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ABSTRACT

The Huygen-Fresnel formulation for analysis of the

propagation of an electromagnetic wavefront is extended from

the monochromatic, steady state condition to the transient

condition. The propagation of a plane wave and the transient

response of a simple lens are analyzed to illustrate the

application of the technique and to show that the results are

consistent with those expected from the more familiar steady

state formulations.
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TRANSIENT RESPONSE AND HUYGEN-FRESNEL

Introduction

Calculations of diffraction patterns and analysis of other

propagation problems by Huygen-Fresnel wavefront construction techniques

are common content of optical texts.1 It is generally recognized that

the results achieved are approximate, but, for many sets of conditions,

sufficiently accurate to make the techniques a valuable engineering tool.

In the present paper the basic Huygen-Fresnel formulation is extended

fromthe monochromatic, steady state condition to the transient condition.

The steady state condition is a special case derivable from the transient

results. My motivation for offering this development is based upon my

belief that in some cases the approach yields increased insight into

expected results, and offers mathematical simplification as compared to

the steady state formulation under some conditions. The approach also

yields insight into the nature and magnitude of error which may be

attributable to the approximations inherent in the Huygen-Fresnel

formulation.

Linearity and Superposition

The development in this paper is based upon concepts of linearity

and the resulting superposition theorems. These fundamental notions

have been around for a very long time2, and are briefly reviewed to set

the stage for the developments in this paper. The concepts are sum-

marized in Fig. 1. Line (a) depicts a general input to the medium f(t)
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Fig. 1. Concepts of Linearity and Superposition.
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which produces an output F(t). It is assumed that the medium is in-

variant in time over the intervals of interest. This is equivalent to

stating that the same input function inserted at a different time,

f(t-T), will produce an identical output simply delayed in time F(t-T).

Line (b) depicts another general input, g(t), which produces an output,

G(t). The critical test of linearity lies in the superposition indicated

in line (c), i.e., for a linear system an input consisting of the sum

of two or more functions will produce an output which is the sum of the

outputs which would be produced by each of the inputs individually.

It is this linearity of superposition which makes it possible to disect

the input into arbitrarily chosen components, as for example, individual

sinusoidal components obtained by Fourier decomposition of the input as

depicted in line (d). Since any input can be synthesized by Fourier

analysis, the properties of the linear system can be specified by noting

the output amplitude and phase shift for a unit amplitude, zero phase

input for each of all possible frequencies in the entire spectrum. Since

a Dirac function 6S(t) as shown on line (e) contains all possible

frequencies with fixed phase relationship, the output, s(t), from such

an input can be Fourier analyzed to determine the transfer function,

i.e., the attenuation and phase shift associated with each frequency

throughout the spectrum. Since any input function can also be decom-

posed Into an infinite set of Dirac functions of appropriate amplitude

and time position, the output from any generalized input will be the

convolution of the input with the transient response, a(t).



Propagation of a Plane Wave

The propagation of a plane wave is a simple case to treat and one

for which we have strong intuitions as to the proper answer. Consider

the following geometry:

y

dw P

In the x-y plane there is a plane monochromatic wavefront. The first

step will be to use a Huygen-Fresnel calculation to determine the ampli-

tude and phase of the field at point, P.

The increment of field at P due to the incremental area dS is,

ie eA((P)) ei2  X e dS. (1)

The term,

i

K(6) - - Q(6) , (2)

is the inclination factor 3, X is the wavelength, and w is the angular

frequency. A(w) is the amplitude of the monochromatic wave in the x-y
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plane and *(w) is its phase in that plane. By noting that,

1 W
21- (3)

where C is the velocity of light, eq.(l) becomes,

s
i WAw) i [t()

dU(P) = -2fc Q(e) A(" el e-i[ t.(W)IdS (4)

Therefore,
U(P)"I Qe) Iim A )e - [W (t - A_)+ (W.

U(P) 2(rcs {it A(w) e[ c dS (5)

Equation (5) gives the amplitude and phase of the monochromatic

wave at point P generated by a monochromatic plane wave in x-y having

an amplitude A(w) and a phase of *(W). Assume now that the electro-

magnetic disturbance in x-y is not a monochromatic wave but instead is

a temporal signature, G(t). In terms of monochromatic components,

G(t) -f A(W) e - i[t + ] dw . (6)

To obtain the temporal signature at point P,

+ OD

V(t) , J U(P) dw (7)

Substituting eq.(5) into eq.(7) gives,

. 2_Tcs - iw A(w) e -c 
+  o)} dSdw (8)

V(t) O

-wo



Interchanging the order of integration gives,

f____+co- -i[W(t -1+OW
V(t) - 2 - A e c dwdS . (9)

