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1.0. INTRODUCTION

Networks of queues occur frequently in diverse applications. In
particular, they are widely used in studies of computer and communication
system performance as models for the interactions among system resources.
This monograph deals with mathematical and statistical methods for discrete
event simulation of networks of queues. The emphasis is on methods for
the estimation of general characteristics of 'passage times" in closed
networks. Informally, a passage time is the time for a job to traverse
a portion of a network. Such quantities, calculated as random sums of
queueing times, are important in computer and communication system models

where they represent job response times.

By simulation we mean observation of the behavior of a stochastic
system of interest by artificial sampling on a digital computer. With
discrete event simulation, stochastic changes of the system state occur
only at a set of increasing time points. Simulation is a tool which can
be used to study complex stochastic systems when analytic and/or numerical
techniques do not suffice; in connection with the study of complex networks

of queues encountered in applications, this is often the case.

When simulating, we experiment with a stochas;ic system and observe
its behavior. During the simulation we measure certain quantities in the
system and, using statistical techniques, draw inferences about
characteristics of well defined random variables. The most obvious
methodological advantage of simulation is that in principle it is

applicable to stochastic systems of arbitrary complexity. In practice,
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however, it is often a decidedly nontrivial matter to obtain from a

simulation information which is both useful and accurate, and to obtain
it in an efficient manner., These difficulties arise primarily from the
inherent variability in a stochastic system, and it is necessary to seek
theoretically sound and computationally efficient methods for carrying
out the simulation. Apart from implementation considerations, important
concerns for simulation relate to efficient methods for generation of
realizations (sample paths) of the stochastic system under study, the
design of simulation experiments, and the analysis of simulation output.
It is fundamental for simulation, since results are based on observation

of a stochastic system, that some assessment of the precision of results

be provided,

Assessing the statistical precision of a point estimate requires
careful design of the simulation experiments and analysis of the simulation
output. In general, the desired statistical precision takes the form of
a confidence interval for the quantity of interest. Among the issues the
simulator must face are the initial conditions for the system being
simulated, the length of the simulation run, the number of replications
of the experiments, and the length of the confidence interval. Over the
last five years, there has been increased attention paid to these issues,
and a theory of simulation analysis (the regenerative method) has been
developed which, when applicable, provides some measure of statistical
precision. The regenerative method, which is based on limit theorems
developed for regenerative stochastic processes, plays a key role in our

discussion of simulation methods for passage times in networks of queues.

T




Under the usual queueing-theoretic (independent and identically
distributed service and interarrival time) assumptions, analyses based on
a "numbers-in-queue" and "stages-of-service' state vector can be carried
out. Typically it is necessary to assume that all service and interarrival
time distributions are exponential or have a Cox-phase (exponential stage)
repregsentation., Under these assumptions, expressions suitable for
numerical evaluation are cbtainable for queue length distributions. Other
measures of system performance (calculated as random sums of queueing
times) involve the times, here called passage times, for a job to traverse
a portion of the network. Often when such quantities arise in computer
and communication system models, they represent job response times. In
this context, characteristics of passage times other than expected values
(e.g., percentiles) are of interest. The analyses based on the
numbers-in-queue, stages-of-gervice state vector yield expected values
for passage times, but do not yield other passage time characteristics of
interest. Moreover, aiternative analyses to provide these measures of
the variability of system response are in general not available, and it
is necessary to resort to simulation. Although the usual process of
numbers-in-queue and stages-of-service is a regenerative process (in fact
a Markov chain) under the probabilistic assumptions that we make here,
the regenerative method cannot be applied directly to this process to
estimate general passage time characteristics. This is essentially because
passage times are not totally contained within cycles of the

numbers-in-queue, stages-of-service process.
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The orgenization of the presentation is as follows. This initial
section provides some motivation for study of simulation methods for
passage times in networks of queues, a brief overview of some of the
methodological considerations for simulation, and a summary of the

discussion which appears in subsequent sectiomns.

The estimation methods developed here for passage times in networks
of queues use the regenerative method for analysis of simulation ocutput.
Based on a single simulation run, these methods provide (strongly
consistent) point estimates and (asymptotically) valid confidence intervals
for general characteristics of limiting passage times. Section 2 provides
a review of the regenerative method. The section contains a brief
discussion of the underlying theory of regenerative stochastic processes

along with some examples of regenerative processes in networks of queues.

Section 3 provides a specification of the basic class of closed
networks of queues with which we deal, and the probabilistic assumptions
therein. Initially, we restrict attention to networks with stochastically
identical jobs and give a state vector definition based on a linear job
stack. The section also contains the formal definition of passage time

in a network of queues.

The notion of a distinguished "marked" job is fundamental to the method
for estimation of passage time characteristics described and developed in
Section 4. The approach is to consider a Markov renewal process arising

from a continuous time Markov chain defined by the usual numbers-in-queue,

kit
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stages-of-service state vector augmented by information sufficient to
track the marked job. We arbitrarily select a job to serve as the marked
job and measure its passage times during the simulation. They key steps

in the derivation of this marked job method are identification of an

appropriate regenerative process in discrete time and development of a
ratio formula from which point estimates and confidence intervals can be

obtained for quantities associated with the limiting passage time.

In Section 5 we consider application of the marked job method to two
particular closed networks of queues, and display some numerical results.
The first example is a relatively simple network. Despite the apparent
structural simplicity of this network, it exhibits the essence of the
passage time simulation problem. The second and more complex network
arises as a model for a computer data base management system. This model
illustrates the representation of complex congestion phenomena in the

framework of Section 3.

The extension of the marked job method to certain finite capacity open
networks of queues is the subject of Section 6. Particular stochastic
point processes associated with a Markov renewal process generate arrivals
to the networks, and there are two formulations of the finite capacity
constraint. The network structure we permit is essentially the same as
that described in Section 3 except that here the networks are cpen. To
estimate passage times in these networks, we track an appropriate sequence
of typical jobs, based on the idea of a marked job. These are to be i

typical jobs in the sense that the sequence of passage times for the marked

T e I Y S,
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jobs should converge in distribution to the same random variable as do
the passage times for all the jobs. It is necessary to take some care to

ensure that this is the case.

Slightly restricting the definition of passage time given in Section 3,
we develop in the next section a new and somewhat simpler stochastic
setting than that of Section 4 for the marked job method. Here the starts
of passage times for the marked job are the successive entrances of a

particular continuous time Markov chain to a fixed set of states, and the

terminations of such passage times are the successive entrances to another
fixed set of states. This fomulation, in terms of hitting times to fixed
sets of states, is the basis for the passage time simulation method

developed in the next section.

The marked job method of Section 5 is applicable to passage times in
the general sense, i.e., whether or not the passage time is a complete
circuit. For those passage times (termed ''response times'") which are
complete circuits in a closed network, simulation using a marked job
appears to be the only method available for obtaining confidence intervals
from a single simulation run. It is inherent in the marked job method
that only the passage times observed for the marked job enter into the
construction of point and interval estimates, and we would expect some
loss of efficiency as the price for obtaining confidence intervals. In
Section 8, we concentrate on passage times through a subnetwork of a given

network of queues, and develop the decomposition method. With this

estimation method, passage times observed for all the jobs during a single
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simulation run enter into the construction of point and interval estimates.
The bagis for this method is the observation that the successive entrances
to a fixed set of states of an appropriate continuous time stochastic
process serve to decompose the sequence of passage times for all the jobs

into independent and identically distributed blocks.

Section 9 deals with the statistical efficiency of the marked job and
decomposition methods. We consider the calculation of theoretical values
for variance constants entering into central limit theorems used to obtain
confidence intervals for mean passage times. The results of this section
provide a firm basis for comparing the efficiency of the two methods where
both apply. They can also be used to give some idea of the efficiency of
the marked job method in the case of response times, where it is our only

means of obtaining confidence intervals from a single simulation run.

The estimation of passage times in closed networks of queues with
multiple job types is the subject of Section 10. Here the type of a job
may influence its routing through the network as well as its service
requirements at each center. Using the stochastic setting of Section 7
for the marked job method, we mark one job of each type. By tracking
these marked jobs through the network, we are able to obtain point and

interval estimates for a variety of measures of the variability of system

response over the several job types.
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The final section considers some aspects of uniform and nonuniform

random number generation pertinent to implementation of a passage time

K simulation. We also discuss the use of random number streams and the
, generation of state vector processes.
.,
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2.0, SIMULATION OF REGENERATIVE PROCESSES

When the output of a discrete event digital simulation is a stochastic
process X={X(t):t20} that approaches a "steady state" which is of interest,
it may be possible to characterize the stochastic structure of the process
and to use this structure in carrying out the simulation. In such cases,
mathematical results on the stochastic structure of the process X form
the basis for both the design of simulation experiments and the analysis
of simulation output. For particular stochastic processes known as
regenerative processes, Fishman (1973) and Crane and Iglehart (1975a) have
provided a theory of simulation analysis called the regenerative method.
This theory has been developed in subsequent papers including Crane and
Iglehart (1975b), Iglehart (1975), (1976), Hordijk, Iglehart and
Schassberger (1976), and Lavenberg and Sauer (1977); see Crane and Lemoine
(1977) an Iglehart (1978) for an introduction to and a detailed review
of the regenerative method. Regenerative simulation underlies the
estimation methods described in subsequent sections for passage times in
networks of queues. In this section we discuss regenerative processes

and review the regenerative method.

Heuristically, a regenerative stochastic process is a process having
the property that there exist random time points at which the process
probabilistically restarts. Typicaliy. these time points at which the
process probabilistically starts afresh, referred to as regeneration points
or regeneration times, are returns to a fixed state of the process. The

essential idea of a regenerative process is that between any two successive

regeneration points, the evolution of the process is a probabilistic
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replica of the process between any other such pair of regeneration points.
For many stochastic models in which it is possible to identify a sequence
of regeneration points, this discovery is a key to an analytic/numerical
solution which yields expressions for quantities of interest. It is often
the case, however, that even though a sequence of regeneration points
exists, it is nevertheless not possible to obtain an analytic/numerical
solution because of severe computationsl difficulties; we would then

consider simulation, and it is this situation with which we deal here.

The regenerative process structure, in the presence of certain
regularity conditions, guarantees the existence of a 'steady state" for
the process, i.e., that these exists a random variable X such that

1im P{X(t)sx} = P{Xsx} ,

o
for all x at which the right hand side of this equation is continuous.
This type of convergence (in distribution) 1s known as weak convergence
and we denote it by "X(t)=>X as t+»." Furthermore, the regenerative
structure ensures that the ''steady state' X of the process is determined
(as a ratio of expected values) by the behavior of the process between
two successive regeneration points. There is an important implication of
these mathematical results for the simulation of regeneration processes.
A strongly consistent point estimate and asymptotically valid confidence
interval for the expected value of a general (measurable) function of the
steady state X can be obtained by observation (in cycles of random length

defined by the regeneration points) of a finite portion of a single

N e~ o
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realization of the process X. When simulating (say, for a fixed number
of cycles), we measure appropriate quantities defined totally within the

individual cycles and compute sample means over the cycles.

Where applicable, the regenerative method has great appeal because it
provides both point and interval estimates having desirable properties.
There are, however, other considerations. The classical alternative for
estimation of "steady state" quantities would entail selecting an initial
state for the process, running the simulation for an initial period of
time (and discarding this "initial transient"), and then observing the
process ("in steady state") for an additional period of time from which
point estimates are obtained. In general, no confidence interval is
available, nor is there any guidance on the selection of the initial state.
Moreover, the determination of appropriate initial and additional periods
of time is often nontrivial and likely to require sophisticated statistical
techniques. There are similar problems with simulation methods based on
multiple replications. With the regenerative method, these difficulties

to a large extent are avoidable.

2.1, Definition of Regenerative Process

A regenerative process in continuous time can be defined in terms of
the pasting together of so-called "tours"; see Smith (1958) and Miller
(1972). The formal definition of a regenerative process that we give is
equivalent to these and also to the definition of Cinlar (1975a), p. 298.
We require the notion of a renewal process and that of a stopping time

for a stochastic process.
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A sequence of random variables I-{Tn:nZO} is a renewal process provided
fi that TO-O and Tn-Tn_l (n21) are independent, identically distributed
|

(i.1.d.) positive random variables. We always assume that T is persistent,

i.e., that P{Tn-Tn_l<¢}-l. A random variable T taking values in [0,+®)
;‘ is a stopping time for a stochastic process X provided that for every
finite t20, the occurrence or nonoccurrence of the event {T<t} can be
determined from the history {X(u):ust} of the process up to time t; see

ginlar (1975a), p. 239 for a discussion of stopping times.

(2.1.1) DEFINITION. The real (possibly vector-valued) stochastic process
5-{X(t):t20} is a regenerative process if

(1) there exists a sequence of stopping times g-{sn:nzo} such that

g is a renewal process; and

i

(11) for every sequence of times 0<tl<t2<...<tm (m21) and n20, the
random vectors {X(tl),...,x(tn)} and {X(Bn+t1)"“’x(8ﬁ+tm)} have
the same distribution, and the processes {X(t):t<8n} and

{x(8n+t):t20} are independent.

The points of § are the regeneration points for the process X and we refer

i to the interval [Bn_l,ﬁn) as the nth cycle of the regenerative process.
¥

1 The definition of a discrete time regenerative process is similar; see

¥

§ the discussion of recurrent events in Feller (1968), Ch. XIII.

;

§ It is straightforward to check that irreducible and positive recurrent
§

z (continuous or discrete time) Markov chains and semi-Markov processes

]

i having finite (or countable) state space are regenerative processes. It
? can algo be shown that in a single server queueing system in which the

i )
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sequence of successive interarrival and service times are positive, 1.1.d.
random vectors (having finite means), the processes of the number of jobs
Q(t) in the system at time t, the waiting time Wn of the nth job, and the
virtual waiting time V(t) at time t are all regenerative processes,
provided that the traffic intensity is less than 1. For the process
{thnZO}, the regeneration points are the indices of jobs having zero
waiting time. For the process {Q(t):t20} as well as the process
{v(t):t20}, the regeneration points are the start of a period during which

the server is busy.

In developing the regenerative method, it 1s necessary to distinguish
two cases. For the renewal process ﬁ-{Bn:nZO} in the definition of the
regenerative process X, we let an-Bn-Bn_l (n2l) and denote by F the distribution
function of Q. The random variable oy (or distribution function F) is
said to be periodic with period A>0 if, with probability ome, 0, assumes
values in the set {0,),2\,...,} and A is the largest such number. If

there is no such A, then oy (or F) is said to be aperiodic.

In the aperiodic case, in order for a regenerative process to have a

limiting distribution, it is necessary either to impose regularity

3 TR N

conditions on the sample paths of the process, or to place restrictions

SANROY ot

on the distribution function of the time between regeneration points. To

be more specific, we first define an appropriate class of distribution

functions. Let Fn be the n-fold convolution of the distribution functiom F,

and define d to be the set of all distribution functions F such that for

some nz2l, Fn has an absolutely continuous component (i.e., has a density
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function on some interval). It is convenient to write ach when the
distribution function F of oy is an elemant of.el. We would expect the

aperiodic distributions F arising in applications to be elements of the

e R R B T

;; set ‘J With respect to appropriate regularity conditions on the sample
paths of the process, we restrict attention to processes X={X(t):t20} ;
'f having right continuous sample paths and limits from the left, i.e., for
t20,
X(t) = 1im X(u)
uvt

and for all t>0,

X(t=) = 1im X(u) exists , J
utt

with probability one. For such a k~dimensional stochastic process we

write XeD, {0,%). With these definirions, we can state the basic limit
k

theorem for regenerative processes.

(2.1.2) THEOREM. Assume that @, is aperiodic with E{a1}<°°. 1f either

geDk[O,w) or aled, then X(t)=>X as t+o,

ik .

There is a corresponding result for the periodic case. The proof of this

s DAY Z K

theorem (Miller (1972)) involves an application of the key renewal theorem

and is somewhat involved technically.

< i ats R

Now suppose that ay is aperiodic and that for a real-valued
(measurable) function f having domain E, the state space of the process

X, the quantity of interest is

ik g AT ey L
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r(f) = E{f(x)} .

When the state space E is not discrete, we must also asgume that the set
D(f) of discontinuities of £ 1is such that P{XeD(f)}=0; if E is discrete, we
can choose f arbitrarily. We always assume that with probability one the

process £(X) is integrable over a finite interval, and for n2l define

Bn
Y (f) = f £(X(u))du .
n B

n-1

In the case of a discrete time regenerative process, for n2l we define

Bt

Y () = E £(x) .

k=8 _,

Theorems (2.1.3) and (2.1.4) deal with the structure of regenerative

processes. These results form the basis for the regenerative method.

(2.1.3) THEOREM. The sequence {(Yh(f),an):n21} consists of independently

and identically distributed random vectors.

This follows directly from the definition of a regenerative process. The next
result (cf. Crane and Iglehart (1975a), Appendix) provides a ratio formula
for the quantity r(f).

(2.1.,4) THEOREM. Assume that a, is aperiodic with z{al}«». and that

1
E{[£(X)[}<=. If either £(¥)eD,(0,=) or °‘1‘4{' then

E{f(X)} = E{Yl(f)}/E{al} .

e wv‘?‘z»;!_‘ o 4 gt.ﬁffwg‘ one
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There is an analogous ratio formula when @y is periodic. Note that if

the state space E is discrete, the condition f(z)enllo,w) always holds.

We now indicate how to obtain a point estimate and confidence interval
for the quantity r(f)=E{f(X)} from a sample path of the process X. In
this discussion, we assume that the regenerative process X and the function

f are such that the ratio formula for r(f) holds. For k21, let
Zk(f) = Yk(f) - r(f)ak (2.1.5)

and denote the variance of Z,(f) by Gz-var{zl(f)}. Note that {Zk(f):kZl}
consists of i.i.d. random variables, that Zk(f) is completely determined

by the kth cycle of the regenerative process X, and that E{Z (f)}=0.

Writing

B{(z, (£)2} = B([(¥, (O)-E{¥, (OD)-r(E) (@ -Ela, DI?} ,

it follows that

o = var{Y,(£)} - 2r(£) covl¥,(£),a,} + (e(£))2 var{a,} . (2.1.6)

We require the further assumption that 0<02<~. The case 02-0 is

degenerate, and 02<~ for most finite state processes. (In some queueing
systems, however, additional finite higher moment conditions on service
and interarrival times are needed to ensure ozow.) For fixed n, we use

= - 2
the quantities Yn(f), a» 837 8y) and s,, to estimate ¢°; obtained from

(Yl(f)'“1)'°"’(Yn(f)’°n)o these are the usual unbiased estimators of

E{Yl(f)}. E{al}. var{Yl(f)}. var{al} and cov{Yl(f).al}, respectively. As

. TR S 0 BT
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a consequence of the strong law of large numbers for 1.i.d. sequences of

random variables, as n*® the point estimates

Qn(f) = T;(f)/E;
and

s, = (s),-2 (£)s),+(2_(£) 78,2

converge with probability one to r(f) and o, respectively; thus, by

definition fn(f) and s, are strongly consistent estimates.

—
The basis for the construction of an asymptotically (m*») valid
confidence interval for r(f) is a particular central limit theorem
(c.l.t.): 1if 0<g<w, then as ™=,
1/2
o™ e (£)-r()}/[0/E{a; }] => N(O,1) , (2.1.7)

where N(0,1) is the standardized (mean 0, variance 1) normal random

variable.

To derive this result and similar c.l.t.'s later, we need two lemmas
on weak convergence. Let {xn:nzl} and {Yn:nzl} be two sequences of random
vectors such that Xn and Yn are defined on a common probability space for
all n and have ranges Rk and Rz, where Rk [respectively Rz] is
k-dimensional [reapectively 2~dimensional] Euclidean space. Let c denote
a constant-valued random vector. Aiso. let h map Rk into Rz and denote

by D(h) the set of discontinuity points of h.

P ——




1f xd-ox and Yd-bc. then

(xn’Yn) -> (X,e) .

(2.1.9) LEMMA, 1f X =X and either h is continuous or P{XeD(h)}=0, then
h(xn) => h(X) .

Lemma (2.1.8) [respectively Lemma (2.1.9)] 1s a special case of Theorem 4.4

(respectively Theorem 5.1] of Billingsley (1968).

For the proof of Equation (2.1.7), we first note that the standard

c.l.t. for 1,1.d., mean 0, finite variance random variables implies that

n
—%n- kz:l z, (£) = N(0,1) . (2.1.10)
on -

This can be rewritten as

nllz{?n(f)-r(f)}/[(O/E{ul})(E{al}/&'n)] => N(0,1) . (2.1.11)

The strong law of large numbers (or even the weak law for that matter)

guarantees that

WY.L il

(E{al}/En) -1, (2.1.12)

Lemma (2.1.8) applies to this situation, and hence if we let Xn denote

EUECE A v Wl

the left-hand side of Equation (2.1.11),
(X, (Ela; }/a ) = (N(0,1),1) .

Now apply Lemma (2.1.9) using the continuous mapping h(x,y)=x+y to conclude

that

s ST ¢ (- 2 904! P
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xn-(E{al}/E;) -> N(0,1)°1 . (2.1.13)

Since N(0,1)°1 has the same distribution as N(0,1), Equation (2.1.13) is

the same as Equation (2.1.7).

Equation (2.1.7) provides a confidence interval for r(f) but in
general, of course, the "standard deviation constant" U/E{al} is not
available and must be estimated. The most straightforward estimate for

O/E{al} is sn/a;, and the strong law of large numbers ensures that
(c/sn) -1,

Then, by the same argument which leads to Equation (2.1.7), we obtain from

Equation (2,1,10) the c.l.t.

a/2(2_(H)-r(H)}/(s_fa) = N(O,1) .

It follows that for 0<y<1l/2 the interval

2 (6) - [9n<f)-zl_st/(E;n1’2), fn(f)+zl_ysn/<a;nl/2)1 :

where zl_Y-Q-l(l-Y) and () is the distribution function of the
standardized normal random variable, provides an asymptotically valid
100(1-2Y)% confidence interval for r(f). This means that

lim P{r(f)el ()} = 1-2v ,

ne
and thus when simulating, for large n the interval in(f) (having random

end points) surrounds the unknown constant r(f) approximately 100(1-2y)Z

of the time., Other point and interval estimates which reduce the bias of

© sitans
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9n(f) are available; see Iglehart (1975). Note that the interval in(f) :
is symmetric about the point estimate fn(f). and that the half length of

the interval 1is n-]'/2

times a multiple (zl_Y) of the estimate of the
constant G/E{al}. Thus as n increases, the length of the interval converges

to 0 and the midpoint converges to the true value.

The procedure just described for obtaining confidence intervals when
simulating a regenerative process is for a fixed number of cycles. For a
simulation of fixed run length t, the procedure (Crane and Iglehart
(1975a), p. 39) is the same except that statistics are computed only for
the (random number of) cycles completed by time t. Confidence intervals

are based on the c.l.t., analogous to Eq. (2.1.7), that as t+®,

1/2

e (O} 10/ Elo D] = 50,1

where n(t) is the number of cycles completed in (0,t].

Crane and Iglehart (1975a) have also shown that for regenerative
processes possessing more than one sequence of regemeration points, with
high probability the resulting confidence intervals are of the same length,
provided that the length of the simulation run is large. More precisely,
for fixed run length t, if I(t) and I*(:) are the lengths of confidence
intervals obtained from two sequences of regeneration points, then

lim I(¢)/T"(c) = 1
]

with probability one.

. r—— -
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Finally, suppose that we are interested in estimating r(f) with a
100(1-2y)% confidence interval whose half length 1s 1008Z of r(£). Then

the number of cycles required is (approximately)

a = (2, /6) 0/ (x(®)Ea, D1% .

The first factor (zl_Y/G)2 is independent of the system being simulated.
From the second factor [c/(r(f)E{al})l2 it is apparent that some systems

are inherently more difficult to simulate than others. This quantity

provides a good measura of the length of simulation required for a fixed
level of precision. An estimate for this quantity obtained from a pilot

run can be used to determine the length of the final simulation run.

2.2. Regenerative Processes in Networks of Queues

To illustrate the ideas of Section 2.1, consider the simple closed
network of queues of Figure 2.1, A fixed number of jobs, N, circulate in
the network from time t=0. Upon completion of & service at center 1, a
job joins the tail of the queue in center 2 for B service. After completion
of service at center 2, the job joins the tail of the queue in center 1.
Neither center 1 nor center 2 service is subject to interruption, and we
assume that both queues are served according to a first-come, first-served
(FCFS) discipline. We complete the specification of this network of queues
by making the following probabilistic assumptions:

(1) successive o service times form a sequence of i.i1.d. random

variables exponentially distributed (as §;) and having rate

parameter Al, i.e., for t20,

P{slsc} = 1 - exp(-A;t) ;
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Figure 2.1. Cyclic queues
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successive B service times form a sequence of i.i.d. random
variables exponentially distributed (as Sz) and having rate
parameter Xz;

(1i1) the sequences in (i) and (ii) are mutually independent.

