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ABSTRACT

In this paper we consider an adaptive approach for estimating reliability
growth, based on prior information which is motivated from practical
considerations. We discuss two situations: in the first one, both the
prior distribution and the posterior distributions of the mean time to
failure of an exponential distribution are stochastically ordered; in
the second situation, the prior distribution is stochastically ordered
with respect to the last posterior distribution. The former situation
leads us to a procedure which is not fully Bayesian, and is therefore
termed by us as !pseudo-Bayesian.'' Since we do not know the properties
of this pseudo Bayesian approach, we can best describe our work here as
being a "pseudo-Bayesian scheme.M" The second situation leads us to an
approach which is fully Bayesian under certain assumptions. Our work
in this general area of reliability growth is still in progress, and we
invite the attention of other researchers to look into some of the prob-
lems that we have posed, and the questions that we have raisedN
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AN ADAPTIVE BAYESIAN SCHEME FOR ESTIMATING RELIABILITY
GROWTH UNDER EXPONENTIAL FAILURE TIMES

by

Nozer D. Singpurwalla

1. INTRODUCTION

A complex, newly designed system, generally undergoes several stages

of testing before it is put into operation. After each stage of testing,

changes are made to the design (or the operating conditions are re-

specified) with the hope that the new design would lead to a longer period

of performance. This procedure is referred to as "reliability growth";

this is because a longer period of performance implies an improvement

in reliability. Often, in practice, a change in the system design may

result in a deterioration of the system performance, so that the term

reliability growth may not be an appropriate description of what is

actually happening to the system. However, since the intent of a design

change is to improve the reliability, we shall continue to use the term

reliability growth throughout this paper.

Suppose then, that the system has been tested at stages 0,1,2, ..., T

At the end of each stage, an estimate of the reliability of the system is

made using any of the conventional procedures which measure the reliability

of the system. At each stage of testing, we may test either a single

copy of the system, or several copies of the system, depending on the

particular situation being considered. Having tested the system over

(T + 1) stages, we would like to know the following:
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i) Has there been a genuine growth in reliability over the

time period covered by the (T + 1) stages of testing,

and is this growth significant?

ii) Using all the testing information that we have acquired

over all of the stages, what is our best (in a sense to

be made precise later on) estimate of the reliability

of the system at stage T?

An answer to question i) will enable a decision maker to determine

if indeed the design changes do result in an improvement in reliability,

and perhaps determine the rate (with respect to the stages) at which

there is a growth in reliability. An answer to question ii) will enable

a decision maker to decide if the system is ready to be put into operation,

and to arrive at a suitable cost-warranty agreement with the user. We

can, of course envision several other uses of the analysis described in

i) and ii) above.

Since 1966, there have been several papers written under the heading

of reliability growth, each emphasizing a different point of view. For a

recent survey of these papers, we refer the reader to H. Balaban (1978).

rhe approach that we shall take in this paper is Bayesian, with our

Bayesian analysis being undertaken in a manner which will be described

in Section 2. Others who have adopted a Bayesian point of view, but with

a direction different from ours are A.F.M. Smith (1977) and Weinrich

and A. Gross (1978).
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2. A BAYESIAN SCHEME FOR ESTIMATING RELIABILITY GROWTH

We shall start off by considering the following model:

Suppose that the failure distribution of the system after the ith

design change, i a 0,1, T , is an exponential distribution with a

mean 6 . That is

-t/6i
f(t; 1 ) i e , i > 0 , t > 0

iL

In particular, at stage 0, when the system is newly built, its time to

failure is an exponential distribution with mean 60  Based upon our

previous knowledge of the mean time to failure of similarly designed systems,

we shall assign a prior distribution to ,0 2 say G(80 ;') . Without any

loss in generality, we shall let G(60;-) be the natural conjugate prior,

which in this case is an inverted garma distribution, with parameters 0

and 80 that is

ao 1 -aO/e

(.)dep0 1 e 0 0 ,for a 0, s o 80  >
(.) de 0;* 0 g(; 0  rCo 0) 0 0

It is easy to verify that the prior mean is

am
E(e0) M -0  < O if O > ;

thus we shall require that BO > 1 .

