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\‘ S ABSTRACT - - I

A formulation for determining the electromagnetic

field penetration through a circular aperture 1§ developed

using Babinet's principle and the singularity expansion

Computational procedures for determining the

frequency check of the procedures is proffered.
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INTRODUCTION

In the sfudy of various problems of electromagnetic compatibility
it is necessary to determine the penetration field of an aperture. At
low frequencies a quasi static soiution is avéilable,l and at high
frequencies the Kirchhoff's solution is available.2 Also a rigorous
solution developed by Flammer is available.3 _He applies Babinet's
priﬁciple and determines the scattering from the disk equivalent of an
aperture in a conducting plate by cﬁnsideripé the disk as a limiting
form of an oblate spheroid and constrﬁcts vector wave function solutions
to the Helmholtz wave equation in.osiate séﬁeroidal co;rdinates. However
no numerical results are presented; but it is expected that the greatest
amount of energy penetrates the aperture near the first resonances of the
aperture, the interﬁediate frequency ;egion.

Recently the singularity expansion technique has been found to be
useful in the study of electromagnetic pulse interaction.h In principle
one should be able to take Flammer's solution and develop singularity
expansions for the induced current and charge as Baum“ did in treating
the sphere. ' However, identifying and calculating the natural frequencies
and modes may be difficult. An-alternative treatment used here is to
develop an integral equation for the induced current density on a Babinet
equivalent disk, Solve the integral equation numerically using the method

of moments, and apply the singularity expansion method numerically similar

5
to Tesche.
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With the singularity expansion solution for the induced current
density on the Babinet equivalent disk the scattered fields are readily
determined. . An application of Babinet's principle then yields the field

penetrating the aperture in a conducting plate. Computational proceduréq

‘for determining the penetration field are discussed and a low frequency - .

check of the procedures is proffered.
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ANALYSIS

O S y TILenoh
-3.The solution for-the electromagnetic field penetrating an ‘aperture
in a conducting plane may be determined by solving the complimentary disk
problem and applying Babinet's'principle.a' The electromagnetic form of -

Babinet's principle states that 1if (E?,ﬁ?) is the scattered field when

(E{,ﬁ%) is the field incident in the positive z direction on a perfectly

conducting disk lying in the plane 2z=0, then

s _ s *s . 13s >
B=-ch |, Hy -C-El , z20
g g *g 1 s ' (1a)
ES - ¢ H) , H2=-_;_E1 z<0
are-the diffracted fields when the wave
B - By .-;ﬁ;=-clE} (1b)

is incident in the positive z direction on the complimentary perfectly
conducting screen with an aperture. Here [ =Vu/e is the intrinsic wave
impedance of the medium surrounding the aperture or disk. In the case of
the aperture the total field in the half sbace z £ 0 is formed from the
superposition of the incident wave, the reflected wave in the absence of
an aperture, and the diffracted field (Es,ﬁg). In the haif sp#ce z 2 0,
(Eg,ﬁ;) is the total field penetrating the aperture.

To determine the scattered or diffracted field from the apetture‘it is
necessary to obtain the induced surface current density on the disk. The
integral equation for the surface current density, 38, on a disk centered at

6
the origin and in the z=0 plane is
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( o E'(r') ‘;H:'Z the [kz 3’8(?)6(?|?f)ds |

S

+ grad'/ aiv (r)G(rlr')dS] (2)
. ' S

where Ei = ' and Ei = ¢' with

I-jkl?.—?' |

G(E[t") =

The incident field may be expanded. in transverse magnetic (TM) and
trangverse elgctric (’L‘E) cylindr;cal, modes. For the TM case there is no
magnetic Aeld coml.:onent‘ along the z-a;:i:s and for the TE case there is no
electric field component along the z~axis. An arbitrary electromagnetic
field may be expressgd as the linear combination of a TM part and a TE

part (see Appendix I), These two cases afe treated separately.