To study quantities associated with the lengths of the queues in
centers 1 and 2, for t20 let X(t) be the number of jobs waiting or in
service at center 1 at time t. The stochastic process X={X(t):t20} has
finite state space E={0,1,...,N}, and under assumptions (i), (ii), and
(111) 1is in fact a continuous time Markov chain. It is easy to check that
the Markov chain X is irreducible and positive recurrent. Thus, this
"state vector process" X for the network of queues is a regenerative
process; successive returns to any fixed state i¢E are regenmeration points
for the process. The regenerative process X has a ''steady state" X, and
we can apply the regenerative method to obtain from a single replication
point estimates and confidence intervals for quantities of the form
r(£)=E{£(X)} for some function f having domain E. Suppose for example,

that £ is the indicator functiom, 1, , of the set {1,2,...,N}.
]

’ooc’N}’

(The indicator function 1.2 N}(x) equals 1 if xe{1,2,...,N} and
sbgseey

equals 0 if x¢{1,2,...,N}.) Then r(f)=E{£(X)} is the steady state

utilization of service center 1, i.e., the (limiting) probability that

center 1 is busy. If f(x)=x, then r(f) is the steady state mean number

of jobs waiting or in service at center 1,

Note that 1f we assume that one of the service time random variables

has an exponential distribution, but that the other (say Sz) has a finite
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mean but otherwise arbitrary distribution, the stochastic process X is no
longer a continuous time Markov chain. The process, however, is still
regenerative; the successive entrances of the process X to a fixed state
1¢{1,2,...,N} from state i-1 are regeneration points. These time points
correspond to completions of service at center 2 after which there are % 1

jobs at center 1.

Now consider the network of queues in Figure 2.2, formulated (Lewis
and Shedler (1971)) as a model of system overhead in multiprogrammed
computer systems operating under demand paging. The interpretation of
this figure differs from that of a conventional diagram for a network of
queues in that services are distinguished from the servers which perform
them. In Figure 2.2, the circles represent services rather than servers.
The model consists of two sequential stages, the « stage and the B stage,
in a loop. Two servers, interpreted as a processor and a data transfer
unit (IO unit), provide service to a constant number, N, of jobs
(programs); each of the jobs goes through both stages in sequence and then
returns to the first stage, this process being repeated continuously.
Within the a stage, a job receives each of three services Qs Oy and Qg
in that order and similarly, within the 8 stage, a job receives each of
three services Bl, 82, and 83, in that order. A Bz service can be provided
only by the IO unit, and each of the other services can be provided only
by the processor. We assume that the two servers can provide service
concurrently, subject to the restriction that the processor cannot provide
a Bl or a 83 service while the IO unit is providing a 82 service. 1In

addition, we assume that after having received an ay service, a job moves

P - - -




(i) Processor pravides a,, @, a3, 8, and g services

{ii) 1/0 unit provides 8, service

{iii} No f,, S service by processor during 8, service by 1/0 unit
liv) @, a4, 8y, 8. B Services not interruptable

(v} a, service has pre-emptive resume type interruption at completion of 8, service

.

Figure 2.2. System overhead model
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instantaneously from the a stage to the tail of the queue in the B stage,
and after having received a 83 service, moves instantaneously from the B8

stage to the tail of the queue in the a stage.

The single processor provides Qys Gg» Qg Bl, and 83 service to the
several jobs in the network. Having begun an Q15 Ggs Bl’ or 83 service,
the processor completes the service without interruption. In the case of
the ay service, however, interruption is possible. Interruption of an uz
service occurs at the completion of a concurrent 82 service. After some

time, the o, service continues from the point in the service at which

2
interruption occurred. Thus, the "Bz-comple:e" interruption of an a,

service is of the preemptive-resume type.

At the completion of an Ogs Ogs Qgy Bl. or 83 gervice and at an
interruption of an a, gservice (i.e., at completion of 82 service), the
processor chooses the next service to be provided according to a rule of
priority as follows (see Figure 2.3):

(1) if there is a job waiting for 83 gervice, begin this service;

(11) otherwise, if there is a job waiting for 81 service, begin this

service provided that 82 service is not in progress;
(111) 1f the last a service provided was a completed a, service, begin
an a3 service;

(iv) 41f the last o service provided was an interrupted a, service,

resume the “2 service;

(v) 1f the laut a service provided was an a service, begin an a,

service;

inbiii
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(vi) 1f the last a service provided was an a, service and if the queue
in the o stage is not empty, begin an “1 service.

If no claim is made on the processor according to the rule of priority,
it remains idle until the completion of the next 82 service, at which time
the rule of priority is invoked again. We assume that the queue in
the a stage and the queue in the B stage are both served according to a

FCFS discipline.

To complete the specification of the model, we make the following

probabilistic assumptions:

(i) the successive ay [respectively 33] service times form a sequence
of 1.1.d. random variables; the random variable ay [respectively
a3] has a finite mean, but otherwise arbitrary distribution;

(11) the successive Bl (respectively 82. 33] service times form a
sequence of i.i.d. random variables; the random variable Bl
[respectively Bz. 83] has a finite mean, but otherwise arbitrary
distribution;

(111) the successive a, service times form a sequence of 1.i.d.
exponentially distributed random variables;

(iv) the sequences in (1), (i1) and (iii) are mutually independent.

Quantities of interest in this model include the limiting utilization
of the I0 unit (i.e., the long-run expected fraction of time that it is
busy as opposed to being idle), and the long-run expected fractions of

time that the processor provides each of the services al. “2' a3, 81. and

e Y T T

e
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B3a Formally, denote the total amount of ay {respectively Qgy Ggy 81.
Bz. 83] service that has occurred in the system during the time interval
(0,t] by Al(t) [respectively Az(t). A3(t), Bl(t). Bz(t). 83(t)]. Then,
in terms of these processes of cumulated service times, for i=l, 2, and
3, wve wish to estimate

E{a ()}

lim
to

E{Bi(t)}

t , 2.2.1)

lim

g

provided that the limits exist.

The definition cf an appropriate system state for a simulation of this
model is perhaps somevhat less apparent than in the previous example. It
is clear, however, that it is necessary toc take into account more than
just the number of jobs waiting or in service at one of the stages. The
additional informstion that we use is the kind of service which is being
provided by the processor or (according to the rule of priority) is to be
provided next. If at time t the processor is providing ay service (151<3)
and there are n jobs (0sn<N) waiting or in service in the B stage, we
define the system state X(t) to be (n,i). Otherwise, at time t the
processor is idle or is providing Bl or 83 service; in this case we define
X(t) to be

(1) (n,0) if there are n jobs (0sn<N) waiting or in service in the

B stage and the next o service to be provided is the resumption

of an az service;

Sy AL A
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(11) (n,l) 1if the next a service is an ay gservice; and

(i11) (n,2) if the next o service is the start of an a, service.

The force of this state definition is that the stochastic process
3—{x(:)::zo} is a regenerative process in continuous time. To see this,
consider the increasing sequence of time points {tk:RZO} at which either:

(1) a 83 service has just been completed and the served job has moved

to the ¢ stage queue, or

(1i) after a time point described in (i) at which the B stage queue is

empty, the next job appears at the B stage for service.
Now consider the subsequence {ti} of the {tk} at which the system enters
state (1,1). At such a time point, there is one job in the B stage and
the next a service to be provided is an oy service. These ti are
regeneration points for the process X. Note that the process {X(tk):kzo},
i.e., the process X observed at the epochs {tk}, is an irreducible,
aperiodic finite state discrete time Markov chain. In addition, it is
sasy to check from the basic assumptions of the model that, given the
state of the system at time points t, and t, ., the time interval t, -t
is a random variable whose distribution does not depend on the times
between previous time points ty (2sk) or the state of the system at the

time points t (2<k)).

The regenerative structure of the process X provides a basis for
estimation of the quantities defined in Equation (2.2.1) even though they
cannot be expressed in the form E{£(X)}. The first observation is that

the secuences




' {(Ai(‘l'wl)'Ai(‘l':) » Cre1ti) tk21}

' - v S A Y
{(Bi(tk-l-l) By(ty)s tryy ck).kzl} (2.2.2)
consist of 1.1.d. random vectors. In addition, the ratio formulas

E{Ai(t)} i E{Ai(‘fa-l)"‘i(ti)}

1lim T
- t E(tk+1 tk}

Len E{Bi(t)} ) E{Bi(fl'&l):Bi(t{:)}
tro & Elty1-t)

hold, provided that all relevant expectations are finite. The ratio
formulas can be established, for example, by direct application of a basic
limit theorem for cumulative processes (Smith (1958), p. 263); the processes
{Ai(t):tZO} and {Bi(t):tzO} are cumulative processes with respect to the
regenerative process X. Given Equations (2.2.2) and (2.2.3), the arguments
for the standard regenerative method apply and yield point estimates and

confidence intervals for the quantities of interest.

This somewhat complex model illustrates the following remark about
network of queues used as models for computer and communication systems.
For quantities ass;ciated with queue lengths, it is often possible to
define an appropriate state vector and in a fairly straightforward manner,
to establish the existence of regeneration points and the applicability
of the regenerative method. Frequently this is possible under fairly

general distributional assumptions. The key to showing the applicability
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of the regenerative method, as in the example above, is often the discovery
of a familiar stochastic process (e.g., discrete time Markov chain)

embedded in the state vector process.

There are, however, examples of networks of queues for which, even
under the convenient assumptions of distributions with a Cox-phase
(exponential stage) representation for service and interarrival times, it
is technically quite difficult to establish the applicability of the
regenerative method; this is so even though we would expect the required
conditions to be satisfied. The model of an automated tape library

proposed by Lavenberg and Slutz (1975) provides one such example.

it
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3.0. CLOSED NETWORKS OF QUEUES

We deal with closed networks of queuves having a finite number of jobs
(customers), N, a finite number of service centers, s, and a finite number
of (mutually exclusive) job classes, c¢. At every epoch of (continuous)
time each job is in exactly ome job class, but jobs may change class as
they traverse the network. Upon completion of service at center i a job
of class j goes to center k and changes to class 2 with probability pij,kl’
where gf{pij’k1:151,k53. 1<j,23c} is a given irreducible Markov matrix.
At each service center jobs queue and receive service according to a fixed
priority scheme among classes; the priority scheme may differ from center
to center. Within a class at a center, jobs receive service according to
a fixed queue service discipline, e.g., first-come, first-served (FCFS).
Note that in accordance with the matrix P, some centers may never see jobs
of certain classes. Only one job can receive service at a center at a
time; {i.e., the centers are single servers. According to a fixed procedure
for each center, a job in service may or may not be preempted if another

job of higher priority joins the queue at the center.

3.1. Probabilistic Assumptions

The marked job method discussed in Section 4 for passage time
simulation applies to networks of this kind in which all service times in
the network are mutually independent, and at a center have a distribution
with a Cox-phase representation (Cox (1955)), {i.e., consisting of a
gsequence of exponential stages; see Figure 3.1. We permit parameters of

the service time distribution to depend on the service center, the class

of job being served, and the "state" of the entire network as defined below.

T e TR TR
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Figure 3.1. Cox-phase representation
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Each service time distribution has its own finite nuimber of stages,
say n. Realization of a service time is as a sum of a random number (21)
of exponentially distributed times. Within the jth stage (1<jsa-1l), an
amount of service exponentially distributed with rate parameter Aj accrues;

with probability 1-b, service is complete, and with probebility bJ

b
additional service exponentially distributed with rate parameter Aj+l
accrues. The density function of the resulting service time has rational
Laplace transform

* n B A

£ (s) = 321 (-bpay IT (;;“rk)
where al-l and for 1<j<n, aj-bl...bj_l. The class of density functions
having Laplace transform of this form includes hyperexponential and
mixtures of Erlang densities; see the Appendix of Gelenbe and Muatz (1976)

for a discussion. Note that we exclude the case of zero service times

occurring with positive probability.

In connection with this class of service time distributioms, it is

clear that if bl'bz-"°-bn-l

service time has an Erlang-n distribution, i.e., a gamma distribution with

=] and 1if Al-kz-...-xn, then the resulting

integral shape parameter. It is less obvious but can be shown (by
considering Laplace transforms of the density functions) that if kl>k2

and
bl =] - P, - pzkz/kl .

then the Cox-phase form is a representation for the hyperexponential

density
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-Alc -xzc
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concentrated on t20, where 12 and p, are nonnegative and pl+pz-1. The

corresponding result for three stages is that if A1>A2>A3,

and

E ! then the Cox-phase form is a representation for the hyperexponential

density

1 3
pllle + pzkze + p3X30 .

where Pys Pps and p, are nonnegative and Pl+Pz+P3'1-

3.2, State Vector Definition i
In order to characterize the state of the network at time t, we let
Si(t) denote the class of the job receiving service at center i at time
. t, where i=1,2,...,8; by convention Si(t)-O if at time t there are no jobs
at center 1. The classes of jobs serviced at center i ordered by
. decreasing priority are jl(i),jz(i),...,jk(i)(i), elements of the set
1 {1,2,...,e}. Let c§i)(t)’.‘.'0§:ii)(t) denote the number of jobs in queue

at time t of the various classes of jobs serviced at center i, i=1,2,...,s.

For queue lengths of jobs of various classes at the several centers, these
1 state variables (together with the stages-of-service) would suffice. To

deal with general characteristics of passage times, however, these state

variables are inadequate. An apparently minimal state vector augmentation

Do g e Y
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is based on the concept of a marked job. The idea is to keep track of
the position of an arbitrarily chosen marked job in the network and to
measure its passage times during the simulation. It is convenient to
think of the N jobs as being completely ordered in a linear stack according

to the following scheme. For t20, we define the vector Z(t) by

2) = ©P @,cP @, s @i

k@) Ik@)-1 3
¢® (@,  w,....c®w,s @) . (3.2.1)
jk(s) jk(s)-l j1 8

The linear job stack then corresponds to the order of components in the
vector Z(t) after ignoring any zero components. Within a class at a
particular service center, jobs waiting appear inm the job stack in FCFS
order, i.e., in order of their arrival at the center, the latest to arrive
being closest to the top of the stack. We denote by N(t) the position

(from the top) of the marked job in this job stack at time t.

We associate a stage of service with each job in the network as
follows. A job in service is in a particular stage of its service time
distribution at that center; for such a job, this is the associated stage.
For a job in queue, the associated stage is the stage of its service time
distribution that is to be provided when the job next receives service;
typically this is the first stage of service, but may be a subsequent
stage if the job has been preempted. For t20, we define the vector U(t)

by

U(t) = (Ul(t).....UN(:)) . (3.2.2)




vhere Uj(t) is the stage of service associated with the jth job in the

linear stack of jobs, and for t20 take as the state vector of the network

adidon . 4 A .y
[P SR NP Oy i 27

of queues the vector

7‘ X(£) = (Z(£),N(E),U(L)) . (3.2.3)

For any service center i that sees only one class of job, i.e., such that

1 k(1)=1, it is possible to simplify the state vector by replacing
! c)
‘ Iy
the state vector definition does not explicitly take into account that

(t).si(t) by Qi(t), the total number of jobs at center i. Note that ;

the total number of jobs in the network is fixed. In the case of complex
networks, the use of this resulting somewhat larger state space facilitates

generation of the state vector process; for relatively simple networks,

& it may be desirable to remove the redundancy.

3.3. Definition of Pagssage Times

Given a particular closed network of queues, we must specify the
passage time of interest. This can be done in terms of the arbitrarily
chosen marked job of Section 3.2, by means of four subsets (Al, A,, 81, 32)

of the state space, E, of the stochastic process X={X(t):t20}. The sets

K1 ¥,

) [respectively B,» 32] jointly define the random times at which

passage times for the marked job start [respectively terminate]. The sets . l

S el AR

Al’ Az, B1 and 82 in effect determine when to start and stop the clock {

e
=

wmeasuring a particular passage time of the marked job.

It is convenient to introduce the jump times {Tn:nzo} of the process X.

We set 10-0 and have t°<rl<... with probability one. Since the state




space E of X is finite, there can be no finite accumulation points for

the Tu and tn*ﬁ. For k,n2l, we require that the sets Al' Az, Bl and Bz

satisfy:

L X(T__ )eA;, X(TDehy, X(T ) )eh) and X(T )eh,

then x(Tn-lﬁm)‘BI and x(ra+m)enz for some O<msk;
and

if X(Tn_l)ehl, X(Tn)eﬂz, X(Tn_1+k)e81 and X(Tn+k)e82,
then X(Tn_1+m)eAl and X(‘rn*m)eA2 for some Osm<k . (3.3.1)

These conditions ensure that the start and termination times for the

specified passage time strictly alternate.

In terms of the sets Al’ Az. Bl’ and 82’ we define two sequences of
random times, {SJ:ij} and {Tj:jzl}, where sj-l is the start time of the
jth passage time for the marked job and Tj is the termination time of this
jth passage time. Assuming that the initial state of the process X is such

that a passage time for the marked job starts at t=0, let

S0 =0

Sj - inf{TnZTj:X(T“)eAz, X(T,)eA, for some
T3S,y and k<a}, 321,

Tj - inf{rn>sj_1:X(rn)e82, X(Tk)enl for some

x2S,y end k<nl}l, j21 . (3.3.2)
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Then the jth passage time for the marked job is simply Pj.rj-sj-l’ jzl.
Quite often (and in particular in the two examples discussed in Section 5),
the value of k in the definitions of S.1 and '1‘J can be set equal to n-1,
a considerable simplification. 1In general, however, we allow k<n. For

response times (complete circuits), Al-Bl and Az-Bz; consequently SJ-‘I‘J

for all jz2l.

The following example illustrates specification of passage times in

terms of the sets Al, Az, Bl, and Bz.

(3.3.3) EXAMPLE. Consider the closed network of Figure 3.2 having
three service centers. Upon completion of a [respectively B] service at

center 1 [respectively center 2], each of the N jobs joins the tail of the

queue in center 3. In accordance with a binary-valued variable }, after
completion of Y service at center 3, a job joins the tail of the queus in
center 1 (when yY=1) or joins the tail of the queue in center 2 (when Y=0).
Assume that each of the queues is served according to a FCFS discipline.
Also assume that routing variable is a random variable independent of
gservice times in the network, and that at each of the centers, service

times are i.i.d. exponential random variables.

Suppose that the passage time of interest starts when a job joins the

center 1 queue (upon completion of service at center 3) and terminates when
the job joins the queue in center 3. Here there is effectively a single
job class. Denoting by p the (independent) probability that the binary

routing variable Y takes the value 1, in the routing matrix P, Py 31P21 31-1,
? L

e e eties emme - e v ————— - 11
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‘ Figure 3.2. Closed network of queues with three service centers
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5!

931.11'1” P31’21'1°p: and all other pij ’u'o. For t20 and i=1,2, and 3,

t— B

we define Qi(t) to be the number of jobs waiting or in service at center i.

ié Then
%‘ X(t) = (Z(t),N(t)) ,

vhere Z(t)U(Ql(t),Qz(t).Q3(:)) and N(t) is the position of the marked job

in the associated job stack. The state space E of the process X is
E= {(4,5,k,n):0si,),ksN; i+j+k=N; l<n<N} .
For this passage time

A, = {(1,3,k,n)eEz:k21l; n=N} ,

A, = {(4,3,k,n)eE:421; n=1} ,

Bl = {(1,],k,n)€E:i21; n=1i} ,

and

B, = {(1,3,k,n)eE:k2]; nmi+i+l} .

i SRS ——— -

Now assume that the queues in center 1 and center 2 are served

according to a FCFS discipline, but that at ceunter 3, jobs that join the

é queue after compleétion of service at center 1 have priority over those that
'% join the queue after completion of service at center 2. Suppose that the

% passage time (indicated by P in Figure 3.2) of interest starts when a job

2 joins the queue im center 1 and terminates at the completion of service

5 to the job at center 3.

!

A

To deal with this passage time, we use two job classes: center 1 sees

only jobs of class 1, center 2 sees only jobs of class 2, and center 3 sees

AT S (b 3= A g et s =S

N JF'IW'M ,2(.0 "f;"’ f:i*f. '?‘U" £
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jobs of class 1 and class 2. In the routing matrix P, P11 317P2g 32"1»
] 1

p31’11-p32'11-p, p31’22-p32‘22-1-p, and all other pij,kl-o' For t20,
- (3) (3
2(e) = (Q(£),Q,(8),C,> (8),¢1™ (8),8,(2))

vhere C§3)(t) {respectively 053)(t)} is the number of class 1 [respectively
class 2] jobs in queue at center 3 at time t, and 83(:) is the class of job
in service at center 3 at time t. (Ss(t)-O if at time t there are no jobs

at center 3). The state space E of the process g-{X(:)::zo} is

E = {(,3,0,0,0,n):0si,jsN; i+j=N; lsnsN} v

{1,3,k,2,m,n):084,§,k,LsN; i+j+k+laN-1; lsm<2; lsn<N}

For the passage time P,

A= {(1,j,k,2,m,n)€E:m=1; n=N} ,
A, = {(4,j,k,2,m,n)€E:121; nu=1} ,

and

g = Ay U {(14,3,k,2,m,n)€E:j21; n=i+l} .

B

R e T T T
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4.0. THE MARKED JOB' METHOD

We base the estimation of general characteristics of passage times
in a closed network of queues of Section 3 on the measurement
of passage times for a typical job, the marked job discussed above. It
is intuitively clear and is shown in Appendix 1 that the sequence of passage
times for any other job (as well as the sequence of passage times,
irrespective of job identity, in order of start or termination) converges
in distribution to the same random variable as the sequence of passage
times for the marked job. It follows that we can estimate general
characteristics of passage times in the network by simulation of the
process X={X(t):t20} defined by Equations (3.2.1), (3.2.2) and (3.2.3).
We shall see that it is possible to use the regenerative method (applied
to an appropriate discrete time regenerative process) to obtain strongly
consistent point estimates and asymptotically valid confidence intervals

for passage time characteristics.

We denote by xn, n20, the state of the system when the (n+l)st passage

time of the marked job starts. For j21, let P, be the jth passage time

3

for the marked job and take the quantity of interest in the simulation to

be
r(f) = E{£(X,P)} , (4.0.1)

where £ is a real-valued (measurable) function and (Xn,Pn+1)->(X,P). For

example, to estimate E{P}, we take f(x,p)=p; to estimate P{Pst}, we take

f(x,p)-llo,t](p), where 1[0.:] is the indicator function of the sat [0,t].
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4.1, Simulation for Passage Times

Based on the measurement of passage times for the marked job, we obtain

el e gt

estimates of the quantity r(f) as follows.

I (4.1.1) ALGORITHM. (Marked Job Method)

{g ‘ 1. To serve as a return state, select a stara of the system, 10. at

which a passage time of the marked job starts. Begin the

I simulation with X(O)-io.

2. Carry out the simulation of X for a fixed number, n, of cycles
(having random length) defined by the successive returns to the
state 10.

3. In each cycle measure all passage times of the marked job. Denote

the number of passage times of the marked job observed in the

kth cycle by a,(k21) and compute the quantity
Y () = > £(X . L) (4.1.2)

where 80-0 and Bk-°1+"'+°k'

4, Take as a point estimate (based on n cycles) of r(f) defined by

Equation (4.0.1) the quantity

;
- fn(f) = Yn(f)/an s (4.1.3)
vhere
— _1!1
; : Y (f) = Y (£
WD) = kz_:lku
H and
3 _ - &
: a =o - 2 a .

I k=1

5. Take as a 100(1-2y)%X confidence interval (based on n cycles) for

r(f) the interval
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1= [en(f)-zl_st/(Enn” 2). fn(f)ﬂl_st/(Enn]'/ 2)] . (4.1.4)

Here 2z -Q-l(l-y), where ¢(°*) is the distribution function of

4] l-y
' a standardized (mean zero, variance one) normal random variable,

:1 and Sn is the quantity

S PN 2 1/2
n {sll-zfn(f)slz+(rn(f)) 322}

where

-1 5 T reyy2
= (n-1) kz:l (¥, ()= (£))" ,

kz_:l (¥ ()T (£)) (o) .

Justification for this passage time simulation method appears in the next

section.

4.2. The Underlying Stochastic Structure
With knowledge of the matrix P and the parameters of the exponential
stage service times, we can carry out the simulation (i.e., generation of
the process X={X(t):t20} as defined in Section 3.2) in a straightforward
manner. Note that when all service times are exponentially distributed,

the vector U(t) in the state vector given by Equation (3.2.3) can be

omitted, resulting in a smaller, less complex state space.

The force of the assumptions of Cox-phase service times and Markovian
routing in the closed networks of queues of Section 3.1 is contained in

Theorem (4.2.1).
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(4.2.1) THEOREM. The stochastic process X={X(t):t20} defined by
Equations (3.2.1), (3.2.2) and (3.2.3) is a continuous time Markov chain

with a finite state space, E.

The method of Section 4.1 for estimation of general characteristics
of passage times relies on the measurement of passage times for a typical
job, the marked job as introduced in Section 3.2. As in Sectiom 3.3,
specification of the passage tiE; of interest is in terms of the marked
job, by means of the four subsets (Al, Az, Bl, Bz) of E. We define the

:320} and {T,:j21}, where S is the

3 3 i-1

start time of the jth passage time for the marked job and Tj is the

termination time of this jth passage time. For an initial state of the

Markov chain X such that a passage time for the marked job begins at t=0,
¥ o

"(

So =0

S, = inf{t_2T
n

3 :X(Tn)eAz, X(Tk)eA1 for some

]
Tkzsj-l and k<n}, j21
and
TJ = inf{Tn>Sj_l:X(Tn)eBz, X(Tk)eBl for some
Tkzsj-l and k<n}, j21 , (4.2.2)
where {Tn:nzo} are the jump times of the Markov chain X. Then the jth

passage time for the marked job is Pj-TJ-Sj_l, j=1.

