (DTE) on one side and the public network (DSE) on the other. 

This is closer to the intention of X.25's designers, but there is still 

a difference. Our service specification defines the user interactions 

with the X.25 machine which are missing from the CCITT specification. 

The X.25 protocol covers only the exchanges between the two entities 

which make up the machine, and thus it provides only a partial protocol 

specification and no service specification. 

File Transfer Protocol 

From an abstract service viewpoint, an FTP is not very different 

from a local file system. Since the purpose of FTP is to extend the 

operations of local file systems across a network, FTP is defined in 
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terms of those local operations. The key operation of copying a file 

from one system to another requires the definition of equivalence 

between files on different systems. To do this, we assume the existence 

of a function Canon(file) that transforms equivalent files on different 
systems to a canonical form which is identical. 

Figure A.8 in App. A presents an abstract machine-model service 

specification for FTP. The major state functions are Exist(file name), 

which defines whether a file exists, and Cont(file name), which holds 

the "contents" of the file. There is also a Status state function which 
returns the status of previously requested operations (e.g. done, error, 

in progress, etc.). The status is maintained by a separate table 

management module. FTP also calls on a TP module to supply data-

transfer service. 

The operations include functions to start and stop sessions with 

the FTP service (Ftp and Quit) and to request the usual file-system 

functions of copying, appending, deleting, and listing names of files. 

The results of these operations can be defined conveniently in terms of 
the current state or the new file-system state when the operation 

completes. A machine model is well-suited to specifying this type of 

self-contained operation, complete with numerous exception conditions 

that are important for file operations, as shown in Fig. A.8. 

The only major difficulty with FTP concerns specification of a 

"background" mode of operation. Unlike the "foreground" mode where each 

function is completed before control is returned to the caller, 

background-mode operations merely initiate functions before returning. 
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These functions are then completed by a background demon or server 

process, and the user must invoke a status operation to determine when 

the function is completed and what its outcome is. To define this type 

of service, we need to specify an initiating operation that returns a 

transaction id, a status operation, and a background process that 

completes the transaction. Then we can assert that if the status of the 

initiated transaction is "done," then its end results are true (e.g. for 

copying, file A equals file B). 

This problem can be handled in three ways: First, we can specify 

an initiating operation which "posts" the work to be done as part of the 

state, and a separate completing operation that completes the 

transactions that are posted. However, this begs the question of who is 

going to invoke the completing operation, and when they will do so, and 

it leaves us unable to prove termination without assuming the timely 

invocation of this operation by some unspecified outside user. A 

variation of this approach is to specify a higher-level operation whose 

effects are the desired end results and whose implementation is the 

parallel calling of the initiating and the completing operations; but 

this, too, is outside the machine specification and is somewhat 

artificial. 

The second approach is to push the definition of the server process 

into the implementation that does deal with programs. However, this 

leaves the end results of the background operation completely 

unspecified at the service level. In effect, we are relying on the 

implementation to do more than the service specification states, which 

seems highly unsatisfactory. 
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The third approach is to extend the machine model to include 

definition of cyclic '~rocesses" as part of the machine. Such processes 

would be defined just like other operations, with the understanding that 

they are constantly invocable (i.e., conceptually, they would be invoked 

after every normal operation). This approach is illustrated in Fig. A.B 

of App. A, where a Background_Server process is specified to complete 

the background-mode Copy and Append operations that are posted to be 

done by normal user operations. 

As with TP, the machine model of FTP could easily be converted to a 

transaction-type agent model. Background functions could be 

accommodated easily in the agent model by forking a process to do the 

background work and to also produce an immediate output when background 

commands were received. When the background process was done, a second 

output could be produced, relieving the user of the need to poll for 

completion. 

As expected for a specialized function protocol, the main portion 

of the FTP specification concerns the semantics of the specialized 

functions to be performed (e.g., file-system functions). The details of 

these functions are outside the scope of the protocol per se and would 

be defined in a separate file-system module. The main concern of the 

FTP service itself then becomes flow of control. In most cases this is 

a simple request/response interaction that is easily modeled with an 

abstract machine approach. However, the background mode of operation 

presents greater difficulties, as discussed above. 
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Swnmary 

In this section we have considered two basic models for describing 

protocol services: an abstract machine model where operations must be 

invoked, and an agent model where the service is an active process with 

inputs and outputs. We have used these models to specify three 

representative protocols (ABP, TP, and FTP) and have compared them, 

largely on the basis of their expressive power or their ability to 

completely and conveniently define the services of interest. 

Machine models successfully handle services that can be defined in 

terms of individual operations with specified effects on the state of 

the machine. These models provide a convenient means for handling 

exception conditions, but they do not easily accommodate several 

necessary aspects of protocol service specifications. First, assertions 

about sequences of operations are outside the model. Since they have no 

explicit output, only "polling" interfaces with the user can be defined; 

prodding-type interfaces cannot be defined. Also because outputs are 

lacking, it is necessary to make assumptions about the behavior of the 

machine's users in order to talk about termination. Finally, in order 

to specify background modes of operation, it is necessary to include 

"users" who are really part of the service, or to include cyclic 

processes in the specification. 

Agent models handle these difficulties more successfully. 

Transition-type agents retain most of the benefits of machine models in 

defining the handling of individual inputs. Buffer-history-type agents 

facilitate assertions about sequences of operations but have difficulty 
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with state-oriented service features and exceptions. It appears that 

both sorts of specification are useful for particular aspects of 

service--transitions for state-oriented features like connection 

establishment, and buffer histories for data transfer. Fortunately, 
these approaches can be mixed within the framework of agent models such 

as the GYPSY system. 

We have focused on comparing the expressive power of different 

service-specification methods in this section. However, ease of 

implementation and verification are also important considerations, and 

we shall return to these subjects later. 

PROTOCOL SPECIFICATIONS 

The distinction between abstract machine and agent models carries 

over to protocol specifications. In the SRI HDM machine model, each 

Vfunction of the service machine must be "mapped" to Vfunctions in 

lower-level machines, and each Ofunction in the service machine must be 

implemented as a program which invokes operations of lower-level 

machines. Hence the protocol specification consists of a combination of 

these programs, plus some of the lower-level machine definitions. In 

the agent model, each service agent is typically implemented as a set of 

cooperating lower-level agents. Hence the protocol specification is 

just another agent specification. 

This section presents protocol specifications in both of these 

models and compares the results. Since the protocol specification is 

several times longer than the service specification, we have limited 
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detailed discussion to the ABP. This is sufficient to reveal the major 

differences, and examples from the other protocols are included when 

useful. 

Figure B.l of App. B shows an abstract machine specification that 

implements the ABP service shown in Fig. A.l. The first part of the 

example gives the program for each of the Ofunctions in the ABP service. 

This program calls functions in the lower-level machines which are 

defined next. These include a Send Station and a Receive Station which 

form part of the protocol. These trivial machines are needed to hold 

the sequence number and message-text-state information for the protocol. 

There are specifications for a medium in both directions (sender to 

receiver and receiver to sender). These define the service provided by 

the lower-level protocol--in this case, a simple link which can lose 

packets (it is assumed that damaged packets are discarded). We have 

included a limit on the number of messages that may be lost to 

illustrate one method for constraining loss to facilitate termination 

proofs. There are also specifications for a timer machine used by the 

sender, and finally a mapping of the state functions which show that the 

buffer at the service level actually corresponds to the buffer in the 

Receive Station at the protocol level. 

The non-determinism of the medium introduces an interesting 

problem. In the machine model, each operation invoked at the service 

level may lead to a sequence of operations at lower levels, but all of 

the low-level operations must complete before the top-level operation 

returns. Thus the top-level Send operation leads to a series of 
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Send~Data operations until a proper acknowledgment is received. The 

receiver needs to execute a corresponding series of Receive Data 

operations, but he has no way of knowing when he can stop trying to 

receive~ because although he may receive a proper data message and 

acknowledge it, his acknowledgment may be lost. Hence he must continue 

to accept messages and acknowledge them to satisfy the sender v1ho is 

waiting for an acknowledgment. 

Such a receiver can be specified only as a cyclic process that runs 

across the boundaries of individual Send operations. We have taken the 

liberty of extending the machine model to include a program for such a 

process which does not correspond to any operation at the service level, 

but rather runs continuously once the service machine is initialized. 

Figure B.2 of App. B shows an agent-model specification that 

implements the service shown in Fig. A.3. The ABP agent's 

"implementation" is just a skeleton that starts five other agents in 

parallel and sets up the appropriate interconnection of their inputs and 

outputs. The sender and receiver agents define the protocol and make 

use of the two medium agents and a timer as before. 