Having assigned our prior distribution G(60 ;.) , we shall test

n0 (> 1) copies of the system, and observe their times to failure,



4

n

t 1 12, n et def 0
0, i , i 1,2 .... n . Let TO e to0 i , be the observed

i-I

total time on test.

Conditioned on To , the posterior distribution of 80 under the

inverted gamma prior is also an inverted gamma. That is

dG( 0 1 T0;') = g(60 I ro;,80,n0 )

(2.1) (0 +n 0 0+no+ 1  -(ao+To)/ 6 0

r(0 + no) () e 0

0'
The mean of the posterior distribution of 6 0 ,is

a0 + T0
(2.2) E(60  TO) - + no 1

The above quantity is our Bayes estimate of the mean time to failure

at stage 0, based on the prior distribution g(e0 ;a0 ,60) , the total time

on test To , and assuming a squared error loss function. A posterior

(1 - y)% credibility interval for 80 can be obtained by finding two

numbers (e0 1 TO ) and (0 T) such that

(e 0T 0)

(2.3) f g(e0 1 T0;aon0,no)deo = (1 - y)

(e0 IT0)

The parameter 6 and its posterior distribution is a natural measure
0

of the performance of the system at stage 0. Having observed the mean of

the posterior distribution of e0 , we may want to increase it by making

either design changes or re-specifying the operating conditions of the system.
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Suppose that we do decide to make these changes; let 6 denote the mean

time to failure after the changes have been made. The system is now at

stage I, and we are ready to test the system and verify if the changes

have resulted in an improvement of the system.

Since we have adopted a Bayesian point of view, our first task is

to choose a prior distribution for 61 , say G(e1 ;.) . The novelty of

our approach pertains to the manner in which we go about choosing G(O1 ;.)

and this is motivated by the following consideration:

Even though the changes that we have instituted have been undertaken

with a view towards increasing the reliability of the system, there is

a possibility that the changes could be deleterious to the system. In

order to account for this possibility we shall choose G(61 ;.) in such

a manner that 6 is stochastically larger than (60 1 TO ) ; this is1t

written as ei i (60 I To ) • Thus, we must have

P(e 1 > x) P((6 0  0 ) > x) , for all x > 0

The usual strategy for situations of this type is to take I > (80  TO )

with probability 1, as has been done by Barlow et al. (1972) and by

Smith (1977). However, a prior chosen to satisfy the above condition does

not place any mass in the region 1 < (6o I TO) , and therefore would

exclude from our analysis the possibility of an adverse effect of the

changes. Hence, for the situation that we are considering here, the

requirement that 61 > (60 1 TO) makes more practical sense.

Following our previous discussion, suppose that the prior distribution

G(el;.) is also an inverted gamma with parameters a1 and B That

is,
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(2.4) dG(el;') g(61 ;OlV I) - / e , for al ' i , > 0.

A sufficient condition for ensuring that e s> 0 0 I TO ) is to have

I > O + To , and 31 = 0 + nO . Verify that under the above conditions

E(eI ) > E(60  TO) , a condition that we would hope to achieve under the

hypothesis that a change is beneficial to the system. A natural strategy

is to choose a = O + T + a 1 , where the value of a1 reflects our k0I
prior belief about the magnitude of the improvement in the mean as a result

of the changes. When a 1  is thus chosen, it is important that at stage 1

we treat T as being a constant. If this is not done, then the posterior

distribution of 81 will have to be obtained by treating aI as a hyper-

parameter with a prior distribution which is related to the unconditional

distribution of T 0 . Under the above circumstances, the posterior dis-

tribution of 91 will not be an inverted gamma, and our procedure will

become computationally involved. Furthermore, we shall also assume that

g(aI;Ol,81) is independent of g( 0 I To;-)

Having chosen g( 1 ;,O1 9a ) , we test nI > I copies of the system

(under stage 1), and observe TI , the corresponding total time on test.

