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ABSTRACT

\.

In this paper we consider an adaptive approach for estimating reliability
growth, based on prior information which is motivated from practical
considerations. We discuss two situations: in the first one, both the
prior distribution and the posterior distributions of the mean time to
failure of an exponential distribution are stochastically ordered; in
the second situation, the prior distribution is stochastically ordered
with respect to the last posterior distribution. The former situation
leads us to a procedure which is not fully Bayesian, and is therefore
termed by us as "pseudo-Bayesian." Since we do not know the properties
of this pseudo Bayesian approach, we can best describe our work here as
being a 'pseudo-Bayesian scheme.!™ The second situation leads us to an
approach which is fully Bayesian under certain assumptions. Our work

in this general area of reliability growth is still in progress, and we
invite the attention of other researchers to look into some of the prob-
lems that we have posed, and the questions that we have raised\
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AN ADAPTIVE BAYESTAN SCHEME FOR ESTIMATING RELIABILITY
GROWTH UNDER EXPONENTIAL FAILURE TIMES

by

Nozer D. Singpurwalla

1. INTRODUCTION

A complex, newly designed system, generally undergoes several stages
of testing before it is put into operation. After each stage of testing,
changes are made to the design (or the operating conditions are re-
specified) with the hope that the new design would lead to a longer period
of performance. This procedure is referred to as "reliability growth";
this is because a longer period of performance implies an improvement
in reliability. Often, in practice, a change in the system design may
result in a deterioration of the system performance, so that the term
reliability growth may not be an appropriate description of what is
actually happening to the system. However, since the intent of a design
change is to improve the reliability, we shall continue to use the term
reliability growth throughout this paper.

Suppose then, that the system has been tested at stages 0,1,2, ..., T .
At the end of each stage, an estimate of the reliability of the system is
made using any of the conventional procedures which measure the reliability
of the system. At each stage of testing, we may test either a single
copy of the system, or several copies of the system, depending on the
particular situation being considered. Having tested the system over

(t + 1) stages, we would like to know the following:




'lrl!l!IlI!-"'-""-"""----'.-"-.-"-'-----l-I--llH-!----m‘*.‘.

i) Has there been a genuine growth in reliability over the
time period covered by the (1t + 1) stages of testing,
and is this growth significant?

ii) Using all the testing information that we have acquired
over all of the stages, what is our best (in a sense to
be made precise later on) estimate of the reliability

of the system at stage 17

An answer to question i) will enable a decision maker to determine
if indeed the design changes do result in an improvement in reliability,
and perhaps determine the rate (with respect to the stages) at which

there is a growth in reliability. An answer to question ii) will enable

a decision maker to decide if the system is ready to be put into operation,

and to arrive at a suitable cost-warranty agreement with the user. We
can, of course envision several other uses of the analysis described in
i) and 1i1) above.

Since 1966, there have been several papers written under the heading
of reliability growth, each emphasizing a different point of view. For a
recent survey of these papers, we refer the reader to H. Balaban (1978).
The approach that we shall take in this paper is Bayesia;, with our
Bayesian analysis being undertaken in a manner which will be described
in Section 2. Others who have adopted a Bavesian point of view, but with
a direction different from ours are A.F.M. Smith (1977) and VWeinrich

and A. Gross (1978).
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2. A BAYESIAN SCHEME FOR ESTIMATING RELIABILITY GROWTH

We shall start off by considering the following model:

Suppose that the failure distribution of the system after the ith
design change, i = 0,1, ..., Tt , is an exponential distribution with a

mean ei . That is

In particular, at stage 0, when the system is newly built, its time to

failure is an exponential distribution with mean 00 . Based upon our

previous knowledge of the mean time to failure of similarly designed systems,

LY T T R

we shall assign a prior distribution to 60 , say G(eo;') . Without any
loss in generality, we shall let G(SO;-) be the natural conjugate prior,

which in this case is an i{nverted gamma distribution, with parameters S

and Bo that is
B8
aoo 1 BO+1 -aoleo
(2.0) dG(So;-) = g(eo;aO,Bo) = FTEST (5;) e , for ¢y So . 60

It is easy to verify that the prior mean is

thus we shall require that BO > 1.
Having assigned our prior distribution G(eo;-) , we shall test

n, (> 1) copies of the system, and observe their times to failure,




0
def
to.4 * i=1,2, ..., o, - Let T, == 121 tO,i , be the observed

total time on test.

