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ABSTRACT

The signal processor in large Ballistic Missile Defense (EMD) systems
includes a subsystem, known as the Post Processor, which selectively reduces
the received data to rates which are appropriate for the subsequent general
purpose Data Processing System. This report presents an analysis of the pro-
cessing requirements for the Post Processor and describes a multiprocessor,
multibus architecture which appears well matched to the processing and
throughput requirements.
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Chapter 1

INTRODUCTION AND SUMMARY

Large Ballistic Missile Defense systems employ a Signal Processing chain
which reduces the unprocessed radar data and generates target metrics. These
metrics are supplied to a Data Processing System for analysis and decision
making. Within the Signal Processor, there are three major stages of process-
ing: Matched Filtering, Parame' r Estimation, and Data Reduction. This last
function includes such operations as environment mapping, removal of ambiguous
responses and coarse removal of spurious signals, a process known as 'Bulk
Filtering'. As part of an effort to develop the Advanced Digital Signal Pro-
cessor (ADSP), Lincoln Laboratory has developed candidate designs for a pro-
cessing system, known as the Post Processor, which performs the data reduction
function. The architecture is a multiprocessor, multibus structure with sig-
nificant processing capability. This architecture proved to be sufficiently
general that, in addition to performing signal processing functions, it also
has the potential of performing some data processing functions such as Track
Initiate and Target Characterization.

This report describes the basic system environment and discusses and char-
acterizes the algorithms that must be executed. The structure and frequency
of the algorithm execution are examined and the nature of the data processing
task is assessed. This leads to three major observations: the interfunction
time is longer than the interpulse time, some algorithms require multiple
transmissions, and some algorithms can be partitioned. Therefore, if func-
tions and portions of functions are distributed to different processors, sig-
nificant processing performance can be achieved. The processors in this
organization are coupled to the radar and each other via a number of high
speed data paths with specialized access conventions. This allows the data to
flow and to be exchanged in the system in ways which match the needs of each
application. These observations lead to the suggestion that a multiprocessor,
multibus structure is an appropriate architecture for a Post Processor. The
description of the overall organization is followed by a description of an
individual processor and by a discussion of the required control and data man-
agement. The report continues with a discussion of performance. Additional
issues which must be addressed are discussed in the conclusions.
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Chapter 2

SYSTEM CONTEXT

Ballistic Missile Defense radar systems have the general structure shown in
Figure 1. These systems consist of a Data Processing System (DPS) which pro-
vides overall system control and decision making, a control unit which decodes
commands and provides the appropriate timing, the radar which generates, tran-
smits, and receives RF energy and the signal processor which provides matched
filtering for the received waveforms, generates the necessary target metrics
and, in general, selectively reduces the data volume and rate to values which
are appropriate for the DPS.

In this report, it is assumed that the signal processor has the basic com-
ponents of the Advanced Digital Signal Processor* (ADSP), including a Post
Processor, as shown in Figure 2.
This overall structure provides a meaningful context within which the perfor-
mance of the Post Processor architecture can be described and analyzed.

The processing chain in this system consists of Analog to Digital Convert-
ers AID's), an Input Buffer (IB), a Digital Convolver System (DCS), a Detec-
tion Processor (DP), and Output Buffers (OB), followed by the Post Processor
with its Report Buffers.

The A/Ds convert the data on three radar channels (SUM, AZ, EL) and deposit
the data in an Input Buffer. The IB is the first buffer in the signal proces-
sor. It therefore provides the smoothing of the entire radar data stream so
that the data can be evenly processed through the remainder of the signal pro-
cessor. The DCS provides the matched filtering operation as required in radar
systems. After the matched filtering operation, the data are sent to the
Detection Processor (DP). The Detection Processor provides basic thresholding
operations and target parameter estimation (range, velocity, amplitude). All
data plus threshold results and the parameter estimates are available to the
Post Processor. In addition, the Detection Processor provides the following
outputs directly to the Post Processor at the clock rate of the DP.

1. Normalized complex filter and spectrum data received from the con-
volver.

2. Magnitudes of convolver output data sets.

* Purdy, Robert J., et al. "Digital Signal Processor Designs for Radar Appli-
cations", Technical Note 1974-58, Lincoln Laboratory, M.I.T., (31 December
1974), DDC No. AD-B001419-L (Vol. 1) and AD-B001420-L (Vol. 2).
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3. Two one-bit threshold comparisons for convolver output data sets.

The Post Processor accepts the output from the DP and executes a wide range
of algorithms which develop target and environment metrics. One algorithm,
Bulk Filtering, requires an immediate transmission of a verify waveform when a
search waveform detects a cluttered environment. Since there is a large time
delay through the Data Processing System this requirement necessitates a
preemption of a position in the command queue and necessitates the path
between the Post Processor and the Radar Control, as indicated in Figure 2.

Although the expression 'Post Processor' is appropriate from the point of
view of the ADSP, it functions as a pre-processor from the point of view of
the DPS. In this intermediate position in the processing chain, the fundamen-
tal processing objective is to reduce selectively the quantity of data. The
Post Processor thus provides the interface between the high speed signal pro-
cessing and the high complexity data processing.

5



Chapter 3

ALGORITHMS

The Post Processor is required to perform a substantial amount of process-
ing, particularly in an ADsP configuration where much of the data are retained
after the matched filtering operation. Some of the algorithms which tradi-
tionally have been suggested are listed and described below.

3.1 SPECTRUM ESTIMATION

This algorithm is used to provide a simple estimate of the frequency spect-
rum. The magnitude of the frequency spectrum (8K-16K elements) is divided
into intervals. Within each interval, using only points which exceed a thres-
hold, the sum, mean and variance are calculated.

3.2 CLUTTER MAP

This is a much more stressing algorithm which calculates the same statis--
tics as the Spectrum Estimate but does so over the entire range-Doppler space.
As before, the space is divided into range-Doppler intervals and the statis-
tics are calculated for each. However, the computations are done on as much
as 64K points (eight, 8K Doppler channels). This algorithm presents a compu-
tation problem (because of the volume) and a precision problem (because of the
summing). The clutter map algorithm is sufficiently stressing that it may
warrant a special hardwired implementation.

3.3 ADAPTIVE FILTER

This operation attempts optimization of the transmitter waveform for clutter
suppression in certain time periods in which it is crucial to suppress clut-
ter. It is also these periods in which the Post Processor experiences its
heaviest processing load.