Since we have taken T to be a constant (once we are at stage 1) the

posterior distribution of e conditioned on T is1 1

0n+n nl
(aO +T O +a a 0 0 1 0o+n0 +nl -( oL +TO+al+Tl)
(I + +a +n

0 0 1 1(2.5) g( 1 aT 1 ;.) = t ei ine

with the parameters having the usual positive signs.
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Because of independence, and under the assumption of a squared error
loss, the Bayes estimator of 6 is the mean of the posterior distribution

of 6i

m0 + T O + a1 + T

(2.6) E(81  T1 ) 8 +n O +n -

Under our postulate of reliability growth, we would want to have

(61 1 T,) s~ (e0 TO)

a necessary (though not sufficient) condition for the above inequality

is that

cc + TO + a1 + T1  a0 + TO

0 0 1 1 0 0
(2.6.1) + n0 + nI > 0 + n

which reduces to the requirement that

a1 + T1 aO + T

(2.7) 1 > 0 0
nl -- 0 + no

If Equation (2.7) is not satisfied, we proceed to Section 2.1 and follow

the strategies discussed there. If Equation (2.7) is satisfied, then

we can either use E(91 I TI) as our Bayes estimator of 61 . with a

(I - Y)% credibility interval for 61 given by the two numbers

(, T) and (61 1T
"  ) such that

( 1 ITI)

f g( 1  T1 ;-)dl = 1 - yI
" (6 1 1 )



and stop, or we can proceed to stage 2 by making the appropriate modific-a-

tions to the system.

If we proceed to stage 2, then the prior distribution of 0 2 should (

be such that

(2.8) 0 2 0~ 1o 1 T '

One way of achieving Condition (2.8) is to Choose X., and ti.,

the parameters of the inverted gamma prior distribut ion of 0,) In such

a manner that ot, - + T + a + T + a. and C, -= + n +n1
0 0 1 1 2 02 O '0 1

As before, a,, reflects our belief about the magnitude of the improvement

in the mean as a result of the changes, and T 0and T Iare nlow aIssumeILd

to be constants. We shallI cont inue with our discuss ion of this st rategy

in Section 2.2.

2.1 Procedures When the Posterior Distributions at Stages 0~ and-I Art' No-t
Stochast icalliv Ordered

If Equation (2.7) is not sati-sfied, that is, if'

+T1 +T0
(2.9) +T+T

a0.1d if we have ireason to betlieve that the re iab iLtv growth pos t n at e

may t~tbe true, then we coniclude thait the I neqLUaIt \ k(2.9') Is b rolight

about by the randomness in observing T0  and T .InI order to rect it V

this, we propose two strategies, each hay ing Its own pecu I a r I-t iteS

St rjitv 1:

Ignore the ine~qual itv (2.9) , and "";c ! "-c ::aact ept ti' resut

that E( 0 1 r .- E(t) o T) 0 pr1o'ee'd to Stalge 2.*b hoosLnte pri or
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distribution of 62  in such a manner that Equation (2.8) is satisfied.

After completing the testing over all the T + 1 stages, we will perform

an isotonic regression of the posterior means; this will be discussed

in Section 3.

Strategy 2:

By ignoring the inequality (2.9) and directly proceeding to stage 2,

we will, through the prior distribution of 82 , allow the effects of

(2.9) to perpetuate over the succeeding stages. We can avoid this by

pooling the violators T1 and TI  and also the n and nI  That is,

def 0 1 T

• we replace both TO  and T1  by TO1  T , and

* we replace both n O and n I by n0  def n0 +n 1

If we pool as above, then, we must test to see if

a1 + T 0 
O + TO0

(2.10) >
n 0 - 8 0 + n0 1 -1

which is a condition analogous to (2.7) except that the ni and the T.
1

i = 0,1 , have been replaced by their pooled values. Since (a0 - 1) > 0 ,

a condition which is needed to ensure that the mean of the prior distribution

of a0  is finite, a sufficient condition for (2.10) is that

a 1> cL

To summarize, we must choose a1 > a , and if the inequality (2.7)

is violated, then we shall pool and be ensured that
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O 0 + T0 1 + a1 + TO1 C0 + T01
(2.11) B0 + n01 + n01 - 1 0 0 + n01 -1'

in lieu of our original requirement that

C0 + T0 + a1 + T1 0 + T
a0 + n1> + n1 - 1 > a0 + n0

Since Equation (2.11) can also be written as

a0 + T 0 + a1 2a0 + TO + T1

B0 + n0 + I -1 - 2,0 + no + n, - 1

and since the left hand side of the above equation is identical to the

left hand side of Equation (2.6.1), the effect of pooling is to lower the

magnitude of the right hand side of (2.6.1). Recall that the right hand side

of (2.6.1) is the posterior mean of 80 given TO . Thus, the effect of

pooling is to lower the posterior mean at the previous stage in the light

of the information obtained at the current stage, the previous stage,

and the prior assumption.