PYRN

Conditioned on T the posterior distribution of 8 under the

0

-

0 ’

inverted gamma prior is also an inverted gamma. That is g
b
d | 8 i
G(8y | Tgi*) = 8(8y | Tyiap.84,04) t
2
(2.1) 8.4 3
00 B.+n_+1 £
(ao + TO) (_1_) 00 e-(moﬂ‘o)/e0 z
T(8, + ny) 8, g
¥
1A
The mean of the posterior distribution of 60 , 1is %
a, + T
0 0
(2.2) EGy | Tp) = By + g - 1

The above quantity is our Bayes estimate of the mean time to failure

at stage 0, based on the prior distribution g(#& , the total time

0%’ 80’
on test TO , and assuming a squared error loss function. A posterior

(1 - Y)% credibility interval for 80 can be obtained by finding two

numbers (90 l TO) and (90 TO) such that

(90|T0)

(2.3) J~ 8(8, | Tyi%gsBgengldey = (1 - )
(eolro)
5 The parameter 60 and its posterior distribution is a natural measure |

of the performance of the system at stage 0. Having observed the mean of &
the posterior distribution of 80 , we may want to increase it by making 1

either design changes or re-specifying the operating conditions of the system. i
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Suppose that we do decide to make these changes; let el denote the mean
time to failure after the changes have been made. The system is now at
stage 1, and we are ready to test the system and verify if the changes

have resulted in an improvement of the system.

Since we have adopted a Bayesian point of view, our first task is
to choose a prior distribution for 61 , say c(el;-) . The novelty of
our approach pertains to the manner in which we go about choosing c(el;-) ,
and this is motivated by the following consideration:

Even though the changes that we have instituted have been undertaken
with a view towards increasing the reliability of the system, there is
a possibility that the changes could be deleterious to the system. In
order to account for this possibility we shall choose G(el;-) in such

a manner that 8, is stochastically larger than (8, | T,) 5 this is

1
written as %1 %f (80 | TO) . Thus, we must have
P(8, > x) > P((8, | Ty) 2 %) , for all x>0 .

The usual strategy for situations of this type is to take 91 > (8

with probability 1, as has been done by Barlow et al. (1972) and by

0

‘ Smith (1977). However, a prior chosen to satisfy the above condition does

' not place any mass in the region el < (60 | To) , and therefore would

exclude from our analysis the possibility of an adverse effect of the
changes. Hence, for the situation that we are considering here, the

requirement that 61 %f (60 | TO) makes more practical semnse.

Following our previous discussion, suppose that the prior distribution

G(el;-) is also an inverted gamma with parameters @y and 81 . That \

is, X




a 1 —allel

T(8,)

(2.4) dG(el;-) = g(al;al,el) = )

—
—
[+~
©

, for a1,81,61>0.

st
>

A sufficient condition for ensuring that & (8 ] T.) 1is to have

1 0 0

3y 2ag TO , and 81 = BO +ng . Verify that under the above conditions

E(el) > E(eo I TO) , a condition that we would hope to achieve under the
hypothesis that a change is beneficial to the system. A natural strategy

is to choose ql = % + T + al , Where the value of a reflects our

0 1

prior belief about the magnitude of the improvement in the mean as a result
of the changes. When & is thus chosen, it is Zmportant that at stage 1

we treat TO as being a congtant. 1If this is not done, then the posterior

distribution of 81 will have to be obtained by treating @, asa hvper-

parameter with a prior distribution which is related to the unconditional

distribution of TO . Under the above circumstances, the posterior dis-

tribution of Bl will not be an inverted gamma, and our procedure will

become computationally involved. Furthermore, we shall also assume that
. 3 Ao 5 - 4 ..
8(3,5a,,8)) 1is Independent of 8{0, ] Tgi®)

Having chosen g(al;al,el) , we test n, > 1 copies of the system

1

(under stage 1), and observe Tl » the corresponding total time on test.

