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Relation Between the Camplexity and the

Probability' of Large Numbers

Peter Gacs
Canputer Science Department

Stanford University
Stanford, California 94305

September, 1979

Abstract.
H(x) , the negative logarithm of the apriori probability M(x) ,
is Levin's variant of Kolmogorov's complexity of a natural number x .
Let o(n) be the minimm complexity of a mumber larger than n ,
s(n) the logarithm of the apriori probability of obtaining a number
larger than n . It was known that
s(n) < a(n) < s(a) + H(Ls(m)]) .

We show that the second estimate is in same sense sharp,
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Relation Between the Coamplexity and the

Probability of lLarge Numbers
Peter Gacs

Iet T(p) be a partial recursive function defined over binary

sequences with values among the natural numbers which is prefixless:

(a) If Py is a beginning segment of P, and T(pl) is defined

then T(p,) = T(p;)

and optimal:
(v) for any other prefixless p.r. function T' , there is a sequence

P such that T(pq) = T'(q) for all q .

Let 2(p) denote the length of the sequence p . Ievin introduced

the complexity
H(x) = min{2(p): T(p) = x}

as a useful variant of Kolmogorov's camplexity. See e,g, [1], also
Chaitin [2], Gacs [3].

We denote by T(p;t) &a computable "approximation" of T(p) :
on some Turing machine camputing T(p) , T(p;t) is T(p) if T(p)
is computed within time t , undefined otherwise., We write

H(x;t) = min{£(p): T(p;t) = x}

M(x) = 2.H(x) » M(x;t) = E-H(x;t)

s(n) = -108( Z M)
i=n
a(n) = ming o H(i) .
2




' a(n) and s(n) , two extremely slowly (slower than any unbounded,
recursive function) growing functions, are closely related., It is known
that

. (1) s(n) < a(n) < s(n) +H(Ls(n)J »

where < and X denote inequality and equality to within an additive,

R RN, 2
R 6 e i S Sl

e

< and =~ to within a multiplicative constant.

3
g The first inequality is trivial, the second one is well-known (see
§ e.g. [4]). A hint to the proof: to find a number >n, we have only
: : ; to know 275(9) 4o within an error tem 2-5(8) .
, | We will show that the second estimate in (1) is sharp.
i }’ . ; Theorem, Let g(n) be any positive, monotone recursive function such that
I (2) z 278
n
‘ ) Then a(n) > s(n)+g(s(n)) infinitely often.
;
{ Proof. It is well-known (see e.g. [3]) that, if u(n;t) is a computable
nonnegative rational function over pairs of natural numbers, monotone in ¢
.
and 2 u(n3t) <1, i.e., for each t, ,(n;t) is a semimeasure, then
n R —
L ]
% w(nst) < M(a) .
] Put
s(n;t) = T M(i;t)
i>n
su(nst) = T u(ist)
, i>n |
j
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m(k;t) = max{n: s(n;t) < k}
mu(b;t) = max{n;su(n;t) <k} .
The construction depends on n , @ fast-growing recursive sequence,
We will see at the end of the proof, how we should choose it in dependence
of g.
Iet u(n30) = 0.

Suppose that p(n;t) is already constructed. Put
k(t) = max{k > -log(1l- sp‘(O;t)): e (ny +1,m ]
(3) a(m“(i -g(i)st)st) >4} .

Put n(t) = Dy(t) * Let Jj(t) = max{j: n(js;t) >0} . Put
w(3(t)+38) = 27(E)

p(dst¥d) = u(dst)  for j £ J(t) .
We will show that there are infinitely many i 's such that for almost
all t, (3) holds.
This implies, of course, that

a(mu(i-g(i)) > i .
That is, for some n , with

i-g(i) > sp(n)

a@m) > 1 > su(n)+8(i) > s(n)+g(i) > s(n)+eg(s(n))

and the theorem will be proved.
Suppose that, on the contrary, there is a largest io among the i
such that (3) holds for almost all t and a least t, such that (3) holds

for i, and all t>1t, .
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Under the above assumptions,
s“(o;t) -1 .

Therefore

¥ o2t _ oy,
t
= Z% o~n(t)

Notation. A(tl, t2)

1
Bt tyky) = (2 telt,ty], k(t) = k) .

Iemma. There exists a triple (ko’tl’te) with k, > k(to) ’

t > tl > t such that

(a) k(t) > k, for te[tl,t2] 3

< Altt,) < 3 B(tptyk)) .

Proof. For some t°, (k(t,),ty,t") will satisfy (a) and the first

inequality of (b).

Let us say that (ko’tl’te)f(k(')’ ) if ko<ko, t'<t <t, <t

1et (ko,tl,tz) be a minimal triple < (k(to), o,t ) » among the
triples satisfying (a) and the first part of (b).

(A) For t3 € [tl,t2] we have k(t) = k, » otherwise the triple is not
minimal,

For similar reasons we have

If ) <t <th<t, and k(t) >k, in [t],t}] then

=

L L
then B(ti,t3) < 2

2 =

2°
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Therefore we have

Altysty) < B(tpstok )+ (1+#{t ety t,]: k(t) = k -2 nk°
"y

23(1-.1, o ko) +2 . m]

IA

We concentrate now on a triple (k’tl’ta) < (k(to) ,to,to)
satisfying (a) and (b).

Notation. For ic [nk-l’nk] put
E; = {te [tl,te]: an H(n3t) < i, H(n;t) < H(n;t-1)} .

We now estimate s, = 4 B; from below (see (5)). Let us write

Ei = {til’ti2’""tisi} s Where ti.j < tij"‘l . Put tiO = tl-l »

Iet u,. = the last t in [tiJ+1, (if any) with

tis LT by - 1 ty441]

k(t) = k . If there is no one, Yy = tij .

= =log O

u
13-1
Let 0, = ';3 o-n(t) | Ay = Then by our

_ ij
t=ti40

algorithm we have
ot(mp‘(:. -g(1)) ;“i,j'l) < i,
On the other hand, by the definition of uy 3
a(j(tij+1) ;uij-l) > i .
Therefore we have

)sid = S(J(tij+l);ui,j-l) 2 i'g(i) ’

-i+g(i)

(W g 2
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Hence

that

(5)

On the other hand,

1 22 o) | 5 ) 3

t teE, 3

t
=%

S " aij + B(tl)teik)

~ny -i+g(i
< 502 B (s42)2 81) 4 B(ty, %) .

Using (b) of the Lemma,

32--2-%‘1 < (si+1)(2-nk+2'i+3(i)) < 2(sp1) (27t 8())

1 e ti-e()
si Z 3“2 -1 »

is, for i-g(i) >n  +2:

on, . +1i-g(3
T N

Put m = min{i: i-g(i) >n, 4+2} .

We have
n
k -
. . o1, ",
1 > s(03t,) - s(05%9) > L e2e(sy-s; ) + 2 smk
i=mk+l
e a1
- Teets . 3 o2l
fl.=!!lk i=mk
-l L - Dy
> T ol 1.0 "kl 5 p8(d)
i.=mk ismk
If o, is chosen far enocugh from By _y 2 this will obviously lead
to a contradiction, 0
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