Thus, our revised Bayes estimator of e0  is

2a + TO + T
(2.13) E(60 I ToTI) = 02 + n1 +n I -1

and the revised credibility intervals for 0 are given by
0

(60 IToT 1)
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where g(80 1 T0 ,T1 ;*) is an inverted gamma distribution with a scale

parameter (2a0 + T + TI)/2 and a shape parameter (28 + no + nl)/2

Our Bayes estimator of e remains unchanged and is given by

(2.14) E(e1 I TI) = a0 +T 0 + 1  _ 1

0+ n 0 + na1 - 1

with credibility intervals given by the procedure which follows Equation

(2.7).

We can stop at this point, or proceed to stage 2 by choosing an

inverted gamma prior distribution of 62 with prior parameters a2 and

B2 where a2 = a0 + To + T1 + a, + a2 and 82= + no + n , with

T and T treated as being constants.

2.2 Analysis of Failure Data at Stage 2

We have seen before, that irrespective of whether condition (2.7)

is satisfied or not, the prior distribution of 62 will be an inverted

gamma with parameters a2 and 82 1 where

(2.15) a2 = a 0 +T 0 + a1 + T1 + a2 and 82 -80 + n 0 + n1

Having chosen g(62 ;a2,82) , we test n2 -1 copies of the system

(under stage 2), and observe T2 the corresponding total time on test.

If g(e2 ;a2,82) is assumed to be independent of g(81 I T1 ;*) , then

the posterior distribution of 02 given 12 is also an inverted gamma

with parameters (a0 + T0 + aI + TI + a2 + T2 ) and (80 + n0 + nI + n2 )

Here again, in order to be assured that
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(e2 I r2) (°i I T)

we shall need, as a necessary condition,

(2.16) a2 + T2 0 + T + a + T
n 2 0 + n + n -1

If condition (2.16) is satisfied, then, we can either stop and because

of the independence assumption use (a0 + T0 + a1 + T1 + a2 
+ T2)

(a 0 + n0 + n1 + n2 - i) as our Bayes estimator of 02 , with a 100(l - y)%

credibility interval for e2 given by the two numbers (6_2,T2) and (02,T2 )

such that

(6 2 ,T 2 )

f g(e2 1 T2 ;')d0 2 = 1 - y

(0 2 ,T 2 )

or we can proceed to stage 3 by making the appropriate modifications to the

system. If we proceed to stage 3, we repeat our cycle so that the prior

distribution of e3  satisfies the condition

3, - e(2  T2)

If condition (2.16) is not satisfied, then we can, following Strategy I

of Section 2.1, ignore the inequality (2.16) and proceed directly to stage 3,

or follow Strategy 2 and pool TI and T to obtain T1 2 df (T1 + T,)/2

and n12 Ln" (nI + n2 )/2 • If we choose to pool, then, analogous to (2.7)

and (2.10), we must have

a 2 + TI aO + T O + a I + TI

(2.17) a2  1 2  a0 + 0 a 1  1 2
n B + n + n - 112 0 0 12
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A sufficient condition for the above is that a2 > ( + T + a . Thus,

at this stage, the prior parameter a2 has to bear a relationship to

To , the total time on test at stage 0.

As we emphasized in Section 2.1, the effect of pooling is a lowering

of the posterior mean at the previous stage. In the present case, we

have changed the posterior mean at stage 1 from (a0 + TO + aI + TI

(80 + no + nI - 1) (Equation (2.14)) to

(2.18) 0 + T + a + T12 2(a0 
+ TO + a1) 

+ T1 
+ T2

E(61  ToTT2) 80 + n+ 12 - 1 2(B0 + n0 ) + nI + n2 -1

Furthermore, our credibility intervals for 1 will now be given by

(O1 To,TI,T 2)

f g(e1 I T0,TI,T 2 ;')d01 = 1 - y

(elITo,TI,T2)

where g(61 1 To,TIT2) is an inverted gamma distribution with a scale

parameter (2(a0 + TO + a1 ) + 
T I + T2)/2 and a shape parameter

(2(30 + n 0) + n1 + n2 - )/2 .

