THREE-DIMENSIONAL FINITE-ELEMENT ELASTIC ANALYSIS
OF A THERMALLY CYCLED DOUBLE-EDGE WEDGE GEOMETRY
SPECIMEN

Sandra K. Drake, Richard J. Hill, Jeffrey L. Kladden
Propulsion Branch
Turbine Engine Division

Peter T. Bizon, Bruce P. Guilliams
Lewis Research Center

March 1980

TECHNICAL REPORT AFWAL-TR-80-2013

Final Report for Period 1 June 1977 to 1 January 1979

Approved for public release; distribution unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility or any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Sandra K. Drake
Project Engineer
Propulsion Mechanical Design
Propulsion Branch
Turbine Engine Division

Sara J. Gerber
Technical Area Manager
Propulsion Mechanical Design
Propulsion Branch
Turbine Engine Division

FOR THE COMMANDER

H. I. Bush
Deputy Director
Turbine Engine Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POTP, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/4 April 1980 — 500
An elastic stress analysis was performed on a wedge specimen (prismatic bar with double-edge wedge cross-section) subjected to thermal cycles in fluidized beds. Five alloys (IN 100, Mar-M 200, Mar-M 302, NASA TAM-A, and Rene 80) subjected to the same thermal cycling condition were analyzed. This condition was alternate 3 minute immersions in fluidized beds maintained at 316°C and 1088°C (600°F and 1990°F). The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and ISO3DQ). Stress, strain, and temperature results are presented.
PREFACE

This report covers work carried out as a joint program between engineers from the Aero Propulsion Laboratory (AFWAL/POTP) and the National Aeronautics and Space Administration (NASA) Lewis Research Center under in-house project 30661252. The objective of this effort was to analytically determine the elastic stress/strain-temperature-time history at the critical location for a double edge wedge geometry specimen cycled in fluidized beds.

The research was conducted from June 1977 to January 1979.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>INPUT FOR COMPUTER PROGRAMS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1. Wedge Geometry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. Alloy Properties</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3. Temperature Loading</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>DESCRIPTION OF ANALYSES</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1. ISO3DQ Computer Program</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2. NASTRAN Computer Program</td>
<td>7</td>
</tr>
<tr>
<td>IV</td>
<td>RESULTS AND DISCUSSION</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1. Comparison of ISO3DQ and NASTRAN Analysis</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2. Critical Locations</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3. Minimum and Maximum Longitudinal Strain</td>
<td>10</td>
</tr>
<tr>
<td>V</td>
<td>SUMMARY OF RESULTS AND CONCLUSIONS</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>42</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Double-edge Wedge. (All dimensions in cm (in.) unless indicated otherwise.)</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Schematic of Fluidized Bed Test Facility</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Temperature of Mid-chord at Mid-span at Various Times after Immersion into the Fluidized Beds</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Comparisons Determined by Using ISO3DQ and NASTRAN Computer Programs (Using the Models in Figure 1) for IN 100 Alloy After 15 Seconds Heating in the 1088°C (1990°F) Fluidized Bed</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Temperature, Longitudinal Strain, and Longitudinal Stress at Critical Locations During a Typical Fluidized Bed Cycle</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Temperature, Stress, and Strain Distribution of Mid-chord at Time of Minimum Leading Edge Longitudinal Strain. ((F = 9/5 C + 32)(1 \text{ ksi} = 6.89 \times 10^6 \text{ N/m}^2))</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Temperature, Stress, and Strain Distribution of Mid-chord at Time of Maximum Leading Edge Longitudinal Strain. ((F = 9/5 C + 32)(1 \text{ ksi} = 6.89 \times 10^6 \text{ N/m}^2))</td>
<td>37</td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION

One important area of research necessary for advancing the technology of aircraft gas turbine engines is the accurate assessment of the life prediction procedures used for hot section blades and vanes. In order to further develop and evaluate life prediction methods, this program tested in the laboratory simulated hardware components using carefully controlled conditions. Comparison of the experimentally measured life to that which is analytically predicted is used as a means of evaluating life prediction theories.

