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1.0.* INTRODUCTION

Networks of queues occur frequently in diverse applications. In

particular, they are widely used in studies of computer and comnmunication

system performance as models for the interactions among system resources.

This monograph deals with mathematical and statistical methods for discrete

* event simulation of networks of queues. The emphasis is on methods for

the estimation of general characteristics of "passage times" in closed

networks. Informally, a passage time is the time for a job to traverse

* a portion of a network. Such quantities, calculated as random sums of

queueing times, are important in computer and comunication system models

where they represent job response times.

By simulation we mean observation of the behavior of a stochastic

system of interest by artificial sampling on a digital computer. With

discrete event simulation, stochastic changes of the system state occur

only at a set of increasing time points. Simulation is a tool which can

be used to study complex stochastic systems when analytic and/or numerical

techniques do not suffice; in connection with the study of complex networks

of queues encountered in applications, this is often the case.

When simulating, we experiment with a stochastic system and observe

its behav ior. During the simulation we measure certain quantities in the

system and, using statistical techniques, draw inferences about

characteristics of well defined random variables. The most obvious

methodological advantage of simulation is that in principle it is

applicable to stochastic systems of arbitrary complexity. In practice,
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however, it is often a decidedly nontrivial matter to obtain from a

simulation information which is both useful and accurate, and to obtain

it in an efficient manner. These difficulties arise primarily from the

inherent variability in a stochastic system, and it is necessary to seek

theoretically sound and computationally efficient methods for carrying

out the simulation. Apart from implementation considerations, important

concerns for simulation relate to efficient methods for generation of

realizations (sample paths) of the stochastic system under study, the

design of simulation experiments, and the analysis of simulation output.

It is fundamental for simulation, since results are based on observation

of a stochastic system, that some assessment of the precision of results

be provided.

Assessing the statistical precision of a point estimate requires

careful design of the simulation experiments and analysis of the simulation

output. In general, the desired statistical precision takes the form of

a confidence interval for the quantity of interest. Among the issues the

simulator must face are the initial conditions for the system being

s ulated, the length of the simulation run, the number of replications

of the experiments, and the length of the confidence interval. Over the

last five years, there has been increased attention paid to these issues,

and a theory of simulation analysis (the regenerative method) has been

developed which, when applicable, provides some measure of statistical

precision. The regenerative method, which is based on limit theorems

developed for regenerative stochastic processes, plays a key role in our

discussion of simulation methods for passage times in networks of queues.

Jill CROP
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Under the usual queueing-theoretic (independent and identically

distributed service and interarrival time) assumptions, analyses based on

a "numbers-in-queue" and "stages-of-service" state vector can be carried

out. Typically it is necessary to assume that all service and interarrival

time distributions are exponential or have a Cox-phase (exponential stage)

representation. Under these assumptions, expressions suitable for

numerical evaluation are obtainable for queue length distributions. Other

measures of system performance (calculated as random sums of queueing

times) involve the times, here called passage times, for a job to traverse

a portion of the network. Often when such quantities arise in computer

and communication system models, they represent job response times. In

this context, characteristics of passage times other than expected values

(e.g., percentiles) are of interest. The analyses based on the

numbers-in-queue, stages-of-service state vector yield expected values

for passage times, but do not yield other passage time characteristics of

interest. Moreover, alternative analyses to provide these measures of

the variability of system response are in general not available, and it

is necessary to resort to simulation. Although the usual process of

numbers-in-queue and stages-of-service is a regenerative process (in fact

a Markov chain) under the probabilistic assumptions that we make here,

the regenerative method cannot be applied directly to this process to

estimate general passage time characteristics. This is essentially because

passage times are not totally contained within cycles of the

numbers-in-queue, stages-of-service process.
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The organization of the presentation Is as follows. This initial

section provides some motivation for study of simulation methods for

passage times in networks of queues, a brief overview of some of the

methodological considerations for simulation, and a sulary of the

discussion which appears in subsequetit sections.

The estimation methods developed here for passage times in networks

of queues use the regenerative method for analysis of simulation output.

Based on a single simulation run, these methods provide (strongly

consistent) point estimates and (asymptotically) valid confidence intervals

for general characteristics of limiting passage times. Section 2 provides

a review of the regenerative method. The section contains a brief

discussion of the underlying theory of regenerative stochastic processes

2 along with some examples of regenerative processes in networks of queues.

Section 3 provides a specification of the basic class of closed

networks of queues with which we deal, and the probabilistic assumptions

therein. Initially, we restrict attention to networks with stochastically

identical jobs and give a state vector definition based on a linear job

stack. The section also contains the formal definition of passage time

in a network of queues.

The notion of a distinguished "marked" job is fundamental to the method

for estimation of passage time characteristics described and developed in

Section 4. The approach is to consider a Markov renewal process arising

from a continuous time Harkov chain defined by the usual numbers-in-queue,
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stages-of-service state vector augmented by information sufficient to

track the marked job. We arbitrarily select a job to serve as the marked

job and measure its passage times during the simulation. They key steps

in the derivation of this marked Job method are identification of an

appropriate regenerative process in discrete time and development of a

ratio formula from which point estimates and confidence intervals can be

obtained for quantities associated with the limiting passage time.

In Section 5 we consider application of the marked job method to two

particular closed networks of queues, and display some numerical results.

The first example is a relatively simple network. Despite the apparent

structural simplicity of this network, it exhibits the essence of the

passage time simulation problem. The second and more complex network

arises as a model for a computer data base management system. This model

illustrates the representation of complex congestion phenomena in the

framework of Section 3.

The extension of the marked job method to certain finite capacity open

networks of queues is the subject of Section 6. Particular stochastic

point processes associated with a Markov renewal process generate arrivals

to the networks, and there are two formulations of the finite capacity

constraint. The network structure we permit is essentially the same as

that described in Section 3 except that here the networks are open. To

of typical jobs, based on the idea of a marked job. These are to be

typical jobs in the sense that the sequence of passage times for the marked



jobs should converge in distribution to the same random variable as do

* the passage times for all the jobs. It is necessary to take some eare to

ensure that this is the case.

Slightly restricting the definition of passage time given in Section 3,

we develop in the next section a new and somewhat simpler stochastic

setting than that of Section 4 for the marked job method. Here the starts

of passage times for the marked job are the successive entrances of a

particular continuous time Markov chain to a fixed set of states, and the

terminations of such passage times are the successive entrances to another

fixed set of states. This foaulation, in terms of hitting tines to fixed

sets of states, is the basis for the passage tine simulation method

developed in the next section.

The marked job method of Section 5 is applicable to passage times in

the general sense, i.e., whether or not the passage time is a complete

circuit. For those passage times (termed "response times") which are

complete circuits in a closed network, simulation using a marked job

appears to be the only method available for obtaining confidence intervals

from a single simulation run. It is inherent in the marked job method

that only the passage times observed for the marked job enter into the

construction of point and interval estimates, and we would expect some

loss of efficiency as the price for obtaining confidence intervals. In

Section 8, we concentrate on passage times through a subnetwork of a given

network of queues, and develop the decomposition method. With this

estimation method, passage times observed for all the jobs during a single
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simulation run enter into the construction of point and interval estimates.

The basis for this method is the observation that the successive entrances

to a fixed set of states of an appropriate continuous time stochastic

process serve to decompose the sequence of passage times for all the jobs

into independent and identically distributed blocks.

Section 9 deals with the statistical efficiency of the marked job and

decomposition methods. We consider the calculation of theoretical values

for variance constants entering into central limit theorems used to obtain

confidence intervals for mean passage times. The results of this section

provide a firm basis for comparing the efficiency of the two methods where

both apply. They can also be used to give some idea of the efficiency of

the marked job method in the case of response times, where it is our only

means of obtaining confidence intervals from a single simulation run.

The estimation of passage times in closed networks of queues with

multiple job types is the subject of Section 10. Here the type of a job

may influence its routing through the network as well as its service

requirements at each center. Using the stochastic setting of Section 7

for the marked job method, we mark one job of each type. By tracking

these marked jobs through the network, we are able to obtain point and

interval estimates for a variety of measures of the variability of system

:~ response over the several job types.



The final section considers some aspects of uniform and nonuniform

random number generation pertinent to implementation of a passage time

simulation. We also discuss the use of random number streams and the

generation of state vector processes*



9

2.0. SIMULATION OF REGENERATIVE PROCESSES

When the output of a discrete event digital simulation is a stochastic

process ;S{X(t):t>O1 that approaches a "steady state" which is of interest,

it may be possible to characterize the stochastic structure of the process

and to use this structure in carrying out the simulation. In such cases,

mathematical results on the stochastic structure of the process % form

the basis for both the design of simulation experiments and the analysis

of simulation output. For particular stochastic processes known as

regenerative processes, Fishman (1973) and Crane and Iglehart (1975a) have

provided a theory of simulation analysis called the regenerative method.

This theory has been developed in subsequent papers including Crane and

Iglehart (1975b), Iglehart (1975), (1976), Hordijk, Iglehart and

Schassberger (1976), and Lavenberg and Sauer (1977); see Crane and Lemoine

(1977) and Iglehart (1978) for an introduction to and a detailed review

of the regenerative method. Regenerative simulation underlies the

estimation methods described in subsequent sections for passage times in

networks of queues. In this section we discuss regenerative processes

and review the regenerative method.

Heuristically, a regenerative stochastic process is a process having

the property that there exist random time points at which the process

probabilistically restarts. Typically, these time points at which the

process probabilistically starts afresh, referred to as regeneration points

or regeneration times, are returns to a fixed state of the process. The

essential idea of a regenerative process is that between any two successive

regeneration points, the evolution of the process is a probabilistic

-: *** . *
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replica of the process between any other such pair of regeneration points.

For many stochastic models in which it is possible to identify a sequence

of regeneration points, this discovery is a key to an analytic/numerical

solution which yields expressions for quantities of interest. It is often

the case, however, that even though a sequence of regeneration points

exists, it is nevertheless not possible to obtain an analytic/numerical

solution because of severe computational difficulties; we would then

consider simulation, and it is this situation with which we deal here.

The regenerative process structure, in the presence of certain

regularity conditions, guarantees the existence of a "steady state" for

the process, i.e., that these exists a random variable X such that

lix P(X(t)<x} - P{X~sx)

for all x at which the right hand side of this equation is continuous.

This type of convergence (in distribution) is known as weak convergence

and we denote it by "X(t)-->X as t-o." Furthermore, the regenerative

structure ensures that the "steady state" X of the process is determined

(as a ratio of expected values) by the behavior of the process between

two successive regeneration points. There is an important implication of

these mathematical results for the simulation of regeneration processes.

A strongly consistent point estimate and asymptotically valid confidence

interval for the expected value of a general (measurable) function of the

steady state X can be obtained by observation (in cycles of random length

defined by the regeneration points) of a finite portion of a single



realization of the process ~.When simulating (say, for a fixed number

of cycles), we measure appropriate quantities defined totally within the

individual cycles and compute sample mean. over the cycles.

Where applicable, the regenerative method has great appeal because it

provides both point and interval estimates having desirable properties.

There are, however, other considerations. The classical alternative for

estimation of "steady state" quantities would entail selecting an initial

state for the process, running the simulation for an initial period of

time (and discarding this "initial transient"), and then observing the

process ("in steady state"s) for an additional period of time from which

point estimates are obtained. In general, no confidence interval is

available, nor is there any guidance on the selection of the initial state.

Moreover, the determination of appropriate initial and additional periods

of time is often nontrivial and likely to require sophisticated statistical

techniques. There are similar problems with simulation methods based on

multiple replications. With the regenerative method, these difficulties

to a large extent are avoidable.

2.1. Definition of Regenerative Process

A regenerative process in continuous time can be defined in terms of

the pasting together of so-called "tours"; see Smith (1958) and Miller

(1972). The formal definition of a regenerative process that we give is

equivalent to these and also to the definition of qinlar (1975a), p. 298.

We require the notion of a renewal process and that of a stopping time

f or a stochastic process.
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A sequence of random variables Z{Tn:nz0} is a renewal process provided

that T0 -O and Tn-Tnl (unl) are independent, identically distributed

(i.i.d.) positive random variables. We always assume that 7 is persistent,

i.e., that P{Tn-Tnl<}1-1. A random variable T taking values in [0,+-)

is a stopping time for a stochastic process ; provided that for every

finite tZO, the occurrence or nonoccurrence of the event {Tlt} can be

determined from the history {X(u):ugt) of the process up to time t; see

Cinlar (1975a), p. 239 for a discussion of stopping times.

(2.1.1) DEFINITION. The real (possibly vector-valued) stochastic process

X-{X(t) :t20} is a regenerative process if

(i) there exists a sequence of stopping times -{Bn:n0l such that

is a renewal process; and

(ii) for every sequence of times Ot1<tl2 < ... <tm (mkl) and n>O, the

random vectors (X(tl),.*..X(tm)1 and (X(On+tl),...,X(On+tm)} have

the same distribution, and the processes {X(t):t<Bnl and

{X(8n+t):t>O} are independent.

The points of I are the regeneration points for the process X and we refer

to the interval [6n1'8 n ) as the nth cycle of the regenerative process.

The definition of a discrete time regenerative process is similar; see

the discussion of recurrent events in Feller (1968), Ch. XIII.

It is straightforward to check that irreducible and positive recurrent

(continuous or discrete time) Markov chains and semi-Markov processes

having finite (or countable) state space are regenerative processes. It

can also be shown that in a single server queueing system in which the
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sequence of successive interarrival and service times are positive, i.i.d.

random vectors (having finite means), the processes of the number of jobs

Q(t) in the system at time t, the waiting time W of the nth job, and then

virtual waiting time V(t) at time t are all regenerative processes,

provided that the traffic intensity is less than 1. For the process

{W :nZO}, the regeneration points are the indices of jobs having zeroU

waiting time. For the process (Q(t):t2O1 as well as the process

MV(t):tkO1, the regeneration points are the start of a period during which

the server is busy.

In developing the regenerative method, it is necessary to distinguish

two cases. For the renewal process A-{n :naO} in the definition of the

regenerative process A, we let an-Bn-Bnl (nzl) and denote by F the distribution

function of %. The random variable a1 (or distribution function F) is

said to be periodic with period X>O if, with probability one, a1 assumes

values in the set {O,X,2X,...,} and X is the largest such number. If

there is no such X, then a1 (or F) is said to be aperiodic.

In the aperiodic case, in order for a regenerative process to have a

limiting distribution, it is necessary either to impose regularity

conditions on the sample paths of the process, or to place restrictions

on the distribution function of the time betveen regeneration points. To

be more specific, we first define an appropriate class of distribution

functions. Let F be the n-fold convolution of the distribution function F,n

and define A to be the set of all distribution functions F such that for

some nal, Fn has an absolutely continuous component (i.e., has a density

nI
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function on some interval). It is convenient to write a 1a when the

distribution function F of al is an element of A. We would expect the

aperiodic distributions F arising in applications to be elements of the

set A. With respect to appropriate regularity conditions on the sample

paths of the process, we restrict attention to processes X={X(t):tkO}

having right continuous sample paths and limits from the left, i.e., for

t20,

X(t) " lis X(u)
u+t

and for all t>O,

X(t-) - himX(u) exists ,

u+t

with probability one. For such a k-dimensional stochastic process we

write JDk[O,m). With these defintions, we can state the basic limit

theorem for regenerative processes.

(2.1.2) THEOREM. Assume that a1 is aperiodic with E{al}<. If either

ZeDk[Oc) or a1ci, then X(t)->X as tVm.

There is a corresponding result for the periodic case. The proof of this

theorem (Miller (1972)) involves an application of the key renewal theorem

and is somewhat involved technically.

Now suppose that a1 is aperiodic and that for a real-valued

(measurable) function f having domain E, the state space of the process

., the quantity of interest is
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r(f) - E(f(X)}

When the state space E is not discrete, we must also assume that the set

D(f) of discontinuities of f is such that P{XED(f)}-O; if E is discrete, we

can choose f arbitrarily. We always assume that with probability one the

process f(X) is integrable over a finite interval, and for nal define

onr

Yn( I f(X(u))du

In the case of a discrete time regenerative process, for n2l we define

n f(Xk~)
k n-l

Theorems (2.1.3) and (2.1.4) deal with the structure of regenerative

processes. These results form the basis for the regenerative method.

(2.1.3) THEOREM. The sequence ((Y (f),aa ):nkl} consists of independently

and identically distributed random vectors.

This follows directly from the definition of a regenerative process. The next

result (cf. Crane and Iglehart (1975a), Appendix) provides a ratio formula

for the quantity r(f).

(2.1.4) THEOREM. Assume that a1 is aperiodic with E{a 1<ao, and that

EfIf(X)I}<oo. If either f(U)eD1 [O,.) or ac1141 , then

E{f(X)} - E M(Y(f)}/{a1 }.

, &
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There is an analogous ratio formula when al is periodic. Note that if

the state space E is discrete, the condition f(X)eD 1 [0,-) always holds.

We now indicate how to obtain a point estimate and confidence interval

for the quantity r(f)-E{f(X)} from a sample path of the process 3. In

this discussion, we assume that the regenerative process X and the function

f are such that the ratio formula for r(f) holds. For k>l, let

Zk(f) Yk(f) - r(f)ak (2.1.5)

and denote the variance of Z1 (f) by C
2-var(Zl(f)). Note that {Zk(f):kkl}

consists of i.i.d. random variables, that Zk(f) is completely determined

by the kth cycle of the regenerative process Z, and that E{Zk(f)}-O.

Writing

E{(Zl(f))2} - E{ [(Y2(f)-E(y1(f)})-r(f) (a -F.a ]2 ,

it follows that

a2 = var{Yl (f)} - 2r(f) cov{Yl(f),al + (r(f))2 var{aI} • (2.1.6)

We require the further assumption that 0<c2 <-. The case a2-0 is

degenerate, and a2 <- for most finite state processes. (In some queueing

systems, however, additional finite higher moment conditions on service

and interarrival times are needed to ensure a 2<-.) For fixed n, we use

the quantities (f), - ll 22 and al2 to estimate a 2; obtained from

(YI(f),'cl),.""(Y n(f),n), these are the usual unbiased estimators of

E{Y 1 (f)}, E{a 1}, var{Y 1(f) , var{a 11 and cov{Y1 (f),a 1}, respectively. As
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a consequence of the strong law of large numbers for i.i.d. sequences of

random variables, as n0 the point estimates

2(f) (f)/i
n n n

and
an  ={811-2tn M s1+(?nM ))2 s221

/2

n 12 n 2211/

converge with probability one to r(f) and a, respectively; thus, by

definition n(f) and sn are strongly consistent estimates.

The basis for the construction of an asymptotically (n-1--) valid

confidence interval for r(f) is a particular central limit theorem

(c.l.t.): if O<02<m, then as nu- ,

n 2 (f)-r(f)}/[a/E{a }] --> N(0,1) , (2.1.7)

where N(0,1) is the standardized (mean 0, variance 1) normal random

variable.

To derive this result and similar c.l.t.'s later, we need two lemmas

on weak convergence. Let {X :nzl} and {Y n:nkl} be two sequences of random

vectors such that Xn and Yn are defined on a common probability space for

all n and have ranges Rk and Rt , where Rk [respectively R9iJ is

k-dimensional [respectively 9-dimensional] Euclidean space. Let c denote
k

a constant-valued random vector. Also, let h map R into R and denote

by D(h) the set of discontinuity points of h.

-.1' -
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(2.1.8) LENA. if X-0X and Y -C, then

(Xn) (Xc)
n

(2.1.9) LEMMA. If X ->X and either h is continuous or P{XeD(h)}-O, then

h(X) h(X)

Lema (2.1.8) [respectively La (2.1.9)] is a special case of Theorem 4.4

(respectively Theorem 5.11 of Billingsley (1968).

For the proof of Equation (2.1.7), we first note that the standard

c.l.t. for i.i.d., mean 0, finite variance random variables implies that
1 n
1z(f) -> N(0,1) . (2.1.10)

an kinl

This can be rewritten as
n 1/2 Qn(f)-r(f)}/[(a/E{€az1) (XCaz/ n ) 1 ] (o'l) .(2.1.11)

The strong law of large numbers (or even the weak law for that matter)

guarantees that

(E{a 1}/;) -> 1 . (2.1.12)

Lemma (2.1.8) applies to this situation, and hence if we let X denote

the left-hand side of Equation (2.1.11),

(X,¢(E{asl )= (N(O,1),l).

Now apply Lemma (2.1.9) using the continuous mapping h(x,y)-x-y to conclude

that

- A
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X.(E{cl}/c) ..> N(Ol).I . (2.1.13)

Since N(0,1)-l has the same distribution as N(0,1), Equation (2.1.13) is

the same as Equation (2.1.7).

Equation (2.1.7) provides a confidence interval for r(f) but in

general, of course, the "standard deviation constant" a/E{a 1l is not

available and must be estimated. The most straightforward estimate for

a/E{ctI} is sn/ n, and the strong law of large numbers ensures that

(a/sn) 1

Then, by the same argument which leads to Equation (2.1.7), we obtain from

Equation (2.1.10) the c.l.t.

nll2{e (f)-r(f)1l(sn/ct ) :- N(O,l).
n n/n -n N01

It follows that for 0<y<i/2 the interval

n -f [ n(f)-z 1y sn (nl/) 'n(f)+zl-yn/ann')

where zl.-- 1 (l-Y) and (.) is the distribution function of the

standardized normal random variable, provides an asymptotically valid

100(1-2y)% confidence interval for r(f). This means that

lim P{r(f) n (f)} - 1-2y

and thus when simulating, for large n the interval In (f) (having random

end points) surrounds the unknown constant r(f) approximately 100(1-2y)%

of the time. Other point and interval estimates which reduce the bias of

. . . ... _ _,. .
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n (f) are available; see Iglehart (1975). Note that the interval I n(f)

is symmetric about the point estimate e n(f), and that the half length of

the interval is n- 1 / 2 times a multiple (z1_)of the estimate of the

constant a/E(al}. Thus as n increases, the length of the interval converges

to 0 and the midpoint converges to the true value.

The procedure just described for obtaining confidence intervals when

simulating a regenerative process is far a fixed number of cycles. For a

simulation of fixed run length t, the procedure (Crane and Iglehart

(1975a), p. 39) is the same except that statistics are computed only for

the (random number of) cycles completed by time t. Confidence intervals

are based on the c.l.t., analogous to Eq. (2.1.7), that as t--,

112 1/2
t R{n~(t) (f)-r(f))/[a/({a1 })

1  -> N(0,1)

where n(t) is the number of cycles completed in COt].

Crane and Iglehart (1975a) have also shown that for regenerative

processes possessing more than one sequence of regeneration points, with

high probability the resulting confidence intervals are of the same length,

provided that the length of the simulation run is large. More precisely,

for fixed run length t, if 1(t) and * (t) are the lengths of confidence

intervals obtained from two sequences of regeneration points, then

lim i(t)/I*(t) - 1

with probability one.

o n , a 3--_'-
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Finally, suppose that we are interested in estimating r(f) with a

100(1-2y)% confidence interval whose half length is 100 % of r(f). Then

the number of cycles required is (approximately)

a M (z 1 /6) 2 [a/ (r(f)EfcI 1 }) 2 .

The first factor (z./6)2 is independent of the system being simulated.

From the second factor [Ca(r(f)E(ctI}) 1 it is apparent that some systems

are inherently more difficult to simulate than others. This quantity

provides a good measure of the length of simulation required for a fixed

level of precision. An estimate for this quantity obtained from a pilot

run can be used to determine the length of the final simulation run.

2.2. Regenerative Processes in Networks of Queues

To illustrate the ideas of Section 2.1, consider the simple closed

network of queues of Figure 2.1. A fixed number of jobs, N, circulate in

the network from time t-0. Upon completion of a service at center 1, a

job joins the tail of the queue in center 2 for 8 service. After completion

of service at center 2, the job joins the tail of the queue in center 1.

Neither center 1 nor center 2 service is subject to interruption, and we

assume that both queues are served according to a first-come, first-served

(FCFS) discipline. We complete the specification of this network of queues

by making the following probabilistic assumptions:

(i) successive a service times form a sequence of i.i.d. random

variables exponentially distributed (as S1 ) and having rate

parameter X1, i.e., for tO,

P{S 1 t} 1 1 -I xp(-X t)

- I -- *
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Figure 2.1. Cyclic queues
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(ii) successive B service times form a sequence of i.i.d. random

variables exponentially distributed (as S 2  and having rate

parameter X2; 1

(iii) the sequences in (i) and (ii) are mutually independent.

