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EFFECTS OF RANDOM SHADINGS, PHASING ERRORS,
AND ELEMENT FAILURES ON THE BEAM PATTERNS

OF LINEAR AND PLANAR ARRAYS

'1 INTRODUCTION

"Although an array beamformer with known element positions may be designed for good sidelobes
or skirt selectivity behavior by choice of the element shading (weights), the actual array response will
undergo degradations due to, e.g., element position movement, delay approximations, element gain
quantization, random element gains, element failure, etc. Here we will investigate the effect of all

* these random perturbations on the response of the array beamformer for a single-frequency plane-
wave arrival and for individual array elements with omnidirectional response. Since the power
response to a single-frequency plane wave is itself a random variable at each angle of look, we will
evaluate its mean and variance as a function of the look angle; the element locations; the statistics of
the shading, phasing, and failure perturbations; and the plane-wave arrival frequency, propagation
speed, and arrival angle. From these results can be deduced quantitative tolerance limits on the
perturbations in order to realize specified sidelobe levels.

Some previous results on the array power response for random perturbations of the element gains
alone are given in reference 1. (This reference is also useful for additional background, motivation,
and interpretations.) Then, in reference 2, the moments, through order four, of a sum of independent
complex random variables were derived, as were the cumulants through order six. However, both of
these results were given in terms of the moments of the zero-mean random variables of each com-
ponent in the sum; this form is rather inconvenient and error prone when calculating array per-
formance. Also, the beamformer application in reference 2 was limited to phasing errors only.

Here we will derive the moments of a sum of independent nonidentically distributed complex
random variables, up through the fourth order, in complete generality, with no Gaussian assump-
tions. Then we will apply these results to both linear and planar arrays and give examples of the
performance degradation caused by perturbations in gain, phasing, and element failures. Some
results, without the derivations and programs contained herein, have already been presented in
reference 3. Additional related results, which, however, do not cover the higher order moments
considered here, are presented in references 4 and 5.

DEFINITION OF TERMS AND NOTATION

Let C be a complex random variable. The average value of C is denoted here by two equivalent
notations,

a s m q ti a ave)

and is a complex quantity. In a similar manner, we have

Av~c f C2 Av tic r] TIC (2)

.773 71
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The variance of complex random variable C is defined as

Vorc) 6-:w- F•r -- - itr (3)

and is real. Two other averages of interest are

A4(• i Z -

Av ? C1I Q~ (4)

The final variance of interest is

Vor iI~ C ii~ 12l C1 C . (5

The expression in (5) requires the fourth-order moment in (4) and constitutes the major analytical
problem addressed herein. We will derive expressions for all the quantities in (1)-(5).

MOMENTS OF SUM OF RANDOM VARIABLES

The particular problem of interest in this section is as follows: {Zk}r are statistically independent
complex random variables, which are not necessarily identically distributed, nor are they assumedGaussian. A sum variable C is defined as

N

C h r "5, (6)

and is complex. We wish to evaluate the various averages defined previously in (1)-(5), in terms of the
appropriate moments of random variables {Zk). These moments Of {Zk} are presumed known, but
they need take no special form; random variable Zk need not have zero mean, for example.

We have immediately, from (6),

Av ýcl -5A t--a..•,,,] (7)

in terms of the means of { zk }. Also there follows

Av - -'5#. --+ 1•i

k (8)

where we used the statistical independence of Zk and z, for k 0 n. Continuing on, in an obvious
H4 fashion,

" k k (9)

2
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where we used (7). From (3) and (9), there follows

Vaoc, I(TV -1i') :EV04' (10)

and from (4), (8), and (7),

An alternative expression for (9) is available by employing (10):

S A ý Ic111 =A,,C12 +- VorC (12)

The final quantity of interest is given by (5) in terms of 1C-4. For the sum in (6), the latter quantity is
given by

4.•,, (13)

This statistic is evaluated in appendix A. In fact, the more general quantity

b~ ~d, (14)

is evaluated, where complex random variables ak, bk, Ck, dk are statistically dependent amongst
themselves for any k; but these random variables are statistically independent of the random variables
an, bn, c,, da for all n , k. We evaluate (14), rather than (13), for two reasons: First, the notation is
simpler and an error in analysis is much easier to detect; secondly, this more general result may have a
possible future application, and the analytical effort is no greater. The average in (13) is given by (A-
26) in terms of the 16 fundamental sums defined in (A-24), and the variance of IC2 is given by (A-31).
We do not repeat these results here because of their length. A program for evaluating all the above
quantities is given in appendix A, table A-I.

