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PREFACE

The research reported here was for the Air Force Logistics Manage-
ment Center at Gunter AFS, AL. Of primary interest is the distribution
of demand during lead time for economic order quantity (EOQ) type items.
Not only does this research support an implementation plan for the new
DOD Instruction 4140.45 but it contributes to the basic understanding of
demand processes for EOQ items.
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SIMMARY

One of the important uses of an EOQ item's distribution of lead time
demand is to set its reorder point (when to order new stock). The
current Air Force system camputes the reorder point by assuming that
demand during lead time is normally distributed. The analysis presented
here shows that a much more realistic model of observed demand patterns
can be chosen fram the compound Poisson family of distributions. The
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geometric-Poisson and constant-Poisson members of that family are used
in this study. Also we allow for fixed and variable lead times. The
ultimate objective throughout the study is to understand, as exactly
as possible, the true underlying random processes involved in the EOQ
supply system. A strong secondary objective, though, is to allow for a
probability model that could be implemented in the envirorment of a
large base supply account.

Data from eight federal stock groups and four bases (three CONUS and
one overseas) are analyzed. Approximately 10,000 items are involved.

We analyze individual customer arrival and demand processes as well as
empirical lead time data. The primary emphasis is on fitting the
assumed geametric-Poisson and constant~Poisson models to the data. The
geometric-Poisson model is taken to be a better representation of the
actual arrival and demand processes than the constant-Poisson model.
Although the latter model is a cruder approximation it does represent

an easier model for possible implementation. Both models are shown to
be more representative of the actual data than is the normal distribution
assumption. Also we show that both models perform better in setting
hypothetical reorder points than the current model.

Only a cursory examination of the effect of variable lead time is
attempted since the data contain many outliers. The data are sufficient, :
though, for testing the sensitivity of the reorder point computation to
variable lead time. Our analyses show the effect to be almost neglible 5
for CONUS base - CONUS resupplier combinations. The effect for overseas
base-CONUS resupplier cambinations probably is significant. !

FORTRAN programs are available for all of the analyses described. |
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SECTION 1
INTRODUCTION AND BACKGROUND

Several probability models exist to describe the total units
demanded for an econamic order quantity (BOQ) type inventory item during
stock replenishment (lead time). In this report both demand and lead
time are assumed to be random variables and we empirically study their
probability distributions. Data fram several typical Air Force base
supply accounts are used.

The research reported here is in support of an implementation plan
for DOD Instruction 4140.45 [4]}. This instruction pertains to a
standard stockage policy for consumable secondary items at the so-called
retail level of inventory. An integral part of the DODI is the specifi-
cation of a probability model for the distribution of an item's lead
time demand.

The distribution of lead time demand can be used in an important
application in inventory models. This application is in the formation
of an item's total variable cost per year which involves the ordering,
holding and backorder costs (Appendix A gives the details). The
decision variables in this formulation are the reorder point (when to
order) and the reorder quantity (how much to order). An exact solution
for the decision variables involves complex nonlinear equations. An
aprroximate solution involves separating the total variable cost in such
a way that the reorder quantity is given by the well known Wilson EOQ
formula and the reorder point is the mean demand during lead time plus
some number of standard deviations of lead time demand. The quantity
added to the mean lead time demand is commonly referred to as a safety

level. Equations A-13 and A-16 in the appendix give the approximate

reorder quantity and reorder point, respectively.

The Air Force currently uses the above approximation method. In
calculating the reorder point for base supply accounts in the CONUS the
safety level is taken to be one standard deviation of lead time demand, |
where lead time demand is assumed to be nommally distributed. This




calculation implies a 0.84 prabability of satisfying all demand during
lead time. In estimating the standard deviation, the Air Force

further assumes that the variance-to-mean ratio of lead time demand is
three for every item. We show later that the normal distribution does
not provide a reasonable fit to the lead time demand nor is a variance-
to-mean ratio of three realistic. A more appropriate manner of
camputing the reorder point is the subject of this research.

Our primary cbjective is to adequately describe the empirical
probability distribution of lead time demand. A reasonable model of
lead time demand can be used to determine a reorder point directly from
an equation similar to A-15 in Appendix A (the quantity L, lead time, in
that equation is assumed to be fixed; we want to allow variable lead
times as well). A strong secondary objective is to determine a
reasonable praobability model that is implementable in the environment
of a typical large base supply account.

The remainder of this paper is organized as follows: Section 2
describes the assumed probability models, Section 3 shows the available
data, Section 4 gives empirical evidence to support the probability
models, Section 5 discusses the effects of variable lead time, and

Section 6 contains our recammendations for validation/implementation.
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SECTTON 2
PROBABILITY MODFIS FOR LEAD TIME DEMAND

It has been stated that the nomal distribution is not a rcasonable

mxlel for the distribution of an item's lead time domand. The credi-
bility ol this statement can be determined from Figure 1 where we show
the domand histories of several typical itoms.  Shown for cach item is

the date of custamer demand and the units per domand.  For exanple,

item 1 had a customer demand of 1 unit on day 122 of 1977. Since lead
time domand is the sum of scveral custaner's units per domand the normal
distribution is often used to reopresent demand, particularly when a lamge
mober of custaners is oxpected to arrive during lead time (the central
limit theooram [5] for sums of random variables is the justitication).
For the kinds of data shown in Figure 1 the number of custamer arrivals
during Jead time is usually very small. For one ot our base supply
accounts, which we tfeel is ropresentative, 94% of about 1300 itoms had
ZOT0 or one custamer arrivals during typical lTead times.  In no veason-
able way can the central limit theorom apply to randam sums associated
with so fow arrivals, particularly when the units per demand are of the
magnitude shown in Figure 1. Tt is natural, thorefore, to search for

wmore applicable prabability distributions forr Tead time demand,

Ttaem #1 Ttem §2 Itom §3 Itam #4

Date - Units - Date  Units Mate  Units o bate Units

77-122 1 77-307 1 77-1134 o 77-265 )

77-152 1 77-3123 1 77-171 2 78-044 3

77-1%4 1 77-327 1 77-180 5 T8-002 !

77-165 1 77-332 1 77-249 I

TT-230 1 78-073 > q

77-242 2 s

1= 342 ] E

77- 1347 | |
Figure 1. Typical Damand Ristorvies :-4




Our objective is to identify probability models which adequately
describe custamer arrival and demand patterns like those in Figure 1.
Three probability models of lead time demand are presented in this
section-~the first two deal with constant lead time and the third
deals with stochastic lead time.

Model I, Geometric-Poisson

Suppose that during a constant lead time of length £, there are
N(£) custamers who request a certain item., If the demands per custamer
are represented by Ui’ i=12,..., N(£), then the demand during time £

is

D) = Ul+ 02 + c.. + UN(Z)' (1)

In (1), N(£) and the Ui's are random variables; thus, by construction
D(£) is also a randam variable.

Figure 2 gives a graphical display of this process. Shown in the
figure are demands by four custamers (N{{) = 4); they request two, one,
one and three units, respectively (Ul=2, U2=1, U3=l, U4=3). The lead
time demand is D(£) = 7. This process matches the kinds of arrival
and demand patterns that were shown in Figure 1.

Units
demanded L ‘
N i
e ° 1
—————e —e— ]
0 t £
Customer 1

Figure 2. Example of Lead Time Demand Process

For a particular item we assume that the Ui's are independent and
identically distributed. We choose the probability distribution of U
(we drop the subscript) to be the geometric distribution. As for the
distribution of the number of custamers who demand the item in € units,
N(f}, we assume the Poisson distribution. Numerous articles in the
inventory literature assume these models [2,6,16,17,18,19]. However, no
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data to support these models are given in any of the references. A
later section of this report shows how these models fit actual Air Force
inventory data. Table 1 shows the form of the geametric and Poisson
probability distributions and their means and variances.

Table 1. Probability Distributions

Name Probability Distribution Mean Variance
Geametric  Pr(U=u) = (l-p)p* %, 1/(1-p)  p/(1-p)?
w=l,2,...
. n =-AL
Poisson Pr(N=n) = (Al)e " /n!, bV 4 AL
n=0,1,2,...
Geometric-  p_ = & A/ (1-p) M (1+p)/(1-p)?
Poisson %
p = =P 5 3715 e
X X . X-]
j=1
where Px = Pr(D=x)
Constant- PX = (Az)x/ce_u/ (x/c)!, c\l c2>\£
Poisson

x=0,c,2C, ...
where Px = Pr(D=Xx)

With the assumption of Poisson custamer arrivals the distribution
of lead time demand in (1) is called a compound Poisson distribution
[18]. The geametric assumption for the units demanded per custamer
gives rise to a distribution called geametric-Poisson [18]. The form
of this distribution and its mean and variance are shown in Table 1.
Table 2 shows a portion of the probabilities for the geometric-Poisson
distribution for several values of the mean (m) and for an arbitrary
variance-to-mean ratio (VWMR).

The geometric-Poisson distribution can be used in a straightforward
way to campute a reorder point. Suppose that the mean lead time demand
for an item is five and the variance-to-mean ratio of lead time demand
is known to be 2.5. If we further assume that the probability distri-
bution of lead time demand is the geametric-Poisson distribution, then
the probabilities in Table 2 (with m = 5) are applicable. For example,




——————

Table 2. Geametric-Poisson Probabilities
For VMR = 2.5

Probability of x demands
A" 55 1.0 2.0 3.0 4.0 5.0 6.0

0 .7515 .5647 .3189 .1801 .1017 .0574 .0324
1 .1227 .1844 .2083 .1764 .1328 .0938 .0635
2 .0626  .109° .1573 .1620 .1437 .1l1l67 .0895
3 .0317 .0630 .1113 .1347 .1365 .1245 .1057
4 .0159 .035 .0753 .1047 .1191 .1201 .1115
5 .0079 .0198 .0492 .0775 .0978 .1079 .1085
6 .0039 ,0109 .0313 .0551 .0765 .0917 .0993
7 .0019 .0059 .0194 .0381 .0577 .0746 .0865
8 .0010 .0032 .0119 .0256 .0421 .0585 .0724
9 .0005 ,0017 .0071 .0169 .0300 .0446 .0585
10 .0002 .0009 .0042 .0109 .0209 .0331 .0460

we see that the probability of zero, one, and two demands is .0574,
.0938, and .1167, respectively. We can form the cumulative distribution
of lead time demand by sumning the individual probabilities. That is,
the probability of lead time demand being one or less is .1512, two or
less is .2679, etc. Continuing in this way we see that the probability
is .8452 that lead time demand will be eight units or less. If we
desire a reorder point to satisfy 84% of lead time demand, then for

this example the reorder point would be set to eight units. Reorder
points for any other probability levels can be determined in a similar
way.