To study quantities associated with the lengths of the queues in

centers 1 and 2, for tkO let X(t) be the number of jobs waiting or in

service at center I at time t. The stochastic process X-{X(t):tkO} has

finite state space E-{O,l,...,N}, and under assumptions (i), (ii), and

(iii) is in fact a continuous time Markov chain. It is easy to check that

the Markov chain X is irreducible and positive recurrent. Thus, this

"state vector process" X for the network of queues is a regenerative

process; successive returns to any fixed state ieE are regeneration points

for the process. The regenerative process X has a "steady state" X, and

we can apply the regenerative method to obtain from a single replication

point estimates and confidence intervals for quantities of the form

r(f)-E{f(X)} for some function f having domain E. Suppose for example,

that f is the indicator function, 1{I2,.N of the set {I,2,...,N1.

(The indicator function l{l,2,...,N}(x) equals 1 if xc{l,2,...,N} and

equals 0 if xd{is2,...,N}.) Then r(f)=E{f(X)} is the steady state

utilization of service center 1, i.e., the (limiting) probability that

center 1 is busy. If f(x)mx, then r(f) is the steady state mean number

of jobs waiting or in service at center 1.

Note that if we assume that one of the service time random variables

has an exponential distribution, but that the other (say S2) has a finite
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mean but otherwise arbitrary distribution, the stochastic process A is no

longer a continuous time Markov chain. The process, however, is still

regenerative; the successive entrances of the process X to a fixed state

ie{l,2,...,N} from state i-1 are regeneration points. These time points

correspond to completions of service at center 2 after which there are i

jobs at center 1.

Nov consider the network of queues in Figure 2.2, formulated (Lewis

and Shedler (1971)) as a model of system overhead in multiprogramued

computer systems operating under demand paging. The interpretation of

this figure differs from that of a conventional diagram for a network of

queues in that services are distinguished from the servers which perform

them. In Figure 2.2, the circles represent services rather than servers.

The model consists of two sequential stages, the a stage and-the 8 stage,

in a loop. Two servers, interpreted as a processor and a data transfer

unit (10 unit), provide service to a constant number, N, of jobs

(programs); each of the jobs goes through both stages in sequence and then

returns to the first stage, this process being repeated continuously.

Within the a stage, a job receives each of three services al, a2 , and a 3 ,

in that order and similarly, within the 8 stage, a job receives each of

three services 1, 82, and 83, in that order. A 02 service can be provided

only by the 10 unit, and each of the other services can be provided only

by the processor. We assume that the two servers can provide service

concurrently, subject to the restriction that the processor cannot provide

a 81 or a 83 service while the 10 unit is providing a 82 service. In

addition, we assume that after having received an a3 service, a job moves
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I

Wtgti

0)Pra mor providSa, .2- *3- 01 , m viOM

(ii) I/0 unit providin 02 svice

(iii) No P, 03 orvice by procesor during p2 service by I/O unit

(iv) l, 30. 1o P2 -. P30 vincu not interrupua ie

(v) a2 MilC hn pfu4fptv e nM typO intwVuption at completion of 02 urvica

Figure 2.2. System overhead model
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instantaneously from the a stage to the tail of the queue in the 0 stage,

and after having received a 8 3 service, moves instantaneously from the 8

stage to the tail of the queue in the a stage.

The single processor provides c1it a'2l a3, 81, and 83 service to the

several jobs in the network. Having begun an a is (13, 81, or 83 service,

the processor completes the service without interruption. In the case of

the a2 service, however, interruption is possible. Interruption of an a 2

service occurs at the completion of a concurrent 82 service. After some

time, the a2 service continues from the point in the service at which

interruption occurred. Thus, the "02-complete" interruption of an a2

service is of the preemptive-resume type.

At the completion of an a1 , aL2 , a3 , 011 or 03 service and at an

interruption of an a 2 service (i.e., at completion of 8 2 service), the

processor chooses the next service to be provided according to a rule of

priority as follows (see Figure 2.3):

(i) if there is a job waiting for 8 3 service, begin this service;

(ii) otherwise, if there is a job waiting for 81 service, begin this

service provided that 8 2 service is not in progress;

(III) if the last a service provided was a completed a.2 service, begin

an a3 service;

(iv) if the last a service provided was an interrupted a2 service,

resme the a 2 service;

(v) if the laut a service provided was an 1 service, begin an a 2

service;
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(vi) if the last a service provided was an a3service and if the queue

in the a stage is not empty, begin an a1service.

If no claim is made on the processor according to the rule of priority,

tit remains idle until the completion of the next 0 2 service, at which time

the rule of priority is invoked again. We assume that the queue in

the a stage and the queue in the 8 stage are both served according to a

FCFS discipline.

* To complete the specification of the models we make the following

probabilistic assumptions:

M i the successive at,1 [respectively a 3] service times form a sequence

of i.i.d. random variables; the random variable al. [respectively

013] has afinite mean, but otherwise arbitrary distribution;

(ii) the successive 01 (respectively B., 03] service times form a

sequence of i.i.d. random variables; the random variable 01

[respectively 82, 83] has a finite mean, but otherwise arbitrary

distribution;

(iii) the successive (%2 service times form a sequence of i.i.d.

exponentially distributed random variables;

(iv) the sequences in Ci), (ii) and (iii) are mutually independent.

Quantities of interest in this model include the limiting utilization

of the 10 unit (i.e., the long-run expected fraction of time that it is

busy as opposed to being idle), and the long-run expected fractions of

time that the processor provides each of the services a 1.0 L2, a13, 01, and
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83; Formally, denote the total amount of a1 [respectively a2, C39 elf

821 83] service that has occurred in the system during the time interval

(Ot] by Al(t) [respectively A2(t), A3(t), Bl(t), B2 (t), B3 (t)]. Then,

in terms of these processes of cumulated service times, for 1-1, 2, and

3, we wish to estimate

-E{Ai(t) )

t

and E(B i(W
l"n t (2.2.1)

t"M

provided that the limits exist.

The definition cf an appropriate system state for a simulation of this

model is perhaps somewhat les apparent than in the previous example. It

is clear, however, that it is necessary to take into account more than

just the number of jobs waiting or in service at one of the stages. The

additional information that we use is the kind of service which is being

provided by the processor or (according to the rule of priority) is to be

provided next. If at time t the processor is providing ai service (1SiS3)

and there are n Jobs (Osn<N) waiting or in service in the B stage, we

define the system state X(t) to be (n,i). Otherwise, at time t the

processor is idle or is providing 81 or 183 service; In this case we define

X(t) to be

(i) (n,O) if there are n jobs (O~u-H) waiting or in service in the

B stage and the next a service to be provided is the resumption

of an a2 service;
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(ii) (n,l) if the next a service is an al service; and

(iii) (n,2) if the next a service is the start of an a 2 service.

The force of this state definition is that the stochastic process

j-{X(t) :t>O} is a regenerative process in continuous time. To see this,

consider the increasing sequence of time points {tk:k 0} at which either:

(i) a 83 service has just been completed and the served job has moved

to the a stage queue, or

(ii) after a time point described- in (i) at which the 0 stage queue is

empty, the next job appears at the 8 stage for service.

Now consider the subsequence {t'1 of the {tk} at which the system enters

state (1,1). At such a time point, there is one job in the 0 stage and

the next a service to be provided is an al service. These tk are

regeneration points for the process Z. Note that the process (X(t k ):kkO},

I.e., the process A observed at the epochs {tk } , is an irreducible,

aperiodic finite state discrete time Markov chain. In addition, it is

easy to check from the basic assumptions of the model that, given the

state of the system at time points tk and tk+1, the time interval tk+l-tk

is a random variable whose distribution does not depend on the times

between previous time points ti (Msk) or the state of the system at the

time points tI (t<k)).

The regenerative structure of the process X provides a basis for

estination of the quantities defined in Equation (2.2.1) even though they

cannot be expressed in the form E{f(X)}. The first observation is that

the secuences



31

{(Ai(t' l)-Ai(tQ) t' ,q):kzl}

and

{'Bi t+i)Bi(tQ)s t 41-t'):k2l1 (2.2.2)

consist of i.i.d. random vectors. In addition, the ratio formulas

E{Ai(t)} EfA (t'+l -Ai (tt)
m + i k

tO k+1 k

and

E{B i(t)1 ESi t+l)-Bi(t )(

lim t Ei kt+l-ti ) (2.2.3)

hold, provided that all relevant expectations are finite. The ratio

formulas can be established, for example, by direct application of a basic

limit theorem for cumulative processes (Smith (1958), p. 263); the processes

{A i(t):tzO} and {B i(t):tzOI are cumulative processes with respect to the

regenerative process Z. Given Equations (2.2.2) and (2.2.3), the arguments

for the standard regenerative method apply and yield point estimates and

confidence intervals for the quantities of interest.

This somewhat complex model illustrates the following remark about

network of queues used as models for computer and communication systems.

For quantities associated with queue lengths, it is often possible to

define an appropriate state vector and in a fairly straightforward manner,

to establish the existence of regeneration points and the applicability

of the regenerative method. Frequently this is possible under fairly

general distributional assumptions. The key to showing the applicability

- 1. f
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of the regenerative method, as in the example above, is often the discovery

of a familiar stochastic process (e.g., discrete time Markov chain)

embedded in the state vector process.

There are, hovever, examples of networks of queues for which, even

under the convenient assumptions of distributions with a Cox-phase

(exponential stage) representation for service and interarrival times, it

is technically quite difficult to establish the applicability of the

regenerative method; this is so even though we would expect the required

conditions to be satisfied. The model of an automated tape library

proposed by Lavenberg and Slutz (1975) provides one such example.

* 1.- * * ---
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3.0. CLOSED NETWORKS OF QUEUES

We deal with closed networks of queues having a finite number of jobs

(customers), N, a finite number of service centers, s, and a finite number

of (mutually exclusive) job classes, c. At every epoch of (continuous)

time each job is in exactly one job class, but jobs may change class as

they traverse the network. Upon completion of service at center i a job

of class j goes to center k and changes to class I with probability pij,k'

where P-{p ij,kl : 1 si ' k~s lIj,Z.c} is a given irreducible Markov matrix.

At each service center jobs queue and receive service according to a fixed

priority scheme among classes; the priority scheme may differ from center

to center. Within a class at a center, jobs receive service according to

a fixed queue service-discipline, e.g., first-come, first-served (FCFS).

Note that in accordance with the matrix P, some centers may never see jobs

of certain classes. Only one job can receive service at a center at a

time; i.e., the centers are single servers. According to a fixed procedure

for each center, a job in service may or may not be preempted if another

job of higher priority joins the queue at the center.

3.1. Probabilistic Assumptions

The marked job method discussed in Section 4 for passage time

simulation applies to networks of this kind in which all service times in

the network are mutually independent, and at a center have a distribution

with a Cox-phase representation (Cox (1955)), i.e., consisting of a

sequence of exponential stages; see Figure 3.1. We permit parameters of

the service time distribution to depend on the service center, the class

of job being served, and the "state" of the entire network as defined below.
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Ib 1 -b2  1 b3

Figure 3.1. Cox-phase representation
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Each service time distribution has its own finite number of stages,

say n. Realization of a service time is as a sum of a random number (al)

of exponentially distributed times. Within the jth stage (ljfn-l), an

amount of service exponentially distributed with rate parameter X accrues;

with probability l-b service is complete, and with probability b

additional service exponentially distributed with rate parameter XJ+

accrues. The density function of the resulting service time has rational

Laplace transform

J1 k- =l~k

where al-l and for l<J:n, aj bl ...bj_ . The class of density functions

having Laplace transform of this form includes hyperexponential and

mixtures of Erlang densities; see the Appendix of Gelenbe and Muntz (1976)

for a discussion. Note that we exclude the case of zero service times

occurring with positive probability.

In connection with this class of service time distributions, it is

clear that if bl-b2-...- bn l-l and if I=X2-,. "4n' then the resulting

service time has an Erlang-n distribution, i*e., a gamma distribution with

integral shape parameter. It is less obvious but can be shown (by

considering Laplace transforms of the density functions) that if X >X
1 2

and

bI a 1 - P P2X2/Al

then the Cox-phase form is a representation for the hyperexponential

density
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-'X t  -x2 t

1

PlX1 e + P2A2e

concentrated on t O, where P1 and P2 are nonnegative and p1+p2 ni. The

corresponding result for three stages is chat if X1>X2>X3,

b - 1 - p1 - (P 2 X2 /Xl) - (P3X3 /Xl) ,

and

b - 1 - [p2 +{P3 ) 3 ( 1-A3 )1/(X 2 ('X1 -A2 ]/[p2 (P 3 (Xl-A3)/( 1 -x 2)1]

then the Cox-phase form is a representation for the hyperexponential

density

-Xt -X2t -X3t

1 + P2 2 + P3X3

where p,, P2. and p3 are nonnegative and p+p 2+pP3-1.

3.2. State Vector Definition

In order to characterize the state of the network at time t, we let

Si(t) denote the class of the job receiving service at center i at time

t, where iil,2,...,s; by convention Si(t)-O if at time t there are no jobs

at center i. The classes of jobs serviced at center i ordered by

decreasing priority are Jl(i),J 2 (i),... k(i)(i), elements of the set

(1,2,...,c). Let C(i)(t),...,C(i) (t) denote the number of jobs in queue• " l Jk(i)
at time t of the various classes of jobs serviced at center i, i-3,2,...,s.

For queue lengths of jobs of various classes at the several centers, these

state variables (together with the stages-of-service) would suffice. To

deal with general characteristics of passage times, however, these state

variables are inadequate. An apparently minimal state vector augmentation

I'
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I!

is based on the concept of a marked lob. The idea is to keep track of

the position of an arbitrarily chosen marked job in the network and to

measure its passage times during the simulation. It is convenient to

think of the N jobs as being completely ordered in a linear stack according

to the following scheme. For taO, we define the vector Z(t) by

z W) - (C (1)  W )C(1) 4.'Cl . () .

Jk(s) Jk()-l l I

C ( : s  W (t)C S )  (t),.. C(s) (t) ,Ss(t)) .(3.2.1)
Jk) Jk~s)-i "' J

The linear lob stack then corresponds to the order of components in the

vector Z(t) after ignoring any zero components. Within a class at a

particular service center, jobs waiting appear in the job stack in FCFS

order, i.e., in order of their arrival at the center, the latest to arrive

being closest to the top of the stack. We denote by N(t) the position

(from the top) of the marked job in this job stack at time t.

We associate a stage of service with each job in the network as

follows. A job in service is in a particular stage of its service time

distribution at that center; for such a job, this is the associated stage.

For a job in queue, the associated stage is the stage of its service time

distribution that is to be provided when the job next receives service;

typically this is the first stage of service, but may be a subsequent

stage if the job has been preempted. For tZO, we define the vector U(t)

by

U(t) -(U I(t),...UN(t)) ,(3.2.2)
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where U (t) is the stage of service associated with the jth job in the

linear stack of jobs, and for t2O take as the state vector of the network

of queues the vector

X(t) (Z~t),.i~t),U(t)) .(3.2.3)*18

For any service center £ that sees only one class of job, i.e., such that

k(i)-l, it is possible to simplify the state vector by replacing

C (t).Si(t) by Qi(t), the total number of jobs at center i. Note that

the state vector definition does not explicitly take into account that

the total number of jobs in the network is fixed. In the case of complex

networks, the use of this resulting somewhat larger state space facilitates

generation of the state vector process; for relatively simple networks,

it may be desirable to remove the redundancy.

3.3. Definition of Passage Times

Given a particular closed network of queues, we must specify the

passage time of interest. This can be done in terms of the arbitrarily

chosen marked job of Section 3.2, by means of four subsets (A1,. A2, B1 , B2)

of the state space, E, of the stochastic process 4-{X(t):tO1. The sets

Ak, A2 [respectively Bl, B2] jointly define the random times at which

passage times for the marked job start [respectively terminate]. The sets

A,, A2 , B1 and B2 in effect determine when to start and stop the clock

measuring a particular passage time of the marked job.

It is convenient to introduce the jump times {( n:n01 of the process J.

We set 0-0 and have TO<T<1 ... with probability one. Since the state

_ _ _ _1
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space E of I ts finite, there can be no finite accumulation points for

the Ta and T  ° U-. For k,n2l, we require that the sets A1, A2 , B1 and B2

satisfy:

if X(T _1)tAl, X(Tn)CA2 , X(Tn_1+k)CA 1 and X(Tn+k)4A2,

then X(r )CB and X(Tn )eB2 for some O<m-5k;

and

if X(n_1 )eBl, X(Tn)eB2, x(- nl+k)CB1 and X( n+k )eB2

then X(T nl+m )CA1 and X(Tn.m)eA2 for some Om<k . (3.3.1)

These conditions ensure that the start and termination times for the

specified passage time strictly alternate.

In terme of the sets A1, A2 , B1 , and B2 , we define two sequences of

random times, {S :jaO} and {T :j:1}, where SJ_ 1 is the start time of the

Jth passage time for the marked job and T is the termination time of this

Jth passage time. Assuming that the initial state of the process X is such

that a passage time fo- the marked job staxts at-t t-0, let

S -o0
I S~0 0

S - inffT ZT :X(Tr)CA X()e)eA, for some

j A U A2, 1 kA

ksjl and k<}, jl,

and

T - inf{Tn >S J-:X(n )cB 2 , X(T,)eB1 for some

Tk and k<nl, Jk1 . (3.3.2)
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Then the jth passage time for the marked job is simply P jTj-Sj_I. J2l.

Quite often (and in particular in the two eamples discussed in Section 5),

the value of k in the definitions of S and T can be set equal to n-1,

a considerable simplification. In general, however, we allow k<n. For

response times (complete circuits), AI=B1 and A2 =B2 ; consequently S =Tj

for all J2l.

The following example illustrates specification of passage times in

terms of the sets A1 , A2, Bl , and B2.

(3.3.3) EXAMPLE. Consider the closed network of Figure 3.2 having

three service centers. Upon completion of a [respectively 0] service at

center 1 [respectively center 2], each of the N jobs joins the tail of the

queue in center 3. In accordance with a binary-valued variable *, after

completion of y service at center 3, a job joins the tail of the queue in

center 1 (when *-I) or joins the tail of the queue in center 2 (when *-0).

Assume that each of the queues is served according to a FCFS discipline.

Also assume that routing variable is a random variable independent of

service times in the network, and that at each of the centers, service

times are i.i.d. exponential random variables.

Suppose that the passage time of interest starts when a job joins the

center 1 queue (upon completion of service at center 3) and terminates when

the job joins the queue in center 3. Here there is effectively a single

job class. Denoting by p the (independent) probability that the binary

routing variable * takes the value 1, in the routing matrix P, P1 1 31 -P 21 ,311,
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p31,11- p , p31 , 2 1-1-p, and all other ptj,kt "0. For t2: and 1-1,2, and 3,

we define Qi(t) to be the number of jobs waiting or in service at center i.

Then

x(t) -(zct),N(t)),

where Z(t)-(ql(t),Q 2 (t),Q 3 (t)) and N(t) is the position of the marked job

in the associated job stack. The state space E of the process is

E - {(i,J,k,n):Osi,j,kON; i+j+k-N; lnsN}

For this passage time

A1 i= {(i,J,k,n)eE:kkl; n-N}

A2 = {(i,J,k,n)eE:i2l; n-1}

B1 - {(i,J,k,n)4E:i2l; n-il

and

B2 - {(i,j,k,n)eE:kl; n-i+j+l}

NoW assume that the queues in center 1 and center 2 are served

according to a FCFS discipline, but that at center 3, jobs that join the

queue after completion of service at center 1 have priority over those that

join the queue after completion of service at center 2. Suppose that the

passage time (indicated by P in Figure 3.2) of interest starts when a job

Joins the queue ir center 1 and terminates at the completion of service

to the job at center 3.

To deal with this passage time, we use two job classes: center 1 sees

only jobs of class 1, center 2 sees only jobs of class 2, and center 3 sees

-.. §
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jobs of class 1 and class 2. In the routinS matrix P, pll,'3 1 22 , 3 2-1,

'1 P3 1 ,11P 3 2 , 1 1 -p, p31 , 22 -p 32 , 2 2 1-p, and all other piJ,kt-0. For t-O0,

Z(t) - (Q (t).Q2 (t).C 3 )(t).C ( 3 ) (t)S 3 (t))

where C( 3 ) (t) [respectively C (t)] is the number of class I [respectively

class 2] jobs in queue at center 3 at time t, and S3 (t) is the class of job

in service at center 3 at time t. (S3 (t)0 if at time t there are no jobs

at center 3). The state space E of the process X={X(t):tkO} is

E - {(iJ,O,O,O,n):OSi,jSN; i+J-N; l"N} U

For the passage time P,

A- {(i,jk,,m,n)eE:m-l; n-N)

A2 - {(i,j,k,2,m,n)E:il; nul}
A2

B1  A1 ,

and

B2 - A2 u {(i,j,k,i,m,n)fE:j2l; n-i+1l

!4
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4.0. THE MARKED JOB METHOD

We base the estimation of general characteristics of passage times

in.a closed network of queues of Section 3 on the measurement

of passage times for a typical job, the marked job discussed above. It

is intuitively clear and is shown in Appendix 1 that the sequence of passage

times for any other job (as well as the sequence of passage times,

irrespective of job identity, in order of start or termination) converges

in distribution to the same random variable as the sequence of passage

times for the marked job. It follows that we can estimate general

characteristics of passage times in the network by simulation of the

process X-{X(t):tzO defined by Equations (3.2.1), (3.2.2) and (3.2.3).

We shall see that it is possible to use the regenerative method (applied

to an appropriate discrete time regenerative process) to obtain strongly

consistent point estimates and asymptotically valid confidence intervals

for passage time characteristics.

We denote by Xn, n>0, the state of the system when the (n+l)st passage

time of the marked job starts. For J2l, let P be the jth passage time

for the marked job and take the quantity of interest in the simulation to

be

r(f) - E{f(X,P)} , (4.0.1)

where f is a real-valued (measurable) function and (XnPn+)->(XP). For

example, to estimate E{P}, we take f(x,p)-p; to estimate P{P~t}, we take

f(xp)-l 0,t](p) , where 1 i[st in the indicator function of the set [O,t].
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4.1. Simulation for Passage Times

Based on the measurement of passage times for the marked job, we obtain

estimates of the quantity r(f) as follows.

(4.1.1) ALGORITHM. (Marked Job Method)

1. To serve as a return state, select a star^ of the system, i0 p at

which a passage time of the marked job starts. Begin the

simulation with X(O)-i O .

2. Carry out the simulation of 45 for a fixed number, n, of cycles

(having random length) defined by the successive returns to the

state i.

3. In each cycle measure all passage times of the marked job. Denote

the number of passage times of the marked job observed in the

kth cycle by ak(k l)- and- coputaethe .quantity

ak-1
Y M)- F f(XnPn*,) , (4.1.2)

n=Bkt

where 8 in0 and Ok-ai+...4%k .

4. Take as a point estimate (based on n cycles) of r(f) defined by

Equation (4.0.1) the quantity

en(f) - Y (4.1.3)

where

-1Y a(f) W n1  Y ~
n k-i

and

n k-n

5. Take as a 100(1-2()% confidence interval (based on n cycles) for

r(f) the interval
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n(f) n M2nzf)-zl8yn/(Ar h/2) Zl-yn ' nn/) . (4.1.4)

Here z 0-1 (1-y), where 0(.) is the distribution function of

a standardized (mean zero, variance one) normal random variable,

and A is the quantity

an 19s-2e(f)s12+(rn(f)) 221/2

where

all (n-1) - 1 n -(f 2

k-i

- 1 - 2

and 
k-i

- 1  n

k-i

Justification for this passage time simulation method appears in the next

section.

4.2. The Underlying Stochastic Structure

With knowledge of the matrix P and the parameters of the exponential

stage service times, we can carry out the simulation (i.e., generation of

the process X-{X(t):tO as defined in Section 3.2) in a straightforward

manner. Note that when all service times are exponentially distributed,

the vector U(t) in the state vector given by Equation (3.2.3) can be

omitted, resulting in a smaller, less complex state space.

The force of the assumptions of Cox-phase service times and Markovian

routing in the closed networks of queues of Section 3.1 is contained in

Theorem (4.2.1).
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(4.2.1) THEOREM. The stochastic process X-{X(t):tO} defined by

Equations (3.2.1), (3.2.2) and (3.2.3) is a continuous time Markov chain

with a finite state space, E.