TM Mode Excitation

: 6
3 The form of the TM mode expansion for the incident plane wave field is

Ei(:) - mfo [E:,m(r) cos m¢ r

<
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K ,J'I'\l e S A

B @t m et en ot )
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where 6, 1is the angle of incidence, the angle between the direction of pro-

pagation and the direction of the positive z-axis. The corresponding form

of the induced current distribution on the disk is

38(;) - mfo [K:'n"(r) cos mb r + K‘z”m(r) sin mé 3] (4)
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Using the representations (3) and (4) in (2) yields coupled i;xtegral

equations for Ke (r) and K'z’ (r) to be solved for each value of m. They are

Ee G j )f m (i) +¢ 1(r:lr')] K p(r)rdr

.
, |
+4 %.,./ Cu(elr) el + DES (e

f[ -~ l(rlr ) - l(rlr')] 2 m(r)f&% ‘

w it 0l

a

kz P -— Gm(rlr')Kcz”m(r)dr (5)

and

© ey = s F .
B " I -/’[ (2l - ey rlr )] K] p(r)rdr

°.

a
2m ’ d e

- —— +

oo c,,,(;ﬂlr»)(r_dr DR} ()dr

- o .-

/[ 1(rlr ) 1(r:lr )] (r)rdr |

. 21112 y,
1 Ln_ G 1y 0
| 2 m(rlr )Kz’m(r)dr (6)
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Apparently G as shown above possesses a logarithmic singularity at r-r'

A

Since (7) must be evaluated numerically a more _convenient form 1is needed

After some mathematical manipulation (7) becomes

/2 ’
Gm(rlr') = 2'[7r 3[ -JkR cos(2me) l]lRfde

o

Bl Pkt i R o g

g o w2 [ (== )] | (8)
- - . ) : rr' : r'-r' . . . : e R

where - -

fap v niradd

,
R = :J(r:-rc')2 + 4rr' gin? 0

and K is the complete elliptic integral of the first kind. Note that tﬁé
integral in (8) does not possess a singularity at r=r' and may be evaluated
numerically. SISO ITRIismL sr TRl MREgL cn.. shagn T e 9 minioapl

A different singularity appears to occur when r =0 ‘and r=0 unless a

I 20 ossg o) -
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- restriction is placed on the current expansion.- *The evaluation of (7) at

LIT LT T e e

r'=0 ylelds i
" Lol O el ‘jkr T
!‘. Gm(rIO) -1 r— 820 : (9
k : , . . ,
k where Sno 18 the usual Kronecker delta. 1In order for the respective integrals

in (5) and (6) to remain integrable at r=0 the following is required

O(r) ~——3 (const.)r . (10)
( r+0
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The physical equivalent to (10) 1s the requirement of a finite charge

distribution at r=0.

- Ceesaae . e e e e s . . B
.

Another restriction to be satisfied by tfle current dist:ributio; is
the radial component of the current must vanish at the edge of the disk.
That is,

kK& (@ =0 (11)
1,m . g

for all m. Further note that one may set
K (x) =0 (12)
2,0

Because of the singularities in G the derivatives of the integrals
must be evaluated carefully. If the derivatives are taken inside the integrals
the integration is performed by using Cauchy principal values. To avoid
this additional complication the derivatives of the integrals will be

evaluated numerically by using finite differences.

TE Mode Excitation

6
The form of the TE mode expansion for the incident plane wave field is

e o 2L thee © LI T e T T e Cih A
B = ¢ [E° (r) sinmé r
e Lo s s meo L BB s B R A
- E€ (r) cos mé ;]e-jkz cos B4 7(13) .
2,m

6
And the corresponding form of the induced current distribution on the disk is

33(-1:) = mﬁo[l(‘{'m(r) sin mtb; - Kg’m(r) cos m ;] (14)
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Using the representations (13) and (14) in (2) yields coupled integral
(r) and K; (r) to be aolved for each value of w. The

. )
form of thelihtegral equatione 18 exactly the same as (5) and (6) when the

)": e

equations for Kl

following transformations are made:

e {+]
Kl (r)— K1 m(r)

y ]

EE S

K (r)—K® (1) , ,
2 2,m . (15)

1)

- i,m l,m . :

(o] e
Ez,m(r)—-:'Ez’m(r)

In order to have a finite charge distribution at r=0

K& (r) —> (const.)r (16)
2,0 r-+ 0 :
Another restriction to be satisfied by the current expansion is
o
K] m(a) = 0 7
For convenience one may set v
(18)

Ko’o(r) =0

for all r.
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NUMERICAL SOLUTION

i

.Because of the inherent complexity of the integral equations for
the induced surface current density an analytic solution appears to be
virtually impossible to obtain. Therefore a numerical solution technique,
namely the method of moments,7 is employed. Moment expansions that satisfy

the restrictions on the induced surface current densities are
N a(?i(r—rp)+aém)(rp+1-r)