As a check on these results, the case of Gaussian complex random variables {Zk} is considered in
appendix B. A program for this special case is given in appendix B, table B-1.

APPLICATION TO BEAMFORMING

"For an ideal array with no perturbations in element positions, gains, phases, delays, or failures, the
voltage transfer function to a plane-wave arrival can be expressed as

,,•_ v•(15)

where vk is a complex quantity that incorporates the plane-wave arrival angle and frequency, the
steering angle, and the element parameters such as element position, gain, and phase; see reference 1,
equations (1) - (8). When imperfections in the array realization are encountered, they can be included
in the array voltage transfer function by replacing vk in (15) by

V, 3" (1+ !r" (16)

where gk, rk, +k are real random variables. The random variable Sk represents random element
failures, by setting gk = 0 or I with specified probabilities; the random variable rk represents relative

3
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gain perturbations from the desired value of Zk = vk; and random variable +k represents phase

perturbations from the desired value of 0.

The phase perturbations {+k} can arise from positional and/or delay perturbations in the array
realization. This problem is considered in appendix C for a linear array; the variance of +k is derived
and its dependence on arrival and look angles is made explicit for two situations of knowledge on the
part of the array designer.

The random variables gk, rk, +k are dimensionless. We shall assume that they are independent of
each other and of all other random variables for different values of k. (This could be generalized at
the expense of requiring more detailed knowledge of the joint statistics of these random variables.)
We let the moments of these random variables be denoted by

( J(17)
The independence of these moments on k could be generalized easily, but is not done herein. Thus,
physically, we are presuming an array where all elements are equally random in terms of amplitude
perturbations, phase perturbations, and failures.

The necessary statistics that must be evaluated are listed in (A-25). They are, using (16) and (17),
given by

i~'I " i "I v,,Y1

I~d÷•..Ivd* p,.(18)

It is worthwhile noting that only the first two moments y, and y2 are required for the phase per-
turbation. Then the fundamental sums that {Tij} in (A-24) depend on are just

~I~A> IV ŽI dV~, -k 4 (19)
k k

which are independent of the perturbation statistics in (17). The reason for this independence is that
(17) was presumed independent of k, the element number.

Now we can express the various array responses of interest in terms of the above quantities. We
have from (15) (or from (16) for gk = 1, rk = 0, +k 0, all k)

Ideal (Complex) Voltage Response = . (20)

4
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Then

Ideal Power Response .I (21)

Next, from (16),
Actual Voltage Response = C -Ž2F2 (22)

and finally

Actual Power Response Z I". (23)

Then (22), (7), and (18) yield

Average Voltage Response = Av L -p,, , .Iv 1 , (24)

which is a scaled version of the ideal voltage response (20). This simplification results because the
moments in (17) were assumed independent of element number k. From (23), (9), (18), and (24), there
follows

Average Power Response Av -

the second term of which is a scaled version of the ideal power response (21). The first term of (25) is
the variance of the voltage response, as may be seen by combining (22), (10), and (18):

Variance of Voltage Response = Vor {tC)

--(•A~vg-)2:P:,) .)vKz (26)

Finally, the quantity

Variance of Power Response = Var I Ic (27)

is given by (A-3 1), (A-24), and (18).

EXAMPLE OF ELEMENT PERTURBATIONS

The necessary moments were listed in (17). We now need to specify the probability density func-
tions of (gk0, (rkd. and {I+k in order to evaluate ;m, Vm, Ym" Since gk is a 0, 1 random variable
representing element failures, we let

•(3) - ( 9) -+ -Q • •' (28)

that is, Q is the probability of element failure. We have taken advantage of the independence of k in
(17). Then

S d3 ~f (f) aI-Q or il MAO. (29)

4 772T ,7'
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The second quantity in (17) is
•, =• .n. (30)

If we let F'i a Pm, then we have

P, V ,+ 14 +-PJ ,)el p,3t:, 4 +t 44 1+4 ,4 +t14  *,4 + . (31)

As a special case, if relative perturbation r is zero-mean Gaussian, then

S1) -) -. - (32)

and there follows

P0, 0) 01= -"r, 60 /. 3 r' (33)

for which

S -+a., +3 r"+ 2+, 6 = r i+•, . 4. (34)

Finally, to evaluate the third quantity in (17), we need

7-1 j - (35)
eW

The probability density function of + will be taken to be zero-mean Gaussian, in which case,

It should be noticed that ym is real for this example; this real property simplifies the programming

eff!rt and is used throughout the rest of this report.