Since we have taken TO to be a constant (once we are at stage 1) the

-,

3

posterior distribution of el conditioned on Tl is 1;

g

B +n_ +n %

(a . +T.+a,+T,) 0701 1 BO-HIO"-“ZL-‘l —(uO+TO+al+T1) ¥

(2.5) g8 | Ty50) = : ”(g +i +111) (’5‘) €
U0 0 1 1

- dd

with the parameters having the usual positive signs.




Because of independence, and under the assumption of a squared error

loss, the Bayes estimator of 91 is the mean of the posterior distribution

of 61

(2.6) E(8

Under our postulate of reliability growth, we would want to have
st
e, 1T > (8 | T 5

a necessary (though not sufficient) condition for the above inequality

is that

- (2.6.1)

which reduces to the requirement that

a, + T a., + T
2.7) 1 1 5 0 0

If Equation (2.7) is not satisfied, we proceed to Section 2.1 and follow

)

the strategies discussed there. If Equation (2.7) is satisfied, then

4
we can either use E(9l ] Tl) as our Bayes estimator of 61 , with a (S
A
(1 - ¥)% credibility interval for 61 given by the two numbers t
CH | T,) and (8 ! T,) such that
3
(ellTl)
(8, | Ty3)d8, =1 -y,
(8,1T))




and stop, or we can proceed to stage 2 by making the appropriate modifica-
tions to the system.

If we proceed to stage 2, then the prior distribution of 02 should

be such that
(2.8) 0, % o, | T

One way of achleving Condition (2.8) {s to choose «, and 8, ,

- -

the parameters of the inverted gamma prior distributfon of 8, {n such

a manner that o, = “0 + TO + nl + '1‘1 + a, and 62 = BO + uo + “l .

As before, a, reflects our bellef about the magnitude of the improvement

in the mean as a result of the changes, and T) and T are now assumed

1
to be constants. We shall continue with our discussion of this strategy
in Section 2.2,

2.1 Procedures When the Posterfor Distributions at Stages 0 and 1 Are Not
Stochast{cally Ordered

It Equation (2.7) is not satisfied, that is, 1t

a, + T a, + T
(2.9) L 1 0 ]

n '[<+n—l"

aad 1f we have »o reason to believe that the reliability growth postulate
may w0t be true, then we conclude that the {nequalfty (2.9) {5 brought
about by the randomness (n observing TO and Tl . In order to rectity

this, we propose two strategices, cach having {ts own pecularities:

Strategy 1:
Ignore the {nequality (2.9), and (o e 20me bedag aceept the resalt

that ECdy | Tl) : E(UU | TO) i procecd to stage 2, by choosing the priov

P Wi A 5%

— -
AR A

- hB




distribution of 62 in such a manner that Equation (2.8) is satisfied.
After completing the testing over all the 1 + 1 stages, we will perform
an isotonic regression of the posterior means; this will be discussed

in Section 3.

Strategy 2:

By ignoring the inequality (2.9) and directly proceeding to stage 2,

we will, through the prior distribution of 92 , allow the effects of

(2.9) to perpetuate over the succeeding stages. We can avoid this by

pooling the violators TO and Tl and also the n, and n . That is,
T, + T
* we replace both TO and Tl by TOl def —g~§——l-, and
n, +n
def 0 1
we replace both n, and ny by "1 7

If we pool as above, then, we must test to see if

(2.10)

which is a condition analogous to (2.7) except that the oy and the Ti ,
i = 0,1 , have been replaced by their pooled values. Since (Bo -1) >0,

a condition which is needed to ensure that the mean of the prior distribution

of 60 is finite, a sufficient condition for (2.10) is that

To summarize, we must choose al 3_&0 , and if the inequality (2.7)

is violated, then we shall pool and be ensured that
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0
(2.11) ,
By ¥ Mgy t 0pp By ¥ Mgy ~ L

in lieu of our original requirement that

ao + TO + al + Tl ao + T0

> .
Byt my +n; -1 =By +ny-1

Since Equation (2.11) can also be written as

ao + TO + Tl + a1 2a0 + T0 + Tl

> »
30 + no + nl -1 - 230 + n, +n -1

(2.12)
1

and since the left hand side of the above equation is identical to the

left hand side of Equation (2.6.1), the effect of pooling is to lower the

magnitude of the right hand side of (2.6.1). Recall that the right hand side

of (2.6.1) is the posterior mean of 90 given TO . Thus, the effect of

pooling is to lower the posterior mean at the previous stage in the light

of the information obtained at the current stage, the previous stage,

and the prior assumption.