A few coments about a special case of the geametric-Poisson distri-
bution are appropriate before we leave this model. It is important to
note that if p = 0 in the geametric distribution, then with probability
one each customer demands exactly one unit. Lead time demand, D(£) in
equation (1), in this case corresponds to N{f). In other words, for
this special case, lead time demand is given by the Poisson distribution.




Item 2 in Figure 1 has this characteristic; it will be shown later that
many items in a typical supply account also have this property. A
model which is a particular generalization of this special case will be
presented next.

Model II, Constant-Poisson
Another campound Poisson distribution of interest here is one we
call the constant-Poisson. During a fixed lead time £, suppose that

demand is given by
N(£) tems

D(L) Le+rc+ ...t (2)

where N(€) customers demand c units each. With the assumption that

N(£) has a Poisson distribution, D({) is again a campound Poisson distri-

bution [18]. Table 1 shows the form of the distribution and its mean
and variance.

Although this model is not as realistic for all items as the geometric-

Poisson model, it does describe demand on items like number two and four
in Figqure 1. We show later that this model also describes lead time
demand reasonably well on items like number one in Figure 1 where the
variance of units per demand is very small.

Reorder points can be camputed exactly as in Model I. That is,
fram the cumulative probability distribution a reorder point is chosen
to satisfy a certain proportion of lead time demand.

Models I and II apply to fixed lead times; in the next model we
address stochastic lead time.

Model III, Campound Poisson with Stochastic Lead Time

In this model we allow the lead time for resupply to be a randaom
variable. If L denotes lead time and N(L) represents the number of
customer arrivals during L, then lead time demand can be written as

D(L) = U, + U, +

1 2 "'+UN(L)' (3)
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In (3) the Ui's are assumed to be either geametrically distributed as
in Model I or constant as in Model II. For a particular value of the
lead time we assume that custamer arrivals are Poisson distributed.
With these assumptions we call this model a campound Poisson with
stochastic lead time.

The distribution of lead time demand can be developed in the
following way. Let £ be a particular value of the variable lead time L.
In this case we essentially have Model I or II and we can represent the
probability distribution by f(d|£). Now if L is assumed to have a
discrete probability distribution g(£), it follows that the marginal
distribution of lead time demand can be written as

£(d) = £f£(@|)g(L). (4)
The sumation is taken over all permmissible values of L. (Later it

will be obvious why we assume L is discrete.)

Table 3 shows an example of this process. Suppose lead time L has
the three values 10, 20, and 30 days with probabilities .3, .5, and .2,
respectively. If we arbitrarily use the geametric-Poisson model, then
the conditional distribution of lead time demand, f(d{£), results. The
marginal distribution of lead time demand, f£(d), is shown in the last
row. For exawple, f(0) = .333(.3) + .111(.5) + .037(.2) = .163. The
other values of f(d) are similarly obtained. Reorder points for any
desired prabability can be determined from f£(d) by forming the cumula-
tive distribution function as in Model 1I.

Table 3. Example of Model III
d and £(d|¢)
J4 g(£) 0 1 2 3 4 25
10 .3 333 .333 .19 .089 .033 .0l6
20 .5 111 .221  .242  .190 .120 .1ll6
30 .2 .037  .110 .176 .197 .174 .306

f(d) 163 .232 .215 .16l .105 .124




A closed form representation for f(d) with the often assumed gamma
distribution of lead time has proved elusive. We suspect that the
probability distribution of lead time demand is intractable for the
geametric-Poisson and gamma assumption. This is not a serious problem,
however, since the camputation for £(d), as illustrated in Table 3, can
be performed easily on a camputer.

Despite the above mentioned complexity of the probability distribu~
tion of D(L) in (3), its mean and variance are easy to derive.

McFadden [12] shows the mean and variance to be

E(D(L)) = E(WE(CVE(L) (5)
and

V(D(L)) = E(L) [EMVU)+VME2(U)] + VLEZ OEZM). (6)
In (5) and (6), E(-) is expectation or mean and V(-) is variance.
Besides lead time L, the other randam variables are U (units per demand)
and N (nunber of custamer arrivals per unit time).

Now that several lead time demand models have been described, our
next task is to fit them to data; the next section describes those data.




SECTION 3
DATA

For studies of this nature and others oconcerning retail inventory
theory and practice, several Air Force bases are providing demand and
lead time data to the Air Force Logistics Management Center (AFIMC).

The data we report are from four of these bases. Table 4 shows the
bases and federal stock groups that camprise our data set. The descrip-
tion of a stock group is not all encampassing, but is meant to be

RN

representative of the items in that group. The eight stock groups were
chosen somewhat arbitrarily to represent a broad spectrum of typical
items. The amount of usable data varies fram 6 to 12 months across the
individual stock accounts with the time frame being 1977-1978. All EOQ
items with at least one demand during the data collection period are
considered.

3 panMe P e

Table 4. Data

Number

Base Federal Stock Group (FSG) of Items
Bentwaters 16 - Aircraft Landing Gear 397
59 - Electronics 2,526
Dover 15 - Aircraft Structures 712
59 - Electronics 2,318
66 - Flight Instruments 373
Minot 29 ~ Engine Miscellaneous 348
31 - Bearings 245
Randolph 53 - Screws, Nuts, Bolts 2,877
Total 9,796

For each item there are three data records: an item record, an
order and shipping time or lead time record, and a demand record. The
item record contains an item's federal stock number, unit cost, routing
identifier and demand value (demand value is the product of an item's
unit cost and total demands for the data collection period; it thus
represents a gross measure of an item's supply importance).

10




The next information given is a lead time record. It contains, for
each stock replenishment request, the requisition date, receipt date,
order and shipping time, and issue priority code. The demand record is
similar to Figure 1 where for each customer demand, the arrival date and
units per demand are given. Only recurring demands are considered.

Before showing any data related to the probability models of
Section 2, we describe same pertinent characteristics of the data.

These characteristics will be helpful in later discussions on/probability

model fitting and validation/implementation. First we describe an
inspection of the raw data that was performed to determine if the data
are adequate for analysis purposes. Also, we present same descriptive
statistics related to item demand patterns, demand value, and lead time
experience data.

Raw Data Inspection
Few data sets are camplete or free fram errors of various kinds and

the data we have to work with are no exception. A necessary first task
that precedes any data analysis or probability model fitting is to
examine the data for inconsistencies and/or missing data. In Figure 3
we show a calendar time plot of the number of custamer arrivals per
month for all items in the Bentwaters 59 and Randolph 51 supply
accounts (the latter data set will not be used again in this report;
however, it is a good example to emphasize the importance for "looking"
at the raw data in detail).

In the Bentwaters 59 data an inordinately large number of custamers
made demands on the system for the period 7262 (day 262 of 1977) to
7289. This period happens to cover the start of the fiscal year (FY)
for 1978. Although unsubstantiated, we suspect that fund constraints
at the end of FY 1977 caused potential custamers to delay their
requests until after the start of the new fiscal year when more funds
were available. The downward trend just before the referenced period
also supports this hypothesis. This kind of supply performance repre-
sents a nonrandom characteristic that we do not attempt to model. For
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later analyses we delete this period of data (7262-7289) for the
Bentwaters accounts.

With reference to the Randolph 51 data, several occurrences seem
peculiar--one concerns the large jump in customer arrivals during the
period 8078-8106, the others concern the drop for the period 8134-8162
and the total lack of data for the period 8216-8246. The problems with
this account make it virtually useless for our purposes. We have no
reasonable explanation of what may have caused these phenamena.

Figure 4 shows the data periods that we analyze in this study.
Omissions of data are for reasons given above (these periods are labeled
"omit" in the figure). For reasons that will became obvious in the next
section, we choose six months of data for CONUS bases and approximately
nine months of data for the single overseas base (these periods are called
observation periods in the figure; the holdout periods will be used for
prediction in the next section). Next we look at units demanded per
custaner to determine if any inconsistencies exist in those data.

Bent 16,59 lr* + ; ~ F : 4o~ - ‘ Periods:
Dov 15,539,661 : F:_—-‘ :L : : 4‘".: | —— Observation
Min 29,31 |+ : ! 4,5 H_%, ; 4 omit
Ran 53 : ! | IL: . i i, | F-o Holdout
A T N S N S A
7;—21 7:77 7;33 7;89 7'3105 B(;SG 8;? 811.:8

Date

Figure 4. Data Periods for Analyses

Demand patterns like those in Figure 1 would be desirable for
every item. Unfortunately, a few items have what appear to be outliers
intermixed with their demand histories. For instance, one item fram
the Bentwaters account had units demanded per customer of 1, 2, 2, 74,
and 6. The largest demand turns out to have been associated with a

one time modification and should not have been included as a recurring
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or random demand. Other items have similar data that are of a
suspicious nature~-perhaps because of a planned modification or maybe
just erroneous reporting. We estimate that only 5% or so of the items
have characteristics of this sort.

It is important to emphasize again that these kinds of anamalous
data can contaminate a data analysis. In research such as this and
certainly in an operational setting where a probability model or any
estimation device is used, provisions should be included to identify
nonrandom data. We do not suggest that these unusual data should be
ignored; to the contrary, managers of the system should investigate
these occurrences in detail and attempt to preclude their happening in

the future.

Item Statistics Versus Unit Cost

The demand histories that were shown in Figure 1 were for items
that cost over $5.00. Figure 5 shows the same kind of data for a sample
of items that cost $5.00 or less. Clearly, these two figures suggest
it is characteristic of EOQ acoounts that cheaper items, for the most
part, have different demand patterns than more expensive ones.