Of course, our Bayes estimator of e2  remains unchanged as
(a0 + T0 + aI + TI + a2 + T2)/(- + o + n1 + n2 - 1).

Since we have revised our estimator of 61  from that given by

Equation (2.14) to that given by Equation (2.18), we will have to see if

(2.19) (01  ToT1,T2) > (B0 1T) , if we did not have to pool at stage 1,

or

(2.19.1) ( 1 TOT1T2) i>t (00 1 To,TI) , if we had to pool at stage 2.
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A necessary condition for (2.19) is that

(2.20) a 0 + T  + a + T1 2 a0 + T10 + n0 + n12 -1 0 + no -1

which reduces to the requirement that

al + TI nO + T

(2.21) 1 12 0 0
n12 -8 0 + n - 1

If (2.21) is not violated, we proceed to stage 3.

If (2.21) is violated, then we shall pool T and T12 and n and

n 12 to form

T0,12 Tef (TO + T12 )/2 , and n0,12 - (n0 +.n12 )/2

and replace the appropriate quantities in (2.20) by their pooled values.

Having done this, we shall need to have

(2.22) 0 T0,12 1 +T 0 1 2 > a0 +T 0,1 2(0 + n0,12 + n0,12 > 80 + n0,12 - I

which because of a 1 1 aO is always true.

Since T0  -1  (T0 + 1 (T1 + T2)) and no 1 2  ( + - (n1 + n2 ))Sic 0,12 2 2 2 0,1 2 no 2 1 2

condition (2.22) reduces to

0 O T 0 + a1 + T1 2  4a0 + 2T0 + T1 + T2
S0 + n0 + n1 2 - 1 -480 + 2n 0 + n1 + n2 -

Thus, if we did not have to pool at stage 1, and if condition (2.21)

is violated, our Bayes estimator of 60  conditioned on T. I TI , and

T2 is
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4a0 + 2T0 + T1 + T2
(2.23) E(80  To'TI'T 2) 480 + 2n0 + nI + n -1

The credibility intervals for 60 are now given by an inverted

gamma distribution with scale parameter (4a0 + 2T0 + T + )/4 and

shape parameter (4a0 + 2n0 + n1 + n2 )/4 . We can now either stop or

proceed to stage 3.

Reverting to Equation (2.20), we note that a necessary condition

for satisfying this equation is that

(2.24)0 + T 0  aI + T12 2 0 + T + T
so + n 0+ n1 2 -1 - 280 + n0 + n I -1

If condition (2.24) is satisfied, we proc ad to stage 3. Note that

for n, > n2 condition (2.24) reduces to

1a + T12 0 + T1
(2.25) 0 + n0 + n1 2 - 1 - 280 + n0 + n1 - 1

note that when n1 2_n2 , 2B0 + n0 + n1 - I > a0 + n0 + n12 - 1 . Clearly,

condition (2.25) is satisfied whenever T12 > T1 , that is, when T2 > T 1

Thus, in view of the above arguments, whenever condition (2.24)

is violated, that is whenever n1 < n2 or T2 < Ti , or both, we shall

replace T and n by their pooled values T12 and n1 2 . Thus,

after pooling, Equation (2.24) becomes

0 + TO + a1 + T12 40 + 2To + T1 + T2

s0 + n0 + n12 - 1 L 460 + 2n0 + nI + n2 - 1

which because of a 1> '0 is always true.

=MI
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To summarize, if we had to pool at stage 1, and if condition (2.24)

is violated, our Bayes estimator of e0  conditioned on To , T1 . and T2

is

4a0 + 2T0 + T1 + T2

E(e0  T0,TI,T 2 ) = 460 + 2n0 + n1 + n2 - 1

0[

Note that its estimator is identical to the one given by Equation (2.23)

which was based on the fact that there was no pooling at stage 1.