It is interesting to note that while the high-level service is 

specified with a buffer-history-type model, the protocol agents are 

specified with a transition-type model. This is convenient because the 

outputs of the protocol agents are much more complex functions of their 

inputs than are those at the service level. 
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While this transition specification is convenient for descriptive 

and perhaps implementation purposes, it is probably insufficient for 

verification purposes; some additional assertions relating the inputs 

and outputs of each protocol agent would be needed for verification. We 

have tried to include a few examples of such buffer-history assertions, 

but those given are probably inadequate. The construction of such 

assertions is one of the known difficulties of most program­

verification methods. 

Most existing protocol-specification efforts fall into the agent 

category, although the explicit distinction between abstract machine and 

agent models has not been made at the protocol level. A variety of 

transition models have been adapted and/or applied to protocol problems 

[13,85,115). Most of these define a limited explicit state with 

additional "context" information or state variables. There have also 

been a number of protocol specifications using more-or-less abstract 

programming-language approaches [11,108]. 

In reality, these approaches are not so different. On the 

programming-language side, it is possible to define a "state" variable 

in a program and dispatch to different processing routines, on the basis 

of state and input type; transition models, however, often depend on 

program-language descriptions to define their use of context 

information. Thus a number of hybrid models that use transition models 

for a limited set of explicit major or control states and programs to 

define the use of additional state information have been proposed 

[20,39]. 
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IV. VERIFICATION METHODS 

This section presents an extensive, high-level review of approaches 

to protocol verification. After discussing the general outlines of what 

can be verified, we review each major approach and discuss various 

methods for dealing with protocol complexity. 

WHAT CAN BE VERIFIED -----

The overall verification problem may be divided along two axes, 

each with two categories. On one axis, we distinguish between general 

and specific properties. On the other, we distinguish between partial 

correctness and termination or progress. 

General properties are those properties common to all protocols 

that form an implicit part of all service specifications. Foremost 

among these is the absence of deadlock (the arrival in some system state 

or set of states from which there is no exit). Completeness, or the 

provision for all possible inputs, is another general property which 

requires only the specification of the input set in order to be checked. 

Progress or termination also require minimal specification of what 

constitutes "useful" activity or the desired final state. 

Specific properties of the protocol, on the other hand, require 

specification of the particular service to be provided. Examples 

include reliable data transfer in TP, copying a file in FTP, and 

clearing a terminal display in a virtual terminal protocol. Definition 

of these features make up the bulk of service specifications. 
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On the other axis, partial correctness usually means that if the 

protocol service performs any action at all, it will be in accord with 

its specifications. For example, if TP delivers any messages, they will 

be to the correct destination, in the correct order, and without errors. 

Termination or progress means that the specified services will actually 

be completed in finite time. In the case of logical verification, which 

is the subject of this Note, it is sufficient to ascertain a finite time 

delay. In cases where the efficiency and responsiveness of the protocol 

must be verified, it is clearly necessary to determine numerically the 

expected time delay, throughput, etc. 

VERIFICATION ~:IETHODS 

Verification efforts to date have largely started from protocol 

specifications, without having any comprehensive service definition; 

therefore they have generally been shaped by the approach to protocol 

specification used. As a result, two major verification methods have 

evolved: reachability analysis for protocols expressed with state­

transition models, and program proofs for protocols expressed in 

programming-language models. 

Reachability analysis is based on exhaustively exploring the 

possible interactions of two (or more) entities within a layer. A 

composite or global state of the system is defined as a combination of 

the states of the cooperating protocol entities and the lower-layer 

service connecting them. From a given initial state, all possible 

transitions (user commands, timeouts, message arrivals) are generated, 

leading to a number of new global states. This process is repeated for 
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each of the newly generated states until no new states are generated 

(some transitions lead back to already generated states). For a given 

initial state and set of assumptions about the underlying protocol (the 

type of service it offers), this type of analysis determines all of the 

possible outcomes that the protocol may achieve. References 13 and 21 

provide a clear exposition of this technique. 

Reachability analysis is particularly straightforward to apply to 

transition models of protocols which have explicit states and/or state 

variables defined. It is also possible to perform a reachability 

analysis on program models by establishing a number of "break points" in 

the program that effectively define control states [65]. Symbolic 

execution (see below) may also be viewed as a form of reachability 

analysis. 

Reachability analysis is well-suited to checking the general 

correctness properties described above, because these properties are a 

direct consequence of the structure of the reachability graph. Global 

states with no exits are either deadlocks or desired termination states. 

Similarly, situations ~'here the processing for a receivable message is 

not defined or where the transmission-medium capacity is exceeded are 

easily detected. The generation of the global state space is easily 

automated, and several computer-aided systems for this purpose have been 

developed [39,65,94,98]. 

The major difficulty of this technique is "state explosion." The 

size of the global state space may grow rapidly with the number and 

complexity of protocol entities involved and the underlying layer's 
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services. Therefore, to keep the state model manageable (and 

comprehensible), in most cases only the major "control" variables are 

explicitly represented as states as described in Section II. Hence only 

the control portion of the protocol services is verified by reachability 

analysis. For example, state exploration of the ABP as in Refs. 13 and 

20 can show the absence of deadlocks and can show that each message sent 

results in a message delivered, but the equality of the text of the 

input and output messages must be verified by other means, since the 

text of the message is not part of the explicit state. Techniques for 

dealing with this problem are discussed below. 

The program-proving approach involves the usual formulation of 

assertions that reflect the desired correctness properties. Ideally, 

these would be supplied by the service specification, but as noted 

above, services have not been rigorously defined in most protocol work, 

so the verifier must formulate appropriate assertions on his own. The 

basic task is then to show (prove) that the protocol programs for each 

entity satisfy the high-level assertions. This often requires the 

formulation of additional low-level assertions at appropriate places in 

the programs [11,108]. 

A major strength of this approach is its ability to deal with the 

full range of protocol properties to be verified, rather than with only 

general properties. Ideally, any property for which an appropriate 

assertion can be formulated can be verified, but formulation and proof 

often require a great deal of ingenuity. Only modest progress has been 

made to date in the automation of this process. 
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While a large body of work on general program proof exists, several 

characteristics of protocols pose special difficulties in proofs. These 

include concurrency of multiple protocol modules and physical separation 

of modules so that no shared variables may be used. A further 

complication is that message exchange between modules may be unreliable, 

requiring methods that can deal with nondeterminism. 

A particular form of proof that has been used for protocols with 

large numbers of interacting entities (e.g., routing protocols) has been 

called "induction on topology" [85]. The desired properties are first 

shown to be true for a minimum subset of the entities, and then an 

induction step is proved showing that if the properties hold for a 

system of N entities, they also hold for N+l entities. 

As with specification, a hybrid approach promises to combine the 

advantages of both techniques. By using a state model for the major 

states of the protocol, the state space is kept small, and the general 

properties can be checked by an automated analysis. Other properties, 

for which a state model would be awkward (e.g., sequenced delivery), can 

be handled by assertion proofs on the variables and procedures that 

accompany the state model. Such combined techniques are described in 

Refs. 9 and 12. 

When an error is found by some verification technique, the cause 

must still be determined. Many transitions or program statements may 

separate the cause from the error which results, for example, when the 

acceptance of a duplicate packet at the receiver is caused by the too 

rapid reuse of a sequence number at the sender. In some cases, the 
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protocol may be modeled incorrectly, or the correctness conditions 

(i.e., service specification) may be formulated incorrectly. In other 

cases, undesired behavior may result from transmission-medium properties 

that were not expected when the protocol was designed (e.g. reordering 

of messages in transit). Even when an automated verification system is 

available, considerable human ingenuity is required to understand and 

repair any errors that are discovered. 

Another, more recent approach to achieving correct protocols may be 

described as development of design rules or sufficiency criteria. In 

this method, design rules are formulated which are sufficient to 

guarantee that a set of interacting entities designed according to the 

rules will obey certain properties. As an example, to guarantee 

completeness, each Send transition added to one entity should have a 

corresponding Receive transition added to its partner(s). Further 

examples are provided in Ref. 136. While the use of such rules avoids 

the need for any post-design verification of the properties covered, 

rules for only a limited set of properties have been developed to date. 