The experimental laboratory method used in this program for measuring thermal fatigue life is the cycling of wedge (blade-like) specimens in fluidized beds. Such tests have been shown to provide life and transient temperature data under carefully controlled conditions. Reference 1 contains a compilation of such data including a description of the facility and test procedure. References 2 - 9 contain incremental portions of such data relative to the evaluations described in this paper.

The objective of this investigation was to analytically determine the elastic stress/strain-temperature-time history at the critical location for a double-edge wedge geometry specimen cycled in fluidized beds. This was performed as a joint program between the engineers from the Air Force and the National Aeronautics and Space Administration (NASA) and utilized conventional three-dimensional finite element elastic analysis techniques. Engineers at the Aero Propulsion Laboratory (AFWAL/POTP) used the ISO3DQ computer program while the NASA/Lewis Research Center engineers used the NASTRAN program. The alloys were IN 100, Mar-M 200, Mar-M 302, NASA TAZ-8A, and Rene 80.

Two fluidized beds were used for rapidly heating and cooling the specimens. The specimens were in the form of prismatic bars with a double-wedge constant cross-sectional geometry. These specimens failed by thermal fatigue cracking which is usually the predominant failure mode of aircraft engine first stage turbine blades and vanes. Thermal fatigue is defined as the cracking of a material induced from cyclic
stresses and strains caused by repeated temperature changes. The cycling condition was alternate 3 minute immersions in fluidized beds maintained at 316°C and 1088°C (600°F and 1990°F). The cycling test condition chosen was one which resulted in thermal fatigue cracking in a reasonable number of cycles.

Due to symmetry, a discretized model of only a quarter of the double-edge wedge geometry was necessary for analysis. First, a model with a fine mesh for IN 100 alloy for a severe time increment (15 seconds after immersion in the heating bed) was analyzed using the NASTRAN computer program. Then, a model with various coarse meshes for the same conditions was analyzed using the ISO3DQ program. A coarse mesh model for the ISO3DQ analysis was selected which gave essentially the same results as using the fine mesh model with the NASTRAN analysis. The remaining combinations were then analyzed using the coarse mesh model and the ISO3DQ program. Such analyses provide the strain range and stress/strain-temperature-time history so important for evaluation of life prediction theories. The turbine component life prediction methods currently being studied at NASA/Lewis are discussed in References 10 - 15. Results of similar analyses for a single-edge wedge geometry specimen are given in Reference 16.
SECTION II
INPUT FOR COMPUTER PROGRAMS

The alloys and test condition for the five alloys are given in Table 1. The necessary inputs to perform the analyses were: (1) the geometry of the double-edge wedge, (2) the elastic and physical material properties of the five alloys, and (3) a complete temperature distribution at various times throughout the cycle. This section gives a detailed description of these inputs.

1. WEDGE GEOMETRY

The geometry for the double-edge wedge is shown in Figure 1(a). The computer plots of the models used for analysis and a typical element are shown in Figure 1(b) for the ISO3DQ program and in Figure 1(c) for the NASTRAN program. The model for both programs "squared-off" the leading edge radius to a 1.02 mm (0.040 in.) length and the trailing edge radius to a 1.53 mm (0.060 in.) length. Otherwise the models duplicated the geometry of the wedge exactly. Detailed discussion of the modeling is given in Section III Description of Analyses.