Item #1 Ttem #2 Ttem #3 Item #4

Date Units Date Units Date Units Date Units
77-123 50 77-140 4 77-175 2 77-122 12
77-144 63 77-143 6 77-178 2 77-122 5
77-151 63 77-159 6 77-265 2 77-143 14
77-159 63 77-167 1 77-265 2 77-171 5
77-193 63 77-200 1 77-192 5
77-207 63 77-272 6 77-271 5
77-237 75 77-326 4 77-277 14
77-242 63 77-361 4 78-012 15
77-265 35 78-012 4 78-044 5
77-326 63 78-086 4 78-052 15
78-003 63 78-088 4 78-072 15
78-012 63

78~031 63

78-038 43

Figure 5. Typical Demand Histories (Unit Cost £ $5.00)
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To investigate this further, Table 5 gives same statistics on
custamer arrival rates and units demanded per customer for the two
strata of unit cost (UC). We see that the average number of customer
arrivals per week is only slightly larger for the lower cost items.
However, the dramatic difference relates to the average and variance of
units demanded per custamer for the two groups. The average for all
items shows that lower cost items have an average units demanded per
customer approximately six times as great as that for items which cost
over $5.00. In addition, the variance of an item's units demanded per
custaver is approximately 280 times as great (camparing low cost to
high cost). Not surprisingly, FSG 53 (screws, nuts, bolts) is more
badly behaved than the other stock groups, at least when measured in

terms of variance of units demanded per customer.

Table 5. Statistics on Custamer Demands Versus Unit Cost

Average No. Average Variance

Customers/Week Tnits/Customer Units/Customer
ucs uc> ucs uc> ucs uc>

Base FsSG $5.00 $5.00 $5.00 $5.00 $5.00 $5.00
Bentwaters 16 .16 .13 6.0 2.3 26.1 7.7
59 .12 .09 4.9 2.0 210.2 3.5

Dover 15 .13 .11 4.7 1.5 12.4 .7
59 11 .08 8.0 1.9 1122.2 2.4

66 .09 .09 7.1 1.7 601.2 1.3

Minot 29 .13 .09 16.6 2.2 1275.3 .7
31 .08 .08 5.3 2.7 11.4 1.3
Randolph 53 .18 .10 21.2 3.0 1459.7 8.4
Average for .14 .10 13.0 2.1 949.6 3.4

All Items

Another way to analyze an item's demand pattern is to study the
variance-to~mean ratio of its total demands over some period of time,
say one week. Figure 6 shows a relative frequency chart for the VMR of
total demands/week for items from the Dover 59 account. Here the
median (50th percentile) is 1.4 and the 95th percentile is 6.6. It is
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Variance-~to-Mean Ratio

Figure 6. Relative Frequencies of WR for
Dover 59 (UC > $5.00)

interesting to note that on 82.3% of the items the VMR is less than
three, which is the value that the Air Force uses in camputing the
safety level part of a reorder point. We have not been able to find a
report that shows the rationale for this choice of three; for these
data any constant value of the VMR applied to every item seems in-
apprcpriate. The large variation in the VMR across items suggests
each item's particular VMR would be a better value to use. (We do not
mean to infer that the VMR of demand over a variable lead time is the
same as the VMR over a fixed period of time. Indeed, equations (5) and
(6) can be used to show how the VMR of lead time demand varies with the
mean and variance of the lead time process. It does seem reasonable,
though, that the VR of lead time demand would also be extremely
variable--as is true here for the WR of demand for one week. The VMR

/
.
]

1

of lead time demand will be discussed in Section 5).

Table 6 gives the VMR of total demands/week for each of the supply
accounts in terms of the two categories of unit cost. Shown for each :
acocount are the median and 95th percentile of the WR. These statistics “

are based on 7696 items with at least one custamer arrival during the
respective observation periods shown in Figure 4 (4856 items for UC <
$5.00 and 2840 items for UC > $5.00). As was true for the data con-
cerning units demanded per custamer, we see a large difference in the
VWR of total demands/week versus unit cost.

16

: R i




Table 6. Variance-to-Mean Ratio of Total Domands/Weok

e 85000

UC L S5.00

95th 941 h

Base MG Median o Percentile - Median - Percentile
Bontwatoers 1o 3.7 21,0 1.5 7.5
"y 3.3 RS PN .5 Ho2
Dover Y 2.0 10,1 1.3 4.3
59 2.0 RRPA 1.4 6.0
6H0 1.0 0.0 1.3 O.h
Minot 29 RIS 6200 1.5 v. 8
il 2.8 16.0 1.7 10,0
RandoIph 53 1.3 53,5 1.5 | DA
AlL Ttoms 3.3 37.5 1.4 G. b

The above discussions, taken with Figures T oand 5, clearly sugage:t
that the damand for higher oot ttoms will bhe casier to model. No
reasonable probabi Lity model can be expoectad to represent the lange
turbulence of domand in Wigure S and Tables 5 oand 6 tor low cost o toms.,
The pattern for Tow cost items: suggests same Kind of heuaristic approach
to domand prodiction. We veturn to this idea short ly,

That the higher cost itoms are more inportant, in temes ot supply
investment, can be scen tran Table 7 where we show statistios on demand
value (V) tor the two cost groups. For each supply group and cach aoest
category the nimber of  ttems and the average domand value perv itom (in
dolTlars) ave shawne Inevery case the average domand valoe por itom (ov
the hitgher cost grogp s signiticant 1y Larger than that tor the lower
cost o, Overall, the average domand value per itom s approximately
ton times s large tor the tomer group as the latter. (The total domand
value s 5360,0510. 120 tor the Tawer priced group and 82, 157,007,238 tor the
higher priced group.)

ALl ot the above data are shown to emphasice the tact that the
higher cost itams are the ones where we need o mote accatate probabi Tty

model tor demand, A misvopresentation ot the demand pattern tor these




Table 7. Average Demand Value Per Item Versus Unit Cost

UC S §5.00 uc > $5.00
Number Number
Base FSG of Items DV/Item of Items [V/Item
Bentwaters 16 101 189,38 296 531.93
59 1562 37.10 964 419.99
Dover 15 68 87.48 644 947.06
59 1368 49.08 950 576.46
66 104 25.18 269 841.06
Minot 29 157 113.22 191 479,23
31 163 41.80 82 158.65
Randolph 53 2508 68.85 369 288.82
All Items 6031 $58.04 3765 $572.97

items can involve very large deficits or excesses in projected supply
expenditures. Camparatively speaking, any possible errors of misrepre-
sentation would be much less serious for the lower priced items. Given
the turbulence associated with demand for the lower priced items and
the extremely lower supply investment, a heuristic approach for demand
prediction is unavoidable but certainly not too serious a ocampromise.

A reasonable strategy to compensate for the heuristic model where
predictions might vary considerably from actual demand would be to
simply overstock the target lead time supply effectiveness. For example,
set stock levels for a 0.88 or 0.90 probability rather than 0.84.
Certainly, the supply investment would not significantly increase
because of the low unit cost of these items. Further comunts about

this heuristic approach will be given in the next section.

lead Time Experience Data

Next we turn to an analysis of empirical lead times. Fiqure 7 shows

a typical lead time record for one item. Shown arce the issue priority,
the requisition date, receipt date, and order and shipping time (OST).
Same apparent anamalies exist in the data. For example, is the seocond

order a partial shipment of the first since they were ordered on the
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Issue Requisition Receipt Order and
Priority Date Date Shipping Time
12 77-123 77-213 30
12 77-123 77-178 55
02 77-152 77-165 13
06 77-153 77-165 12
12 77-159 77-168 9
06 77-173 77-180 7
12 77-173 77-180 7
12 77-178 77-189 11
12 77-178 77-189 11
12 77-179 77-186 7

Figure 7. Typical Lead Time Record

same date but the second came in earlier? Are the two orders placed on
day 178 of 1977 duplicate entries? (We assume in what follows that they
are--consequently, one of the orders is deleted.)

To get a sufficiently large data set for a statistical analysis, we
group all items in one FSG at one base and form a relative frequency
diagram of the order and shipping times. Figure 8 shows the results
grouped by routing identifier; the data set is the Bentwaters 16
account. Frequency diagrams are given for issue priorities 9-15
(referred to as priority group 3) and issue priorities 1-8 (priority
groups 1 and 2). The diagrams for priority group 3 are very ragged
and suggest a mixture of delivery modes. That is, in the Bentwaters-FGZ
data for priority group 3 many orders arrive in 10-20 days, vet the
mean OST is between 40 and 50 days. We suspect that occasionally
priority group 3 items are mixed in and shipped with priority group 1
or 2 items. Both sets of OST data in Figure 8 for priority groups 1
and 2 agree fairly well with our expectation of a lead time distribution--
unimodal and skewed to the right.

It is often postulated that the gamma distribution is an applicable
probability model for lead time distributions [7]. Our attempts to fit
the gamma distribution to the data in Figure 8 and others have been
unsuccessful. Indeed, we have been unable to fit the normal, lognormal

or Weibull distribution to any empirical OST distribution considered in
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this study. Part of this problem may be due to the fact that we have
grouped OSTs for a multitude of items from one base-resupplier cambina-
tion as if they were from a camon distribution. This may not be
realistic. Not enough data are available on an individual item to
study the OST distribution directly--hence, we have to resort to a
consolidation. Operationally, a forecast of each individual item's
OST seems impractical anyway.

As a result of the suspected anomalies cited in relation to
Figures 7 and 8, a separate study has been initiated at the AFIMC to
determine the mechanics of the lead time process. For our research,
the procedure outlined in Section 2 for stochastic lead times will be
used, that is, we determine the lead time demand by using the empirical
lead time distribution. Since one of our primary cbjectives is to
determine the sensitivity of the reorder point calculation to the
variance of lead time, we think the available empirical lead time data,
even with possible errors, is adequate for this purpose. The effect of
variable lead time will be discussed in detail in Section 5.

The next section deals with fitting Models I and II to actual
demand data.
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SECTION 4
FIT OF PROBABILITY MODELS TO DATA

In this section we demonstrate how probability Models I and II of
Section 2 for fixed lead time demand fit actual data. We also show
how forecasts based on the models compare with actucl demands in a
fictitious lead time period. The data sets described in the last
section provide an excellent opportunity to investigate the assumptions
that are commonly used in inventory studies to model empirical data.
Due to the paucity of data that existed in the past, these assumptions
have seldam been subjected to real occurrences.