3.4 BULK FILTER

The matched filter response for a uniform pulse burst waveform contains a
series of ambiguous responses spaced symmetrically about the true response of
an object. These ambiguities must be removed to avoid overloading the system
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with false reports. While the true response has the largest amplitude,it is
also possible that noise and particularly interference from other object res-
ponses may fall nearby in range. This causes the perceived location in range
to shift and the amplitudes to change.

All of the Bulk Filter algorithms developed so far are predicated primarily
on the fact that the range ambiguity interval is proportional to the pulse
spacing of the burst waveform. Therefore, if two measurements with differentI pulse spacing (search and verify) are made, the two sets of data can be com-
pared in range, and, in principle, only the true responses in each data setline up in range, as indicated by Figure 3.

While several Bulk Filtering algorithms have been developed, one algorithm,
known as the Combined Algorithm, is assumed here because it is computationally
stressing. Inputs to the algorithm are lists of target metrics from both
search and verify pulses plus the threshold data sets from both measurements.
The computation is done in three distinct stages called Group, Edit, and Coin-
cidence. The coincidence stage is, in principle, as described above. The
other two stages provide preliminary processing and sorting of the data. All
of the Bulk Filtering stages are shown in Figure 4 and described below.

3.4.1 Bulk Filter: Group

Since the range ambiguities of any given object are spaced regularly in range,
the first task is to sort responses of the search and verify signals into
equivalence classes (groups) based on the range ambiguity interval, as shown
in Figure 4a.
This is accomplished by expressing the range location of the responses as kR
+ i where:

R is the range ambiguity interval
k is an integer 0,1,2,3,...

£ i is an integer index identifying the range cell
relative to the kth ambiguity interval into
which a given response falls.

Thus, i classifies an object into a given equivalence class (group) and k
identifies the ambiguity interval in which the object ies.

In the absence of noise or clutter, an object and all of its ambiguities
would be grouped into the same equivalence class by this process. Within each
equivalence class, all of the members are further grouped by range-rate to
separate objects which are at the same range (or rather of the same equiva-
lence class) but travelling at different velocities. (Figures 4a, b, and c do
not include the range rate dimension. Only single range rate is assumed for
these illustrations.)

Within each subgroup (range and range-rate sorted) of each equivalence
class, the range index k of the member elements is examined. Where the range
index has a breakpoint (in numerical order, k increments by more than one
between two elements), the subgroup is divided into smaller subgroups. This
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tends to separate objects of equivalent range and range-rate but different
absolute ranges. All subgroups which have fewer than some arbitrary number (a
variable parameter) of elements are eliminated. The grouping function is also
performed on the verify returns. Sample results are shown at the bottom of
Figure 4a.

3.4.2 Bulk Filter: Edit

The subgroups resulting from the Grouping process are regarded as possible
objects. Before these subgroups are passed to the coincidence stage that
selects one or a few objects as the real objects, they are edited in order to
further refine the data base as shown in Figure 4b. In each subgroup, the
element with largest amplitude is tentatively selected as the real object (and
ideally would be). The remaining objects are discarded and the subgroup is
re-populated with ideally offset ambiguities spaced symmetrically about the
element selected as the real object. These edited (idealized) groups are then
passed to the Coincidence stage.

3.4.3 Bulk Filter: Coincidence

The final stage performs coincidencing between the search and verify pulses
and is the basic ambiguity removal step discussed earlier. This step is
illustrated in Figure 4c. The ideal subgroups from the verify receptions are
matched against the groups of threshold data of the search receptions. Also,
the ideal subgroups from search are matched against the verify threshold data.
In the coincidence process, a match occurs when any of the threshold crossings
in the interval coincide with a member of the threshold data groups. Such a
match is a designation and is declared a possible object. The results of both
coincidences are merged, as shown at the bottom of Figure 4c. The measured
range and range-rate data of the objects are preserved.

3.5 TRACK INITIATE

The Bulk Filter algorithm outputs designations (range, range-rate pairs) to
the Track Initiate process. The -bject of Track Initiate is to collect sev-
eral observations (typically 2 to 7) of a potential object which are self-con-
sistent as a series of observations of a ballistic trajectory. A very simple
constant velocity model has been examined which requires that each new obser-
vation be located reasonably close to the range as projected from the last
observation. Objects which do not correlate for several consecutive measure-
ments are dropped from the list. Objects which appear to be sufficiently con-
sistent are passed to the Data Processing System where the Tracking algorithm
further refines the trajectory.

A good way to implement this algorithm would be to maintain the Track Ini-
tiate list in range order (by beam). This requires some local reordering of
thEm list, each time the 'known' objects are projected in range, due to the

10
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different velocities. The list of designations from the Bulk Filter is range
ordered, so the next step is to perform a merge operation. This approach
allows a binary search to match designations from the Bulk Filter with objects
in the Track Initiate list. The computation is thereby reduced to a managea-
ble level. Additionally, an object may switch beams between any two observa-
tions. This would require examination of monopulse data or direction from the
DPS.

3.6 TRACK

The Tracking algorithm develops target metrics (spatial location, velocity,
acceleration) and discriminants - characteristics which tend to distinguish
RV's from clutter and decoys. Monopulse measurements are periodically made on
all beams in which there is an item in track. This provides new spatial
(range, azimuth, elevation) measurements from which new velocities and accel-
eration can be calculated. The technique used, Kalman filtering, consists of
updating a precision model for a ballistic object with each new set of mea-
surements. This requires integrating equations of motion for an object and
performing a series of matrix additions, multiplications and one inversion to
arrive at a new state vector and covariance matrix. The covariance matrix
measures how well the data fit the model. After the model is updated, addi-
tional variables are calculated. These include altitude, velocity and ballis-
tic coefficient. A simpler model, assuming constant velocity, may be used
with a higher frequency of target position update. The simple model elimi-nates the matrix inversion and generally simplifies all other matrix opera-
tions (due to the presence of many zero entries). The net computational dif-
ference between the two models is approximately an order of magnitude. It is
anticipated that the Tracking function should be performed in the DPS.

3.7 SEARCH

Search consists primarily of scanning the list of targets in a given beam
for new targets. Potentially threatening objects appearing in a beam give
rise to a sequence of measurements designed to accurately track ballistic
paths and measure characteristics of these objects. The Post Processor initi-
ates this sequence of measurements on subsequent transmissions by scanning the
mark list, reformatting the metric parameters of designated targets, and send-
ing this information to the DPS.

13
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Chapter 4

ARCHITECTURAL IMPLICATIONS

The algorithms discussed above are useful guidelines for developing a sense
of the nature of the processing problem. To this end, this section attempts
to identify the fundamental nature of the data to be processed and the funda-
mental structure of the algorithms to be implemented.