Thus, our revised Bayes estimator of 60 is

Zao + T +T

(2.13) E(8, | TgeTy) = 28, + o

0 1
+ n, - 1

and the revised credibility intervals for 80 are given by

(84[Tg»Ty)
g(8, | TgeTy3)d8y = 1 -y
CNELY

T

ST

P ;R I e ) 7 St

e e T %
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where g(B0 ] TO,T1;°) is an inverted gamma distribution with a scale

parameter (20.0 + T0 + Tl)/Z and a shape parameter (280 + " + nl)/2 .
Our Bayes estimator of 81 remains unchanged and is given by
o, + T, + T, + a
_ 0 0 1
(2.14) EGO) [ TP = By *mg*ny -1

with credibility intervals given by the procedure which follows Equation
(2.7).

We can stop at this point, or proceed to stage 2 by choosing an
inverted gamma prior distribution of 62 with prior parameters a, and
82 where ay = a + T, +T, +a, + a, and Bz = 80 + n, + ny o with

0 0 1 1

T0 and Tl treated as being constants.

2.2 Analysis of Failure Data at Stage 2

We have seen before, that irrespective of whether condition (2.7)
is satisfied or not, the prior distribution of 62 will be an inverted 1

gamma with parameters a, and 82 , wWhere

(2.15) =a,+ T . +a + T, +

a, 0 0 1 1 a, and 82 =8 +n, +n

0 0 1°

Having chosen g(Gz;az,Bz) , we test n, > 1 copies of the system
(under stage 2), and observe Tz the corresponding total time on test.
If g(8,;a,,8,) is assumed to be independent of g(8, | T ;) , then
the posterior distribution of 62 given Tz is also an inverted gamma
with parameters (ao +T.+a, +T, +a, + Tz) and (80 +n,+n + nz)

0 1 1 2 Q 1

Here again, in order to be assured that

_ -




12
(62|T2)s£'(6 | T

we shall need, as a necessary condition,

2 + TZ a

i)

. 0 + TO + a1 + Tl
- BO + n,y + n, - 1

a
(2.16)

If condition (2.16) is satisfied, then, we can either stop and because

of the independence assumption use (a0 + TO + a + Tl +a, + TZ)/

(B0 + n, + ny + n, - 1) as our Bayes estimator of 62 , with a 100(1 - v)%

credibility interval for 92 given by the two numbers (QZ,TZ) and (52,T2) ,

such that

(8,,T

2:T))

(8,5T,)

or we can proceed to stage 3 by making the appropriate modifications to the
system. If we proceed to stage 3, we repeat our cycle so that the prior

distribution of 93 satisfies the condition

st
93 2 (8, | T

If condition (2.16) is not satisfied, then we can, following Strategy 1

of Section 2.1, ignore the inequality (2.16) and proceed directly to stage 3,

or follow Strategy 2 and pool T1 and T2 to obtain le 222 (Tl + T,)/2 ,
and n 5 def (n1 + nz)/Z . 1f we choose to pool, then, analogous to (2.7)

and (2.10), we must have

a + T. +a, + T

+ T
12

Njg T Bptmgtny, -l

2

o
<
—
—
(NS

(2.17)
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A sufficient condition for the above is that a; > ay + TO +a . Thus,
at this stage, the prior parameter a, has to bear a relationship to
TO , the total time om test at stage 0.