Let xn denote the state of the continuous time Markov chain

X={X(t):t20} when the (n+l)st passage time of the marked job starts:

xn-X(sn), n20. Since X 1s a Markov chain and {Sn:nzo} are stopping times
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for the chain, {xn:nZO} is a discrete time Markov chain with finite state
;" space Az. For a discussion of stopping times, see Cinlar (1975a), p. 239.
Throughout, we shall assume that the process {Xn:nZO} is irreducible and
aperiodic. Furthermore, it is easy to check that the process {(Xn,sn):nZO}

“' satisfies

P{

Xn+1-j, swl-snstlxognno’xn; sogco.,sn}

= P{ -snsclxn}

Xw1™dr Sy

with probability one for all n20, jeA,, and t20.

fj (4.2.3) THEOREM. The stochastic process {(Xn.sn):nZO} is a
g
1

Markov renewal process.’

This follows directly from the definition of a Markov renewal process;
see Cinlar (1975b) or ginlar (1975a), p. 313. The basic data for this
Markov renewal process is the semi-Markov kernel over Az,
K={K(1,]};t) i,eA,, t20}, defined by

K(1,3;¢) = P{X__ =1, S 41-SpstlX =1} .

Lo s

While the kernel K is normally given in the analysis of a Markov remewal

byl

process, for the network of queues passage time problem, K is virtually

R ———————

iand
A3 wadea

impossible to calculate. Thus from this point of view, the only hope for
studying the passage time in question is to generate sample paths of

{(xn,sn):nzo} via simulation of the Markov chain X.

As in Section 4.0, let f be a real-valued (measurable) function with

domain AZXR+. where R+-[0.~), and define the quantity r(f) according to

B e SRR RTINS B,



r(f) = E{(£(X,P)} . (4.2.4) 4

,‘ Now we select a fixed state, 10, from A2, begin the simulation of X with {
X(O)-io, and carry out the simulationm of X in cycles defined by the
_‘ succegsive returns to state io. Let uk denote the length (in discrete

time units) of the kth cycle of {xn:nzo} and define 8,=0, and Bk-a1+...+ak,

k1.

Theorem (4.2.5) follows from Theorem (4.2.3) and the definition of a
regenerative process. It comprises the key observation which leads to

point and interval estimates for r(f).

(4.2.5) THEOREM. The stochastic process {(Xn,Pn+l):n20} is a regenerative

process in discrete time with regeneration points {Bk:kZO}.

Note that the regeneration points Bk are not the times of return to a

fixed state of the process {(xh,Pu+l):n20}.

For k21, we now define
Bk-l
Y (£) = ; E(X WP L0) . (6.2.6)
B=Pe-1

Since the Bk are regeneration points for {(Xn,Pn+l):n20}, we have (cf.

Crane and Iglehart (1975), Proposition 2.l1l) the following result.

(4.2.7) THEOREM. The pairs of random variables {(Yk(f),ak):kZI} are

independent and identically distributed.

The regenerative property guarantees (Miller (1972)) that as m

(X ,P ) = (X,P) , ]
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p AN

where => denotes convergence in distribution, i.e., there are random

variables X and P such that as n*, the joint distribution of (xn’Pn+l)

P A P,

converges to the distribution of (X,P). For the function f (appearing in
Equation (4.2.4)) in the definition of r(f), let Df denote the set of

’| discontinuities of f. Assuming that P{(X,P)eDf}-O and using Lemma (2.1.9)

it follows that

f(xn,Pn_H_) = f(X,P) (4.2.8)

as oo, The final step is to establish a ratio formula for E{£(X,P)}

which makes it possible to apply the regenerative method to estimation of
; passage times; this follows from the general result for regenerative
processes (cf. Crane and Iglehart (1975), Proposition A.3). A direct

] ? proof not requiring the key renewal theorem is in Appendix 2.
(4.2.9) THEOREM. Assume that E{|f(X,P)|}<=. Then

E{f(x,P)}-E{Yl(f)}/E{al} R

e T AT T ) % S TIPS WA ot TP 1 T YT

where Yl(f) is given by Equation (4.2.6).

With the ratio formula of Theorem (4.2.9) and the fact that the pairs

of random variables {(Yk(f),ak):k21} are independent and identically

PSR L i

distributed (Theorem (4.2.7)), we can apply the regenerative method to

{(Xn,Pu+1):n20} to obtain point and interval estimates for r(f).
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5.0, EXAMPLES AND SIMULATION RESULTS

To illustrate the marked job method of the previous sections for
estimation of passage times in closed networks of queues, we consider two
examples. Descriptions of the networks and state vector definitions appear

in this section, along with illustrative numerical results.

5.1. A Closed Network of Queues

The first example is relatively simple; see Figure 5.1. Upon completion
of o service at center 1, in accordance with a binary-valued variable y,
the job joins the tail of the queue in center 1 (when Y=1) or joins the
tail of the queue in center 2 for 8 service (when Y=0), After completion
of B service at center 2, the job joins the tail of the queue in center 1.
Neither center 1 nor center 2 service is subject to interruption. We
assume that both queues are served according to an FCFS discipline. The
limiting response time of interest (denoted by R) for a job is the time
measured from entrance into the center 1 queue upon completion of a center
2 serviceAuntil the job next joins the center 1 queue. Also of possible
interest in this model is thea limiting passage time (denoted by P)
corresponding to the time measured from entrance into the center 1 queue
upon completion of a2 center 2 service until the job next joins the center

2 queue.

We consider passage time simulation of this network of queues under
the following probabilistic assumptions:
(1) successive a service times form a sequence of i.i.d. random
varisbles, exponentially distributed with rate parameter Y

(11) successive B service times form a sequence of i.i.d. random

variables, exponentially distributed with rate parameter ul;

B L R e Tl

[t orr
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Figure 5.1. Closed network of queues
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(111) V¢ is a Bernoulli random variable and values of Y at successive

i Y

o service completions form a sequence of i.i.d. random variables;

(iv) the sequences in (1), (1i) and (i{ii) are mutually independent.

In this network, there are two classes of jobs: class 1 jobs at

center 1 and class 2 jobs at center 2. Since each center sees only one

¥ class of job, the process {Z(t):t20} can be defined by

Z(e) = (Q)(£),Q,(e))
where
Ql(t) = number of jobs waiting or in service at center 1 at time t,
and

ﬁ Qz(t) = pumber of jobs waiting or in service at center 2 at time t.

Now let N(t) denote the position of the marked job in the linear job
stack cccresponding to the order of the nonzero components of Z(t). Taking
into account the fixed number of jobs in the network and that the service

times are exponentially distributed, the process X={X(t):t20}, where

X(£) = (Q(£),N(E))

ALY, Sl .

is the underlying continuous time Markov chain.

e 1o - ey bl

For this model the state space E of X is
E= {(1,]):0s4sN; 1sisN} ,

vhere N is the number of jobs in the network. In the special case of

N=2 jobs, Figure 5.2 shows the possible state transitions among the ¥

1]

R P N )

R o A B L UE Sl
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Nx(N+1)=6 states. State (0,1) corresponds to both jobs in center 2 with

the marked job being the one in queue; state (1,1) corresponds to one job

LT s Y S

in service at center 1 and onme in service at center 2, the marked job

being the former, etc.

The Markov chain governing change of job class at service completions

& can be taken to have state space {1,2} and transition matrix

) P 1-p

: 2.- ’

f! 1l 0

where we denote by p the probability that the binary branching variable Y

takes the value 1.

e e st s, e < o ke

The sets Al and A2 (of Section 4.2) defining the start of response

times for the marked job are

A, = {(1,j)€E: j=N, i<N}

and

A, = {(1,1)€E:4=1, 1>0} .

Since R is a response time, Tj.sj for j21, Bl-Al' and BZ.A2' For N=2 jobs,

{

f Al.{(o,Z), (1,2)} and Az-{(l,l). (2,1)}; see Figure 5.2. A sample path of
g the Markov renewal process {(xn.sn):nzo} is in Figure 5.3. For the passage
% time P, Al-{(ooz)s (1:2)}o Az-{(lsl)- (2,1)}, Bl.{(lol)» (292)} and

%

% Bz-{(oil)p (liz)}'

3

]

k4

§ 5.2. A Computer System Model

% The second example is more complex, and is essentially the network of

queues defined by Lavenberg and Shedler (1976) as a model of resource

U TR DA I L
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Figure 5.2. State transitions in Markov chain X and subsets of E
for response time R
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Figure 5.3. Sample Path of Markov renewal process
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contention in the so-called "DL/I component" of an IMS (Information

Management System) data base management computer system; see Figure 5.4.
The interpretation of this figure differs from that of a conventional
queueing network diagram in that services are distinguished from the
gervers which perform them. Thus, circles in Figure 5.4 represent services
rather than servers. Five types of service, denoted by Qg» al, Qy» a3
and B are represented in this model. The o services (ao, a1y Oy and a3)
are performed by a single server, interpreted as the processor, and the

B service is performed by a single server, interpreted as ;n input-output
(1I/0) unit. We assume in this model that no two a services can be in
progress concurrently, but that any a service can be in progress
concurrently with a B service. We also assume that each of the ao, al.

az and B services is noninterruptable. The a., service is, however,

3
interruptable at the completion of a B service, this interruption being

of the preemptive-resume type.

A fixed number of jobs circulate in the network from time zero. At
any subsequent instant of time, a job either is receiving service or
waiting for service in one of the quiues. We assume that each of the
queues is served according to an FCFS discipline. Note that there are
two queues (denoted by ql,l and ql’z) for oy service and two queues (qz'1
and qz’z) for a, saervice. The arrows in Figure 5.4 indicate the flow of
jobs. There are two branches leaving the oy service and two branchaes

leaving the a, service; these branches are labeled by binary-valued

2
variables *1 and wz. Upon completion of an @, or a, service, the job just

e T
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N (i)  Processor renders ag, @y, ay and a, services
(i) 1/Q unit renders 3 service
(iii) ag, @y, Oy and { services are not interruptable
{iv) aq service has pre-emptive resume type interruption at compietion of 3 service

{v) Processor scheduled according to priority ordering of queues q,, Q11,992 921-
dz2 3nd Qg

{vi} Routing determined by binary valued random variables J, and -.';2

Figure 5.4. DL/I component mode!
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served follows the branch with a label having value 1. Thus, e.g., if

upon completion of an ay service the current value of wl is zero, the job

just served joins queue 9 1°
»

An epoch of completion of any o service, or an epoch of completion of
a B service at which either no o service is in progress or an a3 service
is in progress, is called a scheduling decision epoch. At such a time
point, the next processor service is determined by a processor scheduling
algorithm. Upon completion of a service, the served job immediately joins
the next queue on its route. The next processor service is the service
having highest priority, this priority being determined by a total ordering
of queues 949 ql,l’ q1,2’ q2,l' qz’2 and 93 The processor scheduling
algorithm employs the total ordering ql’z, q2,1’ ql,l’ q2,2’ 9p0 45

(highest to lowest priority).

The limiting passage time of interest in the DL/I component model is
indicated by R in Figure 5.4. It is interpreted as the response time to

a "DL/I call" in an IMS data base management system.

We consider passage time simulation of this network under the following

probabilistic assumptions:

(1) for i=0,1,2, and 3, successive a, service times form a sequence

i
of i.1.d. random variables;

(11) successive B service times form a sequence of i.i.d. random

variables;




iy

(11i) cthe branching at successive ay (respectively az) service
completions is governed by a sequence of 1.i.d. Bernoulli random
variables wl (respectively wz);

(iv) the sequences in (i), (ii), and (iii) are mutually independent;

(v) the random variables ao, Qs Y a3 and B are exponentially

distributed;

(vi) P{w2-1}>0. so that jobs eventually receive ay service.

The circled numbers in Figure 5.4 are classes of jobs in the indicated
queues and are the key to representing the DL/I component model as a
queueing network of the kind described in Section 3.0. This representation

is shown in Figure 5.5. Classes 2-7 are identified with the a center server

(processor) and class 1 with the B center server (I/0). At the o center
server, classes 2-7 are ordered according to priority. Class 7 service
is interruptable, but all other classes of service are not interruptable.

In the DL/I component model, for t20 we define the vector Z(t) by

Z(t) = (Q(t),C7(t),...,C2(t),S(t)) R (5.2.1)

where

Q(t) = number of jobs waiting or in service at B center at time t,

- by [

S(t) = class of job being served by o center server at time t,
and for 2si<7,
Ci(t) = number of jobs of class i waiting for service at a center

at time t.

We let N(t) denote the position at time t of the marked job in the job

stack corresponding to the order of the nonzero components of Z(t). Then E
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s=3,5
Vv, 1-v

s=2,4
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: Figure 5.5. OL/[ component mode! with job classes
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the process X={X(t):t20}, where
i(t) = (Z(t),N(t)) , (5.2.2)

is the underlying continuous time Markov chain,

The Markov chain governing change of job classes at service completions

can be taken to have state space {1,2,...,7} and transition matrix by

- -

o 0 0 o 1 o0 O

o
o
o

Py 0 l-pl 0
0 l-p2 0 0 o0 O P,

|vo
L}

Py 0 l-pl 0 0 o0 O
0 1-p2 0O 0o 0 O P,
0o 0 0 1 0o 0 O

0 0 0 0 0 1 0

where Py [respectively p2] denotes the probability that the binary

branching variable wl [respectively wzl takes the value 1.

The sets A. and A, defining the start of response times for the marked

1 2

job are

Al - {(i’N'(i+l)’09090)0’0n7aN)3051<N}
and

A, = {({,N-(4+1),0,0,0,0,0,6,N) :0si<N} .

Since R is a response time, Tj-sJ for j21, and Bl-Al and Bz-Az.

Note that if we modify the DL/I component model so that there is no

preemption of Oy service, then the sets Al and A2 are
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A - {(1,N=(i+1),0,0,0,0,0,7,N) :0<i<N}
and
A, = {({-m,N-(i+1),1,m-1,0,0,0,5,N-m) :1s1<N; lsmsi}

v {(4,N=(1+1),0,0,0,0,0,6,N) :0si<N} .

This provides an example of the desirability of allowing k<n in the formal

definitions of the times Sj and_Tj given in Sectiom 4.2.

5.3. Numerical Results .
The results displayed here were obtained using the particular linear '

congruential uniform random number generator described by Lewis, Goodman

and Miller (1969). Exponential service times were generated by logarithmic ;

transformation of the uniform random numbers; independent streams of

exponential random numbers (resulting from different seeds of the uniform

random number generator) were used to generate individual exponential

holding time sequences.

The numerical values of point estimates and confidence intervals
reported here for r(f)-E{Yl(f)}/E{al} are the classical ratio estimates,
i.e., use the point estimator fn(f) of Equation (4.1.3) and the 100(1-2y)%

confidence interval in(f) of Equation (4.1.4).

Results obtained for the response time R by simulation of the closed
network of queues of Figure 5.1 are in Table 5.1. The initial state for
the Markov chain X (and return state identifying cycles) is the state
(1,1). The results in Table 5.1 are for N=2 jobs, with uo-l, ul-O.S and

p=0.75. Theoretical values for the long-run expected fractions of time

L ST P nsteds WP T IRP T TP R,




that centers 1 and 2 are busy (utilizations), and the expected response
time can be cbtained by birth-death process methods. These values are in
parentheses. In all cases, the 90X confidence intervals obtained surround

the theoretical value.

Results of simulation for characteristics of the passage time P are
in Tables 5.2 and 5.3. For N=2 jobs, with uo-l, ul-O.S and Y=0.75, these
tables give an indication of the effect of different return states. The
results are for two simulation runs, using the return states (1,1) and
(2,1), respectively. Thus, for example, 2367 transitions in the Markov
chain were required for 100 cycles of returms to the state (1,1) but only
1183 transitions for 100 cycles of returns to the state (2,1). Since
returns to the gtate (2,1) occur approximately twice as frequently as to
the state (1,1), we would expect that only half as many cycles (as for
return state (1,1)) for comparable accuracy; this is borne out by the
results in Tables 2 and 3. 1In all cases, the 90Z confidence intervals

obtained surround the theoretical value.

Results obtained for the response time R by simulation of the DL/I
component model appear in Table 5.4. The initial state for the Markov
chain X is the state (1,N-2,0,0,0,0,0,6,N). Theoretical values for the
o and B center utilizations along with the expected response time are
obtainable from the analysis of the DL/I component model given by Lavenberg
and Shedler (1976). Comparison of Table 5.4 with Table 5.1 reveals the
effect on simulation running time of the considerable structural complexity

of the DL/I component model; for the return states chosen, there are

et el L
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approximately the same number of transitions in the Markov chain for
.1 250 cycles of the DL/I component model as for 400 cycles of the simple
model. As before, the 902 confidence intervals for the expected response

time surround the theoretical values.
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6.0. FINITE CAPACITY OPEN NETWORKS OF QUEUES

We now consider open networks of service centers with jobs arriving
at the network, traversing the network and receiving service along the
way, and finally departing from the network. The network structure we
permit is essentially the same as that described in Section 3.0, except

that here the networks are open; thus arrivals from an external source

and departures to an external sink occur. Only a finite number of jobs,

N, may reside in the network at a given time. We consider two formulations
of finite capacity open networks. In "arrival process shutdown" models,

a job arriving when the network already contains N~1 customers causes the
arrival process to shut down; the arrival process remains shut down until
the first subsequent departure from the network. In "jobs turned away"
models, the arrival process never shuts down, but jobs arriving when the

network already contains N jobs turn away.

6.1, Markov Arrival Processes

The arrival processes we allow are particular stochastic point
processes (series of events) associated with time-homogeneous Markov
renewal processes. Let J be a finite or countable set, E-{wn:nZO} random
variables assuming values in J, and g-{Un:nZO} nonnegative random variables
such that O=U . <U.<U,s... . Recall that a stochastic process

077172
(g,g)-{(wh,un):nzo} is a Markov renewal process provided that

P{w -U_st|W
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with probability one for all n20, jeJ, and t20, and is time-homogeneous

provided that P{wn+1-j, U —Unstlwn} is independent of n. We denote by

o+l
M={M(t) :t20} the semi-Markov process generated by (W,U), i.e.,

M(t) = wn, if Un £t< Un+ (6.1.1)

1 L]
By definition, a Markov arrival process is a stochastic point process U

that satisfies the condition

P{U

n+1-UnSt|wn-i} = 1 - exp(-At) (6.1.2)

for all ie¢J and t20, where A1>0. Under this condition the semi-Markov,
process M is equivalent to a continuous time Markov chain. Throughout,

we assume that M is irreducible and positive recurreat, and that the Markov

'\
renewal process (W,U) is independent of the service times and Markov

routing of jobs in the network. Note that in "arrival process shutdown"
models we can think of the arrival process as operating in virtual time,
i.e., the nth customer arrives at virtual time Un' The actual time of

the nth arrival, however, may be somewhat later due to the finite capacity
constraint. In "jobs turned away" models, the nth job arrives at time

Un’ but may be turned away.

(6.1.3) EXAMPLE. Poisson Process. Let J={1} so that W =1 with probability

one for all nz0, and for t20 let

P{U -Uns:} = 1 - exp(-At) ,

o+l

where A>0., Clearly, the Markov arrival process g-{un:nzo} is a Poisson

process.




(6.1.4) EXAMPLE. Switching Poisson Process. Let J={1,2,...,k},

qij'P{wu+1'3|“h'*} for i,jeJ, and for t20 let

P{U

n+1-Unsc|wh-i} =1 - exp(-A,t) ,

where A1>O for i=1,2,...,k. Here the successive times-between-events are
exponentially distributed with parameters which are governed by the
transition matrix {qij:i,jeJ}. This Markov arrival process is a

semi-Markov generated point process with exponential holding times.

(6.1.5) EXAMPLE. Branching Poisson Process. The branching Poisson process

is a model for clustered arrivals. Consider a particular branching Poisson
process constructed as follows. A Poisson process with parameter Al
generates a series of primary events, and with independent probability
re(0,1], a primary event initiates a subsidiary series of events. Each
subsidiary process consists of a geometrically distributed number of
subsidiary events, and the times between these subsidiary events are
independent and exponentially distributed with parameter Az. Finally,

the branching Poisson process is the superposition of all primary and
subsidiary events. To represent this process as a Markov arrival process,
we set J={0,1,2,...} and identify W, with the number of subsidiary
processes active at the time of the nth event of the branching Poisson
process. Let pe(0,1l) be the parameter associated with the geometric
distribution (mean 1/(1-p)) governing the number of subsidiary events in
each subsidiary process; that is, the probability of % subsidiary events

k-1

in a given subeidiary process is p “q (k2l), where q=1-p. Then for ieJ,
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12,0/ (A +10,) » J=i-l
rxl/(Al+1A2) s J=i+l ,
and for t20,

P{u -uns:[wn-i} =1 - exp[-(A;+1\,)¢t] .

n+l
6.2. Networks of Queues and Associated Stochastic Processes

As before, we permit a finite number of single-server service centers,
8, and a finite number of (mutually exclusive) job classes, ¢. At every
time epoch each job is in exactly one job class, but jobs may change class
as they traverse the network. Upon completion of service at center i, a
job of class j goes to center k and changes to class 2 with probability
pij’kz,J(whnrd‘ISi,kSa;hnd 1<j,2<c) and gf{pij’kl}. A job from the external
source arrives at center k as a job of class & with probability Pygs and

a job of class £ completing service at center k departs to the external

sink with probability Qe

At each service center jobs queue and receive service according to a
fixed priority scheme among classes; the priority scheme may differ from
center to center. Within a class at a center, jobs receive service
according to a fixed discipline, and, some centers may never see jobs of

certain classes as determined by the routing matrix P. A job in service

at a center may or may not be preempted if amother job of higher priority
joins the queue at the center. All service times in the network are

mutually independent, and at a particular center have a distribution

|8
i
I
1
s




consisting of exponential stages with parameters which may depend on the

service center, class of job being served, and "state" of the entire ;

e —— - qutit 5t A8 5

network.

;l As in Section 3.2, we let Si(t), i=1,2,...,8, denote the class of job :
receiving service at center i at time t, with Si(t)-O if at time t there
are no jobs at center i. The classes of jobs serviced at center i ordered
%y by decreasing priority are jl(i),jz(i),...,jk(i)(i), all elements of the
.;é set {1,2,...,c}. Denote by C§1)(t),c§1)(t),...,C§i) (t) the number of
1 2 k(1)

jobs in queue at time t of the various classes of jobs served at center i.

To deal with passage times, we again use the idea of the positiom of

a distinguished "marked" job. We continue to think of the (at most N)
i@ jobs in the network ordered in a linear stack according to the following
scheme, and define the vector 2(t) by

z(e) = P (@, @, s @
@y k-1 1

¢ (®.,e (@0 @50 .
k(s)  Ik(s)-1 1

The linear job stack corresponds to the order of components in the

s LN TRy

vector Z(t) after ignoring any zero components. Within a class at a
. particular service center, jobs waiting appear in the job stack in FCFS

A order, the latest to arrive being closest to the top of the stack. We

i
..

again denote by N(t) the position (from the top) of the marked job in this

job stack at time t.
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Recalling that M is the semi-Markov process of Equation (6.1.1)
assoclated with the Markov arrival process, for t20 we specify the

state of the network by

X(t) = (M(t),Z(t),N(t),U(t)) .

Here U(c)-(Ul(t),;..,UN(t)) and Uj(t) (1<jsN) 1is the state of service
associated with the jth job-in the job stack; uj(c)-o if there

are less than j jobs in the system at time t. By virtue of the service
time distributional assumptions, the Markovian routing structure, and the
definition of a Markov arrival process, X={X(t):t20} is a continuous time

Markov chain with a (possibly countable) state space E.

6.3. Job Marking

The principal concern here remains the estimation of general
characteristics of passage times, the times required for a job to traverse
a specified portion of the open network. In a finite capacity open
network, a passage time is termed a ''response time" if it is the total
time a job is in the network. To estimate passage times, we track an
appropriate sequence of typical jobs, based on the idea of a marked job,
and measure the passage times for a sequence of marked jobs; these are to
be typical jobs in the sense that the sequence of passage times for the

marked jobs should converge in distribution to the same random variables

as do the passage times for all jobs. It is necessary to take some care

to ensure that this is the case.
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Our job marking scheme is as follows. Let i (0Si<N) be the number of
jobs left behind by the marked job at the epoch at which it departs from
the network (i.e., goes to the external sink). Then for "arrival process
shutdown" models, the (N-i)th subsequent arrival is the next marked job.
For "jobs turned away'" models, the (N+l-i)th subsequent arrival is the

next marked job.

Note that this marking scheme ensures that there is at most one marked
job in the network at a time, and thus there is no need for further
augmentation of the numbers-in-queue, stages-of-service state vector for
the measurement of passage times. (If there is no marked job in the
network at time t, we define the position N(t) in the linear job stack to
be zero.) Note also that more than one passage time can start (and

terminate) for a particular marked job before it departs from the network.