4.1 DATA BASE

Some algorithms require multiple transmissions. These processing algor-
ithms operate on a data base which spans some time interval and some number of
successive measurements. There are roughly five categories of algorithms.

1. Single pulse operations: Functions for which a single data set is
sufficient to perform its function. Examples are Clutter Process-
ing, Adaptive Filtering and Searching.

2. Pulse pair, pulse triplet operations: Algorithms, like the Bulk
Filter algorithm, which combine data sets of two or three successive
pulses in a beam to produce a single output data set for the beam.

3. Multiple pulse operations: Algorithms which collect data for sev-
eral successive pulses in a beam before producing a result. The
number of pulses used may be data dependent. Examples are Track
Initiate and Target Characterization.

4. Pulse sequence operations: Algorithms, such as radar scheduling,
which accomplish their task by operating over a long sequence of
measurements. This is performed in the Data Processing System.

5. Continuous operations: Processing which runs for an indefinite
length of time or for a number of measurements. Examples are:
Tracking, Threat Analysis, Engagement Conduct. These also would be
performed in the Data Processing System.

There are two major areas where the data base time interval impacts the
processing requirements. First, algorithms which have long data base time
intervals generally must restrict the amount of saved data. Algorithms which
operate on every element of a raw data set quickly utilize very large amounts
of storage if they require that the entire data set be saved for each of many
successive pulses.

14



Second, because several algorithms require multiple transmissions, in prin-
ciple the time taken for all transmissions for a given algorithm is available
for the processing of that algorithm. This fact is exploited in the develop-
ment of requirements for the Post Processor.

More specifically, BMD radars may transmit 2500 pulses per second (PPS)
which may be distributed as shown in Figure 5. Thus, there are approximately
625 search pulses, 625 verify pulses, and 625 Bulk Filter calculations per
second. Therefore, while the interpulse period is 400 microseconds, the
interfunction period is 1600 microseconds.
While traditionally it has been assumed that the processing must be completed
in the interpulse period (400 microseconds), the interfunction period (1600
microseconds), is actually available. This observation leads to an important
conclusion: Many radar signal processing functions are not repeated with
every transmission.

If it is assumed that the scheduler in the DPS distributes the functions or
measurements evenly over time, it is possible to use the interfunction time
rather than interpulse time to do the processing. Therefore, at any given
time, many functions could be processed in parallel on different data sets.
This is illustrated in Figure 6 which shows a time line consisting of Search
(S), Track (T), Characterization (C) and Verify (V) transmissions and recep-I tions. * The transmissions are shown as upward pulses and the receptions as
downward pulses. Thus as shown in Figure 6, at any given time, the three por-
tions of a complete Bulk Filter, a Characterization, and a track initiate can
be performed simultaneously.

4.2 STRUCTURE OF THE DATA PROCESSING FUNCTIONS

In this section the structure of the different algorithms will be identi-
fied. The basic types are listed below.

4.2.1 Simple Algorithms

Simple algorithms are defined as ordinary, straightforward, single calculation
structures. This can mean in-line computation, functional organization, iter-
ations, etc., but it generally implies that a data set is processed as one
functional unit of operation.

* The assumption of an even and alternating distribution in time, as shown in

Figure 6, implies that there exists a trade off between optimizing the post
processing function and optimizing the scheduling algorithm in the DPS. This
is an important system level trade off which would have to be addressed when
implementing an actual system.

15
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4.2.2 Staged Algorithms

Sometimes performance sequ<.-rk _-1s, of 4cr&tor in one pass is very unwieldly.
In such cases, the total1fl ItjtIJ i is separated into two or more stages.
This type of operation is irfei_,cd to as a staged or pipelined algorithm. The
Bulk Filter is an example kJ an 'ti1orithm that can be pipelined. Thus, the
Bulk Filter algorithm has three stces - Group, Edit, Coincidence -- each of
which can be performed in parallel on different data sets.

4.2.3 Parallel Algorithms

Some processes can be parsed into two or more concurrent computations with the
results combined later. This is referred to as a parallel algorithm. Matrix
operations can frequently be expressed as a combination of the given operation
on a set of lower order submatrices.

Since several algorithms can be staged and, equivalently, some have compu-
tations which can be performed in parallel, it is possible to improve the
throughput for a given algorithm by having several different subsystems in the
Post Processor process different portions of an algorithm concurrently. This
fact is exploited in the Post Processor design.

4.3 DATA DISTRIBUTION STRUCTURE

The data sets from the radar occur in large (4K - 16K) discrete blocks and
each such data set tends to be processed by a different algorithm than its
immediate neighbors (in time). This directly suggests that data sets need to
be distributed rapidly (because of size) and to multiple locations (because of
different processing requirements). Due to the large volume and high data
rates, a comprehensive system of high speed busses is required. In the design
discussed in this report, this bus system is referred to as the Data Distribu-
tion Bus (DDB) and it handles all volume transfers of data within the system.
The types and modes of data and control distribution which can be envisioned
are listed below:

a. large blocks of data
b. fast, low volume, synchronous data or control
c. moderate volume, asynchronous data or control

4.4 ARCHITECTURE RATIONALE

The basic nature of the data and algorithms provides the rationale for the
architecture presented in this report. Specifically, there are three main
characteristics, which are summarized as follows:

1. There often is a comparatively long interfunction period.

18



2. Several algorithms require multiple transmissions.

3. Algorithms often can be partitioned into staged or parallel tasks.

These characteristics provide the basic motivation for suggesting a multi-
processor design. Since there exists the possibility of multiple functions
and subfunctions operating simultaneously, a multi-processor design appears
well suited for the processing problem.

The different sizes and types of data that need to be transferred within
the processor, and the consequent different protocol, also suggest that a mul-
tiple bus structure is appropriate. The resulting multiprocessor, multibus
system is described in the next Section.

I
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Chapter 5

MULTIPROCESSOR STRUCTURE

The Post Processor architecture suggested here is shown in Figures 7 and 8.
It consists of a set of processors embedded in a network of data and communi-cation busses. This section describes the overall interconnection structure,
and the next Section describes the structure of an individual processor.

