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DOUBLE-ENDED BACKWARD-WAVE YAGI HYBRID ANTENNA

INTRODUCTION

This report describes a novei dipole endfire array configuration on which the currents
inherently tend to taper as required for low sidelobes [1]. In the conventional traveling-
wave array designed for endfire, excitation is provided at one end of the array. The currents
on a uniform array of elements tend to taper away from that end; other current distribu-
tions are obtained by changing the elements themselves or their coupling to the traveling-
wave structure. In the proposed configuration (Fig. 1) excitation enters at a more medial
point of the array, and conceptually the new antenna combines a backward-wave segment
(2] with a forward-wave Yagi segment (3]. Currents on the medial element and elements
adjoining this element (which is excited directly from the source) are enhanced by com-
ponents usually lumped as (unavoidable) “feed radiation.” An array of 16 dipoles chosen in
accordance with this idea was computed to have a sidelobe level better than -20 dB at the
design frequerncy and -16 dB over an 8% band. A conventional Yagi produces sidelobe levels
of approximately -14 dB at the design frequency (4].

ANALYSIS

An equivalent circuit for the backward-wave Yagi hybrid antenna is shown in Fig. 2.
The N-port feed network is shown at the left. Port 1 is the input. Ports 2 to K + 1 represent
terminal pairs at which a backward-wave structure is connected to K dipole radiators. At
ports K + 2 to K + I + 1, reactive terminations are connected to I Yagi director elements.
The network at the right with 3 = K + L, ports represents radiation and mutual coupling of
the array elements. Conditions at the a'h port will be described by a voltage V,anda
current [, directed as shown on the diagram.

It will be convenient to group the currents /,, in two distinct ways, leading to two
partitionings of the total currents matrix:

AT
2 o« . e - ! .Nu

=1 ] T (1)
In

where

’l; i { ’,} , dimengion 1 by 1,

Manuscript submitted October 30, 1979,
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Pig. 2 — Equivalent circuit for a backward-wave
Yagi hybrid antenna
_Ia = [[2 Ig ...IN] , dimension 1 by M,
I = [t dgey | dimension 1by K + 1,
B = [Ixea Txea -1y] + dimension 1 by L,

with ~ denoting the transposed matrix.
conformably.

Voltage and impedance matrices are partitioned
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The relation between voltages and currents of the feed network is governed by the
impedance matrix Z:

V=21 (2a)
or ]
YV _ ZPV : ZVL( _Iv
Vo Tz rE o T (2b)
—~H uy : up | =u

wherein the impedance matrix Z,,, which characterizes the backward-wave circuit will be
taken up in the next paragraph, ZW = Z,p = 0,8nd Z;, is a diagonal matrix. The entries on
the principal diagonal of Z u are reactive terminations, [Xg ,q, .., /XK +1 41, at the ports of
the Yagi directors. Equation (2a) may now be rewritten (using a different grouping of the
elements) as

M ~z_“°_!_zf"_ Ja (8)
Vs (I Ezﬂﬂ I3

Radiation and mutual coupling of the dipoles give the relation
Y5 = Z2,(-4p), (4)

where the elements of Z4 are known [5,6]. Substituting in (3) yields

ZaClp) = 2gady + Zyply (5a)
or
- Iy = (Zgg+ 2,07 25, - (6b)

The (input) impedance of the array is obtained by eliminating Ig from the first constituent
of (3):

v, = {zm-zaﬁ(zww,. )1 zﬁo] I, . (6)

The radiation pattern is determined by the relative values of the antenna currents I,
which can be found from (6b) by arbitrarily setting I, = 1. It is obviously independent of
any source impedance or precise value of input impedance,

We now retum to the evaluation of Z,,,, the open-circuit impedance matrix of the
backward-wave feed-line network. This network is shown in Fig. 3a, with Figs. 3b and 3¢
defining the circuit symbols used. T'he dipole elements are connected in shunt, forming a
shunt three-port T junction at the terminal pairs marked 2, 3, ..., K + 1. Figure 3b represents
a lossless transmission line of length €, characteristic resistance Ry, and propagation
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echematized in two ways

constant kg . For TEM lines, ky would be proportional to frequency. In the antenna diagram
(Fig. 1) the dipoles are shown attached to altermate conductors of the two-wire transmission
line. This produces a reversal in excitation phase which can also be schematized in the two
alternative ways shown in Fig. 3¢: transposition of conductors and a length of transmission
w electrical radians in length (independent of frequency) [7). The two-port connecting the
input (1) with the (K + 1)}th terminal pair merely alters the internal impedance of the source
and does not alter the patterns. Although shown arbitrary, a (dummy) section of the
backward-wave line was chosen for convenience. The open-circuit impedance matrix can
now be caleulated via a number of circuit techniques all leading to relative values of V, and
22, =V, when] = 0forallr+s,

A 16-ELEMENT ARRAY

As an illustration of these ideas the performance of a sixteen-element backward-wave
Yagi array was computed. The array comprised a backward-wave structure of five dipoles
spaced 0.260 m apart and eleven Yagi director dipoles spaced 0.4 m apart. The TEM two-
wire transmission line of the backward-wave circuit had a characteristic resistance Ry = 300.
Each dipole rod had radius 0.024 m. The lengths of the dipoles are given in Table 1 {in order
from the backward-wave end to the front of the Yagi).

The computations were carried out using the formulas for mutual coupling among
canonical minimum-scattering (CMS) antennas supplemented by a {separately evaluated)
antenna impedance [6,8) . The equivalent circuit for implementing this calculation is shown
in Fig. 4. At terminals bb' the mutual impedances were taken to be the same as for short
dipoles {5) . This approximation is justified by the slow change in pattem characteristics
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Table 1 — Dipole Lengths in a 16-Element Backward Wave

Yagi Array
Backward-Wave Dipoles Yagi Director Dipoles
Element Length (m) Element Length (m)

1 0.780 6 0.340

2 0.660 7 0.380

3 0.680 8 0.340

4 0.650 9 0.340

5 0.5660 10 0.340
11 0.340

12 0.300

13 0.300

14 0.300

15 0.290

16 0.280

EQUIVALENT ACTUAL
ANTENNA TERMINALS
ACTUAL ANTENNA
CMS ANTENNA TERMINALS

TERMINALS
_—
¢ X 1a . 3
,“} Eg - h_?-‘»-‘
¥
P~ 5]
(3 b L}
TO ACTYUAL LQAD
-
:‘ » ﬂ, . l)(.
N ———— A ———p—" n‘ - R
EQUIVALENY LOAD ¢
FOR CMS ANTENNA

Fig. 4 — Equivalent circuit for dipole calculations

for dipole antennas less than 1 wavelength in overall length {4]. The dimensions of the
dipole then enter the calculations only through their effect on the individual dipole input
impedance,

H-plane antenna pattems were computed at free-space wavelengths from 0.940 to
1.060 m. Patterns in the 8% band from 0.960 to 1.040 m are shown in Figs. 5a and 5b.

[47]
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Fig. 6a — H-plane radiation patterns for the
16-element antenna of Tahle 1 computed at the
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Fig. 6b — H-plane radiation patterns for the
16-clement antepna of Table 1 computed at
the froespace wavelengths indicated

Within this band, sidelobes remain below -18.6 dB. The sidelobe level deteriorates to -14 dB
at the edges of a 10% band. The dipole element pattern assures that E-plane patterns have
stdelobes at least 2.5 dB lower than the corresponding H-plane patteris. Radiation for
negative angles (backward lobes) was not computed explicitly.
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