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EFFECTS OF RANDOM SHADINGS, PHASING ERRORS,
AND ELEMENT FAILURES ON THE BEAM PATTERNS
OF LINEAR AND PLANAR ARRAYS

INTRODUCTION

Although an array beamformer with known element positions may be designed for good sidelobes
or skirt selectivity behavior by choice of the element shading (weights), the actual array response will
undergo degradations due to, e.g., element position movement, delay approximations, element gain
quantization, random element gains, element failure, etc. Here we will investigate the effect of all
these random perturbations on the response of the array beamformer for a single-frequency plane-
wave arrival and for individual array elements with omnidirectional response. Since the power
response to a single-frequency plane wave is itself a random variable at each angle of look, we will
evaluate its mean and variance as a function of the look angle; the element locations; the statistics of
the shading, phasing, and failure perturbations; and the plane-wave arrival frequency, propagation
speed, and arrival angle. From these results can be deduced quantitative tolerance limits on the
perturbations in order to realize specified sidelobe levels.

Some previous results on the array power response for random perturbations of the element gains
alone are given in reference 1., (This reference is also useful for additional background, motivation,
and interpretations.) Then, in reference 2, the moments, through order four, of a sum of independent
complex random variables were derived, as were the cumulants through order six. However, both of
these results were given in terms of the moments of the zero-mean random variables of each com-
ponent in the sum; this form is rather inconvenient and error prone when calculating array per-
formance. Also, the beamformer application in reference 2 was limited to phasing errors only.

Here we will derive the moments of a sum of independent nonidentically distributed complex
random variables, up through the fourth order, in complete generality, with no Gaussian assump-
tions. Then we will apply these results to both linear and planar arrays and give examples of the
performance degradation caused by perturbations in gain, phasing, and element failures. Some
results, without the derivations and programs contained herein, have already been presented in
reference 3. Additional related results, which, however, do not cover the higher order moments
considered here, are presented in references 4 and §.

DEFINITION OF TERMS AND NOTATION

Let C be a complex random variable. The average value of C is denoted here by two equivalent
notations,

Avidl - T, (1
and is a complex quantity. In a similar manner, we have

Aict = @ | szlcﬁ} = o @)
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The variance of complex random variable C is defined as
Vorfc} = Jc-Tf = |<I - |oF, (3)

and is real. Two other averages of interest are

3

AvE(c- ) = (c-TY - C- T,
CHESERNS 4

The final variance of interest is
Vorficiy = (jop-TeF) = < - IcT | ®)

The expression in (5) requires the fourth-order moment in (4) and constitutes the major analytical
problem addressed herein. We will derive expressions for all the quantities in (1)-(5).

MOMENTS OF SUM OF RANDOM VARIABLES

The particular problem of interest in this section is as follows: {z, } ] are statistically independent
complex random variables, which are not necessarily identically distributed, nor are they assumed
Gaussian. A sum variable C is defined as

N
= &R 23, ©

and is complex. We wish to evaluate the various averages defined previously in (1)-(5), in terms of the
appropriate moments of random variables {z,}. These moments of {z,} are presumed known, but
they need take no special form; random variable z, need not have zero mean, for example.

We have immediately, from (6),
Al = T = 28 = 2nia) M
in terms of the means of {z,}. Also there follows

Aic): T« 2F% - ST+ 233
= ?(i"i) + (.‘iﬂ’ ®)

where we used the statistical independence of z, and z, for k # n. Continuing on, in an obvious
fashion,

Mller} = TF - CCF - Zaal - ZRI+ 239

CE (T ¢ | 3] - Z(RT-E) + [T ©)
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where we used (7). From (3) and (9), there follows
Var{c] = 2 (TaF - 1Z[) = 2 Verfa); (10)

and from (4), (8), and (7),

Av?(c-t)’] = ?(E-f.) (a1

! An alternative expression for (9) is available by employing (10):
Aviict] = |Avicl]' + Veri) (12)
The final quantity of interest is given by (5) in terms of IEI“. For the sum in (6), the latter quantity is
given by
K = 2 as 13)

This statistic is evaluated in appendix A. In fact, the more general quantity
Z- 0 8 b, . < (14)

is evaluated, where complex random variables a,, b,, ¢,, d, are statistically dependent amongst
themselves for any k; but these random variables are statistically independent of the random variables
an, by, ¢, d, for all n # k. We evaluate (14), rather than (13), for two reasons: First, the notation is
simpler and an error in analysis is much easier to detect; secondly, this more general result may have a
possible future application, and the analytical effort is no greater. The average in (13) is given by (A-
26) in terms of the 16 fundamental sums defined in (A-24), and the variance of |C|? is given by (A-31).
We do not repeat these results here because of their length. A program for evaluating all the above
quantities is given in appendix A, table A-1.

As a check on these results, the case of Gaussian complex random variables {z,} is considered in
appendix B. A program for this special case is given in appendix B, table B-1.
APPLICATION T BEAMFORMING

For an ideal array with no perturbations in element positions, gains, phases, delays, or failures, the
voltage transfer function to a plane-wave arrival can be expressed as

Z %, (15)

. where v, is a complex quantity that incorporates the planc-wave arrival angle and frequency, the
steering angle, and the element parameters such as element position, gain, and phase; see reference 1,
equations (1) - (8). When imperfections in the array realization are encountered, they can be included

’ in the array voltage transfer function by replacing v, in (15) by

Z =V 9 (145) exp(idy), (16)

where g,, r,, ¢, are real random variables. The random variable g, represents random element
failures, by setting g, = 0 or 1 with specified probabilities; the random variable r, represents relative
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gain perturbations from the desired value of z, = v,; and random variable ¢, represents phase
perturbations from the desired value of 0.

The phase perturbations {$,} can arise from positional and/or delay perturbations in the array
realization. This problem is considered in appendix C for a linear array; the variance of ¢, is derived
and its dependence on arrival and look angles is made explicit for two situations of knowledge on the .
part of the array designer.

The random variables g, r,, ¢, are dimensionless. We shall assume that they are independent of
each other and of all other random variables for different values of k. (This could be generalized at
the expense of requiring more detailed knowledge of the joint statistics of these random variables.)
We let the moments of these random variables be denoted by

-5:'- = )A,,‘ (rc‘al)
ey = o feal) ;hdeym.&e»t of k.

W = Y, (Comr'!x) an

The independence of these moments on k could be generalized easily, but is not done herein. Thus,
physically, we are presuming an array where all elements are equally random in terms of amplitude
perturbations, phase perturbations, and failures.

The necessary statistics that must be evaluated are listed in (A-25). They are, using (16) and (17),
given by

AL M i Yl

Pers (18)
It is worthwhile noting that only the first two moments y, and y, are required for the phase per-
turbation. Then the fundamental sums that {Tij} in (A-24) depend on are just

Zw, 2 ,§>."v:, Zf;lv.l'v“ y 2t (19)

which are independent of the perturbation statistics in (17). The reason for this independence is that
(17) was presumed independent of k, the element number.

Now we can express the various array responses of interest in terms of the above quantities. We
have from (15) (or from (16) forg, = 1,r, = 0,4, = 0, allk)

Ideal (Complex) Voltage Response = .%?_ Ve | (20)

P PN E AT I AG ROz . Lo
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Then

Ideal Power Response = I‘? e r. (21)
Next, from (16),

Actual Voltage Response = C = :Z 2, (22)
and finally

Actual Power Response = |C1*. (23)
Then (22), (7), and (18) yield

Average Voltage Response = Avidd = Y, ; v , (24)

which is a scaled version of the ideal voltage response (20). This simplification results because the
moments in (17) were assumed independent of element number k. From (23), (9), (18), and (24), there
follows

Average Power Response = Av { 1¢)]
= (pan - IGEYZ I+ pi | 20 25)

the second term of which is a scaled version of the ideal power response (21). The first term of (25) is
the variance of the voltage response, as may be seen by combining (22), (10), and (18):

Variance of Voitage Response = Vav {C)
= (pan- POIINT) 2wl (26)
Finally, the quantity
Variance of Power Response = Var flq‘} @n
is given by (A-31), (A-24), and (18).
EXAMPLE OF ELEMENT PERTURBATIONS
The necessary moments were listed in (17). We now need to specify the probability density func-

tions of {g,}, {r }. and {¢,} in order to evaluate u, v, v, Since g, is a 0, 1 random variable
representing element failures, we let

pla) = @ $(9) +(-@) §(g-) s (28)

that is, Q is the probability of element failure. We have taken advantage of the independence of k in
(17). Then

P = :}w - Hg §pE) = 1-a for all mo (29)

TP VRN RO
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The second quantity in (17) is

o= (40 (30)

If weletr = g . then we have

PRI R R W 1+3,,+3{,, bkt i+4f,+tf.+4ﬁ+(4 : (31

As a special case, if relative perturbation r is zero-mean Gaussian, then

p() = o exp(- ) (32)

and there follows

pr=0s f= 7, h=0, A=36T, (33)

for which

Bl B om 146, )= 14360, B 14607+ 35T (34)

Finally, to evaluate the third quantity in (17), we need

X, - - Jdb o). (33)