5.1 DATA PATHS

5.1.1 Data Distribution Bus

The Data Distribution Bus (DDB) is a collection of high speed busses which
transfer large blocks of data. Each bus is at least one DCS word* wide.
Access to the busses is controlled by a single central bus controller, known
as the Dispatcher (Figure 8.), which has the ability to connect and disconnect
other system components from any individual bus. While only one data source
is connected to a bus at any one time, there may be several data sinks con-
nected. This allows distribution of a data set to different processors at the

same time. Bus protocol is simple in that it requires confirmation, either
explicit or implicit, that all parties to a data set transfer are connected
and ready. This is followed by placing data words and a clock (data valid)
signal on the bus. There is no confirmation for individual words. In fact,
there may be several data words propagating at once down a bus. The control-
ler looks for confirmation from all connected data sinks to determine that the
proper number of words are received. Retransmission of the data set to one or
more destinations may be required. Transmission of error detection informa-
tion is a necessary feature to ensure adequate system integrity.

5.1.2 Register File Bus

The Register File Bus provides access to the register sets of all of the pro-
cessors in the system. Its objective is to provide a very fast interchange on
a word basis among cooperating processors for either data or control purposes.
Design objectives would be to achieve access times of 15-25 ns. These times

* One important factor in processing is the total time required to transfer a
data set from one part of a system to another. A single 8K data set requires
234 microseconds to transfer at a 35 MHz rate. The time required to transfer
seqentially the DCS output of many 8K Doppler channel data sets over a single
channel can be minimized by providing wide busses.

20
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are, of course, highly sensitive to bus lengths and contention resolution.
Addressing consists simply of a processor address plus a register address.
Protocol for this bus is not defined at present but an asynchronous approach
has some advantages. In an asynchronous design, the initiator would transmit
address, data, and a function code to the destination processor/register. Any
response would be transmitted back in the same fashion; i.e., as a separate,

unrelated operation. The interface of the register files and the bus must not
involve the processor itself except insofar as is necessary to allow the pro-
cessor to make requests. Register file logic must mediate contention between
processor access and bus access.

5.1.3 Interprocessor Communication Bus

The Interprocessor Communication Bus is intended to make available to all pro-
cessors a means for asynchronous transmission of moderate amounts of data.
This is used whenever it is not critical for the exchanged data to be syn-
chronized, explicitly acknowledged, or treated on a priority basis by the
receiver. The interfacing to the bus is provided via a bi-directional queue
manager. Data to be transmitted to other processors is entered into the out-
bound queue. The queue manager gains access to the bus, signals the destina-
tion(s) and transmits the data. The originating processor must be able to
determine the status of any message; e.g., Still Waiting to be Sent, Transfer
in Progress, Error in Transmission, Unable to Send. Any message not in the
queue has been sent successfully by default (point-to-point protocol). The
receiving queue manager simply enters the message in its inbound queue where

the local processor can access it. Normally, the queues are treated as FIFO's
but in some applications it may be desirable to implement the ability to
transfer messages out of order.

5.1.4 I/O Bus

The I/O bus is the path to the outside world. It accepts control messages
from the control units and transfers processed data to the DPS. It also pro-
vides a connection to attached peripheral devices.

5.1.5 Program Memory Bus

The program memory bus loads the program memories of the individual proces-
sors. In fact, this function can be handled by the I/O bus and is simply
separated and noted for functional clarity.
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5.1.6 Processor Control/Status Busses

The control portion of this bus provides the means for control over each indi-
vidual processor by any one of them. It primarily allows the program location
counter to be forced to any desired address and initializes some processor
states. This capability permits a control processor to determine the alloca-
tion of resources and it allows any processor to acquire subservient proces-
sors to implement parallel computations without incurring a protocol overhead.

The status portion allows determination of the state of any processor by
another. This includes status bits that are fixed as well as some that are
user-defined. The latter allows parallel processors to communicate status
which is defined only temporarily by mutual convention.

The bus itself must be fast if it is to be used for close coupling of par-
allel processors. A synchronous protocol may avoid some control problems.
This bus might also be used for diagnostic and monitoring functions.

5.1.7 Data Distribution Control Bus

The Data Distribution Control Bus (DDCB) interconnects the DDB controller and
all users of the DDB. All requests for DDB resources and all setup commands
are routed through this path.

5.1.8 Data Distribution Controller

Data distribution is envisioned to be a system of busses which are separately
managed by a central controller, either a special box or one of the proces-
sors. The central controller is referred to as the Dispatcher. Requests for
service are sent to the Dispatcher via the DDCB along with sufficient informa-
tion to enable the Dispatcher to assign a bus or busses and to set up the
transfer. The Dispatcher causes all receivers of the data block and the sen-
der to be connected to the selected resources and verifies that the system is
ready for transfer of data. A start signal is sent to the requester indicat-
ing that the transfer can begin. Error signals are sent to the Dispatcher
which, in turn, informs the requester and maintains a history of such events.

The Dispatcher should be constructed as a fast microcoded processor since
it must behave in a reasonably intelligent fashion and must be easily modified
as experience dictates.

5.2 MEMORIES

5.2.1 Global Data Memories

There might be a need for large memories for buffering large data sets. These
would be connected to the DDB and would be both receivers and senders of data.
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These memories would be interfaced to the DDB through a manager which
accepts requests, queues them, and honors them on a FIFO basis. Requests
might include some simple structured access which reorders the data blocks
either on input or output. The memory controllers also are candidates for a
microcoded processor.

5.2.2 Local Data Memories

5.2.2.1 Multiport Organization

Each processor has its own data memory in order to provide maximum possible
memory access speed. The memory unit requires three ports to support overlap-
ped input, output, and processor requests. The memory must be separated into
three or more independent modules where each port is connected to a different
module. The object of this is to insure that staging of the next data set to
be processed and transfer of the results of the computations on the previous
data do not interfere with the processing of the current data set.

5.2.2.2 Input/Output Ports

The input and output ports are connected to the DDB and have the capability
of reordering data during a data set transfer. Primary control of these ports
resides with the processor that is exercising overall system control. The
concept removes the burden of managing interprocessor data flow from the pro-
cessors; i.e., the processors do not have to know their own position within a
staged algorithm or the system as a whole. Rather, an individual processor is
responsible only for applying its function to data sets which arrive in its
input bin, and for placing the results into its output bin. The remaining
data flow management responsibilities rest more properly with that processor
which is serving as the system control processor.

5.2.2.3 Processor Port

The processor interface to the local data memory is primarily a random
access port. Structured data access must be supported but there may be some
advantages to having this function reside within the processor. Structured
addressing subsystems in the processor generate a stream of memory addresses
for read and write operations. Since the processor data access requirements
span such a large variety of techniques, it seems appropriate to keep the
local memory port simple and to respond to random addressing at maximum possi-
ble speed.
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5.2.3 Register Files

The registers for this system occupy a low memory address space. This elimi-
nates the need for separate memory and register operand instructions. Alt-
hough some time penalty is incurred when they are referenced as memory, expli-
cit references to registers should incur no penalty. If enough bits are

available in the instruction, the memory delay problem is eliminated since the
operand address field is explicitly declared to be of a particular nature.