As we emphasized in Section 2.1, the effect of pooling is a lowering
of the posterior mean at the previous stage. In the present case, we
have changed the posterior mean at stage 1 from (ao + To + a + Tl)/

(Bo + ag + n - 1) (Equation (2.14)) to

a +T0+al+T12 2(aO+T0

-1 2(3o + no) +n

+ al) + Tl + T2

(2.18) E(9, | TpsTpsTy) = +n, - 1

80 + n, + n, 1

Furthermore, our credibility intervals for Bl will now be given by

(8, [Tge Ty T,)
8(8) | TquT ,Tyie)do) = 1 -y

(8, [Ty T;HTy)

where g(8, | Ty»T;»T,) 1is an inverted gamma distribution with a scale

parameter (2(a0 + T, + al) + T, + T2)/2 and a shape parameter

0

(2(80 + no) + 0 + n, - /2 .

0f course, our Bayes estimator of 62 remains unchanged as

1

(a. + T. +a, + T, + a, + Tz)/(B0 +n.+n, +0, ~1)

0 0 1 1 0 1 2

Since we have revised our estimator of 91 from that given by

Equation (2.14) to that given by Equation (2.18), we will have to see if

t 3
(2.19) (91 | T T,) %: (60| TO) , Lf we did not have to pool at stage 1,

O’Tl'
or

(2.19.1) (3, | TaT . Ty) st (8 | TgeT)) . Lf we had to pool at stage 2.
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A necessary condition for (2.19) is that

R T

ao+To+al+T12 a0+T0
(2.20) B T ¥ 1 28+ )
07 % T M2 0" ™
which reduces to the requirement that
al + le % + TO
(2.21) a > B+ 0. -1
12 0 (0]

If (2.21) 1is not violated, we proceed to stage 3.

If (2.21) is violated, then we shall pool TO and le and n. and

0

n to form

12

def ef

0,12 —— (TO + le)/Z , and no’12 = (n0 + n

T 1272

and replace the appropriate gquantities in (2.20) by their pooled values.

Having done this, we shall need to have

% * To 123 * Ty 15 % *Tg. 12
(2.22) B. +n +n -1 z B. +n -1
o%%,12 % 0,12 o % ,12

which because of a; 2 a, is always true.

1 1 1 1
Since T0,12 2 (TO + 2 (Tl + TZ)) and nO,lZ 7 (no + ) (nl + nz)) ,
condition (2.22) reduces to

ao + TO + a1 + le , Aao + 2T0 + Tl + T2
BO + no + n12 -1 —-430 + 2n0 + n1 + n2 -1

Thus, 1f we did not have to pool at stage 1, and if condition (2.21)

is violated, our Baves estimator of 60 conditioned on T0 . Tl , and

T2 is
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Aao + ZTO + Tl + Tz

BO + 2n0 + nl + n2 -1

(2.23) E(8, | Tge T Ty) = 3

The credibility intervals for 60 are now given by an inverted

gamma distribution with scale parameter (Aao + ZTO + T, + Tz)/4 and

1

shape parameter (480 + 2n0 + ny + nz)/4 . We can now either stop or

proceed to stage 3.
Reverting to Equation (2.20), we note that a necessary condition

for satisfying this equation is that

uo + TO + al + le R} 2a0 + To + T
30+n0+n12—1 —280+n0+ 1

(2.24)

If condition (2.24) is satisfied, we proc =2d to stage 3. Note that

for n, > n, condition (2.24) reduces to

R a, + Tl .
-1 —-280 + n, + n - 1

al + le

12

(2.25)
BO + no +n

note that when n, 20y, 285 + n, + o0y - 1>8y+ny+mny, - 1 . Clearly,

condition (2.25) is satisfied whenever T 2 > T1 , that is, when T, > T

1 2 1

Thus, in view of the above arguments, whenever condition (2.24)

is violated, that is whenever n1 < n, or T2 < T1 , or both, we shall

by their pooled values le and ny, - Thus,

replace '1‘1 and ny

after pooling, Equation (2.24) becomes

ao + TO + al + le , Aao + 2T0 + T1 + T2
80 + no + n12 -1 —-ABO + 2no + nl + n2 -1

which because of a; 2 o is always true. ;
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To summarize, if we had to pool at stage 1, and if condition (2.24)

is violated, our Bayes estimator of @ conditioned on T, , T, , and T

0 0 1 2

is

40.0 + 2'1'0 + Tl + Tz
480 + Zno + nl + n2 -1

E8, | TyT HT,) =

Note that its estimator is identical to the one given by Equation (2.23)
which was based on the fact that there was no pooling at stage 1.
However, in the present case, the credibility intervals for 60

are given by an inverted gamma distribution with scale parameters

(4a0 + ZTO + T, + Tz)/2 and shape parameter (460 + 2n0 +n

1 + nz)/2 .