2. ALLOY PROPERTIES

The temperature independent and temperature dependent alloy properties used for the elastic analyses are given in Tables 2 and 3, respectively. The properties required for the analyses were Poisson's ratio, modulus of elasticity, and the mean coefficient of thermal expansion. The programs required a value for density to obtain results (zero mass elements were not permitted) although the results are independent of density. The properties for all alloys except the mean coefficient of thermal expansion for NASA TAZ-8A alloy were obtained from References 17 and 18. The mean coefficient of thermal expansion for NASA TAZ-8A was independently determined. This and all data in Reference 17 were determined from the same heat used for fabricating the double-edge wedge test and calibration specimens.
3. TEMPERATURE LOADING

The transient temperature loading on the double-edge wedges was determined from thermocouple data. Calibration specimens of the five alloys were instrumented chordwise at the mid-span with five embedded thermocouples and cycled in the fluidized beds (schematically shown in Figure 2). The location of the thermocouples at the wedge cross-section is shown in Figure 3. The Inconel 600 sheathed thermocouples were mounted in grooves milled in the surface of the specimen and secured by a ceramic cement. The grooves were 0.56 mm (0.022 in.) wide and 0.5 mm (0.02 in.) deep. Other details of the installation and procedure are given in Reference 1. The thermocouple outputs were cross-plotted to give temperatures of the mid-chord at the mid-span at various time increments after immersion into the fluidized beds. These data are presented as Figure 3 for the five cases analyzed. It was assumed that there was no temperature gradient through the thickness of the wedge.

Another set of thermocouple data was taken with five thermocouples mounted along the leading edge over half the span. These data revealed a longitudinal (along the span of the wedge) temperature gradient which varied with the different time increments. The maximum variation was about 16 percent greater at the ends of the wedge compared to the mid-span and occurred after 30 seconds of heating. However, for any one time increment it was found that the ratio of the leading edge mid-span temperature to that of any other span location was nominally the same for the five investigated cases. A least square's best fit parabola was determined for each time increment and this is presented in Table 4. This parabolic temperature variation along the span was assumed over the complete chord of the wedge.

The temperatures at mid-span were determined from the appropriate plot in Figure 3. For locations other than mid-span, the temperatures were determined by using the mid-span temperature modified by the values given in Table 4. Therefore, the use of Figure 3 and Table 4 determined the temperature distribution at any point of the wedge.
Both computer programs used three-dimensional finite-element procedures to obtain an elastic analysis of the double-edge wedge geometry specimen. The NASTRAN program was used to obtain an analysis only for IN 100 alloy for the time increment 15 seconds after immersion into the heating bed. The ISO3DQ analysis was performed for the 17 heating and 17 cooling time increments (distributed over the 3 minute immersion time) for each of the five alloys as shown in Figure 3.

The ISO3DQ program was developed under contract by the Air Force for elastic analysis — specifically aircraft gas turbine blades, vanes, and disks. The NASTRAN program was developed by NASA for elastic analysis of generalized structures. Documentation of the ISO3DQ program includes a descriptive report (Reference 19) and a user's manual (Reference 20). Documentation of the NASTRAN program includes a theoretical manual (Reference 21), a programmer's manual (Reference 22), a user's manual (Reference 23), and a demonstration problem manual (Reference 24). For general information on the programs, the reader is referred to these manuals. Specific information on how the wedge was modeled and analyzed using these programs is presented in the following sections.

1. ISO3DQ COMPUTER PROGRAM

The model for the double-edge wedge was one-fourth of the structure as shown in Figure 1(b). There are reflective planes of symmetry at the mid-chord and mid-span for this structure. The nodal constraints on this model (using the axis notation given in Figure 1(b)) are:

1. No z-displacement for nodes on the mid-span plane because of reflective symmetry.
2. No y-displacement for nodes on the mid-chord plane because of reflective symmetry.
3. No x-displacement for the two nodes at x=0.0 of the mid-span plan to obtain a reference for displacements.
The coarse mesh model selected consisted of 306 nodes for the 64 isoparametric elements. A typical element is shown in Figure 1(b). The element had mid-point nodes along the x-direction but not the y- and z-directions so that each element consisted of twelve nodes. The discretization, including element and nodal identification, was done using a mesh generator. This pre-processor (MESH3) is part of the ISO3DQ family of programs. This program required only the cross-section geometry of the wedge and some mesh parameters for the geometry input. The maximum aspect ratio for the elements was less than 13.