Register files are internal to the processors but in this system they have
a system level interaction because of their connection with the register file
bus. The impact of this dual role needs to be examined.
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Chapter 6

INDIVIDUAL PROCESSOR DESIGN

The most important feature of the suggested Post Processor design is the
availability of data and control communication paths among the individual pro-
cessors. However, for adequate performance, the individual processors must be
organized to promote maximum computation speed. This Section examines the
design of the individual processors.

6.1 GENERAL ORGANIZATIONAL CONCEPTS

Data flow and program operation within each processor are important since
it is desirable to maximize the amount of useful computation per instruc-
tion/data-access. This principle tends to eliminate instructions, which in
turn saves time.

Figure 9 shows the principal data paths and logic for an individual proces-
sor. Operands are collected from one of many possible sources. Some Lesser
Operations (LOP's) are performed on each and the results are placed on the two
operand busses Al and A2. Major function boxes are also connected to Al and
A2. These function boxes use one or both operands as input and place the
results on an output bus. The result is further modified (by a LOP) and sent
to one of many possible destinations.

A source of particular interest is the structured access boxes. They gen-
erate a complex address stream for the local data memory and hold the results
in a short FIFO until they are called. Other sources include the register,
memory and various other busses. Some intermediate results are held in inter-
nal registers and are available as operands for the next instruction.

6.2 LESSER OPERATIONS (LOPS)

LOPS are function modules which perform minor operations on operands before
they are delivered to a Major Operation (MOP) module. This saves instructions
which do nothing more than a minor operation on an operand to prepare it for a
MOP module. Since data in memory may not be in precisely the form required at
the moment, programs frequently contain instructions which alter operands.
Figure 10 illustrates the general organization of a LOP and shows how various
operations are generated. As indicated, an operand can be regarded as a full
word or as two independent half words.
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29



A LOP can implement a host of useful modifications to an operand. A tenta-

tive list is given below:

a) NOP -- deliver the operand unmodified to the argument bus

b) set to zeros

c) set to ones

d) complement (1's complement)

e) negate

f) take the absolute value of

g) complex number modifications; e.g., conjugate, multiply by j, etc.

h) increment/decrement -- can use a subfield from the instruction to
implement additions larger than 1

i) reverse bits

j) masking

k) shift, rotate, binary scaling

1) swap argument (not a part of LOP proper) -- for those MOPs which are
not symmetric, such as divide.

6.3 MAJOR OPERATIONS (MOPS)

Major operations (MOPS) are those operations normally found in computers,
i.e., integer arithmetic, floating point arithmetic, logical operations, etc.
They are predominantly two argument functions and generally require more
extensive amounts of logic to accomplish than the operations found in LOPS.
The structure allows MOPS to be optional; i.e., one can configure any proces-
sor with as many or as few of these modules as desired. Thus, the processor
can be tailored for particular applications. Each module buffers two ope-
rands. This allows some overlapping of the operation with the generation of
the next operand pair.

Each is configured to implement a family of operations. For example, a
complex arithmetic module performs real arithmetic and possibly double preci-
sion real arithmetic.

Listed below are some candidates for major operation modules:

a) NOP -- transfer an operand to the result bus
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b) LOGIC -- bit operations such as AND, OR, EXCLUSIVE OR, EQUIVALENCE,
etc.

c) MASKING -- manipulation of subfields within a word or multiple word

unit

d) SHIFTING -- shift and rotate functions

e) FIXED POINT ARITHMETIC -- both complex and real operations. This
could be separated into three different modules such as add/subtract,
multiply, and divide. It is likely that this module would have an
accumulator.

f) FLOATING POINT ARITHMETIC -- both complex and real operations. These
also can be separated into three smaller modules and has an accumula-
tor.

g) SPECIAL OPERATIONS -- special, application dependent functions, such

as square root, trigonometric functions, etc.
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Chapter 7

DATA MANAGEMENT, ACCESS, AND SYSTEM CONTROL

The problems of data handling and system control dominate the design of a
distributed processor system. Data handling exterior to processors is refer-
red to as data management and data handling interior to processors is referred
to as data access. Overall system control is also discussed in this Section.

7.1 DATA MANAGEvMENT

A single raw data set from the radar must be tagged so that, as it flows
through the full signal processing system, the data set and processed results
can be properly identified. Control information from the control unit, indi-
cating which algorithm processes which data sets, are interpreted so that data
can be transmitted to one or more destinations. More than one independent
algorithm might require the same data set.

Another task which must be performed by the data management involves map-
ping or rearrangement of a data set into a form optimal for data access prob-
lems at the individual processor. This may require passing a data set through
an intermediate processor or, in some cases, it might be handled locally by
some very simple structured access logic. Data management also must contend
with the transfer of processor output to other destinations.

The objective of an exterior structure of data management and control
(which may be directed by one of the processors) is to offload from the indi-
vidual processors those tasks which are normally very time-consuming. The
implementation of this data management scheme requires several busses for
passing control information throughout the system along with several indepen-
dent data busses for providing access to all processors. Some busses must be
more than one word wide to reduce the total time required to transfer the
large data sets. This problem becomes less severe after the data have been
reduced (e.g., after Bulk Filtering).

As an example of Data Management, Figure 11 shows the flow for the Bulk
Filter algorithm.
The Figure shows a three-stage Bulk Filter algorithm with data and control
information exchanged between processors. As pictured, the first (search)
pulse of the search-verify pair is transferred to the local data memory of the
grouping stage processor while the verify pulse data is being transferred
(over a separate bus) to a global memory. The verify pulse data are transfer-
red to the grouping processor memory while the search pulse is being pro-
cessed. When the grouping processor completes the search pulse processing, it
initiates a block transfer to the local memory of the edit processor and then
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directs its attention to processing the verify pulse data. The transfer of
control data via the register file bus is also shown. The editing processor
initiates a block transfer of the edited groups to the local memory of the
coincidence stage. Meanwhile, the verify pulse groups are transferred into
the edit processor local memory. Not shown is the direct transfer of the
threshold data sets of both search and verify pulses to the coincidence pro-
cessor. These data sets arrive long before the transfer of the edited data
groups. The coincidence processor then matches the search groups with the
verify threshold results. The resulting list of designations are sent via the
asynchronous communication bus to the track initiate processor for correlation
with previous designations.