The probability density function of ¢ will be taken to be zero-mean Gaussian, in which case,
1™ .
Y- [dbe ‘,‘;‘;er( w-)= erp (-4 7). (39)

It should be noticed that y,, is real for this example; this real property simplifics the programming
eff-rt and is used throughout the rest of this report,

EQUISPACED LINEAR ARRAY

GENERAL RESULTS -

It was noted earlier that the voltage transfer function of an ideal array to a plane-wave arrival can
be written in the form of (15). We now investigate this form for an equispaced linear array; we find,
for a symmetric real weight structure {w, } about the center of the array, that (reference 1, page 3)

Vo " W exy[-i (k- i)ﬂ] for an even numbar of elemnts, 37

where
we2nfd (sin ¢y~ sin #.) = 2w i— (in - sin 8) (38)

Here f,, ¢, A, and ¢, are the frequency, speed of propagation, wavelength, and arrival angle
(measured from broadside) of the plane-wave arrival; d is the linear array element spacing; and ¢, is
the look (steering) angle of the array. Extension of (37) to an odd number of elements is readily
achieved, but not pursued here. We let N be the total number of elements in the array and express
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N = 2H, . (39)

where H is the number of elements in one-half of the array.
The five fundamental sums in (19) now take the form

Fw o= T oo (- w109
Zh' = 2w W,

% o= ¥ co(2e0u] » L W)
%M\‘V. = kgw.f ms[(k- 4)“] 2 L,

St = 2w 'W, o)

where we have taken advaitage of the symmetric real weight siructure in order to write all the sums as
explicitly real quantities. The notation &‘:here denotes a sum over all nonzero weights {w,} from
k = - H to H. In the program to be presented later, advantage is taken of the symmetry in order to
decrease the number of terms computed by a factor of 2. If we denote the first function in (40) by
L,(u), then it follows that

L= LW, Lus2m =1L, ). @1

Similar useful properties hold for the other L functions in (40); they enable the region, where (27)
must be computed, to be reduced to the range (0,n).

In terms of the quantities defined in (40), we can now express (20)-(26) as
Tdwl Yo \f:age Kes}aona. = LW
Tdeal Power Rn,;onse. ~ Ly ()
Avuase Vo Hoge Rﬂronae = C LW
Average Powen ReSrome - C L?lu)*(cam' cla)VV;
VOrionm of Vo "ngc Re:ronse = ((.‘,.,- C:)VV; . , (42)

where

G=pnd , G, = puir. (43)

The variance of the powcr response is given in appendix D. Examples of (42) and the variance of the
power response are deferred until later in this report. A program for calculating the average behavior
for a linear array is given in appendix D, table D-1.
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DEEP SIDELOBE BEHAVIOR

In the deep sidelcbe region, the ideal voltage response is substantially zero; that is, L, (u) in (42) is
approximatcly zero. Then (42) simplifies to

Ideé’ Vo“me Rcsrowo s 0

Teal Powur Rﬂffonae = 0

AVW Vo"‘oge Ru’uuu * 0

/‘Nemge P&W R”PONW » ()A, Y~ )\? )’" “") KZN:

Variane u{: Vo lbge Response « (p‘y; -M v,‘!,‘) W, (44)
where we employed (43) and (40). The variance of the power response is given in (D-6) in terms of the

other quantities defined there; no simple expression for this variance was obtained. Alternative in-
terpretations of the constants are given in appendix D, (D-9).

Since the peak ideal power response (for positive weights) is given by (see (42) and (40))

L)~ @&~ . (43)
then it follows from (44) and (45) that
Average Power Respowse (deap sidelsbe region) - - wv Y . _\_/_ , (46)
Peak Tdeol Power Respomse Nees Nogs
where
ng.i
N = —2—4 - 47)
off ‘;;_w‘ (

The quantity in (46) requires only second-order statistics of the perturbations and the single summary
parameter (47) of the weights, Equation (47) is maximized by equal weights over the entire array.

For the example considered earlier, we use (29), (34), and (36) to evaluate the numerator of (46) as

Ve -0+ ) - (1- ) exp-57). (48)
For small phase perturbations, ozp<< 1, and (48) simplifies to
Ve (-9 @+ e+ g 0-a) | (49)

If, additionally, the probability of element failure is small, Q << 1, then (49) can be further
manipulated-into a variety of forms:

Ve (.-Q)(Q+r‘:+r;)
= (-De+ -+ )
= 0'; & @‘;1. ‘;") Rf,\.(e.\emul; okq)

% r‘;‘+ PR (50)
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Then (46) becomes

v » . GreErG 1)
Peak Tdeal Pwer Response Nett

This simple rule-of-thumb is similar to (43) in reference 1 and to (83) in reference 2, but now
generalized to include simultaneous element failures and gain and phase perturbations. It indicates

that the variances of the three perturbations simply add, at least under the assumptions made.
GAUSSIAN APPROXIMATION IN DEEP SIDELOBE REGION
When the number of elements in the array is large,® the sum variable C may be well approximated
as a complex Gaussian random variable. However, the statistical description of C is still difficult,

since the variances of the real and imaginary parts of C are not equal, in general; see reference 1,
appendixes A and B. However, in the deep sidelobe region, we have from (22), (24), (25), and (40),

C« 0, CT=0
ToF = (ra- ot ¥0) 2o = o (52)

Then, letting complex random variable

C = x+iy, (53) ]
we have
X«F=0, XG=0, T-F 3L (54)
Now, if none of the elements have failed, the deep sidelobe behavior is attainable, and we have, |
under this conditional situation, the joint Gaussian probability density function |
plog) o x exp (- 225 (59)
where, from (52),
o = (n-nY)EW | (56)
since we must set
Pw=t For all m (57)

under this condition of no elements failing. Then
Aviiet} = & K
Vor {ICI’} = Vorfx"rg‘} i ‘
St Do JIcl] = o (58) ]

*The material in this section applies to any array, not just a linear array; in fact, the larger the number
of elements, the better the approximation.
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Thus, the standard deviation of power gain, |C|2, equals its mean; this property obtains only when
none of the elements have failed. Also

Pab ( (Cl'< T) * Prob (¥ ety = |- exp /e, (59)
That is, the probability density function of |C|? is exponential in the deep sidelobe region. In par- ’
ticular,

Prob (IcP< Aficrd+ ke SBnficd) = 1- exp(-1-K). (60) ’

Thus, for example, the probability that the actua! power gain, |C|?, remains less than its average value
is 0.63, while the probability that it is less than the mean plus two standard deviations is 0.95.

AN

PLANAR ARRAY

e R L R S N O P

GENERAL RESULTS

In order to apply the results above to a planar array, it is convenient to use a one-to-one number
association between the integer k and the location p, q of a particular element in a planar array
presumed to have a grid structure. Thus, instead of (16), we have

o Ol

&= Vi 9y (43 exp(igy) (©1)
and instead of (17), we have
A

i '(i":r")n = ), iwdere»d&f’ mC P,;

W = (62)

The necessary statistics that must be evaluated are identical to (18), except that v, is replaced
everywhere by Voq: Thus, analogous to (19), we need to evaluate the quantities

5“% ) %"’nr ; %‘Vr; ) i‘ Ml -,f? I 1*. (63)
Analogous to (20) et seq., we have
Tdeal (Guple) Volboge Response = Zvy (64)
for gpg = 1, 1pq = 0, ¢, = 0, all p,q. Then,
Tdeal Tower Reiyonse - I%Vn : (65) .
Next, from (61),
Actuel Voltage Respomse = C = 23, = 2y gy () expihy), (66)

10
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and
Actual Foer Response = |CI'. 67
\ Theu, (66), (7), (A-24), and (62) yield
ANQ! \‘)"‘l@e Resronu - AviC}- T " )A,D,Y, .?;.Vn ’ (68)

which is a scaled version of the ideal voltage response (64). This simplification results because the
moments in (62) were assumed independent of element location p, q. Also, from (67), (9), (A-30), (A-
24), (61), and (62), there follows

AVUMJ! P°W Resronu = AV bcﬂ b Ta." Tt 'T.'I‘
" (,\a-y?v.‘li.l‘)glvni‘ R A) , %Vn r, (69)

the second term of which is a scaled version of the ideal power response (65). The first term of (69) is
the variance of the voltage response, as may be seen by combining (66), (10), (A-24), (61), and (62):

Vanana of \/ouﬁdc Res,oonac. - VariC] Tu-Thy

= (P pIOIIF) Sl (70)
Finally the quantity ‘
Voviawe of Power Relronn = Vorilcl'] 1)

is given by (A-31), (A-24), and (18) with v, replaced by Vpq everywhere; the quantities that must be
evaluated are those listed in (63).

EQUISPACED PLANAR ARRAY WITH MULTIPLICATIVE WEIGHT STRUCTURE

For a planar array with elements equispaced on the x, y plane by distances d,, dy, and for a
multiplicative weight structure,

= whw¥ (72)

wn P Y
we have, from (21) and (22) of reference 1,

' vy = WPep[if- ) wempl-ig- )] (73)

for a planar array with an'even number of elements in both the x and y coordinates, where the weight
structures {w{¥} and {w{’} are assumed symmetric about bothx = Oandy = 0 (p = q = 0), the
center of the array. The parameters u and v incorporate look (steermg) angle (6, ¢,), spacings d,, d,,
and plane-wave arrival wavelength A, and angle (6,, $,):
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u= 217'—%1: (Siﬂt @ % - S.M‘. co3 e),
Vo 2n S (sin g sing - Singy ShB,), (14)

The polar angle (measured from the z-axis) is ¢, and the azimuthal angle (measured from the x-axis) is
0. The dimensionless parameters required in (74) are relative spacings d,/A,, d,/A,, arrival angle (6,.
¢,), and look angle (6,, ¢,).