Several comments about probability modeling are in order before we
show any results. First, before any modeling is attempted, the data
should be examined for cbvious anamalies and/or missing events--the last
section addressed this issue. Sercnd, it is not necessary that a
probability model fit the data exactly to be useful; what we seek, at
a very minimum, is a model that provides a reasonable fit to the data.
In other words, the fitted model may help us understand a complex set
of data without yielding a perfect fit to them. "Noise" in the data
and/or the desire for a parsimonious model often lead us to accept a
reasonable model rather than pursue a more accurate one. Third, a
successful fit of a probability model does not necessarily imply that a
unique set of circumstances produced the data. For example, the
negative binamial probability model can be generated by 15 different
stochastic processes [l1]. Without other information, we could not say
which process generated a set of data that may have been fitted with
that distribution. Another example concerns the Poisson distribution.
Events with low frequency in a large population can often be fitted by

a Poisson distribution even when the probability of an event varies

samewhat in the population (contrary to the classic Poisson postulates).
Referring to the small muber of events this empirical phenomena is
sametimes called the law of small numbers [10]. The point to be made
is that for purposes of predicting future cvents, such as lead time
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demand, all that is necessary is that the model should fit the data~-
we 30 not necessarily have to accept any particular set of assumptions
about the model to predict future occurrences reasonably well. With
these preliminaries we next attempt to fit the models described in
equations (1) and (2).

Our main cbjective is to model or characterize custamer habits of
arrivals and units demanded, and then to use that characterization to
predict lead time demand. Referring to Figqure 2 it is dbvious that an
item’'s total demand for a specified period of time can be modeled as
some campound process. That is, a random number of custamer arrivals
occur during the period [0,£] and each cuctcmer demands a random number
of units. As in equation (1), if we assume the former has a Poisson
distribution and the latter a geometric distribution, then the total
demands in [0,£] has the geometric-Poisson distribution. Next we show
how these two models (Poisson and geametric) fit actual arrival and
units demanded data. All goodness-of-fit tests will be performed using
a 0.95 confidence coefficient.

Fit of Poisson Distribution to Data
First we empirically study the distribution of the randam

variable N(£) in equation (1). If we have a forecasted lead time, of
say £ = seven days, we are interested in how the distribution of the
nunber of custamers for a seven-day period, N(7), agrees with the
Poisson assumption. To get empirical evidence for N(7) we divide a
time period into nonoverlapping intervals of length seven days; we then
ocount the number of custamer arrivals in each interval. To assess the
appropriateness of the Poisson distribution we next compare the cbser-
vations to the expectations which result fram the Poisson assumption.
For item 1 in Figure 1, which is from the Bentwaters account, we
form 37 seven-day intervals covering the observation period shown in
Figure 4. The dbservations (expectations) for N(7) = 0, 1, 2 are
30(29.8), 6(6.4) and 1(0.7), respectively. Using the Poisson dispersion
test as our goodness-of-fit test [9,14], we can conclude that the Poisson
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expectations provide a very nice fit to the abservations (at 0.95).
Item 1 in Figure 5 is also a Bentwaters item; its observations
(expectations) for N(7) = 0,1,2 are 24(26.0), 13(9.1) and 0(1.6).
Again, the fit is good. Table 8 summarizes the fit of the Poisson
distribution to all of the data we study. The colum labeled N=0 gives
the number of items that had no custamer arrivals for the respective
observation periods; the next colum, N21, shows the number of items
that had one or more custamer arrivals. The entry % Poisson, shows

the percentage of the N21 items that can be fitted reasonably well with
the Poisson distribution. (The N=0 items are excluded since an estimate
for A is not obvious when there are no custamer arrivals.) We conclude
that the Poisson distribution provides a reasonable fit to almost all
item's weekly arrival patterns. In addition, the quality of the fit
appears to be independent of unit cost. Becauc. - © the reproductive

property of the Poisson distribution [13] we expect it to provide a
reasonable fit for any value of £, not just the seven day value used

here.
Table 8. Fit of Poisson Distribution
UC s $5.00 Uc > $5.00
Base FSG =0 N21 % Poisson N=0 N21 % Poisson
Bentwaters 16 12 84 89.3 30 265 92.5
59 164 1368 90.6 111 852 93.2
Dover 15 22 46 100.0 191 453 94.7
59 492 848 95.0 334 616 95.6
66 29 74 95.9 95 174 92.0
Minot 29 35 117 93.2 56 135 90.4
31 46 116 94.8 25 57 96.5
Randolph 53 304 1903 95.6 68 293 94.2
All Items 1104 4556 93.8 910 2845 93.9

Fit of Geametric Distribution to Data

The next random variable of interest is the units demanded per
custamer, Ui in equation (1). Our analysis will necessarily be mostly
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subjective due to the small number of custamer demands that typically
occur in an cbservation period. For example, item 1 in Figure 1 only
has eight customer demands in the period shown. In Table 5 the average
nurber of custcmer demands per item in a week is about 0.12 and so the
average number of demands in an dbservation period of say, 37 weeks,
would be approximately five. This small number of customer demands is
insufficient for an objective goodness-of-fit test of the geametric
assumption. For example, the observations (expectations) on item 1 in
Figure 1 for U = 1,2 are 7(7.1) and 1(0.8), respectively. The fit
certainly looks reasonable but we are unable to perform a xz goodness-
of-fit test because there are too few cells for comparison. (A minimum
of three cells with expectations greater than one would be required to
test the geometric assumption statistically.)

A possible way to get more data on units demanded per custamer would
be to increase the observation period to perhaps one or two years. We
avoid this temptation because of reasons related to stationarity of the
units per demand randam process. It seems reasonable that longer periods
would invite changes in such things as base missions, flying hour
programs, maintenance and supply policies and monetary constraints--
these changes could impact on a custamer's demand habits. To minimize
the effects of these possibilities we deliberately choose smaller obser-
vation periods. (This argument also applies to the previous material
concerning the random variable N({).)

Because of the discussion in Section 3 on the characteristics of an
item's units demanded per customer versus unit cost, we do not attempt
to study the geometric distribution for the UC = $5.00 group. We will
consider the low cost items in relation to the constant-Poisson
distribution.

To study how the geometric distribution fits the random variable
units demanded per customer, we consider just those items that had at
least one custamer arrival during the data collection period. Table 9
shows certain statistics on these items. There are 3765 items that cost




Table 9. Statistics on Units/Customer

$ Items with % Items with

Base FSG N21  Units/Custamer = 1 Units/Customer = k>1
Bentwaters 16 265 47.5 15.5

59 852 54.2 19.5
Dover 15 453 66.7 7.7

59 616 59.6 11.7

66 174 63.8 10.3
Minot 29 135 59.3 17.8

31 57 38.9 23.3
Randolph 53 293 46.8 21.5
All Items 2845 56.5 15.4

over $5.00; 2845 had at least one customer demand during the respective
observation periods. Of this latter group an average of 56.5% had a
oconstant demand of one per customer (p = 0 in the geometric distribution)
like item 2 in Figure 1. About 15% of the items had a constant demand
greater than one, like the fourth item in Figure 1. This latter group
can be modeled with the geometric distribution simply by rescaling to a
demand of one per custamer with a unit of issue of three, say. For all
of these data, then, the geometric assumption is tenable on approximately
70% of the items with a demand. The remainder of the items have demand
histories similar to items 1 and 3 in Figure 1. Next we examine demand
data on them.

Since we do not have enough arrival data to study each item's units
demanded per customer statistically, we resort to an aggregate analysis.
Although not as desirable as an individual analysis, the aggregate
approach can suggest a basic underlying model for customer demand.

If each item's units demanded per customer is a random drawing from
a cammon geametric distribution, we would expect the probability distri-
bution of units/customer to be of the form shown in Figure 9. This
particular geametric distribution has a mean of two units per customer
which is the approximate mean of our data (see Table 5 for UC>$5.00).
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Figure 9. Typical Geometric Distribution

If units demanded per customer is geametrically distributed for each
item (from a camon distribution), then an aggregate plot of the data
should resemble the distribution shown in Figure 9. That is, we lock
for ¢ distribution with a mode at one unit that is skewed to the right.
Fiqure 10 shows the aggregate data for each supply account studied.
(The quantity n is the number of data points.) With the exception of
the Bentwaters 16 account, each plot has the basic form of the geametric
distribution--a maximum at one unit and generally decreasing to the
right. Certainly, this analysis is not a proof of the geametric
assunption, but it is highly supportive.

The above analyses of the random variables N{£) and U in equation
(1) suggest that the geometric-Poisson model is at least a reasonable
approximation to the true underlying distribution of D(£) in equation
(). We showed that the Poisson assumption was a very good representa-
tion for custamer arrivals. Although the geometric assumption for the
Ui's was not substantiated in a statistical sense, it was shown to have
several appealing properties that are consistent with the data: (a) it
does allow for a constant Ui (with p = 0) which is a characteristic of
a large percentage of the items; (b) it can represent a variable demand
(with p > 0); and (¢) its probability distribution has the same general »
shape as actual demand data. The "acid test" of the geometric-Poisson
model, though, is how well it works in an operational sense; that is,
how well it predicts future demands.
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Operational Test of Geametric-Poisson Model
To study the effectiveness of the geametric-Poisson model in fore-
casting future demands, two adjacent time periods are considered. The

first period is a data collection period and the second is a holdout
period. We let the holdout period correspond to a fictitious lead time
period. In essence, model parameters (A and p for the geametric-Poisson
distribution in Table 1) are estimated from data in the observation or
data oollection period, and then "lead time demand" is predicted for
the holdout period. If the predicted demand agrees reasonably well
with the observed demand, then the geometric-Poisson model can be used
to model lead time demand and subsequently set reorder points.

Camputing the reorder points is one of our main goals. Since a
reorder point is supposed to satisfy a certain percentage of lead time
demand, say 84%, the cumulative form of the geametric-Poisson distribu-
tion can be used to determine the appropriate quantity. This process
was explained in Section 2.

The observation and holdout periods for each supply account were
shown in Figure 4. The accounts at Bentwaters have holdout periods of
seven weeks; the other accounts have holdout periods of three weeks.
These values correspond roughly to the average lead time from the bases
to their respective principal resuppliers. The observation periods for
the Bentwaters and other supply accounts are 37 weeks and 26 weeks,
respectively. Thus, for Bentwaters we use 37 weeks of observed data to
predict usage in the next 7 weeks; for the CONUS bases we use 26 weeks
of observed data to predict 3 weeks of usage. We would have preferred
a longer observation period for the Bentwaters data (a ratio of 26 to 3
in comparing the observation to the holdout period) but this was not
possible due to missing data and the other reasons cited before.