7.2 DATA ACCESS

Data access is the term applied to the local data handling problems of an
individual processor. These problems include supplying operands, dealing with
intermediate results, outputting results, exchanging interprocessor informa-
tion, etc.

7.2.1 Structured Data Access

There are numerous calculations which operate on a stream of data which is
extracted from a data set according to some regular process. The address
sequence, therefore, is algorithm dependent, not data dependent. Simple logic
can be utilized to implement several such common structured addressing
sequences and hence can be very effectively utilized as an operand lookahead.
Some suggested forms of access which have applicability to the Post Processor
Function problem are listed below.

1. sequential addresses
a. 1D subarray (from a multidimensional array):

address(k) = kI + A

where
A = array base address
I = address increment

(as an example, I equals 1 if accessing
a column in a column-stored array)

k = sequence index

This is implemented by initializing a register with A
and simply adding the increment I successively.

b. 2D subarray:
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address(k) = kIl + j12 + A

where k ranges over some interval for each value of j.
Note that this case reduces to a series of
one dimensional sequences where A is replaced
by A + j12.

2. indirect structured -- The word accessed in either
of the above modes is the address of the data word.

The structured access controller would fill a FIFO (or empty one if used
for destination storage) while the program would retrieve each successive ope-
rand by selecting the controller as an operand source. Note that two or more
such controllers provide some very powerful processing modes in which the main
processor logic does not have to expend its resources performing complex
address calculations.

7.3 SERIAL BIT STRING PROCESSING

The Detection Processor provides several threshold comparisons as packed words
where each bit represents a test of a corresponding word from the data set.
The algorithms which use this data do so in two principal ways.

a) Random -- select a single bit from a large sequence. If done in
hardware, this requires the parsing of a~dresses into word (32 bits)
and bit address pieces, then either the shifting of the selected word
or the selection of the proper bit.

The selected bit's neighbors are often examined, and this requires
a more complex capability. The ability to extract a random, arbi-
trary length substring from a large set is a desirable feature.

b) Sequential --scan the whole set, step one or more bits at a time,
perform a simple test on each substring. This can be implemented by
providing the structured access controller with bit string parsing
capabilities.

7.4 PROGRAM CONTROL

Program control is, in essence, either conditional or unconditional execu-
tion of program segments. Conditional execution is either data dependent or
event dependent. Flags and other status data provide a means for saving data
and event conditions for later testing. In most computers, conditional skips
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and jumps provide the required .iteration in instruction sequence.

Conditional execution of other types nf instructions may be done also.

Two special forms of control are subroutine calls and iterations. Overlap
of instruction fetches, operand collection, execution, and result storing, are
the common techniques that gain processor throughput. Unfortunately, condi-
tional program branches perturb this significantly as they represent a fork,
frequently with no means for determining a-priori which path is taken. Thus,
the processor pipe empties while waiting for the branch condition to be set-
tled.

some processors look ahead on both paths of a fork -- a technique which
doubles the resource use of the lookahead. The approach taken is to look for
common situations where the knowledge of the programmer can be utilized to aid
the processor in handling conditional branches.

Many iterations are controlled by a precomputed number (the iteration
limit) or a constant. This number is used solely to count the times through a
program segment (frequently incrementing an index register for each pass and
falling through when the count goes to zero). The overhead represented by the
iteration control instruction including the break in the processor pipe is
simply a function of the length of the program loop. The percentage of time
spent on a single decrement and branch instruction controlling a fifty
instruction loop may be of little concern. However, for a five to ten
instruction loop, the percentage becomes of interest. There are many common
calculations for which this is the case. Examples are matrix operations, FFT
butterflies, integration, etc. For large data sets, these kinds of calcula-
tions require very large computation times, and frequently, ninety percent (or
more) is spent in a short loop.

To help this situation, a loop control instruction is proposed which ena-
bles appropriate logic to automatically fetch instructions from a declared
interval of memory, maintains an index register and checks the termination
condition. Index modification can be done prior to the next pass through the
loop and buffered until the new value is needed. Alternatively, the loop
could use a structured access controller to provide a data stream -- the lat-
ter is simpler than an indexed access and more effective. The index register
can still be utilized for situations where the iteration count itself is data.

Dealing effectively with simple conditional executions such as instruction
skips is not particularly easy, especially since they frequently occur as a
sequence implementing a short decision tree. Single instruction skips can be
implemented very effectively, albeit at the expense of program memory, by
embedding conditional execution as part of every instruction. This could be
as simple as a three bit subfield which defines all tests of the arithmetic
comparison type, or a larger subfield which is used in explicitly performing a
test prior to execution of the instruction. These possibilities must be exa-
mined more closely for the best tradeoff in instruction size vs benefits. In
any case, all forms of branching, including subroutine calls and returns, must
have conditional execution subfields. In addition, the ability both to branch
on existing condition codes and to perform explicitly a branch test must be
implemented.
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At a detailed level of the system, some programs may be implemented in
microcode. The same technique can also be applied at the macroinstruction
level to provide some complex operations. This technique is different from
simply writing functions since it requires a more highly structured presenta-
tion of arguments to the function. However, it provides concise expression
for some multiple instruction operations. Examples include vector additions,
dot product, etc. with multiple element vectors.

7.5 SYSTEM CONTROL

There are two dominant concepts in the system architecture: data distribu-
tion and system control. Data distribution is described above. System con-
trol deals with the problems that range from the control of individual algor-
ithms to the integration of multiple algorithms into a cohesive and functional
unit.

At the algorithm level, it is noted that many functions can be either
staged (split into multiple consecutive processing stages) or processed in
parallel (split into multiple concurrent processing elements). Staging is
supported through a variety of data communication paths, each optimized for a
different kind of exchange. Paralleling is supported by very fast data and
control paths which allow any processor to offload a portion of its computa-
tion to another on a very low overhead basis. Any algorithm starting on a
given processor can cause other processors to support it in implementing
either a staged or parallel process.

At the system level, the System Resource Manager (one of the processors)
uses the same hardware facilities to control tasks (algorithms) in the system.
It is responsible for initiating the correct set of algorithms as the need
arises, routing the proper data sets to each task and transferring the results
of a task to the right destination. Note that the individual algorithm, need
not know about these details. The System Resource Manager must know only that
a given algorithm requires certain input data sets, some number of processors
and, perhaps, output data formatting and destination control. It will not
need to know the details of the local structuring/control of a processing sub-
group. An interesting aspect of this architecture is that the System Resource
Manager can, as load demands and available resources permit, initiate differ-
ent implementations of the same algorithms, i.e., it could select a single
processor version when that suffices or a multiple processor version when
required. Furthermore, the System Resource Manager can initiate more than one
task of the same kind for very heavy demand. Program memories can be pre-
loaded with several different algorithms or smaller memories can be loaded in
real time from a bulk memory for more economical configurations.