K) o(r) = zl Tor1 Ty U(r;rp+1,rp) (19)
p= :

and (m) (m)
Kz,m(r) _ ElB +1(r T, )+B (rp+1—r) U(r;rp+1,rp) (20)
- Tp+17Tp
where . L fre<n
U(e3t010e) ={ P ptl

0 otherwise

= (p~1)Ar , Ar = a/N

a(m) =0 . AN - ~“7?.;qv:es T
N+1

a(o) =0
1

80 = o,

If (19) and (20) are substituted into (5) and (6), and the resulting

equations are satisfied at r=r_, p=1,2,...N, a system of linear equatioms

p’

are obtained for the a 's and the Bp's. This procedure is sometimes referred

| 4
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to as point matching or colocation. The resulting system of equations

is

2N+1 : ' '
z n(mI,J)F(m,J) = I'(m,I) (21)
J=1

where I=1,N and J=1,N : [

M(m,I,J) = l;._ [Fl(m-l,I,J) + Fl(@+l,1,J)
r

+ F2(m~1,1,J) + F2(m+1,I,J)]

+ 2 ;Z[FS(m,I+1,J) - F5(m,I,J)
k(Ar)2

+F6 (m,I+1,J) - F6 (m,I,J)]

+rJ_1 [F3(m,I+1,J) - F3 (m,I,J)]

-rJ+1[F14(m,I+1,J) - Fl;(m,I,J)]i
for I=1,N and J=1,N+1
N(m, I,J4N) = - % [Fl(m—l,I,J) - Fln(:;rl-l,]'.,J)
‘ + FZ(m—lI,J) T->1.¥2(ur;1;1,3)] |

2m '
+ ———= | F3(m,I+1,J) - F3(m,I,J A .
" k(Ar) [ (@ ) (m ) R N

P P

+ F4(m,I+1,J) - Flo(m,I,J)]




for I=1,N+1 and J=1,N

krI
Ar

N(m, I+N,J) = - [Fl(m—l,I,J) - Fl1(m+1,1I,J)

+ F2(m-1,1,J) - F2(m+1,I,J)]

_2m Z[FS(m,I,J) + F6(m,1,J)
kAr

+ 1y, F3(m,I,J)

. |
)

41 Fk(m,I,J)]

for I=1,N+1, J=1,N+1

H(m, I+N,J+N) = k. rI[Fl(m—l,I,J) + Fl(m+1,I,J)
Ar

+ F2(m-1,I,J) + FZ(m+1,I,J)]

2 .
- 2m [F3(m,I,J) + F&(m,I,J)]
kAr
and (m) in
F(m,J) = | %3 ’ (22)
B§T§ J=N+1, 2N+1
E1 o(xry) i=1,N
1,m\'1T
I(m,1) = - 432 | . (23)
. By n(rroy) I=N+1, 2N+1

The integral functions Fl1, F2, F3, F4, F5 and F6 are defined in Appendix II,
It should be observed that the foregoing applies for both TM and TE excitation.

The appropriate modal expansion for the incident fields are given in Appendix I.

12




.At; _this point :the induced surface current denslty may P,‘? _obtained by
i soLving thg fq_i'egoing system of linea_r equations using the digital computer.
Obvioqsly a system of equations must be solved for each modal current. .
Andreasens_vhou ;reats thg body of revolutj.on suggests that the maximum

number of modes needed is

ml A ka sin 8y + 6 24)
max i

for ka sin 85 X 3 and mlmax -~ 1as 6;+ O,




SINGULARITY EXPANSION METHOD

According to the singularity expansion method the natural frequencies
may be obtained by searching for the zeros of the determinant of the fore-
going system matrix H(m,k). From this point forward in the analysis the
Laplace transform frequency variable s = jck is used for the frequency.

Thus the natural frequencies are obtained from

det | N(m,s) =0 (25)
8=s
T a o
for frequencies s, independent of the index m. Note that the natural

frequencies for the TE modes are the same as for the TM modes.