1
We can now either stop or proceed to stage 3.

We contrast these, to the credibility intervals for 60 given
after Equation (2.23), which pertained to the case of no pooling at
stage 1. We note that the pooling at stage 1 and at stage 0 has a tendency
to make the credibility intervals wider than those obtained when there is
pooling at stage 0 only. Thus, based om the above analysis, we claim that
excegsive pooling results in wider credibility intervals.

Our analysis of the failure data at the succeeding stages, follows

along the lines mentioned above.

2.3 Some Remarks on the Pooling Procedure

It i{s fairly clear that condition (2.7) is likely to be violated

whenever (Tl/nl) is not much larger than (To/n Note that (Ti/ni) .

0)
i =0,1, is the (non-Bayesian) maximum likelihood estimator of ei .
i =0,1. Thus (2.7) will be violated if the improvement in reliability

in going from stage O to stage 1 is not significantly large. Thus,

PR R e R e L e N
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pooling will be necessary whenever the effect of the design changes is
not substantial (or if the design changes have produced a significant
deterioration).

The pooling procedure advocated by us is one among several others
that can be used. For example, we could have pooled the estimated mean
times to failure (To/no) and (Tllnl) , or we could have just pooled
the observed total time on test TO and Tl . Irrespective of how we
pool, the important question here is whether pooling the data is a legitimate
Bayesian procedure.

A pure and orthodox Bayesian might argue that by pooling we have
violated the "likelihood principle" of statistical inference. He will take
objections on the grounds that our decision rule is not based on the
information provided to us by the true posterior distribution, but instead,
is based on a posterior distribution which is modified to suit our hypo-
thesis. He would recommend that instead of pooling, it would be better to
choose a; >> @y » SO that condition (2.7) will always be satisfied, or
to choose a joint prior distribution on 6. and 6., in such a manner that

0 1

there is no probability mass in the region el < 60 (as has been done
by Barlow et al. (1972)).

Our response to the above arguments is that not allowing any prior
or posterior probability in the region el < 90 is too strong, and perhaps
an unreasonable requirement, and that pooling is necessitated by the ran-
domness of the data. Thus, whenever the posterior distributions violate
our requirement, that is, (61 | Tl) %f (60 | TO) , it is preferable
to pool the variables rather than to change the prior parameters in order
to make a1 >> ao . As a compromise, we may want to delete the requirement
that 61 if eo with respect to the posterior distributions, and jﬁst work
with the requirement that (9,) %f (8 | T,) [see Section 4].

T | . u'riillll.'.lill.i"'
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Another major comment about our procedure pertains to our rational
for requiring that subsequent to pooling conditions of the type given by
Equations (2.11) be satisfied. Note that (2.11) is analogous in appearance
to the necessary condition (2.6.1). However, the terms which comprise
condition (2.11) are not the means of the true posterior distribution

after pooling. For instance, after we replace T, by T 1° and n

0 0 0
by nyp the mean of the posterior distribution of 60 conditioned on
TOl is not (ao + TOl)/(BO + no1 T 1) , as is implied by the right hand

side of (2.11). The actual mean of the true posterior distribution

is quite complicated, and is given by

f 8,808,558, | Tppd8,

all el

where g(eo,el | TOl) is the joint posterior distribution of 60 and

91 » given by

a, o
1 1 1

e
1 + BO)F(nO1 + Bl) en01+80+len01+61+l

o

I‘(n0

HORYTLL IR b
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In view of the computational difficulties involved with the above equations,
we choose (ao + TOl)/(BO +ng - 1) as being analogous to the mean
of the posterior distribution of 60 given T01 . We approximate the
mean of the posterior distribution of 01 given TOl in a similar manner,
and thus write condition (2.11). Since the above approximations have been
motivated by the arguments which lead us to pool, we feel that they are
inherently satisfactory.