The next task is to actually predict demand in the holdout or
fictitious lead time period. Since we are primarily interested in the
lead time distribution to set reorder points we make predictions that
should cover 84%, say, of the seocond period demands. We can ocampare
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these predictions to dbservations and then judge the merits of the
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geametric-Poisson distribution for this specific purpose.

Before showing summary results, some specific cases are given.

Table 10 shows a few examples of how the predictions and cbservations

campare. We arbitrarily choose five items from the Dover 15 account.

Table 10. Predictions and Observations for the Geametric-Poisson

Federal Stock Observed Demands Predicted Demands Observed Demands

Number Period 1 Period 2 (@ .84) Period 2
1560000094144 7 2 1
1560001030911 23 4 4
1560002254290 3 0 0
1560004773610 4 1 2
1560004981175 10 3 1

The predictions are made by taking the mean and variance of an item's

weekly demands throughout the abservation period, and then estimating

the parameters of the geametric-Poisson. The cumulative distribution

is then formed and a prediction that will satisfy 84% of the forecasted

demand is made. The value of £ in the geometric-Poisson is set to j
three for this example. Essentially we are saying that if the reorder
point is set to this value, 84% of the demands will be satisfied, on ,

the average. For ~vample, for the first item in the table, if we é
reorder when the inventory position reaches two units, we should 4
satisfy all demands for 84% of the lead time cycles or we say the ‘4
probability if 0.84 that we will satisfy all demands for a single lead 3
time cycle. It is important to note that the 0.84 applies just to a I
lead time cycle and not to the effectiveness of the supply system for A
all time. :

For the first item, the actual number of demands in the holdout

period totaled only one. Our reorder point would have been sufficient,
then, if the lead time had been three weeks. Similarly, item 2 would
have had sufficient stock to satisfy all demands during the second “
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period. The tourth itam's reorder point would have been too low to

satisty Toad time domand. 1E the geawet ric-Poisson is a reasonable

moder !, we would expect about 843 of  the reorder points anong o lange
aqrougp of indepondent jtoms to be sutticient tor the actual domands in
poeriod 2,

Table T sumarizes how the prodictions conpatre with absiervat ton:
tor the individual account:s.  Oversicas bases Tike Bentwatoers are
stocked tor 950 of torecasted Tead time domand; the CONUS Dases are
stocked tor 84%, Those poraoentages are specitioed by cuarrent Ay Foree
policy. For cadch account we show the numbetr ot itoms, peroent ot i tems
tor which the respective reovder points would have been sutticiont, and
the resulting dollar investment in lead time spares. For exanple, we

made prodictions on 247 itomes in the Bentwaters 1o acoount ;) ot these,

j
1 Table T Samary Statists -« ©o the Goanettic-toisson (G-1)
3 and Curvent Systom Reorder Points (U0 -85,00)
1 Nunbor Percent sutt ih\‘_ign‘t_ $ Invesstment
o Rase ',"f":, Qt_ Ttoms G=b Current o= current
Bontwators 16 RBY RN 9505 44, M0, 0 WIS
RN atl RPN RITT 106, 8069, 38 1h82,949. 70
Samaany 10a8 ay, DI 151, 300, 63 S0, 000
Dover 14 144 13,1 ]y 3 IR, 048, 8y th, Ml nn
59 HaT R (TP a0.h L‘,—/"/h..‘.‘ '\U, O b
e 167 Ba > 9.2 Ih, 6.9, 00 Mh,eelion

Minot 29 1.9 85, 3 88,1 N, 0L s 8, 000

i “0 94,0 210 (DML B 1,000
Randoiph H3 D58 RWANTS e,y B, 040,000 FAR T e
oo
ipmary TR 86,1 ja, 7 ag, nyap 10, 31, 8
e e e e o e e - = = - . ‘e
-

teotder points corresponding to the proedictions would have boon

satticient on 91 13 of the atenes, That s, domand during the holdout ;

petiod on 91 PR of the itens was Tess than ot oqual to the 0099 prediction.

The dolhar imvesstment tor these hypothetical lead time sparos would hoave
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been $44,440.25. The 247 items are those items with at least one
custamer arrival during the observation or data collection period. This
nurber is less than the number shown in Table 8 since we removed those
items with a variance-to-mean ratio, of total units demanded, greater
than seven. For reasons presented before, we believe same items contain
outliers and we select a cutoff on the VMR of seven to exclude those
items. A VWR of seven is the approximate 95th percentile value for

all items with a unit cost over $5.00. Each data set has a number of
items removed for this reason.

For caomparison, the performance of the current Air Force system is
also shown in Table 1l. 1In the current system, an item's reorder point
is its mean lead time demand plus a safety stock. The mean lead time
demand is nothing more than the daily demand rate times the forecasted
lead time period (the holdout period here). The safety stock for
CONUS bases is the maximum of 15 days of demand or one standard
deviation of lead time demand; for overseas bases, the safety stock is
the maximum of 30 days of demand or two standard deviations of lead
time demand. In both cases, the reorder point is always truncated to
the next lower integer value. For example, a calculated reorder point
of 3.1 would be truncated to 3.0, and so would 3.9. As mentioned
before, in computing the standard deviation of lead time demand, a VMR
of three is used. For example, if the mean lead time demand is
expected to be five units, then the standard deviation of lead time
demand would be the square root of 15. In Table 11 we see that the
current system for the Bentwaters 16 account satisfies 95.5% of the
holdout period demands and costs $57,341.77. 1In this case the current
system is a better predictor since its forecast is closer to the target
lead time supply effectiveness of 95.0%.

Fram the summary line in Table 11 for the two Bentwaters accounts
we see the respective percentages and costs. The dbserved rcorder
point effectiveness for the current system is closer to the target of

95% than is the effectiveness via the geamnetric-Poisson model. The
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investment in lead time spares in considerably higher, though, for the
current system. The summary line . the last three base accounts is
more favorable to the geometric-Poisson model, both in terms of being
closer to the target of 84% and having a smaller investment.

As an overall summary of these results we observe the following:

{a) the geometric~Poisson missed the target by -2.3% for the Bentwaters
accounts and was over by 2.1% for the CONUS accounts--the average error
here is -0.1%; (b) for the current system the average error can be seen
to be +3.4%; (c) the lead time spares investment for the geametric-
Poisson model campared to the current system is 72.0% for Bentwaters
and 61.7% for the other accounts. Based on these two measures, we
think the geometric-Poisson model is a more reasonable and certainly
more cost effective model than the current system. We showed before
that the current system's assumptions of normally distributed lead time
demand and a constant VMR of three for every item are highly questionable.
The assumptions are very easy to implement but evidently they are not
very representative of the actual processes which generate lead time
demands.

It is important to note that these results are based on a particular
set of bases and observation and holdout periods. We would not expect
these percentages and dollar investments to be constant for every base
and every set of observation and holdout periods. Indeed, the percen-
tages and dollar investments are random variables. However, due to the
large samples and variety of supply accounts studied here, we would

expect these general results to be duplicated for other base accounts
and data periods.

A Consideration for Implementation

Due to the large size of a typical Air Force base supply account,
any candidate probability model should be one that is relatively casy
to implement. On the surface, the form of the geometric-Poisson
distribution shown in Table 1 looks very camlicated and suggests large

amounts of machine time to campute the individual probabilities. To the
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contrary, for typical values of the mean and VMR of lead time demand
shown here, the computer time is not too excessive. However, in order _
to reduce the camputer time to an absolute minimum, a look-up table can !
be constructed to give the reorder point directly. Table 12 shows such
a table. Each entry in the table is formed from the cumulative
geametric-Poisson distribution for a particular mean and VMR of lead

time demand. For example, an item with a mean and VMR of 1.3 and 2.2,
respectively, would have a reorder point (at .84 probability) of 2.0
units. This particular table covers about 90% of the items, in
practice a bigger table would be required.

Table 12. Reorder Points for Geometric-Poisson Probability
Model (at 84% Confidence Level)

+ Constant lead time

5.0y 0 0 01 1 23 3 3 445556 6
0 001 22 33344505056 6

0 001 223 33445556 6 1

0 001 223 3344525056 6 ‘
L0001223334455566
40t 0 0 0 1 2 2 3 3 3 44 45556
- 0 00 1223 3 3 44455656
0 001 2233344455756
§.§ 0 01 122333 4445°565°¢6
£ 00 112 2333444525156
053.0T0011222334445555
g 00112223 344445255
_Eém 0 01 1222333444555
38 0 01 1 22 2 33 3 4445255
> 0 0 1 1 22 2 33 3444555
“ 2,010 0 1 1222 3 334441455
0 011222 333344455
0 01 122233 334414°5S5
0 01 1 22 2 2333 44445
0011122 2333 34414S5
1.0t0 0 1 1122233334444

s
o

1.3 1.7 2.1 2.5
Mean lead time demand

—
192}
O
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It is interesting to note how stable the reorder point is to
changes in the mean and WR of lead time demand. For instance, for a b
mean lead time demand of 1.7, a reorder point of 3.0 applies for any 4
VMR between 1.0 and 5.0. This same reorder point is seen to apply to
other means and VMRs also.

Another interesting item to note in the table is how the reorder

point, for a particular low value of the mean, say 0.5, decreases for
large values of the WR. Intuition would suggest that the reorder point
should always increase for a large VMR, like for a mean of 2.9 in the
table. We refer to the cause of this action as "oriqin blocking."
Figure 11 shows graphically the phenamenon. As the VMR increases, for
a particular value of the mean, the variance of the distribution also
increases and we would expect the distribution to flatten out on either
side of the mean. As can be seen in the fiqure, the distribution does

spread out to the right of the mean, but on the left side it is
restricted from taking on negative values and so the probabilities
actually increase or bunch up near the origin. This blocking action
affects the reorder point computation in the following way.

Suppose we desire a reorder point, at the 0.75 level, on an item
with a mean lead time demand of 0.5. From Figure 11 we see that if
the item's VWR is 1.0, then its reorder point would be one unit. If

its WMR is 4.0, “owever, then its reorder point would be zero. We |
suspect that this so-called blocking action is also characteristic of
other discrete distributions, such as the negative binomial.