Values for the two temperature dependent properties (modulus of elasticity and mean coefficient of thermal expansion) were entered into the program as segments of Table 3. This table gives the modulus of elasticity and mean coefficient of thermal expansion for each alloy at 56°C (100°F) temperature increments. Six values of modulus and thermal expansion for six given temperature increments (Table 3) were put into the program. The program selected the value for the two temperature dependent properties for each node by using the nodal temperature to linearly interpolate within the table.

The temperature loading was entered by means of a temperature table of 13 chord temperatures at four different span locations. The program assigned a temperature to each node by weighted interpolation. Because temperatures were assigned to nodes rather than elements, a straight line gradient between adjacent nodes was assumed.

The output selected from the ISO3DQ program were the displacements, strains, and stresses. All of these values were determined at the node points. This set of data was put on tape for use by another program called PROUT3. The latter program, part of the ISO3DQ family, allows the amount and format of the output to be varied without requiring the complete program to be rerun. Both the MESH3 (pre-processor) and PROUT3 programs have plot capability.

The ISO3DQ family of programs were run on the Wright-Patterson Air Force Base CDC 6600 computer. Plots (including Figure 1(b)) were done using a Calcomp on-line plotter.
2. **NASTRAN COMPUTER PROGRAM**

The model for the NASTRAN analysis was similar to that used for the ISO3DQ program. One-fourth of the double-edge wedge was used considering mid-chord and mid-span planes of symmetry as shown in Figure 1(c). The nodal constraints were identical to those used in the ISO3DQ program so that a valid comparison could be made. A fine mesh was used in the NASTRAN analysis so that it might be used as the "baseline" for comparison. The model consisted of 820 nodes for the 354 CHEXA2 (hexahedral) elements. A typical element is shown in Figure 1(c). The discretization, including element and nodal identification, was done by hand - no mesh generator was used. The geometry was entered into the computer program by listing the coordinates of each node point from the origin as shown in Figure 1(c). Elements were selected so that the maximum aspect ratio for any element was always less than two.

The complete table of temperature dependent properties (modulus of elasticity and mean coefficient of thermal expansion) for IN 100 alloy was entered with 56°C (100°F) increments as given in Table 3. The program selected the value for these properties for each element by using the element temperature to linearly interpolate within this table. Since temperatures were assigned to nodes rather than elements, the element temperature was determined by the program by averaging the eight nodal temperatures. Since NASTRAN does not have the capability to input temperatures by use of equations, all temperatures were first hand calculated (using Figure 3(a) and Table 4) and then entered for each node point.

The output selected from the NASTRAN program were the displacements, single point constraint forces, and stresses. The displacements and forces were given at the node points and the stresses were given at the element centroids. Stresses at the leading and trailing edges were obtained by extrapolation of plots through the centroids of the elements.

This program was run using level 16.0 of NASTRAN on a Univac 1110 computer. The plot given in Figure 1(c) was done on a Calcomp plotter using the NASTRAN plot subroutine.
SECTION IV
RESULTS AND DISCUSSION

The results are presented and discussed in three parts. First, comparison of the ISO3DQ and NASTRAN analyses for the check case are presented. Second, results for all five cases calculated by the ISO3DQ program are presented at the critical location. The critical location was taken as that point on the blade which had the maximum longitudinal strain range (algebraic difference between maximum and minimum longitudinal strain) throughout the complete heating and cooling cycle. This location was on the leading edge but not at mid-span because of the longitudinal temperature gradient. Lastly, detailed computer plots for the five cases are presented at the times of both maximum and minimum longitudinal strain.

1. COMPARISON OF ISO3DQ AND NASTRAN ANALYSIS

The comparison of the analyses of the double-edge wedge using ISO3DQ with the coarse mesh model (Figure 1(b)) and NASTRAN with the fine mesh model (Figure 1(c)) is given in Figure 4. The comparison shows very good agreement. Both analyses were independently performed for IN 100 alloy after 15 seconds of fluidized bed heating. This alloy and time increment were selected as being approximately the most severe combination of all those studied to accentuate any differences between analyses.