We should close this section by stating that in the light of the
above discussions, our approach should be called a '"pseudo-Bayesian

approach."
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3. AN ISOTONIC REGRESSION OF THE RAW POSTERIOR MEANS

Our Strategy 1 of Section 2.1 specifies that the inequaiity (2.9),
and other similar inequalities be ignored whenever the posterior means
do not have the correct order. As a result of the above strategy, we
will have at the end of testing over the (t + 1) stages the (1 + 1)

posterior means

E(8, | To)»EC(8) | TgrTy)s -oes ECO | TgoTys wvvn T

where
a. + T
0 0
E(6, | T.) = ,
0 0 80 + ny 1
and
i
@y + T0 + jzl (aj + Tj)
E(9, | TgsTys wees T = % , i=1,2, o0, T
B. + n. + n, -1
0 0 j=0 j

Under our postulate of reliability growth, we would need to have

(as a necessary condition)

(3.1) E(e, [ Tgs »+e» Ty) SEC(O l Tgr wees Tyy) » 820,01, ooy T -1 :

If condition (3.1) is satisfied, then our Bayes estimate of the
reliability growth curve is given by these posterior means, and our Bayes
estimator of the reliability at stage Tt , is simply E(8_ I TgrTys <oes Tr)
Note that because of the adaptive nature of our scheme, E(eT [ TO’ e TT) ,

is based on the failure data over all the previous and the present stages
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of testing, and our prior knowledge about the magnitude of the improvement

over each stage.

If condition (3.1) is violated by any one or more of the indices

i, i=20,1, ..., T, then, we shall, following Barlow et al. (1972) pool

the adjacent violators to obtain the isotonic regression of y
*
E(8, [ Tgs »oo» T) » 120, oony T, say, E (8 | Tgs =oo» T))
*
We shall use the E (Gi ] TO, ey Ti) , 1 =0, ..., t as our estimate ¢

Y

*
of the reliability growth and E (QT [ TO’ ceey Tr) as our estimate of

the reliability at stage <t . Note that like E(eT ‘ TO, ceey Tr) ,

AISARI

E (GT i TO’ ceny TT) is based on the failure data over all the previous
stages, our prior knowledge about the magnitude of the improvements at

each stage, and the postulate of reliability growth.

!
% %
% The remarks of Section 2.3 are also appropriate for the isotonic §f
b N
% regression estimators E (9i ' TO’ cens Ti) , since "
) a) by performing an isotonic regression of the true posterior
means we have violated the likelihood principle, and {
* s
b) the estimators E (9i | TO’ ceny Ti) not being the true i |

posterior means of the ei , 1 =0, ..., T, they are not

. fully Bayesian.

3 BV
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4. ESTIMATION WHEN THE ORDERING IS WITH RESPECT TO THE PRIORS ONLY

In Section 2, we have considered the case when the mean lifetimes ]

were stochastically ordered with respect to both the prior and the posterior

distributions. In this section, we shall delete the requirement that the
means be ordered with respect to the posterior distribution. When this is
done, we will not have to pool the violators, nor will we have to perform
an isotonic regression of the posterior means, should we choose not to
pool.

We start off by choosing a prior distribution of 80 , g(eo;ao,ﬁo)

as given by Equation (2.0). The posterior distribution of 00 conditioned

. 3 « b a P
on T0 ’ g(e0 | TO,aO,BO.nO) is given by Equation (2.1). Assuming a

squared error loss, the Bayes estimator of 8 is E(®

0 | TO) , and this

0

1s given by Equation (2.2); the credibilitv intervals for 60 are given

by Equation (2.3).