However, in the present case, the credibility intervals for 0

are given by an inverted gamma distribution with scale parameters

(4a0 + 2T0 + T1 + T2 )/2 and shape parameter (480 + 2n0 + n1 + n2)/2

We can now either stop or proceed to stage 3.

We contrast these, to the credibility intervals for e0  given

after Equation (2.23), which pertained to the case of no pooling at

stage 1. We note that the pooling at stage I and at sta~e 0 has a tendency

to make the credibility intervals wider than those obtained when there is

pooling at stage 0 only. Thus, based on the above analysis, we claim that

excessive pooling results in wider credibility intervals.

Our analysis of the failure data at the succeeding stages, follows

along the lines mentioned above.

2.3 Some Remarks on the Pooling Procedure

It is fairly clear that condition (2.7) is likely to be violated

whenever (T1/n1 ) is not much larger than (T0/n0 ) . Note that (Ti/ni)

i - 0,1 , is the (non-Bayesian) maximum likelihood estimator of 61 9

i = 0,1 . Thus (2.7) will be violated if the improvement in reliability

in going from stage 0 to stage I is not significantly large. Thus,
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pooling will be necessary whenever the effect of the design changes is

not substantial (or if the design changes have produced a significant

deterioration).

The pooling procedure advocated by us is one among several others

that can be used. For example, we could have pooled the estimated mean

times to failure (T0 /n0 ) and (TI/nI) , or we could have just pooled

the observed total time on test T and T1 . Irrespective of how we

pool, the important question here is whether pooling the data is a legitimate

Bayesian procedure.

A pure and orthodox Bayesian might argue that by pooling we have

violated the "likelihood principle" of statistical inference. He will take

objections on the grounds that our decision rule is not based on the

information provided to us by the true posterior distribution, but instead,

is based on a posterior distribution which is modified to suit our hypo-

thesis. He would recommend that instead of pooling, it would be better to

choose a1 >> o , so that condition (2.7) will always be satisfied, or

to choose a joint prior distribution on 60 and 6 in such a manner that

there is no probability mass in the region 6 < e (as has been done
1 0

by Barlow et al. (1972)).

Our response to the above arguments is that not allowing any prior

or posterior probability in the region 61 < 80 is too strong, and perhaps

an unreasonable requirement, and that pooling is necessitated by the ran-

domness of the data. Thus, whenever the posterior distributions violate

our requirement, that is, (61 1 TI ) s>t (80 1 TO ) , it is preferable

to pool the variables rather than to change the prior parameters in order

to make a1 >> c. As a compromise, we may want to delete the requirement

that a It 60 with respect to the posterior distributions, and just work

stwith the requirement that (81) > (60 I T0 ) [see Section 4].

L _ _ ____......
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Another major comment about our procedure pertains to our rational

for requiring that subsequent to pooling conditions of the type given by

Equations (2.11) be satisfied. Note that (2.11) is analogous in appearance

to the necessary condition (2.6.1). However, the terms which comprise

condition (2.11) are not the means of the true posterior distribution

after pooling. For instance, after we replace T0  by T0 1 , and n 0

by n0 1 , the mean of the posterior distribution of @0 conditioned on

T01 is not (a0 + T O)/(0a + n 0 - 1) , as is implied by the right hand

side of (2.11). The actual mean of the true posterior distribution

is quite complicated, and is given by

f 1g(60
O 61  T01

)de 1

all 1 1

where g(eo,6 1  T01 ) is the joint posterior distribution of 60 and

61 , given by

/1 1e
T(nl + aO) (noI + 81) n0 l+80 +l n01+81+l e

@0 81

2T 0 1  n2lT nl-l ( v0 + dv

(2T01 -v) v e 1

02T 1  01 - 01l -
20(2T 01 - v) v n

n01 +0 
n0 +l1 dv

0 (a + 2T0 1 - v) (a + v)
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In view of the computational difficulties involved with the above equations,

we choose (a0 + T0 1 )/(B0 + n0 1 - 1) as being analogous to the mean

of the posterior distribution of 60 given T 1 * We approximate the

mean of the posterior distribution of 61  given T in a similar manner,
1 01

and thus write condition (2.11). Since the above approximations have been

motivated by the arguments which lead us to pool, we feel that they are

inherently satisfactory.