EQUISPACED LINEAR ARRAY

GENERAL RESULTS

It was noted earlier that the voltage transfer function of an ideal array to a plane-wave arrival can
be written in the form of (15). We now investigate this form for an equispaced linear array; we find,
for a symmetric real weight structure Wk } about the center of the array, that (reference 1, page 3)

V w, e,%[- (k- *•A)K f • even .. e-br 01 elt*e*s, (37)

where

Here fa, c, Aa, and +. are the frequency, speed of propagation, wavelength, and arrival angle
(measured from broadside) of the plane-wave arrival; d is the linear array element spacing; and +1 is
the look (steering) angle of the array. Extension of (37) to an odd number of elements is readily
achieved, but not pursued here. We let N be the total number of elements in the array and express

6

t-L



TR 6191

N = 2 H, (39)

where H is the number of elements in one-half of the array.

The five fundamental sums in (19) now take the form

:Z ,:, (40(k-)A] v

k

V11g Wx"C 0 j(2k-1) -A] (a

where we have taken advamtage of the symmetric real weight structure in order to write all the sums as
explicitly real quantities. The notation F here denotes a sum over all nonzero weights {Wk) from
k = - H to H. In the program to be presented later, advantage is taken of the symmetry in order to
decrease the number of terms computed by a factor of 2. If we denote the first function in (40) by
L1(u), then it follows that

L,(-4)- L,(•)) L,(t4+ ) =-L,(u) (41)

Similar useful properties hold for the other L functions in (40); they enable the region, where (27)
must be computed, to be reduced to the range (0,u).

In terms of the quantities defined in (40), we can now express (20)-(26) as

--J 4a1. VO661, oe OI3, e= C, L, (u)

Avaie- f Resrome a C' LO(u) + (C.,.- COWr

Vat iaveL .fV. *Ode JRespo-Se Lc - czw (42)

where

,% . , CPi ' (43)

The variance of the power response is given in appendix D. Examples of (42) and the variance of the
power response are deferred until later in this report. A program for calculating the average behavior
for a linear array is given in appendix D, table D-1.

, 1 7
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DEEP SIDELOBE BEHAVIOR

In the deep sidelebe region, the ideal voltage response is substantially zero; that is, L, (u) in (42) is
approximately zero. Then (42) simplifies to

14d V0s lsp.e,. 0

hie"via Volbip- Rerpomse o

X 4erate powe.r ROPOS a (,, xj,);w
Va'.;. of V0 oe R.espopoe (1-4P-A ) '% (44)

where we employed (43) and (40). The variance of the power response is given in (D-6) in terms of the
other quantities defined there; no simple expression for this variance was obtained. Alternative in-
terpretations of the constants are given in appendix D, (D-9).

Since the peak ideal power response (for positive weights) is given by (see (42) and (40))

k (o - ( ," , (45)
then it follows from (44) and (45) that

"A PetaGa P .e,,ows. s F,,,o.,. (n SiA ,, re .V (46)

where

Neff= (47)

The quantity in (46) requires only second-order statistics of the perturbations and the single summary

parameter (47) of the weights. Equation (47) is maximized by equal weights over the entire array.

For the example considered earlier, we use (29), (34), and (36) to evaluate the numerator of (46) as

Vu (Q)0I+ e') - 0IQ 2~r(r" (48)

For small phase perturbations, O2p<< 1, and (48) simplifies to

V 0 - 4 (Q + ns + (49)

If, additionally, the probability of element failure is small, Q << 1, then (49) can be further
manipulated-into a variety of forms:

C + 4'+ . (50)

8
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Then (46) becomes

This simple rule-of-thumb is similar to (43) in reference 1 and to (83) in reference 2, but now
generalized to include simultaneous element failures and gain and phase perturbations. It indicates
that the variances of the three perturbations simply add, at least under the assumptions made.

GAUSSIAN APPROXIMATION IN DEEP SIDELOBE REGION

When the number of elements in the array is large,* the sum variable C may be well approximated
as a complex Gaussian random variable. However, the statistical description of C is still difficult,
since the variances of the real and imaginary parts of C are not equal, in general; see reference 1,
appendixes A and B. However, in the deep sidelobe region, we have from (22), (24), (25), and (40),

(52)

Then, letting complex random variable

C a x* ij, (53)

we have

- 0-Q, 3. 0, 3- -I 0'. (54)

Now, if none of the elements have failed, the deep sidelobe behavior is attainable, and we have,
under this conditional situation, the joint Gaussian probability density function

(55)

where, from (52),

VA= .1 , (56)

since we must set

* J4. I fr all m (57)

under this condition of no elements failing. Then

Av -
Vor ticil Vorix&+41 r,

5JNv Dw iClJ (58)

*'The material in this section applies to any array, not just a linear array; in fact, the larger the number
of elements, the better the approximation.