Operational Test of Constant-Poisson Model
The analyses presented so far have been directed at modeling the

customer arrival and demand processes in an exact sense. Given the
nature of the units per demand data as illustrated in Figure 1 and
Table 9, that is, constant demand on many items and a small variance
on others, it is natural to oonsider an approximation to the demand
process. In general, we are interested in how robust the reorder point

calculation is to differences in the form of the units per demand
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process. Our specific interest is in the question--what is the lead

time supply effectiveness and spares investment for an approximate

model such as the constant-Poisson (Model II) as campared to the

geometric-Poisson model? Here the constant quantity is taken to

correspond to the mean units demanded per customer. Clearly this

model is an approximation to the demand process, but it may be adequate

for prediction purposes. This is one approximation to a campound-

Poisson process, like the geametric~Poisson, that is sametimes used in

practice [11]. (Another approximation that is quoted as being useful

is the simple Poisson process {1l}. For our data where many items have

a demand other than one, the constant-Poisson model is a better candidate.)
Table 13 gives a lock-up table that can be used to determine an

item's reorder point based upon this model (reorder points are camputed

from the cumulative distribution function for the constant-Poisson model) .

Table 13. Constant-Poisson Model Reorder Points
(at 84% Confidence Level)

- Constant lead time
4.0 0 4 4 8 8 8 12 12 12 15 15 15 20 20 20 24
0 4 4 88 8 11 11 11 14 14 14 19 19 19 23
wrg 35 70 4 4 7 7 7 11 11 11 13 13 13 18 18 18 2l
5 0 337 7 7 10 10 10 12 12 12 16 16 16 20
”,g 3040 3 3 6 6 6 9 9 9 11 11 11 15 15 15 18
-g 0 33666 8 8 B8 9 9 9 14 14 14 17
2y 25 to0 33555 8 8 8 9 9 9 13 13 13 15
. 022555 7 7 7 8 8 8 11 11 11 14
o9 2040 2 2 4 4 4 6 6 6 7 7 7 10 10 10 12
o 022444 5 5 5 6 6 6 9 9 9 11
£8 154022333 5 5 5 6 6 6 8 8 8 9
011333 4 4 4 5 5 5 6 6 6 8
1.0 10 1 1 222 3 3 3 4 4 4 5 5 5 6
5 1.0 1.5 20 2.5 3.0 3. 4.0

Expected number of custamer arrivals during lead time

The two parameters necessary to enter the table are the expected number

of custamer arrivals during lead time and the expected units demanded
per custamer. For example, an item with expected values of 2.0 and 1.5




for the nuwber of custamer arrivals and units demanded per custamer,
respectively, would have a reorder point of 5.0 units (at an 84%
confidence level). Parameter values are estimated using historical
information from a data collection period.

For each item in an account, we can use the lock-up table to set a
reorder point for a fictitious lead time period of, say, 21 days. We
can then coamwpare the observed demands to the hypothetical reorder point
and determine how effective it would have been in satisfying lead time
demand. This operational test is exactly as was described for the
geometric-Poisson model. Table 14 shows the lead time supply effec-
tiveness and spares investment for each account. (As before, the
Bentwaters accounts are stocked at 95% and the CONUS accounts at 84%.)

Table 14. Summary Statistics for the Constant-Poisson
Reorder Points (UC > $5.00)

Base FSG % Sufficient $ Investment
Bentwaters 16 93.5 42,671.48
59 94.8 117,799.87

Summary 94.5 160,471.35
Dover 15 81.3 37,161.53
59 85.2 28,690.77

66 88.0 14,684.13

Minot 29 82.2 4,466.03
31 94.0 475,24

Randolph 53 86.4 4,107.07
Summary 84.6 89,584.77

The number of items and the observation and holdout periods are the
same as were used in Table 11. An inspection of Tables 11 and 14 shows
how the constant-Poisson model compares to the geametric-Poisson and
current system models. It is easy to see that the constant-Poisson

compares very favorably to the geametric~Poisson model. The former is
actually closer to the lead time supply effectiveness than the latter;
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the spares investments for both models are about the same. Comparing
the constant-Poisson to the current system we see a dramatic improve-

ment, both in terms of being closer to the target effectiveness and in

terms of much lower spares investments (this same :mprovement was noted
for the geametric~-Poisson model). That the constant-Poisson model
fares so well here is not surprising given that about 70% of the items
studied have a constant demand (Table 9). One of the reasons for
considering this constant approximation to the units demanded per
customer is for possible application to the items with a unit cost of
$5.00 or less. We next investigate those items.

Even though the more expensive items (UC - $5.00) represent larger
inventory investments for lead time spares, the low cost items can
create problems for the supply manager as well. It is important,
therefore, to analyze their demand patterns in same d2tail with the
objective of finding a model that is consistent with the model for the
larger cost items.

As illustrated in Figure 5 for some typical items with a UC = $5.00,

empirical data on units demanded per customer suggest that our chances
of fitting a standard distribution, such as the geometric, to them is
about nil. The items in Figure 5 do appear to have same constancy,

though, and it is this observation that leads us to consider the
constant approximation for units demanded per custamer. Item one in
the figure has a majority of custamer demands of 63, item two a
majority of 4, item three's demands are all for 3, and item 4 is a
mixture of mostly 5s and 15s. For all UC = $5.00 items and the same
observation periods described before, 56.4% of 4933 items with at least
one custamer arrival have a strictly constant demand, like item three
in the figure. Coupled with the results in Table 8 showing the
applicability of the Poisson distribution in describing the number of
custamer arrivals per unit time, we take the constant-Poisson model as
an approximation to the total demand process.

In Table 15 we show how the constant-Poisson and current system
compare for items with a UC = $5.00 (reorder points for the constant-
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Table 15. Summary Statistics for the Constant-Poisson (C-P)
and Current System Reorder Points (UC s $5.00)

Number Percent Sufficient $ Investment
Base FSG of Items C-P Current C-P Current
Bentwaters 16 89 92.1 89.9 5,034.23 4,994.79
59 1401 93.4 93.4 15,951.70 16,695.32
Summary 1490 93.3 93.2 20,985.93 21,690.11
Dover 15 46 63.0 71.7 515.37 602.92
59 875 80.7 84.5 4,442.32 6,107.03
66 75 84.0 86.7 188.58 305.60
Minot 29 122 74.6 80.3 1,139.97 1,606.43
31 117 88.9 88.9 348.46 594.24
Randolph 53 2210 79.4 82.1 18,940.19 22,910.12
Summary 3445 79.8 82.8 25,574.87 32,126.34

Poisson are fram tables like 13). For the Bentwaters accounts both
models loock equivalent. The constant-Poisson has a lower cost for the
OONUS accounts but its percent sufficient statistic is a little less
than the current system's. Given that the percent sufficient statistic
is farther from the target for the CONUS bases we cannot say that the
constant-Poisson model is an improvement over the present system; on
the other hand, given the results at Bentwaters and for the CONUS bases,
the constant-Poisson seems to be almost as good as the current system.
The approximation is not expected to be as good for these cheaper
items as was evident for the higher cost items. A comparison of
Figures 1 and 5 shows that the constant assumption for units demanded
per customer is more likely to be a better approximation for the higher
cost items than the cheaper group. As discussed before, we view the
constant-Poisson mainly as a heuristic development for these low cost
items. Even if a target effectiveness of .90 was required to obtain

-84 in practice, the spares investment would probably not be that much
more expensive than the investment shown in Table 1S.
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To this point we have shown how the gedmetric-Poisson and constant-
Poisson models fit actual data for items that cost over $5.00. For
fictitious lead time periods, both models give about the same results
and both represent significant improvements over the current system.
The geometric-Poisson is a more exact model than the constant-Poisson
model which is clearly an approximation. Although the former model is
more aesthetically pleasing, the latter model provides camparable
predictions.

Based on a comparison of the constant-Poisson and the current system
for items with a UC £ $5.00, it seems reasonable to consider the
constant-Poisson model for all items, regardless of unit cost. It
would provide savings in spares investment for the higher cost items
and would not be any more costly than the present system for the
cheaper items.

Indeed, for the data used here, we can use Tables 11, 14 and 15 to
show that the total dollar investment, regardless of unit cost, is
$423,422.71 for the current system and $296,612.62 for the constant-
Poisson model. The constant-Poisson model's cost is 70.1% of the
current system's. The lead time reorder point supply sufficiencies
are 94.4% (current), 93.8% (constant-Poisson) for Bentwaters; for the
QONUS accounts the percentages are 85.0 (current) and 81.3 (constant-
Poisson). We doubt that the slightly higher percentages for the
current system would account for the higher investments for that system.
Although not performed in this study, an alternate procedure would
examine the differences in lead time supply performance for the same
dollar investments in reorder point spares. Based on the results here,
we would expect the constant~Poisson model to provide the higher supply
performance.

Next we examine the effect of variable lead time on both models.




SECTIONM 5
THE EFFECT OF VARIABLE LFAD TIME

In this section we allow lead time to be a random variable in order
to determine what impact its variability has on the reorder point
ocamputation. We view this effort as mostly exploratory in nature at
this point. The current study being conducted at the AFIMC on the
mechanics of the lead time process will undoubtedly shed new light on
the lead time data we study and possibly will answer same of the
questions posed earlier about them. Although our analysis is cursory,
we do damonstrate a methodology to study the effect of variable lead
time. To illustrate the technique, we examine priority group three
(routine) shipments only and consider just those items with a unit
cost over $5.00. In keeping with our concern to study the exactness
of all random processes, we concentrate on the geometric-Poisson model.

The analysis we show will be numerical in the sense described
relative to Model III in Section 2. That is, we use the empirical
distribution of lead time, g{{), to determine the marginal distribution
of lead time demand, f£(d), in equation (4). From f(d) the cumulative
distribution of lead time demand is formed and then a reorder point is
determined. Before showing how this process campares with the results
for a fixed lead time model, we first give same descriptive statistics
about the lead time process and about demands associated with a variable

lead time.