A related approach that also builds correctness into the design 

process may be described as a "transformational" method. In this 

approach, a set of previously defined transformations are applied to the 

service specification, each one carrying it closer to the desired 

protocol design. Each transformation has been verified to maintain 

"equivalence" of the system, so the final result is guaranteed to 

properly implement the original specifications. An example of such a 

transformation might be the converting of a copy or assignment operation 

at the service level into a pair of sending and receiving processes that 
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use a positive acknowledgment/retransmission protocol between 

themselves. While this technique has been applied to other software 

design problems, its use with protocols is still untested. 

~lliTHODS FOR REDUCING COMPLEXITY 

A major difficulty for protocol verification by any method is the 

complexity of the global system of interacting protocol entities, also 

termed "state space explosion." The following methods may be used to 

reduce this complexity and facilitate verification (several of these 

points are due to Bachmann [14)). 

(1) Partial description and verification: Depending on the 

description method used, only certain aspects of the protocol are 

described. This is often the case for transition diagram descriptions 

which usually capture only the rules concerning transitions between 

major states, ignoring details of parameter values and other state 

variables. 

(2) Choosing large units of actions: State space explosion may 

result from the interleaving of the actions executed by the different 

entities. For example, the preparation and sending of a protocol data 

unit by an entity may usually be considered an indivisible action which 

proceeds without interaction with the other entities of the system. The 

execution of such an action may be considered a single "transition" {75] 

in the global protocol description. 

A particularly powerful application of this idea is that of 

considering only states where the transmission medium is empty. Such an 
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"empty medium abstraction" [19] is justified when the number of messages 

in transit is small. In this case, previously separate sending and 

receiving or sending and loss transitions of different entities can be 

combined into single joint transitions of both entities. 

(3) Decomposition into sublayers: The decomposition of the 

protocol of a layer into several sublayer protocols simplifies the 

description and verification, because the protocol of each sublayer may 

be verified separately. An example of this idea is the decomposition of 

HDLC into the sublayers of bit-stuffing, check-summming, and elements of 

procedure, and the division of the latter into several components as 

described in Ref. 19. 

(4) Classifying states by assertions: Assertions which are 

predicates on the set of all possible system states may be formed. 

These define a set of states for which each predicate is true. One may 

then consider each set of states collectively in reachability analysis 

instead of considering individual states. By making an appropriate 

choice of predicates (and therefore classes of states), the number of 

cases to be considered may be reduced considerably. This method is 

usually applied for protocol descriptions involving program variables. 

Typically, the assertions depend on some variables of the entities and 

the set of messages in transit (through the layer below) [108,11]. 

Symbolic execution [24] may be viewed as a form of reachability 

analysis which reduces the number of distinct global states by using 

symbolic variables to define large classes of states that may be 

considered together. In symbolically executing the global system, new 
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states are created at each decision point. Each new state corresponds 

to a possible outcome of the decision, with predicates associated with 

it reflecting the conditions necessary for this state to be reached. 

Whenever possible, the predicates are simplified (symbolically), using 

axioms that define the types of the variables (e.g., integers, strings, 

etc.). As an example of the savings which may result, instead of 

treating all possible values of a sequence countervariable explicitly as 

different states, it may be possible to consider only the three 

conditions where the variable is "less than", "equal to", or "greater 

than" some symbolic value. 

(5) Focusing search: Instead of generating all possible states, 

it is possible to predetermine potential global states with certain 

properties (e.g., deadlocks) and then check whether they are actually 

reachable [39]. 

(6) Automation: Some steps in the analysis process may be 

performed by automated systems, a few of which have been developed 

[24,39,53,65,94,98,125]. However, the use of these systems is not 

trivial, and much work goes into representing the protocol and service 

in a form suitable for analysis. Human intervention is needed in many 

cases for distinguishing between useful and undesired loops, or for 

guiding the proof process. 
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V. USES OF FORMAL TECHNIQUES 

This section presents a (certainly incomplete) list of cases where 

formal methods were successfully used for designing data communication 

and computer network protocols. In some cases, the formal description 

was made after the system design was essentially finished, and served 

for an additional analysis of correctness and efficiency or as an 

implementation guide. In other cases, the formal description was used 

as a reference document during the system design. The references, 

indexed by keyword, provide further details on these and other examples. 

The end-to-end transport protocol of the French computer network 

Cyclades was first specified in a semiformal manner, using a high-level 

programming language. This specification was the basis for the 

different protocol implementations in different host computers. Some of 

these implementations were obtained through a description in a macro­

language, derived from the original protocol specification [138]. The 

same specification was also the basis for simulation studies which 

provided valuable results for the protocol validation and performance 

evaluation [81,X48]. A formalized specification of the protocol has 

also been given using a hybrid model with state machines augmented by 

context information and processing routines [40]. 

The procedures for the internal operation of the Canadian public 

data network Datapac were described by a semiformal method using state 

diagrams and a high-level programming language for the specification of 

the communicating entities [X49]. This description was very useful for 

doing semiformal verifications of the protocols during the design phase 
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and served as a reference document during the implementation and testing 

phases of the system development. 

A formal description method was used during the design of several 

interface standards for the interconnection of minicomputers with 

measurement and instrumentation components [126,127]. The relatively 

concise description of the protocols was used as a means for 

communication between the members of the standards committees and for 

the verification of the design. It is also part of the final standard 

documents. 

The HDLC link protocol has been specified with a regular grammar 

model [68] that incorporated an indexing technique to accommodate 

sequence numbering. The same protocol has also been specified with a 

hybrid model combining state transitions with context variables and 

high-level language statements [19]. The latter technique also heavily 

employed decomposition to partition the protocol into seven separate 

components and was used in obtaining an implementation of the HDLC 

link-level procedures of X.25 [18]. 

IBM's SNA has been specified with a hybrid model using state 

machines augmented by context information and processing routines 

[14,73]. Hierarchical decomposition is heavily used to create a large 

number of more manageable modules. 

Call establishment in the CCITT X.21 protocol has been modeled with 

a state-transition-type model and analyzed with a form of reachability 

analysis [131]. The analysis checked for general correctness properties 

of completeness and deadlock, and uncovered a number of completeness 
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errors (i.e., a protocol module received a message for which no 

processing was defined). 

Virtual circuit establishment in the CCITT X.25 protocol has been 

modeled with a state transition model and analyzed with a manual 

reachability analysis [13]. The analysis showed that the CCITT 

specification was ambiguous and that several cycles with no useful 

progress could persist if the protocol once entered certain 

unsynchronized states. 

Connection establishment in the transport protocol for the ARPANET 

(TCP [X29]) has been partially modeled with a hybrid state-transition 

model and validated with a manual reachability analysis [114]. An 

automated reachability analysis [65] was also used on a simplified model 

and revealed an error in sequence-number handling and incorrect modeling 

of the transmission medium. 

A general-purpose data-transfer protocol has been modeled with a 

high-level programming language and verified using manual program-

proving techniques [11,108]. (However, Hajek [65] has identified 

several flaws in the verification in [11].) The protocol includes 

window-based flow control and a large but finite sequence number space. 

A simple data-transfer protocol has been analyzed with a transition 

model augmented with time constraints to show that proper data transfer 

requires certain time constraints to be maintained between 

retransmission, propagation, and processing times [88]. 
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A simplified version of the ARPANET communications subsystem has 

been modeled with a high-level programming language and verified using 

partially automated program-proving techniques [53,55]. Program modules 

can be both comprehensively verified in advance and checked against 

their specifications at run time for the particular inputs that occur. 

A complete software engineering system called GYPSY provides a unified 

language for expressing both specifications and programs, so that high­

level specifications in the design can be progressively refined into 

detailed programs. A management system maintains the implementation and 

verification status of all system components under development. 

Connection establishment between a requester and a shared server 

process (the ARPANET Intial Connection Protocol) has been modeled with a 

state-transition model and analyzed by an automated reachability 

analysis [94]. The analysis showed that one of a pair of simultaneous 

requests for service might be rejected. A revised version of the 

protocol was shown to eliminate this error. The same analysis technique 

was also used to validate a simple data-transfer protocol. 

A basic data-transfer protocol has been specified using a formal 

language model (BNF) to describe the syntax of both interactions bet~veen 

protocol modules and the detailed structure of individual messages 

[121]. This specification may be directly used to drive a "recognizer" 

for the language (protocol). Additional processing routines to perform 

the "semantics" of the protocol must be added to the grammar-driven 

recognizer. 
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A simple link protocol has been specified with a specialized flow­

chart-type model, along with a means for automatically converting the 

flowcharts to equivalent data and control networks that are directly 

realizable in hardware [60]. 
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VI. CONCLUSIONS 

Protocol specification requires a clear definition of both the 

services to be provided by a given protocol layer and the protocol 

entities within the layer that cooperate to provide the services. 