To see that the sequence of passage times for jobs marked by this
scheme has the desired property, consider "arrival process shutdown"
models. We introduce a so-called '"phantom server' which generates the
times g-{Un:nzo} according to the Markov renewal process (W,U) of the
Markov arrival process. Assuming that 1 (0<i<N) is the number of jobs
left behind by the marked job at the instant it departs from the network,
we route the marked job to the queue at the phantom server where N-i-l
jobs are already residing. Upon completion of service to a job by tbr
phantom server, the job returns to the network in the same manner as

arriving jobs, i.e., with probability Py the job goes to center k and

becomes class L., This method generates arrivals to the network in exactly

P ey —— AT
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same way the original arrival process does with the finite capacity
constraint, namely, arrivals occur at the times Un provided the number in
the network is less than N. Figure 6.1 illustrates the general flow of
jobs. It is now clear that in effect we have a closed network of queues
in which the marked job never leaves the network. Furthermore, the
stochastic structure of the original problem remains. The chief advantage
of this device is that we can use the simulation method developed in
Section 3 for closed networks. Note that there is no need for a '"p<1"
condition to guarantee stability of the open network since it 1is

effectively a closed network with a finite number of jobs.

For "jobs turned away' models, we introduce a phantom server in a
similar way; see Figure 6.2. A job completing service at the phantom
server with j-1 other jobs at the server returns to the network with
probability 1l-p(j), where p(j)=1 if j=1 and 0 otherwise. We are in effect
considering a closed network with N+1 jobs. It is straightforward to
check that the simulation method of Section 4.1 extends to closed networks
in which, as here, routing probabilities may depend on the number of jobs

in the service center.

Having reduced the problem to estimation in a closed network, it is
necessary to modify the Markov chain X. We view the phantom server as
gservice center s+l, serving only one class of jobs. Let Qs+l(c) denocte
the total number of jobs at center s+l at time t. Then we augment the
vector Z(t) with the component Qs+1(t). and define X(t) as before but with

this augmented Z(t). We also modify the Markov routing matrix gf{pij kl}
]




78

network of
queues

v

e —vmadbabs L - omme o o e

gt

i jobs

marked job phantom server

Figure 6.1. Flow of jobs with phantom server added.
 Arrival process shutdown’’ model

e v |

3 ccia B MERIOE JRY e

i, g S b~

TRk A A T




marked job phantom server
\ !
\ ¢ p(N+1=i)

network of v
y queues »{11T} ( > 1=p(N+1—i)

~

s

3 N+1-i jobs

i jobs
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to.describe the closed network, and assume that the resulting matrix is

irreducible. The assumptions made on the network imply that the Markov

chain X is irreducible and positive recurrent, and it is possible to %

proceed with the estimation of passage times as before.

6.4. Example and Numerical Results

We congider the finite capacity open network of queues showm in
Figure 6.3. Upon completion of a service at center 1 which renders a
service, in accordance with a binary-valued variable Y, the job joins the
tail of the queue in center 1 (when Y=1) or joins the tail of the queue
in center 2 which renders f service (when y=0). Neither center 1l nor
center 2 service is subject to interruption. We assume a FCFS service
discipline in each queue. The limiting response time of interest (denoted
by R) is the time measured from arrival of a job at the center 1 queue
until departure of the job. Also of possible interest in this model is
the limiting passage time (denoted by P) defined as the time measured from

arrival of a job into the center 1 queue until the job enters the center

2 queue.

For each of the arrival processes described below, we consider i

simulation of this network of queues under the following probabilistic

assumptions:

(1) successive a service times form a sequence of i.i.d. random

variables, exponentially distributed with rate parameter uo;

(11) successive B service times form a sequence of i.,i.d. random

variables exponentially distributed with rate parameter Mys {
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. (i) Service center 1 renders a service
(i)  Service center 2 renders j service
{iii) « and g services are not interruptable
(iv) Routing determined by binary valued random variable

Figure 6.3. Finite capacity open network of queues
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(141) ¢ is a Bernoulli random variable and values of | at successive
a service completions form a sequence of 1.i.d. random variablas;

(iv) the sequences in (1), (ii) and (iii) are mutually independent.

For the simulation, the generator of arrivals is either
(1) a Poisson process (as in Example (6.1.3)) having rate parameter A;
or
(11) a switching Poisson process (as in Example (6.1.4)) having
parameters Al’ Az, P, aud p,. Here Ai is the rate parameter of
the exponential holding time in state i, and Py is the probability

of a one-step transition from state i to state i in the embedded

Markov chain.

In this network, there are two classes of jobs, class 1 jobs at center

1 and class 2 jobs at center 2. Since each center sees only one class of

job, we can define

Z(t) = (Q)(£),Q,(e)) ,

where

Q,(t) = number of jobs waiting or in service at center 1l at time t ,
1

and

Qz(t) = pumber of jobs waiting or in service at center 2 at time t .,

As above, let N(t) denote the position of the marked job in the
job stack corresponding to the order of the nonzero components of Z(t),

and let M(t) denote the semi-Markov process associated with the Markov

- Iy T B R e Sl
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arrival process. Then, since the service times are exponentially

;. distributed, the pracess X={X(t):t20}, where
{ X(t) = (M(t),Q, (£),Q,(t),N(E)) ,
A1 . is the underlying continuous time Markov chain.

£ For this model the state space E of X is
1 E={(m,1,],k):0s1,],ksN; 1+j<N; meJ} ,

vhere N is the maximum number of jobs in the network.

The Markov chain governing change of job class can be taken to have

state space {1,2} and transition matrix

X P 1-p
il _P_ - ’
4 o o

where we denote by p the probability that the branching variable ¥ takes

the value 1. The probabilities Pyg 8overning routing of jobs from the

external source are pll-l, p12-0, p21-0, p22-0, and the probabilities Uy
of departure to the external sink are qll-o, q22-0, q21-0, qzz-l. The

Ll g

3x3 matrix governing change of job classes for the associated closed

&A% X-

1 network is

E

g

? p 1l-p O

: o o 1f.
4

3.

f 1 0 o

%

1

-
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The sets A1 and A, defining the start of respounse times for the marked

job are

A = {(m,1,],k)€E :knN}

A, = {(m,1,§,1)eE:1>0} .

The sets Bl and Bz defining the terminationm of response times for the

marked job are

By = {(m,1,3,k)eE:k=t+], §>0}

B, = {(m,1,3,k) €E:kmi+i+1} .

Tables 6.1-6.3 contain results obtained for the response time R by

simulation of the network of Figure 6.3 for N=4 jobs with uofl. ul-O.S

and p=0.75. The initial state for the Markov chain X (and return state

identifying cycles) is the state (1,4,0,1). Simulation results for
arrivals generated by a Poisson process of rate A=0.4 appear in Table 6.1.

For Poisson arrivals the two formulations of finite capacity networks are

equivalent. Theoretical values for the long-run expected fractioms of

[ 1N

time that centers 1 and 2 are busy (utilizations), and the expected

response time, obtainable either by birth-death or semi-Markov process

S I L

methods, appear in parentheses. Note that with the aexception of the 1000

cycle run, the 90% confidence intervals obtained surround the theoretical
value. The percentile points are, respectively, 0.25, 0.5, 1, 1.5, and

2 times the theoretical mean response time,

e S A T B SRR



Table 6.2 gives results of simulation of the "arrival process shutdowmn"

%4 model for arrivals generated by a two-state switching Poisson process with
E! Al-z, A2-0.667, p1-0.978 and p2-0.865. With these parameter values, events
f; ‘ in the stationary switching Poisson process occur at rate 0.4, and the

f! y - stationary times-between-events have coefficient of variation equal to 2

| ‘ and serial correlation coefficient of lag 1 (cf. Cox and Lewis (1966),

] p. 196) equal to 0.375. In all cases, the 90Z confidence intervals for
E{R} surround the theoretical values. Corresponding results for the "jobs
turned away' model are in Table 6.3. Again, the 90% confidence intervals

for E{R} surround the theoretical value.

An overall observation from Tables 6.1-6.3 is that the lengths of
:t confidence intervals obtained (for expected response time as well as
percentiles of response time) from the three simulations are roughly

comparable.
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7.0. MARKED JOB SIMULATION VIA HITTING TIMES

In this section we develop a new stochastic setting for the marked
job method based on "hitting times' of an underlying continuous time Markov
chain to fixed sets of states. This formulation is the basis for the
subsequent discussion. We firsst make some remarks about the results

obtained in the previous sections.

The ealier discussion of the marked job method applies to networks of
queues having single server service centers. The generalization to
networks having multiple server service centers, however, is
straightforward. To handle these networks, it is sufficient to incorporate
into the job stack (and associated state vector) information which gives
the class of job being serviced by each of the servers at a multiple server

service center.

A further generalization to networks with stochastically nonidentical
jobs 1s also possible. The marked job method of Section 4 applies equally
well to networks in which jobs are of a finite number of types. In such
networks, jobs of each type have their own routing structures and service
requirements, and in the case of finite capacity open networks, independent

arrival processes. We return to this topic in Section 10.

Although the finite capacity constraint on the open queueing networks
considered in Section 6 appears natural in many modelling contexts, it
would be of interest to extend the marked job method to open networks of

infinite capacity. The main barrier to doing so is the definition of a
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sequance of marked jobs whose nonoverlapping measured passage times
converge in distribution to the same random variable as does the entire ; 1
sequence of passage times (enumerated, say, in order of start times).

This remains an open problem.

In the remainder of this section, we develop a stochastic setting for
passage time simulation using a marked job which is simpler than that of
Section 4.2; the definition of passage time, however, is somewhat more
restrictive. Here, the gtarts of pasgsage times for the marked job are
the successive entrances (hitting times) of a particular continuous time
Markov chain to a fixed set of states, and the terminations of such passage
times are the successive entrances to another fixed set of states. This
formulation provides the basis for the decomposition method for passage
time simulation in Section 8, the analysis of statistical efficiemcy in
Section 9, and the discussion in Section 10 of methods for networks with

multiple job types.

7.1 Preliminaries

As in Section 3, we consider closed networks of queues with a finite
number of jobs, N. In each network there are a finite number of service
centers, s, and a finite number of job classes, c. At each epoch of time N 3
each job is in exactly ome job class, but jobs may change class as they

traverse the network. Upon completion of service at center i, & job of

class j goes to center k and changes to class £ with probability pij kL®
’

i
¥ T il

We assume that _Pg-{piJ kR':lsj.,kSs, 1< ,%sc) 1is a given irreducible Markov
9

matrix.




At each service center jobs queue and receive service according to a
fixed priority scheme among classes, which scheme can vary from ceater to
center. Each center operates as a single server, processing jobs of a
fixed class according to a fixed service discipline. All service timeas
in the network are mutually independent, and at each center have a
distribution with a Cox-phase representation with parameters which may
depend on the service center, class of job being served, and the "state"
of the entire system. (Recall that we exclude zero service times occurring
with positive probability.) A job in service may or may not be preempted
(according to a fixed procedure for each ceunter) if another job of higher
priority joins the queue at the center. We restrict the present discussion
to networks in which all service times are exponentially distributed, and
deal with distributions having an Cox-phase representation in the usual

way by the method of stages.

We review the notation of Section 3.2 used to characterize the state
of the network at time t. For i=1,2,...,s, Si(t) denotes the class of the
job receiving service at center i at time t; si(:)-o if there are no jobs
at center i at time t. We denote by jl(i)....,jk(i)(i) the job classes
served at center i, ordered by decreasing priority, and Cgi)(t),...,cgzii)(t)

denote the number of jobs in queue at time t of the variocus classes served

at center 1i.

As in Section 3.2, we view the N jobs as being completely ordered in

a linear job stack, and define the vector Z(t) according to

NIRRTt TR el o5




z(e) = (¢ (:)....,c(l’(c).sl(e);...;

) 3
¢® (@,....c®w),s (&) . (7.1.1)
Ix(s) 3 8

The job stack corresponds to the order of components in the vector Z(t)
after ignoring any zero components. Within a class at a center, jobs
waiting appear in the job stack in the order of their arrival at the

center, the latest to arrive being closest to the top of the stack.

Letting N(t) denote the position from the top of the marked job in

this job stack at time t, for t20 the state vector of the network is
X(t) = (Z(t),N(t)) . (7.1.2)

As before, we specify the passage time for the marked job by four subsets
(Al, A,, Bl, and Bz) of E, the state space of the process X={X(t):t20}.

The sets A, and Az [respectively Bl and 32] determine when to start

1
[respectively stop] the clock measuring a particular passage time for the
marked job. Denoting the jump times of X by {tn:nzo}, for k,n21 we require

that the sets Al' Az, Bl and 82 satisfy:

if X(Tn_l)eAl, X(tn)eAz. X(t )eA1 and X(t

n-1+k o) A2
then X(anl+m)enl and x(1n+m)632 for some O<msk;

and
if X(Tn_l)enl, X(Tn)enz, X(rn_l+k)enl and X(Tn+k)enz,

then X(T _; . )€A; and X(t for some Osm<k,

atm) A2

Recall that these conditions ensure that the start and termination times

for the specified passage time strictly alternate. Also in terms of thase
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jump times, wve define two sequences of random timas: {Sj:jZO} and
{szjZI}. The start [respectively termination) time of the jth passage
time for the marked job is denoted by sj_1 (respectively TJ]. Assuming

that a passage time for the marked job begins at t=0, we have

S, =0

0

5, = 1nf{rnzrj:x(rn)eA2. X(t,_;)eA }, 321

rj - inf{Tn>SJ_1:x(Tn)eBZ, x(rn_l)enl}. j21 . (7.1.3)

TR

The jth passage time for the marked job is Pj-Tj-sj-l’ j21l. Note that
these definitions are more restrictive than those of Equation (4.2.2) in

that the value of k in the earlier equation is set equal to n-1.

7.2. Simulation for Passage Times

We let Xn denote the state of the continuous time Markov chain X when
the (n+l)st passage time of the marked job begins: xn-X(sn). n20. The
process {xn:nZO} is a discrete time Markov chain (with state space Az)
which we assume to be irreducible and aperiodic. By Theorem (4.2.5), the
process {(Xn,Pu+1):n20} is a regenerative process in discrete time, and

the regenerative property guarantees that as n*e,

(K 0P) = (5,P) .

The random variable P is the limiting passage time for the marked job.
The argument in Appendix 1 shows that the sequence of passage times for
any other job also converges in distribution to the same random variable

P. Moreover, the sequence of passage times (irrespective of job identity)

B T T R e
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enumerated according to start times (or termination times) also converges
to P. The goal of the simulation is the estimation of characteristics of
the limiting passage time P. Let f be a real-valued measurable function

with domain R+. and define the quantity r(f) according to

r(f) = E{£(P)} . (7.2.1)

We now depart from the development of Section 4.2. Let L(t) denote
the last state visited by the Markov chain X before jumping to X(t), and

define the stochastic process Y={V(t):t20} by
v(t) = (L(t),X(t)) . (7.2.2)

In this development of the marked job method, the process V is the

fundamental stochastic process of the passage time simulacion.

The process V has a state space F consisting of all pairs of states
(1,3), 1,j€E, for which a transition in X from state i to state j can
occur with positive probability. Since X is an irreducible, positive
recurrent Markov chain, so is V. The entrance times of V to a state

(1,j)eF correspond to the times of transition in X from state i to state

j. We define subsets S and T of F according to

S = {(k,m)eF:keA,, mgAz}

Te= ((k,m)eF:keBl. menz} R (7.2.3)

and observe that the entrances of V to S [respectively T] correspond to

TN RRAEN O, T




the starts [respectively terminations] of passage times for the marked

job. In the case of response times, S=T,

ok T . 45 1 iy o

The next step is to select a fixed element of S, which for convenience

we designate state 0, and assume that V(0)=0. We let {Vn:nzo} denote the

A et bk i 2

embedded jump chain associated with the continuous time process V. The
3 randon times {Yn:nZI} denote the lengths of the successive O-cycles

(successive returns to the fixed state 0) for {Vn:nzo}, and we define 60-0

o i s i

and Gm-yl+...+ym, m2l. Then the number of passage times for the marked

job in the first O-cycle of ¥ is

§,-1

M, = 1

{VJeS}

(Recall that for a set A, lA(x)-l if xeA and 0 if x¢A. Here we suppress

R

; the argument w.) The sum of the values of the function f for the passage

times for the marked job in this cycle is simply

P

My
Y () = Zf(Pj) .

1 j-l
; - We denote the analogous quantities in the kth O-cycle by Mk and Yk(f).

: . Since V 1s an irreducible, positive recurrent Markov chain, it is a

regenerative process, and the pairs of random variables {(Yk(f).Mk):kzl}
are independent and identically distributed. Then, provided that
P{PeD(f)}=0, where D(f) is the set of discontinuities of the function £

in the definition of r(f), and E{|£(P)|}<», it follows that

P T L R Wer. s
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r(f) = E{£(P)} = E{Yl(f)}/z{ul} .

i Therefore, the regenerative method applies and (from a fixed nymber n of

O-cycles) provides the strongly consisteant point estimate fn(f)éﬁ;(f)/ﬁ;

for r(f). Here ?;(f)-(vl(f)+...+yn(f))/n and ﬁQf‘"l*"'*“n)/“ The

associated confidence interval is based on the central limit theorem

S T e

at/2e_(6)-r()}

4 750 B

E.J where 02 is the variance of Yl(f)-r(f)ul. It is easy to check that these
point and interval estimates for r(f) (obtained in the setting of the

process V) are the same as those obtained from Algorithm (4.1.1).

k. (7.2.4) EXAMPLE. Recall the model of Section 5.1 and the passage time P; ;

see Figure 7.1. 1In this network there are two classes of jobs: class 1

platem ey

jobs at center 1 and class 2 jobs at center 2. Since each center sees only
one job class, by taking into account the fixed number of jobs in the
network, for t20 we can define Z(t) to be the number of jobs waiting or

in service at center 1 at time t. Then the process X={(Z(t),N(t)):t20},

where N(t) 1is the position of the marked job in the job stack at time ¢,

S b Y b

has state space

g

E = {(4,]):0sisN, 1sjsN} .

For the passage time P, the sets Al and A2 defining the starts of

passage times for the marked job are

e - e A G500 eyt g

.u‘.p_,-»"»; e (“H‘:?'ﬁfr‘gﬂrf‘!m?ﬁ“‘ 3
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{ii) Routing determined by binary valued random variable
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A - {(1,N) :0s4<N}

A, = {(1,1):0<isN} . (7.2.5)

Similarly, the sets Bl and B2 defining the terminations of the passage

by
i

time P are

B, = {(1,1):0<1sN}

B, = {(i-1,1) :0<isN} . (7.2.6)

For N=2 jobs, Figure 7.2 shows state transitions in the Markov chain X

and the subsets A, A,, B, and B, of E. The process V={(L(t),X(t)):t20},

e P S ENE AR SR LR =

where L(t) is the last state visited by the Markov chain X before jumping

to X(t), has state space

F= {(41,§,1+1,3+1) :0s4<N, 1sjy<N} v {(4,N,1i+1,1):0<i<N} u

{(4,3,1-1,3) :0<isN, 1sjsN} v {(4,1,1,1):1<isN} .

The subsets of F defining the starts and terminations of passage times

for the marked job are

s = {(1,N,1+1,1) :0s1<N}

e S TR

and

Te {(1,1,1-1,1):0<4isN} . (7.2.7)

|
x
]

e i LS
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Figure 7.2. State transitions in Markov chain X and subsets of E
for passage time P
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8.0. THE DECOMPOSITION METHOD

In this section we concentrate on passage times through a subnetwork
of a given closed network of queues, i.e., passage times which are not
complete circuits in the network. For such passage times, we develop an
estimation method in which observed passage times for all the jobs enter
into the construction of point estimates and confidence intervals. We
consider closed networks of queues as in Section 7.1. The formal
specification of passage times is as in Section 7.1, but we make the
additional assumption with respect to the sets S and T of Equation (7.2.3)
that

SnT=¢;

this effectively rules out passage times which are complete circuits, i.e.,

response times.

The basis of the decomposition method for estimation of passage times
through a subnetwork is simulation of the network in random blocks defined
by the terminations of certain passage times. The distinguished passage
times are those that (i) terminate when no other passage times are underway,
and (11) leave a fixed configuration of the job stack defined by
Equation (7.1.1). These terminations serve to decompose the sequence of
passage times for all of the jobs into independent and identically

distributed blocks.

We denote by {Pg:nzl} the sequence of passage times (irrespective of
job identity) enumerated in order of passage time start. As before, we
let £ be a real-valued (measurable) function with domain R+, and the

goal of the simulation is the estimation of
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26 = ele@%}

‘ .

i where P&-DP . Note that by the results of Appendix 1, PO-P. the limiting

\ ) passage time for (any) marked job.

8.1, Simulation for Passage Times Through a Subnetwork
”fT ' The main result of this section is that we can obtain point and

interval estimates of the quantity ro(f) as follows.

; (8.1.1) ALGORITHM,
;f 1. Select a configuration zo of the job stack at which a passage
|

time terminates and there are no other passage times underway.

;! Begin the simulation with this configuration of the job stack at
time O.
2. Carry out the simulation for a fixed number n of blocks defined ;
by the successive terminations of passage times irrespective of
Job identity which leave the job stack in the (fixed)
configuration zo.
3. In each block, measure the passage times for all the jobs and
record these along with the number of passage times observed in
the block.
Denote by Kg the number of passage times observed in the mth

block and compute Y:(f). the sum of the quantities f(Pg) for the

iy R O W
&
.

passage times Pg in the mth block, e.g.,

‘ 1 0

Y6 = $ e

0
3

) .




102

S. Take as a point estimate (based on n blocks) of ro(f) the quantity

A0 =0 =0
rn(f) = Yn(f)/l(n .

where a
<=0 -1 :E : 0
Yn(f) n Ym(f)
mel i
and
a
=0 ~1 :E : 0
Kh n K.m .
m=]

6. Take as a 100(1-2y)Z confidence interval (based on n blocks) for
ro(f) the interval

(Egnllz), %g(f)+zl_st/(§0nl/2>] .

a AQ

ey

Here Sh is the quantity

s = {sn<n>-zsg<f>su<n>+(eg<f>)2322<n>§“ 2,

n
where
8y () = (n-n'li; (ng&g)z :
me
8, (®) = (n-n‘li; (xg-ig)z :
m-
and

81(0) = (“'1)_12 (Yg(f)'?g)(xg'ig) '
m-

The quantity zl_Y-é-l(l—Y), where $(°) is the distribution function of a

standardized normal random variable.




8.2. The Underlying Stochastic Structure
We begin by labelling the jobs from 1 to N, and for i=1,2,...,N, denote
by Ni(t) the position of job 1 in the linear job stack at time t. Then,

in terms of the vector Z(t) as defined in Equation (2.1.1), we get

xte) = @) N )
and

x%e) = (z(e) N (e) N2 (L), ... N CE)) (8.2.1)

Each of the processes gi-{xi(:):tzo} (i=1,2,...,N) andA§°-{x°(:):tzo} is

an irreducible, positive recurrent continuous time Markov chain. We denote

the state space of the process 51 [respectively §°] by E1 [respectively Eol.
Next we let Li(t) [respectively Lo(t)] denote the last state visited

by the Markov chain gi [respectively §°] before jumping to Xi(t)

(respectively XU(t)],. and for i=1,2,...,N and t20 define.

i) = a2t
and

Weey = @Oy, x%e)) . (8.2.2)

The process v°-{v°(c)::zo} is the fundamental stochastic process of the

~

simulation for passage times through a submetwork. Note that incorporation
of the component Lo(t) into the definition of go is necessary for detection

of the starts and terminations of passage times. Since each of the

processes 51 and EO is an irreducible, positive recurrent continuous time

Markov chain, so is each of the processes Vi-{Vi(t):tZO} and xo. We denote

~

canidilii it




the state spaces of 21 and !0 by Fi and Fo. regpectively. As in

Equation (7.2.3), we define subsets S1 and Ti of Fi according to

s {(k.m)eFi:keAl, meAz}
and

e {(k,m)eFizkeBl, med,} . (8.2.3)

Thus, the entrances of 21 to Si [respectively T1] correspond to the starts
[respectively terminations] of passage times for job i. We also define

0 0

two subsets S° and T of Fo according to

s¥ = {(z,nl,...,nN,z',ni,...,nﬁ)eFoz for some k,
(z,m )eA; and (z',nﬂ)eAz}
and
TO {( * [} [} o.
= 1(z,n,,000,0,2 ,nl,...,nn)eF : for some k,

(z.nk)eBl and (z’,né)eBz} . (8.2.4)

The entrances of go to the set S0 correspond to the starts of passage
times (irrespective of job identity) and the entrances of 29 to the set
TO correspond to the terminations. Thus, from a simulation of the process

go, it is possible to measure the passage times for each of the jobs.

Now consider {P::nzl} the sequence of passage times (irrespective of
job identity), enumerated in order of passage time start. Formal
definition of the sequence {Pg} is in terms of sequences of starts and
terminations of passage times for each of the jobs; the definitions of

i

the latter involve entrances of Y to the sets st ana Tt of Equation (8.2.3)

By Y T K Y i
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and are analogous to Equation (7.1.3). Recall that the goal of the
simulation is
2e6) = e @Y}, (8.2.5)

where Pg-DPO, and f is a real-valued measurable function with domain R+.