The five fundamentel summations required in (63) take the form
5% - riv&os[(,- ] g Was[(-v] = PWLTW
Zhal = 2" 2wy *WOWY
23 = 2 csllap el S cerf(zg- ) LYWL )
PINR LN DI LR (Y WOIMY

b5 W :WIWY
%w,,\ 2;‘“’ %"‘f (75

These quantities are all real, due to the symmetry assumptions; so, for the perturbation example in
(28)-(36), ali the {T;} in (A-24) are real. Furthermore, the summations on negative p and q in (75) can
be avoided by muitiplying the positive p and q terms by a factor of 2, as done earlier for the linear
array.

We can express the desired quantitites in (64)-(71) in terms of (75) and (43):

Tdeal Voltage Respome = LYY LV ()

Tdeal Power Respowse - L) L’)‘(v)

Amq,e Yo Jtage ReSfowse = ¢ W ®W

A"eloge Power Re.t;nnu = (C,_- c")wf"w‘('* C,‘ LQ.”’(U)LU,)’(V)

Voriance of Volfase Resyanse * tn“ C,’)Wt) wh (76)

The variance of the power response is given by (D-11) in appendix D. A program for calculating the
average behaviors for the planar array is given in appendix D, table D-2.

EXAMPLES

Four curves are drawn in each of the figures discussed next. The bottommost curve in the deep
sidelobe region (the curve with the deep notches) is the ideal power response (21), which would be
realized for no element failures, gain perturbations, or phase perturbations; this curve is normalized
to 0 dB at its peak where the look angle equals the arrival angle. The second curve from the bottom (in
the deep sidelobe region) is the average power response (25) for the particular set of perturbation
statistics listed with each figure. The third curve from the bottom is a plot of the average plus one
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standard deviation of the power response, that is, (25) plus the square root of (27). The topmost curve

is the average pius two standard deviations of the power response, that is, (25) plus two times the

square root of (27). In the mainlobe region, the curves can cross each other; however, the ideal power [

response curve always reaches 0 dB, and the other three average curves always lie in the order relation P
! indicated above. These facts enable the reader to discern the behavior of the four curves in any one

figure.
. LINEAR ARRAY i

We consider an equispaced linear array of N = 20 clements. The singie variable, that all the array A
responses depend on, is the variable u defined in (38), ;

We 2 (sin - sind) (77

for which the range (0,n) is sufficient to cover all cases of element spacing, look angle, and arrival
angle and wavelength.

In figure 1, a Dolph-Chebyshev -30 dB array design is indicated, for which the effective number of
clements, (47), is equal to 17.35. This result is especially useful for evaluating the average power ;
response in the deep sidelobe region; see (46) and (51). :

The four parts (A, B, C, D) of figure 1 correspond, respectively, to (A) element failures only; (B)
weight perturbations only; (C) phase perturbations only; and (D) combined element failures, weight
perturbations, and phase perturbations. Quantitatively, we have

(A) probability of element failure Q = 0.001

(B) variance of relative weight perturbation o2 = 0.001
(C) variance of phase perturbation o} = 0.001

(D) all the above combined.

Wbt i i

The parameter values have been chosen so that the three variances are equal
(og = Q(1 - Q) = 0.001); thus the average power response in the deep sidelobe region, (51), should be
equal for parts (A), (B), and (C). In fact, (51) gives 0.001/17.35 = -37.6 dB for the first three parts
of figure 1 and 3 x 0.001/17.35 = -42.4 dB for part (D). These calculations agree very well with the

results plotted in figure 1.

The curves in figures 1B and 1C, for weight and phase perturbations, are virtually identical; the
curves in figure 1A, for element failure, indicate slightly poorer performance, about 1 dB larger at the
peaks of the sidelobes. Figure 1D, for combined perturbations, is, of course, the poorest of all. The
mainlobe response is substantially unchanged in the four parts of figure 1.

Figure 2 is drawn under conditions identical to figure 1 except that the weighting is changed to
Hamming. For this N = 20 clement array, N = 14.68. The results for the average power response in
figures 2A, 2B, and 2C are virtually identical; however the standard deviation of the power response
‘ for element failures is somewhat greater, thereby leading to poorer performance in figure 2A.

Figure 3 is also drawn under identical conditions except that the weighting is now Hanning, for
which N = 13.33. The observations for this figure are identical to those for figure 2.
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Figure 1B. Q = 0, 0} = .001, 03 = 0

Figure'l. Equispaced Linear Array; -30 dB Dolph-Chebyshev Weights
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Figure 2. (Coat’d) Equispaced Linear Array; Hamming Weights
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Figure 3. Equispaced Linear Array; Hanuing Weights
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PLANAR ARRAY

We consider an equispaced planar array of N, x N, =20 x 18 elements, for a total of 360
elements. Since there is no simple single parameter like u, (77), in the linear array, we plot the results
versus the polar arrival angle or azimuthal arrival angle, for specified polar and azimuthal look
angles. The results in figure 4 et seq. employ element spacings in the x end y coordinates of a half
wavelength; however the program in table D-2 easily accommodates other spacings of interest. Figure
4 is drawn for a multiplicative weighting of -30 dB Dolph-Chebyshev design in each of the x and y
coordinates; the effective nambers of elements in the x and y coordinates are 17.35, i5.57, respec-
tively. The average responses in figure 4 (notice the much larger element perturvations) are plotted
versus the polar arrival angle ¢, in radians, while the azimuthal arrival angle and the look angles are
all zero. The results in figures 4A, 4B, and 4C are substantially the same; the case for combined
perturbations in figure 4D is, of course, poorer in terms of performance attainable.

The average power response at the peak of the mainlobe has dropped by about 1 dB in figure 4A
because of the effect of element failures, and by aboui 1/2 dB in figure 4C because of the effect of
phase perturbations. The combined effect in figure 4D is such as to lower the average power response

at the peak by about 2 dB.

The similarity of results, for weight perturbations or phase perturbations or element failures alone,
prompts us to confine further attention only to the case of combined nonzero perturbations. In figure
S, the same array is used as in figure 4, where now we have selected Q = o2 = ag = (0.1. Part A
corresponds to a plot of average results vorsus azimuthal arrival angle 6,, while part B is for a varying
polar arrival angle ¢,. The reason that the ideal power response goes below -60 dB is a result of the
multiplicative effect of the individual x and y -30 dB patterns. This leads to average responses that are
virtually independent of the polar and azimuthal arrival angles.

Figure 6 is drawn under conditions similar to figure § except that the weighting is changed to
Hanning. The effective numbers of the 20 x 18 elements are 13.33 x 12 in the x and y coordinates.
Finally, in figure 7, when we make the polar look and arrival angles ¢,, $, equal to n/2, we get two
large equal responses at 8, = 6, and 6, + n. This is a result of the element spacings being equal to a
half wavelength and, therefore, the array is unable to distinguish or reject arrivals coming endfire to
the array from the undesired opposite direction.

Additional results for other equispaced linear or planar arrays are easily available by using the
programs in appendix D for whatever set of parameters fits the user’s application. Generalizations
should be obvious and easily realized from the general results presented in appendix A.

SUMMARY

General equations for the first four moments of a sum of independent complex random variables
have been derived with no restrictions on the statistics of the individual variables and no requirement
of identical statistics. A program for this case is available in appendix A, table A-1, for those ap-
plications requiring the most general case. This program has been thoroughly checked and also
compared with the results for Gaussian random variables.

These general equations have been specialized here to a beamforming application, including
equispaced linear and planar arrays. Additionally, for ease of programming and investigation,
identical statistics were assumed for all the array elements; however this restriction could easily be
eliminated by reference to the general results given earlier. To determine allowable tolerances on
element weight perturbations, phase perturbations, and element failures, it is recommended that
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initial guesses be made at the statistical parameters and, then, the average responses given herein
plotted and observed. Then another educated guess can be made and the new responses observed. In
this manner one can quickly converge to tolerable limits on the different types of perturbations in

order to realize specified performance and sidelobe levels.
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APPENDIX A
DERIVATION OF FOURTH-ORDER MOMENT

GENERAL RESULTS

Here we will evaluate the complex quantity

N .
S' Z QE"m"n ‘éalhc'&”’ (A"l)

Khwpey

where complex random variables a,, b,, c,, d are statistically dependent amongst themselves for any
k, but these random variables are statistically independent of the random variables a,, b, ¢,, d, for
all n # k. The fourth-order sum in (A-1) can be broken down into many subcases: (1) all four sub-
scripts equal; (2) three equal and one different; (3) two pairs of two equal, but not to each other; (4)
two equal and two others different from each other and the two equal ones; and (5) all different. The
values of the components of S in each subcase are

S=S+S+5+5+5, ' - (A-2)
where

\ N ?G.b.q.d- ) (A-3)
S.- Zahad+ TARE T+ 2AGEE » 3Teda, (A4
’ S, & ahSdi 4 2achd ¢ %l&}dlB;'C, (A-S)
S-ERRTE SaRE ¢ BAER |
VIR3 T SRAT 2aLak (A9)
S,"e-aurxa;a:; (A-T)

and where £ denotes summation over all subscripts that are unequal in the summands. (As a check,
the number of terms in S;-S; are N, 4N(N-1), 3N(N-1), 6N(N-1)(N-2), and N(N-1)(N-2)(N-3),
respectively; these add to N4, as they must.)