Design verification then consists of showing that the interaction of 

entities is indeed adequate to provide the specified services, while 

implementation verification consists of showing that the implementations 

of the entities satisfy their (abstract) protocol specifications. A 

useful subset of design verification may be described as verification of 

"general properties" such as deadlock, looping, and completeness. These 

properties may be checked for most protocols without requiring any 

particular service specification. 

Most protocol design and analysis work to date has proceeded 

without a comprehensive specification of the services to be provided by 

a protocol to its users. Hence a major focus of our work has been to 

explore techniques for formally specifying protocol services. Two major 

approaches from the general software-specification domain were 

identified and applied to a set of example protocols: an abstract 

machine model that defines operations that may be invoked, and an agent 

model where the service is an active process with inputs and outputs. 

Machine models successfully handle services that can be defined in 

terms of individual operations with specified effects on the state of 

the machine. These models provide a convenient means for handling 

exception conditions, but they do not easily accommodate several 

necessary aspects of protocol service specifications. Assertions about 
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sequences of operations are outside the model. Since they have no 

explicit output, only "polling" and not "prodding"-type interfaces with 

the user can be defined. In addition, it is necessary to make 

assumptions about the behavior of the machine's users in order to talk 

about termination. To overcome some of these problems, it appears 

necessary to include "users" who are really part of the service, or to 

include cyclic processes in the specification. 

Agent models handle these difficulties more successfully. 

Transition-type agents retain most of the benefits of machine models in 

defining the handling of individual inputs. Buffer-history-type agents 

facilitate assertions about sequences of operations but have difficulty 

with state-oriented service features and exceptions. It appears that 

the two sorts of specification are useful for different aspects of 

service--transitions for state-oriented features like connection 

establishment, and buffer histories for data transfer. 

f'lost verification efforts to date fall into either state­

exploration or program-proving categories. The former type is 

straightforward to accomplish and has been automated to some extent, but 

it can deal only with the major states or "control" aspects of a 

protocol. The latter technique can in principle verify all features of 

a specification, but a great deal of ingenuity is required to construct 

proofs of even simple systems. 

Several newer techniques promise to reduce some of these 

difficulties. "Unified" methods use state exploration of major states 

to facilitate program proofs of additional properties involving the 
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other state variables of the protocol. Symbolic execution exploits the 

ability to group classes of system states in order to minimize the size 

of the state space that must be explored. Both design rules and 

transformation methods promise to eliminate the need for post-design 

verification altogether by constraining the design process to follow 

correct paths. All of these techniques require further research before 

their effectiveness can be evaluated. 

It is clear from the references that the use of more formal 

techniques has already had a positive impact on the protocol design 

process. State-exploration techniques for verifying general properties 

are fairly well understood and have the potential for routine 

application in the near future. Use and development of more powerful 

verification techniques require a high level of skill in formal methods 

and must still be considered research problems. A great deal of work 

remains to be done in developing techniques that are routinely and 

widely applicable. 
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MODULE AB Protocol $ "Alternating bit" is an implementation detail 
not visible in this specification. 

TYPES 
msg: VECTOR OF CHAR EMPTY; 

PARA1'1ETERS 
msg EMPTY; $ Reserved value of message buffer 

FUNCTIONS 

VFUN Buf() -> msg m; 
HIDDEN; 
INITIALLY m = EMPTY; 

OFUN Send(msg m); 
DELAY UNTIL Buf() 
EFFECTS 

'Buf() = m; 

EMPTY; 

OVFUN Receive() -> msg m; 
DELAY UNTIL Buf() -= EMPTY; 
EFFECTS 

m = Buf(); 
'Buf() = EMPTY; 

E~~ MODULE AB_Protocol; 

Notes: 

All text following $ is comment. Keywords are written in upper case. 

The Types paragraph defines abstract data types from known types. 

The Parameters paragraph defines constants or functions set outside 
this module. 

The Functions section defines value-returning functions (VFUNs) which 
represent the state of the machine, and value-setting functions (OFUNS). 
Functions which both set and return values (OVFUNs) are also allowed. 

VFUNs may be visible (the default) or hidden from the users of the 
machine. Each VFUN must have its initial value defined. 

OFUNS may have an Exceptions section defining named exception conditions 
which cause an error return, a Delay condition which causes the 
operation to wait until the condition is satisfied, and an Effects 
section which defines the effects of the operation in terms of the new 
values given to VFUNs. New values for VFUNs (after the operation is 
complete) are denoted with a single quotation mark ('). 

Fig. A.l--Alternating bit protocol service specification in SPECIAL 
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MODULE AB_Protocol 

TYPES 
msg: VECTOR OF CHAR; 

DEFINITIONS 
Append(msg m, VECTOR OF msg v) IS 

VECTOR( FOR i FROM 1 TO LENGTH(v) + 1: 
IF i <= LENGTH(v) THEN v{i] ELSE m); 

FUNCTIONS 

VFUN Buf() -> rnsg m; 
HIDDEN; 
INITIALLY m = EMPTY; 

OFUN Send(msg m); 
DELAY ~~IL Buf() = EMPTY; 
EFFECTS 

'Buf() = m; 
'Inseq() = Append(m,Inseq()); $ Ghost variable 

OVFUN Receive() -> msg m; 
DELAY UNTIL Buf() -= EMPTY; 
EFFECTS 

m = Buf(); 
'Outseq() = Append(Buf(),Outseq()); 
'Buf() = EMPTY; 

$ Ghost variables for use in assertions. 
\~UN Inseq() -> VECTOR OF msg v; 

HIDDEN; 
INITIALLY v =VECTOR (); 

VFUN Outseq() -> VECTOR OF msg v; 
HIDDEN; 
INITIALLY v =VECTOR (); 

END MODULE AB_Protocol; 

$ Ghost variable 

Fig. A.2--Alternating bit protocol service specification in SPECIAL, 
with added assertions 
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Assertions 

Notes: 

$ Correctness: Output is initial subsequence of input 
FORi FROM 1 TO LENGTH(Outseq()): Outseq[i) = Inseq[i]; 

$ Progress: All input reaches output in finite time 
IF (SOME INTEGER i l i ; LENGTH(Inseq())) > LENGTH(Outseq()) 

THEN "after finite time" LENGTH(Outseq()) = i; 

The Definitions paragraph defines "macro"-type substitutions for use 
in the body of the module. 

The built-in Vector data type is indexed from 1. 

Fig. A.2 (cont'd) 
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SCOPE AB Protocol = 
BEGIN 

TYPE msg_unit = SEQUENCE OF CHARACTER; *Basic unit for transmission* 
TYPE info buf = BUFFER OF msg_unit; 

PROCEDL~ AB Protocol (info sent: info buf <INPUT> 
info delivered: info_buf <OUTPUT>) = 

BEGIN 
BLOCK ALLFROM(info_sent) 

END; 

END; 

Notes: 

ALLTO(info_delivered); 

Keywords of GYPSY are written in upper case. 

The parameters of a process in GYPSY define the buffers that 
interconnect it with other processes. In this case, process AB Protocol 
has one buffer of msg_units which it uses only for input, and one buffer 
of msg_units which it uses only for output. 

The term "block" is shorthand for the condition "when blocked waiting to 
receive from an input buffer." 

The functions Allfrom and Allto return, respectively, the sequences of 
all messages received from and sent to the buffer given as argument. 
(The "activation ID" parameter which selects for a specific process 
has been omitted throughout.) 

Fig. A.3--Alternating bit protocol service specification in GYPSY-­
buffer-history-type model 
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SCOPE AB_Protocol ~ 

BEGIN 

TYPE msg_unit 
TYPE info buf 

SEQUENCE OF CHARACTER; *Basic unit for transmission* 
BUFFER OF msg_unit; 

PROCEDURE AB Protocol (info sent: info buf <INPUT> 
info_delivered: info buf <OUTPUT>) = 

BEGIN 
VAR msg: msg_unit; 
LOOP 

AWAIT 
ON RECEIVE msg FROM info sent THEN ( 

SEND msg TO info_delivered; ) 
END; 

END; 

END; 

Notes: 

The "var" statement declares a local variable msg of type msg_unit. 

The "await" statement waits until one of its receive clauses is satisfied 
(i.e., until input is available from the specified buffer) and then 
performs the "then" portion of the clause. 

Send and Receive are defined as blocking operations on the buffers 
available to a process (i.e. Receive blocks until its buffer is not empty, 
and Send blocks until its buffer is not full). 