We carry out the simylation in random blocks of the process 20 defined
by the successive entrances of 20 to a fixed set of states Uo. Entrances
of go to the set Uo correspond to the terminations of passage times
(irrespective of job identity) which occur when no other passage times

are underway, and which leave a fixed configuration of the job stack.

Formally, let D be the state space of the process 2={Z(t):t20} defined
by Equation (3.2.1), and denote by C the set of (center, class) pairs im the
network. We define a function h taking values in C and having domain
pxf1,2,...,N} as follows. For zeD and ne{1,2,...,N}, the value of h(z,n)
is (1,j) when the job in position n of (the job stack) z is of class j at
center i. Now consider the embedded jump chain {Vk:kzO} associated with
the continuous time Markov chain ¥ of Equation (7.2.2). For states v',v"¢F
the state space of {Vk:kZO}, we write v' Asv" when v" is accessible from v',
i.e., when for some n2l, the probability starting from v' of entering v'
on the nth step is positive, Similarly, for any subset L of F we write
v'n3~v" when v" is accessible from v' under the taboo L; this means (cf. Chung
(1967), pp.45, 48) that for some n21, there is a positive probability,
starting from state v', of entering state v" on the nth step under the

restriction that none of the states in L is entered in between (exclusive

of both ends).

i e at e PEEC RS T
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Next, we define a subset H of C according to

H= {(1,})eC: for some (z,n,z',n')eT-S, h(z',n') = ({,)} v
{(1,3)eC: for some (z,n,z',n')eF-(TuS), v'eT and v"eS,

v' S (z,n,2',n'), (z,n,2',n") Asv" and h(z',n') = (1,§)}

Thus, the set H-Hluﬂz. where a (center, class) pair is in H1 [respectively
BZ] if it is possible for the marked job to be of class j at center i when
the passage time specified by the sets Al’ Az, 81, and Bz terminates
[respectively is not underway]. Note that the set H is nonempty since by
assumption SnT=¢ and thus Hl is nonempty.

Now define a subset Do of D, the state space of {Z(t):t20}, according to
0 - {zeD:h(z,n)eH for n=1,2,...,N and for some n, h(z,n)eﬂl} .

Elements of the set Do correspond to configurations of the job stack upon
termination of a passage time with no other passage times underway. The
set Do is nonempty since H is nonempty. Therefore, we can select an

0

element z° of Do, and in terms of this fixed zo, finally define the set

UO according to
- {(z,nl,...,nN,z',ni,....nﬁ)erozz’-zo} , (8.2.6)

vhere To is given by Equation (8.2.4).

For convenience, we assume that VO(O)eUO. The random times {Y::mzl}
denote the lengths of the successive blocks (returns to the set Uo) for

{Vg:nZO} the embedded jump chain associated with V0

~

, and we define cg-o

0.0 0
.nd 6n.Y1*000+'Ym, mzl.
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The number of passage times Kg in the first block of the process !0

is

§9-1

0
- 1 s
1 Z; {Vge s%)

and we denote the analogous quantity in the mth block of !0 by Kg. Note
that within each block of go defined by the entrances to the set Uo, at

least one passage time starts and terminates.

Next, ve let Y:(f) be the sum of the quantities f(Pg) over the passage
times pg in the mth block of ¥°, for example,

0
0 0
Yl(f) = f(Pj) .

Proposition (8.2.7) contains the key observation.

(8.2.7) PROPOSITION. The sequence of pairs of random variables

{(Yg(f),K:):mZI} are independent and identically distributed.

The argument used in Appendix 1 shows that Pg-DPO as o, and that

0

this random variable P~ is the same random variable as the limiting passage

time P of (any) marked job. For the function f appearing in the definition

of ro(f), let D(f) denote the set of discontinuities of £f. Assuming that
P{PoeD(f)}-O and using Lemma (2.19), it follows that as o, f(Pg)-bf(Po).

Finally, standard arguments (cf. Appendix 2) yield a ratio formula for

£2(6).

e UL S R R R U
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(8.2.8) PROPOSITION. Assume that E{|£(P°)|}<w. Then

2e6) = E(£(@Y)} = E{Yg(f)}/E{Kg} .

wWith the ratio formula of Proposition (8.2.8) and the result
(Proposition (8.2.7)) that the pairs of random variables {(Yg(f),K:):mzl}
are i.i.d., the regenerative method applies; from a fixed number of blocks
we obtain the point estimate rg(f)-ig(f)fig and an associated confidence

interval for ro(f).

(8.2.9) EXAMPLE. Consider the model of Section 5.1 and Example 7.2.4.

First observe that for the passage time P, the sets S and T (given by

Va{(Z(t), N (L), ..., N (t)) :£20}

~

Equation (7.2.7)) are disjoint. The process

has state space Eo, where
0
E = {(i,nl,...,nN):OSiSN; 15n1:----nN5N; ni#nj for 1#3j} .

The underlying continuous time process 20-{(L°(t).x0(t)):t20}, where Lo(t)
is the last state visited by the Markov chain §° before jumping to Xo(t).

has state space Fo. The subsets of Fo defining starts and terminations

of passage times are

s0 = {(1,n1,....nN.i+1.ni.....nﬁ): for exactly one j*, a =N
! =1 'm *-
and nj* 1; 1$n3<N and ny nj+1, %3 niinj for 1%}
and
To - {(1,n1....,nn,i-l,ni,...,n&):0<1SN; lsnj-nssN.

for 1<jsN; n1*"3 for 143} .

D 1 AT e e T
Ed "
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For this network the process Z={Z(t):t20} has state space D={0,1,...,N}.
The set C of (center, class) pairs is {(1,1),(2,2)}, the set HZ-¢ and

0

HPHI-{(Z,Z)}. The set Do-{O}, and since D' is a singleton, we must select

zo-O. For zo-O, the set Uo defining the blocks of the process 20 is

3 i © - {(l,nl,...,nN,O,nl,...,nN):lsnl,...,nNSN; ni#nj; for 1#4} .

T

Now consider the case of N=2 jobs. The state space Fo of the coantinuous

time Markov chain 20 has ten elements, and the set

e daias o

v = {@,1,2,0,1,2), (1,2,1,0,2,1)} ;

see Figure 8.1. A portion of a sample path for !0 appears in Figure 8.2,

and Figure 8.3 shows the corresponding decomposition of the sequence {P:}.

For passage times through a subnetwork, the decomposition method
provides an alternative to marked job simulation. Since observed passage
' times for all of the jobs enter in the comstruction of these point and
interval estimates, we would expect this method to have greater statistical

efficiency than the marked job method. 1In this connection, the calculation

of theoretical values for variance constants entering ianto central limit

theorems used to obtain confidence intervals from passage time simulations

AT, e bbb AL B,

is of interest. These calculations are the subject of Section 9.
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(0,1,2,1,2,1) (0,2,1,1,1,2)

(1,2,1,2,1,2) (1,1,2,2,2,1)

(2,2,1,2,1,2) (2,1,2,2,2,1)

Figure 8.1. State transitions in Markov chain VOand subset U of FO
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(1,21,21,24 —_— —_—

(2,2,1,1,2,1)4

(0,1,2,1,2,1)4

L)

2,1,2,1,1,24

(0,2,1,1,1,2)1

(1,2,1,0,2,1)1
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1
Tk-l

Sg_, =Start time for jth passage time for job i, i=1,2

T}sTermination time for jth passage time for job i, i=1,2

X Entrances of VO to U?

Figure 8.2. Sample path for process VO
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Figure 8.3. Decomposition of sequence of passage times
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9.0. EFFICIENCY OF SIMULATION f
We consider in this section the calculation of theoretical values for %

variance constants entering into the central limit theorems used in

previous sections to obtain confidence intervals for passage time

characteristics. Using results of Hordijk, Iglehart and Schassberger

(1976) for the calculation of moments in discrete time and continuous time
Markov chains, we compute theoretical values for mean passage times. We

do this first for the marked job method (in the stochastic setting of
Section 7), and then for the decomposition method of Section 8. For passage
times where both estimation methods apply, these results provide a firm
basis for a comparison of statistical efficiency. The calculations also
make it possible to assess the efficacy of the marked job method for

simulation of response times.

9.1. Theoretical Values for Finite State Markov Chains
Following Hordijk, Iglehart, and Schassberger (1976), we first consider
discrete time Markov chains, and let {Xk:kao} be an irreducible Markov

chain with finite state space E={0,l,...,N} and one-step transition matrix

P= {pij:i,jeE} .

For this chain, we let p:j denote the n-step transition probability from *

state 1 to state j, and recall that for n2l, ;

gn - {szziaJGE} .

Throughout this section we use the following notation. For a fixed

state 1ic¢E, Pif'} denotes the conditional probability associated with

e ol s T LU R T L TR
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starting the chain in state i, and Ei{'} denotes the corresponding
conditional expectation. For j<E, the state space of {Xk:kZO}, and n2l

we let Bn(j) denote the nth entrance time of {xk:kzo} to state j, e.g.,
B,(4) = min{kZI:Kk-j}

and let al(j)-Bl(J) and un(J)'Bn(J)- n__l(:]), n>l. This notation is
consistent with that introduced in Section 2 for regenerative processes.
Note that {Bn(j):nzl} is a (possibly delayed) renewal process since a
finite state, irreducible Markov chain is necessarily positive recurreant
and therefore returns to every state jcE infinitely often with probability

one., If Xo-j, the process {B n(j):::le} is an ordinary renewal process.

We consider vectors such as (v(0),v(l),...,v(N)) to be column vectors.
Real-valued functioms, such as f and g, having domain E are viewed in this
way and denoted by £ and g. In this context the symbol E{*} denotes the

vector
(Eo{'},El{-},...,EN{°}) .
In addition (for vectors u and v) the symbol uov denotes the vector
(u(0)v(0),u(1)v(1),...,u(N)v(N)) .
For a matrix -&.(30"1" ..,am), ve let
ucA = Aou = (u°ao,u°al,...,u°am) .

Finally, for a matrix B=(b . "’bm) , We let

O’bl’

A°B = (¢0°b0,a1°b1, ‘e ,am°bm) .
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We first consider computation of the values of Ei{Yl(f)} and
Ei{Yl(f)Yl(g)} for genéral real-valued functions f and g having domain E,
and i€eE. Accomplishing this (and similar computations for continuous time
Markov chains) makes it possible to obtain theoretical values for mean
passage times; in addition we can obtain values for the variance constants
which enter into central limit theorems used to obtain confidence intervals

in simulations by the marked job and decomposition methods.

For the discrete time Markov chain {xk:kzo}, we consider here only
cycles of the regenerative process formed by the successive entrances to
state 0, and henceforth suppress the 0 in the notation Bn(O), an(O), etc.
Note that this is no real restriction, and that equally well we could

choose any other state icE. For 1,j¢E and n=0,1,..., let

oPij = Pylapm, X =31,
and set

02? - {op:j:i,jeE} .
We obtain

oF o

from P by setting the O-column of P equal to 0. It is easy to see that

Pn

ob is the matrix product of n copies of ,P, and that for all n2l,

0.

n =
oP10
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Theorem (9.1.1) is due to Hordijk, Iglehart, and Schassberger (1976).
For any real-valued function f with domain E, we define

31-1

Y(6) = ) (%) .

k=0

(9.1.1) THEOREM. For an irreducible, finite state discrete time Markov

chain with transition matrix P,

-1
E{Y, (£)} = (I- D) £ (9.1.2)
and
E{Y, (£)Y, (8)} = (_I_-og)'l_ll ) (9.1.3)

where h=f°E{Y, (g) Mg°E{Y, (£)}-£°g.

Now we consider continuous time Markov chains and let X={X(t):t20} be
a Markov chain with finite state space E={0,1,...,N}, tramsition
matrix gﬁt)-{pij(t):i,jeE} and matrix of infinitesimal transition parameters
Qf{qij:i.jeE}. Recall that in a continuous time Markov chain the
matrix Q=P'(0) is the given data. In general, P(t) is difficult to
calculate and i3 rarely available explicitly. The exponentially
distributed holding time in any state icE has rate parameter Pt PR For
all i<cE, we assume that 0<qi<~, i.e., that all states are stable and

nonabsorbing, and in addition that

N
2: q,, =0 .
gm0
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" This last assumption guarantees that, starting from any state i¢E, the
Markov chain X makes a transition to a next state jeE. We now form the
jump matrix gr{rij} of the chain, defining the elements rij according to

»l ' 44/ag » 3#

rij = . f
0, joi ;

We assume that the jump matrix R is irreducible (and therefore positive 4

recurrent). This is equivalent to the continuous time Markov chain X being

irreducible. As in the case of a discrete time Markov chain, we let Pi{-}

i and Ei{°} denote the conditional probability and conditional expectation

associated with starting in state i¢E. For je¢E and n2l, we let Bn(j) denote

! the nth entrance time of X to state j, i.e.,

B,(3) = inf{s>0:X(s-)¥4, X(s)={} .

We now consider the computation of Ei{Yl(f)} and Ei{Yl(f)Yl(g)} for

real valued functions f and g with domain E. As in the case of discrete

: time Markov chains, we restrict attention to regenerative cycles formed

by the successive entrances to state O, and suppress the 0 in our notation.

K

For t20, we let

v S e

opij(‘) = P {a,>t, X(t)=3} ,

oB(t) = {gpy,(e):1,3eE} ,

and, for n20, construct the matrix 03? from R in the same manner as we

constructed og? from P in the discrete time case.

B e U SRy AP - +
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For a real-valued function f defined on E, we define Yl(f) according

to

Bl
Yl(f) -f f(X(t))de ,
0

and let grl be the column vector

-1

-1 -1 -1
1 - (qo ’ql '.to.qN

) .
Theorem (9.1.4) is due to Hordijk, Iglehart, and Schassberger (1976).

(9.1.4) THEOREM. For an irreducible, finite state continuous time Markov

chain with jump matrix R and vector q of rate parameters for holding times,

E{Y, (£)} = EU P(E)f d:} = (;—Og_fl(_f_eg‘l) (9.1.5)
00
and
E{Y, ()Y, ()} = EUo 0_13_(:)3 dt§ = (;-og)'l(geg’l) (9.1.6)

vhere h=f°E{Y, (g) Mg°E{Y, (D)}.

We now show how to use the results of Theorems (9.1.1) and (9.1.4) to
assess the statistical efficiency of simulation by the marked job method

for mean passage times.

9.2, Variance Constants for the Marked Job Method
We consider closed networks of queues and passage times as in

Section 7.1. For t20, the state vector of the network 1s

TV AL SRR B
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X(t) = (2(t),N(v)) , (9.2.1)

where Z(t) (of Equation (7.1.1)) corresponds to the linear job stack, and
N(t) is the position in the job stack of the marked job at time t. Recall
that the process X={X(t):t20} is an irreducible, positive recurrent Markov
chain with state space E. As before, we denote by L(t) the last state
visited by the Markov chain X before jumping to X(t), and the process

V={V(t):t20} defined by
v(t) = (L(t),X(t)) (9.2.2)

is the fundamental stochastic process of the passage time simulation.

Recall that the process V has a state space F consisting of all pairs
of states (1,j), 1,j€E for which a transition in X from state i to state j
can occur with positive probability. Since X is an irreducible, positive
recurrent Markov chain, so is V, and the entrances of V to the fixed
subset S [respectively T] (defined by Equation (7.2.3)) of the state space F
correspond to the starts [respectively terminations] of passage times for

the marked job.

As in Section 7.2, we select a (fixed) state of S, designated state O,
and assume that V(0)=0. To estimate the quantity r(f) of Equation (7.2.1),
the marked job method prescribes that we carry out the simulation of ¥ in
O-cycles defined by the successive returns to state 0; within each cycle
we record the number of passage times of the marked job and measure each

of these passage times.
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The key results of Section 7.2 leading to point estimates and
confidence intervals for the quantity r(f) are that the pairs of random

variables
{(r, (£),M) :k21} (9.2.3)
are independent and identically distributed, and that
r(f) = Eo{Yl(f)}/Eo{Ml} . (9.2.4)

Recall that Mk is the number of passage times for the marked job in the
kth O-cycle and Yk(f) is the sum of the values of the function f for the

passage times of the marked job in this cycle.

Given Equations (9.2.3) and (9.2.4), the regenerative method provides
(from a fixed number n of O-cycles) the point estimate
£ () = Yn(f)/Mn .

The associated confidence interval for r(f) follows from the central limit

theorem
at/ 22 _()-x(D))
2 - N(0,1) , (9.2.5)
o(f)/EO{Ml}
where
o2(f) = var{Y, (£)-r(M,} . (9.2.6)

For calculation of theoretical values, we restrict attention to the

mean passage time; thus, the function f in the definition of r(f) is the
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identity function. Using the results of Section 9.1, we show how to compute
the value of the mean passage time r and the corresponding variance

constant 02 appearing in the central limit theorem of Equatiom (9.2.5).
These computations rest on the definition of two particular functions

* *
(denoted f and g ) having domain F and taking values in the set {0,1}.

*
We define the function £ to be the indicator function, ls, of the
set S which defines the starts of passage times for the marked job; i.a.,

for (z,n,z',n')eF,
f*(z,n,z',n') = ls(z,n.z',n) . (9.2.7)

Proposition (9.2.8) follows directly from Theorem (9.1.1).

*
(9.2.8) PROPOSITION. Let £ be the function defined by Equation (9.2.7),
and R the transition matrix of the discrete time Markov chain {V, :k20}.

' Then

, 8,-1
* 1 * -1 %
E{Y,(f)} = E 1?-"6 £ V(= @® £
and

*x_ 2 -1 *
Bx, (€)% = @ ™h",

where 61 is the time of the first return to the state O in {Vk:kZO} and

B=2g" oE (Y, (£"))-£ ot

We use Proposition (9.2.8) and the definition of Ml to obtain the

| . quantities EO{MI} and Eo{Mi} according to




Egliy} = ElY, (£1)

E 0} = B {(r, (")) . (9.2.10)

For an element (z,n,z',n')eF, the value of the function g* is 1 if a
passage time for the marked job starts or is underway when the
configuration of the job stack is z' and the marked job is in position
n'; the value of g* is 0 otherwise. Formally, let D be the state space
of the process Z={Z(t):t20} appearing in Equation (9.2.1). As in Section 8,
for ze¢D and ne{l,z,...,N},'we write h(z,n)=(i,j) when the job in position n
in the job stack z is of class j at center i. Now consider the embedded jump
chain {V, :k20} associated with the continous time Markov chain ¥ of
Equation (9.2.2). For states v',v"¢F, the state space of {Vk:kzo}, ve
write v' ~ns v" when v" is accessible from v', i.e., when for some n2l, the
probability starting from v' of entering v' on the nth step is positive.

1

Similarly, for any subset 1 of F we write v' A,Vv" when v" 1is accessible

from v' under the taboo I.

Denoting the set of (center, class) pairs in the network by C, we define

a subset G of C according to

G={(1,J)eC: for some (z,n,z',n')eS, h(z',n')=(1,§)} v
{(1,3)eC: for some (z,n,z',n')eF-(SuT), v'eS and v"eT ,

v' A (z,n,z',n"), (z,n,z',n') A v" and h(z',n")=(1,3)} .




sy ff AW, o LR

JpiierpibSins s o

LRSS SV

&t A&

S A’ i e

Py

123

Thus, the set G-Glucz, where a (center, class) pair is in the set G1
[respectively Gzl if it is possible for the marked job to be of class j at

center i when the passage time specified by the sets A, Az, Bl. and B

1 2

starts [respectively is underway].

*
Now, for (z,n,z',n')eF, we define the function g as

s*(z.n.Z'.n') - lc(h(z',n')) . (9.2.11)

*
(9.2.12) PROPOSITION. Let g be the function defined by Equation (9.2.11),
and R be the jump matrix and g the vector of rate parameters for holding

times in the continuous time Markov chain V. Then

g
B(y, (5"} = z{ [n g*w(s))ds} - @@ g
0 :
and
(7,63 = @@ g™
where Bl is the time of the first return to the state 0 in V, and

n'=2g"oE{y, (gM)}.

Proposition (9.2.12) follows directly from Theorem (9.1.4). We use
this result together with the observation that
M

8 1 .
f Lt vis)yas = 3 P, (9.2.13)
0 =1

— ‘ Ve R T

P
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to obtain the quantities
! )

E, ;gi Py = E (Y, (s)} (9.2.14)
and

4

2 ® .2
l-:o(jgi pJ) - no{(tl(s N (9.2.15)

Using the ratio formula, Equations (9.2.9) and (9.2.14) yield the
quantity r., To obtain the variance constant 02 appearing in the central
limit theorem (Equation (9.2.5)) for the marked job method, we require one

more result,

(9.2.16) PROPOSITION. Let R be the jump matrix and g the vector of rate

parameters for holding times in the continuous time Markov chain V. For

* *
the functions £ and g defined by Equations (9.2.7) and (9.2.10),

8 8,71
e [ Pelwenasd fopi - @@y,
0 b

where h'={ (1-oR) " 1e (" eq )+ (= @ L (g eg ™ 1o - (gYoa et ™

Proposition (9.2.16) does not follow directly from Theorem (9.1.1) for
discrete time Markov chains or from Theorem (9.1.4) for continuous time
Markov chains, but is established by similar methods; see Iglehart and

Shedler (1979b), Appendix. From Proposition (9.2.16) we obtain

TSR A R RN
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( ) J-Bl *(v(e))d 621-1 £ (v,) (9.2.17)
E E: P = E g (V(s))ds . 2.1
o\ & " " o, k=0 k

: i

Then an expression for the variance constant 0~ is

o? = &, (';_*‘, pj)z - Z’Eog(% Pj)ul + el 3} i

j-l J-l

This follows from Equations (9.2.10), (9.2.15), and (9.2.17).

When comparing the statistical efficiency of the marked job and
decomposition methods, it is convenient to have a central limit theorem
comparable to Equation (9.2.5) but in terms of simulation time, t, rather
than number of cycles, n. Let m(t) be the number of passage times
completed by time t, i.e., in the interval (0,t]. If we denote by n(t) the

nunber of O-cycles completed by time t, then from remewal theory, as t+x,

a(t) _. 1
e Ejla]

with probability one, where Eo{al} is the expected length of a O-cycle in
V. This implies that for large t, the number of O-cycles completed by
time t is approximately t/EO{al}. Combining this result with

Equation (9.2.5), it follows that as t¥,

n(t)

22 (m(e) }'1( 2 £ i)) -r(£)]
=

(Egla, ) Y258y /8,0, )

= N(0,1) .

This result is independent of the initial state V(0). Since the numerator
in this central limit theorem is independent of the state 0 selected to

form cycles, so is the denominator. Thus for the mean passage time

o B P TR AR I R
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e = (B {a, N 20/E ()

is the appropriate measure of statistical efficiency for the marked job
method and is independent of the state O¢S selected to form cycles. Note

that we obtain the quantity Eo{al} according to
Eo{al} - Eo{Yl(l)} .
where 1 is the f function identically equal to one and

81
Y, ()} = z{f 1(vcs))ds§ = (R g™ . (9.2.19)
0

9.3. Variance Constants for the Decomposition Method

We now turn to the decomposition method. As in Section 8.2, we label
the jobs from 1 to N, and for i=1,2,...,N, denote by Ni(t) the position
of job i in the linear job stack at time t. Then, in terms of the vector

Z(t) corresponding to the job stack, for t20 we set
xt(e) = (z(e), N (e)
and
x2(e) = (2¢e) N (e) NP CE) L.l NV () (9.3.1)

Recall that each of the processes 51-{x‘(:)::zo} (1=1,2,...,N) and
§°-{x°(:)::zo} is an irreducible, positive recurrent continuous time Markov
chain. We denote the state space of the process xi [respectively gol by

et [respectively EO].

e T T
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: Next we let Li(t) (respectively Lo(t)] denote the last state visited
V! by the Markov chain X [respectively gol before jumping to xi(:)

[respectively X'(t)], and for t20 and i=1,2,...,N, define
1 _ vieey = @wlee),xte))
and
1 voe) = ), x%e)) . (9.3.2)

The process 20-{V°(t):t20} is the fundamental stochastic process of the

passage time simulation.

Since each of the processes §i and go is an irreducible, positive

recurrent continuous time Markov chain, so is each of the processes

)

!}-{Vi(:):czo} and V' . " We denote the state spaces.of 2i and 20 by Fi

and
Fo, respectively. The entrances of !i to the fixed subset Si [respectively
Ti] of Fi (defined by Equation (8.2.3)) correspond to the starts
[respectively terminations] of passage times for job i. Similarly, the

successive entrances of !0 to the fixed subset s? (defined by

2 Equation (8.2.4)) of Fo correspond to the starts of passage times
' irrespective of job identity, and the entrances of XO to the subset To
é i correspond to the terminatiomns.

The decomposition method applies to passage times for which the sets S
and T (which define the starts and terminations of passage times of a *

particular job) are disjoint. As in Section 8, {Pg:nzl} denotes the
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{

§ sequence of passage times (irrespective of job identity), enumerated in

‘1 order of passage time start, and by the argument in Appendix 1, P&-DPO.
{

The goal of the simulation is estimation of the quantity ro(f) of

Equation (8.2,5). : g

Recall that to estimate ro(f), the decomposition method prescribes
that we carry out the simulation of the process 20 in random blocks defined
;r by the successive entrances of the process to the fixed set of states U
defined by Equation (8.2.6). Entrances of 20 to the set U0 correspond to
the terminations of passage times (irrespective of job identity) which

occur when no other passage times are underway, and which leave a fixed

(o i PO
b e o e e o ke 4

configuration (zo) of the job stack. For k21, Yg denotes the length in

discrete time units of the kth block (returns to the set Uo) of the process

- 0 0_0 0
vt {Vg:nZO}; also, 60-0 and Gm-yl+...+vm, m21.
0

We assume that VO(O)eU and for m2] denote by Kg the number of passage

times in the mth block of the process !0. Also, we let Yg(f) be the sum

of the quantities f(Pg) over the passage times in the mth block of !0.