The summations in (A-3)-(A-7) must be simplified. To do so, we adopt an abbreviated notation;
for example, (A-3) is denoted as

5= 2.ahsd « WD (A-8)
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In order to simplify (A-4) and (A-S), we develop
éuuv. . %'u. %V. - %’u‘ ["z'v._ V.‘]
z (;Vg (2\4) - F.H.V. e W-W. (A-9)

Notice that UV denotes the product of two summations, whereas UV denotes one summation. Then
(A-4) becomes

= RiC-D - RBCD + ABD.C- ABDC _.
+ ACD B~ ACDE + BCH-X- BedA, (A-10)

while (A-5) yields
S, = AB-CD- ABCD + AC-BD - ACBD + AD-5C- ABBC. (A-11)
Thus, for example, the first two terms in (A-10) are
ABC.5-ABEE - (Zah3)(3d) - Taha . (A-12)
To simplify (A-6), we use the development

W, < S 3w, S« T S [Sow-u]

ik MM
= W"%‘&Vm - ‘B-Wv-wm - é—“u\'&\l-
W-(0v-09) = (VYW= Uvw) = (UWv-Uvw)
: UV-W= UV-W- VW= V-UW + 2 Uvw, (A-13)

where we uéed (A-9). Then A-6 becomes

G, AB-C.0O-ABCE- AB-TD- T-ABD + 2ABED
+ AC. BE~ACBD-AC BD - B-ACD + 2ACTBD
+ AD-B.(-ADB-C- AD-BC - B-ADC + 2ADBC
+ BC-A-L-ABCD -8C.AD - A BTH + 2BTAD
+ BCAT- IEDC BD-AC - A-BB{ + 2BPAC
+ CHRE- AG-B- KB-A§ - A BCD + 2CDAB. (A-14)

Finally, we need the development
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S, © En 2y é [ %5 %)
3 VDT TRRTIEP TALAS
o X [UVW= VW= VYW= VU + 200W]
S UXV-W 4 UVXW S UXVW +V-UWX - 2UVWX

AVXUW + UVXW+ U-YWX 4 XV-UW - 20VWX
- WUV + UV WX+ U-YWX + V- UwX - 2 Uvwy
& UVW. X= (U XW+VI-UXH UW-XV UX- VWA VXUW A WX
+ 2 (UVW-X + UWX-V + UVXN 4 VW)
+ UX'VW + XV-UW +UV-WX - § UVYWX, (A-15)

where we used (A-13). Then (A-7) becomes

+2(kBC.5+ A& B + ABD-C + BTB-
+ ADCD+ AT BD + AD BT~ GABCD. (A-16)
It is not possible to simplify or combine any of the 60 terms in (A-8), (A-10), (A-11), (A-14), and
(A-16) because they each employ different statistics. Thus, the general answer to (A-1) is given by (A-
2), where the five components are given in the equations just listed above. Repeating the notation, the
first and last terms in (A-16) are given by (£ &) (b)) (% T\) (£d,) and -6 33, B, T, d,, respectively.
SPECIAL CASE
We now set
a.:,b.i**,c;y’d;z', A3 B,z",c.;z,bq", (A-17)
in which case (A-1) specializes to
_— A
- * » = .
S 2 aaaa - |Zal ; (A-18)
that is, S is now the mean value of the magnitude-fourth power of the sum. Then (A-8) yields

s, =12 -« 2R, (A-19)

(A-10) yields
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S * Zﬁ?-f-sz + comphe m\jusde
= 4 Rt{m‘i - mf}

-'rﬂ-E?EFa'.';f - ZRRa) (A-20)
and (A-11) becomes -
S, * -2+ B - T
=2(§E|")‘—2§Ti\* + ],;'E'i-'.'.’f—~ ?li‘.l’ (A-21)
The quantity S, in (A-14) can be developed as follows:
-2 i-FHEE-En m TR + 2718
s {272 - 7. @)+ 27 @)}
=+{§rﬂ’-|gz]‘-2k2gﬁ‘i’§:. *’}» FaT-Z1al+ 23 AT 31

i

vonfpa (gl) 2gud 58 A g v2g R (A-22)
Finally (A-16) yields
5,-2 2 27-42127 - 2R{2 27}
voRe)2ZE T A2+ 2.7 o3l
|gaf - sz izl - 2R fz A (24)]
fpnra ) 2 (@ | 2R - 2T )

At this point, it is convenient to define the following 16 fundamental sums that appear above:

r 2%
M. BT, ER, T8, 25

Inf - Zhl%, Zil 3,258, ZIPL
- ZRF, ZArE A, IRE, Sl ZRTRG E R, SR (A-24)
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It should be observed that the fundamental statistical quantities required of random variabies {z, }
number only §, namely

!;)Ta;—‘i) a;m.W- (A'zs)

However, they combine in various ways to yield the 16 sums defined in (A-24), which in turn are
encountered in (A-19)-(A-23).

In terms of the sums defined in (A-24), the sum of (A-19)-(A-23) can be written as
s =|gal - 2T
s Ty 4R (T 2Ty - T+ ST, + 4Rl - 6 T
+ 4R} (h-2T- T + 2T) T}
2 T) + T Tl
b 4T TN + 2R} + 1T (A-26)

This is the general relation for the average of the magnitude-fourth power of the sum (A-18) of in-
dependent complex random variables.

Special cases of (A-26) are afforded by
§=Ty= BF for N=t (A-27)

which is obviously correct, and by .
S = Ty 2Ty T + 2T+ 1Tl hv Ze0 borall k, (A-28)

which is identical to (19) in reference 2 for T = O there. That is, (A-28) applies to zero-mean random
variables {z, }. If we let complex random variable

S C = ga, (A-29)
then (A-26) is obviously an expression for [ C[4. At the same time, (9) and (A-24) yield

1CF = To- T, +131°. (A-30)

Therefore (5), (A-26), and (A-30) yield
Varfic] = T, - 4R IR -2, - T a 87, + 4 Ref} - T,
+ 4 Ref (T,-2T- T, #2T) T -«3
TR R o B ) O |
+ 26T ITF + 2Ref(T- )T ] (A-31)
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This is the general relation for the variance of the magnitude-squared value of the sum (A-29) of
independent complex random variables.

Special cases of (A-31) are afforded by
VorfIcl) = T,- T = BIF-TF b N=1, (A-32)
which is obviously correct, and by
Vorflel} = Ty-2T =T+ T 4 Il for Z-0 b ol &, (A-33)

which is identical to (22) in reference 2 for © = 0 there. That is, (A-33) applies to zero-mean random
variables {z,}.

A program that evaluates the general expression for the variance in (A-31) is given in table A-1. The
fundamental input statistics, (A-25), must be input in lines 90-190. This program has been checked
throughly for

1. N = 1, arbitrary moments

2. N = 2, arbitrary moments

3. N = 3, arbitrary moments

4. arbitrary N, complex Gaussian random variables with correlated real and imaginary parts, and
nonzero means. (See appendix B for this derivation.)

o

In terms of the fundamental sums defined in (A-24), the quantities encountered in (7)-(11) are
expressible as

AV{C} =T
AVic)= Tu- Tyt 1)
M et} = 7,,- T, +ltf
Varf{C}= T,-T,
AfE- T} = Tum T (A-34)
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Table A-1. Program for Variance (A-31)