Figure 4(a) gives the normal x-, y-, and z-displacements along the leading and trailing edges. These results show that the normal displacements as determined by the two methods essentially coincide.

Figure 4(b) gives the longitudinal stress along the mid-chord at one-quarter span which was the critical location for this case. These very good comparative results show that both the leading and trailing edges are in compression. This is due to the manner of testing in that the specimens were stacked so that they were heated and cooled from both the leading and trailing edges. A force balance of this cross-section showed that equilibrium requirements were satisfied.
This comparison confirmed that the ISO3DQ program using a coarse mesh model was sufficiently accurate to obtain very good quantitative results. It also gave confidence in the use of this specialized blade and disk stress analysis program.

2. CRITICAL LOCATIONS

Results for the five analyzed cases at the two critical locations (symmetrical about mid-span) as a function of time after immersion into the fluidized beds are given in Figure 5. This figure shows the temperature, and longitudinal strain and stress as a function of cycle time which occur at both critical locations on the leading edge.

In Figure 5, the temperature is the nodal temperature at the critical locations on the leading edge as determined from the temperature loading that was input to the ISO3DQ program. The procedure used to determine this temperature is given in the section ISO3DQ Computer Program.

Both the longitudinal leading edge stress and strain show very steep gradients for about the first 10 seconds of immersion in both the heating or cooling beds. The results show that the leading edge goes into compression upon immersion into the heating bed. As the specimen reaches a steady-state condition, the stresses and strains approach zero. Upon immersion into the cooling bed, the leading edge goes into tension followed by a gradual drop-off to low stress and strain by the end of the cooling cycle.

The maximum longitudinal strain range for the cases analyzed varied from 0.53 to 0.82 percent (Figure 5). Mar-M 200 and Rene 80 demonstrated the highest strain range of about 0.8 percent. Mar-M 302 alloy showed the lowest strain range of the five alloys analyzed.

Due to symmetry, the analysis showed three critical locations on the leading edge which were 0.64 cm (0.25 in.), 1.27 cm (0.5 in.) or 2.54 cm (1.0 in.) away from mid-span for the five cases evaluated. Preliminary experimental data in fluidized bed tests for some of the cases indicate that cracks are initiated in this region.
The leading edge of the double-edge wedge is in a uniaxial state of stress. On the free surfaces, the normal x- and y-stresses (refer to Figure 1(b) for the axes convention) are zero. Therefore, the effective stress at the leading edge is equal in magnitude to the longitudinal z-stress. The x- and y-strains at the leading edge equal:

\[\varepsilon_x = \varepsilon_y = -\nu \varepsilon_z \]

(1)

where \(\varepsilon \) = strain in x-, y-, or z-direction, and \(\nu \) = Poisson's ratio. By definition (Reference 25) effective strain is:

\[\varepsilon_{\text{eff}} = \frac{2}{3} (\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \]

(2)

where 1, 2, and 3 refer to the principal directions. Since the shear strains are zero at the leading edge, the normal strains equal the principal strains. Substituting Equation 1 in Equation 2 gives the effective strain at the leading edge as:

\[\varepsilon_{\text{eff}} = \frac{2(1 + \nu)}{3} \varepsilon_z \]

(3)

3. MINIMUM AND MAXIMUM LONGITUDINAL STRAIN

Results for the five analyzed alloys at the time increment of minimum and maximum leading edge longitudinal strain are shown in Figures 6 and 7, respectively. The complete distribution of temperature and also normal, shear, and effective stresses and strains are shown over the complete mid-chord plane of the wedge. The notation used is conventional elasticity notation with the axes convention as given in Figure 1. The assumption of constant temperature through the thickness of the wedge results in zero y-stress over the mid-chord. For this reason the y-stress plot is not presented. The minimum (largest compressive) longitudinal strain always occurred during heating and the maximum longitudinal strain always occurred during the cooling part of the cycle. These plots were made utilizing the PROUT3 program. These
results show the reflective symmetry about mid-span. These plots in addition to those in Figure 5 will be used for further evaluation of various life prediction theories such as strain range partitioning.
SECTION V
SUMMARY OF RESULTS AND CONCLUSIONS