Fig. A.4--Alternating bit protocol service specification in GYFSY-­
transition-type model 



MODULE Transport_Station 

TYPES 
interrupt: INTEGER 0 .. 255; 
port: INTEGER; 

PARAMETERS 
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buffer B(port i,j); $ Mapping from ports to buffer id; 
INTEGER empty; 

EXTERNALREFS 
from Buffer: 

buffer: DESIGNATOR; 
msg: VECTOR OF CHAR; 
OFUN Put(msg m; buffer b); 
OVFUN Get(buffer b) -> msg m; 
BOOLEAN Full(buffer b); 
BOOLEAN Empty(buffer b); 

FUNCTIONS 

VFUN Pconnected(port i,j) -> BOOLEAN n; 
INITIALLY n = FALSE; 

VFUN Connected(port i,j) -> BOOLEAN n; 
DERIVED; n = Pconnected(i,j) AND Pconnected(j,i); 

VFUN Credit(port i,j) -> INTEGER n; 
EXCEPTIONS 

no connection: -Connected(i,j); 
INITIALLY n = 0; 

VFUN Int(port i,j) -> interrupt x; 
HIDDEN; INITIALLY x = empty; 

OFUN Connect(port me,him); 
EXCEPTIONS 

already: Pconnected(me,him); 
EFFECTS 

Pconnected(me,him) = TRUE; 

OFUN Disconnect(port me,him); 
EXCEPTIONS 

no connection: -Pconnected(me,him) AND -Pconnected(him,me); 
EFFECTS 

'Pconnected(me,him) = FALSE; $ one side disconnects both; 
'Pconnected(him,me) =FALSE; 
'Int(me,him) = empty; 
'Int(him,me) =empty; 
EFFECTS OF Clear buf(me,him); 
EFFECTS OF Clear=buf(him,me); 

Fig. A.5--Transport protocol service specification in SPECIAL 
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OFUN Send(port me,him; data_msg m); 
EXCEPTIONS 

no_connection: 
flow limit: 

EFFECTS 

-Connected(me,hirn); 
Credit(me,him) = 0; 

EFFECTS OF Put(B(me,him,),m); 
'Credit(me,him) = Credit(me,him) ~ 1; 

OVFUN Receive(port me,him) -> msg m; 
EXCEPTIONS 

no connection: -Connected(me,him); 
empty: Empty(B(him,me)); 

EFFECTS 
m = Get(B(himjrne)); 

OFUN Give_Credit(port me,him); 
EXCEPTIONS 

no_connection: -Connected{me,him); 
EFFECTS 

'Credit(him,rne) = Credit(him,me) + 1; 

OFUN Send Int(port rne,him; interrupti); 
EXCEPTIONS 

no connection: -Connected(rne,him); 
fl~~'i'_limit: Int(me,him) -= empty; 

EFFECTS 
'Int(rne,him) = i; 

OVFUN Receive_Int(port me,him) -> interrupt i; 
EXCEPTIONS 

no connection: -Connected(me,him); 

$ no blocking 

empty: Int(him,me) = empty; $ no blocking 
EFFECTS 

i = Int(him,me); 
'Int(him,me) =empty; 

END MODULE Transport_Station; 

Notes: 

See notes for Fig. A.l. 

The Externalrefs paragraph lists operations and data types defined in 
other modules--in this case, a separate buffer module which follows. 

The Designator type used for buffers allows creation of buffer objects 
with the New operation, which returns a pointer to the object. 

Fig. A.S (cont'd) 



-72-

MODULE Buffer 

TYPES 
buffer; DESIGNATOR; 
msg; VECTOR OF CHAR; 

DEFINITIONS 

BOOLEAN Full(buffer b) IS LENGTH(b) >~ Max_size(b); 

BOOLEAN Empty(buffer b) IS LENGTH(b) = 0; 

VECTOR OF msg Append(msg m, VECTOR OF msg v) IS 
VECTOR( FOR i FROM 1 TO. LENGTH(v) + 1: 

IF i <= LENGTH(v) THEN v[i} ELSE m); 
FUNCTIONS 

VFUN Buf(buffer b) -> VECTOR OF msg buf; 
HIDDEN; INITIALLY buf =VECTOR(); 

VFUN Max_size(buffer b) -> INTEGER i; 
HIDDEN; INITIALLY i = D; 

OVFUN Create_buf(INTEGER sz) -> buffer b; 
EXCEPTIONS 

resource error: RESOURCE ERROR; 
EFFECTS 

b = NE\V'(buffer); 
'Max_size(b) = sz; 

OFUN Clear_buf(buffer b); 
EXCEPTIONS 

nonexistent: Max_size(b) = 0; 
EFFECTS 

'Buf(b) =VECTOR(); 

OFUN Put(buffer b; msg m); 
EXCEPTIONS 

nonexistent: Max size(b) = 0; 
DELAY UNTIL -Full(b)i 
EFFECTS 

'Buf(b) = Append(m, Buf(b)); 

OFUN Get(buffer b) -> msg m; 
EXCEPTIONS 

nonexistent: Max_size(b) = 0; 
DELAY UNTIL -Empty(b); 
EFFECTS 

m = Buf (b) [ 1] ; 

$ empty vector 

'Buf(b) =VECTOR( FORi FROM 2 TO LENGTH(Buf(b)): Buf(b)[i]); 

END MODULE Buffer; 

Fig. A.5 (cont'd) 



Scope Transport_Protocol = 
Begin 

type msg:record(from: portid; 
to: portid; 
text: string; ); 

type int:record(from: portid; 
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to: portid; 
interrupt:integer; ); 

type control:record( 
op: one of (credit, ack, connect, disc, error); 
from: portid; 
to: portid; ); 

type msgbuf: buffer of msg; 
type intbuf: buffer of interrupt; 
type cntrlbuf; buffer of control; 

process Transport_Protocol( 

Begin 

msg_in: msgbuf <input>; 
msg_out: msgbuf <output>; 
int_in: intbuf <inbuf>; 
int_out: intbuf <output>; 
cntrl_in: cntrlbuf <input>; 
cntrl_out: cntrlbuf <output>; ) = 

Block 

End; 

Data transfer OK(); 
Flow-control OK(); 
Conn~ction_OK(); 

function Data transfer OK() = 
* Mes;ages delivered from S to D are initial subsequence of 

messages sent from S to D * 
forall adr:source 

forall adr:dest 
extract msg out(source, dest) is an initial sequence of 

ext~act=msg_in(source,dest); 

function extract_msg_out(adr: from, to) = 
subsequence of msg m in allto(msg_out) 

m.from = source and m.to = dest; 

Fig. A.6--Buffer-history-type transport protocol service specification 
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function extract msg in(adr: from, to) ~ 
subsequence of msg m in allfrom(msg_in) 

m.from = source and m.to = dest; 

function Flow_control_OK() = 
* Number of messages sent from S to D <= number of credits 

sent from D to S ~ 
forall adr:source 

forall adr:dest 
size(extract msg out(source, dest)) <= 

size(ext~act=credit_in(dest,source); 

function extract credit in(adr: from, to) = 
subsequence of contr~l c in allfrom(cntrl_in) : 

m.op = credit and m.from = source and m.to = dest; 

function Connection OK() = 
* results of connect * 

if Last(extract con in(i,j)) = connect(i,j) and 
Rest(extract co-;:;: in(i,j)) = connect(j,i)•<- connect(i,j) !! 
then Last(extract err out(i)) = "already connected" 
else Last(extract=con=out(i,j)) = connect(i,j); 

* results of disconnect * 
if Last(extract con in(i,j)) = disc(i,j) and 

Rest(extract con in(i,j)) = disc(i,j) or disc(j,i) 
then Last(extract err out(i)) = "not connected" 
else Last(extract-con=out(i,j)) = disc(i,j); 

function extract con in(adr: i,j) = 
subsequence ~f c~ntrol c in allfrom(cntrl in) : 

(c.op=connect or c.op=disc) and -
((c.from=i and c.to=j) or (c.from=j and c.to=i)); 

function extract con out(adr: i,j) = 
subsequence ~f c~ntrol c in allto(cntrl out) : 

(c.op=connect or c.op=disc) and c.f~om=i and c.to~j; 

function extract err out(adr: i) = 

End; 

subsequence ~f c~ntrol c in allto(cntrl_out) 
c.op~error and c.to~i; 

Fig. A.6 (cont'd) 
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Notes: 

Text between * is comment. 

The character : means "such that." 

Functions Last and Rest on sequences return the last element and 
all but the last element, respectively. 