Statistics on Lead Time
Figure 8 showed relative frequency diagrams of empirical lead times

for several base-resupplier cambinations. In Table 16 we show the mean

and variance-to-mean ratio of lead time for each base and its major

resupplier (the routing identifier codes are FGZ--Ogden AILC; S9F--Defense

Electronic Supply Agency; FPZ--San Antonio ALC; and S9I--Defense
Industrial Supply Center). All resuppliers were taken for the Minot

acoounts since no one resupplier seemed daminant. The unit of time is
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Table 16. Statistics on Lead Time |

(o
i
Base FSG n Resupplier Mean VMR bi
Bentwaters 16 263 FGZ 6.4 2.6
59 1051 S9E 6.6 1.4
Dover 15 2206 FPZ 2.9 0.5
59 1597 S9E 2.8 0.5
66 211 FPZ 3.1 0.5
Minot 29 806 All 2.7 0.6
31 378 All 2.8 0.5
Randolph 53 457 $S91 3.4 0.7

one week. The gquantity n is the number of lead time cycles for the
respective account-resupplier cambinations. In camputing the
statistics, all adbservations for Bentwaters greater than 17.1 (120 days)
are deleted; for CONUS accounts the corresponding value is 7.7 (54 days).
This coincides with a standard policy currently in use by the Air Force
to compute statistics on the lead time process. The mean and VMR are
much larger for the Bentwaters acoounts than the CONUS ones.

Another variable of interest in this section is the VMR of total
demands associated with a variable lead time. This is the quantity
that the Air Force is currently assuming to be three for each item in
the safety stock computation. If there were ample lead time cycles
on each item, we could study the VMR of lead time demand directly.
Instead, we estimate the VMR by using ecquations (5) and (6) of
Section 2. Dividing equation (6) by (5) we can form the ratio and
abtain:

VMR

VMR(fiX) + VMR( U)E(N). {7

{var) = L)E(
In (7), WMR is the VMR of demand for a variable lead time, VMR, ..
(var) (£ix)
is the WR of demand associated with a fixed unit of time, say one week,
VMR<L) is the WR of the lead time process, E(U) and E(N) are as
defined before. Algebraically, VMR

}

2

\ 8

e

(£ix) corresponds to the first term E

in equation (6) (since V(L) equals zero in this case) divided by

equation (5). To campute (7) on cach item, we estimate VMR ()

(rix)’

N
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and E(N) from sample data for an cbservation period, say of 26 weeks
(we use the periods in Figure 4). In addition, the VMR of lead time,
VMR(L), is taken fram Table 16. A plot of the different variance-to~

mean ratios, VMR

ey p—
> RS

v g

for any one base account would look similar to

(var)’
Figure v where we showed a relative frequency chart of VMR (£ix) for the :
Dover 59 account. It would be evident that there is considerable 4

variability in the VMRs of demand associated with variable lead time,
as was indicated for VMR(fix) . Table 17 gives the median and 95th
percentile of VMR (var) for the individual accounts. Comparing these '
entries to those in Table 6, we see that the medians are app.oximately E
’ the same but the 95th percentiles in Table 17 suggest that the K-
,, empirical distributions here are much more skewed to the right.

Table 17. Variance-to-Mean Ratio of Total Demands
During a Variable Lead Time

";‘ ‘. ..; ’

95th

Base FSG Median Percentile Dk

Bentwaters 16 2.0 10.0 ' 4

59 1.5 9.0 3

Dover 15 1.3 5.5 i

59 1.4 8.5 3

66 1.4 8.0 A

Minot 29 1.6 9.5 '
31 2.1 10.0

Randolph 53 1.7 15.0 _
All Items 1.5 9.0

Without having access to the analysis that established the current :

policy of a constant VMR of 3.0 for each item, we have to question the -

validity of that policy, given the results here. It seems inappropriate
to use a constant of 3.0 for every item when 50% of the items have an -
; estimated VMR less than 1.5. Indeed, 78.0% of the items shown here 4
; have a WMR less than 3.0! We hasten to add that the estimates referred
to in Table 17 are for items that cost over $5.00; although the VMR of
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We then torm the cuantlat ive distvibutton tuanction to get the pootdo, i
potnt to satisty 835 ot the Tead time denand, table T8 showss the u
testlting reorder pointse This table can be avagated to the resnlts i
tor the tixed Tead time model in Table 100 Clearly thete ate no
Jramat e chanees a0 tewe Jdntterenoes ot one andt exest tor o sonee ot the
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Table 18. Reorder Points for Geometric-Poisson Probability
Model (at 84% Confidence Level) |

+ Variable lead time

- Dover 59-S9E data {
5.0 0 0 0 1 1 2 2 3 3 4 45556 6
0 00 1 1233 344565656 6
0 00 112 3 3 3 44565656 6 r
00 01 1 23 3 3 4455656 6
0 0 01 22 3 3 3 445556 6 y
4,0 10 0 0 1 2 2 3 3 3 4 4 5 5 5 6 6 .
0 0 01 2 2 3 3 3 444556 6 ]
rolfs 0 00 1 223 33 4445556 1
5,§ 0 001 2 2 3 3 3 444555 6 :
g 0 01 1 2 2 2 3 3 4445556 E
£y 3.0 10 0 1 1 2 2 2 3 3 4 4 4 5 5 5 6 \
8.% 0 01 1 2 2 2 3 3 4445556
g 00112 223334457555 ;
g’% 0 0 1L 1 2 2 2 333 444555 :
< g 0 01 1 2 2 2 33 3 444555
2.0 {0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
00 1L 1 2 2 2 3 3 3 444555
0 0 1 1 2 2 2 3 3 3 444455
0 01 12 22 233 3 44 455 N
6 01 1 1222333 44455
1.0 10 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5 |
1 .5 .9 1.3 1.7 2.1 2.5 2.9 !

Mean lead time demand 1

mean-VMR combinations; however, these are primarily at the fringes of
the regions of constant reorder points. For example, for a mean of
2.1 and for VMRs of 1.0 through 1.4, the reorder point in Table 18 is
3.0. In Table 12 for the same mean, the reorder point is 3.0 for VMRs
of 1.0 through 1.8.

Another way to compare the fixed and variable lead time models is
to use both for predictions in fictitious variable lead time cycles.
Using the same observation periods for both we estimate model parameters
for the two models and then make predictions (that is, we set hypothetical
reorder points) for simulated lead time periods. For Model I we take

reorder points from Table 12 vhere a fixed lead time is assumed. For




Model III we take reorder points from Table 18 where a variable lead
time is assumed. The fixed lead time of Model I is assumed to be the
mean of the empirical lead time distribution used in Model III. We
then campare both reorder points with actual observations during a
simulated variable lead time. That is, for a particular item we
simulate a random drawing fram the lead time distribution, g(£),

shown in Figure 12. This simulated value is taken to be the length of
the next lead time cycle. Observed demand is then determined for this
lead time cycle and campared to the two predictions. Continuing this
process for each item we can determine the cost and lead time supply
effectiveness of the two models for an entire account. Indeed, we can
campare the current Air Force methodology as well.

It should be clear as to why we campare the predictions to a
simulated variable lead time. Although Model I makes predictions as
if lead time was known and constant, its supply effectiveness, relative
to Model III, must be measured relative to a realistic nonconstant lead
time. After all, we only study the effectiveness of Model I in the
hopes that it does provide reorder points that are reasonable in an
actual environment of variable lead times. It would not be fair in
judging the impact of variable lead time, to compare Model I's predic-
tions to a constant lead time and Model III's to a variable lead time.

Table 19 shows same statistics on the cost and effectiveness of
Model I, Model III and the current system for simulated lead time
cycles. The items involved are ones from the Dover 59 account as
resupplied fram the S9E vendor (421 items). The costs are the dollar

investments in reorder point spares; the percent sufficient shows how

Table 19. An Example of the Effect of Variable Lead Time

Model III
Model I (G-P) Current
Costs ($) 13,003.37 13,555.57 22,023.64
% Sufficient 89.3 89.5 91.2
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effective the reorder point was in satisfying all demands during the
simulated variable lead time period. For example, the reorder points
for Model I would have satisfied all demands on 89.3% of the 421 items
during the simulated variable lead time periods. There is practically
no difference in the costs or percentages between Models I and III.
This suggests that the impact of a variable lead time is virtually

nonexistant, at least for this data set. This result was not un-
anticipated, given the similarity of Tables 12 and 18. It should be
noted that either model does better than the current system-the
percentages are reasonably close but Model I, say, has a reorder point
spares investment which is 59.0% of the current system's cost.

For the purpose of sensitivity analysis, we are interested in how
the reorder points might differ if the gamma distribution is used to
approximate g({£) in the numerical computation of £(d). Although
Figure 12 showed the inappropriateness of the gamma distribution as a
probability model of lead time for the Dover data, it is important to
determine if the reorder point camputation is sensitive to the use of

this approximation. Table 20 shows the reorder points (at .84) based
on the gamma approximation. There are a few differences campared to
Table 18 but whether or not they would appreciably alter the spares
investment and lead time supply effectiveness will not be investigated.
{An analysis like the one shown in Table 19 could be performed.) As
discussed before, we think these present lead time data have too many
probable anamalies to support a complete analysis at this time. Given
that a "smooth" representation of the lead time data would most likely
be required for implementation, the gamma approximation would be a
reasonable one to consider in the future on better data. The few
differences in Tables 18 and 20 suggest the gamma distribution would
be a viable alternative to the inconvenience associated with tabulating
each possible empirical distribution of lead time data.

Based on the above results (Tables 12, 18 and 19), we suspect that

not all reorder point camputations need to consider the effect of
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Table 20. Reorder Points for Geametric-Poisson Probability
Model (at 84% Confidence Level)

+ Variable lead time
- Ganma approximation to Dover 59-S9E data

5.0 10 0 0 1 1 2 3 3 3 4 4 5 5 6 6 6
0 0011123 33 44505056 6

0 001 2 233344525546 6

0 001 2233 3 4456556 6

0 0012 2333 44565656 6

40 10 0 0 1 2 2 3 3 3 4 4555 6 6
0 00 1 22 3 3 3 445650656 6

bS] 0 001l 2 2 3 3 3 44565056 6
0 0 01 2 2 33 3 444565 6 6

g 0 01 12 2 333 444655656
E£53010 0 1 1 2 2 3 3 3 4 4 45 5 5 6
8.% 0 011 2 2 3 3 3 4445655 6
g 0 01 1 22 2 33 44455056
'5'% 0 0112 2 2 3 3 444656556
24 0 011222 3334445655
2010 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5
0 0112 2 233 34446555

0 0112 2 2 333 444555

0 0 1 12 2 2 3 3 3 4 44455
J0011222333344455

1.0 40 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5

+

.9 1.3 1.7 2.1 2.5 2.9
Mean lead time demand

.
=
.