The elastic stress analyses for a double-edge wedge geometry specimen cycled in fluidized beds were determined using conventional three-dimensional finite-element techniques. The analyses were performed as a joint program of the Aero Propulsion Laboratory (AFWAL/POTP) and the National Aeronautics and Space Administration (NASA) Lewis Research Center. IN 100 alloy was analyzed using the NASTRAN computer program with a fine mesh for only one severe heating time increment. The Aero Propulsion Laboratory used the ISO3DQ program with a coarse mesh model for this combination and all other combinations. Five alloys (IN 100, Mar-M 200, Mar-M 302, NASA TAZ-8A, and Rene 80) subjected to the same thermal cycling condition were analyzed. This condition was alternate 3-minute immersions in fluidized beds maintained at 316°C and 1088°C (600° and 1990°F).

Specific major results are:

1. The analyses showed the leading edge of the double-edge wedge goes into compression when immersed into the heating bed followed by tension when immersed into the cooling bed. Steep stress and strain gradients occurred during the first 10 seconds of immersion in either bed. For example, 0.48 percent strain was noted for IN 100 alloy during the initial 5 seconds immersion in the heating bed.

2. The maximum longitudinal strain range (algebraic difference between maximum and minimum longitudinal strain) for the five alloys analyzed varied from 0.53 to 0.82 percent.

3. The two locations of maximum longitudinal strain range at the leading edge of each wedge were between 0.64 and 2.54 cm (0.25 and 1.00 in.) away from mid-span for the five alloys analyzed. Experimental test data for the alloys that have cracked indicate that the cracks initiated at these locations.

4. The comparison of the analyses using a fine mesh model (354 elements) and NASTRAN with a coarse mesh model (64 elements) and ISO3DQ showed very good agreement for the single condition checked.

5. The results from this investigation can be used for further evaluation of various life prediction theories.
TABLE 1
ALLOYS AND CONDITION ANALYZED

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Fluidized bed cycling condition for all alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 100</td>
<td>Heating bed temperature: 1088° C (1990° F)</td>
</tr>
<tr>
<td>Mar-M 200</td>
<td>Cooling bed temperature: 316° C (600° F)</td>
</tr>
<tr>
<td>Mar-M 302</td>
<td>Immersion time in each bed: 180 seconds</td>
</tr>
<tr>
<td>NASA TAZ-8A</td>
<td></td>
</tr>
<tr>
<td>Rene 80</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
TEMPERATURE INDEPENDENT ALLOY PROPERTIES

ALLOY PROPERTIES

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Poisson's ratio</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/cm³</td>
<td>lb/in³</td>
</tr>
<tr>
<td>IN 100</td>
<td>0.2981</td>
<td>7.750</td>
</tr>
<tr>
<td>Mar-M 200</td>
<td>0.3039</td>
<td>8.525</td>
</tr>
<tr>
<td>Mar-M 302</td>
<td>0.2938</td>
<td>9.217</td>
</tr>
<tr>
<td>NASA TAZ-8A</td>
<td>0.3166</td>
<td>8.636</td>
</tr>
<tr>
<td>Rene 80</td>
<td>0.3217</td>
<td>8.166</td>
</tr>
</tbody>
</table>
TABLE 3
TEMPERATURE DEPENDENT ALLOY PROPERTIES