The method of Section 4.1 for estimation of general characteristics

of passage times relies on the measurement of passage times for a typical

job, the marked job as introduced in Section 3.2. As in Section 3.3,

specification of the passage time of interest is in terms of the marked

job, by means of the four subsets (A, A2' B, B2 ) of E. We define the

two sequences of random times, {S :J4} and [T:JI1}, where Sj_ 1 is the

start time of the jth passage time for the marked job and T is the

termination time of this jth passage time. For an initial state of the

Markov chain X such that , passage time for the marked job begins at t-O,

S -o0

S - inf{Tnr T :X(Tn)eA2, X(Tk)gA 1 for some

Tk ?j-i and k<n}, jal

and

Tj inf{Tn>SJ-1:X(T n)B2, X(Tk)eB1 for some

T k Sj-1 and k<n}, ja , (4.2.2)

where {T :nzO are the jump times of the Mlarkov chain X. Then the jth

passage time for the marked job is P -T -SjI' Jal.
j j jl

Let X denote the state of the continuous time Markov chainn

X-{X(t):t>O} when the (n+l)st passage time of the marked job starts:

Xn -X(Sn nZO. Since X is a Markov chain and (S :nao are stopping times

. . . . . . . . .. . . . . . . . . . . . . .
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for the chain, {X n:nA0} is a discrete time Markov chain with finite state

space A2 . For a discussion of stopping times, see ginlar (1975a), p. 239.

Throughout, we shall assume that the process {X n:nz0} is irreducible and

aperiodic. Furthermore, it is easy to check that the process {(Xn ,Sn):nz0}

satisfies

n( +-J S.-n :5lxo,...,x ; SO$,....,Sn}

- P{X+l-j Sn+l-SntlXn}

with probability one for all n>O, JeA 2 , and t20.

(4.2.3) THEOREM. The stochastic process {(Xn ,Sn):n20} is a

Markov renewal process.

This follows directly from the definition of a Markov renewal process;

see Cinlar (1975b) or Cinlar (1975a), p. 313. The basic data for this

Markov renewal process is the semi-Markov kernel over A2,

K={K(i,j;t):i,jeA 2, t>0}, defined by

K(i,j;t) - P{Xn+l-j, Sn+l-Sn'tIxn-i} .

While the kernel K is normally given in the analysis of a Markov renewal

process, for the network of queues passage time problem, K is virtually

impossible to calculate. Thus from this point of view, the only hope for

studying the passage time in question is to generate sample paths of

{(Xn,Sn):nZO} via simulation of the Markov chain X.

As in Section 4.0, let f be a real-valued (measurable) function with

domain A2xR+, where R+-[O,), and define the quantity r(f) according to

-10~ *Meo'&
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r(f) - E{f(X,P)} . (4.2.4)

Now we select a fixed state, iO , from A2 , begin the simulation of w vith

X(O)iO, and carry out the simulation of X in cycles defined by the

successive returns to state i0. Let a denote the length (in discrete

time units) of the kth cycle of {X :nO} and define 8o 0-, and Sk-l + . ..+k,

k~l.

Theorem (4.2.5) follows from Theorem (4.2.3) and the definition of a

regenerative process. It comprises the key observation which leads to

point and interval estimates for r(f).

(4.2.5) THEOREM. The stochastic process {(Xn,Pn+1 ):nOl is a regenerative

process in discrete time with regeneration points (k:k O).

Note that the regeneration points 8k are not the times of return to a

fixed state of the process {(XnPn+ 1):n>0}.

For kal, we now define

k-1

¥k M n n .- f (X n 'Pn+l (4.2.6)

Since the 8k are regeneration points for ((X n,P nl):nO}, we have (cf.

Crane and Iglehart (1975), Proposition 2.1) the following result.

(4.2.7) THEOREM. The pairs of random variables {(Yk(f),ck):kzll are

independent and identically distributed.

The regenerative property guarantees (Miller (1972)) that as n-

(XnP1+ ) -> (X.P)
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where -o denotes convergence in distribution, i.e., there are random

variables X and P such that as nw, the joint distribution of (XnPn+l)

converges to the distribution of (X,P). For the function f (appearing in

Equation (4.2.4)) in the definition of r(f), let Df denote the set of

discontinuities of f. Assuming that P{(XP)eDf}0 and using Lemma (2.1.9)

it follows that

f(nPn+l) -> f(XP) (4.2.8)

as n',. The final step is to establish a ratio formula for E{f(X,P)}

which makes it possible to apply the regenerative method to estimation of

passage times; this follows from the general result for regenerative

processes (cf. Crane and Iglehart (1975), Proposition A.3). A direct

proof not requiring the key renewal theorem is in Appendix 2.

(4.2.9) THEOREM. Assume that E{If(X,P)}<. Then

E{f (X,P) }E{Y1 (f) }/E l} '

where Yl(f) is given by Equation (4.2.6).

With the ratio formula of Theorem (4.2.9) and the fact that the pairs

of random variables (Yk(f),Lk) :kzl} are independent and identically

distributed (Theorem (4.2.7)), we can apply the regenerative method to

{ (X,P ):n>O to obtain point and interval estimates for r(f).

n .~
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5.0. EXAMIPLES AND SIMULATION RESULTS

To illustrate the marked job method of the previous sections for

estimation of passage times in closed networks of queues, we consider two

examples. Descriptions of the networks and state vector definitions appear

in this section, along with illustrative numerical results.

5.1. A Closed Network of Queues

* The first example is relatively simple; see Figure 5.1. Upon completion

of at service at center 1, in accordance with a binary-valued variable i

the job joins the tail of the queue in center 1 (when *~-l) or joins the

tail of the queue in center 2 for $ service (when ip-O). After completion

of 0 service at center 2, the job joins the tail of the queue in center 1.

Neither center I nor center 2 service is subject to interruption. We

* assum that both queues are served according to an FCFS discipline. The

limiting response time of interest (denoted by R) for a job is the time

measured from entrance into the center 1 queue upon completion of a center

2 service until the job next joins the center 1 queue. Also of possible

interest in this model is the limiting passage time (denoted by P)

corresponding to the time '-easured from entrance into the center 1 queue

upon completion of si center 2 service until the job next joins the center

2 queue.

We consider passage time simulation of this network of queues under

the following probabilistic assumptions:*1 (i) successive a service times form a sequence of i.i.d. random

variables, exponentially distributed with rate parameter u0

(ii) successive 8 service times form a sequence of i.i.d. random

variables, exponentially distributed with rate parameter Uli;
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4 R

(i) ot and services are not interruptable
(ii) Routing determined by binary valued random variable j

Figure 5.1. Closed network of queues
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(iii) * is a Bernoulli random variable and values of J at successive

a service completions form a sequence of i.i.d. random variables;

(iv) the sequences in (i), (ii) and (iii) are mutually Independent.

In this network, there are two classes of jobs: class 1 jobs at

center 1 and class 2 jobs at center 2. Since each center sees only one

class of job, the process {Z(t):t2O} can be defined by

i z(t) -(Ql(t),Q2(t))

where

Ql(t) - number of jobs waiting or in service at center 1 at time t,

and

Q2(t) - number of jobs waiting or in service at center 2 at time t.

Now let N(t) denote the position of the marked job in the linear job

stack c'responding to the order of the nonzero components of Z(t). Taking

into account the fixed number of jobs in the network and that the service

times are exponentially distributed, the process X-{X(t):t>O}, where

X(t) = (Q (t),N(t)),

is the underlying continuous time Markov chain.

For this model the state space E of X is

E - ((i,j):OUiSN; l:j s}

where N is the number of jobs in the network. In the special case of

Nu2 jobs, FiSure 5.2 shows the possible state transitions among the

I-
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Nx(N+I)-6 states. State (031) corresponds to both jobs in canter 2 with

the marked job being the one in queue; state (1,1) corresponds to one job

in service at center 1 and one in service at center 2, the marked job

being the former, etc.

The Markov chain governing change of job class at service completions

can be taken to have state space {1,2} and transition matrix

[P 1-p]

1 0

where we denote by p the probability that the binary branching variable

takes the value 1.

The sets A1 and A2 (of Section 4.2) defining the start of response

times for the marked job are

A,- (i,j)eE:J-N, i<N}

and

A2 - {(i,j)cE:J-l, i>0}

Since R is a response time, Tj-S for jal, B1-A1 , and B2 -A . For N-2 jobs,

A,-{(0,2), (1,2)) and A2-{(1,1), (2,1)}; see Figure 5.2. A sample path of

the Narkov renewal process {(X n,S n ):nO} is in Figure 5.3. For the passage

time P, Al-{(0,2). (1,2)}, A2-{(1,1), (2,1)1, BE-{(1,1), (2,2)) and

B2 -{(0,1), (1,2)1.

5.2. A Computer System Model

The second example is more complex, and is essentially the network of

queues defined by Lavenberg and Shedler (1976) as a model of resource
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A a
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Figure 5.2. State transitions in Markov chain X and subsets of E
for response time R
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Y1 Y2  Yn

(2,1)

(1,1J
So0  S, S2  S3 S4  Skn  Skn +4

al1 "3 *2" 1 Onn"4

Figure 53. Sample Path of Markov renewal process

____________ ___________A.
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contention in the so-called "DL/I component" of an IMS (Information

1Management §ystem) data base management computer system; see Figure 5.4.

The interpretation of this figure differs from that of a conventional

queueing network diagram in that services are distinguished from the

servers which perform them. Thus, circles in Figure 5.4 represent services

rather than servers. Five types of service, denoted by a0, aV' a 2 ' a3

and 8 are represented in this model. The a services (a0, Mil a2 and a3 )

are performed by a single server, interpreted as the processor, and the

service is performed by a single server, interpreted as an input-output

(I/0) unit. We assume in this model that no two a services can be in

progress concurrently, but that any a service can be in progress

concurrently with a $ service. We also assume that each of the a0 , a1 ,

a2 and 8 services is noninterruptable. The a3 service is, however,

interruptable at the completion of a 8 service, this interruption being

of the preemptive-resume type.

A fixed number of jobs circulate in the network from time zero. At

any subsequent instant of time, a job either is receiving service or

waiting for service in one of the queues. We assume that each of the

queues is served according to an FCFS discipline. Note. that there are

two queues (denoted by q,1 and ql,2) for a1 service and two queues (q2,1

and q2 ,2) for a2 service. The arrows in Figure 5.4 indicate the flow of

jobs. There are two branches leaving the a1 service and two branches

leaving the a2 service; these branches are labeled by binary-valued

variables *1 and J2 " Upon completion of an C1 or a2 service, the job just
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R

122

41. q2

2 Q1 2 1

(i) Processor renders a., al, a2 and a3 services
(ii) I/0 unit renders 3 service
(.ii) ft- all a2 and 0 services are not interruptable
(iv) at3 service has pre-emptive resume type interruption at completion of 0 service
(v) Processor scheduled according to priority ordering of queues q0 , q11 , q1 ,2, q21 ,

q2.2 and q3
(vi) Routing determined by binfry valued random variables do and " 2

Figure 5.4. DL!! component model
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served follows the branch with a label having value 1. Thus, e.g., if

upon completion of an a1 service the current value of *1 is zero, the job

just served joins queue q2 ,1 "

An epoch of completion of any a service, or an epoch of completion of

a 8 service at which either no a service is in progress or an a 3 service

is in progress, is called a scheduling decision epoch. At such a time

point, the next processor service is determined by a processor scheduling

algorithm. Upon completion of a service, the served job immediately joins

the next queue on its route. The next processor service is the service

having highest priority, this priority being determined by a total ordering

of queues q0, q1,19 ql,2 q2 1, q2 ,2 and q3. The processor scheduling

algorithm employs the total ordering q1 ,2. q2 , ql, q2 ,2 q0, q3

(highest to lowest priority).

The limiting passage time of interest in the DL/I component model is

indicated by R in Figure 5.4. It is interpreted as the response time to

a "DL/I call" in an IMS data base management system.

We consider passage time simulation of this network under the following

probabilistic assumptions:

(i) for i-0,i,2, and 3, successive a i service times form a sequence

of i.i.d. random variables;

(ii) successive 8 service times form a sequence of i.i.d. random

variables;

7 .
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(iii) the branching at successive a1 (respectively a2) service

completions is governed by a sequence of i.i.d. Bernoulli random

variables *1 (respectively *2);

(iv) the sequences in (i), (ii), and (iii) are mutually independent;

(v) the random variables o , Olt a 2, a3 and B are exponentially

distributed;

(vi) P{ 2 -l}>0, so that jobs eventually receive a 3 service.

The circled numbers in Figure 5.4 are classes of jobs in the indicated

queues and are the key to representing the DL/I component model as a

queueing network of the kind described in Section 3.0. This representation

is shown in Figure 5.5. Classes 2-7 are identified with the a center server

(processor) and class 1 with the 8 center server (I/O). At the a center

server, classes 2-7 are ordered according to priority. Class 7 service

is interruptable, but all other classes of service are not interruptable.

In the DL/I component model, for taO we define the vector Z(t) by

ZWt = (Q(t)C7( )...C2(W)S(W) (5.2.1)

where

Q(t) - number of jobs waiting or in service at 8 center at time t,

S(t) - class of job being served by a center server at time t,

and for 2<iW7,

Ci(t) - number of jobs of class i waiting for service at a center

at time t.

We let N(t) denote the position at time t of the marked job in the job

stack corresponding to the order of the nonzero components of Z(t). Then

!i
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the process j-{X(t):t>0, where

X(t) - (Z(t),N(t)) , (5.2.2)

is the underlying continuous time Markov chain.

The Markov chain governing change of job classes at service completions

can be taken to have state space (1,2,...,7} and transition matrix by

0 0 0 0 1 0 0

P1  0 1-p 1 0 0 0 0

0 1-P2 0 0 0 0 P 2

P P1  0 1-p 1 0 0 0 0

0 l-P 2  0 0 0 P2

0 0 0 1 0 0 0

L 0 0 0 0 1 0

where p1 [respectively p2] denotes the probability that the binary

branching variable *1 [respectively *2] takes the value 1.

The sets A1 and A2 defining the start of response times for the marked

job are

A1 - (iN-(i+l),0.0,0,0,0,7,N):0 i<N}

and

A2 - {(i,N-(i+l),0,0,0,0,0,6,N):0<i<N}

Since R is a response time, T WSi for jal, and B -A and B -A2

Note that if we modify the DL/I component model so that there is no

preemption of a3 service, then the sets A1 and A2 are
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A.- {(iN-(i+l),0,0,0,0,0,7,N):O i<N}

and

A2 - {(i-mN-(i+l),l,m-l,0,0,0,5,N-m) :lsi<N; lssi}

U {(i,N-(i+l),0,0,0,0,0,6,N) :Osi<N}

This provides an example of the desirability of allowing k<n in the formal

definitions of the times S and T given in Section 4.2.

5.3. Numerical Results

The results displayed here were obtained using the particular linear

congruential uniform random number generator described by Lewis, Goodman

and Miller (1969). Exponential service times were generated by logarithmic

transformation of the uniform random numbers; independent streams of

exponential random numbers (resulting from different seeds of the uniform

random number generator) were used to generate individual exponential

holding time sequences.

The numerical values of point estimates and confidence intervals

reported here for r(f)-E{Yl(f)}/E{I} are the classical ratio estimates,

i.e., use the point estimator rn (f) of Equation (4.1.3) and the 100(1-2y)Z

confidence interval I (f) of Equation (4.1.4).n

Results obtained for the response time R by simulation of the closed

network of queues of Figure 5.1 are in Table 5.1. The initial state for

the Markov chain X (and return state identifying cycles) is the state

(1,1). The results in Table 5.1 are for N-2 jobs, with u.0-1, l-0.5 and

p-0.75. Theoretical values for the long-run expected fractions of time
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that centers 1 and 2 are busy (utilizations), and the expected response

time can be obtained by birth-death process methods. These values are in

parentheses. In all cases, the 90% confidence intervals obtained surround

the theoretical value.

Results of simulation for characteristics of the passage time P are

in Tables 5.2 and 5.3. For N-2 jobs, with U0i Ml, Ui=0.5 and *-0.75, these

tables Siva an indication of the effect of different return states. The

results are for two simulation runs, using the return states (1,1) and

(2,1), respectively. Thus, for example, 2367 transitions in the Markov

chain were required for 100 cycles of returns to the state (1,i) but only

1183 transitions for 100 cycles of returns to the state (2,1). Since

returns to the state (2,1) occur approximately twice as frequently as to

the state (1,1), we would expect that only half as many cycles (as for

return state (1,1)) for comparable accuracy; this is borne out by the

results in Tables 2 and 3. In all cases, the 90% confidence intervals

obtained surround the theoretical value.

Results obtained for the response time R by simulation of the DL/I

component model appear in Table 5.4. The initial state for the Markov

chain X is the state (1,N-2,0,0,0,0,0,6,N). Theoretical values for the

t and $ center utilizations along with the expected response time are

obtainable from the analysis of the DL/I component model given by Lavenberg

and Shedler (1976). Comparison of Table 5.4 with Table 5.1 reveals the

effect on simulation running time of the considerable structural complexity

of the DL/I component model; for the return states chosen, there are

[
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approximately the same number of transitions in the Markov chain for

250 cycles of the DL/I component model as for 400 cycles of the simple

model. As before, the 90% confidence intervals for the expected response

time surround the theoretical values.

T.7
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6.0. FINITE CAPACITY OPEN NETWORKS OF QUEUES

We now consider open networks of service centers with jobs arriving

at the network, traversing the network and receiving service along the

f way, and finally departing from the network. The network structure we

permit is essentially the same as that described in Section 3.0, except

that here the networks are open; thus arrivals from an external source

and departures to an external sink occur. Only a finite number of jobs,

N, may reside in the network at a given time. We consider two formulations

of finite capacity open networks. In "arrival process shutdown" models,

a job arriving when the network already contains N-1 customers causes the

arrival process to shut down; the arrival process remains shut down until

the first subsequent departure from the network. In "Jobs turned away"

models, the arrival process never shuts down, but jobs arriving when the

network already contains N jobs turn away.

6.1. Markov Arrival Processes

The arrival processes we allow are particular stochastic point

processes (series of events) associated with time-homogeneous Markov

renewal processes. Let J be a finite or countable set, W-{W n:n>} random

variables assuming values in J, and U.{U :n201 nonnegative random variables

such that O-U0<U1 U2 5... . Recall that a stochastic process

(W,V,)-{(Wn,Un) :nuO} is a Markov renewal process provided that

P{Wn+l - J, Un+l-Un'tW0,.*..Wn; U0, ...,Un}

- P{Wn+I-j, U+l-UntlWn} '
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with probability one for all n>O, JeJ, and t>O, and is time-homogeneous

provided that P{Wn+i=J, Un+l-UnSt1Wn1 is independent of n. We denote by

MH(t):t>O} the seai-Harkov process generated by (iR), i.e.,

M(t) - W, ifU n  +t 1  (6.1.1)

By definition, a Markov arrival process is a stochastic point process

that satisfies the condition

P{U -U:tIW -i - 1 - exp(-Xit) (6.1.2)

for all ieJ and t>O, where Ai>0. Under this condition the semi-Markov,

process M is equivalent to a continuous time Markov chain. Throughout,

we assume that M is irreducible and positive recurrent, and that the Markov

renewal process (V,U) is independent of the service times and Markov

routing of jobs in the network. Note that in "arrival process shutdown"

models we can think of the arrival process as operating in virtual time,

i.e., the nth customer arrives at virtual time U The actual time of

the nth arrival, however, may be somewhat later due to the finite capacity

constraint. In "Jobs turned away" models, the nth job arrives at time

Un, but may be turned away.

(6.1.3) EXAMPLE. Poisson Process. Let J-{1} so that W -1 with probabilityn

one for all nZO, and for tZO let

P{U n+l-Ut} - 1 - exp(-Xt)

where X>O. Clearly, the Markov arrival process U-{Un:nzO} is a Poisson

process.
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(6.1.4) EXAMPLE. Switchins Poisson Process. Let J-{1,2,...,k},

*1 -P{Wm-JIW -i) for i,jeJ, and for tZ0 let

where A >0 for - - 1 - exp(-Xit)

where X >0 for 1il,2,...,k. Here the successive times-between-events are

exponentially distributed with parameters which are governed by the

transition matrix {q i:i,JcJ}. This Markov arrival process is a

semi-Markov generated point process with exponential holding times.

(6.1.5) EXAMPLE. Branchins Poisson Process. The branching Poisson process

is a model for clustered arrivals. Consider a particular branching Poisson

process constructed as follows. A Poisson process with parameter X1

generates a series of primary events, and with independent probability

re(0,1], a primary event initiates a subsidiary series of events. Each

subsidiary process consists of a geometrically distributed number of

subsidiary events, and the times between these subsidiary events are

independent and exponentially distributed with parameter X2" Finally,

the branching Poisson process is the superposition of all primary and

subsidiary events. To represent this process as a Harkov arrival process,

we set J-{0,1,2,...} and identify W with the number of subsidiaryn

processes active at the time of the nth event of the branching Poisson

process. Let pE(0,l) be the parameter associated with the geometric

distribution (mean 1/(l-p)) governing the number of subsidiary events in

each subsidiary process; that is, the probability of k subsidiary events

in a given subsidiary process is pk-lq (kzl), where q-l-p. Then for iEJ,

* 1 _ _

- ,



73

iA2 q/(X1+±A2 ) ( -i-i-I

P{Wn.z-jlWn-"i i X2 p+(l-r)X1 ]/(X1 iX), j-i

(rX1 /(X 1 +iX2 ) j-i+l

and for tO,

P{Un+1 -ustrWi} 1 - exp[-(X1+'A2)t]

6.2. Networks of Queues and Associated Stochastic Processes

As before, we permit a finite number of single-server service centers,

a, and a finite number of (mutually exclusive) job classes, c. At every

time epoch each job is in exactly one job class, but jobs may change class

as they traverse the network. Upon completion of service at center i, a

job of class j goes to center k and changes to class X with probability

Pij ,- (wher :e - I i .k~s.and l<j " c) and P-{Pf ,} " A job from the external

source arrives at center k as a job of class L with probability pkt, and

a job of class I completing service at center k departs to the external

sink with probability qkt.

At each service center jobs queue and receive service according to a

fixed priority scheme among classes; the priority scheme may differ from

center to center. Within a class at a center, jobs receive service

according to a fixed discipline, and, some centers may never see jobs of

certain classes as determined by the routing matrix P. A job in service

at a center may or may not be preempted if another job of higher priority

joins the queue at the center. All service times in the network are

mutually independent, and at a particular center have a distribution
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*11

consisting of exponential stages with parameters which may depend on the

service center, class of job being served, and "state" of the entire

network.

As in Section 3.2, we let Si(t), i-L,2,...,s, denote the class of job

receiving service at center i at time t, with S i(t)-O if at time t there

are no jobs at center i. The classes of jobs serviced at center i ordered

by decreasing priority are Jl(i),J2(i)...'Jk(i) (i), all elements of the
set {l,2, .,c} Denote by CM (t),C )(t),...,C(i) (t) the number of

"" Denl J2 ebJk(i)

jobs in queue at time t of the various classes of jobs served at center i.

To deal with passage times, we again use the idea of the position of

a distinguished "marked" job. We continue to think of the (at most N)

jobs in the network ordered in a linear stack according to the following

scheme, and define the vector Z(t) by

Z~t) - ( ) ((1) ()( (t);...
Jk(l) jk(l)-l "'" 1

C(: s  W (t)cs )  (t),...,C a)('S(0
Jk( ) Jk(s)-l l

}iiThe linear job stack corresponds to the order of components in the

vector Z(t) after ignoring any zero components. Within a class at a

particular service center, jobs waiting appear in the job stack in FCFS

order, the latest to arrive being closest to the top of the stack. We

again denote by N(t) the position (from the top) of the marked job in this

job statek at time t.
1111 (5)



75

Recalling that M is the semi-Markov process of Equation (6.1.1)

associated with the Markov arrival process, for t O we specify the

state of the network by

I x(t) - (M(t),Z(t),N~t),U(t))

Here U(t)-(Ul(t),... ,UN(t)) and Uj (tY (I:j<N) is the state of service

associated with the jth job-in thejob stack; U (t)-0 if there

are less than j jobs in the system at time t. By virtue of the service

time distributional assumptions, the Markovian routing structure, and the

definition of a Markov arrival process, X-X(t):t>O} is a continuous time

Markov chain with a (possibly countable) state space E.