The solution for the induced current distribution is

-1
F(m,s) = I "(m,s)I(m,s) (26)
for each mode. Applying the singularity expansion method (26) becomes3*

(m)

M
F@m,s) = I —%— C @I m,s) 27)

s-s
a o

where Ma(m) is defined as the natural mode vector and 1s the solution to

the equation

Hﬁn,sa)Ma(m) = 0 (28)
and Ca(m) is referred to as the coupling vector, and satisfies the equation

nt (m;sa)Ca @ = 0 (29)

The M, (m) and Ca(m) are normalized according to"

Chm) | S (@) My(m) = 1 (30)

S’Sa

<
Here the class II form for the coupling coefficlent 1is used.

14




Actually'F(m,S) represents the_yth_pylindrical mode contribution to
the current d%§F;i?9§?op73 Sumning the cylindrical mode contributions,: ..
see (4) and (14),:yie}ds ;hg final form for the current distribution. The
foregoing (25)-(30) aéﬁiyﬁfor bétﬁ fﬁTana.Tﬁ eiéiﬁatidn:.”faf TE excitation
use the TE mode field components in I' as defined in (13) and (23) and for
T excitation use the TM mode field components in I' as defined in (3) and
(23). T |

To obtain the time domain response of tﬂe induced current distribution
on the d1sk the appropriate Laplace transform of (27) 1s evaluated. 1t 135

: . t.

F@,t) = I V(M ()G ()T (3, 8)2— G1)

8a

where U(t) is a diagonal squaré'matrix of unit Heaviside functions which

serves to enforce the requirements of causality.

15
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SCATTERED FIELD

Once the induced current distribution of the disk is known then the

. . 8 - -
scattered field may be readily determined. The electric field is

| . —qkR :
TS ey o _ r . 2
EjGEN) = -3t [(J VY + Kk 3] ~ s (32)

; and the magnetic field
y o JkR
3
4 B (") = ——fJ x v( )d | (33)
j where-
' -jkR -jkR - o .
v(; 3 )=. (jk +%)§_—- R (34)

=) k2¢T -B)R + Legrel
_; -k“(Jg-R)R + R(jk+§.)

k. | .
[3(3 -R)R—ff]% (35)

> > > = >
with R=r'-r and R=R/R. Note that J is given by (4) or (14) depending upon

and

-ikR
o e J
(JS°V)V R

the mode of excitation. The far field approximations to (32) and (33) may
be readily determined by neglecting the R~2 and R™3 terms appearing in (34)

and (35).

In order to verify the numerical procedures that are ewmployed, low
frequency excitation may be considered and the equivalent dipole moments of

the scattered field obtained. These are

-1 [73
Po jw’/s.Jsds (36)

A




. N .t ‘ L. - . l
From using a quasi-static approximation it is found that

30 - Eg_e. a3 [(x-Ei“)x + (y-Ei“c)}] ' (38)
-+ ~ > ~ - .. '
My = - 2 23201z (39)

substitutiné the current representations (4) and (14) into (36) and (37)

yields

a

Pox = J—:,f[‘(l 1 () =~ K) 1(r):] (40)
(o]
2 0

Poy = 3%/‘[1 NORE K (r)]rdr (41)
o

M, = - f K2 o(r)rdr (42)

At low frequency (40)-(42) may be compared with (38) and (39) to check
the numerical solutions for thé components cf js.

The field penetéating an aperture in an infinite plate may be determined
by applyiné the electromagnetic form of Babinet's principle. As discussed
previously the field transformations (la) and (lb) are used with the

scattered field from the Babinet equivalent disk to determine the field

diffracted by an aperture. The scattered field from the disk is given by

(32) and (33).




2gn gl

CONCLUSION

The problem of the electromagnetic field penetration through an -

aperture in a perfectly conducting plate is formulated by using Babinet's }

it

principle. A numerical sﬁlution for the induced current distribution on
the Babinet equivalent disk is developed. This numerical solution is 3
formulated both as a direct moment method solution and a singularity
expansion solution. Finally computational procedures for determining
the penetration field of the aperture are discussed and a low frequency

check on the computational procedures 1s proffered.