The inner integral can be seen to be of the form of eq.(6) except for the

presence of the -iW and the time delay It can be noted by inspectionc

that,

D Gt -r-i[w(t -- ) + *(w)]d
D G(t - iw A(W) e c dw, (10)

t- c

where Dt is the derivative with respect to time. Substituting in eq.(9)

gives

V(t) = Q(e) D G(t -E) dS (11)

Reversing the order of the derivative and integral yields,

V(t) Dt { c(6)G(t d (12)

The incremental area dS will be chosen to be a ring of radius W, and

thickness dW. Therefore,

dS - 2r W dW . (13)

Let,

t' s (w2+r2) (14)
C c
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Then,

dt' w dW (15)
c(w

2 +r
2

Combining (15) in (13) gives,

dS = 27C (w2+r2) dt' , (16)

or,

dS = 2nc s dt' (17)

Substituting this result in eq.(12) yields,

V(t) = D(t) f Q(6) G(t-t') dt' (18)

r/c

To gain insight, let us start with the simple but invalid assumption that,

Q(6) = 1 . (19)

Let me also define a function

F(t') E 0 , t' < (20)C

and

F(t') 1 t (21)
C

so that, +

V(t) = D(t) F(t') G(t-t') dt' (22)

Equation (22) is a convolution integral and indicates that to obtain V(t)

we first convolve the input function of time G(t) with the step function

F(t) and then differentiate the resultant function. For any function G(t)

this produces,
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V(t) =G (t - E) (23)
c

This result states that a plane wavefront in x-y with any temporal signature

will be reproduced at point P with no alteration in either the amplitude or

the temporal signature other than the expected delay in arrival due to the

finite propagation velocity. This result, although based upon the invalid

assumption as to Q(6), produces an answer which is in keeping with the

intuitive notion as to how plane waves are propagated in a non-dispersive

medium.

How would this result be altered by making a "valid" assumption as to

to Q(O)? From reference 3,

K(e) =-- (1 + cos) (24)

From eq.( 2) and (24),

Q() = + cosE (25)

From the earlier sketch,

coso = r (26)
s

Let,

t - (27)
0 c

and from (14),

= -- ,(28)C

then,

t
co t' 4 (29)

- m I ... .. d -Mm " ' - , i ... - -
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so that,

Q (6) if+-?(30)

By analogy to eqs. (20) and 21) 1 will redefine,

F(t') = 0, t'< E (31)
C

and
t

F(t') - + --El ti > (32)

Returning to eq.(22) with the redefined F(t') let us examuine the special

case in which,

where 6(t-.t') is a Dirac function having value only at t -t'. Since,

J0 F(t') 6(t-t') dt' =F(t) ,(34)

then,

V(t) = D(t) F(t) (35)

Therefore
t

V(t)= 6(t) 10=t> (6

A sketch of V(t) is as follows:

V(t)

0 t
0
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This result indicates that a Dirac function plane wavefront will not

remain a Dirac function after propagation, i.e., there is a transient

response associated with the propagation process. Note that the Dirac

function portion of V(t) is the result achieved when Q(6) was assumed

to be unity.

The Fourier transform of V(t) gives the steady state condition

in terms of the amplitude and phase for all possible monochromatic plane

waves. The exact form of this Fourier transform is unimportant to the

present arguments. Certain assymptotic properties of the transform are

important and can be deduced easily. To do so, consider first the

Dirac function portion of V(t). The Fourier transform of the Dirac

function is a flat spectrum of unity amplitude with a phase shift,

ct
2T X-0 =w t , (37)

o

where w is the angular frequency. Consider now the portion of V(t)

involving the inverse square of t'. At W - o the contribution to the

spectrum from this component will be,

COt

B(W = o) f 2 dt , (38)

t
0

or,

t 
(9

B(w =o)= *i*0 * (39)

At very high frequencies this portion of V(t) will have a spectrum

which approaches zero. The combined spectrum is therefore as shown

labeled (a) in the sketch,



(b)

1.0

BW) (a)

0.5

whereas the line labeled (b) is the result when Q(O) is assumed to be

unity.

As a practical matter, it is important to know the conditions

under which (a) and (b) become approximately equal. This will occur

when,

t >> 2r • (40)
0 Wo

This is equivalent to stating that,

r >> X (41)
c c

or,

r >> . (42)

Therefore when r >> X the result will be numerically similar for the

"valid" and "invalid" choices of Q().

L
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Transient Response of a Simple Lens

To illustrate the transient response approach, a simple, thin lens

will be used. The geometry is as follows:

Object
Plane Image

Plane

lens

'-.