The key results of Section 8.2 leading to point estimates and confidence

i

intervals for the quantity ro(f) are that the pairs of random variables
{¥%¢£) &%) im21} (9.3.4)
m " m i
are independent and identically distributed, and that the quantity

| f0(f) = E ol H/E o}, (9.3.5) ]
U U i
-
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provided that the quantity E{If(P°)|}<w. The symbol E ,{*} is an abuse of
our previous notation. It connotes conditional expectgtion assoclated
with starting the Markov chain 20 in one of the states in the set Uo. The
definition of the set UO implies that the value of this conditional

expectation is independent of the particular starting state in Uo.
Given these results, from a fixed number of blocks of V, the
decomposition method provides the point estimate
20 50 =0
rn(f) Yu(f)/Kn .

The assoclated confidence interval for ro(f) follows from the central

limit theorem

a/20(6)-0 ()}

5 5 -> N(0,1) , (9.3.6)
o (£f)/E 0{Kl}
U

where

°(£))? = var{Yg(f)-r°(f)x<‘l’} . 9.3.7)

Taking f to be the identity function, we restrict attention to the
quantity ro and consider computation of the corresponding variance constant
(oo)2 and related theoretical values. By the argument which leads to
Equation (9.2,18), the appropriate measure of the statistical efficiency
of the simulation is the quantity

e - (Euo{ag})l/zoo/auo{xg} , (9.3.8)

where ag is the length of a block in the continuous time process 20.

-

m?' )
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The individual quantities required to compute this measure of
efficiency are defined in terms of the successive returns of the process 20
to a fixed set of states (Uo) rather than to a single state. Moreover,
the successive entrances of 20 to Uo are not regeneration points for !0.
Accordingly, we cannot apply the results of Section 9.1 directly, as we
did for the marked job method. Instead, we select a fixed state
(degsignated state uo) from the set Uo and compute the quantity corresponding
to Equation (9.3.8) for the resulting uo-cycles. (Note that the successive

entrances of the process 20 to the fixed state uo are regeneration points

for !0.) The expression in Equation (9.3.8) computed for uo-cycles is L

1/2 0

fwW® = (& o{ag}) o)/ o{xcl’} , %
u u

where the constant 08 (analogous to 00) is defined for uo—cycles. This
quantity eo(uo) is equal to eo. To see this, for t20 let mo(c) be the
number of passage times (irrespective of job identity) completed in the

interval (0,t]. In terms of simulation time, t, we have the central limit

theorem

1/2], 0, .4-1 mo(e) o} o 0,,1/2.0 0

e e ()} T X £(R))-r (£)]/ [(E ({la/ DT 0 (£)/E 4{K;}| => N(O0,1) ,
{i=1 U U

and, when £ is the identity function, the variance constant in the

denominator is the quantity eo. There is a similar central limit theorem
in terms of uo-cycles; the numerator is the same and the variance constant
in the denominator is eo(uo). Since the numerators in these two central

limit theorems are the same as are the limiting random variables (N(0,1)),

e N T LR =
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.0 must equal eo(uo). For a similar argument, see Propositions 5.1 and

5.6 of Crane and Iglehart (1975a).

Next we observe that the number of passage times in a uo-cyclc of the
process go, as well as the sum of the passage times in a uo-cycle, does
not depend on the identities of the jobs in successive configurations of
the job stack. It follows that rather than working with the stochastic

process 20, we can work with process W={W(t):t20} defined by
W(t) = (K(v),z(t)) . (9.3.9)

Here Z(t)eD corresponds to the linear job stack at time t, and K(t) is
the last state visited by the Markov chain g-{z(:):czo} before jumping to
Z(t). The process W is an irreducible, positive recurrent continuous time
Markov chain with a state space that is a subset of DxD. Note that in
general the state space of W is much smaller tham that of 20, and that
working with the process W is computationally advantageous.

The computations rest on the definition of two particular functioms
(f and g) defined on the state space of W and taking values in the set
{0,1}. We define the functions £ and g in terms of functions £° and go
defined on Fo, the state space of the process !0. We take the function
fo to be the indicator function, lso, of the set S0 which defines the

gtarts of passage times irrespective of job identity, i.e., for

(z,nl,...,nN,z',ni,....,nﬁ)eFo,

fo(z.nl,....,nN,z',ni,...,nﬁ) =1 o(z,nl,...,nN,z',ni,...,n&) . (9.3.10)
S
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Thus if a passage time for some job starts when !0 hits
(z,nl....,nu,z',ni,...,nﬁ), then fo-l. Note that for each (z,z') in the
state space of W, there exist nl,...,nN.ni,..., and n& such that

(z.nl,...,nu,z',ni,...,nﬁ)eFo. For a state (z,z') of W, we define

£(z,z') = fo(z,nl,...,n.N.z',n]'.,...,nt") . (9.3.11)

The function f is well defined since, for fixed z and z', the function fo

is independent of its other arguments.

For an element (z,nl,...,nN.z',ni,...,n&)eFo, the value of the function

go is the number of passage times that start or are underway when the
configuration of the job stack is z'., Formally, for

(z,nl,...,nN,z',ni,...,n&)eFo, we define
N

go(z,nl,...,n.N,z',n]'.,...,n.&) - kZ_:l 1,(h(z,k)) . (9.3.12)

Then, for (z,z') in the state space of W, we define

g(z,z") = go(z,nl,...,nN.z',ni,...,nﬁ) . (9.3.13)

The justification for using the process W is that the number of passage
times (which start and terminate) in the first uo-cycle of Xo is
Kl-l

j‘:6 £ (9.3.14)

and the sum of the passage times in the first uo-cycle of !0 is

%1
fo g(W(s))ds . (9.3.15)
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Here ;1 (respectively Kl) is the time of the first return of the process W
(respectively the jump chain {Wk:kZO}) to the fixed state w’. The return
state wo corresponds to the fixed state uo selected from the set Uo, i.e.,

if
uo =- (z,nl,...,nN,zo,ni,...,nﬁ) ,

then wo-(z.zo).
Proposition (9.3.16) follows directly from Theorem (9.1.l1).

(9.3.16) PROPOSITION. Let f be the function defined by Equation (9.3.11),

and R be the transition matrix of the discrete time Markov chain {W, :k20}.

Then
K,~1
L -1
E{Y,(f)} = E{Z f(wk)z = @-® £
k=0
and
2 -
E((r (6% = @7,
vwhere Kl is the time of the first return to the state wo in {wk:kzo} and

h=2£°E{Y, (£) }-£of.

From Proposition (9.3.16) we obtain the quantities E O{Kg} and E 0{(Kg)2}
u u
according to

E K} = E (v (¢ 3.
01 T E gty )} (9.3.17)

e ' i Lo VTS R UG
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and

0,2 2
Euo{(xl) } = Ewo{(Yl(f)) }. (9.3.18)

(9.3.19) PROPOSITION. Let g be the function defined by Equation (9.3.12),
and R be the jump matrix and q the vector of rate parameters for holding

times in the continuous time Markov chain W. Then
% -1, -1
E{(Y,(g)} = E g(W(s))ds( = (I-,R) "(g°q ) ,
1 0 o=
and
(7, (807} = - taeg™D
vhere 5 is the time of the first return to the state wo in ¥, and

he2£9E{Y, (8) }.

Proposition (9.3.19) follows directly from Theorem (9.1l.4). We use

this result to obtain the quantities

0
% 0 { }
E P,(=E .{Y,(g) (9.3.20)
o0 = 3 G0 1
and
(%)
0l2 2
E P =E  {(Y,8)°} . (9.3.21)
W0 ,1):"1 3 G0 1

Using the ratio formula, Equations (9.3.17) and (9.3.20) yield ro.

Analogous to Proposition (9.2.16) we have
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(9.3.22) PROPOSITION. For E{Yl(f)} and E{Y,(g)} given by

Propositions (9.3.16) and (9.3.19),

z Kl-l
E“o 1 g(i(e))ds kz_‘, f(wk)} - Q-OR_)'lg '
=0

where he(geg ") E{Y, (£) HESE(Y, () }-gog ) of.

We use this result to obtain

Kg-l ) } z Kl-l
0}.0 fl
E P JY( = E g(W(s))ds £(W, } (9.3.23)
Uog(igg 1 wo { 0 &E% k

Then to compute the variance constant (co)z, we use the results of

Equations (9.3.18), (9.3.21), and (9.3.23).

9.4, Numerical Results

We once again consider the closed network of queues of Section 5.1,
and the limiting passage times P and R therein. Recall that the limiting
passage time P starts when a job joins the center 1 queue upon completion
of a center 2 service and terminates when the job next joins the center 2
queue, Similarly, the response time R is associated with the time between
successive entrances of a job into the center 1 queue upon completion of

a center 2 service.

For the passage time P, the sets Al and Az defining the starts of

passage times are
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Al = {(1,N):0si<N} ,
and

A, = {(1,1):0<4sN} .
Similarly, the sets B

and B, defining the terminations of the passage

1 2

time P are

B, = {(1,1):0<isN}
and

B, = {(1-1,1) :0<1i=<N} .

For the response time R, the sets A1 and A2 are the same as for the passage

=A, and B,=A

time P, but Bl 1 2=hy.

In connection with the marked job method, the process
V={ (L(t),X(t)):t20}, where L(t) is the last state visited by the Markov

chain X before jumping to X(t), has state space
F= {(41,§,1+1,§+1):0s3<N, 1<i<N} u {(4,N,i+1,1) :0<4<N} v
{(1,5,1-1,3):0<4<N, 1s3sN} v {(4,4,1,1):1<is<N} .

The subsets of F defining the starts and terminations of passage times

for the marked job are

s = {(4,N,441,1) :0<4<N}
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and

LS4y b,

T= {(1,1,1-1,1):0<1sN} .

Tables 9.1 and 9.2 give theoretical values for simulation of the closed
fg . network of queues by the marked job method. Numerical results are
?i ' displayed for the mean of the response time R and corresponding results
for the passage time P are in parentheses. For the case of N=2 jobs

(Table 9.1), the set S={0,2,1,1), (1,2,1,1)}. With Al-l, AZ-O.S, and p=0.75,

the numerical results show that on the average O-cycles defined by returns
to the state (0,2,1,1) are twice as long as those defined by the returns él

to the state (1,2,1,1). Note that as expected, the quantities UZ/EO{MI}

1/2
)

(as well as e-(Eo{a c/Eo{Ml}) are the same for the two return states.

. N Ll i
e et s ot b o e e e = e

Table 9.2 gives results for N=4 jobs. Here there are four possible return '

states, and for the parameter values selected, returans to the state
(3,4,4,1) occur most frequently, and on the average eight times more often

than returns to the state (0,4,1,1).

We now turn to the decomposition method. As we saw in Section 8.2,

the process

otk s b .

0 = {(2() N (E) 5. NV (E)) 220}

has state space EO, where

EQ = {(4,0y,..0,0) 104SN; 13m0 00, myysH; ng¥n, for 149} .

e e

The underlying continuous time process 20 defined by

e " EIe ) ala E S T T
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W) = alw,x%w)) ,

where Lo(t) is the last state visited by the Markov chain Eo before jumping

to x°(:). has state space Fo. The subsets of Fo defining starts and

terminations of passage times are
9= {1 ; ') :0S4<N; *
= .nl,...,nN,i+l,nl,...,nN).051<N, for exactly ome j ,

! = ' *.
nj*-N and nj* 1; 1sn,<N and nyen,+1, §4§ 5 nén, for kejl

and

70 - {(1,n1,....nN.i-l,ni,..,nﬁ):0<1SN;

1<n =n'sN, for 1sjs<N; nk#n

4 for k#jl} .

3

The process Z={Z(t):t20} has state space D={0,1,...,N}, the set Do-{O}.

and the set Uo defining blocks of the process XO is
U0 = {(l,nl,...,nN,O,nl,...,nN):ISnl,....nNSN; nifnJ for 1¥4} .
The state space of the stochastic process W is

{(1,1+1) :0s4sN-1} v {(1,1-1):1sisN} ,

and the state wo-(l,O).

Table 9.3 gives theoretical values for simulation of the closed network

of queues by the decomposition method for the mean of the passage time P.

The table gives results for Ne=l to N=4 jobs, and the parameter values are

the same as in Tables 9.1 and 9.2. For N=2 jobs, the value of the

quantity co-eo(uo) of Equation (9.3.8) which measures the statistical




efficiency of the decomposition method is 16.546. The corresponding value
from Table 9.1 for the marked job method is 20.890. Thus, for these
parameter values the decomposition method is approximately 21 percent more
efficient than the marked job method. For N=4 jobs, the decomposition

method is 41 percent more efficient.

Numerical results bearing on the statistical efficiency of the
decomposition method for simulation of the closed network of queues appear
in Table 9.4, For N=1 to N=6 jobs, the table gives theoretical values of
the quantities ro and eo for three sets of parameters values. We hold the
value of Al-l and p=0.75 fixed, but vary Az. Table 9.5 gives a comparison
of the relative efficiency (e/eo) of the marked job and decomposition

methods for the same sets of parameter values.
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TABLE 9.1

Theoretical Values for the Marked Job Method.
Passage Time R (P) in Closed Network of Queues.

] N=2, A =1.0, 1,=0.5, p=0.75.
Ll Parameter Return State of Y={V(t):t20}
(0,2,1,1) (1,2,1,1)
' Eo{al} 24.0 12.0
1 )
- 1 ;
Eq) 2 P 28.0 14.0
'1 EyiM; ) 3.0 1.5
'i (3-0) (1'5)
R E P,(/E.{M, } 9.333 9.333
Ly Oly=1 3) 02 (6.667) (6.667)
o2 140.267 70.133
(129.067) (64.533)
: cz/zo{nl} 46,756 46.756
4 (43.022) (43.022)
:
¢ (Eo{al})” 2 o/Ey M, } 20.890 20.890
1 (20.038) (20.038)
3
.
&
W‘"
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TABLE 9.2

Theoretical Values for the Marked Job Method. |
Passage Time R (P) in Closed Network of Queues. j
N=4 , Xl-l.O, AZ-O.S, p=0.75.

—-—

Parameter Return State of V={V(t):t20}

(0,4,1,1) (1,4,2,1) (2,4,3,1) (3,4,4,1)
Eo{al} 216.0 108.0 54.0 27.0
¥,

Eg) & P 248.0 124.0 62.0 61.0
jo1 3 (196.0) (98.0) (49.0) (24.5)
EyM,} ' 15.0 7.5 3.75 1.875

(15.0) (7.5 (3.75) (1.875)

e

Eq) 2 Py /E Ty ) 16.533 16.533 16.533 16.533

j=1 ’ (13.067) (13.067) (13.067) (13.067)

o2 2111.343 1055.672 527.836 263.918
(2139.600) (1069.800) (534.900) (267.450)

ozlno{ul} 140.756 140.756 140.756 140.756
(142.640) (142.640) (142.640) (142.640)

(Eo{al})l/ 2 o/Ey, ) 48.241 48.241 48.261 48.241
(48.562) (48.562) (48.562) (48.562)

Rlafte L oVagiee & i g a0 % 0 3 20l
, A




TABLE 9.3

Theoretical Values for the Decomposition Method.
Passage Time P in Closed Network of Queues.

A;=1.0, 1,%0.5, p=0.75.
Parameter N=1 N=2 N=3 N=4
E o{ug} 6.0 24.0 30.0 62.0
u
X
Egy 2 4.0 20.0 68.0 196.0
h |
u{§=1
0 ]
Euo{Kl} 1.0 3.0 7.0 15.0
0
L o 0
E .2 PL(/E (K} 4.0 6.667 9.714 13.067 |
0 1{/E 0%y |
v i=1 u j
(ag) 2 . 16.0 176.0 1023.673 4317.227 :
0.2 0
o) ?/E (&} 16.0 58.667 146.249 287.815
u
0,\1/2 0 0
(Euo{al}) °o/E“o{‘1} 9.798 16.546 25.035 34.491




TABLE 9.4

Statistical Efficiency of the Decomposition Method.
Passage Time P in Closed Network of Queues.

p=0. p=0.75 p=20.75
Ay =1 A, = 1.0 Ay =1
1 1 1
AZ 0.125 Xz = 0.25 Az =0
£ eo ro eo r? 0
4.0 13.856 4.0 11.314 4.0 9.798
5.333 19.956 6.0 17.664 6.667 16.546
6.286 27.380 8.0 26.128 9.714 25.035
6.933 35.189 10.0 36.606 13.067 34.491
7.355 42.597 12.0 49.107 16.645 44.296
7.619 49.068 14.0 63.645 20.381 54.021 ‘
j
i
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TABLE 9.5

Relative Efficiency of the Marked Job and Decomposition Methods.
Passage Time P in Closed Network of Queues.

p = 0.75 p=0.75 p=0.75

A, = 1.0 A, = 1.0 A, = 1.0
N A, = 0.125 Ay = 0.25 A, = 0.5
1 1.0 1.0 1.0 |
2 1.190 1.189 1.211 i
3 1.207 1.224 1.319
4 1.190 1.209 1.408
5 1.176 1.186 1.499 3
6 1.394 1.162 1.597

D LT T
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10.0. NETWORKS WITH MULTIPLE JOB TYPES

We have considered in previous sections the problem of simulating
closed and finite capacity open networks of queues, respectively, for
general characteristics of passage times. Under consideration here are
networks with multiple job types and the estimation of individual and
joint characteristics of passage times over the several job types. The
type of a job may influence its routing through the network as well as
its service requirements at each center. For expository convenience, we
assume that there are only two job types in the network and we mark one
job of each type. By tracking these two jobs, we are able to produce from
a single replication confidence intervals for a variety of passage time
characteristics. The estimation method of this section can also be applied
to networks with only a single job type; the result is an alternative

scheme to that proposed in Section 7.

10.1. Preliminaries

We consider closed networks of queues with a finite number of jobs,
N, of two types, and agsume that there are Nl [respectively N2] jobs of
type 1 [respectively type 2] with N1+N2-N. In each network there are a
finite number of service centers, s, and a finite number of job classes,
c. All jobs retain their job type, but may change class as they traverse
the network. (Think of type 1 jobs as cubes and type 2 jobs as spheres,
and let job classes correspond to different colors. Then we permit jobs
to change color, but not shape.) Upon completion of service at center i,

a type V job of class j goes to center k and changes to class % with

SEREE R LR R gl - o ST Med LA R ad 10t o) -
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probability piy)kk’ We assume that for v=1,2, gf“)-{p(v) t1<4i,k<s, 1$j,£sc}
9

ij,ke

is a given irreducible Markov matrix.

The service times and service discipline at each service center are
as in Section 7 with the exception that they may also depend on job type.
We briefly review the situation. At each service center jobs queue and
receive service according to a fixed priority scheme among classes and
types, which scheme can vary from center to center. Each center operates
as a single server, processing jobs of a fixed type and class according
to a fixed service discipline. All service times in the network are
mutually independent, and at each center have a distribution with a
Cox-phase representation with parameters which may depend on the
service center, type and class of job being serviced, and the "state" of
the entire system. (As usual, we exclude zero service times occurring
with positive probability.) A job in service may or may not be preempted
(according to a fixed procedure for each center) if another job of higher

priority joins the queue at the center.

We restrict the present discussion to networks in which all service
times are exponentially distributed, and deal with distributions having
a Cox-phase representation in the usual way by the method of
stages. To characterize the state of the system at time t, we let si(t)
denote the (type, class) pair of the job receiving service at center i at

time t, i=1,2,...,8. If there are no jobs at center i at time t, we set

Si(t)-(O,O). We denote by jl(i)""’jk(i)(i) the (type, class) pairs

gserved at center i ordered by decreasing priority, and let

RRIARL 7Pe ouN vy
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§i)(t)...., §1) (t) denote the number of jobs in queue at time t of the
1l k(i)

various (type, class) palrs served at center i. We mark one job of each

of the two types in order to measure their passage or response times. As

in previous sections, we view the N jobs as being completely ordered in a

linear stack, and let the vector Z(t) be given by:

Z2(t) = (cj‘l’ (). nCP (0,5, ()50

k(1) 31 |
¢ (0),....c® .5, . (10.1.1)
Ix(s) 3 »

The linear job stack again corresponds to the order of components in the
vector 2(t) after ignoring any-zero components. Within a (type, class)

pair at a center, jobs waiting appear in the job stack in the order of their
arrival in the center, the latest to arrive being closest to the top of

the stack. Let Nv(t)_(v-l,Z) denote the position from the top in this

job stack of the type v marked job. Then for t20, the state vector of

the network is
X(e) = (Z(£),N (£),N,(x)) . (10.1.2) |

Under the exponential service time and Markovian routing assumptions, the

process X={X(t):t20} is an irreducible continuous time Markov chain with

finite state space E.

10.2. Simulation for Passage Times

We specify the passage (or response) times for the two types of jobs

by eight subsets of E: A{v), Aév), B{v), Bév), for v=1,2. The sets A{v)

and Aév) [respectively Biv), B§V)] determine when to start [respectively

Mobraic! Sl el

LDt L O S
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stop] the clock measuring a particular passage time for the type VvV marked

job. Denoting the jump times of the process X by {rn:nzo}, for k,n2l, ve

require that the sets A{v), Agv). B{v) and Bgv) satisfy )

1f x(r__peal™, xeryeal™, xr L 0eal™ and x(1yead”

then X(Tn_l+m)esiv) and X(Tn+m)€B§V) for some O<ms<k ;

and

V)

V)
and X(Tn+k)eB2 ’

1£ x(t__ e, x(1 e, x(r,_,, en!

v) )
then X(tn_l+m)eA1 and X(Tn+m)eA2 for some O<m<k .

Also, in terms of the jump times of X, we define four sequences of random

times: {S§v):j20} and {T§v):j21}, for v=1,2. The start [respectively |

termination] time of the jth passage time for the type v marked job is

) v)

denoted by sj_1 [respectively 'I‘J ]. Formally, we have for v=l,2,

sgv) - 1nf{rnzr§”):X(rn)eA§“), X(rn_l)eA{V)}, 120

T§V) = 1nf{rn>s§fi:X(Tn)eB§v), X(Tn_l)eBiv)}. j=t .

(V) (V) _o (V)
j T 5,210 J21.

Note that the definition of these times is as in Section 7. For response

The jth passage time for the type vV marked job is P

times of type Vv jobs, A{V)-Biv), Agv)-név), and S§v)-T§v) for all j2l1.

Let L(t) denote the last state visited by the Markov chain X before

jumping to X(t), and for t20 set

V(L) = (L(t),X(t)) . (10.2.1) i
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The process V={V(t):t20} has a state space F consisting of all pairs of
st;tes (1,3), 1,jJ€E, for which a transition in X from state i to state }
can occur with positive probability. In general, of course, the size of
the state space F is larger than that of E. The "Q-matrix" used in
generating the Markov chain V can be obtained easily from that for X.
Since X is an irreducible, positive recurrent Markov chain, so is V.
Clearly, the entrance times of V to a state (i,j)eF correspond to the
times of transition in X from state i to state j. For a type v job, we

define two subsets of F according to:
s™ . {(1,j)eF:1eA§‘~”, jeAév)}
™ . {(i,j)eF:ieB](.v), jené")} .

Thus the entrances of ¥ to S(v) [respectively T(V)] correspond to the

start (respectively termination] times of passage times for the type Vv

marked job. Of course for response times of a type Vv job, s(vaT(v).

The argument employed in Appendix 1 shows that for v=1,2, the
sequence Pév) converges in distribution to a random variable P(V).
Moreover, the sequence of passage times of type Vv jobs (irrespective of
job identity) in the order of start (or termination) also converges in
distribution to P(v). Our concern is with the estimation of

characteristics associated with these limiting passage times.

TP TSV ARRI IR
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Estimation of E(R1} and P{RY<x}

‘Using the process V defined by Equations (10.1.1), (10.1.2) and

(10.2.1), we consider first the estimation of characteristics of the

2 (D

limiting response time, , of a type 1 job, For this estimation '

problem, of course, it is not necessary to mark a type 2 job. Since R(l)

is a response time, S(l)-T(l). We select a fixed state of S(l), which

for convenience we designate state 0, and assume that V(0)=0.

R(l)}.