10 MOMENTS OF C w SUM OF N INDEPENDENT COMPLEX RRNDON VARTABLES.

20 LINES %0-190 GENERATE INPUT STATISTICS

30 OPTYION BASE 1 .

;: :l: 2Ir 93, 214¢9), 22m(9),22r¢9),221(9),23r (9, ,53t09),24¢9>
-

€0  REDIM 21rtN) 211 CNY, 22m (N>, 28 (N>, 221 (M), 23r €D, 231 (N3, Z4(ND

70 T0 INPUT THE FUNDRAMENTAL STATISTICAL

89 QUANTITIES, REPLACE LINES 90-~190,

90  RANDOMI2E SOR(.$)

100 FOR K@i YO N

118 21r(K > oRND

128 Z1icKrsRND

138 22mCK)WRND

148  22r (K)=RND

158 221 (K)aRND

168  Z23r(k)>wRND

170 234(K)wRND

180 24 (K)=RND

198  NEXT K

208 FOR k=1 TO N

218 Q1s21r(K>~2

220 02e21i¢K)>~2

220 Qp=01+q2

240 OmwQ1-Q2

2890 Qce2e2)r<K>#21§ KD

260 TirsYipreZ1rck)

278 TliaTiiv214CiD

280 T21eT21+22m(K?

298 T22rwT22r+22r K>

300  TR21eTZV 4221 K>

3106 T23eT23¢Qp

320 T24rmT24r+Qm

338 T24iwT241i+0¢

340 T31r=TA1r+23rK>

350 T3I11=TI1423iCKY

360 TA2r=TI2r+220(Kr#21r (K>

370 T3I2ieTI2I+22m<K #2114 (K> )

388 T3ArsT33r+422rCKIR2LrK)+221CKI #2111 KD

390 TAZNRTINI 4220202 (K> -22r k21K

400 T3drsT34r+Qpe2ircK)

410 T34iwT34140pe2]iCK)

420 Tai1sTd1e24(K) ,

430 TA2reT42r+23r(K)#21r K) 231K #211¢K)

440 T43eT43+22m(K>~2

450 Td4sT4d+22r (K> 24221 C(K) 2

468 T43eT45+22m(K)#Qp

478 TAGraTacr+22r(K)#Qm+22i (K #le

480 T47eT47+¢Qp~2

490 NEXT K

%00 RieTir-2

$18 R2sT1i~2

%20 RA=T21-7T23

538 R4sT22¢r~T24r

Y48 RSsT221-T24i

853 Rp=R1+R2

860 FRmeRi-R2

870 Rc=24TireTii

S680 VuT4l~deTa2r~24T43-T44+84T4544#T46r w6147

T 590 Vaveqe(TIIr-20T32r~T33r+24T34r 2Ty

€00 VRVe4u(TI11-20T321~T331+24T341)#T1{

610 VaVeR3IA2¢R4~24RY"2

620 VaYe2u(RIFRPIRGEPRRI#Re >

638 PRINT “N =V N

640 PRINT “AudL) = "STiri e iC¥sTLE3 0"

€50 PKINT "Au(C~2) w “JR4+Rm;"+i (" RSeRe; "
660 PRINT "AviCmag~2) m“;R3I+Rp

€78 PRINT “"Std DeviCmag 2> »*;3QR(Y)

680 PRINT "Var(Cmag+2) ="y

69@ PRINT “AuiCmag~1) w*{(RI+Rp) - 2+¥

708 END ¢_
e

Heg
AUiCr & 1, 40742613063 +1¢ 4.64537585274 s ®
AUCCAZ) = -4, 57145748691 +i( 32.4866283272 . Qﬁag&
Au(Cang 2) = 33,4546032912 %
$ta Deu(Cmag-2: = 6.7210029004 &
var<Cmag-2) = 45.1718799872 sﬁ" 4
AvICmag 4 » 1164,38236138 \‘@, @g
A-7/A-8
Reverse Blank
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APPENDIX B
COMPLEX GAUSSIAN RANDOM VARIABLES

For complex Gaussian random variables {z, }, the means, variances, and covariances add; thus all
we need to do is evaluate these quantities for a typical random variable z. We let the means be noted

by
F=%+iJ = a+ib. (B-1)

If we denote the zero-mean components of the real and imaginary parts as

o= X~a, /; =5-L, (B-2)
then the variances and covariance are
o 0":,?15 6‘;, :(F':/ﬁo",_ (B-3)

To check the general results in appendix A, we need the five statistical quantities listed in (A-25).
They are

Avidl = § = a+ib. ' (B-4)

Aviryy = Vol = PRESTHIEIN S ol L’+63‘ , (B-5)
Avfiﬂ =2 = ksiy = ;’—-? +‘v2?§ - @'*")"(hf)‘

+i2(as Ybep) = a'+ox - (P4a3) +i2(ab +f¢;a;), (B-6)

2l = (x‘-»fﬂx-‘riﬁ) = XX AN+ i;’, (B-7)

The components required here are given by
R - arey = @+ dey
Xy = (q+~i§+{3 = ab' +avy +2L/06'J,

7 - B+ abe)
Wy = a'babe + 20069, (B-8)

Hence

AV{’?H} « hie « &+ aL'+a(3w:+q§‘)+2b sy
-H[B' +a'b + b (sv+30) 4 2a/ r.‘g-], (B-9)
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Lastly we need
= GayY = F 4y + 25, (B-10)

for which the comporents are

-’_‘i? = (o4 “’,(b-ff)‘ = (o4 2aw o)+ 2),0-»/")

s APrdy » 4adpn g rbal e 20 (B-11)
Then there follows
Vorfta = T - T = 2(odvey +27006]) + (o'l + '] +2p00 b5 (B-12)
and |
Vet = AV {] + Varfhe}. (B-13)

A program that incorporates the above relations is presented below in table B-1. The Gaussian rules
occur in lines 280-320.

R L i ta s bR -
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Table B-1. Check Prograr: for Complex Gaussiarz Random Varlables

o NOMENTS OF € = SUM OF N INDEPENDENT CONFLE) FANLUM VARIABLES.
20 | GAUSSIAN TEST EXAMPLE.
. 30 OFTION BASE 1
;g 3!" 21rC9),21109),22m(9),22r¢(9), 22109, 23,030,231 %2,24C(9)
8

(1 REDIM Z1rCN), 21 CND , 22mCND (2RrEND 42210 g 257 ANY , 221 TN 24CND
79 RANDOMIZE SORC.6)
N 80 FOR k=1 TO N

90 Ra2#RND~-{

109 P=aRND-1

118 Signx=RND

120 SigumRND

130 Rho=2#RND~-1

140 A2=A~Q

150 B2=B°2

160  Vxsgigxng

170 Vy=Sigy~2

180 PaRho»*8igx*#Sigy

198 21rcCki=A

200 211(K)=B -

218 22m K wAZ+Yx+B2+VY

220 Z2r K mA2¢VYx~B2eVul

230 Z21CKIu2N(RRB4P)

240 Z23r{KisARCAZBR+ARC3I#YX VYOI +24BaP

252 23 (KO)wBHCAR+B2) +BA VX +I#VU I+ 24RHF

260 VarsZ#(Vxn2+Vu 2424P 20448 L RD*V I ABERV Y+l v BB o

270 24(KI=Z2m(K>~2+var

280 GsG+R

298  Mwh+B

200  VdsVd+v

310 VesVe+Vy

320 VesmVe+P

330 KNEXT K

34@ FOR kw) TO o

380 QleZircKre2
i 360 Q2=211CKH2
i 3TY QpeQi+R2
380 Om=Q1-Q2
290 Qe=2wZir (K eZ211CKD
408 TirsT1r+2irCkD
418 TiiaTii+2Z1 (KD
420 T21=T21+22mik)
430 T22r=T22r+22r k)
440 T22i=T221+221 K"
4%0 TL3=T23+0p
460 T24r=T24r+um
478 Tz4i=mT24i+0c
L 480 T3lr=T31r+23r (K}
; 499 T31ieT21i+23i0K)
: PO TI2r=T32r+22miK2#Z1lprcCK)

510 T32i=T327+422Zm(K #2131 KD

820 TE3rwT33r+22r <K, #21rCKI+221CKI #2110 (KD !

830 T3 =TI3i+42291k2%21r(kI1=-22r (K) 421§ (K

%548  T134r=T3dr+Qp+21r k)

S50 T34iaT41+0pe21i (K2

GRUSSIAN RULES
GHUSSTAN RULES
GAUSSIAN RULES
GAUSSIAM RULES
GAUSSTAN RULES

e . -

b 560 T41sT41424(K) .
# . P Ta2rsTa2r+23r (KX *Zir (KO +231(Ko*21idk)

§‘ S80 TAINTA3422Zm K E f
] S0 T44mTA44I2r(KIA24Z210K)I~2

¥ 600 TaS=T4S+2Z0(K)wap &N

: €10 T4Gr=T46r+22r (K)¥QmeZ21 (K> #0¢ &

4 d 620 T47sTd4?+0p-2 éy

i €39 MEXT K

640 RisTir-Z &

€50 RIsTLi~2 - §

CED PISTZI-TZ23 ‘b@&
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g Table B-1. (Cont'd) Check Program for Complex Gaussian Random Variables ‘
. STO  R4Tidr-T24r '
5 €80 RSWTZ21-T4i
- €99 RpsR1+RD .
e 700 RmeR1-RZ
B 710, RewZ#TireTl)
R 720 VRTALl-4aTAZr-2aTa3-Taq+BuT4ScqnTa6r-6nT47
o 730 Vaysd4w(T31r-24T32r-TIIr+24T34r )9 T
¥ PO VAVHARCTILi-2RTA2I-T 3314207341 0T L . 1
I 780 VeVeR3-24R4-24RBN2
4 TED  VeV+2#(RI¥RpIRAMRUIRIBRED ;
H 770 PRINT "N w"jN ‘
y 780 PRINT “AViC) = "3TIr3"+3c";Tiygm y
k: PR PRINT YAu(CAR: m ";R4+Rm}"+iC"jRG+Re} " 3
W 880 FPRINT "Au(Cmag~2> ="}RI*Rp 1
o 819 PRINT “Sud, DeviCmag 2> =" 50ROV 1
% 820 PRINT "variCnag-2) ="}V 4
b 830 PRINT "Ruclmag d> »";(RI+Rp; 24V
1 840  PRINT g
< 850 PRINT "USING GAUSSIAN RULES:" D4
i BEO  PRINT Gju+t1¢"jH3" " 3
) 870 PRINT G 2+Vd-CH 24Va)§ 41 124 (GaHeyc ;0"
] 880 PRINT G24VdeH~34Ve b
b G VarcalwiVd 2+4Ve 2424V 22448 (G 4V +H  ZaVE+ 2w GrHRY D) 3
v 300 PRINT SOR<Varc) 4
oF 31Q  PRINT Varc 1
K 920 PRINT (G- 2+Vd+H - 2+Ve)~2¢Vare i
4§ 9%  END
Hoe 8 g