6.3. Job Marking

The principal concern here remains the estimation of general

characteristics of passage times, the times required for a job to traverse

a specified portion of the open network. In a finite capacity open

network, a passage time is termed a "response time" if it is the total

time a job is in the network. To estimate passage times, we track an

appropriate sequence of typical jobs, based on the idea of a marked job,

and measure the passage times for a sequence of marked jobs; these are to

be typical jobs in the sense that the sequence of passage times for the

marked jobs should converge in distribution to the same random variables

as do the passage times for all jobs. It is necessary to take some care

to ensure that this is the case.
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Our lab marking scheme is as follows. Let i (Osi<N) be the number of

jobs left behind by the marked job at the epoch at which it departs from

the network (i.e., goes to the external sink). Then for "arrival process

shutdown" models, the (N-i)th subsequent arrival is the next marked job.

For "Jobs turned away" models, the (N+l-i)th subsequent arrival is the

next marked job.

Note that this marking scheme ensures that there is at most one marked

job in the network at a time, and thus there is no need for further

augmentation of the numbers-in-queue, stages-of-service state vector for

the measurement of passage times. (If there is no marked job in the

network at time t, we define the position N(t) in the linear job stack to

be zero.) Note also that more than one passage time can start (and

terminate) for a particular marked job before it departs from the network.

To see that the sequence of passage times for jobs marked by this

scheme has the desired property, consider "arrival process shutdown"

models. We introduce a so-called "phantom server" which generates the

times U{Un :n>O} according to the Markov renewal process (W,U) of the

Markov arrival process. Assuming that i (Ogi<N) is the number of Jobs

left behind by the marked job at the instant it departs from the network,

we route the marked job to the queue at the phantom server where N-i-i

jobs are already residing. Upon completion of service to a job by tbi

phantom server, the job returns to the network in the same manner as

arriving jobs, i.e., with probability Pki the job goes to center k and

becomes class 1. This method generates arrivals to the network in exactly

"IT
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same way the original arrival process does with the finite capacity

constraint, namely, arrivals occur at the times Un provided the number in

the network is less than N. Figure 6.1 illustrates the general flow of

jobs. It is now clear that in effect we have a closed network of queues

in which the marked job never leaves the network. Furthermore, the

stochastic structure of the original problem remains. The chief advantage

of this device is that we can use the simulation method developed in

Section 3 for closed networks. Note that there is no need for a P<l"

condition to guarantee stability of the open network since it is

effectively a closed network with a finite number of jobs.

For "Jobs turned away" models, we introduce a phantom server in aj

similar way; see Figure 6.2. A job completing service at the phantom

server with j-1 other jobs at the server returns to the network with

probability 1-p(j), where p(j)-l if J-l and 0 otherwise. We are in effect
I

considering a closed network with N+l jobs. It is straightforward to

check that the simulation method of Section 4.1 extends to closed networks

in which, as here, routing probabilities may depend on the number of jobs

in the service center.

Having reduced the problem to estimation in a closed network, it is

necessary to modify the Markov chain A. We view the phantom server as

service center s+l, serving only one class of jobs. Let Qs1 (t) denote

the total number of jobs at center s+l at time t. Then we augment the

vector Z(t) with the component Q+ 1 (t), and define X(t) as before but with

this augmented Z(t). We also modify the Markov routing matrix P{Pij,kl}

I ' .
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network ofI queues

I N-1 jobs

ijobs

Figure 6.. Flow of jobs with phantom server added.
"Arrival process shutdown" model
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J

I

marked job phantom server

network of p(N+l-i)
queues1-p(N+l-i)

N+1-i jobs

i jobs

Figure 6.2. Flow of jobs with phantom server added.
"Jobs turned away" model
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to-dscribe the closed network,. and assume- that the resulting matrix is

irreducible. The assumptions made on the network imply that the Markov

chain X is irreducible and positive recurrent, and it is possible to

proceed with the estimation of passage times as before.

6.4. Example and Numerical Results

We consider the finite capacity open network of queues shown in

Figure 6.3. Upon completion of a service at center 1 which renders a

service, in accordance with a binary-valued variable $i, the job joins the

tail of the queue in center 1 (when J-l) or joins the tail of the queue

in center 2 which renders 8 service (when *r.O). Neither center 1 nor

center 2 service is subject to interruption. We assume a FCFS service

discipline in each queue. The limiting response time of interest (denoted

by R) is the time measured from arrival of a job at the center 1 queue

until departure of the job. Also of possible interest in this model is

the limiting passage time (denoted by P) defined as the time measured from

arrival of a job into the center 1 queue until the job enters the center

2 queue.

For each of the arrival processes described below, we consider

simulation of this network of queues under the following probabilistic

assumptions:

(i) successive a service times form a sequence of i.i.d. random

variables, exponentially distributed with rate parameter U0

(ii) successive B service times form a sequence of i.i.d. random

variables exponentially distributed with rate parameter U1
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4 R

PI I

1-

(i) Service center 1 renders service
(i) Service center 2 renders 0 service
(iii) a and 1 services are not interruptable
(iv) Routing determined by binary valued random variable ip

Figure 6.3. Finite capacity open network of queues

,.i
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(iii) is a Bernoulli random variable and values of 0 at successive

a service completions form a sequence of i.i.d. random variables;

(iv) the sequences in (i), (ii) and (iii) are mutually independent.

For the simulation, the generator of arrivals is either

(i) a Poisson process (as in Example (6.1.3)) having rats parameter A;

or

(ii) a switching Poisson process (as in Example (6.1.4)) having

parameters A1 , X2, p1 and P2. Here X, is the rate parameter of

the exponential holding time in state i, and pi is the probability

of a one-step ir-aiiition from state i to state i in thi-embdded

Karkov chain.

In this network, there are two classes of jobs, class 1 jobs at center

1 and class 2 jobs at center 2. Since each center sees only one class of

job, we can define

z W) - (Ql (04,2(0))

where

Q1 (t) - number of Jobs waiting or in service at center I at time t ,

and

Q2 (t) - number of jobs waiting or in service at center 2 at time t

As above, let N(t) denote the position of the marked job in the

job stack corresponding to the order of the nonzero components of Z(t),

and let M(t) denote the semi-Harkov process associated with the Markov

t~~~~~ ~~ .. . ...-.. ,, "
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arrival process,_ Then, since the service ties are exponentially

distributed, the process ]-(X(t)Y-tzO), where

X(t) - (M(t),Q1 (t),Q 2(t),N(t))

is the underlying continuous time Markov chain.

For this model the state space E of E is

EE - {(m,i,j,k):OSi,j,k:N; i+J5N; meJ}

where N is the maximum number of jobs in the network.

The Markov chain governing change of job class can be taken to have

state space (1,21 and transition matrix

where we denote by p the probability that the branching variable takes

the value 1. The probabilities Pkq governing routing of jobs from the

external source are p1 1 ,1, p1 2 0, p21-O, P2 2-0, and the probabilities qkj

of departure to the external sink are q11 -O, q22 80, q21-O, q22-1. The

3x3 matrix governing change of job classes for the associated closed

network is

p 1-p

0 0 1

.1 0 0



84

The sets A, and A2 defining the start of response times for the marked

job are

A1 = ((m,i,jk)eE:k=N}

and

A2 u {(mijl)CE:i>O}

The sets B1 and B2 defining the termination of response times for the

marked job are

BI-. {(m,i,j,k)eE:k-i+j, 1>0}

and

B2  {(mijk)E:l-i+j+l

Tables 6.1-6.3 contain results obtained for the response time R by

simulation of the network of Figure 6.3 for N-4 jobs with U.-1, UI-0.5

and p-0.75. The initial state for the Markov chain X (and return state

identifying cycles) is the state (1,4,0,1). Simulation results for

arrivals generated by a Poisson process of rate X-0.4 appear in Table 6.1.

For Poisson arrivals the two formulations of finite capacity networks are

equivalent. Theoretical values for the long-run expected fractions of

time that centers 1 and 2 are busy (utilizations), and the expected

response time, obtainable either by birth-death or semi-Markov process

methods, appear in parentheses. Note that with the exception of the 1000

cycle run, the 902 confidence intervals obtained surround the theoretical

value. The percentile points are, respectively, 0.25, 0.5, 1, 1.5, and

2 times the theoretical mean response time.

i -
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Table 6.2 gives results of simulation of the "arrival process shutdown"

model for arrivals generated by a two-state switching Poisson process with

-2, X2-0 .667, pl-0.978 and P2 -0.865. With these parameter values, events

in the stationary switching Poisson process occur at rate 0.4, and the

stationary times-between-events have coefficient of variation equal to 2

and serial correlation coefficient of lag 1 (cf. Cox and Lewis (1966),

p. 196) equal to 0.375. In all cases, the 90% confidence intervals for

E{RI surround the theoretical values. Corresponding results for the "Jobs

turned away" model are in Table 6.3. Again, the 90% confidence intervals

for E[RI surround the theoretical value.

An overall observation from Tables 6.1-6.3 is that the lengths of

confidence intervals obtained (for expected response time as well as

percentiles of response time) from the three simulations are roughly

comparable.

I

IA

7 ME-NNOLNAI&
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7.0. MARKED JOB SIMULATION VIA HITTING TIMES

In this section we develop a new stochastic setting for the marked

job method based on "hitting times" of an underlying continuous time Markov

chain to fixed sets of states. This formulation is the basis for the

subsequent discussion. We first make some remarks about the results

obtained in the previous sections.

The ealier discussion of the marked job method applies to networks of

queues having single server service centers. The generalization to

networks having multiple server service centers, however, is

straightforward. To handle these networks, it is sufficient to incorporate

into the job stack (and associated state vector) information which gives

the class of job being serviced by each of the servers at a multiple server

service center.

A further generalization to networks with stochastically nonidentical

jobs is also possible. The marked job method of Section 4 applies equally

well to networks in which jobs are of a finite number of types. In such

networks, jobs of each type have their own routing structures and service

requirements, and in the case of finite capacity open networks, independent

arrival processes. We return to this topic in Section 10.

Although the finite capacity constraint on the open queueing networks

considered in Section 6 appears natural in many modelling contexts, it

would be of interest to extend the marked job method to open networks of

infinite capacity. The main barrier to doing so is the definition of a

4.7"~



A0A082 736 STANORD UNIV CA DEPT OF OPERATIONS RESEARCH F/S 12/2
REGENERATIVE SIMULATION OF RESPONSE TIMES IN NETWORKS OF QUEUES--ETC(U)
NOV 79 D L IGLEHART. B S SHEDLER N00014 76-C-0578

UNCLASSIFIED TR-52 NL

mhhomommhhhhmu
Eh hEh3B EE

IIIIIIEE~IIIIIIEIII

IIIIIIIIIIlmlllllh.E.l



111. 111.0

14 11111202
,_ U12l0

II l,II11.18
lili 1.25 1114 D1l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAN0ARDS-1963-11



90

sequence of marked jobs whose nonoverlapping measured passage times

converge in distribution to the same random variable as does the entire

sequence of passage times (enumerated, say, in order of start times).

This remains an open problem.

In the remainder of this section, we develop a stochastic setting for

passage time simulation using a marked job which is simpler than that of

Section 4.2; the definition of passage time, however, is somewhat more

restrictive. Here, the starts of passage times for the marked job are

the successive entrances (hitting times) of a particular continuous time

Markov chain to a fixed set of states, and the terminations of such passage

times are the successive entrances to another fixed set of states. This

formulation provides the basis for the decomposition method for passage

time simulation in Section 8, the analysis of statistical efficiency in

Section 9, and the discussion in Section 10 of methods for networks with

multiple job types.

7.1 Preliminaries

As in Section 3, we consider closed networks of queues with a finite

number of jobs, N. In each network there are a finite number of service

centers, s, and a finite number of job classes, c. At each epoch of time

each job is in exactly one job class, but jobs may change class as they

traverse the network. Upon completion of service at center i, a job of

class j goes to center k and changes to class I with probability pijk£

We assume that P-r{pij,kt:lst,kss, l5j,954c is a given irreducible Markov

matrix.
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At each service center jobs queue and receive service according to a

fixed priority scheme among classes, which scheme can vary from center to

center. Each center operates as a single server, processing jobs of a

fixed class according to a fixed service discipline. All service times

in the network are mutually independent, and at each center have a

distribution with a Cox-phase representation with parameters which may

depend on the service center, class of job being served, and the "state"

of the entire system. (Recall that we exclude zero service times occurring

with positive probability.) A job in service may or may not be preempted

(according to a fixed procedure for each center) if another job of higher

priority Joins the queue at the center. We restrict the present discussion

to networks in which all service times are exponentially distributed, and

deal with distributions having an Cox-phase representation in the usual

way by the method of stages.

We review the notation of Section 3.2 used to characterize the state

of the network at time t. For i-l,2,...,s, Si(t) denotes the class of the

job receiving service at center i at time t; Si(t)-O if there are no jobs

at center i at time t. We denote by Jl(i),....Jk(±)(i) the job classes

served at center i, ordered by decreasing priority, and C(i)(t),...,Ci) (t)
Jl Jk(i)

denote the number of jobs in queue at time t of the various classes served

at center i.

As in Section 3.2, we view the N jobs as being completely ordered in

a linear job stack, and define the vector Z(t) according to
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z~t) -(CMi (t),*...,C(l)C(Os (t); ... ;

Jk(l) JZ

c ( s ) . (7.1.1)Jkcs)

The job stack corresponds to the order of components in the vector Z(t)

after ignoring any zero components. Within a class at a center, jobs

waiting appear in the job stack in the order of their arrival at the

center, the latest to arrive being closest to the top of the stack.

Letting N(t) denote the position from the top of the marked job in

this job stack at time t, for tk0 the state vector of the network is

X(t) -(Z(t),N(t)) .(7.1.2)

As before, we specify the passage time for the marked job by four subsets

(A1, A2 , B1 , and B2) of E, the state Ppace of the process X-{X(t):t>O}.

The sets A1 and A2 [respectively B1 and B2] determine when to start

[respectively stop] the clock measuring a particular passage time for the

marked job. Denoting the jump times of X by {T n:n>O}, for knal we require

that the sets A1, A2, B1 and B2 satisfy:

if X(Tnl)eAi, X(T n)eA2 X(Tn-l+k)(Al and X(Tn+k)eA2,

then X(T 1 4+M)eB 1 and X(T n+)cB2 for some O<rmk;

and

if X (TU1) cB 1' X(Tn)EB2, X(Tn_l+k)cB 1 and X(Tn+k )  2 -

then X(T n 1+4 )eA and X(Tn.)eA2 for some Om<k.

Recall that these conditions ensure that the start and termination times

for the specified passage time strictly alternate. Also in terms of these

vimllmm "-
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Jump times, we define two sequences of random times: (S :J20} and

{T :J>l}. The start [respectively termination] time of the jth passage

time for the marked job is denoted by Sj_ [respectively Ti]. Assuming

that a passage time for the marked job begins at t-=0, we have

S -0

S * inf{T T1 :X( )eA 2 , X C ),EA, j kln j n 29 nlALI

and

I T " inf{rn >s,5_:X(T U)eB2 9 X(T n)B 1 }, Jai (7.1.3)

The Jth passage time for the marked job is P j T.1-S,, J2l. Note that

these definitions are more restrictive than those of Equation (4.2.2) in

that the value of k in the earlier equation is set equal to n-1.

7.2. Simulation for Passage Times

We let X denote the state of the continuous time Markov chain X when

the (n+l)st passage time of the marked job begins: Xn -X(S n), naO. The

process {X :nZ0) is a discrete time Markov chain (with state space A2)

which we assume to be irreducible and aperiodic. By Theorem (4.2.5), the

process {(X ,PU+l):n>0} is a regenerative process in discrete time, and

the regenerative property guarantees that as n-o,

(X nPnUl) -o (XP).

The random variable P is the limiting passage time for the marked job.

The argument in Appendix 1 shows that the sequence of passage times for

any other job also converges in distribution to the same random variable

P. Moreover, the sequence of passage times (irrespective of job identity)
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enumerated according to start time (or termination times) also converges

to P. The goal of the simulation is the estimation of characteristics of

the limiting passage time P. Let f be a real-valued measurable function

with domain R+, and define the quantity r(f) according to

r(f) - E{f(P)} . (7.2.1)

We now depart from the development of Section 4.2. Let L(t) denote

the last state visited by the Markov chain X before jumping to X(t), and

define the stochastic process V-{V(t):tkO} by

V(t) - (L(t),X(t)) . (7.2.2)

In this development of the marked job method, the process V is the

fundamental stochastic process of the passage time simulation.

The process V has a state space F consisting of all pairs of states

(i,j), ijeE, for which a transition in X from state i to state j can

occur with positive probability. Since I is an irreducible, positive

recurrent Harkov chain, so is X. The entrance times of V to a state

(ij)F correspond to the times of transition in A from state i to state

J. We define subsets S and T of F according to

S - {(k,m)eF:kcAl, mA 2

and

T - ((k,m)eF:keB 1 , mB 2 ) 1 (7.2.3)

and observe that the entrances of V to S [respectively T] correspond to
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the starts (respectively terminations] of passage times for the marked

job. In the case of response times, S-T.

The next step is to select a fixed element of S, which for convenience

we designate state 0, and assume that V(O)mO. We let {V n:nZO} denote the

embedded Jump chain associated with the continuous time process V. The

random times {y :nkll denote the lengths of the successive 0-cycles
n

(successive returns to the fixed state 0) for {V n:n>0}, and we define 60-0

and 6m-Yl+...+in, mal. Then the number of passage times for the marked

job in the first 0-cycle of V is

(Recall that for a set A, 1A(x)=l if xeA and 0 if xiA. Here we suppress

the argument w.) The sum of the values of the function f for the passage

times for the marked job in this cycle is simply

Yl(f) - E f(PJ)

1-1

We denote the analogous quantities in the kth 0-cycle by Mk and Yk(f).

Since Y is an irreducible, positive recurrent Harkov chain, it is a

regenerative process, and the pairs of random variables {(Y k (f),Mk):kzl}

are independent and identically distributed. Then, provided that

P{PcD(f)}-0, where D(f) is the set of discontinuities of the function f

in the definition of r(f), and E{If(P)I}<-, it follows that



96

r(f) - E{f(P)} 4 E{Y1(f)}/E{M 1

Therefore, the regenerative method applies and (from a fixed number n of

O-cycles) provides the strongly consistent point estimate f n(f)-;Yn(f)/M n

for r(f). Here Y (f)-(Y (f)+...Y+n(f))/n and H=(M1+...+Mn)/n. The

associated confidence interval is based on the central limit theorem

n1 /2( R(f)-r(f)}
,/E1  - N(0,1)

where a2 is the variance of Y1 (f)-r(f)M1 . It is easy to check that these

point and interval estimates for r(f) (obtained in the setting of the

process V) are the same as those obtained from Algorithm (4.1.1).

(7.2.4) EXAMPLE. Recall the model of Section 5.1 and the passage time P;

see Figure 7.1. In this network there are two classes of jobs: class 1

jobs at center 1 and class 2 jobs at center 2. Since each center seas only

one job class, by taking into account the fixed number of jobs in the

network, for t>0 we can define Z(t) to be the number of jobs waiting or

in service at center 1 at time t. Then the process X-(Z(t),N(t)):tk0},

where N(t) is the position of the marked job in the job stack at time t,

has state space

E - {(i,j):0SiN, l<j<N.

For the passage time P, the sets A1 and A2 defining the starts of

passage times for the marked job are
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ai oand t3services are not interruptible
(i)Routing determined by binary valued random variable Vs'

Figure 7. 1. Closed network of queues
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A, {(i,N):Oi<N}

and

A2 - {(i,l):O<isN} (7.2.5)

Similarly, the sets B1 and B2 defining the terminations of the passage

time P are

B - {(i,i):O<iSNI

and

B2 = {(i-li):o<igN} . (7.2.6)

For N-2 jobs, Figure 7.2 shows state transitions in the Markov chain X

and the subsets A,, A2, B1 and B2 of E. The process V={(L(t),X(t)):t20},

where L(t) is the last state visited by the Markov chain X before jumping

to X(t), has state space

F - {(i,j,i+l,j+l):Osi<N, lSJ<N} u {(i,N,i+1,1):O:i<N} u

{(i,j,i-lj) :O<iSN, 1<JSN} u Q(i,i,i,l):l<i<-N}

The subsets of F defining the starts and terminations of passage times

for the marked job are

S - {(i,N,i+1,1):O:si<N}

and

T {(i,ii-l,i):0<isN} (7.2.7)

WT2 n
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-A2

A1
B 2  B 1

Figure 7.2. State transitions in Markov chain X and subsets of E
for passage time P
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8.0. THE DECCUPOSITION METHOD

In this section we concentrate on passage times through a subnetwork

of a given closed network of queues, i.e., passage times which are not

complete circuits in the network. For such passage times, we develop an

estimation method in which observed passage times f or all the jobs enter

into the construction of point estimates and confidence intervals. We

consider closed networks of queues as in Section 7.1. The formal

specification of passage times is as in Section 7.1, but we make the

additional assumption with respect to the sets S and T of Equation (7.2.3)

that

S M - ;

this effectively rules out passage times which are complete circuits, i.e.,

*1 response times.

The basis of the decomposition method for estimation of passage times

through a subnetwork is simulation of the network in random blocks defined

by the terminations of certain passage times. The distinguished passage

times are those that (i) terminate when no other passage times are underway,

and (ii) leave a fixed configuration of the job stack defined by

Equation (7.1.1). These terminations serve to decompose the sequence of

passage times for all of the jobs into independent and identically

distributed blocks.

We denote by (P 0:nzl} the sequence of passage times (irrespective of
n

job identity) enumerated in order of passage time start. As before, we

let f be a real-valued (measurable) function with domain R+, and the

goal of the simulation is the estimation of
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r 0(M - E{f(P0

where p0g>p0. Note that by the results of Appendix 1, PO.P, the limitingn

Passage time for (any) marked job.

8.1. Simulation for Passage Times Through a Subnetwork

The main result of this section is that we can obtain point and

interval estimates of the quantity r 0(f) as follows.

(8.1.1) ALGORITHM.

0
1. Select a configuration z of the job stack at which a passage

time terminates and there are no other passage times underway.

Begin the simulation with this configuration of the job stack at

time 0.

2. Carry out the simulation for a fixed number n of blocks defined

by the successive terminations of passage times irrespective of

job identity which leave the job stack in the (fixed)

configuration z0 .

3. In each block, measure the passage times for all the jobs and

record these along with the number of passage times observed in

the block.

4. Denote by K0 the number of passage times observed in the mthm

block and compute Y 0(f), the sum of the quantities f(P ) for the
4 mj

passage times P0 in the mth block, e.g.,

K0
Y (
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5. Take as a point estimate (based on n blocks) of r0 (f) the quantity

rn (f) Y n(f)/K.

where

n E m

and

rn-1

6. Take as a 100(1-2y)Z confidence iziterval (based on n blocks) for

0
r (f) the interval

^o ..-o ):jo /2)
M(f) -01 0f+ /-on [n' 1-Yn n U p

Here s is the quantity
n

a {s11(n)-2eon(f)s12() (inf) 22) /

where

s(n) - (n'1Z (Y (f)YO)2

s 22(n) - (n-l)- (K m" -K

and

s1(n) - (n1) Z -1 ( ()7y .0

-1The quantity z1_y-0 (1-y), where 0(.) is the distribution function of a

standardized normal random variable.