We shall now choose a prior distribution of el g(el;al.sl) in such

a manner that &, >~ (8

1 0 | TO) . Following the discussion of Section 2,

we shall choose a = aO + TO + al and bl = BO + ny o where 31 has

the same interpretation as in Section 2. If at stage 1 we look upon TO

as a constan.g, and assume that g(sl;al,Bl) is independent of

9 ; . ' F : 3
g( 0 | TO‘aO'BO no) then under the assumption of a squared error loss

function, the Bayes estimator of 9o, , conditioned on T is E(el } T.) ,

1 1 1

given by Equation (2.6). The posterior distribution of 01 piven T1 .

g(al l Tl:-) is given by Equation (2.5), and the credibility intervals

for 61 follow in the usual manner. ©Note that the above statements are

onlyv true if TO i{s viewed as a constant at stage 1, the prior distribution
at stage 1 is assumed to be independent of the posterior distribution

at stage O,




Once we obtain E(e1 I T,) we do not care to compare it with

1

E(e0 [ TO) , since we have not imposed any requirements on our parameters
with respect to posterior distributions.
We now proceed to stage 2 by choosing our prior distribution of 62

in such a manner that

Following our discussion in Section 2, we shall take g(ez;az,Bz) as

our prior distribution of 82 with a, = ag + TO + a; + Tl + a, and

82 = BO + no + nl ; here again we shall treat TO and Tl as constants.

As before, 1if g(Bz;az,Bz) is taken to be independent of g(el | T ;) ,

1’

then the mean of the posterior distribution of 62 conditioned on T2

is our Bayes estimator of 62 . We continue in this manner going from

one stage to the next, obtaining at each stage the Bayes estimator of

23
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5. SUMMARY AND CONCLUSIONS

In this paper we have considered an adaptive approach for estimating
reliability growth based on prior information.

In Section 2 we have imposed a strong requirement on our approach,
by requiring that the mean times to failure at the various stages be
stochastically ordered with respect to both the prior and the posterior
distributions. The latter requirement can be satisfied if we pool the
violators; however, pooling results in a violation of the likelihood
principle, and other computational difficulties. Even though the com-
putational difficulties can be avoided by using some approximations (see

Section 2.3), the pooling makes our procedure not fully Bayesian. Thus,

what we present in Section 2 can best be described as a Bayesian scheme

for estimating reliability growth. A formal investigation of the properties
of our scheme, despite the fact that it is not fully Bayesian, is an open
question which we hope to address in our future work. Our scheme however,
does produce results which are reasonable and intuitively satisfying.

Our review of the literature in Bayesian statistics indicates that
there is no discussion or even mention of the problem estimating parameters
which are stochastically ordered. As mentioned before, our strategy of
pooling the violators to obtain the stochastic order may be unacceptable
to a Bayesian. We therefore hope that this paper can stimulate some basic
research into the general problem area mentioned above.

In view of the difficulties mentioned above, we, in Section 4, weaken
the specifications on our approach by deleting the requirement that the
parameters be stochastically ordered with respect to the posterior dis-

tributions. This simplification obviates the need for pooling the violators,
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and thus would make our procedure fully Bayesian, and therefore optimal in
the usual sense of minimizing the square error loss function. However, the
adaptive nature of our problem imposes certain computational difficulties.
We circumvent these by treating the observed statistic Ti to be constant
at stage (i +1) , 1 =0,1,2, ..., T =1, and by assuming the prior
distribution at stage j to be independent of the posterior distribution

at stage j ~1, 3 =1,2, ..., T . Then, within the context of the above

assumptions, our procedure of Section 4 is fully Bayesian.

5.1 Future Work

There are several other aspects of the reliability growth problem that

we plan to address in our subsequent work. These are:

i) An evaluation of the gain in information obtained by considering
an adaptive scheme wherein previous data obtained at stages
0,1, ..., i ~1, is used in the estimation at stage i , versus '
a nonadaptive scheme -'herein only the data at stage 1 is used.
It is conceivable that an adaptive procedure will be advantageous
whenever the improvement in reliability form one stage to another

is small, whereas if there is a drastic change in reliability at

a particular stage, then the data from the previous stages will

tend to diminish its true effect.

ii) A cost-benefit analysis of the reliability growth procedure.
That is, we would like to evaluate the trade-off between the
costs incurred in improving the reliability at stage 1 versus

the actual improvement in reliability at stage (i + 1) say

- 61) def Ve i=0,1, ..., 1. It is conceivable

: ®1n £




that the vei will be decreasing in 1 (there is only so

much that one can do to improve a system) whereas the Ci
will be either constant or increasing in i . What we need
is a stopping rule which tells us when to stop performing

the improvements on the system and put the system into

operation, based on the costs Ci and out best estimate of

vai .
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