RR

f 11-1

A thin lens designed to image in a plane at distance I an object in a

plane at distance R must have a time delay T(r), a function of the lens

radius r such that

T(r) + -1 + V R + (43)
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or

T(r) = V { 2 VT +- -2r_ r2 (44)

For simplicity assume that I>>r and R >>r so that by binomial expansion,m a

R r r 2 2 - 2 (45)
2c + 21 rR 2"

or,

or

T(r) - V12-r2)(+ (47)

Since,

1 + 1 (48)
R I f

where f is the lens focal length, then,

T(r) - 1 2_1 (49)

In contrast to the case of the propagation of a plane wave, the

properties of the simple lens are such that the on-axis imaging of a point

source Dirac function the F function is,

F(t') - 6(t o ) , (50)

and

F(t') - o0 , t t 0(51)
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When convolved with the input time function here assumed to be a Dirac

function and differentiated in the manner of eq.(22), the resultant

transient response is a differentiated Dirac function, i.e., the derivative

operator. In other words, a Dirac function source produces an image which

is not a Dirac function but the derivative of a Dirac function.

The power spectrum of this on axis image is found by Fourier

transforming the transient response and squaring the amplitude at each

frequency. The derivative operator has a Fourier transform which is of

the form,

IA(f)l - Kf, (52)

where f is frequency and K is a constant. The power spectrun is therefore

of the form,

IA(f)I - K2f 2 
. (53)

In terms of wavelength,

IA(f) -2  K T (54)

This displays the inverse square of wavelength which we recognize as

characteristic of the on-axis imagery of a point source by a diffraction

limited optical system.

Consider now a point in the image plane off-axis in the X direction

by a distance AX. The distance between that point and any point x',y' in

the lens plane is

p - YI(x,_Ax)2 + y,2 +12 (55)



-15-

If I>> (x'-Ax) and y' then,

P - I + (X9_A)2+y92  (56)
21

The total transit time from an on-axis Dirac function point source is

therefore,

1 (x92)4- 1 [r (' 2 "+y 2 )j + I + (X'-AX) 2+Y, 2  (57)
T I 2R YT m 21

Expanding, collecting terms and simplifying gives,

r X2 ,X +(58)

The equation has been arranged into three terms because each has special

significance. The first term is the transit time from the point source,

through the center of the lens to the center of the image plane. The

second, is a term which accounts for the quadratic phase shift in the

image plane familiar to conventional optics. The third term is the only

one containing the spatial variables of the lens, i.e., x'. The first two

terms, therefore, represent only time delays because they are independent

of lens plane coordinates. The third term is a transient response because

each x' position on the lens has a different arrival time at the image

plane location Ax,o. Specifically in a time interval dT there will be a

return from a region of lens such that,

dT Ax dx' (59)
CI
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The signal will be received in the image plane at Ax,o within a time interval,

tR- + I + 2fm +  c 2 c"(0
r 2 X2 rI~x(60)

Since dx' is independent of x', the amplitude of the return will be determined

by the height of the lens at each x' position. For the circular lens,

y 2 (61)
m

The amplitude of the signal is therefore proportional to,

V 2X , 2" Cl

y'dx' - VrT - dT (62)

For simplicity let the sum of the first two terms of eq.(58) be To, then,

0- c ' (63)

or,

x' CI(64)iAx 0T=}"(4

Substitution in eq.(62) gives,

112 CI 2 2C
y'dx' = %r d CI 2 C Tm ( ) {T x T(65)

From eq..(60), the range of T is,

T ± I M -' (66)
0 ,
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A sketch of eq.( 65 ) is as follows:

r CI
M
Ax

r Ax 0 r AxmT-T + --
CI 0 Ci

The Fourier transform of this function is the modified Bessel function, i.e.,

J, 2wAxrmf

G i KIfr 2 IC (67)
m (2Axrmf)

where f is the temporal frequency, and K is a constant of proportionality.

As described earlier in this writing, the derivative of eq.(
25) is the

transient response. A derivative in the time domain is equivalent to multi-

plication by frequency coupled with a 900 phase shift. Therefore,

j 2 Axr f )

G' - iK f r 2 ) (68)
Sm (2TrAxr f

The following observations may be made with respect to eq.(68). For a fixed

f, i.e., a fixed wavelength, the amplitude as a function of Ax, will be a

modified Bessel function therefore predicting the classic monochromatic

diffraction image of a point source by a circular lens. It can also be noted
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that the first null of the modified Bessel function occurs when the argument

is equal to 1.22W so that,

Axr f
27r - m - 1.22w (69)

IC

For Ax<<I, the angular position of Ax in the image plane is,

l Ax (70)

I,

and since,

X , (71)

then,

a r
x fM = 0.61 (72)

or,

a-M0. - , (73)
r
m

which is the familiar resolving power limitation associated with a diffraction

limited circular aperture.
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