7.6 DATA TYPES
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7.6.1 Numbers

The Digital Convolver System outputs complex numbers in a specialized 27 bit
hybrid floating point format. There is a single 5 bit exponent and two 11 bit
mantissas. For purposes of post processing, complex numbers might be mapped
into a symmetric form where both real and imaginary parts are identical in
structure.

Possible candidates are:

a) 7 bit exponent, 9 bit mantissa which yields a 32 bit form.

b) 8 bit exponent, 12 bit mantissa which yields a 40 bit form.

c) 8 bit exponent, 16 bit mantissa yielding a 48 bit form. This would
provide the maximum useful precision for radar processing require-
ments.

The following are proposed as a set of data types to be supported by hardware

logic:

a) Fixed point real numbers

1. Integers, 16 and 32 bit

2. Fractions, 16 and 32 bit

b) Floating point real numbers

1. 24 bit form: 8 bit exponent, 16 bit mantissa

2. 32 bit form: 8 bit exponent, 24 bit mantissa

c) Complex numbers (assuming symmetric real and imaginary components)

1. 32 bit fractional form: 16 bit fractions

2. 48 bit floating form: 8 bit exponents, 16 bit mantissas

7.7 DATA STRUCTURES

Besides individual numbers, which are used in numerical calculations, there
are other forms of data which are derived by imposing appropriate structure on
sets of numbers. Examples are matrices, list structures, and strings which
impose a structure on sets of numbers, as opposed to individual numbers in the
set. Special hardware designed for specific complicated data structures is
probably not justified since the structured access subsystem will provide sig-
nificant and probably sufficient capability. The Post Processor must accomo-
date these data structures. Therefore it must be determined whether it would
be cost effective to provide hardware support for these types of structures.
Hardware support implies the ability of the instruction set to handle these
forms as another, more complex, type of ntmiber.
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The structured access subsystems proposed in the Post Processor design
allow for handling of structured data but this is not the same as being able
to issue, for example, a matrix multiply instruction. Complex data types are
probably not justifiable for the Post Processor application whereas the struc-
tured access boxes are justifiable.

7.8 DATA MAPPING PROCESSORS

The Post Processor must be able to accomodate a large volume of data trans-
fer. The original input form of an input data set is not always in the
required form or the most computationally efficient form for a given algor-
ithm. This suggests implementation of simple processors for the purpose of
mapping data sets from a given form into a form required by the algorithm.
This results in lower overall computation time when the process is properly
staged. Mapping includes data conversion, restructuring and reordering.
These processors must also format the output data prior to transfer to the
DPS.
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Chapter 8

PEFORMANCE

The distributed processing architecture suggested for the Post Processing
function exploits long interfunction periods and the sequential nature of many
algorithms to yield a system with the potential for high data processing and
throughput rates. It is important to examine the Post Processor performance
within the radar environment to determine whether this potential can be real-
ized. It is not possible to develop a preliminary assessment using a real
system design since a detailed hardware design has not been performed. How-
ever if some nominal values for hardware timing are assumed, it is possible to
make a paper estimate of system performance. Specifically, the following pro-
cessing parameters are achievable with ECL 10K and 100K technology and are
used in the subsequent calculations.

a) 50 ns instruction time (net, assuming that fetch, process, and return
functions are overlapped)

b) 50 ns memory cycle (random access) for local data memory

c) 50 ns 16 bit multiply

d) 150 ns 16 bit divide

Some of the candidate algorithms discussed earlier were partitioned into
adds, multiplies, memory access, overhead, etc. The processing times listed
above allow the calculation of computation times for these algorithms. In the
Tables that follow, a data set size and timing budget is indicated for each
algorithm. These parameters are then used to determine the indicated process-
ing times.
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TABLE 1
TRACK INITIATE

Data Set Size: 100 designations from the Bulk Filter
150 objects in the beam track list

Process: Each designation must be compared with the projected range of
objects in the track list. A pass is made through the track

I list to update the projected range to correspond to the time
base for the Bulk Filter designations. In this process the I
object list is kept in range order. Due to different veloci-
ties some local reordering of the list will occur. The desig-
nation list (which is already ordered by range and range rate)
can be efficiently merged with the object list.

Timing Budget:
Object list update:

250 ns Project new range
(rate*T + range)

200 ns Perform local range ordering
200 ns Overhead

650 ns * 150 = 97.5 microseconds

Merge:
2000 ns (avg) Search object list for

range, range-rate slot
per designation

500 ns Add to object or create
new entry

300 ns Output object if good enough

2800 ns * 100 =280.0 microseconds

Total =377.5 microseconds (use 380)
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TABLE 2
CLUTTER PROCESSING

Data Set Size: 9*7384 = 66456
(includes spectral estimate)

Process: Basic timing is completely dominated by the calculation of
SUM of X and SUM of V on each bin. This is estimated by I
assuming structured access for source data plus automatic iter- I
ation control. Loop consists of two instructions:

RMADS <SRC>, R2 Cumulative multiply I
source times itself,
send results to R2 I

ADD <ARGI>, RI Add previous arg to R1

At end of loop: R1 bas UM of X, R2 has SUM of X2.
This loop is performed for each bin. Since the bin size is very I
large (e.g., 66456/16 = 4153 elements per bin), the overhead asso- I
ciated with loop setup and saving results is negligible.

Timing Budget:
<100 ns per iteration> * 66456
= 6645.6 microseconds/pulse
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TABLE 3
SEARCH

Data set size: 512 groups of 4 words each.

I Process: Reorder data fields to format desired by DPS. Assume
I structured data access to get groups in order plus automatic itera-

tion control:
MOVE 4 words to register 200 ns
several byte operations 600 ns
(budget for formatting)
store group 200 ns

1000 ns loop

I Timing Budget:
<1000 ns> * 512 = 512 microseconds
60 inst. overhead 3 microseconds

515 microseconds
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TABLE 4
COMBINED BULK FILTER: GROUP

Data Set Size: 512 marks (range, range rate pairs)

Process: The approach is to classify each mark and insert in proper
group. A linear list of list heads (1 per range group) is used I
with subgrouping by range rate. Each list head points to a binary I
tree list structure.