"ai
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8.2. The Underlying Stochastic Structure

We begin by labelling the jobs from 1 to N, and for i-l,2,... ,N, denote

'1 by N i(t) the position of job i in the linear job stack at time t. Then,

in terms of the vector Z(t) as defined in Equation (2.1.1), we set

i
! Xx (t) - (Z(t),NMt))

and

X°(t) - (z(t) ,Nl(t) ,N 2(t) ..s ~) (8.2.1)
01

Each of the processes X-u{X (t):t>0} (i-1,2,...,N) and { :t>0} is

an irreducible, positive recurrent continuous time Markov chain. We denote

the state space of the process Xi [respectively X0  by E' (respectively E01.

i 0Next we let L (t) [respectively L (t)] denote the last state visited

by the Markov chain Xi [respectively X 0 before jumping to Xi (t)

(respectivel-rx (t)-]'. and for 1-1, 2,.. .,,N and tZ0 define.-

Vii(t) - (Li(t),X (0)

and

V0 (t) - (L 0(t),X 0(t)) (8.2.2)

0 0The process V V0(t):tk0} is the fundamental stochastic process of the

simulation for passage times through a subnetwork. Note that incorporation

of the component L 0(t) into the definition of V0 is necessary for detection

of the starts and terminations of passage times. Since each of the

processes Xi and X0 is an irreducible, positive recurrent continuous time

Markov chain, so is each of the processes V -{V (t):t>0} and V We denote
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the state spaces of Vi and V0 by Fi and F0 , respectively. As in

Equation (7.2.3), we define subsets Si and Ti of Fi according to

S i {(k,m)eFi :keA I , meA2}

and

Ti = ((km)eFi:keB1 , mCB2  (8.2.3)

Thus, the entrances of to S (respectively Ti] correspond to the starts

(respectively terminations] of passage times for job i. We also define

two subsets S0 and T0 of F0 according to

S -"l ,nl,.. ,n,-znl ,V.. N)F: for some k,
(z,nk)cA 1 and (z',n)eA 21

*1 and

- {(z °nl,,..,nN*Z',n... Sni')eF : for some k,

(z,nk)Bl and (z',%)eB21 . (8.2.4)

The entrances of V0 to the set S correspond to the starts of passage

times (irrespective of job identity) and the entrances of V0 to the set

T correspond to the terminations. Thus, from a simulation of the process

0
V0 , it is possible to measure the passage times for each of the jobs.

Now consider {P 0:nkl} the sequence of passage times (irrespective of
n

job identity), enumerated in order of passage time start. Formal

definition of the sequence P 01 is in terms of sequences of starts and

terminations of passage times for each of the jobs; the definitions of

the latter involve entrances of Vi to the sets Si and T1 of Equation (8.2.3)

. o
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and are analogous to Equation (7.1.3). Recall that the goal of the

simulation is

r0(f) - E{f(P0 (8.2.5)

where P -,P , and f is a real-valued measurable function with domain R+.

n+

0We carry out the simulation in random blocks of the process V defined

00by the successive entrances of V to a fixed set of states U0 . Entrances

of V to the set U0 correspond to the terminations of passage times

(irrespective of job identity) which occur when no other passage times

are underway, and which leave a fixed configuration of the job stack.

Formally, let D be the state space of the process Z={Z(t):t20} defined

by Equation (3.2.1), and denote by C the set of (center, class) pairs in the

network. We define a function h taking values in C and having domain

Dxfl,2,...,N} as follows. For zeD and nc{l,2,...,N}, the value of h(z,n)

is (ij) when the job in position n of (the job stack) z is of class j at

center i. Now consider the embedded jump chain {Vk:kkO} associated with

the continuous time Markov chain V of Equation (7.2.2). For states v',v"eF

the state space of {Vk:k>0}, we write v'v v" when v" is accessible from v',

i.e., when for some nXl, the probability starting from v' of entering v"

on the nth step is positive. Similarly, for any subset L of F we write

v Lv v" when v" is accessible from v' under the taboo L; this means (cf. Chung

(1967), pp.45, 48) that for some n2l, there is a positive probability,

starting from state v', of entering state v" on the nth step under the

restriction that none of the states in L is entered in between (exclusive

of both ends).

4,,



106

Next, we define a subset H of C according to

H " {(i,j)eC: for some (z,n,z',n')cT-S, h(z',n') - (ij)) u

{(i,j)cC: for some (zn,z',n')cF-(TYS), v'cT and v"eS,

v' ̂S# (z,nz',n'), (z,n,z',n ') IISItv" and h(z',n') - (i,J)}

Thus, the set H-HIUH2 , where a (center, class) pair is in H1 respectively

H2] if it is possible for the marked job to be of class j at center i when

the passage time specified by the sets A!, A2 , B1, and B2 terminates

[respectively is not underway]. Note that the set H is nonempty since by

assumption SnT-= and thus H1 is nonempty.

Now define a subset D of D, the state space of {Z(t):ta0}, according to

Do - (zcD:h(z,n)eH for n-l,2,..,N and for some n, h(z,n)eHI.

Elements of the set D correspond to configurations of the job stack upon

termination of a passage time with no other passage times underway. The

set DO is nonempty since H is nonempty. Therefore, we can select an

element z0 of D0 , and in terms of this fixed z0 , finally define the set

U0 according to

U0 - {(z,nl,...,nN,z',n,...,ni)T0:z'-z O } , (8.2.6)

where T is given by Equation (8.2.4).

0 0 0
For convenience, we assume that V (0)CU . The random times {yO:m2l}

ym

denote the lengths of the successive blocks (returns to the set U ) for

{V 0:nzO) the embedded jump chain associated with V0 , 0nd we define 60O0

and6 0 0 0

-.,
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The number of passage times K, in the first block of the process V

is

0
0

Kim{ C

and we denote the analogous quantity in the mth block of V by KO. Notem

that within each block of V defined by the entrances to the set U0 , at

least one passage time starts and terminates.

00
Next, we let Y3 (f) be the sum of the quantities f(P 1) over the passage

0 a 0
times P 0 in the mth block of V , for example,

j0

0l(f- f(P)

Proposition (8.2.7) contains the key observation.

(8.2.7) PROPOSITION. The sequence of pairs of random variables

{(Y0 (f),K ) :ml1} are independent and identically distributed.

The argument used in Appendix 1 shows that P0 p0 as n#-, and that

n

this random variable P0 is the same random variable as the limiting passage

time P of (any) marked job. For the function f appearing in the definition

of r0(f), let D(f) denote the set of discontinuities of f. Assuming that

P{P 0eD(f)}-O and using Lama (2.19), it follows that as n o , f(P O).f(P0).
n

Finally, standard arguments (cf. Appendix 2) yield a ratio formula for

r0 (f).

4 . . . .. . .. ... .
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(8.Z.8) PROPOSITION. Assume that E{If(P0)1)<- . Then

r0 (f) - E{f(P°)1 - E{YO(f)I/E{K01

j With the ratio formula of Proposition (8.2.8) and the result

(Proposition (8.2.7)) that the pairs of random variables f(Y (f),K 0 )m ml}

are i.i.d., the regenerative method applies; from a fixed number of blocks

we obtain the point estimate r 0(f)-Y(f)/K and an associated confidencen n n

interval for r0 (f).

(8.2.9) EXAMPLE. Consider the model of Section 5.1 and Example 7.2.4.

First observe that for the passage time P, the sets S and T (given by

Equation (7.2.7)) are disjoint. The process X0-{(Z(t),Nl(t),...,NN(t)):tZ0}

has state space E 0 , where

E0 - {(i,nl,...,nN):0<i<N; lsnl,...,nNSN; ni#nj for ij}.

The underlying continuous time process V0 -{(L 0(t),X 0(t)):t 0}, where L 0(t)

0 0
is the last state visited by the Markov chain X0 before jumping to X0(t).

has state space F0 . The subsets of 0 defining starts and terminations

of passage times are

s- {(i,nl,...,nN,i+l,ni,..., ): for exactly one J , n N

and n'*-l; lsn <N and n'-n +1, J#j*; uiun for i~j}

and

0 0<i5;.nj un V'SN,T {(i,nl,.... nN.o-l ,. n )-O1i,.

for 1jN; niOnj for i#jl
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For this network the process j={Z(t):tkO} has state space D-{0,1,...,N}.

The set C of (center, class) pairs is {(l,l),(2,2)}, the set R 2=4 and

H-H1={(2,2)1. The set DO-{0}, and since Do is a singleton, we must select

zOo. For zO-0, the set U0 defining the blocks of the process V0 is

U 0  {(lnl,...mnN20snls ..... n,):lnl,...,nNN; nj #n; for i#J.

4 i Now consider the case of N-2 jobs. The state space FO of the continuous

time Markov chain V0 has ten elements, and the set

U0 - {(1,1,2,091,2), (1,2,1,0,2,1))

0see Figure 8.1. A portion of a sample path for V appears in Figure 8.2,

and Figure 8.3 shows the corresponding decomposition of the sequence {PO .
n

For passage times through a subnetwork, the decomposition method

provides an alternative to marked job simulation. Since observed passage

times for all of the jobs enter in the construction of these point and

interval estimates, we would expect this method to have greater statistical

efficiency than the marked job method. In this connection, the calculation

of theoretical values for variance constants entering into central limit

theorems used to obtain confidence intervals from passage time simulations

is of interest. These calculations are the subject of Section 9.
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I0
U0

Figure 8.1. State transitions in Markov chain V~and subset U0 of F0



v0(t)
(2.1.2,2.2,1)-

(2,2.1.2.1,2)-

(1,2.1,1.12)- -

I ii

S1,-STerati time for ith passage time for job i, -1,2

X Entrances of V0 to U0

Figure 8.2. Sample path for process V0
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Figure &s. Decomposition of sequence of passage times
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9.0. EFFICIENCY OF SIMULATION

We consider in this section the calculation of theoretical values for

variance constants entering into the central limit theorems used in

previous sections to obtain confidence intervals for passage time

characteristics. Using results of Hordijk, Iglehart and Schassbarger

(1976) for the calculation of moments in discrete time and continuous time

Markov chains, we compute theoretical values for mean passage times. We

-' do this first for the marked job method (in the stochastic setting of

Section 7), and then for the decomposition method of Section 8. For passage
4

times where both estimation methods apply, these results provide a firm

basis for a comparison of statistical efficiency. The calculations also

make it possible to assess the efficacy of the marked job method for

simulation of response times.

9.1. Theoretical Values for Finite State Markov Chains

Following Hordijk, Iglehart, and Schassberger (1976), we first consider

discrete time Markov chains, and let {Xk:kaOl be an irreducible Markov

chain with finite state space E-{0,1,...,N} and one-step transition matrix

P - {Pj :ijeE}

For this chain, we let p n denote the n-step transition probability from

state i to state J, and recall that for nal,

- P j:ijiE}

Throughout this section we use the following notation. For a fixed

state icE, Pi denotes the conditional probability associated with
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starting the chain in state i, and E {.} denotes the corresponding

conditional expectation. For JcE, the state space of {Xk:kaO}, and nkl

we let (j) denote the nth entrance time of {Xk:kaO} to state J, e.g.,

01(Q) 'min{k1l: X'kJ}

and let a1(j)W-1 (j) and n(J)=On(j)-8 l(J), n>l. This notation is

consistent with that introduced in Section 2 for regenerative processes.

Note that {On(j):nal} is a (possibly delayed) renewal process since a

finite state, irreducible Markov chain is necessarily positive recurrent

and therefore returns to every state JeE infinitely often with probability

one. If XO-J, the process {0n(J):nkl} is an ordinary renewal process.

We consider vectors such as (v(O),v(l),...,v(N)) to be column vectors.

Real-valued functions, such as f and g, having domain E are viewed in this

way and denoted by f and jL. In this context the symbol E{-} denotes the

vector

(EO0 {},EI1 .},...,E {'}).

In addition (for vectors u and v) the symbol uov denotes the vector

(u(O)v(O),u(l)v(l),...,u(N)v(N)) .

For a matrix A-(a0 ,al,...,am ), we let

uoA = Aou (uaoual,...,uoa M)

Finally, for a matrix B-(bo,bl,...,b ), we let

A.B- (a ob0 9alob I  ..., ob)- -0
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We first consider computation of the values of E {YM(f)} and

E 1 Mi y S)Yl , for general real-valued functions f and g having domain E,

and icE. Accomplishing this (and similar computations for continuous time

Markov chains) makes it possible to obtain theoretical values for mean

passage times; in addition we can obtain values for the variance constants

which enter into central limit theorems used to obtain confidence intervals

in simulations by the marked job and decomposition methods.

For the discrete time Markov chain {xk:k O}, we consider here only

cycles of the regenerative process formed by the successive entrances to

state 0, and henceforth suppress the 0 in the notation n(O), n (0), etc.

Note that this is no real restriction, and that equally well we could

choose any other state icE. For i,jeE and n-O,l,..., let

-ia Pn {a >n, Xn -J}
SoPij 1 1 i

and set

- {o i i,JeE} .

We obtain

-04-

from P by setting the O-column of P equal to 0. It is easy to see that

Pn is the matrix product of n copies of and that for all nl,

n 0
OpiO
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Theorem (9.1.1) is due to Hordijk, Iglehart, and Schassberger (1976).

SFor any real-valued function f with don-in E, we define

YI (f) - 1 f(Xk)*1 k-O

(9.1.1) THEOREM. For an irreducible, finite state discrete time Markov

chain with transition matrix P,

E{Y( 1)} - (_.)-f (9.1.2)

and

E{J fF)VaY - z)l (9.1.3)

where h-fE{Y1 (g) }+jeoE{Y 1 (f) }-f.

Now we consider continuous time Markov chains and let X-{X(t):taO} be

a Markov chain with finite state space E-{O,l,...,N}, transition

matrix P(t)-{pij(t):i,JcE} and matrix of infinitesimal transition parameters

Qi{qij:i,jeE}. Recall that in a continuous time Markov chain the

matrix mP_'(O) is the given data. In general, P(t) is difficult to

calculate and is rarely available explicitly. The exponentially

distributed holding time in any state icE has rate parameter qi--qii . For

all icE, we assume that O<q 1 <oo, i.e., that all states are stable and

nonabsorbing, and in addition that

N

Eq 0o

Ji-a
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This last assumption guarantees that, starting from any state icE, the

Markov chain X makes a transition to a next state JeE. We now form the

jump matrix Rm{r j } of the chain, defining the elements rtj according to

rj.m 0, , j~i

0 i-i

We assume that the jump matrix R is irreducible (and therefore positive

recurrent). This is equivalent to the continuous time Markov chain X being

irreducible. As in the case of a discrete time Markov chain, we let P

and E denote the conditional probability and conditional expectation

associated with starting in state icE. For JeE and nkl, we let 8 Q() denote
the nth entrance time of X to state J, i.e.,

l l() = inf{s>O:X(s-)Oj, X(s)-Jl .

We now consider the computation of Ei(Y1(f) and Ei{Y 1 (f)Y1 (g)} for

real valued functions f and g with domain E. As in the case of discrete

time Markov chains, we restrict attention to regenerative cycles formed

by the successive entrances to state 0, and suppress the 0 in our notation.

For tZO, we let

Opij(t) " Pi {C ?t, X(t)-J} I

P(t) - (p 1 (t):i,JcE}

and, for nZO, construct the matrix R n from R in the same manner as we

constructed Pn from P in the discrete time case.

0 I
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For a real-valued function f defined on E, we define Y (f) according

to

Yl1(f) - 1 f(X(t))dt

-1
and let - be the column vector

-1 -1 -1 -1= (qo ql q'' N

Theorem (9.1.4) is due to Hordijk, Iglehart, and Schassberger (1976).

(9.1.4) THEOREM. For an irreducible, finite state continuous time Markov

chain with jump matrix R and vector q of rate parameters for holding times,

E{Y 1 (f)} - Ef P(tf dt (-)- .271 )  (9.1.5)

and

E{Y1 (f)Y 1 (g)} - E f P(t)h dtl = (._-&)-lh-l (9.1.6)

where h-foE{Y1 ( 1g)}+joE{Y 1 (f) }.

We now show how to use the results of Theorems (9.1.1) and (9.1.4) to

assess the statistical efficiency of simulation by the marked job method

for mean passage times.

9.2. Variance Constants for the Marked Job Method

We consider closed networks of queues and passage times as in

Section 7.1. For t>O, the state vector of the network is
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x~t) - (z(t),N(t)) ,(9.2.1)

where Z(t) (of Equation (7.1.1)) corresponds to the linear job stack, and

N(t) is the position in the job stack of the marked job at time t. Recall

that the process X-{X(t):tkOl is an irreducible, positive recurrent Markov

.chain with state space E. As before, we denote by L(t) the last state

visited by the Markov chain X before jumping to X(t), and the process

V-{V(t):taO} defined by

V(t) - (L(t),X(t)) (9.2.2)

is the fundamental stochastic process of the passage time simulation.

Recall that the process V has a state space F consisting of all pairs

of states (i,j), i,jeE for which a transition in X from state i to state J

can occur with positive probability. Since X is an irreducible, positive

recurrent Markov chain, so is V, and the entrances of V to the fixed

subset S [respectively T] (defined by Equation (7.2.3)) of the state space F

correspond to the starts [respectively terminations] of passage times for

the marked job.

As in Section 7.2, we select a (fixed) state of S, designated state 0,

and assume that V(O)-O. To estimate the quantity r(f) of Equation (7.2.1),

the marked job method prescribes that we carry out the simulation of V in

0-cycles defined by the successive returns to state 0; within each cycle

we record the number of passage times of the marked job and measure each

of these passage times.

kI
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The key results of Section 7.2 leading to point estimates and

confidence intervals for the quantity r(f) are that the pairs of random

variables

{( V(fHk) :kall (9.2.3)

are independent and identically distributed, and that

r(f) - E0 {Y1(f))/E 0 {M1} . (9.2.4)

Recall that Mk is the number of passage times for the marked job in the

kth 0-cycle and YkM is the sum of the values of the function f for the

passage times of the marked job in this cycle.

Given Equations (9.2.3) and (9.2.4), the regenerative method provides

(from a fixed number n of 0-cycles) the point estimate

f mf)-Y (f)/Kj
n n n

The associated confidence interval for r(f) follows from the central limit

theorem

n /2{ (f)-r(f)}
-> N(0,1) , (9.2.5)a~f) /Eo{M1}

where

a2(f) - var{Y1 (f)-r(f)MI } . (9.2.6)

For calculation of theoretical values, we restrict attention to the

mean passage time; thus, the function f in the definition of r(f) is the
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identity function. Using the results of Section 9.1, we show how to compute

the value of the mean passage time r and the corresponding variance

constant 02 appearing in the central limit theorem of Equation (9.2.5).

These computations rest on the definition of two particular functions

(denoted f and g ) having domain F and taking values in the set {0,i}.

We define the function f to be the indicator function, 1S, of the

set S which defines the starts of passage times for the marked job; i.e.,

for (z,n,z',n')eF,

f (z,n,z',n') 1 is(z,nz',n) . (9.2.7)

Proposition (9.2.8) follows directly from Theorem (9.1.1).

(9.2.8) PROPOSITION. Let f be the function defined by Equation (9.2.7),

and R the transition matrix of the discrete time Markov chain {Vk:kO}.

Then

E{Y (f*)} E fa( (I-) f

and

E{(Y l ( f * ) ) 2 (I_)-h* ,

where 61 is the time of the first return to the state 0 in (Vk:k10} and
* * * .* *
h -2f oE{Y (f )I-.f *.f

We use Proposition (9.2.8) and the definition of M1 to obtain the

quantities E0{M} and E0 {M2} according to
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E 0{MJ) E 0{ly (f*)1 (9.2.9)

I and

E0{O Mi E0{(Y 1(f 2(9.2.10)

For an element (Z,n,z 'U,')eF, the value of the function g is 1 if a

passage time for the marked job starts or is underway when the

configuration of the job stack in z' and the marked job is in position

n; the value of g is 0 otherwise. Formally, let D be the state space

of the Process Z {Z(t):t20} appearing in Equation (9.2.1). As in Section S.

for zeD and ne12..Nwe write h(z,n)in(i,j) when the job in position n

in the job stack z is of class j at center i. Now consider the embedded jump

chain {V :kk0l associated with the continous time Harkov chain V of
Ik

Equation (9.2.2). For states v' ,v"eF. the state space of {V k:k2:01, we

write v'v r.v" when v" is accessible from v', i.e., when for some nkl, the

probability starting from v' of entering v" on the nth step is positive.

Similarly, for any subset I of F we write v' ',%,v" when v" is accessible

from v' under the taboo I.

Denoting the set of (center, class) pairs in the network by C, we define

a subset G of C according to

G -{(i,j)tC: for some (z~n,z',n')eS, h(z',n').(i,j)I u

{((,J)cC: for some (z,n,z',n')eF-(SuT), v'eS and v"eT

1,L (z,n,zv,nl), (z,n,z' ,n ')i.v anT ~ 'n'i ~)

V ^-v" nd hz'.')-(,JI



123

Thus, the set G-G uG2  where a (center, class) pair is in the setG

[respectively G 21 if it is possible for the marked job to be of class j at

center i when the passage time specified by the sets A,1 , A 2  Bl, andB2

starts (respectively is underway].

Now, for (z,n,z',n')eF, we define the function g as

g *(z,n~z',n') - lG(h(z ,n')) .(9.2.11)

(9.2.12) PROPOSITION. Let g be the function defined by Equation (9.2.11),

and R be the jump matrix and I the vector of rate parameters for holding

times in the continuous time Markov chain V. Then

E{Y 1 () Ef1 g*(V(s))ds} - R) *-

and

* 2S - -R (h -

where 81is the time of the first return to the state 0 in V, and

h =2& eE{Y 1(g )I.

* Proposition (9.2.12) follows directly from Theorem (9.1.4). We use

*this result together with the observation that

M 81
I g(V(s))ds - , Pi (9.2.13)
fo J-1
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to obtain the quantities

0 ) -"" (9.2o14)

and

E (M Pj)2 - EO{ (Y 1()) 2 } . (9.2.15)

Using the ratio formula, Equations (9.2.9) and (9.2.14) yield the

quantity r. To obtain the variance constant C2 appearing in the central

limit theorem (Equation (9.2.5)) for the marked job method, we require one

more result.

(9.2.16) PROPOSITION. Let R be the jump matrix and g the vector of rate

parameters for holding times in the continuous time Markov chain V. For

the functions f and g defined by Equations (9.2.7) and (9.2.10),

611 *E If01S (V(s))ds E f*Vk

0 -J-0
Etf1 *(v8)d8 (vI- R -h

h* * -l*--1 -
where h ((__o) f ]0v (j )( )1 ( .f ).

Proposition (9.2.16) does not follow directly from Theorem (9.1.1) for

discrete time Markov chains or from Theorem (9.1.4) for continuous time

Markov chains, but is established by similar methods; see Iglehart and

Shedler (1979b), Appendix. From Proposition (9.2.16) we obtain
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E 4( P EI a' *(V(s))ds 6 f (Vk ) 1 (9.2.17)0(Jul k=O

Then an expression for the variance constant a 2 is

E (I P) -12rUE0 ( P)MlI + 2
0 {M2,

This follows from Equations (9.2.10), (9.2.15), and (9.2.17).

When comparing the statistical efficiency of the marked job and

decomposition methods, it is convenient to have a central limit theorem

comparable to Equation (9.2.5) but in terms of simulation time, t, rather

than number of cycles, n. Let m(t) be the number of passage times

completed by time t, i.e., in the interval (0,t]. If we denote by n(t) the

number of 0-cycles completed by time t, then from renewal theory, as t- w ,

n (t) _-_ 1
t E 0tQ11}

with probability one, where E0(a ) is the expected length of a 0-cycle in

V. This implies that for large t, the number of 0-cycles completed by

time t is approximately t/E0{al}. Combining this result with

Equation (9.2.5), it follows that as tv-,

1m(t)

t1/2 [{m(t)-i l  f(1i' ) -r(f)]
)---> N (0, 1)

(E0{a1 1) 1/2a (f)/E 0{M 11

This result is independent of the initial state V(O). Since the numerator

in this central limit theorem is independent of the state 0 selected to

form cycles, so is the denominator. Thus for the mean passage time

.9. -



126

a - (E0 { 1 )) 1/2O/E0 {M11

is the appropriate measure of statistical efficiency for the marked job

method and is independent of the state OcS selected to form cycles. Note

that we obtain the quantity EO{a 1} according to

E0=} - E0LY (1)10 1

where 1 is the f function identically equal to one and

E{Y(1)} E l(V(s))ds (I- R 1- _ 1

1 EjJ (1Vs)d1 (9.2-.19)

9.3. Variance Constants for the Decomposition Method

We now turn to the decomposition method. As in Section 8.2, we label

the jobs from 1 to N, and for i-1,2,...,N, denote by Ni(t) the position

of job i in the linear job stack at time t. Then, in terms of the vector

Z(t) corresponding to the job stack, for tk0 we set

X'(t) - (z(t),Ni(t))

and

x0(t) - (Z(t),Nl(t),N2(t)...,NN(t)) (9.3.1)

Recall that each of the processes i-{Xi(t):t201 (i-1,2,....N) and

xO={XO(t):tkO} is an irreducible, positive recurrent continuous time Markov

chain. We denote the state space of the process [respectively XO ] by

Ei [respectively EO3.

f
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Next we let L i(t) (respectively L (t)] denote the last state visited

by the Markov chain X [respectively X 0 before jumping to Xi t)

[respectively X (t)], and for tkO and i-l,2,...,N, define

V i(t) (L (t),X i(t))

and

V (t) - L (t),Xt)) • (9.3.2)

0 0The process V -{V (t):taO} is the fundamental stochastic process of the

passage time simulation.