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Material</th>
<th>Modulus (GPa)</th>
<th>Coefficient of Thermal Expansion (με/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>IN 100</td>
<td>29.4 x 10^6</td>
<td>13.0 x 10^-6 7.2 x 10^-6</td>
</tr>
<tr>
<td></td>
<td>Mar-M 200</td>
<td>310 x 10^6</td>
<td>12.2 x 10^-6 6.7 x 10^-6</td>
</tr>
<tr>
<td></td>
<td>Mar-M 302</td>
<td>231 x 10^6</td>
<td>12.8 x 10^-6 7.1 x 10^-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>NASA TAZ-8A</th>
<th>Rene 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>29.3 x 10^6</td>
<td>27.3 x 10^6</td>
</tr>
<tr>
<td></td>
<td>6.7 x 10^-6</td>
<td>6.4 x 10^-6</td>
</tr>
</tbody>
</table>

*Modulus of elasticity.

Mean coefficient of thermal expansion from room temperature to indicated temperature.
Table 4: Temperature Variation Along Span

\[T_{x,z} = T_{x, \text{ms}} (Az^2 + Bz + C)\], where \(T_{x,z}\) is the temperature at any \(x, z\) coordinate (see fig. 1), \(T_{x, \text{ms}}\) is the temperature at the \(x\) coordinate at midspan, and \(z\) is the span coordinate; all temperatures in °F \((F = \frac{9}{5} C + 32)\).

<table>
<thead>
<tr>
<th>Time increment, sec</th>
<th>Heating bed</th>
<th>Cooling bed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>-0.00870</td>
<td>0.0517</td>
</tr>
<tr>
<td>3</td>
<td>0.04401</td>
<td>-0.2614</td>
</tr>
<tr>
<td>6</td>
<td>0.03739</td>
<td>-0.2221</td>
</tr>
<tr>
<td>9</td>
<td>0.03688</td>
<td>-0.2191</td>
</tr>
<tr>
<td>12</td>
<td>0.03806</td>
<td>-0.2261</td>
</tr>
<tr>
<td>15</td>
<td>0.03695</td>
<td>-0.2195</td>
</tr>
<tr>
<td>30</td>
<td>0.02758</td>
<td>-0.1638</td>
</tr>
<tr>
<td>45</td>
<td>0.01769</td>
<td>-0.1051</td>
</tr>
<tr>
<td>60</td>
<td>0.01432</td>
<td>-0.08506</td>
</tr>
<tr>
<td>75</td>
<td>0.01006</td>
<td>-0.05978</td>
</tr>
<tr>
<td>90</td>
<td>0.00833</td>
<td>-0.04948</td>
</tr>
<tr>
<td>105</td>
<td>0.00537</td>
<td>-0.03311</td>
</tr>
<tr>
<td>120</td>
<td>0.00627</td>
<td>-0.03722</td>
</tr>
<tr>
<td>135</td>
<td>0.00440</td>
<td>-0.02614</td>
</tr>
<tr>
<td>150</td>
<td>0.00371</td>
<td>-0.02205</td>
</tr>
<tr>
<td>165</td>
<td>0.00297</td>
<td>-0.01762</td>
</tr>
<tr>
<td>180</td>
<td>0.00262</td>
<td>-0.01533</td>
</tr>
</tbody>
</table>
Figure 1. - Double-edge wedge. (All dimensions in cm (in.) unless indicated otherwise.)
(b) Model and typical element used for ISO3DQ analysis with coordinate convention.

Figure 1. - Continued.
(c) Model and typical element used for NASTRAN analysis with coordinate convention.

Figure 1 - Concluded.
Figure 2. - Schematic of fluidized bed test facility.
Figure 3 - Temperature of midchord at midspan at various times after immersion into the fluidized beds.
Figure 3. - Continued.
Time after immersion into heating bed, sec

Time after immersion into cooling bed, sec

(c) Mar-M 302 alloy.

Figure 3. - Continued.
AFWAL-TR-80-2013

Midchord

Time after immersion into heating bed,
Sec
180
105
75
60
45
30
15
12
9
6
3
0

Temperature, °F
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300

Position along midchord

(d) NASA TAZ-8A alloy.