ALl = «, 81709993443 +i( . B189%514559 O

ALCC- 20 8 - JFPPLITEIZEVIZ +i(-. 76138494979

AviCnag @y = €, 178575336444 :
St DewiCmagr2) = 6,00940227934 o
Var Cuag 2> = 36.1129157851
AaiChagrdd s 74,25238453735

TR

e e et 8 1

USING GRUSSIAN RULES:

~ BITO9IIRA4T +1( . B1BIN514559 i
~ HBTTLITHE2BTE +1(~. 761384949773 .
€,17575336445

£.00340227937

36, 11291575%4

74.2%528453739
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APPENDIX C
EFFECTS OF POSITION AND DELAY PERTURBATIONS
ON LINEAR ARRAY RESPONSE

Consicer a plane-wave arrival, at frequency f,, from angle 8,, propagating with speed c, as shown
in figure C-1. If the propagation time delay to reach the origin O is dcfined as zero, then the

propagation delay to reach position x on the linear array is
T(x6) = Eomg . (C-1)

Figure C-1. Linear Array, not Necessarily Equispaced

The processing of interest is depicted in figure C-2. The position of the k-th element in the linear
array is x,; the delay employed in the k-th branch of the beamformer is D, (8,), which depends on the
desired look direction 8,; and the corresponding element weight is wy. The voltage transfer function
of the propagaticn delay and beamformer, as applied to the arriving plane-wave, is then

Ve Zuecplized 0 ) 26 D0). (©2)

L

»
PROPAGATION ELEMENT ELEMENT | *

mﬁf OELAY EL'I‘EiAtQN“‘“T DELAY WEIGHT |—o % I
6y ta "X Og) OF ARRAY D (8y) Wi .

;
-

— -

Figure C-2. Processing of Plane-Wave Arrival

-~
BEAMFORMER

b L e R et 1 e e S e P
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Now suppose that the desired position of the k-th element in the linear array is d,, but that the
actual position is

e dot 4, (o)

where A, is a random (distance) variable. Notice that we are restricting consideration to longitudinal
element movement only along the linear array; this restriction is reinoved later.

Also suppose that the desired k-th element time delay to steer the array in direction 8, is (ignoring a
common bulk delay for all elements)

- Ssing (C-4)
but that the actually employed delay is
D(g) = - Lamge s, (C-5)

where 4, is a random (time) variable. (Notice that this choice of element delay takes no account of
distance perturbation A,; a case where this distance perturbation is taken into account is considered
later.)

The transfer function of the linear array is then*
Vs Enopliaed, Bsig vioeh, Beng-ind 1)
. ?x exp [‘. 2t %!.(s‘m 8- :'ma,) ~t2rf, (%‘ B+ S‘)] _ (C-6)

The effect of the position and delay perturbations leads to the k-th random phase shift term expli$,],
where

h =,2r;..(.2!.,‘.,,9‘+3,)=-27(%me. +%) (C-7) {

Here A, is the wavelength of the plane-wave arrival, and T, is the period of the arrival. The fraction of
a wavelength movement, 4,/A,, and the fraction of a period delay, d,/T,, are obviously important
parameters.

Now if the positioh and delay perturbations have the propertiest
= 0, Hd Dwis,] = q
AV{AK] {At] d &r al k’ §
Avisd =0, Std Dov 4] = § (C-8)

and A, is uncorrelated with d,, then we find

* Weight perturbations and element failures are easily incorporated by replacing w, by
wi(1 + r)g,, where r, is a zero-mean random variable and g; is a (0, 1) random variable; these
features are not included in this appendix.

t These could be generalized to allow dependence on k.

C-2
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MaJro, SH Deih)- 2 () st o (@] 1 5., 9

which is a function of arrival angle 6,. Thus, if we plot average properties of the beamformer, by
varying the look angle 6, while holding arrival angle 6, fixed, we can treat o, as a constant. However,
if we do the reverse, we must take into account a varying o, with arrival angle. Of course, if oy = 0 (no
position perturbations), then g, = 2r 0,/T, is a constant independent of any angles. We might also

) note that for broadside arrivals, 6, = 0, o, is a minimum and, in fact, positional perturbations
(04 ™ 0) do not aftect the transfer function, (C-6).

Instead of choosing element delay D,(6,) without taking account of position perturbation A,
assume that we have this information (perhaps via measurements after construction of each array)

and decide to use it by employing, instead of (C-5), the time delay
D) = - 2% smg 4 4, (C-10)

where d, is again a random (time) variable. (Of course {A,} could still be random variables from one
array construction to another.) Then the transfer function of the linear array is

Ve Ex o[t BER i s iarf Shsig - ek, |

« Ew explizek, Homg- w8 - ek, (2fsma- smg]+ 5-)] (C-11)
The effect of the position and delay perturbations then leads to the k-th random phase shift term
expli$,], where now

* - - 2."4‘ (%‘[5.’“\ - 5w g] + 8) = - 2#(‘%[3‘»‘6" S;n ﬂ"‘ '§1.;"> . (C'lZ)

Keeping the same statistical properties as assumed above, we now find

A
- (AT Y AL

| Avi$)=0, St Derf}= 21[ (-;—:-j[;»e,- sG] +(—1-.:-)’] = 0, (C-13)
which is now a function of both arrival angle 6, and look direction 8,. If o4 = 0 (no position per-
turbations), then 0, = 2n 0,/ T, is independent of any angles. For o4 # 0, the minimum of 0, is realized

when 9‘ b Gu ’

For positional perturbations into the x,y plane (rather than just along the x-axis), we have instead
of (C-1), propagation delay

Tloy a) = A qmd (C-14)
Then the voltage transfer function of the linear array becornes
V= exr[-i%w‘. T(x, 9, 8)-i 2r§, Dy 6,)]. (C-15)
Now, instead of (C-3), let element position

"u‘dk*‘u, y.ﬂl, (C-16)

C-3
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where A, and y, are random (distance) variables. Then, if we still use the same delay as in (C-5),

Dlaye - Jesing+ b\ (€17
we find the perturbed transfer function to be
: G- Bl e el wlin, (c18)
where now
& = - 27h (R siney “hasard,
2o (o Lo B (C-19)
Analogous to (C-8), if we now assume
5-0%=0%:0 &= &, RS SR (C-20)
where nonzero g corresponds to correlated x,y movement of an element, we find
' Avid} =0,
i ) 2« (e (ese ARAR) e *@iﬂ* . 21

thus the comments directly under (C-9) are relevant in this

This is independent of 8,, as was (C-9)
case too.
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APPENDIX D
VARIANCE OF POWER RESPONSE

LINEAR ARRAY
The variance of the power response was given in (A-31). We now specialize it to the equispaced

linear array. Define
C"P\A¥| » Cmu)‘lul) C" 'PIUQYI.

G=p¥y G- pi. (D-1)
Then the various quantities { T;;} in (A-24) may, with the aid of (18) and (40) and the realness of y,,y,,

be expressed as

U C:nwl» T Cola, Tin® C:wu Te® ¢ L,
T&y = GL, Tu’““m%ﬁu‘ GG Ly, T”=(~"L,
Tﬂ F ('\4w0, Tﬂ = G ()W‘H To,,: C,;,W‘, r» :CJ:WQ

T * C:K;..W., ) T« ® ("l’ GW,, T¢ C" W, (D-2)

The only terms in (D-2) that depend on u, are T, Ty, T4, and {Ty;}{, by virtue of depending on L,,
L,, Ly. Now (A-31) can be expressed as

Var et} = T- 4T -2T - T + 8 T 4476 T,
+4 (T’;'ZT”- T»+2T”)T;

+ (r“l Tu)‘ +(TB_T1¢’ + 2 (Tu' Tg)"'Tu‘ rn) r:

=

(G- 46020 - G 4+ 8¢ Cmt 420G, - CCON,
+ 406G 260 GG v 2000 L,
(G CW+ (Com O L
» 2 O LG COW (G- COL] U (D-3)

in terms of the quantities in (D-1) and (40). Finally we rearrange (D-3) to read

Vardlerd = Fo W+ BLL + RaWo v Byly v EOW LT+ FLLLL (D-4)
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where
| Fow G-+ G-2Cm= G +FCIC,, +4C/C, - 6C
- F o« 40 (G-26Gu- GG+ 2C)) .
| Fa= Gu- S, Ry = G- O
| Fur2GG.-C), Fy e 203(G, -0, (D-5) )

Since L, and L, only occur in the combinations L, L; and L{, we note, using the properties of L, L,,
L,, that (D-4) is even in u and has period 2n in u. Therefore we need only to evaluate (D-4) in the range
(0, n) for u for this equispaced linear array. The program for evaluating (42) and (D-4) is presented

below,

TSI
oy D5 %

DEEP SIDELOBE REGION

In the deep sidelobe region, L, L,, and L, of (40) are approximately zero; then the only {T;;} in (D-
2) that are nonzero are Ty, Ty, and {T;}. It then follows from (D-4) that

% ‘ Var {icy] = £ W, + F, w: in deep sidelobes, (D-6)
q
where these quantities are given in (D-5) and (40). The constants needed in (D-5) are given by (D-1).
.’i . No simpler expression for (D-6) appears possible.
2 Alternative expressions and interpretations for F,, and F, in (D-6) are possible; let
%P where Pe= i+ rk)u‘f(' ‘u) ) (D-7)
where we used (16). Also let
A= PP - (D-8)
‘ Then we find
— e J—_ — 2
AT N A Y T i M (D-9)

Comparing these results with (40) and (44) in reference 2, we see that F3i and F, are equal to the
cumulants A;; and A,, of random variable p,.