18
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APPENDIX I

For convenience consider a plane wave propagating in the direction
g =0l - 0; and to be polarized in the direction forming an angle 8p with

the unit vector -6, Here 8 is the usual polar angle of the spherical

!
|
I
, coordinate system. Therefore the incident electric field may be resolved
into two components
i T N
E §=-E{'e+nly (A1)
where
E" = E cos 0 e-jk(z cos 6;-x sin 8,) (A2)
1 o . P
El = E sin 6 e—Jk(z cos 8i-x sin 03) (A3)
1 o P v

Then by the principle of superposition each component of Bl is considered
to be a plane wave. The magnetic fiéid associated o will he e no z

component - a TM wave. And the z component of E1 will be zero - a TE wave.

T case

If the electric field E:,Ais expanded in a Fourier series and Ef‘set . !

equal zero, then (Al) yields o , - ’ |

”";.Ei(;) =L [?TAQ(I) cos ﬁ¢'; ORI R
. mﬁo ’ - ~ . - . (':

-jkz cos 64 -

: ’ + Eg’i(r) sin m¢ ;] e




S —— T m

e g ' mFl
El,m(r) cos Bp cos 61 emj Jm(kr sin 61) Eo

J (kr sin 8,)
o : ml “m i . .
Ez’m(r) cos ep cos ei emj m = oin 81 Eo .

with (r,¢,z) as the usual cylindrical coordinates and €, 28 Neumann's

number.

TE case
1 M
If the electric field E1 is expanded in a Fourier series and E1 set
equal zero, then (Al) yields j

2@ - : [E° (r) sin mé T
1 n=0 L,

+ E° (1) cos m¢¢] e~Jkz cos 84
.. 2,m

where
ol Jm(kr sin.ei) .

kr sin 6i ©

. o . ’
El,m(r) sin»ep emj

m+l !
Jm(kr sin Gi) Eo

E m(r) = sin ep €nd
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APPENDIX II

The various integral functions used in N(m,I,J) are defined here.

Fl(m,I,J)

For J ¥ I+1, I>1

Ar
Fl(m,1,J) = j‘ (utr;_ )Gy (rp|utr, ;dudu
o

Ar
u r{-rj.1-u
+z/ (wtry)) .L.*LT:}:_ du
T4r. 4u | rrtri_qtu
A rytry_ytu I 3-1

where

/2

Gy(ulv) = 2 /‘ 3&‘3‘“ cos(ZmB)-l] /R do
(o]

R = »\l(u-v)2 + 4uv sin29

2 4 6 8
K(g) = [ao + ajf +oat +agr +oag .]
2 4 6 Bj] 2
- b, + b;z" + b,z +byr +bur | ng

r, = (I-1)Ar

ry = (J-1)Ar

Ar = a/N
a, = 1.386 294 4 b° = 0.5
a = 0.096 663 443 b1 = 0.124 985 94
a, = 0.035 900 924 b2 = 0.068 802 486
a3 = 0.037 425 637 b3 = 0.033 283 553

0.004 417 870

a, = 0.014 511 962

o
&
L]




. [}
. ¢ For J=I+l, I>1
% . Ar
| F1(m,1,J) =_./‘ l(ci-rJ_l)Gm(tIIu‘l-rJ_l)u‘du
| o |
‘ - (1-6)Ar (utr .) B ry-r u
! . - u ~ -
+2 /‘ 3~ o rIwJ-l+u du
i [ + +u -
, o Trr-r 173-1
5
s
i + (Ar)2 qp
E where
] ~ 9
rfoe [t
"‘ . - . .
§ £0.1
{ . For I=1 -
-jkAr -jkr
[L (1+jkAr)-1] ej J-1 =0
4 k2 B
Fl(m,I,J) =
o - . ‘ otherwise
F2(m,I,3) - Do
' Por Ji¥$ I+1, I>1_‘ o, oI
‘ Ar v
h F2(m,I,J) -f (rJ+1—u)Gm(rI|rJ+1-u)udu
n [+] . l ‘
‘ Ar '
§ +2f (rJ+1-u)u K rI-rJ+1+u du
: o e 4TS ARt TS
t
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For J=I+1, I>l

Ar .
F2(m,1,J) =/ (rJ+1-u)Gm(rIlrJ+1-u)udu
o

1-8)Ar
(rJ+1"u)U rI"rJ_*_l"'u d
+ 2 KiTH u
r1+rJ+1—u I J+1
o .
|
P
+ (Ar)z a1 . ;
For I=l ‘
B aopana] e
k2
F2(m,I,J) =
0 otherwise
F3(m,I,J)
For J # I and J # I+l
Ar
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