Since each of the processes Xi and XO is an irreducible- positive

recurrent continuous time Markov chain, so is each of the processes

V i=V i(t) :tkO} and V . We denote the state spacea..of Vi and V0 by Fi and

F, respectively. The entrances of V to the fixed subset Si [respectively

i iT of F (defined by Equation (8.2.3)) correspond to the starts

[respectively terminations] of passage times for job i. Similarly, the

successive entrances of V0 to the fixed subset S (defined by

Equation (8.2.4)) of F0 correspond to the starts of passage times

irrespective of job identity, and the entrances of V0 to the subset T
O

correspond to the terminations.

The decomposition method applies to passage times for which the sets S

and T (which define the starts and terminations of passage times of a

0particular job) are disjoint. As in Section 8, {P n:nkl} denotes the
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sequence of passage times (irrespective of job identity), enumerated in

0 0order of passage time start, and by the argument in Appendix 1, P Pn eIn
0

The goal of the simulation is estimation of the quantity r (f) of

Equation (8.2.5).

Recall that to estimate r0 (f), the decomposition method prescribes

that we carry out the simulation of the process V0 in random blocks defined

by the successive entrances of the process to the fixed set of states U
0

defined by Equation (8.2.6). Entrances of V0 to the set U0 correspond to

the terminations of passage times (irrespective of job identity) which

Soccur when no other passage times are underway, and which leave a fixed

configuration (z 0) of the job stack. For kzl, y 0 denotes the length in

0discrete time units of the kth block (returns to the set U0) of the process

0 0. 0 0 0{V n:na0}; mlo 1 n -i+.-- m

We assume that V (0) U0 and for m~l denote by K0 the number of passage
m

0 0times in the mth block of the process V . Also, we let Y (f) be the sum

of the quantities f(P0 ) over the passage times in the mth block of V0.
n

The key results of Section 8.2 leading to point estimates and confidence

intervals for the quantity r 0(f) are that the pairs of random variables

{(Y 0f).K 0):mzl} (9.3.4)

are independent and identically distributed, and that the quantity

r°(f) - E{Y (f)/E , (9.3.5)

U U

- ~ *~-
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provided that the quantity E{f(P%)11<-. The symbol E 0 is an abuse of

our previous notation. It connotes conditional expectation associated

0 0
with starting the Markov chain V in one of the states in the set UO . The

0
definition of the set U implies that the value of this conditional

expectation is independent of the particular starting state in U0.

Given these results, from a fixed number of blocks of V, the

decomposition method provides the point estimate

r (f) - Y (f/Kn n n

0The associated confidence interval for r (f) follows from the central

limit theorem

n1/2 0

n (r(f)-r0(f) }
0  -> N(Ol) (9.3.6)O0(fl/E 0o{K 11

U

where

(a0(f))-2 - var{Y0(f)-r 0 (f)K . (9.3.7)

Taking f to be the identity function, we restrict attention to the

0quantity r and consider computation of the corresponding variance constant

(a0)2 and related theoretical values. By the argument which leads to

Equation (9.2.18), the appropriate measure of the statistical efficiency

of the simulation is the quantity

eo - (E 0 { , IT/CO/E 0{K} 0 (9.3.8)

wh 0 0where a 1is the length of a block in the continuous time process V

14A .
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The individual quantities required to compute this measure of

0'I efficiency are defined in terms of the successive returns of the process V

to a fixed set of states (U 0 ) rather than to a single state. Moreover,

0 0 0
the successive entrances of V to U are not regeneration points for .

Accordingly, we cannot apply the results of Section 9.1 directly, as we

did for the marked job method. Instead, we select a fixed state

(designated state u 0) from the set U0 and compute the quantity corresponding

to Equation (9.3.8) for the resulting u -cycles. (Note that the successive

0 0
entrances of the process V to the fixed state u are regeneration points

0 0for V) The expression in Equation (9.3.8) computed for u-cycles is

'~~ ~ ~ 0 0 1/2 0 0 E0 } OI {

u u

where the constant G (analogous to a0) is defined for u0-cycles. This
00e0(0 0 m0(

quantity e (u ) is equal to e . To see this, for taO let m (C ) be the

number of passage times (irrespective of job identity) completed in the

interval (0,t]. In terms of simulation time, t, we have the central limit

theorem

1l/2[0mO ( l~ t) 0 0 0 /a

and, when f is the identity function, the variance constant in the

0denominator is the quantity e . There is a similar central limit theorem

in terms of u0-cycles; the numerator Is the same and the variance constant

in the denominator is e 0(u 0). Since the numerators in these two central

limit theorems are the same as are the limiting random variables (N(0,1)),
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e0u 0

a0 must equal e (u For a similar argument, see Propositions 5.1 and

5.6 of Crane and Iglehart (1975a).

Next we observe that the number of passage times in a u0-cycle of the

process 0, as well as the sum of the passage times in a u0-cycle, does

not depend on the identities of the jobs in successive configurations of

the job stack. It follows that rather than working with the stochastic

process V0, we can work with process W-{W(t):tk0} defined by

W(t) - (K(t),Z(t)) . (9.3.9)

Here Z(t)cD corresponds to the linear job stack at time t, and K(t) is

* the last state visited by the Markov chain Z-{Z(t):ta0} before jumping to

Z(t). The process W is an irreducible, positive recurrent continuous time

Markov chain with a state space that is a subset of DxD. Note that in

0
general the state space of W is much smaller than that of V , and that

working with the process W is computationally advantageous.

The computations rest on the definition of two particular functions

(f and g) defined on the state space of W and taking values in the set

{0,1}. We define the functions f and g in terms of functions f and gO

*0 0defined on F , the state space of the process V . We take the function

f0 to be the indicator function, 1 S of the set S0 which defines theSO

starts of passage times irrespective of job identity, i.e., for

(z,nl,..., , ,n, ...., l) ,

f- (n,n , ..... ,nj.nn. (9.3.10)
S 0n
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0
Thus if a passage time for some job starts when X hits

(Z,nl,...,n,,',n ,..... n), then f0.1. Note that for each (z,z') in the

state space of W, there exist na...O,*i,.... and I such that

(z,n1,...,nN',ni,...,N'),F
0 . For a state (zz') of W, we define

f(z,z') - f°(z nl,...n,,z'n... ) (9.3.11)

The function f is well defined since, for fixed z and z', the function fO

is independent of its other arguments.

For an element the value of the function

go is the number of passage times that start or are underway when the

configuration of the job stack is z'. Formally, for

(z,nl,...,nN z',n....,n)eF0 , we define

N

g O(znl,...,nNZ',n.,..., ni) - E ' G(h(zk)) (9.3.12)
k-l

Then, for (zz') in the state space of W, we define

g(z,z') - g 0(z,nl,...,,N,z',ni,...,N) .(9.3.13)

The justification for using the process W is that the number of passage

times (which start and terminate) in the first u -cycle of V
0 is

K1-1
II~ Z (W )  (9.3.14)

J-O

0- 0
and the sum of the passage times in the first uO-cycle of V is

fo;l g(W(s))ds . (9.3.15)
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Here 1 (respectively K1) is the time of the first return of the process

(respectively the jump chain {Wk:k>O}) to the fixed state w0 . The return

state w0 corresponds to the fixed state u0 selected from the set U 0  i.e.,

if

-O (z~nl,.... n.Nlz 0 n,, .

then wv0 -(Z'z 0

Proposition (9.3.16) follows directly from Theorem (9.1.1).

(9.3.16) PROPOSITION. Let f be the function defined by Equation (9.3.11),

and R be the transition matrix of the discrete time Markov chain {Wk:k>O}.

Then

E(Y'fMl - E K171 -if

and

EQY l¥(f ))2 1 (.1-0)- _,

where K 1 is the time of the first return to the state w0 in {Wk:k>O} and

h-2foE{Y1 (f) }-for.

From Proposition (9.3.16) we obtain the quantities E andE 0{K2
u u

according to

E uKO) " E (f) (9.3.17)
u 0 O v )
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and

0 22E 0 {(K1 ) 2  - E 0 {(Y1 (f)) 2 ) . (9.3.18)

(9.3.19) PROPOSITION. Let g be the function defined by Equation (9.3.12),

and _ be the jump matrix and a the vector of rate parameters for holding

times in the continuous time Markov chain L. Then

E{¥ ) ( J g(W)s)) s  " (E1!' (j))

and

EP t  )2t -(-O_-lh. 1 - ,

where is the time of the first return to the state w0 in L4, and

h-2f-oE{Y1 (g) 1.

Proposition (9.3.19) follows directly from Theorem (9.1.4). We use

this result to obtain the quantities

E :Pol - E 0 (Y 1 (g)} (9.3.20)Eu J-1 "

and

EJ(o j)1- E{yg)21 .(9.3.21)

Using the ratio formula, Equations (9.3.17) and (9.3.20) yield r0 .

Analogous to Proposition (9.2.16) we have
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(9.3.22) PROPOSITION. For E{Yl(f)} and E{YI(g)} given byjl Propositions (9.3.16) and (9.3.19),

'I

ElIffC g(W(s))ds 1:f(k

where h-(joL-1 ) oE{Y1 (f) }+f oE{Y1 (g) }-o 1) of.

We use this result to obtain

E4( )K~ = - f; g(W(s))d f() . (9.3.23)
U J I0 w E 0  k-OI

Then to compute the variance constant (a ) 2 we use the results of

Equations (9.3.18), (9.3.21), and (9.3.23).

9.4. Numerical Results

We once again consider the closed network of queues of Section 5.1,

and the limiting passage times P and R therein. Recall that the limiting

passage time P starts when a job joins the center 1 queue upon completion

of a center 2 service and terminates when the job next joins the center 2

queue. Similarly, the response time R is associated with the time between

successive entrances of a job into the center 1 queue upon completion of

a center 2 service.

For the passage time P, the sets A, and A2 defining the starts of

passage times are

RPM
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A, - {(i,N):O:Si<N

and

A2 - {(i,l):O<is} .

Similarly, the sets B1 and B2 defining the terminations of the passage

time P are

B - {(i,i):O<iN}

and

B2 - {(i-l,i):O<i<N}

For the response time R, the sets A and A2 are the same as for the passage

time P, but BI-A1 and B2-A2.

In connection with the marked job method, the process

V-{(L(t),X(t)):tkO}, where L(t) is the last state visited by the Markov

chain X before jumping to X(t), has state space

F - {(i,j,i+l,j+l):Oj<N, lsi<N} u {(i,N,i+1,l):Oi<N} u

J {(i,j,i-l,j) :0<isN, I<j<SN} u { (i,i,i,l) :l<isN}

The subsets of F defining the starts and terminations of passage times

for the marked job are

S - {(i,N,i+1,1):Osi<N}
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and

° T -{(i,i,i-l,i) :O<i:5N}

Tables 9.1 and 9.2 give theoretical values for simulation of the closed

network of queues by the marked job method. Numerical results are

displayed for the mean of the response time R and corresponding results

for the passage time P are in parentheses. For the case of N-2 jobs

(Table 9.1), the set S-{0,2,1,1), (1,2,1,1)}. With X 1I, X2O0.5, and p-0.75,

the numerical results show that on the average 0-cycles defined by returns

to the state (0,2,1,1) are twice as long as those defined by the returns

2to the state (1,2,1,1). Note that as expected, the quantities a /E0 {MI}

(as well as e-(E{c%}) 1/2 a/Eo{M1}) are the same for the two return states.

Table 9.2 gives results for N-4 jobs. Here there are four possible return

states, and for the parameter values selected, returns to the state

(3,4,4,1) occur most frequently, and on the average eight times more often

than returns to the state (0,4,1,1).

We now turn to the decomposition method. As we saw in Section 8.2,

the process

x0 - {(Z(t),N 1 :t}

has state space E0 , where

E - {(i,nl,...,nN):0-i5N; l nl,...,nNjN; n j for ij}.

The underlying continuous time process V0 defined by

....-.
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VO (t) - (LO(t),X 0 (t))

where L0 (t) is the last state visited by the Markov chain before jumping

to X (t), has state space FO . The subsets of F0 defining starts and

j terminations of passage times are

S - {(i,n, ,,i+l,n,. ) :o s<N; for exactly one j

a *-N and n',-l; l~n<N and n.,nj+l, J J*; %Onj for kOJ}

and

T - {(i,nl,..., i-l,n ,..,t):0<iSN;

lgnj -ni<N- for l<J<N; nkknj for kJ}

The process Z-{Z(t):tkO} has state space D-{0,,...,N), the set D={0},

and the set U0 defining blocks of the process V0 is

U0 = (.nNnll.... N ) n: jn l , . . . . nN O ;  inj for ij}.

The state space of the stochastic process W is

{(i,i+l):OsiN-l} u

and the state w O(1,0).

Table 9.3 gives theoretical values for simulation of the closed network

of queues by the decomposition method for the mean of the passage time P.

The table gives results for N-I to N-4 jobs, and the parameter values are

the same as in Tables 9.1 and 9.2. For N-2 jobs, the value of the

quantity e ee(u0) of Equation (9.3.8) which measures the statistical

A _ __ _ _
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efficiency of the decomposition method is 16.546. The corresponding value

from Table 9.1 f or the marked job method is 20.890. Thus, for these

parameter values the decomposition method is approximately 21 percent more

efficient than the marked job method. For N-n4 jobs, the decomposition

method is 41 percent more efficient.

Numerical results bearing on the statistical efficiency of the

decomposition method for simulation of the closed network of queues appear

in Table 9.4. For N-1l to N-n6 jobs, the table gives theoretical values of

the quantities r0 and a0 for three sets of parameters values. We hold the

value of X1-l and p-0.75 fixed, but vary X Table 9.5 gives a comparison
02

of the relative efficiency (C0 ) of the marked job and decomposition

methods for the same sets of parameter values.
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TABLE 9.1

Theoretical Values for the Marked Job Method.
Passage Time R (P) in Closed Network of Queues.

N-2, A 1.1.0, A2 0.5, p-0.75.

Parameter Return State of V-{V(t):taO}

(0,2,1,1) (1,2,1,1)

EO(a 1}  24.0 12.0

Eo 28.0 14.0
(20.0) (10.0)

Eo(M1. 3.0 1.5
1  (3.0) (1.5)

EO Pj/Eo{MI }  9.333 9.333
I-1 (6.667) (6.667)

a 2  140.267 70.133
(129.067) (64.533)

a2/Eo{M} 46.756 46.756
(43.022) (43.022)

E 1 /2 aO/ Ml 20.890 20.890
(20.038) (20.038)
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i! . TABLE 9.2

tTheoretical Values for the Marked Job Method.
~Passage Time R (P) in Closed Network of Queues.

N-4, X i .. 0, x,2=0.5, p-0.75.

Parameter Return State of V={V(t):t>O}

(0,4,1,1) (1,4,2,1) (2,4,3,1) (3,4,4,1)

E [CL 216.0 108.0 54.0 27.0

E 248.0 124.0 62.0 61.0
j-1 (196.0) (98.0) (49.0) (24.5)

Eo{M1 } 15.0 7.5 3.75 1.875
(15.0) (7.5) (3.75) (1.875)

E 0F P 4J /lEO{HM1 16.533 16.533 16.533 16.533
I1-1 ) (13.067) (13.067) (13.067) (13.067)

y2 2111.343 1055.672 527.836 263.918

(2139.600) (1069.800) (534.900) (267.450)

2 /Eo{M 140.756 140.756 140.756 140.756
(142.640) (142.640) (142.640) (142.640)

(E0 ctL 1/2 E o {M
1 }  48.241 48.241 48.241 48.241

1 / (48.562) (48.562) (48.562) (48.562)
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TABLE 9.3

I Theoretical Values for the Decomposition Method.
I Passage Tims, P in Closed Network of Queues.

x 1 .0, x -0.5, P-0.75.

fParameter N-1 N-n2 N-3 N-n4

E {}6.0 24.0 30.0 62.0
0 1

u

0 4.0 20.0 68.0 196.0

E0 {E POI

E 0{i 1.0 3.0 7.0 15.0i

E4E1 PO /E0 O{K~ 4.0 6.667 9.714 13.067

(ag) 16.0 176.0 1023.673 4317.227

(C )/ KI16.0 58.667 146.249 287.815

(E 0 1~)/ 0/E o{Ki) 9.798 16.546 25.035 34.491
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TABLE 9.4

Statistical Efficiency of the Decomposition Method.

Passage Time P in Closed Network of Queues.

p -0.75 p -0.75 p-O0.75
- . - 10 - 1.0

x 2-0125 x2 ' .5x2a0.

r0 e0 r0 e0 r0 e0

1 4.0 13.856 4.0 11.314 4.0 9.798

2 5.333 19.956 6.0 17.664 6.667 16.546

3 6.286 27.380 8.0 26.128 9.714 25.035

4 6.933 35.189 10.0 36.606 13.067 34.491

5~ 7.355 42.597 12.0 49.107 16.645 44.296

6 7.619 49.068 14.0 63.645 20.381 54.021

-1
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TABLE 9.5

Relative Efficiency of the Marked Job and Decomposition Methods.
Passage Time P in Closed Network of Queues.

p -0.75 p-O0.75 pi-n0 .75

x -1.0 x= 1.0 - 1.0
N x1 a 0.125 X2 - 0.25 2 " 0.5

2 2 20.

1 1.0 1.0 1.0

2 1.190 1.189 1.211

3 1.207 1.224 1.319

4 1.190 1.209 1.408

5 1.176 1.186 1.499

6 1.394 1.162 1.597

A
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10.0. NETWORKS WITH MULTIPLE JOB TYPES

We have considered in previous sections the problem of simulating

closed and finite capacity open networks of queues, respectively, for

general characteristics of passage times. Under consideration here are

networks with multiple job types and the estimation of individual and

joint characteristics of passage times over the several job types. The

type of a job may influence its routing through the network as well as

its service requirements at each center. For expository convenience, we

assume that there are only two job types in the network and we mark one

job of each type. By tracking these two jobs, we are able to produce from

a single~ replication confidence intervals for a variety of passage time

characteristics. The estimation method of this section can also be applied

to networks with only a single job type; the result is an alternative

scheme to that proposed in Section 7.

10.1. Preliminaries

We consider closed networks of queues with a finite number of jobs,

N, of two types, and assume that there are N 1 [respectively N 2] jobs of

type 1 (respectively type 2] with N 1 N 2-N. In each network there are a

finite number of service centers, s, and a finite number of job classes,

c. All jobs retain their job type, but may change class as they traverse

the network. (Think of type 1 jobs as cubes and type 2 jobs as spheres,

and let job classes correspond to different colors. Then we permit jobs

to change color, but not shape.) Upon completion of service at center i,

a type v job of class j goes to center k and changes to class i. with*

'p-A*.Z

it7t
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probability pi(M),k"We assume that for v-1,2, P( ({pV)k:lsi,kss, (<J,v<c}

is a given irreducible Markov matrix.

The service times and service discipline at each service center are

as in Section 7 with the exception that they may also depend on job type.

We briefly review the situation. At each service center jobs queue and

receive service according to a fixed priority scheme among classes and

types, which scheme can vary from center to center. Each center operates

as a single server, processing jobs of a fixed type and class according

to a fixed service discipline. All service times in the network are

mutually independent, and at each center have a distribution with a

Co-phase representation with parameters which may depend on the

service center, type and class of job being serviced, and the "state" of

the entire system. (As usual, we exclude zero service times occurring

with positive probability.) A job in service may or may not be preempted

(according to a fixed procedure for each center) if another job of higher

priority joins the queue at the center.

We restrict the present discussion to networks in which all service

times are exponentially distributed, and deal with distributions having

a Cox-phase representation in the usual way by the method of

stages. To characterize the state of the system at time t, we let S it)

denote the (type, class) pair of the job receiving service at center i at

time t, il,2,...,s. If there are no jobs at center i at time t, we set

Si (t)=(0,). We denote by jl(i),...,Jk(i)(i) the (type, class) pairs

served at center i ordered by decreasing priority, and let

- V
-l
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(t ) , .. ) (t) denote the number of jobs in queue at time t of the
-l "Jk(i)

various (type, class) pairs served at center i. We mark one job of each

of the two types in order to measure their passage or response times. As

in previous sections, we view the N jobs as being completely ordered in a

linear stack, and let the vector Z(t) be given by:

z(t) -(CM 1  (t),.. 'C(l)(t),s(t); ...
Jk(l) " l
(1)

c~ s  (=),... c(S)(t),Ss(t)) .(10.1.1)
Jk(s) " ' 1

The linear job stack again corresponds to the order of components in the

vector Z(t) after ignoring any-tero components. Within a (type, class)

pair at a center, jobs waiting appear in the job stack in the order of their

arrival in the center, the latest to arrive being closest to the top of

the stack. Let N (t) _(v-l,2) denote the position from the top in this

job stack of the type V marked job. Then for t>O, the state vector of

the network is

x(t) - (zC),N Ct)N (0)) (1.1~.2)

Under the exponential service time and Markovian routing assumptions, the

process X-{X(t):tz0} is an irreducible continuous time Markov chain with

finite state space E.

10.2. Simulation for Passage Times

We specify the passage (or response) times for the two types of jobs

Mv (v) M
by eight subsets of E: AiL A 2) B v1 B 2 for v-1,2. The sets A

and AM [respectively BM, B 2 ] determine when to start [respectively

27 1 2
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stop] the clock measuring a particular passage time for the type V marked

job. Denoting the jump times of the process X by { n:n>O}, for k,nal, we

require that the sets AMv, AN) B(v) and B(v) sa
1 '2 '1 2 tifIf(v v A an Cv)

if X(Tn)~llA 9, X(T n )CAi , X(T n-l+k CA 1  and X(Tn+kl)A 2

then X(T 14* f)eB 1 and X(Tnr )eB 2 for some O<mgk

and

nfX( -i1 n)EB X(T n)B2nl~)EB 1 and (nk e2

then X(T 1  )A M and X(T )CA M for sm s~

Also, in terms of the jump times of X, we define four sequences of random

times: {S ) :J>O} and {TV) :Jal}, for v-1,2. The start [respectively

termination] time of the jth passage time for the type v marked job is

denoted by [respectively T(V)]. Formally, we have for v-1,2,

S() " inf{T>T(V):X(Tn)A ), X(Tn 1)CA M), J.0

T) Mi (fV)>-( X. E~).

The jth passage time for the type v marked job is _ MT ( -S_ M, v)
j Jj-1'

Note that the definition of these times is as in Section 7. For response

times of type V jobs, A() R () A(V) O (v) and S( )MT( ) for all J~l.
I I 2 2-

Let L(t) denote the last state visited by the Markov chain before

jumping to X(t), and for t>O set

V(t) (L(t),X(t)) (10.2.1)
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The process -fV(t):t>O} has a state space F consisting of all pairs of

states (ij), iJE, for which a transition in X from state i to state j

can occur with positive probability. In general, of course, the size of

f the state space F is larger than that of E. The "Q-matrix" used in

generating the Markov chain V can be obtained easily from that for .

Since Z is an irreducible, positive recurrent Markov chain, so is V.

Clearly, the entrance times of I to a state (i,j)eF correspond to the

times of transition in X from state i to state J. For a type V job, we

define two subsets of F according to:

I s(v) - {(i,j)eF:ieA(V), JeAMv

T(v) - {(i,j)eF:iBlV), JeB V)}

Thus the entrances of V to S (  [respectively T( ) ] correspond to the

start [respectively termination] times of passage times for the type V

marked job. Of course for response times of a type V job, S(v)..T(v).

The argument employed in Appendix 1 shows that for v-1,2, the

sequence P(v) converges in distribution to a random variable P

Moreover, the sequence of passage times of type V jobs (irrespective of

job identity) in the order of start (or termination) also converges in

distribution to P(v). Our concern is with the estimation of

characteristics associated with these limiting passage times.

1 1
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Estimation of E(R(1 )} and P{R(1).x}

Using the process V defined by Equations (10.1.1), (10.1.2) and

(10.2.1), we consider first the estimation of characteristics of the

limiting response time, R of a type 1 job. For this estimation

problem, of course, it is not necessary to mark a type 2 job. Since R 1

is a response time, S(1 )=T(1) . We select a fixed state of S(1), which

for convenience we designate state 0, and assume that Y(0)-0.