The right side of the line marked with!! defines a regular 
expression where * means zero or more occurrences of an item. 

The terms "sequence," "initial sequence," and "subsequence" are 
assumed to be part of the specification language. 

Fig. A.6 (cont'd) 



AGENT Transport_Station 

TYPES 
interrupt: INTEGER 
port: INTEGER 
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command: DYNAMIC STRUCT {opcode op; port me,him; $ ... other parameters} 
opcode: ONE OF {data, int, int_ack, give_credit, connect, disconnect} 
msg: VECTOR OF CHAR; 

STATE 

Pconnected(port i,j) -> BOOLEAN n 
INITIALLY n = FALSE 

Connected(port i,j) -> BOOLEAN n 
DERIVED 
n = Pconnected(i,j) AND Pconnected(j,i) 

Credit(port i,j) -> INTEGER n 
INITIALLY n = 0 

Int_Pending(port i,j) -> BOOLEAN n 
INITIALLY n = FALSE 

INPUT HANDLERS (DISPATCH ON op OF command c) 

connect (port me,him) 
EXCEPTIONS 

already: Pconnected(me,him) 
EFFECTS 

'Pconnected(me,him) = TRUE 
OUTPUT c 

disconnect (port me,him) 
EXCEPTIONS 

no_connection: -Pconnected(me,him) AND -Pconnected(hirn,me) 
EFFECTS: 

'Pconnected(rne,him) ~ FALSE /* one side disconnects both 
'Pconnected(him,me) = FALSE 
'Int(rne,him) =FALSE 
'Int(him,me) =FALSE 
OUTPUT c 

give_credit (port me,him) 
EXCEPTIONS 

no_connection: -Connected(me,hirn) 
EFFECTS 

'Credit(hirn,rne) = Credit(him,rne) + 1 
OUTPUT c 

Fig. A.7--Agent-type transport protocol service specification 
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data (port me,him; msg m) 
EXCEPTIONS 

no connection: 
flow limit: 

EFFECTS 
OUTPUT c 

-Connected(me,him) 
Credit(me,him) = 0 

'Credit(me,him) = Credit(me,him) - 1 

int (port me,him; interrupt i) 
EXCEPTIONS 

no connection: -Connected(me,him) 
pending: Int_pending(me,him) 

EFFECTS 
OUTPUT c 
'Int_pending(me,him) 

int_ack (port me,him) 
EXCEPTIONS 

TRUE 

no connection: -Connected(me,him) 
no int: Int_pending(him,me) 

EFFECTS 
OUTPUT c 
'Int_pending(him,me) 

default 
EXCEPTIONS 

bad command: TRUE 

END AGENT Transport_Protocol 

Notes: 

FALSE 

A dynamic structure is a record containing some number of <name,type,value> 
triplets. Input and output are in this format for convenience. 

The operation of the agent is to continuously read commands from its input 
and to invoke the handler corresponding to the op field of the input. 
The parameters of each handler are the command fields expected. Their 
absence causes an error exception. 

Exceptions are handled by outputting an error message addressed to the 
sender of the offending message and containing the name of the exception. 

Output c means send the dynamic structure c to the output buffer. 

Fig. A.7 (cont'd) 



MODULE FTP $ See Notes at end 

TYPES 

record: VECTOR OF BIT; 
file: VECTOR_OF record; 
user_id: INTEGER; 
trans_id; INTEGER; 
name_spec: VECTOR OF CHAR; 
host_name: VECTOR=OF CHAR; 
file name: VECTOR_OF CHAR; 
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path name: STRUCT OF (host name hn; file name fn); 
pass;ord: VECTOR_OF CHAR; -
account: INTEGER; 
access mode: ONE OF {"read", "write", "append", "delete"}; 
dest stat: ONE OF {"must", "can't", "don't care"}; 
acc_crl: STRUCT_OF (user_id u; password pw; account ac); 
action: ONE OF {"ftp", "quit", "abort", "status", "listname", 

- "copy", "append", "delete", "replace"} 
data type: CHAR; 
trans_mode: CHAR; 
file_struct: CHAR; 
data_spec: STRUCT_OF (file data type ty; trans mode md; file struct st); 
partial_spec: STRUCT_OF (INTEGER upper; INTEGER lower); 
new_data: record; 
message: record; 
parm: STRUCT_OF (BOOLEAN f/b; dest stat ds; acc_crl al,a2; 

data_spec d; path name pl,p2; trans id id; 
partial_spec ps);-

DECLARATIONS 

INTEGER j; 
BOOLEAN b, f/b; 
file f; 
user_id uid; 
trans_id id; 
message msg, msgl, msg2; 
name_spec ns; 
path_name p, pl, p2; 
access_mode c, cl, c2; 
dest_stat ds; 
acc_crl a, al, a2; 
data_spec d; 
partial_spec ps; 
new_data n; 
stat_despt s; 
VECTOR_OF path_name vp; 
stat st; 

Fig. A.8--File transfer protocol service specification in SPECIAL 
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DEFINITIONS 

VECTOR OF path name Match(a; ns) IS 
$"return all pathnames matching ns for which user has access". 

BOOLEAN Access_check(a; p; c) IS ... 
$"check the access control information a for permission to 

access file pin mode c". 

BOOLEAN Data_spec_check(d; pl, p2; cl, c2) IS ... 
$"check if the data specification is accepted". 

file Canon(£) IS 
$"return the canonical form of file f". 

INTEGER Length(p) IS 
$"return the length of the file specified by p". 

EXTERNALREFS 

FROM Transport_Protocol: 
connect id: k, kl,k2; 
VFUN On=net(p.hn) -> b; 

FROM Table_Management: 
Type stat: ONE_OF {"done", "error", "in_progress", "aborted", 

"suspended"}; 
Type stat_descpt: STRUCT_OF (action act; stat st; parm pa; 

connect id k; errorcode errcode); 
Type errorcode: ONE OF {"bad_message11 , ... ); 
VFUN Stat table(id)--> s; 
OFUN Stor-table(s); 
VFUN Uniq~e_id() -> id; 

$"return a unique id for a transaction". 

FROM System: 
VFUN Get_uid() -> uid; 

FUNCTIONS 

VFUN Error(id) -> b; $"true if error of any kind during operation". 
EXCEPTIONS 

no_such_trans: Stat_table(id) = ?; 
HIDDEN; 
INITIALLY b = FALSE; 

VFUN In_session(uid) -> b; 
HIDDEN; 
INITIALLY b = FALSE; 

$"is user uid in an FTP session?". 

Fig. A.8 (cont'd) 



VFUN Exist(p) -> b; 
INITIALLY 

b = FALSE; 

VFUN Cont(p) -> f; 
EXCEPTIONS 

nonexist file: -Exist(p); 
INITIALLY -

f;:::; ?; 

OFUN Ftp(); 
EXCEPTIONS 
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$"does file named p exist?". 

$"content of file named p". 

$"start FTP session". 

already_in session: In_session(Get_uid()); 
EFFECTS 

'In_session(Get_uid()) = TRUE; 

OFUN Quit(); $"quit FTP session". 
EXCEPTIONS 

not in session: In_session(Get_uid()); 
EFFECTS 

'In session(Get_uid()) =FALSE; 

OFUN Abort(id); $"abort transaction id". 
EXCEPTIONS 

not in session: -In session(Get uid()); 
unknown: Stat table(id) = ?; -
bad command: Stat table(id).op -=''copy" or "append"; 
finished: Stat_table(id).st ="done"; 

EFFECTS 
Stat_table(id).st ="aborted"; 

VFUN Status (id) -> s; $"status of transaction id". 
EXCEPTIONS 

not in session: In session(Get uid()); 
unknown: Stat_table(id) = ?; -

EFFECTS 
s = Stat_table(id); 

VFUN Listname(a; ns) -> vp; $"list file names matching name spec ns". 
EXCEPTIONS 

not in session: In session(Get uid()); 
nom;tch: Match(a, n;) = \~CTOR(); 
error: Error(Unique_id()); 

EFFECTS 
vp = Match(a, ns); 

Fig. A.8 (cont'd) 
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OVFUN Copy(f/b; ds; al, a2; d; pl, p2) -> id; 
$"copy file pl to p2". 