We should close this section by stating that in the light of the

above discussions, our approach should be called a "pseudo-Bayesian

approach."
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3. AN ISOTONIC REGRESSION OF THE RAW POSTERIOR MEANS

Our Strategy I of Section 2.1 specifies that the inequality (2.9),

and other similar inequalities be ignored whenever the posterior means

do not have the correct order. As a result of the above strategy, we

will have at the end of testing over the (T + i) stages the (T + 1)

posterior means

E(60 I T0 ),E(8 1  ToT) .. . m( I oTT I , ... , T )

where

E( 0  T) 0 + nT - 1

and

i
a+ T + [ (a. + T.)

0 0 3~ 3
E(ei I To,T I, • 9 T ) =  1,2,

= 0 + n0 + -n - I lj=O

Under our postulate of reliability growth, we would need to have

(as a necessary condition)

(3.1) E(e1  [ T0  ... I T.) < E( Ti+ r Ti ) , i = 0,1 .... , r - 1

If condition (3.1) is satisfied, then our Bayes estimate of the

reliability growth curve is given by these posterior means, and our Bayes

estimator of the reliability at stage r , is simply E(e I T0,TI  ... T )

Note that because of the adaptive nature of our scheme, E( I T1, ... T )

is based on the failure data over all he previous and the present stages
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of testing, and our prior knowledge about the magnitude of the improvement

over each stage.

If condition (3.1) is violated by any one or more of the indices

i , i = 0,1, ... , T , then, we shall, following Barlow et al. (1972) pool

the adjacent violators to obtain the isotonic regression of

E(e i  I To , ... Ti) , i = 0, ... T , say, E*(ei I T0 , ... , Ti)

We shall use the E (6 1 TO, ..., Ti) , i = 0, ... , T as our estimate

of the reliability growth and E (6 T T0 , ..., TT) as our estimate of

the reliability at stage T . Note that like E(8 I To, ... , T )

E (9 I T0, ... , T T ) is based on the failure data over all the previous

stages, our prior knowledge about the magnitude of the improvements at

each stage, and the postulate of reliability growth.

The remarks of Section 2.3 are also appropriate for the isotonic

regression estimators E (6i  To, ... , Ti) , since

a) by performing an isotonic regression of the true posterior

means we have violated the likelihood principle, and

b) the estimators E (ei  To , ... , T.) not being the true

posterior means of the 61 , i = 0, .... , , they are not

fully Bayesian.
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4. ESTIMATION WHEN THE ORDERING IS WITH RESPECT TO THE PRIORS ONLY

In Section 2, we have considered the case when tile mean lifetimes

were stochastically ordered with respect to both the prior and the posterior

distributions. In this section, we shall delete the requirement that the

means be ordered with respect to the posterior distribution. When this is

done, we will not have to pool the violators, nor will we have to perform

an isotonic regression of the posterior means, should we choose not to

pool.

We start off by choosing a prior distribution of 0 , 0g(00;aOO )

as given by Equation (2.0). The posterior distribution of 60 conditioned

on To , g(00 I To; o, o,n O ) is given by Equation (2.1). Assuming a

squared error loss, the Bayes estimator of 00 is E(O 0 I TO) , and this

is given by Equation (2.2); the credibilitv intervals for 00 are given

by Equation (2.3).

We shall now choose a prior distribution of 01 g(0 1 ;(,1 61 ) in such

a manner that 1 ± (t0 I TO) Following the discussion of Section 2,

we shall choose a1 . aO + T + a1  and .i = 0 + no . where a I has

the same interpretation as in Section 2. If at stage I we look upon TO

as a constant, and assume that g(I01 ;aL,1 1 ) is independent of

g( 0 I T0 ;o,60,n 0 ) , then under the assumption of a squared error loss

function, the Bayes estimator of 01 , conditioned on T is E(0 1 I TI )

given by Equation (2.6). The posterior distribution of 01 given T,

g(O1 I TI;') is given by Equation (2.5), and tie credibility intervals

for 01 follow in the usual manner. Note that the above statements are

only true if T is viewed as a constant at stage 1, the prior distribution
0

at stage 1 is assumed to be independent of the posterior distribution

it stage 0.