PLANAR ARRAY ‘

The variance of the power response is given in (A-31); we now specialize it to the planar array. With
the aid of (A-24), (18), (D-1), and (75) and the realness of y,, y,, there follows
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T = € L)
T;, hd C;,.,W.“W? ) Tn - C\r LT ’“) L‘t?(v)
T, » CWIWY, Tu= G LW 0)
'} y (")
{T:)\)},. {C) ’ Cl Cw )C! Can COJ L?iV)L, (v)
1 ]
i‘rﬁ}, ’[CM GCM Cl: ) Cn: ’ Cn cam C:C\r » C;?W:)W:’ . (D-10)
The terms that depend on u and v are T}, Ty, Ty, and {Ty;}f, by virtue of depending on L), L,, L,,
defined in (75).
Now (A-31) can be expressed as the upper half of (D-3), which, in turn, can be developed, as above,
into
Vorf1ch} = WS4 F LT 0L W
+ BWIWY R, T LT 0
+[FPWE + Fy LT (D-11)
where the F-constants are given by (D-5). This is the final result, where the necessary functions are
defined in (75).

Programs for linear array results, (42) and (D-4), and for planar array results, (76) and (D-11), are
presented below in tables D-1 and D-2, respectively. For the linear array case in table D-1, the inputs
required of the user are

H in line 20, the number of elements on one-half of the linear array

Qin line 40, the probability of element failure

Sigmar (o,) in line 50, the standard deviation of the relative error of the weights
Sigmap (o,) in line 60, the standard deviation of the phase perturbation in radians
{w, }{! in lines 80-90, the H weights on one half of the array.

Alternative weight structures are available in lines 220-240, if desired.

For the planar array in table D-2, the inputs required of the user are

Phi__1 (¢,) in line 20, the polar look angle in radians

Theta__£ (6,) in line 30, the azimuthal look angle in radians

Slice = 1 or 2 in line 40, depending on polar or azimuthal slice

Theta__a (8,) in line 60, the azimuthal arrival angle or Phi__a ($,) in line 80, the polar arrival angle

H,, H, in lines 90 and 110, the number of elements in the halves of the array in the x and y coor- r
dinates

Dx__lam, Dy.._lam in lines 130 and 140, the ratio of x and y array spacing to the arrival wavelength
{wg)}{"x, {w$ 1Y in lines 150-200, the weight structures in the x and y coordinates

in line 210, the probability of element failure
Sigmar (o,) in line 220, the standard deviation of the relative error of the weights
Sigmap (o) in line 230, the standard deviation of the phase perturbations in radians.
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Table D-1. Program for Equispaced Linear Array
10 | RANDCM BEAMFORMER; EQUI-SPACED LINE ARWAY
20 H@10 | NUMBER OF ELEMENTS ON ONE HALF UF ARRAY .
W ! SYMMETRIC MEIGHTS; TOTAL NUMBER OF ELEMENTS = 2H
40 O=, 001 IPROBABILITY OF ELEMENT FRAILURE
50 Signwes, 9l ISTANDARD DEVIATION OF RELATIVE ERFOR NF WEIGHT
60 Signaps, 0l ISTANDARD DEVIRTION OF FHASE (RADIANSD
70 | DOLPH-CHEBYSHEV WEIGHTS FOR -30 DB SIDELOBES! :

2o DATH 2.40%791938,2.333066168,2.19811497%,1,999277697,1.759768704

Q@0 DATA 1.49241%162,1.213997044,,.940757327'4,, 6870419302, .78335025?1

190 PRINTER I8 @

110 PRINT "EQUI-~SPACED LINE ARRAY JOTAL HUMBER OF ELEMENTS =";2#H
120 PRINT "Probability of elemant failure =";0Q

130 PRINT "Standard deviation of relative zreor of weight s'3Sigmar

140 FPINT "Standard deviation of phase (in radians? ="i3ignap

150 DIM Mudc1:4),Hudlids,Gammac1i2), Nulison

1ERD  DIM Idealpowerc@i2%6),Averageponer(Bi236),Signapowerdd2%6)

172 Num=2%e ! HUMBER UF PLOTTED POINTS <= 2%6

180 REDIM WCLtHD

198 READ W(w) ' ;

2ed Tw»o

219 FUR K=1 TO H

220 | H k=, 544+, 46#COSCPI* K~ 50 H) POHAMMING WETGHTY

238 ) WikOI= +LNSCPIRCK-, B) H bOHANNING WEIGHTS

240 ! WiK>ay FOUNTFORM WEIGHTS

280 TaT+WiK) )

266 MNEXT K oo
278 W2uWd=p : )

280 FOR K=1 TQ H

290 WCKI=HCK) AT

300 Papick»~2

318 W2=W2+P . )

320 U4mWa+p~2 ’ o
338 NEXKT K R
3490 Wz=W2-2

353 PRINT “"Effective number of elemgnts ="!1 W2
360 PRIWT LIMCLY

3ITO WaAsM4- 3

328 VraSignar~2

398 Vp=Sigmap2

408 MudioaMudg ) sMui3reMucd4ral -

418 MHuylhag

420 MHu(2h=lavr

430 HuC3o=143avr

441 Nucdial+o#Wp+3eip -2

4590 Cammnacld=EXRI~-, S%Vp)

468  GammacZisEXP(2#Yp)

470 CimMuci MW 0% Gammat ]

480  C2msMuc2rsHuc )

490 CorstaiZ)#NuC2r*Canmace?

SO0 CIeMuC3d2NUCI %o ammarl)

S$10  CA=iuiqdIwNua) .

520 Cleg=C1~2

H530 Cond2l2meC2r

Bt FAeC4~42C0)#03~2#02m d~C2r 244401 28C0~E0 122
B0 FlagaCiei-CraCos2*C12%0]

$60  Aa=Cem~-ClQ

79 AbsC2r~ClR

530 Fzasha 2
538 F2beAbz &’W

00 Flas2#C12»Ra ??h -
i&g "

€10 Fibs2+C12+Ab R
670 ConaF4sWd+F2asl2 2 o QO opd
630 Flaw2eFlavW2 15 B8 \;WTQ
€40 Var_uolt=Rarlz 5?;(55 R

656 P=PT-hum wat ¥

00@1
668 FOR I=0 TO Hum ,@I

D4




670
680
699
700
710
720
730
740
750
760
770
780
790
800
810
829
830
840
850
860
870
880
890
900
910
90
930
940
%e
960
970
980
990
1900
1010
1020
1036
1040
1030
1960
1070
1060
1099
1109
1110
1120
1120

Table D-1. (Cont’d) Program for Equispaced Linear Array

Uslsp :

LlsL2s_ 320

FOR Kui TO H

SulCK)

TeS#COSC (K=, 8%

$wEr2

LimL1+T

L2elL2¢2#T~2~8

L3ImL3+SeT

NEXT K

L2=L2~2

L3=L3-4

ldealpouwer(I>=L1~2
thrlqtpoucr(l)-Clzildcaipoucr(I)*Var_volt
v-r”poucr-ComwFZbﬁLi"2+F3&L1*L3+<F1aw2*FIbDL2>*L1“2
Signapower{1)sSAR(Var_power)
NEXY 1

PLOTTER 1S5 "GRAPHICS"
GRAFPMHICS

SCALE @,Num,~7,0

GRID Num-18,1

PENUP

FOR I=® YO Num
Asldealpouwercl)

IF AX1E~7 THEN 940

PENUP

GOTO 9%0

PLOT I,LGTCRAD

NEXT I

PENUP

FOR I=@ TO Num

PLLT I,LGTCRVeragepouer ()
NEXT 1

PENUP

FOR I=1 TOD Hum

PLOT I,LGTCAveragepowerI)+Signaponerdls?
NEXT 1

PENUP

FOR =@ TO Nut

PLOT I1,LGTC(Rveragepowdr(I)+24$igmapover (112
NEXT 1

PENVUF

PAUSE

DUMP GRAPHICS

PRINT LINC(S)