Figure 3 - Continued.
Figure 3.- Concluded.
Figure 4 - Comparisons determined by using IS03DO and NASTRAN computer programs (using the models in fig. 1) for IN 100 alloy after 15 seconds heating in the 1088° C (1990° F) fluidized bed.
Figure 4. - Concluded.
Figure 5. Temperature, longitudinal strain, and longitudinal stress at critical locations during a typical fluidized bed cycle.
Critical location
200-100-Midspan
-Longitudinal o.
MJJU
25
1400
164
00
70
Critical location
300-
2500
4000-
3500-
S
1000-___
216
253
100
120
200x0
60
90
300
500-
80
90 600
C1
30
2M
0-
20
60
120
60
120
18010 60
120
447
300
138
292
298
298
28
Figure 5. - Continued.
(b) Mar-M 200 alloy.
Critical location

Critical location

(b) Mar-M 200 alloy.
Figure 5. - Continued.
28
Critical location
Midspan
Longitudinal direction

0.64 cm (0.25 in.)
0.64 cm (0.25 in.)

Critical location

Temperature, °C

Temperature, °F

4000 x 10^6

3500

3000

2500

2000

1500

1000

500

0

-500

-1000

-1500

-2000

-2500

-3000

-3500

-4000

-4500

-5000

-5500

-6000

Longitudinal strain, mm

Heating

Cooling

Strainrange = 0.53 percent

Longitudinal stress, psi

Longitudinal stress, kN/mm^2

Cycle time, sec

(c) Mar-M 302 alloy.

Figure 5. - Continued.

29
Longitudinal 20 - 10 direction --, 1.27 cm (0.5 in.)

Midspan

Critical location

1.27 cm (0.5 in.)

Critical location

Heating

Cooling

Strain range = 0.68 percent

(d) NASA TAZ-8A alloy.

Figure 5. - Continued.

30
Figure 5. Continued.
Figure 6. Temperature, stress, and strain distribution of midchord at time of minimum leading edge longitudinal strain. (F = 9/5 C + 32) (1 ksi = 6.89 x 10^6 N/m²).
(b) Mar-M 200 alloy after 15 seconds immersion in the heating bed.

Figure 6. - Continued.
(c) Mar-M 302 alloy after 15 seconds immersion in the heating bed.

Figure 6. - Continued.
Midspan (plane of symmetry)

Temperature, °F

σ_x, ksi

σ_z, ksi

σ_eff, ksi

τ_xy, ksi

τ_xz, ksi

τ_yz, ksi

τ_max, ksi

ε_x, 10^-4/m/m

ε_y, 10^-4/m/m

ε_z, 10^-4/m/m

ε_eff, 10^-4/m/m

γ_xy, 10^-4/m/m

γ_xz, 10^-4/m/m

γ_yz, 10^-4/m/m

γ_max, 10^-4/m/m

(d) NASA TAZ-8A alloy after 12 seconds immersion in the heating bed.

Figure 6. - Continued.
Figure 6. - Concluded.

(e) Rene 80 alloy after 9 seconds immersion in the heating bed.
Figure 7. - Temperature, stress, and strain distribution of midchord at time of maximum leading edge longitudinal strain. \((F = 9.5 \text{C} + 32) \text{ksi} = 6.89 \times 10^{6} \text{N/m}^2)\).
(b) Mar-M 200 alloy after 3 seconds immersion in the cooling bed.

Figure 7. - Continued.
Figure 7. - Continued.

(c) Mar-M 302 alloy after 6 seconds immersion in the cooling bed.
Figure 7. - Continued.

(d) NASA TAZ-8A alloy after 15 seconds immersion in the cooling bed.
(e) Rene 80 alloy after 6 seconds immersion in the cooling bed.

Figure 7. - Concluded.
REFERENCES

REFERENCES (CONCLUDED)