Timing Budget:
50 ns Move range (X)to R1

150 ns Integer divide R1 by range I
ambiguity interval I

50 ns Store (R1, RI I) pair in
RCLASS, RCLASS+l
R1 = range interval
Rll = group ID

100 ns Move proper pointer to R2
50 ns Jump if R2 not zero

to BULK1,
check adjacent
range groups
for empty and go to
BULK1 if true
Otherwise, create new list

400*50%= 200 ns SUBTOTAL
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TABLE 4 (CONTINUED)
COM~BINED BULK FILTER: GROUP

ITiming Budget (continued):

I 150 BULKi: Compare proper pointerIto range + 1
I iS~nscheck range rate

j I 50Jump equal to BULK2
I 150 Move proper pointer to R2

I 200*50%= 100 ns SUBTOTAL
50 ns Jump not end of list to BULKi

create new subgroup
(equivalent to append)

200 BULK2: Move proper pointer to R2
I 200 Append new element to

subgroup R2
I 50 Loop

I450 na SUBTOTAL

I 512 * 1350 ns = 588.800 microsec
I arbitrary overhead 100.000 microsec

688.800 microsec./pulse
or approximately
1400 microsec./pulse pair
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TABLE 5
COMBINED BULK FILTER: EDIT

Data Set Size: Estimate 150 groups
(froe Grouping)

Timing Budget:

.i: group overhead 1500 ns/group
Split at discontinuity (200*50%) 100 ne/group
Flush small groups (200*50%) 100 ns/group

1700 ns
(for 150 groups)

Estimate that 100 groups after flushing operation, avg. 5 elements

Find maximum sigma 600 ns/group
Idealize groups
with 9 ambiguities 800 ns/group

1400 ns/group

Pulse time est: 150*1700 ns + 100*1400 ns
= 395 microseconds/pulse

Overhead: 80 microseconds
Pulse Budget: 475 microseconds

pulse pair budget: 950 microseconds
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TABLE 6
COMBINED BULK FILTER: COINCIDENCE

Data Set Size: 900 ambiguities
+ 7384 threshold bits

Process: For each ambiguity, check for any bits set in corresponding
range interval of threshold data.

150 divide ambiguity range by word size
200 get double word and shift by remainder of division

test masked interval for non-zero
50 go to loopend on zero
20 (200*10%) output range, range rate pair if not zero
50 loop

470 ns per element

<470 ns>*900 = 423 microseconds per group
overhead 27 microseconds

450 microseconds per pulse
or
900 microseconds/pulse pair
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The resulting computation times and the assumed data set sizes are sum-
marized below.

TABLE 7
PERFORMANCE ANALYSIS RESULTS

DATA SET PROCESS
I ALGORITHM SIZE IN TIME IN PC/S **

WORDS MICROSEC

I Clutter Proc 9*7384=66456 6645 150
I Search 512 515 1942
I B.F.-Group 2*512 1400 714
I B.F.-Edit 2*512 950 1053
I B.F.-Coin. 9*100=900 900 1111

Ambiguities/Pulse
I Track Initiate 100 Designations 380 2632

1 ~ From B.F.I
150 Object list

S ** Potential Calculations/second

These results allow several conclusions. First, the Clutter Processing
Time is long and, consequently, if many clutter maps are to be performed per
second, it would be preferable to implement this function in high speed dedi-
cated hardware. Second, the Bulk Filtering times are excessive for a single
interpulse period. However, by executing the three stages (of three calcula-
tions) in parallel, 'the maximum single stage time of 1.4 ms is within the
interfunction time calculated earlier of 1.6 ms. Lastly, all of the other
processing times are consistent with realistic interfunction times.
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Chapter 9

CONCLUSIONS

The proposed Post Processor Architecture is a programmable distributed pro-

cessor system with a potentially high throughput capability. This architec-
ture appears to be well matched to the Post Processing function since it
exploits the long interfunction period, multiple transmission data base, and
sequential nature of the Post Processing algorithms. The distributed nature
of the system allows it to process large amounts of data.

The nature of the individual processors must be examined further. There
are two general directions the design of the processors could follow. First,
they could all be made identical. This would be inefficient since many pro-
cessors would have excess capability. However, this approach would facilitate
fabrication, would provide for redundancy, and would allow graceful degrada-
tion in the event of a processor failure. The second approach would tailor
each processor to a particular task. This is efficient but the proliferation
of designs would lead to complexity and rigidity.

The problems of bus and processor contention must be critically examined.
In any distributed processing system, the problems encountered in distributing
the data and allocating the processor resources are fundamental and must be
addressed. Once protocols and procedures are developed, it would be useful to
verify their effectiveness by simulation or prototype hardware development.

Another problem area is the partitioning of algorithms between processors.
This requires a detailed knowledge of the algorithms and the processor archi-
tecture, and this implies that a certain amount of programming must be done in
a lower level language.

Such issues as detection and fault finding hardware and software, and
actual hardware implementation need to be fully addressed. Nonetheless, the
distributed processor architecture described appears to have an organization
and potential capability that is well matched to the Post Processing task as
it is presently envisioned.
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Chapter 10
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Appendix A

GLOSSARY

ACCUM Accumulator
ADSP Advanced Digital Signal Processor
ARG Argument
A/D Analog to Digital
BCl Binary Channel 1
BC2 Binary Channel 2
BC3 Binary Channel 3
BF Bulk Filter
BMD Ballistic Missile Defense
DC Digital Convolver
DDB Data Distribution Bus
DDCB Data Distribution Control Bus
DEC Decrement
AZ Azimuth
EL Elevation
DIV Divide
DP Detection Processor
DPS Data Processing System
ECL Emitter Coupled Logic
FFT Fast Fourier Transform
FIFO First-In-First-Out
I/0 Input-Output
IB Input Buffer
INC Increment
K times 1024 (i.e., 4K = 4096)
Km Kilometer(s)
LL Lincoln Laboratory
LOP Lesser (Minor) Operation
MWM Memory
MHz Megahertz (10' cycles per second)
MOP Major Operation
ms Millisecond(s) (1/10' seconds)
MUL Multiply
NOP No operation
ns Nanosecond(s) (1/10' seconds)
OB Output Buffer
OHM Output Buffer Memory
OP Operand
PC Program Counter
PP Post Processor
PPl Post Processor Port 1
PP2 Post Processor Port 2
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PPS Pulses Per Second
PROC Processor
PROG Program
QUO Quotient
RDC Radar Data Conditioner
REG(S) Register(s)
REM Remainder
RF Radio Frequency
ROM Read Only Memory
RV Re-entry Vehicle
S Search
STR System Technology Radar
V Verify
XFER Transfer
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