(9]

variable lead time. Indeed, we suspect for CONUS account-resupplier
canbinations that have reasonably symmetric lead time distributions,
the effect of variable lead time can be ignored. Such a supposition
for overseas bases, as resupplied by CONUS depots, is not so acbvious,
though. In fact, the larger VMR of lead time (Table 16) for the
Bentwaters accounts will more directly influence the VMR of demand
during a variable lead time, VMR(var)' in equation (7). All of the
other variables in equation (7) are approximately the same for the
Bentwaters and CONUS accounts (Tables 5 and 6), so we would expect the
larger VMR(L) for Bentwaters to produce a larger VMP‘(var) , and in turn
affect the reorder point camputation. Table 21 shows a camparison of
the reorder point tables for the Bentwaters 16 account. Both tables
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A Camparison of Reorder Points for Fixed and Variable
lead Time (Geometric—~Poisson and Bentwaters 16-FGZ2)

Table 21.

(fixed)
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are based upon a 0.95 probability (the convention for overseas bases). :
The top table gives the reorder points for a fixed lead time cycle.

The lower table gives the reorder points for a variable lead time
distribution. Here the Bentwaters 16-FGZ empirical data were used.

Clearly, more of the reorder points differ among the two tables than

was evident in the Dover 59-S9E analysis. It is reasonable to expect,

then, that the influence of a variable lead time will be greater for

the overseas bases than the CONUS bases.

The effect of variable lead time could also be studied for the
constant-Poisson distribution in the same way. We would take f(d]{)
as the constant-Poisson and use g({) to form the marginal distribution
of demand during lead time, f(d), as in equation (4). No data will be
shown here; the results parallel those for the gearetric-Poisson model.
That is, marginal influence for the CONUS accounts and substantially
more influence for the Bentwaters account.

An important advantage for the gamma approximation would result in
the constant-Poisson case. If we ocould assume that lead time had
approximately a gamma distribution, then N{(L) in equation (3) would have
a negative binamial distribution [8]. 1In essence, the number of customer
arrivals during a variable lead time would be negative binomial and for
constant demands per custamer, D(L) in equation (2) would have a negative
binomial distribution defined on the integers 0, ¢, 2c¢,... These
probabilities could be camputed analytically as opposed to numerically
or iteratively and thus machine time for implementation would be
considerably reduced.

In this section we have attempted to suggest the impact of variable
lead time on the reorder point camputation. By necessity, due to same
probable anamalies in the lead time data, only cursory analyses were
shown. A methodology was presented that can be used in the future to
examine more carefully the effect of variable lead time. We suspect
that variable lead time will be inconsequential for CONUS bases but

will be significant for overseas bases.
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SECTION 6
RECOMMENDATIONS FOR VALIDATION/IMPLEMENTATION

Now that several models have been presented and subjected to data,
we camment on same items that are important for further validation
testing and possible implementation.

By far the strongest camment we have is that a camputer implementa-
tion of any model must provide the capability for identifying ancmalous
data. The lead time data we investigated were certainly suspicious and
same of the data on customer arrivals and demands were also. Parameter
estimates for model inputs are often seriously affected by atypical
data; more importantly, though, is that predictions based on the model
may not be realistic.

The Federal Simulation (FEDSIM) model at the AFIMC provides the
capability for another check on the work reported here. Same camments
about the use of FEDSIM are appropriate at this point. First, the
stockage effectiveness (for example, 0.84 for CONUS bases) specified as
a target in the current system clearly relates to the lead time cycle
only. We suspect that this is not the cammon interpretation among
supply managers. In fact, we doubt that the FEDSIM model computes the
effectiveness during the lead time cycle. To substantiate the work
reported here, we recamend that the stockage effectiveness computation
described above be added to FEDSIM.

Second, careful thought should be given to the length of the base
period that would be used in FEDSIM to compare the current system and
the models presented in this report. We would certainly not recammend
an arbitrary choice. The models we presented are probabilistic models
with assumed constant parameters. As pointed out before, periods longer
than 9-12 months probably would tend to violate stationarity assumptions.
It seems reasonable that a prediction for a lead time of 3-7 weeks
should be possible with historical data limited to 9-12 months.

Third, the camparisons reported here for the current system versus
the probabilistic models did not use any weighted schemes, such as

53




exponential smoothing, to forecast parameter values. Whether or not
weighted schemes should be used in FEDSIM camparison runs needs to be
addressed.

A summary camment about FEDSIM use is that standard experimental
design techniques should be considered in setting up camparison runs.
It would be very easy to confound or mask any true differences without
an abjective test plan.

The zero demand items were ignored in our analysis but clearly a
technique is needed to set reorder points on them. Given the result in
Table 12 where items with a very low forecasted mean lead time demand
have a reorder point of zero, we submit that zero demand items should
have a zero reorder point as well. If the reorder point for an item
with, say, two demands for a 26 week observation period is zero (its
mean lead time demand would be approximately 0.2 for a lead time of
three weeks), then surely an item with no demands should be zero also.
FPurther testing of this idea could be performed with the FEDSIM model.

Another result that could be investigated easily with the FEDSIM
model is the effect of variable lead time. Just as was performed in
this report, a reorder point ocould be campared with dbserved demands
in a fictitious lead time period. In one case the fictitious lead time
period would be equal to the mean lead time and in another case, the
lead time would be a random drawing fram the empirical lead time
distribution. If the reorder point sufficiency was approximately the
same in both cases, then the effect of variable lead time could be
oonsidered neglible, o

As a last remark, we recommend that a full base (all FSGs) be used
in comparison runs as described in this report. Coupled with the
broad bases and FSGs already studied here, the results for an entire
base would form an in-depth package for evaluation.




APPENDIX A
FORMULATION OF TOTAL VARIABLE COST ;o

- —p—

For a particular stock item the total variable cost (TVC) per year
can be expressed as
TVC = OC + HC + BC (a~1)

where: OC total annual order costs
HC = total annual holding costs
BC = total annual backorder costs.

The order costs can be quite easily calculated as

_D -
oc=5a (A-2) %

where: D

Q
A

e,

nann

mean annual demand rate

order quantity
cost per order.

J—
.

i

—

In this form the order costs are consistent with the typical approach to
determining the total costs in an inventory model [7]. The holding 4
costs are governed by the relationship X

'

HC = (R + % - DL)IC (A-3) "
where: R = the reorder point ‘
L = the mean lead time in years ‘
I = holding cost rate &
C = unit price, r
This formulation of the holding costs assumes that the expected number [

of backorders is negligible and calculates the expected on hand inventory
as the net inventory. It should be noted that this formulation is
consistent with the typical inventory model.

The third cost term, annual backorder costs, can be determined by
a variety of methods. DODI 4140.45 proposes a method based on the
quantity "Time Weighted Requisitions Short." This formulation appears
to have Air Force acceptance and will be used in this discussion; thus,

‘

BC = A(TWRS) = % f: (%-R) [F(x+Q;L) - F(x;L)]dx (A-4)

with X (TWRS) = the implied penalty cost of time weighted requisitions
short
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where: A = shortage cost parameter
E = item essentiality
S = average units per requisition
X = random variable for demands during constant lead time L
F(.;L) = cunulative probability distribution of demand during

lead time L.

As pointed out in [15] for many practical applications, the expected
number of units short

é 1% (e-R) [F(04QiL) = F(x;L) Jax (A-5)
can be approximated by

1l = ; _

S Jp -RIEGGLIGX (A-6)

where f(x;L) is the probability distribution of demand during lead
time. Using this approximation the final term in the cost equation is
AE

X (TWRS) = % 'R (x-R) £ (x;L)dx . (a-7)
We have now arrived at the total variable cost per year per item:
= —D— 9 —-— LE— w ) L4 d
'IVC—QA+ (R + 5 DL)IC+SQ fR (x-R) £ (x;L)dx . (A-8)

To determine the optimal operating doctrine in terms of order
quantity, Q, and the reorder point, R, we must calculate the expressions

3 (TVC) _ 3(TVC) _ _
30 - 3R =0, (a-9)

Doing this, we obtain the simultaneous equations

= AE 2 e, -
IC=%% fp ExiL)ax (A-10)

/Z[DA + —)‘Sﬁ f; (x-R) f (x; L) dx]
IC
In general, an easy and quick solution to these equations does not

Q =

(A-11)

exist. Hadley and Whitin [7] suggest an iterative procedure for solving
for R and Q. Even though this procedure is sound analytically, the
iterative technique would have to be accomplished on every distinct

item in the stock acoount.

4 R

el R 5. 8P




=

The framers of the policy contained in DODI 4140.45 obviously
recognized the camputation and time involved in determining the optimal
Q and R via the exact formulation above. To achieve a balance between
near optimal solutions and camputatiocnal effort the DODI authorizes the
use of an approximate model. In this model the optimal Q and R are
determined by a two-step process. The first step assumes there are no
backorders and the related total variable cost per year is the sum of
the holding and ordering costs, thus,

TVC=%A+ (R+%—DL)IC, (a-12)

Solving this equation for the optimal Q yields the standard Wilson BEOQ
equation

_ [ oma
Q= T - (a-13)

The difference between this order quantity and the optimal obtained
fram the exact formulation is an additional term to account for the
stochastic nature of demands by including the expected number of back-
orders (requisitions short). If the expected number of requisitions
short is small, then the Q obtained from the Wilson EOQ equation yields
a good approximation to the optimal.

The second step of the approximation process is used to determine
the reorder point, R. The variable cost is assumed to consist of a
holding cost and a shortage cost or

A
S
Solving this expression for the optimal R yields the equation

Ve = IC f}; (Rx)£ (L)X + 3 S (x-R) £ (x;L)ax . (A-14)

SIC
SIC + A

At this point the analysis breaks down because the underlying

= f; £ (x;L)dx | (A-15)

probability distribution, f(x;L), is unknown. The priority item in
this research is to determine the distribution. The DODI suggests
using an equation of the form
R = DL + to (a-16)
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where: o = standard deviation of lead time demand
= safety level parameter ,

The Air Force is currently using a reorder point formula of this
form, with ¢ being approximated by the square root of three times the
expected demand during lead time and t = 1 for CONUS. Additionally,
if the demand during lead time is normally distributed, the value for
t yields a .16 probability of a stockout.
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