23

Once we obtain E(61 I Tl) we do not care to compare it with

E(00 I TO ) , since we have not imposed any requirements on our parameters

with respect to posterior distributions.

We now proceed to stage 2 by choosing our prior distribution of 02

in such a manner that

62 L (01 I Tl)

Following our discussion in Section 2, we shall take g(62 ;±2, 2) as

our prior distribution of 02 with a2 = L0 + T0 + a1 + T1 + a2 , and

= a + no + nI ; here again we shall treat T and T as constants.

As before, if g(02 ;a2, 2 ) is taken to be independent of g(81 I TI;,)

then the mean of the posterior distribution of 02 conditioned on T2

is our Bayes estimator of 02. We continue in this manner going from

one stage to the next, obtaining at each stage the Bayes estimator of

e9 1 3, . T,
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5. SUMMARY AND CONCLUSIONS

In this paper we have considered an adaptive approach for estimating

reliability growth based on prior information.

In Section 2 we have imposed a strong requirement on our approach,

by requiring that the mean times to failure at the various stages be

stochastically ordered with respect to both the prior and the posterior

distributions. The latter requirement can be satisfied if we pool the

violators; however, pooling results in a violation of the likelihood

principle, and other computational difficulties. Even though the com-

putational difficulties can be avoided by using some approximations (see

Section 2.3), the pooling makes our procedure not fully Bayesian. Thus,

what we present in Section 2 can best be described as a Bayesian scheme

for estimating reliability growth. A formal investigation of the properties

of our scheme, despite the fact that it is not fully Bayesian, is an open

question which we hope to address in our future work. Our scheme however,

does produce results which are reasonable and intuitively satisfying.

Our review of the literature in Bayesian statistics indicates that

there is no discussion or even mention of the problem estimating parameters

which are stochastically ordered. As mentioned before, our strategy of

pooling the violators to obtain the stochastic order may be unacceptable

to a Bayesian. We therefore hope that this paper can stimulate some basic

research into the general problem area mentioned above.

In view of the difficulties mentioned above, we, in Section 4, weaken

the specifications on our approach by deleting the requirement that the

parameters be stochastically ordered with respect to the posterior dis-

tributions. This simplification obviates the need for pooling the violators,
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and thus would make our procedure fully Bayesian, and therefore optimal in

the usual sense of minimizing the square error loss function. However, the

adaptive nature of our problem imposes certain computational difficulties.

We circumvent these by treating the observed statistic Ti to be constant

at stage (i + 1) , i - 0,1,2, ..., r - 1 , and by assuming the prior

distribution at stage j to be independent of the posterior distribution

at stage j - 1 , j - 1,2, ... , T . Then, within the context of the above

assumptions, our procedure of Section 4 is fully Bayesian.

5.1 Future Work

There are several other aspects of the reliability growth problem that

we plan to address in our subsequent work. These are:

i) An evaluation of the gain in information obtained by considering

an adaptive scheme wherein previous data obtained at stages

0,1, ..., i - 1 , is used in the estimation at stage i , versus

a nonadaptive scheme -herein only the data at stage i is used.

It is conceivable that an adaptive procedure will be advantageous

whenever the improvement in reliability form one stage to another

is small, whereas if there is a drastic change in reliability at

a particular stage, then the data from the previous stages will

tend to diminish its true effect.

ii) A cost-benefit analysis of the reliability growth procedure.

That is, we would like to evaluate the trade-off between the

costs incurred in improving the reliability at stage i versus

the actual improvement in reliability at stage (i + 1) say

(8i+l -e 1 i de , i 0,1, ... , . It is conceivable
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that the V i will be decreasing in i (there is only so

much that one can do to improve a system) whereas the Ci

will be either constant or increasing in i . What we need

is a stopping rule which tells us when to stop performing

the improvements on the system and put the system into

operation, based on the costs Ci  and out best estimate of

vei •

' " '.... .. . .. .. I .... ... | .. .Tll .. . . .ll.. ...... ... ~~ l .... . .
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