Suppose that we wish to estimate E{ The successive entrances

of ¥ to S(l) constitute the starts and terminations of response times of

the type 1 marked job. Let Rél) (nz0) denote the time between the nth
1) (1)

and (n+l)st entrances to S s, with the Oth entrance to § occurring at

t=0. Also, let {Vn:nzO} denote the embedded jump chain associated with
V. The random times {an:nzl} and {Yn:nal} denote the lengths of the
successive O-cycles (successive returns to the fixed state 0) for ¥ and
{Vn:nzo}, respectively. Then the number of response times for the type 1

marked job in the first O-cycle of ¥ is

61-1

1
N{ ) - )

& Hyes®)

where 60-0 and Gmfyl ...+ym, m2l. The sum of the response times in that
cycle is simply
NS
(1)
o, = 2: R .
1 asl B

(1)
k

fact that V is a regenerative process, together with a renewal argument

We denote the analogous quantities in the kth O-cycle by N and ak. The

(cf. Appendix 2) establishes

T TR AIRR AR
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(10.2.2) PROPOSITION. The pairs of random variables {(uk.uél)):kzl} are

independent and identically distributed. Provided that E{R(l)}<~.

ez} = elad/ex{P) |

o e ——— S

At this point, the arguments of the standard regenerative method
hold and, based on n cycles, we can comstruct the point estimate 5;/§:1)
and (provided that an estimate is available for 02, the variance of
al-E{R(l)}Nil)) an associated confidence interval for E{R(l)}. The

confidence interval is obtained from the central limit theorem

ot/ ZIEnliél) kP

=> N(0,1) ,
c/E{Nil)}

Here a;-(a1+...+cn)/n and ﬁﬁl)-(N£1)+...+N§1))/n.

If we are interested in the distribution function, P{R(l)Sx} of R(l),
we proceed as above, but define in addition the i.i.d. sequence of random
variables {Yk:kZI}, where, for example,

(1)
N
Y, = 1, (1) .
1 2;; {Rn <x}
Then the point estimate of P{R(l)Sx} is just ?;/ﬁﬁl). and we obtain

confidence intervals in the usual way.

Estimation of E{R‘}} and E(r(¥}
Now suppose that we wish to estimate the expected passage time for

type 2 jobs, E{R(z)}, as well as E{R(l)}. Response times for the type 2

T T T R I TR
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marked job start and terminate at the entrance times of V to the set

5(2)_T(2). Let Néz) denote the number of entrances to S(z) of ¥V in the

kth O~cycle. For example, in the first O-cycle
) 61-1
Ny -3

“ l{VneS(z)} )

Alcthough we are able to begin the simulation at the start of a response
time for the type 1 marked job, in general a response time for the type 2
marked job is underway at time t=0. Similarly, at the end of a O-cycle,
a response time for the type 1 marked job terminates, but a response time
for the type 2 marked job is still underway. After n O-cycles,

2)

(2) (
NS

the sum of these response times is approximately a1+...+an. The error in

response times for the type 2 marked job have started and

this approximation is due to the partial response time at t=0 which is

not counted in N{2)+...+N;2) and the last response time which is counted,
but does not terminate before the end of the nth O-cycle. Since the point
estimates and confidence intervals here are based on large sample theory
(strong laws and central limit theorems), these errors are negligible for
n large. In fact, the errors due to the two response times at t=0 and at
the end of the simulation run compensate for each other., Consequently,

wve have

(10.2.3) PROPOSITION. The pairs of random variables {(ak,N£2>):kzl} are

independent and identically distributed. Provided that E{R(z)}<“,

e(2?} = Elo, Ew{P} .




In the presence of Proposition (10.2.3), the point estimate of e(r(? } is
E;/iﬁz), and we can use the standard regenerative method to obtain a

confidence interval.

Estimation of E{R(l)}-E{R(Z)}
(1) __()

Suppose now that we wish to estimate r‘ " ‘-r » where r(l)-E{R(l)}
and r(z)-E{R(z)}. We can take as a point estimate the quantity
('c_tn/ﬁél) )-(Eu/ﬁf‘z) ), but need a bivariate central limit theorem in order to

produce a confidence interval. To this end, we let

v) v) (V)
4 " ot UN
and
AeY)
“x
& -
2®

for k21. (We take all our vectors to be column vectors.) The random
vectors {_Z_k:kzl} are 1.i.d. since each Zk is only a function of the kth
O-cycle, Furthermore, Equations (10.1.4) and (10.1.5) imply that E{gk}-g.
v 1w

Denoting the transpose of Z by Z;, let g-z{zi gl} {o 4 j} be the covariance
matrix of the gk's. Assuming that the elements of I are finite, we have
the central limit theorem

-1/2 &

n 2, 2, = NO,D , (10.2.4)

k=1

where N(0,Z) is a multivariate normal random variable with zero mean vector

and covariance matrix L. We can rewrite Equation (10.2.4) ia the form

(i'(i) /z{n{” })a{ul(l’} (T AV Dy

1/2 n

n - N(O,E) . . (10.2.5)
FTD P e @ M) Py
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Since E{Niv)}/ﬁﬁv)-bl, we can use Lemma (2.1.8) to conclude that the
factors (ﬁﬁv)/E{Niv)}) in Equation (10.2.5) can be dropped. With these

factors removed, again apply Lemma (2.1.8) with the mapping h given by

h(x,,X,) = (xlla{nfl)}. x2/E{N§2)})

to obtain
= =(1),__(1)
(¢ /N )-2
< <‘n/ﬁ?z>) (2™ MQEED . (10.2.6)
o -r
“n’ o
where
1/E{N{l)} 0
B = .

0 1/E(n{?)
Note that from Equation (10.2.6) we could construct a simultaneous

(l)’r(Z)).

confidence interval for (r Finally, a third application of

Lemma (2.1.8), this time using h(xl,xz)-xl-xz, yields

(10.2.7) PROPOSITION. Provided that Oll’ le, 022<°,

(nl/Z/o)[{dinlﬁﬁl))-(a;/Néz))}-(r(l)—r(z))] -> N(0,1) (10.2.8)
where

We can use the central limit theorem of Equation (10.2.8) to comstruct a

W_ (2

confidence interval for r » provided that an estimate for the
constant ¢ is available. Using the classical method, we can estimate ©
from the sequence of observations taken in the n 0O-cycles of the process V.

This estimate for o appears in Appendix 3.




A special case of the situation just discussed is when the two types
of jobs are the same; then there is only one job type, but we elect to

D Do, (5 7O 21 2D e

mark two jobs. Let r , and £ _n.(t
we can use the method of multiple estimates of Heidelberger (1977) applied

to Equation (10.2.6). For any vector §f(Bl,Bz) with 81+82-1, we have

@?/0@) @' -1 = 8,1 ,

where oz(ﬁ)ﬁg'(ggg')g, Next we select that value of 8, call it gf, which
minimizes az(ﬁ) subject to B'e=1l, where e=(1,1). It turns out that Qf is

given by

8" = {1/’ @z oz e
and

o?(8") = 1/{e' (82B") Le} . (10.2.9)

*
Since £=(1,0) is one possible value of B, using £ is guaranteed to yield
a variance reduction over that obtained by marking just ome job. Again,

*
of course, we must estimate the variance oz(g ) given in Equation (10.2.9)

from the observations recorded.

Estimation of P{R‘Y)<x}-p{r(¥ <x}

Finally, we consider the estimation of P{R(I)Sx}-P{R(Z)sx} for a given
value of x. This is the most difficult of the problems for networks with
multiple job types that we treat. Since the value of x is fixed throughout
the discussion, in general we suppress in our notation the dependence of
x. Again we form O-cycles based on the response times for the type 1

marked job. Here, however, when a O-cycle ends, we do not know whether

‘*’r'mmmww

|
l
§
|
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the response time for the type 2 marked job in progress will be less than
or equal to x. Thus, with respect to the response times for the type 2
marked job, the O-cycles used previously do not create the i.i.d. cycles
needed to establish a central limit theorem. Instead, we form new cycles
by grouping together a random number of consecutive O-cycles. Let
ti-a1+...ai, i2l. Then let 8y be the start time of the response time for
the type 2 marked job underway at the conclusion of the ith O-cycle. We
assume that V(0)=0 and regard the value of the response time for the type 2
marked job underway at the start of the simulation to be greater than (the
fixed) x. We do this so that the start of the simulation correspoands to

the beginning of one of the new "super-cycles" we are constructing.

Defining a random variable y according to

Y= inf(iZl:ti-si>x} ,

the length of the first super-cycle is simply a1+uz+...+uy, and the number

of response times for the type V marked job started in this super-cycle
(v) v)
1 +. L] .+NY

fashion. For k21, we define Yév) to be the number of response times

terminating in the kth super-cycle which are less than or equal to x;

Successive super-cycles are defined in an analogous

is n{v)-N

.8,

niv)—l
v)
Y - 1,.(V) .
1 E;% {Rk sx}

Observe that by the definition of a super-cycle, the first response time

of the type 2 marked job terminating within a super-cycle must be greater

than x. Thus we have

N L g A M S s A ¢ -
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(10.2.10) PROPOSITION. The random variables {Yéz):kzl} are independent
and identically distributed.

. 1 1 2
Of course, the Yﬁ )'s are i.i.d. also, as are the né )'s and né )' We

can now form the bivariate central limit theorem analogous to Equation

(10.2.6), namely

[ =(1) =(1) (1)
q > /mry-P{rR " <x}
M R @ .| NEE@ImE ™)
L(Yn /nn )y-P{R‘“/<x}
where
1/E{n{1)} 0
B = @
Lo 1/E{nl }
and
Z(x) = {Gij(x)}
with
gy, = E{[Y(i) (i)P{R(i)sx}][Y(j)-n(j)P{R(J)Sx}]}

Finally, by the same argument used in Proposition (10.2.7), we obtain

(10.2.11) PROPOSITION. Provided that oll(x), clz(x), czz(x)<w,

@ 2o @D AV TP ZP)- e ax-e kR Psxh) = 80,1, (10.2.12)

where

e = o, 0 /E oV} + 0, @ /EHaPY - 20, 0/ BP0 |
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We can estimate the quantity o(x) from the observations in the
a super-cycles using the classical method; see Appendix 3. Then we construct
confidence intervals for P{R(I)Sx}-P{R(Z)Sx} from Equation (10.2.12) in

the usual way.

The discussion in this section has concentrated on problems associated
with the estimation of characteristics of response times for the two types
of jobs. The estimation of characteristics of two passage times, or one
response time and one passage time, is in general easier. This is because
there is the possibility of forming, from O-cycles based on one type of
job, super-cycles which terminate when no passage time of the other type

of job is underway.

We have considered explicitly only the case of two job types. The
estimation methods of this section apply equally well to networks having
more than two job types. The state space which results from the
augmentation of the vector X(t) (by components to track a marked job of

each of the job types) is of course larger.

10.3. Example and Numerical Results

To illustrate the technique of the previous section for estimation of
response times, we consider a simple closed network of queues having two
types of jobs and two service centers; see Figure 10.l1. There are N jobs
in the network, N1 jobs of type 1 and N2 jobs of type 2. After completion
of service in center 1, a type V job joins the queue at center 1 (with

probability p(v)) or joins the queue in center 2 (with probability l-p<v)).

R e ot
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{i) Services at centers 1 and 2 are not interruptable

(i)} Routing for type v jobs determined by binary valued variable ¥

(iii) Type 1 jobs have non-preemptive priority over type 2 jobs

Figure 10.1. Closed network of queues with two job types
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After completion of service at center 2, jobs join the queue at center 1.
At both service centers, type 1 jobs have nonpreemptive priority over type
2 jobs. Jobs of the same type at either of the centers receive service

in order of their arrival at the center. We assume that all service times
are mutually independent; jobs of type Vv at center i receive service which
is exponentially distributed with parameter Aiv). The limiting response
time R(v) for type v jobs that we consider in this model is the time
measured from when upon completion of service at center 2, a type V job
enters the queue at center 1, until the next such entrance by the job into

the queue at center 1.

In this model, there are two job classes, class 1 jobs at center 1l

and class 2 jobs at center 2. Each center sees both job types, but only

one job class. The irreducible Markov routing matrices g‘v) are of the
form
V) V)
1-p
3 ™V .
1 0

Since type 1 jobs have priority over type 2 jobs at both centers, the
(type, class) pairs ordered by decreasing priority sre jl(i)-(l,i) and
jz(i)-(Z.i), i=]1,2. For this model, it is sufficient to take as the
component Si(t) in the vector Z(t) the type of job.in service at center i
at time t, rather than the (type, class) pair. Then we can define the

vector 2(t) as
e (@ ey (D)
2(e) = (617 (0,67 (0,5, (0),¢ {2 (), (P (03,5, (e))

vhere, for i=1,2 and v=1,2,
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Civ)(t) = number of type V jobs in queue at center i at time t ,
and

Si(t) = type of job in service at center { at time t

0 1if center i is 1dle at time t .

Letting Nv(t) (v=1,2) denote the position from the top of the type V marked

job in the linear job stack, for t20 the state vector for this model 1is

X(t) = (2(t),N, (£),N,(t)) .

Letting L(t) denote the last state visited by the Markov chain X={X(t):t20}

before jumping to X(t), the vector V(t) is
V(t) = (L(t),X(t)) . :

For N=2 jobs, the state space E of the process {X(t):t20} has six

states and is

E - {(0’0’0,1,0’1,2,1), (0’0!0’0’1’291’2)' (0’0’1’0’0’2’1’2)}

v {(0,0,2,0,0,1,2,1), (1,0,1,0,0,0,2,1), (0,1,2,0,0,0,1,2,)} .

(1)

{1) and A2 of E defining the start of response times for

The subsets A

the type 1 marked job are

At = {(0,0,0,1,0,1,2,1), (0,0,2,0,0,1,2,1)}
and

Aél) = {(0,0,1,0,0,2,1,2)9 (0,1,2,0.0,0,1,2)} .

PRI T TR T
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Similarly, the subsets A{z) and Aéz) of E defining the start of response

times for the type 2 marked job are

A§2) - {(0,0,0,0,1,2,1,2), (0,0,1,0,0,2,1,2)}
and

A% = 100,0,2,0,0,1,2,1), (1,0,1,0,0,0,2,1)} .

(1) 2)

Since R and R are response times, B{v)-A{v) and Bév)-Aév). v=l.2,

see Figure 10.2. It is easy to check that the state space F of the process

v)

{v(t):t20} has nine states. The subsets S of F defining the starts of

response times for the type v marked job are

s < (¢0,0,0,1,0,1,2,1,0,0,1,0,0,2,1,2)} |

v {(0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2)} |

and ;
s® = {(0,0,0,0,1,2,1,2,0,0,2,0,0,1,2,1)}

{¢0,0,1,0,0,2,1,2,1,0,1,0,0,0,2,1)} ,

<

respectively; see Figure 10.3. Here we use the enumeration of the six
states of E given in Figure 10.2. Thus, e.g., (1,3) denotes the state

¢(o0,0,0,1,0,1,2,1,0,0,1,0,0,2,1,2)¢F.

Simulation results for this model for p(l)-p(z)-p-0.75, A{l)-liz)-kl-l .
and Aél)-kéz)-lz-o.s, with N=2, appear in Tables 10.1-10.4. With these

parameter values, there is one type 1 job and one type 2 job. The routing
and service requirements of the two job types are the same; the two jobs
differ only with respect to the nonpreemptive priority given (at each

center) to the type 1 job, The simulation used the congruential uniform

O TEIP ORI R A AE
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A('Z)
(0,0,0,1,0,1,2,1)

A&Z)
[
(0,0,1,0,0,2,1,2) V (0,0,2,0,0,1,2,1)
i\
\
(1,0,1,0,0,0,2,1) (0,1,2,0,0,0,1,2)

Figure 10.2. State transitions in Markov chain X and subsets of E
for response times R{!! and R(2
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Figure 10.3. State transitions in Markov chain V and subsets of F
for response times R{1) and R(2)
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random number generator described by Lewis, Goodman, and Miller (1969),
with exponential service times obtained by logarithmic transformation of
the uniform random numbers. Independent streams of exponential random
numbers (obtained from different seeds) were used to generate individual

exponential holding time sequences.

For the simulation results of Tables 10.1-10.4, the return state
defining O-cycles of the response time for the type 1 job is the state
0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2). This corresponds to a response time
for the type 1 (marked) job starting when the type 2 (marked) job is in
service at center 1. Table 10.1 summarizes results of the simulation and
reports point estimates and 90 percent confidence intervals for the
quantities E{R(l)}, ERP} and ERD 1-2(RPD} over a range of number of
cycles of the type 1 marked job. Theoretical values for these quantities
are shown in parentheses. Thus, for example, 100 cycles of the type 1
marked job were observed in the simulated time interval (0,903.00) and
there were a total of 446 transitions in the continuous time Markov chain
{L(t):t20}. A total of 130 response times for the type 1 (marked) job
were observed along with 56 response times for the type 2 (marked) job.
For the quantity E{R(l)}-7, the point estimate 6.946 was obtained, and
the 90 percent confidence interval had half-length 0.6334. Note that for
E{R(l)} and E{R(z)}, all of the confidence intervals surround the
theoretical values. In the case of E{R(l)}-E{R(z)}. the confidence
intervals based on Equation (10.2.8) also surround the theoretical value.

Table 10.2 gives results obtained for P{R(l)sx}, with x=4, 8, 12, 16 and

20.
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In Table 10.3 we give, for the several values of x, point and interval
estimates for P{R(l)sx}-P{R(z)Sx}, based on the use of super-cycles and
Equation (10.2.12). Thus, for x=4, 100 cycles based on response times for
the type 1 job resulted in 37 super-cycles defined by response times for
the type 2 job greater than x. Note that the number of cycles for the
type 1 marked job has been fixed, and for each x the estimates for
P{R(I)Sx}-P{R(z)Sx} computed from the resulting random number of

super-cycles.

Table 10.4 contains estimates of the quantities P{R‘®)<x} obtained
from the standard regenerative method applied to these super-cycles. An
overall observation from Tables 10.2 and 10.4 is that the lengths of
confidence intervals obtained for P{R(l)Sx} and P{R(Z)Sx} are roughly

comparable.
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TABLE 10.2

Percentiles of Type 1 Response Times in Closed Network of Queues
With Two Job Types. Nj=1, No=l, p=0.75, Aj=1, Ay=0.5.
Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000

p{r{V) <4} 0.2384 0.2536 0.2555 0.2641 0.2639
+0.0622 | $0.0417 | £0.0301 | +0.0217 | %0.0192

p{rP<g) 0.6692 0.6714 0.6717 0.6709 0.6802
£0.0683 | +0.0444 | 0.0308 | +0.0221 | +0.0201

(<12} 0.8923 0.8786 0.8832 0.8769 0.8830
£0.0422 | $0.0293 | %0.0205 | :0.0159 | 40.0140

p(r P <16} 0.9461 0.9536 0.959 0.9547 0.9605
£0.0311 | $0.0198 | #0.0135 | $0.0105 | +0.0088

p{rP <20} 0.9923 0.9892 0.9915 0.9880 0.9898
$0.0127 | £0.0100 | 20.0061 | :0.0052 | *0.0043
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TABLE 10.3

Difference of Percentiles of Response Times in Closed Network of Queues
With Two Job Types.
Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

Nl‘l, Nz-l’ p.0075’ Al-l. 12-0.5.

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000
(1) (2)
P{R'"/54}-P{R"“/ 54} 0.1254 0.1295 0.1342 0.1332 0.1384
$0.0784 | *0.0627 +0.0417 $0.0275 +0.0192
No. of super-cycles 37 79 181 347 438
&) 2)
P{R‘"/<8}-P{R‘“/s8} 0.3988 0.3409 0.3111 0.3036 0.3125
£0.1227 | +0.0817 +0.0525 +0.0373 +0.0201
No. of super-cycles 29 61 134 254 319
PRV <12}-p(r P <12} 0.3915 0.3543 0.3331 0.3259 0.3280
£0.1424 | $0.1112 +0.0677 +0.0496 +0.0140
No. of super-cycles 22 46 93 180 224
PR s16}-p(r P 516} 0.2850 0.2970 0.2693 0.2693 0.2636
+0.1288 | $0.1092 +0.0606 +0.0489 +0.0088
No. of super-cycles 15 32 65 129 153
PR s201-p{r P <20} 0.2422 | 0.2470 0.2119 0.2078 0.2009
+0.1081 | *0.0825 +0.0530 +0.0415 +0.0043
No. of super-cycles 11 24 43 84 104
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TABLE 10.4

Percentiles of Type 2 Response Times in Closed Networks of Queues
With Two Job Types.
Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

Ni=1, Njo=1, p=0.75, )\1'1, Ao=0.5.

No. of Cycles For Type 1 Marked Job

§ PR —

100 200 400 800 1000

P <4} 0.1071 0.1240 0.1200 0.1310 0.1255

+0.0852 +0.0583 +0.0312 +0.0209 +0.0183
No. of super-cycles 37 79 181 347 438
p{r(® <5} 0.2679 0.3281 0.3600 0.3673 0.3681

+0.0963 +0.0751 +0.0475 +0.0323 +0.0280
No. of super-cycles 29 61 134 254 319
p{r{¥ <12} 0.5000 0.5234 0.5500 0.5510 0.5548

+0.1184 +0.0799 +0.0474 +0.0336 +0.0286
No. of super-cycles 22 46 93 180 224
p{r{%) <16} 0.6607 0.6563 0.6900 0.6854 0.6969

+0.1155 +0.0687 +0.0419 +0.0316 +0.0268
No. of super-cycles 15 32 65 129 153
P{R(Z)SZO} 0.7500 0.7422 0.7793 0.7802 0.7889

+0.0986 +0,0582 +0.0405 +0.0284 +0.0243
No. of super-cycles 11 24 43 84 104
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11.0. IMPLEMENTATION CONSIDERATIONS

&‘ In order to carry out a passage time simulation of a network of queues, :
we must be able to generate sample paths or realizations of the stochastic
system. A necessary part of any such generation procedure is an algorithm

;' . (or algorithms) for random number generation, i.e., for the generation of

. numbers that can be treated as instances (samples) of random variables.

In this section we consider aspects of random number generation pertinent

to the implementation of passage time simulations according to the methods

of the previous sections,

{ ; 11.1. Random Number Generators

Our discussion follows Learmonth and Lewis (1973a). By a 'random
number generator" (or "pseudo-random number generator'') we mean an
algorithm which produces sequences of numbers that follow a specified
probability distribution and possess the appearance of randomness. The
use of "sequence of numbers'" means that the algorithm is to produce many
random numbers in a serial fashion. Even though a particular user may

need only relatively few of the numbers, we generally require that the

AN Rt VL e s ¢

algorithm be capable of producing many numbers. 'Probability distribution"
; implies that we can associate a probability statement with the occurrence

! of each number produced by the algorithm. We usually take the probability
] distribution to the uniform distribution on the interval [0,1]. If a

: source of [{0,1] uniform random numbers is available, then in principle it
11; is possible to transform these uniform random numbers by means of the
inverse probability integral into random numbers having any desired

distribution. For reasons of computational efficiency, however, a large

MRt ,:gi;wmvﬁ"r;ahﬂn’pmg t
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amount of effort has gone into the development of methods for direct
generation of random numbers having nonuniform distributions; see Ahrens
and Dieter (1973a) for a comprehensive discussion. With respect to
"appearance of randomness," it may be somewhat surprising that the actual
implementation of most commonly used algorithms for uniform random number
generation is as a (deterministic) recurrence relation in which each
succeeding number is a function of the preceding number. Thus, although
true randomness requires independence of successive numbers, the algorithm
generates a deterministic dependent sequence. When parameters of the
recurrence relation are chosen carefully, such algorithms for uniform
random number generation do yield sequences which (statistically) appear
to be random. This appearance of randomness is the origin of the term

"pseudo-random numbers.’

Since the results of a simulation depend critically on an acceptable
appearance of randomness, it is important that a proposed uniform random
number generator be subjected to thorough statistical testing. Although
the simulation practitioner need not necessarily be concerned with the
details of the rather specialized techniques for statistical testing of
random number generators, he should be convinced prior to use that an
available uniform random number generator has been successfully tested.

See Fishman (1978), Ch. 8 for a discussion of statistical tests for uniform

random number generators.

The most widely used (uniform) random number generators are of a class
-acwan 86 linear congruential generators. Such generators employ a

s .r-omce relation of the form
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Xn - bxn—l + ¢ (mod m) {(11.1.1)

In Equation (11.1.1) all quantities are nonnegative integers. This

equation, read "Xn equals bxn_l+c modulo m,"

says that Xn is the remainder
when bxn_1+c is divided by m. The quantity b is called the multiplier,

m is the modulus, and ¢ is the increment. Given a starting value XOZO

and values b20, c20, and m such that m>X0, m>b and m>c, a sequence of
integers xl,xz.... is generated by successive application of

Equation (11.1.1). Uniform random numbers Un on the interval [0,1] are

obtained by dividing by m, i.e., for n=1,2,...,
Un = Xn/m (11.1.2)

The recurrence relation of Equation (11.l1.1) is sometimes called a "mixed

linear congruential generator,” the term "mixed" coming from the fact that

it involves a multiplication by a constant b along with an addition of a
constant c. Many random number generators are '"multiplicative" or "pure

congruential"” in that ¢=0, giving

X =bX _  (mod m) . (11.1.3)

The initial or starting value xo is often called the seed of the random

number generator.

Although it may appear that Equation (11l.1l.1) produces m distinct
numbers, this is not the case unless b and m are chosen properly. It is
characteristic of generators of this type that there is ultimately a cycle
of numbers which is repeated indefinitely; this repeating cycle of numbers

is called the period of the generator. It is clear that a congruential
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sequence used as a source of random numbers should have a long period,
and since the period can never be greater than m, the value of m should

be rather large.