PRINTER IS 16

END
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10
20
30
40

0
€0
0
a9
LT

100
110
129
139
148
1%0
160
ive
180
190
2@
1@
e

2320
240
256
260
el )
280
290
390
310
3z@
330
348
359
360
370
3ge
390
490
410
420
4%0
441
450
460
480
499
S00
%10
3z0
330
%40
550
%60
3TV
314
390
11]
£10
B0
638
540
€50
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Table D-2, Program {or Equispaced Planar Array

! RANDGON BERMFUPMER; EUWUI-3FRCED PLANAR RREAY
INFUT "Polar Look Angle “in radiansd = ", Fhy )
THPUT "Rzimuthal Look Rngle 7in radiansy = My Theta )
INPUT For Polar Slice in Arrival Mngle, #ntar |
For Azimuthal Slice in Arrival Angle, anter 2%, 5%1ce
04 Slice GOTO €9,30
INPUT "Fixed Azimuthal Arrival Angle (in radianz) = Py Theva_a
GOTO 98
INPUT "Fixed Polar Arrival Angle (in radians' = TP _a
Hx#1®8 | NUMBER OF ELEMENT3 ON ONE HALF CF ARRAY, IM A-DIRECTION
! SYMMETRIC WEIGHTS; TOTRL NUMBER OF ELEMENTS IN X = 2 Hx
Hu=® ! NUMBER OF ELEMENTS OMH ONE HALF OF ARRRY, IN Y-DIRECTION
!PSYMMETRIC WEIGHTS; TOTAL NUMBER UF ELEMEHTS IH Y = 2 Hy
Dx_tam=, 8 V W=SPACING-WAVELENGTH
Du_lam=,$ ! Y-SPACING/WAVELENGTH
! 10 DOLPH-CHEBYSHEY WEIGHTS FOR -¥@ DR SIDEL OBES:

DATR 2.4057%8338,2, 333066168,2,195114979,1.,93%92776%7,1.759768704
DATA 1.49241%162,1.213997044,,9407%73274, .6870427302, . 7833503571
' 9 DOLPH-~CHEBYSHEY WEIGHTS FOF -30 DE S1DELUBES:

DATA 2.881154180,2.%R1677308,2,391494643,2,1370937909,1.81087713745%

DRTA 1.467761548,1.1239420%52,,802515104, , 829035037

A=, 'PROBABILITY OF ELEMENT FRAILURE

Signar=,02 ISTANDARD DEVIRTION OF FRELATIVE ERFQR OF WEIGHT

Sigmap=,1 'STANDARD DEVIATICOH OF PHASE (RADIANS)

PRINTER IS @ ' \
FRINT "Equi-spaced planar array Total rumber of elements s"324Hx) 24HyY
PRINT "X~spacing/wavelength ="iDx_lan,"¥-spacing vavelangth "Dy Tam

PRINT "Frobability of element failure =2";0

PRINT "Standard deviation of relative error of weight ="3Sigmar
PRINT "Stwndard deviation of phase (in radiansy s"jSrgnap
DIM Mu(1:4},Nu(1:4D,Glmmn(f:i),ux(l:ﬁﬁl.wuﬁltﬁgﬁ,U(ﬁ:ZSG).V(ﬁ:ZSG)
DIM ldealpousriBi2%96), Averageponer 0258, Signapoueri@:2%56)
Num=z25¢ ! NUMBER OF PLOTTED POINTS <= 2%&

REDIM Wx<1iHxd, WuCliHyd

READ Wa(xd,Wy#)

Tal  SUMHx 0

WexEl4rwd

FOR K=1 TO Hx

Wx KWk *T

Pl ki@

UZxsU2-+F

W miig e 2

HEXT ¥

Wex=W2x-2

Wex=lddx. B

T=1/SUMCHUY

Wey=hdw=0

FOR k=1 TQ Hy

WK =Wy KT

PelaCK) 2

Wy a2y +F

Udymldy+p -2

HEXT ¥

W2oelzy 2

Hayslidy -3

FRIMT "E¢fective numbers of ebangnts vn w0 2901 kaa i W20
PRINT LIMN(L)

PRINT "Polar Look Angle =" Fhi 1 .
PRINT "Azimuthal Look Angls ="jThata

OH €)ice GOTO £09,630

PRINT "Fi:#d Azimuthal Arrcival Angle = (Thats s

FRIMT “Folar S1vce in Arrival Angle from 2 ¢t #1oo"

GDTO €50

PRINT "Fir-ed Palar Arrivsl Angle =";Fhi_a

PRINT “Azvmuthal Slics in Arrival Angle frow & to z+F1"

VreSigmar -2

PHIS PAGE IS BEST QUALLTY PRACTICABLE
FROM COL ¥ ¥ URNI SHED T0 DDC
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€60
6ra
30
690
vee
718
729
730
740
g1
Te0
770
760
799
200
819
820
830
849
8%0
8¢0
g7ve
880
899
990
91@
szn
930
340
950
960
370
980
990
18649
1019
le2e
19050
1640
1039
1068
1ave
1420
10306
1100
1110
1129
1128
114a
1150
119
1170
1180
1130
1200
1219
1220
1230
1740
1e%8
1ve0
127
1220
1299
1398
1310

Table D-2. (Cont’d) Program for Equispaced Planar Array

VpesSignapse

Mudl D) asMY(2iaMuc3 aMuiq =g -Q

Nudiorug

Hud2r=i+yr
Nuciraf+32ypr

NUuCd ) o +64Vr+3yr 12
Gamnac ) ) sEXP(~, Suvp)
Gammac2)wEXP(~24Vp)

Cl=MuC1 Y #HUC1)#*Gumnacl)

CasNuc 2o #NuC)

C2rsMud2owxNulC2)*GCanmala)
C32MULIo4HUCI I+ Cammacl)

CAxMur4r+NuC4?
Ciz=C1~2
Comgal2meCer

FARCA~a4nCI%CR~24C2m 2-C2ro2+dnC12%Cn-6ri12 2
F3ma#( 1 #(C3~C1#Co+Z+C124C1)

Aasu2n-C1e
Absl2r-012
Fasfa~2
F2b=Ab~2
Fla=2+Clz*Ra
Flb=2*C12¥Ab

ComaFdeldxildutF2a® (HExely 2

Flau2=Flaslexeh2y
Var_uvolt=RaslZxslay
S1=SINCPhI_1)
Ax=2%PI%#Dx_1am
Av=2#P1#Dy_1am

UT=RAx*S1%COS( Theta_l )
VI=Au#S 1 #SINCThetu 1>

OH Slice GOTO Polar,Azimuthal

Folar:

Ua=Ax*C03cTheta_a’

VasAv#SINCThet a_ad
Fe,S«F] ~Num

FOR I=8 TO Hum
Phi_a=P*]
SanSIHCPhi_al
UelieUl ~ljussa
VilomVl-VarSa
NEXT 1

GOTO Common

Azimuthsl: SaxSIN(Phi_a)

Un=fx*Sa
YarAvkSa
Pu2eP ] Num

FOR I=@ TO MHum
Theta_a=P+]

Uv sl ~UsaelO%  Theta &b
MOliml-Va#SIH Theta_al

NEXT 1

CommontFUR Isd TO Num

Liuslgusl 3usd
Bisydrs

FOR k=) TO K-
SwldCK

TaS#+L 02k~ o4l
SmG 2

Llusllu+T
L2usLiu+#T 2~%
L3usL 3ue S#T
HEXT K
Lauwslgu- &

L3usl 34

Lius| 2usl 3wzl
Viwyilo
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Table D-2. (Cont’d) Program for Equispaced Planar Array

1320 FOR Kwil TO Hy

1330 S=lycK)

1340 TS+COSCCK~,%)4Vi) !
1350 $=5~2 :

1360 LivebLjus+T )

1370 L2uslL2u+24T~2~8

1380 L3usL3ued*T

1399 NEXT K

1400 L2u=L2u-2

1410 L3v=L3ure

1420 Liuvsliuslty

1430 L2uv=l2urlL2w

144€ ldealpouwgrcld=iluu~d

1450 Averagepouer(l =liisldeslpaiverclretiar v ot
1462 Var_poweraCon+F3IsLiuvsLl3usl3ue+F2oal2un 2+ Frlaup 19 inal Suusl lye -2
1470 Sigmapover (1 =SAR Yar_power)

148@ NEXT 1

1490 PLOTTER I8 "GRAPHICS"

1500 GRAPHICS

1510 SCALE @,Num,~7,9

1520 GRID Num-10,1

1530 PENUP

1540 FOR =@ TQ MHum

150 Asldealpouwerdl:

1569 IF RX1E-T THEH 1598

1578 PENUF

1580 GOTO jeé08@

1590 PLOT I,LGTCAD

1600 NEXT I

1610 PENUF

1620 FOP [28 T Num

1630 PLOT I,LGTCRveragepower vl

1640 NEWT I

158 PENUF

1660 FOR I=1 TO Num

1679 PLOT I,LGTCRAver agepcuarcli+Srgmnapower I .
1638 MEXT I

1690 PENUF

1700 FOR 1=@ TO Hum
1719 PLOT I, LGT Averagepouwer I M +243 i guapougr
1720 NEKXT 1

1738 PENUF

1740 PAUSE

17%0 DUMP GRRPHICS
1760 PRINT LINGS)
1770 PRINTER % 16
1720 END
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