Suppose that we wish to estimate E{R(1 )}. The successive entrances

of V to S (1 ) constitute the starts and terminations of response times of

the type 1 marked job. Let R (n ) (nO) denote the time between the nthn
with the 0th entrance to S occurring at

t-0. Also, let {V :nzO} denote the embedded jump chain associated with
n

V. The random times { nal} and {(Ynual} denote the lengths of the
n

successive 0-cycles (successive returns to the fixed state 0) for V and

{V n:n 0}, respectively. Then the number of response times for the type 1

marked job in the first 0-cycle of V is

61-1
N1 F- 1 1{V -ES (1)j-O n

where 6 0-0 and 6m-Yl+...+y m , m21. The sum of the response times in that

cycle is simply

N1

n-i

We denote the analogous quantities in the kth 0-cycle by N 1 ) and ak . The

fact that V is a regenerative process, together with a renewal argument

(cf. Appendix 2) establishes

M z W
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(10.2.2) PROPOSITION. The pairs of random variables {(% k 1
) ) :k l) are

f independent and identically distributed. Provided that E{R(1)}<M ,

E{( 1 ) E{ I/E{N Z) I

At this point, the arguments of the standard regenerative method

hold and, based on n cycles, we can construct the point estimate Z /N()

and (provided that an estimate is available for a2 , the variance of

aI-E{R(1)N I)) an associated confidence interval for E{R(1)}. The

confidence interval is obtained from the central limit theorem

1/2 .- ,-(l) _E{R(l) ]

n/n N(,)

a/E{N~l )  -

Here a-"(a +..+Cn )In and WN) (Nl
1 + ""+NC1 ))/n.

U 1 n n 1 n

If we are interested in the distribution function, P{R(
1 )x} of (I

we proceed as above, but define in addition the i.i.d. sequence of random

variables {Yk:kkl}, where, for example,

N~
l )

Y 1 ( -){R(1)<x}

n.I n

Then the point estimate of P{R(1)<x} is just Y /i(1), and we obtainn n

confidence intervals in the usual way.

Estimation of E{R (l)} and E{R (2)

Now suppose that we wish to estimate the expected passage time for

type 2 jobs, E{R(2)}, as well as E1R(1)}. Response times for the type 2

......
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marked job start and terminate at the entrance times of V to the set

s T2 'T( 2 )  Let N 2 ) denote the number of entrances to S(2) of in the

kth O-cycle. For example, in the first 0-cycle

6 1-1

N1 2) s(2)

Although we are able to begin the simulation at the start of a response

time for the type 1 marked job, in general a response time for the type 2

marked job is underway at time t-0. Similarly, at the end of a 0-cycle,

a response time for the type 1 marked job terminates, but a response time

for the type 2 marked job is still underway. After n 0-cycles,
( 2)+.. (2)

+...+n response times for the type 2 marked job have started andI n

the sum of these response times is approximately a +...+a . The error in

this approximation is due to the partial response time at t-O which is

not counted in N (2)+...+N (2) and the last response time which is counted,1 n

but does not terminate before the end of the nth 0-cycle. Since the point

estimates and confidence intervals here are based on large sample theory

(strong laws and central limit theorems), these errors are negligible for

n large. In fact, the errors due to the two response times at t-O and at

the end of the simulation run compensate for each other. Consequently,

we have

(10.2.3) PROPOSITION. The pairs of random variables k,(2) ):k;l} are

(2)independent and identically distributed. Provided that E{R2}< ,

E{R( 2 ) -E{OtL /E(N (2),

2
-.. .,z
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In the presence of Proposition (10.2.3), the point estimate of E{R(2 ) is

i/ N * and we can use the standard regenerative method to obtain a

confidence interval.

Estimation of E{R~l))-E,{R( 2))

Suppose now that we wish to estimate r(1)-r (2) where r(1)=E{R (I)}
and r (2)-E{R(2)}. We can take as a point estimate the quantity

(iL(1n)-(an/ ( 2)), but need a bivariate central limit theorem in order to

produce a confidence interval. To this end, we let

Zi a-r Ni

and

for kl. (We take all our vectors to be column vectors.) The random

vectors (Z :kzl) are i.i.d. since each 4 is only a function of the kth

0-cycle. Furthermore, Equations (10.1.4) and (10.1.5) imply that E{41.

Denoting the transpose of 9k by Z', let E{-EQ k.}={Oij} be the covariance

matrix of the Z 's. Assuming that the elements of Z are finite, we have
-k

the central limit theorem

n-1/2  , N(O,) , (10.2.4)
k-l

where N(O,_) is a multivariate normal random variable with zero mean vector

and covariance matrix _. We can rewrite Equation (10.2.4) in the form

( n2 
) ][ (

1E{N ))E{ n/N(2))-r(2)111
n 1 i n
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Since E{N(')}/N(9)-4, we can use Lemma (2.1.8) to conclude that the
factors (N(V)/E{N(v)}) in Equation (10.2.5) can be dropped. With these

n " 1

factors removed, again apply Lemma (2.1.8) with the mapping h given by

h(x1 ,x2) - (x /E{N I)). x2 1{N( 2 )))

to obtain

/-g( 2~) (2) Q#J'(026

where

-- lIE{N(2 1

Note that from Equation (10.2.6) we could construct a simultaneous

(1) (2)confidence interval for (r ,r(). Finally, a third application of

Lemma (2.1.8), this time using h(x1,X2)=X-x 2, yields

(10.2.7) PROPOSITION. Provided that a ll' j121 022<0
*

(n l1/2 / ) [ 1 ( / )) -( I_((N (2) )
(/l() -2 )}(r(1)-r -> N(0,1) (10.2.8)

where

a2 a I/E2 {N(1) + a 2/EN 2 } - 2a /(E{N I)}E{N(2)})
11 N1  22, 1 12 1 1

We can use the central limit theorem of Equation (10.2.8) to construct a

confidence interval for r(1)-r (2), provided that an estimate for the

constant a is available. Using the classical method, we can estimate a

from the sequence of observations taken in the n 0-cycles of the process V.

This estimate for a appears in Appendix 3.

.... . . . ..- I
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A special case of the situation just discussed is when the two types

of jobs are the same; then there is only one job type, but we elect to
markt wo jobs. Let rr, ( /n ,and - ( )) Then

n n n -n n n

we can use the method of multiple estimates of Heidelberger (1977) applied

to Equation (10.2.6). For any vector _-(B 1 ,B2) with 81+B2-l, we have

(n 1 /21(.)) (..'er-r) -> N(0,1)

where a 2()-8'(aZa')O. Next we select that value of 0, call it B, which

minimizes a2 (P) subject to Bea-, where e-(1,1). It turns out that is

given by

!"I  f "~ {i/(e-' (BZB')'i-- __ (B- )-i

and

a2 (**) - l/{e'(BB')-e} . (10.2.9)

Since 6B(1,0) is one possible value of 8, using B is guaranteed to yield

a variance reduction over that obtained by marking just one job. Again,

of course, we must estimate the variance a2 (8) given in Equation (10.2.9)

from the observations recorded.

Estimation of P{R (1):x }-P{R (2)<x }

Finally, we consider the estimation of P{R (1)x}-P{R (2)sx for a given

value of x. This is the most difficult of the problems for networks with

multiple job types that we treat. Since the value of x is fixed throughout

the discussion, in general we suppress in our notation the dependence of

x. Again we form 0-cycles based on the response times for the type 1

marked job. Here, however, when a 0-cycle ends, we do not know whether

'I _
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the response time for the type 2 marked job in progress will be less than

or equal to x. Thus, with respect to the response times for the type 2

marked job, the 0-cycles used previously do not create the i.i.d. cycles

needed to establish a central limit theorem. Instead, we form new cycles

by grouping together a random number of consecutive 0-cycles. Let

. i, l. Then let si be the start time of the response time for

the type 2 marked job underway at the conclusion of the ith O-cycle. We

assume that Y(0)-0 and regard the value of the response time for the type 2

marked job underway at the start of the simulation to be greater than (the

fixed) x. We do this so that the start of the simulation corresponds to

the beginning of one of the new "super-cycles" we are constructing.

Defining a random variable y according to

- inffial:ti-s i >x,

the length of the first super-cycle is simply al+a2+...+atY , and the number

of response times for the type V marked job started in this super-cycle

is n(V).N(V)+...+N(V). Successive super-cycles are defined in an analogous

fashion. For kal, we define "(V) to be the number of response times
k

terminating in the kth super-cycle which are less than or equal to x;

e.g.,

1 ' l(V )sx} "

Observe that by the definition of a super-cycle, the first response time

of the type 2 marked job terminating within a super-cycle must be greater

than x. Thus we have
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t(2)
(10.2.10) PROPOSITION. The random variables (Yk2 :kai} are independent

and identically distributed.

Of course, the Y s s are i.i.d. also, as are the %.K s and N2's. We

can now form the bivariate central limit theorem analogous to Equation

(10.2.6), namely

_l/2 -;i n ) -P {R(1):sxI

S  (n2)/;2) -> N(O,B(x)Z(x)B' (x))S(n n )-{ I)x

where

B(x) -2)
0 - 1/E{n[2

11

with

.(x) - (i)(i)P,_(i)< v(J) ,(J)P"R(J)<x}

Finally, by the same argument used in Proposition (10.2.7), we obtain

(10.2.11) PROPOSITION. Provided that all(x), 012 (x), 022 (x)<-,

(1/2/x ) [ T() -(1) =(2) -(2) ()(2

(nIn -y nn )-(P{R(Z)sx}-P{R (2x})) -> N(0,1) , (10.2.12)

where

a (x) - al(X)/E2 n 1)} + a2 2 (x)/E 2 {n(2)1 - 2a12 (x)/(E{n 1E(n(
2)}).

11 1 22 1 1
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We can estimate the quantity a(x) from the observations in the

n super-cycles using the classical method; see Appendix 3. Then we construct

confidence intervals for P{R(1) rx}-P{R(2) Sx} from Equation (10.2.12) in

the usual way.

The discussion in this section has concentrated on problems associated

with the estimation of characteristics of response times for the two types

of jobs. The estimation of characteristics of two passage times, or one

response time and one passage time, is in general easier. This is because

there is the possibility of forming, from 0-cycles based on one type of

* job, super-cycles which terminate when no passage time of the other type

of job is underway.

We have considered explicitly only the case of two job types. The

estimation methods of this section apply equally well to networks having

more than two job types. The state space which results from the

augmentation of the vector X(t) (by components to track a marked job of

each of the job types) is of course larger.

10.3. Example and Numerical Results

To illustrate the technique of the previous section for estimation of

response times, we consider a simple closed network of queues having two

types of jobs and two service centers; see Figure 10.1. There are N jobs

in the network, N1 jobs of type 1 and N2 jobs of type 2. After completion

of service in center 1, a type v job joins the queue at center 1 (with

probability p(")) or joins the queue in center 2 (with probability 1-p").
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2I2

(ii) Routing for type P jobs determined by binary valued variable (3

(iii) Type 1 jobs have non-preemptive priority over type 2 jobs

Figure 10.1. Closed network of queues with two job types

.44
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After completion of service at center 2, jobs join the queue at center 1.

At both service centers, type 1 jobs have uonpreemptive priority over type

2 jobs. Jobs of the same type at either of the centers receive service

in order of their arrival at the center. We assume that all service times

are mutually independent; jobs of type V at center i receive service which

()
is exponentially distributed with parameter i The limiting response

time R (V) for type V jobs that we consider in this model is the time

measured from when upon completion of service at center 2, a type V job

enters the queue at center 1, until the next such entrance by the job into

the queue at center 1.

In this model, there are two job classes, class 1 jobs at center 1

and class 2 jobs at center 2. Each center sees both job types, but only

one job class. The irreducible Markov routing matrices -(v) are of the

form

(v) p 1 (v) 1-(v]

Since type 1 jobs have priority over type 2 jobs at both centers, the

(type, class) pairs ordered by decreasing priority are j (i)u(1,i) and

J2 (i)-(2,i), i1-,2. For this model, it is sufficient to take as the

component Si(t) in the vector Z(t) the type of job in service at center i

at time t, rather than the (type, class) pair. Then we can define the

vector Z(t) as

ZWt- (C(2) (.C(t),Sl(t),C( 2 )(t),cl)(t)S(t))

Zt)t) (C1  Ct)W

where, for i-l,2 and v-1,2,

tti 
4
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iM

c n(t-nuber of type V jobs in queue at center i at time t

and

S~ (t) -type of job in service at center i at time t

0 if center i is idle at time t

Letting NV(t) (V-1,2) denote the position from the top of the type v marked

job in the linear job stack, for tkO the state vector for this model is

X(t) - (Z(t),Nlt),N2(t))

Letting L(t) denote the last state visited by the Markov chain X-{X(t):tz0}

before jumping to X(t), the vector V(t) is

~V(t) - (L~t),X(t)).

For N-2 jobs, the state space E of the process {X(t):ta0} has six

states and is

E - {(0,0,0,1,0,l,2,1), (0,0,0,0,l,2,1,2), (0,0,1,0,0,2,1,2)}

u {(0,0,2,0,0,l,2,l), (1,0,1,0,0,0,2.1). (0,1,2,0,0,0,l,2,)}

The subsets AM and A2 of E defining the start of response times for12

the type 1 marked job are

A I) . ((0,0,0,1,0,1,2,1), (0,0,2,0,0,l,2,1)}
1

and

A2l ) {(0,0,1,0,0,2,1,2), (0,1,2,0,0,0,1,2))
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Similarly, the subsets A(2) and A(2) of E defining the start of response
1 2

times for the type 2 marked job are

A(2) - [(0,0,0,0,1,2,1,2), (0,0,1,0,0,2,1,2)1

and

A 2 - {(0,0,2,0,0,1,2,1), (1,0,1,0,0,0,2,1)j=-, (v).,(v) v(') .(v)

Since R ) and R(2) are response times, B1  A1  and - "V ,
1 12 A2 ,vl2

see Figure 10.2. It is easy to check that the state space F of the process

{V(t):t>0} has nine states. The subsets S(v) of F defining the starts of

response times for the type V marked job are

S(l) =(0,0,0,1,0,1,2,1,0,0,l0,0,2,1,2)}

u {(0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2)}

and

3S(2) { {(0,0,0,0,1,2,1,2,0,0,2,0,0,1,2,1)}

u ((0,0,1,0,0,2,1,2,1,0,1,0,0,0,2,l)1

respectively; see Figure 10.3. Here we use the enumeration of the six

states of E given in Figure 10.2. Thus, e.g., (1,3) denotes the state

(0,0,0,1,0,1,2,1,0,0,1,0,0,2,1,2)cF.

Simulation results for this model for p (1). (2) p-0.75, X (1).(2)=X, =1

and A I).X(2).A" -05, with N-2, appear in Tables 10.1-10.4. With these2 2 2 "

parameter values, there is one type 1 job and one type 2 job. The routing

and service requirements of the two job types are the same; the two jobs

differ only with respect to the nonpreemptive priority given (at each

center) to the type 1 job. The simulation used the congruential uniform
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(0,0,0,1,0,1,2,1) 2 (0,0,0,0,1,2,1,2)

(101000210)

(0,0,1,0,0,5,6,2 (0,,2,0,0,1,2.)

3 4.

Figure 10.2. State transitions in Markov chain X and subsets of E
for response times R (11 and 8 (2)
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Figure 10.3. State transitions in Markov chain V and subsets of F
for response times RM1 and R(2)



165

random number generator described by Levis, Goodman, and Miller (1969),

with exponential service times obtained by logarithmic transformation of

the uniform random numbers. Independent streams of exponential random

numbers (obtained from different seeds) were used to generate individual

f -exponential holding time sequences.

For the simulation results of Tables 10.1-10.4, the return state

defining O-cycles of the response time for the type 1 job is the state

(0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2). This corresponds to a response time

for the type 1 (marked) job starting when the type 2 (marked) job is in

service at center 1. Table 10.1 summarizes results of the simulation and

reports point estimates and 90 percent confidence intervals for the

quantities E{R1()}, E{R (2 ) } and E(R(')}-E{R (2 ) } over a range of number of

cycles of the type 1 marked job. Theoretical values for these quantities

are shown in parentheses. Thus, for example, 100 cycles of the type 1

marked job were observed in the simulated time interval (0,903.00) and

there were a total of 446 transitions in the continuous time Markov chain

{L(t):tkO}. A total of 130 response times for the type I (marked) job

were observed along with 56 response times for the type 2 (marked) job.

For the quantity E{R(1)}-7, the point estimate 6.946 was obtained, and

the 90 percent confidence interval had half-length 0.6334. Note that for

E{R (I ) } and E{R(2)}, all of the confidence intervals surround the

theoretical values. In the case of E{R(1)}-E{R (2)), the confidence

intervals based on Equation (10.2.8) also surround the theoretical value.

Table 10.2 gives results obtained for P{R-1)Ux1, with x-4, 8, 12, 16 and

20.

6..
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In Table 10.3 we give, for the several values of x, point and interval

estimates for P{R(1)5x}-P{ (2)Sx}, based on the use of super-cycles and

Equation (10.2.12). Thus, for x-4, 100 cycles based on response times for

f the type 1 job resulted in 37 super-cycles defined by response times for

the type 2 job greater than x. Note that the number of cycles for the

type 1 marked job has been fixed, and for each x the estimates for

P{R(1)gxl-P{R(2)5x) computed from the resulting random number of

super-cycles.

Table 10.4 contains estimates of the quantities P{R(2 5x} obtained

from the standard regenerative method applied to these super-cycles. An

overall observation from Tables 10.2 and 10.4 is that the lengths of

confidence intervals obtained for P{R(1)5x} and P{R(2)5x} are roughly

comparable.

1,i
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TABLE 10. 2

Percentiles of Type 1 Response Times in Closed Network of Queues
With Two Job Types. Nl-l, N2-1, p-0.75, \ 1 -1, X2-0.5.
Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000

PfR I54} 0.2384 0.2536 0.2555 0.2641 0.2639
±0.0622 ±0.0417 ±0.0301 ±0.0217 ±0.0192

P{R( 1 )81 0.6692 0.6714 0.6717 0.6709 0.6802
±0.0683 ±0.0444 ±0.0308 ±0.0221 ±0.0201

P{R }1 21 0.8923 0.8786 0.8832 0.8769 0.8830
±0.0422 ±0.0293 ±0.0205 ±0.0159 ±0.0140

P{R(1 ):16} 0.9461 0.9536 0.9594 0.9547 0.9605
±0.0311 ±0.0198 ±0.0135 ±0.0105 ±0.0088

P{R(1):20} 0.9923 0.9892 0.9915 0.9880 0.9898
±0.0127 ±0.0100 ±0.0061 ±0.0052 ±0.0043

aJ
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TABLE 10.3

Difference of Percentiles of Response Times in Closed Network of Queues
With Two Job Types. NI-l, N2-1, p-0.75, Xl-l, X2-0.5.

Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,01,2).

No. of Cycles For Type 1 Marked Job

100 200 400 800 1000

P{R(1)54}-P{R(2) 4} 0.1254 0.1295 0.1342 0.1332 0.1384
±0.0784 ±0.0627 ±0.0417 ±0.0275 ±0.0192

No. of super-cycles 37 79 181 347 438

P{R(1)58}-P{R(2)!8} 0.3988 0.3409 0.3111 0.3036 0.3125
* ±0.1227 ±0.0817 ±0.0525 ±0.0373 ±0.0201

No. of super-cycles 29 61 134 254 319

P{R(1)s2}-P{R(2)5121 0.3915 0.3543 0.3331 0.3259 0.3280
±0.1424 ±0.1112 ±0.0677 ±0.0496 ±0.0140

No. of super-cycles 22 46 93 180 224

P{R(1)I6}-P{R (2) 16} 0.2850 0.2970 0.2693 0.2693 0.2636
±0.1288 ±0.1092 ±0.0606 ±0.0489 ±0.0088

No. of super-cycles 15 32 65 129 153

P{R(1)520}-P{R(2)5201 0.2422 0.2470 0.2119 0.2078 0.2009
±0.1081 ±0.0825 ±0.0530 ±0.0415 ±0.0043

No. of super-cycles 11 24 43 84 104

A Y
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TABLE 10.4

Percentiles of Type 2 Response Times in Closed Networks of Queues
With Two Job Types. NI-l, N2-1, p-0.75, Xl-l, X2-0.5.

Return State is (0,0,2,0,0,1,2,1,0,1,2,0,0,0,1,2).

No. of Cycles For Type 1 Marked Jobr rI

100 200 400 800 1000

P{R(2 S4} 0.1071 0.1240 0.1200 0.1310 0.1255
±0.0852 t0.0583 ±0.0312 ±0.0209 ±0.0183

No. of super-cycles 37 79 181 347 438

P{R(2):81 0.2679 0.3281 0.3600 0.3673 0.3681
±0.0963 ±0.0751 ±0.0475 ±0.0323 ±0.0280

No. of super-cycles 29 61 134 254 319

P{R(2 S12} 0.5000 0.5234 0.5500 0.5510 0.5548
±0.1184 ±0.0799 ±0.0474 ±0.0336 ±0.0286

No. of super-cycles 22 46 93 180 224

P{R(2)516} 0.6607 0.6563 0.6900 0.6854 0.6969
±0.1155 ±0.0687 ±0.0419 ±0.0316 ±0.0268

No. of super-cycles 15 32 65 129 153

P{R(2)520} 0.7500 0.7422 0.7793 0.7802 0.7889
±0.0986 ±0.0582 ±0.0405 ±0.0284 ±0.0243

No. of super-cycles 11 24 43 84 104
____

4J
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11.0. IMPLEHENTATION CONSIDERATIONS

In order to carry out a passage time simulation of a network of queues

we must be able to generate sample paths or realizations of the stochastic

system. A necessary part of any such generation procedure is an algorithm

(or algorithms) for random number generation, i.e., for the generation of

numbers that can be treated as instances (samples) of random variables.

In this section we consider aspects of random number generation pertinent

to the implementation of passage time simulations according to the methods

of the previous sections.

11.1. Random Number Generators

Our discussion follows Learmonth and Lewis (1973a). By a "random

number generator" (or "pseudo-random number generator") we mean an

algorithm which produces sequences of numbers that follow a specified

probability distribution and possess the appearance of randomness. The

use of "sequence of numbers" means that the algorithm is to produce many

random numbers in a serial fashion. Even though a particular user may

need only relatively few of the numbers, we generally require that the

algorithm be capable of producing many numbers. "Probability distribution"

implies that we can associate a probability statement with the occurrence

of each number produced by the algorithm. We usually take the probability

distribution to the uniform distribution on the interval [0,1]. If a

source of [0,1] uniform random numbers is available, then in principle it

is possible to transform these uniform random numbers by means of the

inverse probability integral into random numbers having any desired

distribution. For reasons of computational efficiency, however, a large
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amount of effort has gone into the development of methods for direct

generation of random numbers having nonuniform distributions; see Ahrens

and Dieter (1973a) for a comprehensive discussion. With respect to

"appearance of randomness," it may be somewhat surprising that the actual

implementation of most commonly used algorithms for uniform random number

generation is as a (deterministic) recurrence relation in which each

succeeding number is a function of the preceding number. Thus, although

true randomness requires independence of successive numbers, the algorithm

generates a deterministic dependent sequence. When parameters of the

recurrence relation are chosen carefully, such algorithms for uniform

random number generation do yield sequences which (statistically) appear

to be random. This appearance of randomness is the origin of the term

"pseudo-random numbers."

Since the results of a simulation depend critically on an acceptable

appearance of randomness, it is important that a proposed uniform random

number generator be subjected to thorough statistical testing. Although

the simulation practitioner need not necessarily be concerned with the

details of the rather specialized techniques for statistical testing of

random number generators, he should be convinced prior to use that an

available uniform random number generator has been successful1] tested.

See Fishman (1978), Ch. 8 for a discussion of statistical tests for uniform

random number generators.

.he most widely used (uniform) random number generators are of a class

• aevm linear congruential generators. Such generators employ a

*ve..me relation of the form
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X n -bX_ 1 + c (mod m) (1.1.1)

In Equation (11.1.1) all quantities are nonnegative integers. This

equation, read "X equals bX1 +c modulo m," says that X is the remindern -i n

when bXn_l+c is divided by m. The quantity b is called the multiplier,

m is the modulus, and c is the increment. Given a starting value X 00

and values baO, caO, and m such that m>Xo, m>b and m>c, a sequence of

integers X1,X2 ,... is generated by successive application of

Equation (11.1.I). Uniform random numbers U on the interval [0,1] aren

obtained by dividing by m, i.e., for n-l,2,...,

Un -Xn/m (11.1.2)

The recurrence relation of Equation (11.1.1) is sometimes called a "mixed

linear congruential generator," the term "mixed" coming from the fact that

it involves a multiplication by a constant b along with an addition of a

constant c. Many random number generators are "multiplicative" or "pure

congruential" in that c-0, giving

X - bX (mod m) (11.1.3)n n-i"

The initial or starting value X0 is often called the seed of the random

number generator.