Mathematical results based on number-theoretic considerations are
available for characterizing the values of b and ¢ which result in the
maximum period length m; see Knuth (1969), Ch. 3. For the special case of
multiplicative congruential generators (c=0), the basic result concerning
maximum period length says that the maximum period length (m) is not
achievable. It is, however, still possible to obtain multiplicative
congruential generators with quite long periods. Results characterizing
the maximum period for this multiplicative case are available, but the

number-theoretic considerations are involved.

If the modulus m in a multiplicative congruential generator is prime,
(i1.e., has no divisors other than 1 and itself) a period of length m-1 is
achievable. Such a period length, of course, is just one less than the
maximum possible length. If, in addition, we choose the multiplier b seo
as to satisfy an appropriate (sufficient) number-theoretic condition with

respect to (prime) m, then for any starting value X.<m, the maximum period

0
length m-1 is achieved. The determination of values for multipliers b
satisfying the number-theoretic condition for maximum period length in a

multiplicative congruential generator in general involves lengthy

calculations. Further details are in Knuth (1969), Ch. 3.

bt i
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In any particular digital computer system, only a finite number of
positive integers are representable, the limitation being the word size
of the system. We now state a particular (multiplicative congruential)
uniform random number generator which utilizes the full word size of IBM
System/360 (370) computer systems. (This is the uniform random generator
used to obtain the numerical results in previous sections.) In the
System/360, the word size is 32 bits with 1 bit reserved for algebraic sign;
an obvious choice for m is thus 231. A multiplicative congruential
generator with m-zk (for some positive integer k) can have a maximum period
length of m/4, Thus for System/360 computer systems with m!231, the
maximum period is 229, and the period length may alsoc depend on the
starting value. It happens (fortuitously) that the largest prime less
than or equal to 231 is 231-1. Hence, by choosing m9231-l, it is possible
to implement on System/360 computer systems uniform random number
generators having a maximum period length of 231-2. Note that the
number-theoretic conditions ensuring a maximum period length do not
necessarily guarantee good statistical properties for the generator,
although the choice of the particular multiplier 75 does satisfy some

known conditions regarding statistical properties of the resulting

sequence.

System/360 Generator

Let X0>0. Then for n2l,

5
X 77 X,y (mod 2

31
0 -1

)
31
= 16807 xn-l (mod 277-1) (11.1.4)

B R T ;.‘r,»ﬂr,rma‘—_\' .




31
Un - Xn/(Z ~-1) (11.1.5)

The uniform random number generator of Equation (11.1.5) has been tested

extensively, and the results of the statistical tests indicate that it is

very satisfactory; see Lewis, Goodman and Miller (1969) and Learmonth and
Lewis (1973b). Other multipliers for generators with modulus m-231-l are
in use. Results of pertinent statistical taests are given by Hoaglin

(1976).

11.2. Nonuniform Random Numbers

The problem of generating random numbers from a specified (nonuniform)
distribution is in principle solved by having a source of uniform random
numbers and transforming these random numbers by means of the inverse
probability integral. Because it is not always possible to compute or to
compute efficiently the inverse of a given distribution function, a great
deal of effort has gone into the development of methods for direct
generation of nonuniform random numbers; see Ahrens and Dieter (1973b)
for a comprehensive discussion. Desirable properties of such direct
methods are that they be exact, very fast, and economical of computer
storage. The property of exactness is that any deviation from the
specified distribution results from computer round-off error rather than
a defect in the method itself. Comparisons are hard to make among
particular methods, partly because of machine dependencies. It is,
however, almost always true that with very little cost in complexity, it

is possible to improve on the inverse probability integral transformation
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by an order of magnitude in execution time; the fastest available

algorithms for nonuniform random number generation, however, are often

quite complex.

The basis for the generation of nonuniform random numbers by

If

transformation of a uniform random number is the following statement.

U is uniformly distributed on [0,1) and if F(x) is any distribution
function, then the random variable

1

X=F ~(U)

has distribution F(x); for Q0susl, the inverse function F-l(u) is defined
by

Fl(u) = 1nf{z:F(z)2u} .

It follows that to generate samples of a random variable X having
distribution F(x) from a random number U (uniformly distributed on [0,1]),

we must be able to solve the equation

F(x) =u .

Then given a uniform random number U, we return
X = inf{2:F(z)2U} .

Figure 11.1 illustrates the inverse transformation method. Note that

this technique applies to discrete as well as continuous random variables.
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X=F1(u) X

Figure 11.1. Inverse transformation method
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The inverse transformation method provides a straightforward means of

generating samples of an exponential random variable, as may be needed
for a passage time simulation of a network of queues. We can obtain an
exponential (rate parameter A) random number X by generating U, a uniform

random number on [0,1l], and transforming it according to
X=-(fa U)/A .

This transformation is obtained by solving the equation UsF(X) for X,
yielding X={-2n(1-U)}/A, and observing that 1-U is uniformly distributed
on the interval [0,1] when U is. Note, however, that although this
logarithmic transformation is easy to implement, it is a relatively slow

method for obtaining exponential random numbers. The fastest methods

available at present for expomential random numbers use so-called

"decomposition" methods using the ideas of Marsaglia, Maclaren and Bray

(1964). The basis for the method is division of the random variable into

several populations, from most of which samples can be obtained easily.

Using geometric considerations, the density function of the exponential

random variable is decomposed into a large number of rectangular regioms,

wedge-shaped regions, and a tail, The Naval Postgraduate School random

number generator package LLRANDOM (Learmonth and lLewis (1973a)) contains

an IBM System/360 Basic Assembler Language implementation of a

decomposition method for generation of exponential random numbers,

In implementation of a passage time simulation, it may be necessary

to generate samples of a random variable X having a Cox-phase (exponential

stage) representation. It is easy to do so if generators of uniform and

i L R S T T
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exponential random numbers are available. Using the notation of

Section 3.1, suppose that the distributiom of X has n exponential stages.

For j=1,2,...,n, w

X = Xl + X2 + .0+ Xj

with probability (1-b )aj, where the random variables xl,xz,...,xj are

b
mutually independent and Xi is exponentially distributed with rate

parameter Ai’ To obtain random samples of X, we use a two step procedure.
First, we generate U, a uniform random number on [0,1], and set k equal to

1 if 0<US(1-bl)a1 and equal to

min{j>1:(1-b <Us(l-bj)aj}

3-1%3-1
otherwise. Then, using the inverse transformation method for exponential
random numbers, we generate k (mutually independent) uniform random

numbers Ul'UZ""’Uk and return

K
X= 2 (~ta U)/A, . )
= P

The inverse transformation method for generating random numbers having
a specified discrete distribution provides a means of routing jobs through
a network of queues., In the simplest case (e.g., in the network of
Figure 5.1), it is necessary to generate samples of a Bernoulli random

variable W for which (with 0<p<l)

P{w=1} = p

P{W=0} = 1-p .




To do so, we generate a random number U (uniformly distributed on [0,1]),
and return W=l if Usp, and return W=Q otherwise. By this procedure, we :
are in effect partitioning the interval [0,1] and determining the value
of X by the portion of the interval in which the generated uniform random
“ : number lies. The generalization to handle more complex routing from a

service center is straightforward.

i! 11.3. Single and Multiple Streams of Random Numbers

;? It is typically the case when simulating a network of queues that we
have need for several streams of random numbers (e.g., random service
times for each of several servers, routing through the network, etc.).
Since most algorithms for nonuniform random number generation require the

generation of one of more uniform random numbers, the question arises as

! to whether single or multiple streams of uniform random numbers should be
used. When a single stream of uniform random numbers is used, the course
of the simulation determines, usually in a complex manner, the role of

individual uniform random numbers; thus, e.g., for the cyclic queues of

Figure 2.1, a random subsequence of the generated uniform random numbers

can be transformed to give the service times at one of the service centers,

3 b Wiy

with the remaining random numbers used to generate the service times at

the other center. Alternatively, if appropriate seeds are available, we

can use nonoverlapping portions of the uniform random number sequence to

& = '““:" i o il

generate the service times at the individual centers. The concern is that
when a single stream of uniform random numbers is used, we are in effect
assuming that particular random subsequences of the original uniform random

number sequence has an acceptable appearance of randomness, and this may
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not be the case. There are axamples of simulations where the use of a
single stream of uniform random numbers has led to rather bizarre results.
Although this aspect of random number generation is not well-understood,
in many cases it is probably good practice to use separate streams. Some
additional bookkeeping is of course necessary to handle the separate
streams, and judgement 1s required as to what extent multiple streams
should be used when simulating a complex stochastic system. For a network
of queues, it is probably advisable to use separate random number streams
for the interarrival times, service times, and routing of jobs from the

individual service centers.

In Table 11.1 we give values of seeds which can be used to generate
independent streams of uniform random numbers from the System/360 uniform
random number generator of Equations (11.1.4) and (11.1.5). These seeds
are values of xn which are 100000 apart in the sequence of

Equation (11.1.4), {i.e., if Xo-377003613, then X =648473574,

100000
X200000-1396717869, etc. It is necessary when using multiple streams of
random numbers to keep in mind approximately how many random numbers are

needed; undesired dependence among random numbers may result if portions

of the original sequence overlap inadvertently.

11.4, Generation of State Vector Processes
When carrying out a simulation of a network of queues (or any
stochastic system), we observe the behavior of the system as it evolves

in time. Implicit in any implementation of the simulation is the

definition of an appropriate system state vector. This ''state of the
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system at time t'' constitutes a stochastic process, and to obtain estimates
of quantities of interest, we must somehow generate realizations or sample
paths of this state vector process. For complex networks of queues, it

is often convenient to generate the process (e.g., using an event
scheduling approach) by means of timing routines applicable to a general
discrete event simulation, as typically provided by a high level simulation
programming language. However, when there is a characterization of the
state vector process as a familiar stochastic process, it may be possible
to generate the process directly and more efficiently (with respect to
speed) than by using all of the apparatus for timing which is necessary

for a general discrete event simulation. This is relevant to the passage
time simulations discussed here in that the state vector process {X(t):t20}
of Section 3.2 constitutes a finite state continuous time Markov chain.

We consider generation of such Markov chains next.

Let Y={Y(t):t20} be a continuous time Markov chain having finite state

space E, and let
Q= (ayy)

be its matrix of infinitesimal transition parameters; thus for 1i,jeE,

20 for i1¥j, and for all i,

DR

jeE

Denote by {Tn:nZO} the jump times of the process, and for n=0,l,..., set

Yn = Y(Tn) .
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Generation of the continuous time Markov chain ¥ can be based on the
following characterization (see, e.g., Ginlar (1975a), p. 247). For any

jeE, ueR+, and n=0,1,...,

PY =3y T =T oul¥, ¥ 5 Thaee,T ) = rije-qiu (11.4.1)

if Xnti. Here, 9 =q 4> rij-qu/qi for i#¥j, and rii-O. Thus, given a

jump to state i, the process remains in state i for an exponentially
distributed (rate parameter qi) amount of time, and then jumps to state j
with independent probability rij’ It follows that generation of a sample
path for the Markov chain Y, (i.e., the sequence of jump times and
successive states) can be accomplished by successive generation of a pair
of independent random numbers. This pair consists of an expomential random
number and a sample from a discrete distribution specified by the jump
probabilities. Note that each element of such a pair can be generated by

the inverse transformation method.

This discussion of the generation of continuous time Markov chains
presupposes that the elements of the Q-matrix (and hence the jump
probabilities) are available explicitly. For the class of networks of
queues disé;ssed here, enumeration of the state space and explicit
calculation of the infinitesimal transition parameters is in general
somewhat tedious. It is important to observe, however, that complete
knowledge of the Q-matrix (e.g., for the Markov chain defined by
Equation (3.2.3)) is contained in the (given) routing matrix P and the
parameters of the (exponential or Cox-phase) service times. Consequently,

based on Equation (11.4.1), it is often possible to construct a more
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efficient algorithm for direct simulation of a given network of queues
than that which results from a general discrete event simulation. For

the DL/I component model of Section 5.2, Appendix &4 gives such an algorithm.
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TABLE 11.1

ek ¥ i D Nkl

Seeds for System/360 Uniform Random Number Generator.
5 31
-1

e T SR

AINB - wE i ki &Y ¥, 3

b -

j Values of Xn 100,000 apart in Xn-7 Xn-l (mod 2 ).

4 (to be read across)

. 1
3 377003613 648473574 1396717879 2027350275 1356162430
'J 1752629996 745806097 201331468 1393552473 1966641861
3 711072531 769795447 1074543187 1933483444 625102656
- 1116874679 1442211901 989455196 1996695068 1850124212
#) 1267310126 1741371275 886499692 1014119573 933913228

‘ 2082204497 920168983 1079618777 1888797415 1002901030
E 1582733583 254293472 1095895189 219529399 1706847402
| 1951007719 1169002398 1482199345 1976077334 775245191
- 1976418161 35067978 400884188 1895732964 1904749580
3 1301700180 63685808 936615625 110322717 1029730003
¥ 251900732 725094089 828842333 1471230052 1703522097

1356420548 1670372925 437765009 39279049 2123613511

150006407 1633650593 751601611 1410990605 1262214427
. 645360044 1504645702 1063375004 941885586 1753135176
3 253642018 1701685042 1448665492 1034856864 428280431
f 259758456 600732272 704726097 398944698 114386769
2 288727775 1499601820 2136214308 1197972807 1888007825
: 686553263 747119178 154337000 136758808 9182540
2 303111010 154232008 921093990 16842638351 1166344707
i 1167753617 1374693082 1812641667 502455872 857532898
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APPENDIX 1. CONVERGENCE OF PASSAGE TIMES

1 Label the jobs from 1 to N and for t20 set
. T(t) = (2(),N (1) N2 (8),.. . N (D))

where Ni(t) denotes the position in the job stack at time t of the job
3 f labelled 1. The vector Z(t) is the same as in Section 3.2. Also define

the marginal processes
o) = @), )

for i=1,2,...,N. All of the processes {Y(t):t20} and {Yi(c):tZO} are
irreducible, positive recurrent continuous time Markov chains defined on

a common underlying probability triple, (R,5P), say. Observe that if the

marked job of Section 3 is the job labelled i, then the process {Yi(t):tzo}

coincides with the process {X(t):t20} defined by Equation (3.2.3), except
possibly for the initial condition at t=0. Define for each job two

sequences of times, the starts and terminations of the successive passage

A T o— A - - -

times for the job. For the job labelled i, denote these times by {s;:jzo}

and {Tj:jzl}. The definition of these times in terms of the process
i {Yi(t):tzo} is completely analogous to what was done in Section 4.2 in
? 3 terms of the process {X(t):t20}. Then the jth passage time for the job
é labelled i is P;-T;-S;_l, j21. Also define Markov chains {X;:jZO} for 1
% each job in which xi denotes the state of the Markov chain {Yi(t):tZO}
% when the (j+1)'t passage time starts for job i: x;-Yi(s;). At this point
% we have N Markov renewal processes, {(xi,s;):jzo}. all defined on (R,&KP). %
3 .
%
%

el .
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Next we introduce a new sequence of passage times, {P!:j21}, also

3
defined on (Q,FP); this is the sequence of passage times irrespective of
job identity, enumerated in order of start times. For each j, Ps is a
random member of the set {Pt:lszsj}; this means that Pi-Pzgig, where 2(j)

and k(j) are random variables.

The principal result of this Appendix is to show that all of the
sequences {Pi:jzl} and {P;:jzl} converge in distribution to a common random
variable P.

}-»p as j+©. In addition, P'=>P

(Al.1) PROPOSITION. For i=1,2,...,N, P H

as j+o,

Proof. Since the N jobs are identical with respect to their service

requirements and branching probabilities, the semi-Markov kernels governing

i
3

of Section 4.2, In fact, for any particular job the only difference from

the Markov renewal processes {(x;,s ):320} all coincide with the kernel K

the setup of Section 4.2 is that (with possibly one exception) the job does
not start a passage time at t=0, However, this difference does not alter
limiting results; the job labelled i starts a passage time with probability

one (since {Yi(t):tzo} is positive recurrent), and once this occurs, the

situation is exactly as in Section 4.2. Note in particular that si¢+~ a.8.

3

for all 1i; thus, there is always a next passage time for every job. This

1i°P as j¥=, just as was the case in Section 4.2. (This

3

being so, we have P

result is to be expected since the marked job was selected arbitrarily.)
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Next we show that Pi—DP. Since P}-DP for all i, we can use the

Skorohod representation theorem (see Skorohod (1956) or Billingsley (1971))
to assert the existence of a probability space (§,§E;) and random variables
F; (j21, 1<isN) and P defined on that space such that F;
same distributions as Pj ?*5 a.s. as j»= for

all 1. These representatives Fi also provide representatives for the P

] b

and 5 have the

and P, respectively, and P

which we call '55.

Putting aside the null sets of @ on which the above convergence

statements do not hold, we examine the numerical sequence {5'(&):121} for

b

one of the remaining meﬁ. We use the following criterion for convergence
of a numerical sequence {xi:jzl}: xj*x as j+o if and only if for each
.} there exists a further subsequence {x,,} that converges

] 3
to x; see Billingsley (1968), p. 15, for a similar usage in weak convergence

subsequence {x

theory. Select a subsequence {55,(&)}. This subsequence must contain a

further subsequence {P'!,(w)} that is identical to a subsequence of one of

b
the sequences {5;.(m):jzl}, say for 1-10. This follows from the fact that

0
J'}

converges a.s. to 5(w) since the full sequence does. Thus P'+P a.s. and

3

~

there are only a finite number of jobs. But this subsequence {P

therefore P'=>P,

]
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APPENDIX 2. PROOF OF RATIO FORMULA

We provide a proof of the ratio formula (Theorem (4.2.9)) for E{f(X,P)}
which makes it possible to use the regenerative msthod for estimstion of
passage times. The proof given here does not require the key renewal

theorem.

(A2.1) PROPOSITION. Assume that E{|f(X,P)|}<®. Then

E{f(x.P)}-E{Yl(f)}/E{al}, where Y, (f) 1s given by Equation (4.2.6).

Proof. Assume £20, E{f(X,P)}<=, and set £ =min(f,c) for some c such that

0<c<». Clearly, Equation (4.2.8) also holds for fc, i.e.,
£.(X 0B y) = £ (X,P) ,
and since fc is bounded,
lim n{fc(xn,rnﬂ)} - E{fc(x,l’)} . (a2,2)
n9o
Next we compute the Cesaro average of the sequence appearing in
Equation (A2.2). First we write

£(m)+1

m
E{:§) fc(xn.rnﬂ)} /(m+l) = E { E

Yk(fc)} /(m+l) ~ E{Y'(m)}/(m+l) , (A2.3)
k=1

By (m)+1

where 2(m)~mx{k:8k5m} and Y'(m)= n-;ﬂ fc (xn’Pn+1)'

Since OstSc, we have 0sY'(m)sc (82 (m) +1~®) . In addition, Wald's equation

(see Chung (1968), Theorem 5.5.3) implies that

o A T
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E{ ﬁz (n)+l} = 3{61}3{1 (m)+1}

and
£(m)+l
z{ ‘;1 Yk(fc)} - E{Yl(fc)}E{!-(n)ﬂ} .

These equations plus the slementary renewal theorem (Smith (1958), p. 246)

imply that

1im E{B -m}/(m+l) = 0
— L (m)+1

{ L(m)+1

lim E Yk(fc)} /(m+l) = E{Yl(fc)}/E(al} .

me kel

Hence from Equation (A2.3) we have
n
;1: E ;of“x“'l,“ﬂ) } /(m+l) = E{Y, (£ c>}/.'z{a=1} . (A2.4)

From Equations (A2.2) and (A2.4) we conclude that
E{t_(x,P)} = E{Y, (£ )}/E{a,} . (A2.5)

Now we let c*= on both sides of Equation (A2.5) and use the assumption that

E{£(X,P)}<» to obtain
E{f(X,P)} = E(Yl(f)}lz{al} . (A2.6)

Tor a gen~sral £ function, we write f-t+-£' and apply the above argument to

both £* and £~. Thus we have Equation (A2.6) provided E{|f(X,P)]|}<w.
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APPENDIX 3. ESTIMATION OF VARIANCE CONSTANTS
We first consider estimation of the variance constant 02 appearing in
Equation (10.2.8) which leads to a confidence iaterval for E{R‘Y’)-{r(?)}.

Basad on n cycles, for i=l,2, compute 81i as an estimate of
Oy = E{(Zﬁi))z} - var{uk} - 2r(1)cov{ak,né1)} + (r(i)) var{N(l)}

according to

o,y = oy, - 28PaD 4 (9(1)) o
where
. (-7t ]E:ta a)?
=1
sg‘) (a~1)"1 ?_;(a 4 )(N(i) N“’) ,
| and
1
i o) = @b Z(N“) w2,
. =1
with

3 =at Zaj, ﬁ'u) at EN“, and £ "(i) .o /N(i) .

3= 3=1
Finally, compute 612 as an estimate of
9y = vat{uk} - £l cov{ak, (1)} - cov{ak, (2)}
t(l)r(z)cov{uﬁl),uéz)}
according to
- - g (1) () _ a(2)_(2) (1)2(2)
812 % 8y — B gy - B ey 4 88 ey,
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where 8110 'S) and sg) are as befors, and

. ija) FO)aDFD,

3= .
Then estimate 02 according to
52 . 611 622 _ %y,

In an analogous manner, we estimate the variance constant 02 (x)
appearing in Equation (10.2.12) which leads to a confidence interval for
P{R(l)Sx}-P{R(z)Sx}. Based on n super-cycles, for i=1l,2 compute 61i(x)

as an estimate of
O y(x) = var{Yl(‘i)} - ZP{R(i)Sx}cov{YS). (1)}

+ (P{R("“)Sx}) var{nk

(1) ?(i) (1) y(i) 2 1)
n n
8,4 (%) = 8777 (x) = 2 a—ﬂh) 81, (x) + =@ 852" (%)
n

according to

vhere
oY @ = @1 ZW}” T2,
J=1
oD = (-1 Z;ar“) T a®=D)
j-
and
(i) (x) = (n-1) -1 Z( 1) (1) 2

=1 T
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with
1) . z: ( =(1 zu:
(i 1 1) ) o -1 1)
Yn j-lY and n n j-lnj .

Finally, compute 612(::) as an estimate of
P (x) = cov{Yél),Yéz)} - P{R(l)sx}cov{Yéz), (1)}
- P{R(Z)Sx}cov{YS). (2)3
+ P{R(I)Sx}P{R(z)Sx}cov{nél) n,ﬁz)}

according to

() 7(2)
8y = oy’ @) - t(‘1) " - ((2)) 3 @
TV 52
(—'-(T)'—W ) 822(%) »

where s (1) (x), s (1) (x), and sg) {x) are as before, and

AP o P oo - i e i 4

8,,(x) = (n-1) -1 jz;(“;n (1))(“3(2) (2)) .

Then estimate az(x) according to

ey = 1D Gp®) 28550 |
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APPENDIX 4. GENERATION OF MARKOV CHAIN IN DL/I COMPONENT MODEL

For isi<7, denote by Ai the rate parameter of the exponentially

distributed service time for jobs of class i. Complete knowledge of the

Q-matrix of infinitesimal transition parameters for the continuous time

Markov chain X={X(t):t20} defined by Equations (5.2.1) and (5.2.2) is

contained in the routing matrix P and the Ai. We give an algorithm for

direct generation of this process.

1.

2.

Fix an initial state in A2 and set t=0.

Determine the status of the ¢ and B center servers, i.e., whether
or not they are busy, and if so, what classes of jobs are in
service. The B center server is busy if Q(t)>0; the a center

server is busy if S(t)>0.

Assume both are busy, with a class 1>0 job in service at the o center.

The cases in which only one server is busy are handled similarly.

3.

4,

Generate a holding time T, exponentially distributed with rate

parameter A1+A1 and advance t to t'st+T.

Determine according to a Bernoulli trial the service which

complates first:
Ai
P{a center service completes first} = S
11
and
Ay

k1+ki *

P{B center service completes first} =

If a center service completes first, go to 6.

M T T A
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Set
Q(t') - Q(t)‘l ’
cs(:') = cs(e)+1 ,
s(t') = s(c) ,
and for 2sj<7 and j¥i, set .
Cj(c )= Cj(t) .
1If S(t')¥7, go to 7. Otherwise, set
c7(:') - c7(:)+1 ,
Cs(t') = Cs(t')'l »
s(t')y =5,
and go to 7 .

For 2s5ks7, set
1) =
Ck(c ) Ck(c) .
Generate ie{1,2,...,7} according to the probabilities Py where
S(t)=j, and set
Y - ' .
ci(: ) C1(° )+1,-1>1
and
Q(t') = Q(t)+1, i=1 .
Set
Y=
s(t') = k,

and

C, (¢')Y=¢C (t")-1,
ko ko

where ko-min{k:ck(t')>0} .

Determine N(t') as follows. If the job completing service is

the marked job, set N(t') equal to its position in the job stack
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after completion of the service. If the job completing service

is not the marked job, set N(t')=N(t) if the job completing

§ service goes back in the job stack either above [respectively

’ below] the marked job, when prior to completion the job was above
fl ; [respectively below] the marked job. Set N(t')=N(t)-1 if job

;% ,. completing service goes from above the marked job to below.

Otherwise, set N(t')sN(t)+l.

;! 8. Return to 2. and iterate with t' playing the role of t.
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