EXCEPTIONS 
not_in_session: In_session(Get_uid()); 
no_a;:::cess: -Access_check(al, pl, "read") or 

-Access_check(a2, p2, "write"); 
source file nonexist: -Exist(pl); 
dest file nonexist: -Exist(p2) and ds ::;= "must"; 
dest-file-exist: Exist(p2) and ds = "can't"; 
unconnected_host: -On_net(pl.hn) or -On_net(p2.hn); 
bad data spec: -Data spec check(d, pl, p2, "read", "write"); 
error: Error(id); -

EFFECTS 
id = Unique_id(); 
s.id = id; 
s.act = "copy"; 
s.parm = {f/b, ds, al, a2, d, pl, p2, id, -}; 
IF (f/b = foreground) THEN( $"foreground". 

IF (-Exist(p2)) THEN 'Exist(p2) = TRUE; 
Canon('Cont(p2)) = Canon(Cont(pl)); 
s.st = "done"; 

) ; 
ELSE( 

s.st = "in_progress"; 
) ; 
EFFECTS_OF Stor table(s); 

OVFUN Append(f/b; al, a2; d; pl, p2) -> id; 

$"background". 

$"append file pl to p2". 
EXCEPTIONS 

not_in_session: In_session(Get_uid); 
no_access: -Access_check(al, pl, "read") or 

-Access_check(a2, p2, "append"); 
source file nonexist: -Exist(pl); 
unconnected-host: -On net(pl.hn) or -On net(p2.hn); 
bad data spec: -Data ;pee check(d, pl, p2, "read", "append"); 
error: Error(id); 

EFFECTS 
id =Unique id(); 
s.id = id; 
s.act = "append"; 
s.parm = {f/b, ds, al, a2, d, pl, p2, id, -}; 
IF (f/b = foreground) THEN( $"foreground". 

IF (-Exist(p2)) THEN ( 
'Exist(p2) =TRUE; 
Canon('Cont(p2)) = Canon(Cont(pl)); 

) ; 

Fig. A.8 (cont'd) 
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ELSE 
(Canon('Cont(p2)) = Canon(Cont(p2)) & Canon(Cont(pl)); 
$ "&indicates the concatenation". 
s.st = "done"; 

) ; 
ELSE( 

s.st = "in_progress"; 
) ; 
EFFECTS OF Stor_table(s); 

OVFUN Delete(a; p) -> id; 
EXCEPTIONS 

$"delete file p". 

not in session: -In session(Get uid()); 
no acc;ss: -Access check(a, p, "delete"); 
no-such file: -Exi;t(p); 
er~or: Error(id); 

EFFECTS 
'Exist(p) = FALSE; 
id =Unique id(); 
'Cont(p) = ?; 
s.st = "done"; 
s.id = id; 
EFFECTS OF Stor_table(s); 

$"background". 

OVFUN Replace(a; p; ps; n) -> id; $"replace portion ps of file p by 
new data n". 

EXCEPTIONS 
not in session: In session(Get uid()); 
no_acc~ss: -Access_check(a, p, "write"); 
no such file: -Exist(p); 
bad spec: ps.lower < 0 or ps.upper > Length(p); 
err~r: Error(id); 

EFFECTS 
Canon('Cont(p)) = VECTOR(FOR j FROM 1 TO Length(p) 

IF ps.lower =< j =< ps.upper 
THEN Canon(n[j -ps.lower +1]); 
ELSE Canon(Cont(p)[j])); 

id = Unique_id(); 

PROC Background_Server(); 
EFFECTS 

FORALL s=Stat table(id) l s.st = "in_progress" 
IF -Error(id) THEN( 

IF Stat table(id).act ="copy" THEN( 

) ; 

IF (-Exist(p2)) THEN 'Exist(p2) = TRUE; 
Canon('Cont(p2)) = Canon(Cont(pl)); 

Fig. A.8 (cont'd) 
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ELSE IF Stat table(id).act "append" THEN( 
IF (-Exi;t(p2)) THEN ( 

'Exist(p2) = TRUE; 
Canon('Cont(p2)) Canon(Cont(pl)); 

) ; 
ELSE 
(Canon('Cont(p2)) Canon(Cont(p2)) & Canon(Cont(pl)); 

) ; 
s.st ="done"; 
EFFECTS OF Stor_table(s); 

) ; 

Notes: 

All text following $ is comment. 

The Declarations paragraph declares the types of parameters and 
variables used in the rest of the module. 

The value ? means "undefined." 

The Proc paragraph defines a "process"-type cyclic operation, as 
discussed in the text. 

The & operator (for the Append function) means concatenation. 

The following table shows the FTP commands and the parameters that are 
needed for each command. 

Command Parameters 

Fore/ Data Source Dest. Trans-
Back- Dest. Authen. Xfer Path Path action 
ground Status Control Spec. name name ID 

Listname -·- * 
Copy * ;', ·k ··k ·k ·k 

Append '"' '"k ';~ * -!: 

Delete ·{-: * 
Replace * ·-k -!( 

Abort '"l( 

Status ·l: 

Ftp 
Quit 

Authentication control contains the user's login name, 
password, and account number. 

Part. 
Spec. 

;': 

Data Transfer Spec. specifies the data type, transmit mode, and 
file structure. 

Fig. A.8 (cont'd) 
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Appendix B 

FORMAL PROTOCOL SPECIFICATIONS 
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PROGRAM MODULE AB Protocol 
$ This is an "implementation" of each OFUN in the service spec. 

TYPES $ These types used in all modules 
msg: VECTOR OF CHAR; 
seqnum: INTEGER 0 .. 1 OR empty; 
data_pkt: STRUCT OF (msg text; seqnum sq); 

DEFINITIONS 
INTEGER empty is -1; 

EXTERNALREFS 
$ These 5 modules are used by the AB Protocol implementation. 

FROM Send station: 
VFUN Sendseq() -> seqnum s; 
OFUN Inc_sendseq(); 

FROM Receive station: 
VFUN Rcvseq() ->-seqnum s; 
OFUN Inc_rcvseq(); 
VFUN Rbuf() -> msg m; 
OFUN Store(msg m); 

FROM Medium StoR: 
OFLW Send_data(data_pkt d); 
OVFUN Wait_data() -> data_pkt d; 

FROM Medium RtoS: 
OVFUN Wait_ack() -> seqnum a; 
OFu~ Send_ack(seqnum a); 

FROM Timer 
OFu~ Start_timer(); 

IMPLEMENTATIONS 

OVFUN FROG User_Receive() -> msg m; 
BEGIN 

END; 

WAIT UNTIL Rbuf() = empty; 
m <- Rbuf(); 
Store(empty); 

Fig. B.1--Alternating bit protocol specification in SPECIAL 



OFUN PROG Send(msg m); 

DECLARATIONS 
data_pkt p; 
seqnum a; 

BEGIN 
p.text <- m; 
p.sq <- Sendseq(); 
UNTIL done DO 

OD; 
END; 

Send data(p); 
Start_timer(); 
a<- Wait_Ack(); 
IF a = Sendseq() THEN 

Inc_sensdseq(); 
SIGNAL done; 

ELSE FI; 

PROC Receiver(); 

DECLARATIONS 
data_pkt p; 

BEGIN 
WHILE TRUE DO 

p <-Receive data(); 
Send ack(p.sq); 
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$ Wait for ack or timeout 

IF p~sq = Rcvseq() AND Rbuf() = empty THEN 
Store(p.text); 

OD; 
END; 

ELSE FI; 
Inc_rcvseq(); 

END PROGRAM MODULE AB_Protocol; 

MODULE Send station 

VFUN Sendseq() -> seqnum s; 
INITIALLY s = 0; 

OFUN Inc_sendseq(); 
EFFECTS 

'Sendseq() = (Sendseq() + 1) MOD 2; 

END MODULE Send_station; 

Fig. B.l (cont'd) 



MODULE Receive station 

VFUN Rcvseq() -> seqnum s; 
INITIALLY s = 0; 

OFUN Inc_rcvseq(); 
EFFECTS 
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'Rcvseq() = (Rcvseq() + 1) MOD 2; 

VFUN Rbuf() -> msg m; 
INITIALLY m = empty; 

OFUN Store(msg m); 
EFFECTS 

'Rbuf() = m; 

END MODULE Receive_station; 

MODULE Medium StoR 
$ Used to send data packets from sender to receiver 

PARAMETERS 
INTEGER maxerrs; 

EXTERNALREFS 
from Mise: 

VFUN Random() -> BOOLEAN t; 

FUNCTIONS 

VFUN StoRbuf() -> data_pkt d; 
HIDDEN; 
INITIALLY d.sq = empty; 

VFUN Error_count -> INTEGER e; 
HIDDEN; 
INITIALLY e = 0; 