Although it may appear that Equation (11.1.1) produces m distinct

numbers, this is not the case unless b and m are chosen properly. It is

characteristic of generators of this type that there is ultimately a cycle

of numbers which is repeated indefinitely; this repeating cycle of numbers

is called the period of the generator. It is clear that a congruential
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sequence used as a source of random numbers should have a long period,

and since the period can never be greater than m, the value of m should

be rather large.

Mathematical results based on number-theoretic considerations are

available for characterizing the values of b and c which result in the

maximum period length m; see Knuth (1969), Ch. 3. For the special case of

multiplicative congruential generators (c-0), the basic result concerning

maximum period length says that the maximum period length (m) is not

achievable. It is, however, still possible to obtain multiplicative

congruential generators with quite long periods. Results characterizing

the maximum period for this multiplicative case are available, but the

number-theoretic considerations are involved.

If the modulus m in a multiplicative congruential generator is prime,

(i.e., has no divisors other than 1 and itself) a period of length m-l is

achievable. Such a period length, of course, is just one less than the

maximum possible length. If, in addition, we choose the multiplier b so

as to satisfy an appropriate (sufficient) number-theoretic condition with

respect to (prime) m, then for any starting value X0<m, the maximum period

length m-1 is achieved. The determination of values for multipliers b

satisfying the number-theoretic condition for maximum period length in a

multiplicative congruential generator in general involves lengthy

calculations. Further details are in Knuth (1969), Ch. 3.
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In any particular digital computer system, only a finite number of

positive integers are representable, the limitation being the word size

of the system. We now state a particular (multiplicative congruential)

uniform random number generator which utilizes the full word size of IBM

System/360 (370) computer systems. (This is the uniform random generator

used to obtain the numerical results in previous sections.) In the

System/360, the word size is 32 bits with 1 bit reserved for algebraic sign;

an obvious choice for m is thus 231. A multiplicative congruential

generator with m-2k (for some positive integer k) can have a maximum period

length of m/4. Thus for System/360 computer systems with m-231 , the

maximum period is 229, and the period length may also depend on the

starting value. It happens (fortuitously) that the largest prime less

231 231l bychosn
than or equal to 2 is 21-1. Hence, by choosing m-231, it is possible

to implement on System/360 computer systems uniform random number

generators having a maximum period length of 231_2. Note that the

number-theoretic conditions ensuring a maximum period length do not

necessarily guarantee good statistical properties for the generator,

although the choice of the particular multiplier 75 does satisfy some

known conditions regarding statistical properties of the resulting

sequence.

System/360 Generator

Let X 0>0. Then for nal,

Xn - 75 X_1 (mod 231_i)

- 16807 Xn 1 (mod 231-1) (11.1.4)

. -- --..-. '~--..-..-,-
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and

n

The uniform random number generator of Equation (11.1.5) has been tested

extensively, and the results of the statistical tests indicate that it is

very satisfactory; see Lewis, Goodman and Miller (1969) and Learmonth and

Lewis (1973b). Other multipliers for generators with modulus m-2 1 are

in use. Results of pertinent statistical tests are given by Hoaglin

(1976).

11.2. Nonuniform Random Numbers

The problem of generating random numbers from a specified (nonuniform)

distribution is in principle solved by having a source of uniform random

numbers and transforming these random numbers by means of the inverse

probability integral. Because it is not always possible to compute or to

compute efficiently the inverse of a given distribution function, a great

deal of effort has gone into the development of methods for direct

generation of nonuniform random numbers; see Ahrens and Dieter (1973b)

for a comprehensive discussion. Desirable properties of such direct

methods are that they be exact, very fast, and economical of computer

storage. The property of exactness is that any deviation from the

specified distribution results from computer round-off error rather than

a defect in the method itself. Comparisons are hard to make among

particular methods, partly because of machine dependencies. It is,

however, almost always true that with very little cost in complexity, it

is possible to improve on the inverse probability integral transformation
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by an order of magnitude in execution time; the fastest available

7f algorithms for nonuniform random number generation, however, are often

quite complex.

The basis for the generation of nonuniform random numbers by

transformation of a uniform random number is the following statement. If

U is uniformly distributed on [0,1] and if F(x) is any distribution

function, then the random variable

x - F-(U)

has distribution F(x) for OSu5l, the inverse function F -l(u) is defined

by

F-l(u) . inf{z:F(z)>u}

It follows that to generate samples of a random variable X having

* 4distribution F(x) from a random number U (uniformly distributed on [0,1]),

we must be able to solve the equation

F(x) - u

Then given a uniform random number U, we return

X - inf{z:F(z)aU}

Figure 11.1 illustrates the inverse transformation method. Note that

this technique applies to discrete as well as continuous random variables.

- , •. . , ,€ . . ,
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F(x)

---1 - ------

U

0X F-' (U) x

Figure 11. 1. Inverse transformation method
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The inverse transformation method provides a straightforvard means of

generating samples of an exponential random variable, as may be needed

for a passage time simulation of a network of queues. We can obtain an

exponential (rate parameter X) random number X by generating U, a uniform

random number on (0,11, and transforming it according to

X - -(In U)/,

This transformation is obtained by solving the equation U-F(X) for X,

yielding X-{-1n(l-U)I/X, and observing that 1-U is uniformly distributed

on the interval [0,1] when U is. Note, however, that although this

logarithmic transformation is easy to implement, it is a relatively slow

method for obtaining exponential random numbers. The fastest methods

available at present for exponential random numbers use so-called

"decomposition" methods using the ideas of Marsaglia, MacLaren and Bray

(1964). The basis for the method is division of the random variable into

several populations, from most of which samples can be obtained easily.

Using geometric considerations, the density function of the exponential

random variable is decomposed into a large number of rectangular regions,

wedge-shaped regions, and a tail. The Naval Postgraduate School random

number generator package LLRANDOM (Learmonth and Lewis (1973a)) contains

an IBM System/360 Basic Assembler Language implementation of a

decomposition method for generation of exponential random numbers.

In implementation of a passage time simulation, it may be necessary

to generate samples of a random variable X having a Cox-phase (exponential

stage) representation. It is easy to do so if generators of uniform and

$1
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exponential random numbers are available. Using the notation of

Section 3.1, suppose that the distribution of X has n exponential stages.

For J-l,2,... ,n,

X - X1 + X2 + ... + Xi

with probability (l-b )aj, where the random variables XlX are

mutually independent and X is exponentially distributed with rate

parameter . To obtain random samples of X, we use a two step procedure.

ij1 if 0<U<5(l-bl1)a I1 and equal to

m rin{ j> 1: (l-bj J_1) aj _I<U-< (1-b i)aj }

otherwise. Then, using the inverse transformation method for exponential

random numbers, we generate k (mutually independent) uniform random

numbers UlU 2 ,... ,Uk and return

k
x- (-Ln U )/X .

J-1

The inverse transformation method for generating random numbers having

a specified discrete distribution provides a means of routing Jobs through

a network of queues. In the simplest case (e.g., in the network of

Figure 5.1), it is necessary to generate samples of a Bernoulli random

variable W for which (with O<p<l)

P{W-l} - p

and

P{W-0} 1-p
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To do so, we generate a random number U (uniformly distributed on [0,1]), I

and return Wal if U:5p, and return W-0O otherwise. By this procedure, we

are in effect partitioning the interval [0,1] and determining the value

of X by the portion of the interval in which the generated uniform random

number lies. The generalization to handle more complex routing from a

service center is straightforward.

* 11.3. Single and Multiple Streams of Random Numbers

It is typically the case when simulating a network of queues that we

have need for several streams of random numbers (e.g., random service

times for each of several servers, routing through the network, etc.).

-i Since most algorithms for nonuniform random number generation require the

generation of one of more uniform random numbers, the question arises as

* to whether single or multiple streams of uniform random numbers should be

used. When a single stream of uniform random numbers is used, the course

of the simulation determines, usually in a complex manner, the role of

individual uniform random numbers; thus, e.g., for the cyclic queues of

Figure 2.1, a random subsequence of the generated uniform random numbers

can be transformed to give the service times at one of the service centers,

with the remaining random numbers used to generate the service times at

the other center. Alternatively, if appropriate seeds are available, we

can use nonoverlapping portions of the uniform random number sequence to

generate the service times at the individual centers. The concern is that

when a single stream of uniform random numbers is used, we are in effect

assuming that particular random subsequences of the original uniform random

number sequence has an acceptable appearance of randomness, and this may
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not be the case. There are examples of simulations where the use of a

single stream ofuniform random numbers has led to rather bizarre results.

Although this aspect of random number generation is not veil-understood,

in many cases it is probably good practice to use separate stream. Some

additional bookkeeping is of course necessary to handle the separate

streams, and judgement is required as to what extent multiple streams

should be used when simulating a complex stochastic system. For a network

of queues, it is probably advisable to use separate random number streams

for the interarrival times, service times, and routing of jobs from the

individual service centers.

In Table 11.1 we give values of seeds which can be used to generate

independent streams of uniform random numbers from the System/360 uniform

random number generator of Equations (11.1.4) and (11.1.5). These seeds

are values of X which are 100000 apart in the sequence of

Equation (11.1.4), i.e., if X 0i70063 teX 100000m68754

X -0001396717869, ae. It is necessary when using multiple streams of

random numbers to keep in mind approximately how many random numbers are

needed; undesired dependence among random numbers may result if portions

of the original sequence overlap inadvertently.

11.4. Generation of State Vector Processes

When carrying out a simulation of a network of queues (or any

stochastic system), we observe the behavior of the system as it evolves

in time. Implicit in any implementation of the simulation is the

definition of an appropriate system state vector. This "state of the

"lbL
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system at time t" constitutes a stochastic process, and to obtain estimates

of quantities of interest, we must somehow generate realizations or sample

paths of this state vector process. For complex networks of queues, it

is often convenient to generate the process (e.g., using an event

scheduling approach) by means of timing routines applicable to a general

discrete event simulation, as typically provided by a high level simulation

programming language. However, when there is a characterization of the

state vector process as a familiar stochastic process, it may be possible

to generate the process directly and more efficiently (with respect to

speed) than by using all of the apparatus for timing which is necessary

for a general discrete event simulation. This is relevant to the passage

time simulations discussed here in that the state vector process {X(t):taO}

of Section 3.2 constitutes a finite state continuous time Markov chain.

We consider generation of such Markov chains next.

Let Y-{Y(t):t2O} be a continuous time Markov chain having finite state

space E, and let

(qij)

be its matrix of infinitesimal transition parameters; thus for i,JEE,

qij0 for i#j, and for all i,

S-ij 0
JeE

Denote by {Tn:naO} the Jump times of the process, and for n-0,1,..., set

Yn Y(Tn)

L
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Generation of the continuous time Markov chain can be based on the

following characterization (see, e.g., qinlar (1975a), p. 247). For any

JeE, ueR+, and n-O,l,...,

P{Yn+l=J, Tn+l-rn>UIY 0,...,Yn; T0 ,...,T n  - rje-q u (11.4.1)

if Xn-i. Here, qi=-qii, rij-q j/qi for ifj, and rii=O. Thus, given a

jump to state i, the process remains in state i for an exponentially

distributed (rate parameter q,) amount of time, and then jumps to state j

with independent probability rj. It follows that generation of a sample

path for the Markov chain Y, (i.e., the sequence of Jump times and

successive states) can be accomplished by successive generation of a pair

of independent random numbers. This pair consists of an exponential random

number and a sample from a discrete distribution specified by the jump

probabilities. Note that each element of such a pair can be generated by

the inverse transformation method.

This discussion of the generation of continuous time Markov chains

presupposes that the elements of the a-matrix (and hence the jump

probabilities) are available explicitly. For the class of networks of

iqueues discussed here, enumeration of the state space and explicit
calculation of the infinitesimal transition parameters is in general

somewhat tedious. It is important to observe, however, that complete

knowledge of the i-matrix (e.g., for the Markov chain defined by

Equation (3.2.3)) is contained in the (given) routing matrix P and the

parameters of the (exponential or Cox-phase) service times. Consequently,

based on Equation (11.4.1), it is often possible to construct a more

LM-
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efficient algorithm for direct simulation of a given network of queues

than that which results from a general discrete event simulation. For

the DL/I component model of Section 5.2, Appendix 4 gives such an algorithm.
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TABLE 11. 1

Seed. for System/360 Uniform Random Number Generator.
Values of X~ 100,000 apart in Xu-7 5 Xn1-l (mod 2 31_1).

(to be read across)

377003613 648473574 1396717879 2027350275 1356162430
1752629996 745806097 201331468 1393552473 1966641861

11072679 769795447 1074543187 1933483444 625102656
11671012 174211 98649596 1014195738 93312282
202320449749201898 1079677 188745 100291302
1582733583 924293 1079891897 192939 1706847402
151077198 116902 149819 19607334 177524419
197641811 3679738 140881948 195607394 19074598
130701806 35098 93668162 110532717 1090
13251900732 72650908 93288423 11300527 10270320973

213564 2 1750379 843500 1413927049 123351109
15064074 1633505 4751601 141929005 212614427
6500447 1544716336553750041 418855865 17531517

:1253642018 1701685042 1448665492 1034856864 428280431
259758456 600732272 704726097 398944698 114386769

U'288727775 1499601820 2136214308 1197972807 1888007825
686553263 747119178 154337000 136758808 9182540
303111010 154232008 921093990 1684263351 1166344707

1167753617 1374693082 1812641667 502455872 857532898
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APPENDIX 1. CONVERGENCE OF PASSAGE TIMES

Label the jobs from 1 to N and for t>O set

Y,) -Z ,N 1 WN2 N(
. . Y~t - (z~t) (t, t), ..., 9N )

where N (t) denotes the position in the job stack at time t of the job

labelled i. The vector Z(t) is the same as in Section 3.2. Also define

the marginal processes

Y (t) - (z~t),N'Ct))

for i-1.2,...,N. All of the processes {Y(t):tzO} and {Y (t):t:O} are

irreducible, positive recurrent continuous time Markov chains defined on

a common underlying probability triple, (Q,1P), say. Observe that if the

1
marked job of Section 3 is the job labelled i, then the process {Y (t):tkOl

coincides with the process {X(t):tzO defined by Equation (3.2.3), except

possibly for the initial condition at t-O. Define for each job two

sequences of times, the starts and terminations of the successive passage

times for the job. For the job labelled 1, denote these times by {S :J>O}

and {T :J>l}. The definition of these times in terms of the process

{Yi(t):tOl is completely analogous to what was done in Section 4.2 in

terms of the process {X(t):t>0}. Then the jth passage time for the job

1 i
labelled 1 is P Wi iS, jl. Also define Markov chains {X :JZO) forj ijij. ,

each job in which X denotes the state of the Markov chain {Yi(t):taO}
st ti

when the (J+l)st passage time starts for job i: X i-Y (S). At this point

we have N Markov renewal processes, {(X ,S ):J>O}, all defined on (fP).

--.
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Next we introduce a new sequence of passage times, {P':J>l}, also

defined on (11,9.P); this is the sequence of passage times irrespective of

job identity, enumerated in order of start times. For each J, P; is a

random member of the set {P :l<1J}; this means that PIMPk()wjk(j)' wee1j

and k(j) are random variables.

The principal result of this Appendix is to show that all of the

sequences {Pj:Jal} and {P':J>I} converge in distribution to a common random

variable P.

(Al.1) PROPOSITION. For i-i,2,...,N, as J-P-. In addition, P'->P

as j~

Proof. Since the N jobs are identical with respect to their service

requirements and branching probabilities, the semi-Harkov kernels governing

0 i
the Markov renewal processes {(X ):J>O} all coincide with the kernel E

of Section 4.2. In fact, for any particular job the only difference from

the setup of Section 4.2 is that (with possibly one exception) the job does

not start a passage time at t-0. However, this difference does not alter

limiting results; the job labelled i starts a passage time with probability

one (since {Y1 (t):tkO} is positive recurrent), and once this occurs, the

situation is exactly as in Section 4.2. Note in particular that S a1 44 es.

for all i; thus, there is always a next passage time for every job. This

being so, we have P-im> as j-*-, just as was the case in Section 4.2. (This

result is to be expected since the marked job was selected arbitrarily.)
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Next we show that P'=P. Since P 'm"CIP for all i, we can use the

Skorohod representation theorem (see Skorohod (1956) or Billingsley (1971))

to assert the existence of a probability space (,9rP) and random variables

S(j21, lsiSN) and P defined on that space such that P and P have the

sam distributions as P and P, respectively, and P a.s. as J-- for

all i. These representatives P also provide representatives for the P'

which we call P.

Putting aside the null sets of 9 on which the above convergence

statements do not hold, we examine the numerical sequence Pi (w):Jzl} for

one of the remaining wd. We use the following criterion for convergence

of a numerical sequence {xi:J2l}: xji-x as J- if and only if for each

subsequence {x ,} there exists a further subsequence {xj,,} that converges

to x; see Billingsley (1968), p. 15, for a similar usage in weak convergence

theory. Select a subsequence {Pj,(w)}. This subsequence must contain a

further subsequence {Pi,,(w)} that is identical to a subsequence of one of

the sequences {P',(w):j2:}, say for i-iO . This follows from the fact that
-iO

there are only a finite number of jobs. But this subsequence {Pl

converges a.. to P() since the full sequence does. Thus P'-1P a.s. and

therefore P-D.P.

a.. 
6I :
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APPENDIX 2. PROOF OF RATIO FORMULA

We provide a proof of the ratio formula (Theorem (4.2.9)) for E{f(X,P)}

which makes it possible to use the regenerative method for estimation of

passage times. The proof given here does not require the key renewal

theorem.

(A2.1) PROPOSITION. Assume that E{if(XP)t}<m. Then

E{f(XP)}-E{YI(f)}/E{ I}, where Yl(f) is given by Equation (4.2.6).

Proof. Assume fkO, E{f(X,P)}<m, and set f -min(f,c) for some c such that

O<c<c. Clearly, Equation (4.2.8) also holds for f i.e.,

f (X ,pt.1) -> fc(XP),

and since fc is bounded,

lh, Ef{fc(XnPn+i ) E(f (X,P)} . (A2.2)

Next we compute the Cesiro average of the sequence appearing in

Equation (A2.2)- First we write

El c nP ) /(+l) = E Yf) /(e+l) - E{Y'(m))/(m+l) , (A2.3)8 (u)+l fc(Xn'Pn+1)"

where t(m)-ma~xk:{k m) and Y'(m)- fn l
n-mA1

Since Osfcse, we have OSY'(m)Sc(0,(N)+i.m). In addition, Weld's equation

(see Chung (1968), Theorem 5.5.3) implies that

I _ _ _ _ _ _ _ _ _ _ _ _
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E(8 I R2{ )EtM)+l}

and

E Yk(f.)j - {Y 1(f c))E~tm)+1I

These equations plus the elementary renmel theorem (Smith (1958),* p. 2"6)

Imply that

lim E{O LtM+-m/(M4.l) -0

and

lim E Y/) (wl) - (Y(f)IE{a l

Bence from Equation (A2.3) we have

11m E I if (X AP )~l /(4.1) E ( 1 (f c )/Efa 1 ) (A2.4)

Prom Equations (A2. 2) and (A2. 4) we conclude that

E (XP)} E{Y 1 (f C)I/EVa 1I (A2.5)

Now we let a*- on both sides of Equation (A2.5) aund use the assumption that

E~fXP)<-to obtain

E(f(X.P)} * MY 1(fI/E{Q11 (A2.6)

For a gew-ral f function, we write f-ft-f- and apply the above argument to

both f and f-. Thus we have Equation (A2.6) provided E{If(X,P)I)mm.
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APPENDIX 3. ESTIHATION OF VARIANCE CONSTANTS

We first consider estimation of the variance constant a 2 appering in

Equation (10.2.8) which leads to a confidence interval for E{R(1)-E{R (2).

head on n cycles, for 1-1,2, compute 8i as an estimate of

E{( M - varfca.) - 2r~l co ( )1 + kri)Va~~~

according to

e a 2 (i) ) (e(i) 2 (i)

ii " 12 + n 22

where

" (n-l)1l Mj' 2

iml
M) (n-U)-i E (aj - N M UW (i)

!.2 j j - )

and
~n

- (n-ifL1 ((±) -(i)M()- ""M )2
, "22 .11ja'

with

U n

% -n Qt ,~ U 1 FN')and r(') /N

Finally, compute 812 as an estimate of

a12 " vark{' - _ r(2)covta.'1;(2)}

+ r(1 r(2) .,(1) (2)

according to

. . 2().) g(2)8(2) + (l)f2)s
12 ,11 n 12 n 12 n n 22
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w (1) and -(2) are as before, and

here '11,  12 a 12

n
2 (-) 1  '( ) ( N(2) 4(2)s22 ( - ul ( " n )  J n ) "

Then estimate a 2 according to

&2. 8ii + 822 2812
-(l) 2 -(2) 2 -ff(i)-f(2)
(n ) Nn n n

In an analogous manner, we estimate the variance constant a 2x)

appearing in Equation (10.2.12) which leads to a confidence interval for

P{R(1):x}-P{R(2) 5x). Based on n super-cycles, for i-l,2 compute d i(x)

as an estimate of

riW(x)- var{Y(i)} - 2P{R(i)Sx}cov{Y(i),(i)I

+ (P{R(i):x}) 2var{,(i) }

according to

( () M
ai~ W ZY l (x) i) 22+(W

where
n

s ( i) (x) - (n-i)- l Eny(i)-y(1) 2

n

12JndJ n

(i) -l- D Mn -M 2
22 Jul n

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - -- --
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with

Y mu i'.Y and n -n '-n :-i -i "

Finally, compute 612 (x) as an estimate of

2 (X) - cov{Y(1) Y (2)} - PI(')IxicovfY (2) ) }

-P(R (2) :xcov{4'() (2),

+ p{R ():SXIP{R(2):Sxlcov{ (1,) 2)}

according to

()) ~(2)

- (l ) (2 - (2)

12(x) = al ) (1) 12 -(2) 21 )

+ T n n WI (l)-(2) *22 (x

(1) (1) (2)
where 8 Wx, a2 (x)..and a1 Wx are as before, and

21 1 1 (x) 822 (x) 2 22 (x)

(1).2 +,-(2).2 -(l)(2)
Cu ) 2 u -() a a-((n n (a ) a
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APPENDIX 4. GENUATION OF MARKOV CHAIN IN DL/1 COMPONENT MODEL

For i~i<7, denote by Xi the rate parameter of the exponentially

distributed service time for jobs of class i. Complete knowledge of the

q-matrix of infinitesimal transition parameters for the continuous time

Markov chain j-{X(t):tzO1 defined by Equations (5.2.1) and (5.2.2) is

contained in the routing matrix P and the Xi* We give an algorithm for

direct generation of this process.

1. Fix an initial state in A2 and set t-0.

2. Determine the status of the a and 8 center servers, i.e., whether

or not they are busy, and if so, what classes of jobs are in

service. The 1 center server is busy if Q(t)>O; the a center

server is busy if S(t)>O.

Assume both are busy, with a class i>O job in service at the a center.

The cases in which only one server is busy are handled similarly.

3. Generate a holding time T, exponentially distributed with rate

parameter X,1+Xi and advance t to t'-t+T.

4. Determine according to a Bernoulli trial the service which

completes first:

P{ca center service completes first) -

and

P{ center service completes first) -

If a center service completes first, go to 6.
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5. Set

Q(t') = Q(W-1

C5 (t') - C5 (t)+.

S(t') - s(t)

and for 25j97 and J#i, set

C C(t') - C (t)

if S(t')07, go to 7. Otherwise, set

C7(t') - C7 (t)+1

C (t) = C5(t')-1

S(t') - 5

and go to 7

6. For 2.kS7, set

Ck(c') - Ck(t)

Generate ic{,2,...,7} according to the probabilities PJi, where

S(t)iJ, and set

C .(t') - C (t')+1,-i>l

and

Q(t') - Q(t)+l, i-

Set'

S(t') = k 0

and

C(') - Cko (t')-l
Co 0 k

where k0 - in{kC k(t')>O}

7. Determine N(t') as follows. If the job completing service is

the marked Job, set N(t') equal to its position in the job stack

91 _ ___
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after completion of the service. If the job completing service

is not the marked job, set N(t')-N(t) if the job completing

service goes back in the job stack either above (respectively

below] the marked job, when prior to completion the job was above

[respectively below] the marked job. Set N(tt)-N(t)-l if job

completing service goes from above the marked job to below.

Otherwise, set N(t')-N(t)+l.

8. Return to 2. and iterate with t' playing the role of t.
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