OFUN Send_data(data_pkt d); 
EFFECTS 

IF Error count() < maxerrs AND Random() THEN $ lost 
1 stoRbuf() = StoRbuf; $ no change 
'Error count() =Error count() + 1; 

ELSE 'StoRbuf() = d; -
FI; 

Fig. B.l (cont'd) 
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OVFUN Wait_data() -> data_pkt d; 
DELAY UNTIL StoRbuf().sq -=empty; 
EFFECTS 

d = StoRbuf(); 
'StoRbuf().sq =empty; 

END MODULE Medium StoR; 

MODULE Medium_RtoS 
$ Used to send acknowledgements from receiver to sender 

PARAMETERS 
INTEGER maxerrs; 

EXTERNALREFS 
from Mise: 

VFUN Random() -> BOOLEAN t; 

from Timer: $ Don't like this here 
VFUN Time() -> INTEGER t; 

FUNCTIONS 

VFUN RtoSbuf() -> seqnum a; 
HIDDEN; 
INITIALLY a = empty; 

VFUN Error_count -> INTEGER e; 
HIDDEN; 
INITIALLY e = 0; 

OFUN Send_ack(seqnum a); 
EFFECTS 

IF Error count() < maxerrs AND Random() THEN $ lost 
1 RtoSbuf() = RtoSbuf; $ no change 
'Error_count() = Error_count() + 1; 

ELSE 'RtoSbuf() = a; 
FI; 

OVFUN Wait_ack() -> seqnum a; 
$ Includes timeout which should really be in send_station, not here 

DELAY UNTIL RtoSbuf() -= empty OR Time() = 0; 
EFFECTS 

a :;; RtoSbuf () ; 
'RtoSbuf() = empty; 

End MODULE Medium_RtoS; 

Fig. B.l {cont'd) 



MODULE Timer 

PARAMETERS 
INTEGER timeout; 

VFUN Time() -> INTEGER t; 
INITIALLY t = 0; 

OFUN Start_timer(); 
EFFECTS 

'Time() = timeout; 

OFUN Tick(); 
EFFECTS 
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IF Time() > 0 THEN 'Time() = Time() - 1; 
FI; 

PROC Clock(); $Hardware process 
BEGIN 

WHILE TRUE DO 
$Wait for clock period 
Tick(); 

OD; 
END; 

END MODULE Timer; 

MAP AB Protocol TO Receive_station; 

EXTERNALREFS 
from AB Protocol: 

VFuN Buf() -> msg m; 
from Receive station: 

VFUN Rbuf() -> msg m; 

MAPPINGS 
Buf(): Rbuf(); 

END_MAP; 

Fig. B.l (cont'd) 
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* Alternating_Bit_Protocol in Gypsy * 

ALT-BIT PROTOCOL AGENT 

;-------------------------------------------------~ 

:--> clock in ---> TIMER 
I 
! I 
:<-- clock out <~---/ 

I I 
! I 

info sent ---->l--SE~~ER ----> 

I 
I 

\ 
\<-----

!------> 
I 

msg_send 

ack_send 

ack rev 

-----------> 
<--\ 

\ 
\ 

MEDIUM RS 
I 

-->! 

\ 

info rcvd <----l--RECEIVER <--- msg~rcv <----------! 
I 
I 

\ 
\ 

\ 
MEDIUM SR 

I -
I 

I 

:-------------------------------------------------: 

Scope Alt Bit Protocol = 
begin 

Type msg_unt = sequence of character; *Basic unit for transmission* 
Type msg_pkt = record (message ; msg_unt; seqnum : integer); 

Type msg_buf = buffer of msg_pkt; 
Type elk buf = buffer of integer; 
Type inf buf = buffer of msg_unt; 

Procedure AB Protocol (info sent: inf buf<input>, 
info-rcvd: inf=buf<output>) = 

begin 
block allfrom(info_sent) = allto(info_rcvd) *Service Specification* 

var msg_send, msg rev, ack_send, ack_rcv: msg_buf; 
var clock_in, clock out: clk_buf; 

co begin 
Sender (info_sent, msg_send, ack_send, clock_in, clock_out); 
Medium sr (msg send, msg rev); 
Medium-rs (ack-rcv, ack ;end); 
Receiver (info-rcvd, msg rev, ack_rcv); 
Timer (clock_i~, clock_o~t); 

end; 
end; 

Fig. B.2--Alternating bit protocol specification in GYPSY 
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Procedure Sender (var info_sent: inf_buf<input>; 
var ack send: msg_buf<input>; 
var msg_send: msg_buf<output>; 
var clock_in: clk_buf<output>; 
var clock_out: clk_buf<input> ) 

begin 
block <input> all sent(info sent, msg send); *service spec* 

*Sender only-sends next message lf last was acknowledged, 
and seqnum of next message is incremented * 

*Code* 
var i: integer := 1; 
var msgy ack: msg_pkt; 
var tick, start: integer; 
var m: msg_unt; 

fu~ 
receive m from info_sent; 
msg.message := m; 
msg.seqnum := i mod 2; 
send msg to msg send; 
if not empty(clock_out) then receive tick from clock_out; 
send start to clock_in; 

assert pending; 

loop 
await 

on receive ack from ack send then 
if ack.seqnum i mod 2 then 

begin 
i :~ i + 1 mod 2; 
quit; 
end; 

on receive tick from clock out then *timeout and retransmit* 
begin 
send msg to msg_send; 
send start to clock_in; 
end; 

assert seq_num_advanced(i,ack_send); 
end; 

assert unique_seq_num(msg_send); 
end; 

end; 

Fig. B.2 (cont'd) 
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Procedure Medium sr (var msg_send: msg_buf<input>; 
var msg_rcv: msg_buf<output> ) = 

begin 
block subseq(msg_send, msg_rcv); 

end; 

Procedure Medium rs (var ack rev: msg_buf<input>; 
var ack_~end: msg_buf<output> ) 

begin 
block subseq(ack_rcv, ack_send); 

end; 

Procedure Receiver(var info_rcvd:inf_buf<output>; 
var msg rev: msg buf<input>; 
var ack=rcv: msg=buf<output> ) = 

* Receiver only accepts message if seqnum is the successor of 
last accepted, but always acknowledges * 

begin 
block pending; 

var i: integer := 1; 
var msg: msg_pkt; 
var exp: integer; 

loop 
receive msg from msg_rcv; 
send msg to ack rev; 
if exp = msg.seqnum then ( 

send msg.message to info_rcvd; 
exp := exp + 1 mod 2 
) ; 

assert pending; 
end; 

end; 

Procedure Timer(var clock_in: clk_buf<input>; 
var clock out: clk_buf<output> ) = 

begin 
block size(allto(clock_out)) = size(allfrom(clock_in)) 

var tick, start: integer; 

loop 
receive start from clock_in; 
pause(timeout); 
send tick to clock_out; 

end; 
end; 

Fig. B.2 (cont'd) 
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Function lost: boolean = pending; 
* returns random T/F value -'· 

Function pause(set time: integer): boolean= pending; 
* pauses fo; given time * 

Function all sent(info sent:inf buf; msg send:msg buf) : boolean= 
begin - - - - -

exit assume all j: integer, j <= size(allfrom(info_sent) 
-> some k: integer, 

end; 

allfrom(info sent)[j] allto(msg_send)[k].message; 
* all input ;ere sent * 

assume all j: integer, j <= size(allto(msg_send) 
-> some k: integer, 
allto(msg send)[j].message = allfrom(info_sent)[k); 
* all sent were input * 

Function unique_seq_num(buf: msg_buf) : boolean = 
begin 

exit assume all k: integer! k <= size(allto(buf)) and 
allto(buf)[k-l].seqnum = allto(buf)[k].seqnum 

end; 

-> allto(buf)[k-l).message = allto(buf)[k].message 
*succeeding messages with same seqnums have same texts * 

Function seq num advanced(i:integer; ackbuf:msg buf) : boolean= 
exit assum~ la;t(allfrom(ackbuf)).seqnum -= i-

* send seqnum is advanced after getting a current ack * 
end; 

Function subseq(bufl, bu£2: msg_buf) : boolean= 
begin 

end; 

exit assume all j,k < size(allfrom(bufl)), 
some j2,k2: integer t j2 < j, k2 < k, and 
allfrom(bufl)[j) = allto(buf2)[j2] and 
allfrom(bufl)[k] = allto(buf2)[k2] and 
j > k 

<==> j2 > k2; 
* allto(bu£2) is subsequence of allfrom(bufl) * 

end Alt_Bit_Protocol; 

Fig. B.2 (cont'd) 
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