9
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Thus, the standard deviation of power gain, IC12, equals its mean; this property obtains only when
none of the elements have failed. Also

F6 ( IC1, <r) - O (' T) Iexy (_ T/1),(9
That is, the probability density function of lC12 is exponential in the deep sidelobe region. In par-

ticular,

?Pro <C~ Avi l+v5l4 Dv [ 101) -* x ( ) (60)

Thus, for example, the probability that the actual power gain, lC12, remains less than its average value
is 0.63, while the probability that it is less than the mean plus two standard deviations is 0.95.

PLANAR ARRAY

GENERAL RESULTS

"In order to apply the results above to a planar array, it is convenient to use a one-to-one number
association between the integer k and the location p, q of a particular element in a planar array
presumed to have a grid structure. Thus, instead of (16), we have

j& v, J r( ex (61)

and instead of (17), we have

0( -- j ." dere,,e a- p,4.

( T " .(62)

The necessary statistics that must be evaluated are identical to (18), except that vk is replaced
everywhere by v,,. Thus, analogous to (19), we need to evaluate the quantities

VM -ý >-. V , r, , >._ Ivn] .V."t V Iv]•',t , V)n.l (63)
":: ?~~F, F1, $ )

Analogous to (20) et seq., we have

for gpq - 1, rpq - 0, +pq -0, all p,q. Then,

tctdeal ?,O'( ,,to,,,e - i n (65)

Next, from (61),

AcA- Vo?*r VM r. ~ :c (4.), (66)

j 10
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and

Acv+ti Fw, •epo. -Icl'. (67)

Theit, (66), (7), (A-24), and (62) yield

Av, o Wq .%r p.. A.[c7. a T ),&,Y, -4 (6)

which is a scaled version of the ideal voltage response (64). This simplification results because the
moments in (62) were assumed independent of element location p, q. Also, from (67), (9), (A-30), (A-
24), (61), and (62), there follows

Avwr Pa w. Resr.a. - Av 1c1C11 - T,.- T.+. +ir

+ )0 jyj' ) nV-s' (69)

the second term of which is a scaled version of the ideal power response (65). The first term of (69) is
the variance of the voltage response, as may be seen by combining (66), (10), (A-24), (61), and (62):

vcw anc,,c of V, I* Kespons. - Vor I C] = T..- T.a
I = (),, , :•1)•vl.(70)

PSI

Finally the quantity

Vcawiare of Po6.r Fe•,.u. - VorJIC02 (71)

is given by (A-31), (A-24), and (18) with Vk replaced by vpq everywhere; the quantities that must be
evaluated are those listed in (63).

EQUISPACED PLANAR ARRAY WITH MULTIPLICATIVE WEIGHT STRUCTURE

For a planar array with elements equispaced on the x, y plane by distances dx, dy, and for a
multiplicative weight structure,

rtow- =W',w• , (72)

we have, from (21) and (22) of reference 1,

for a planar array with an-even number of elements in both the x and y coordinates, where the weight
structures {wp")) and (wY)} are assumed symmetric about both x = 0 and y - 0 (p = q - 0), the
center of the array. The parameters u and v incorporate look (steering) angle (6,, +j), spacings cix, dy,
and plane-wave arrival wavelength A. and angle (0a, +a):

*1 11
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V 21r t (s a 6 5 G (74)

The polar angle (measured from the z-axis) is +, and the azimuthal angle (measured from the x-axis) is
S. The dimensionless parameters required in (74) are relative spacings dx/As, dy/A., arrival angle (0,
+a), and look angle (01, +j).

The five fundamental summations required in (63) take the form

Z1ono . L3 (4 L) W

(75)

These quantities are all real, due to the symmetry assumptions; so, for the perturbation example in
(28)-(36), all the (T}) in (A-24) are real. Furthermore, the summations on negative p and q in (75) can
be avoided by muitiplying the positive p and q terms by a factor of 2, as done earlier for the linear
array.

We can express the desired quantitites in (64)-(7 1) in terms of (75) and (43):

Vol Voles Respovoe L,'Iu) L',(v)

Avourroe V0 N~ )bRgesfo'ise -C, i1u,) Lý1(v
:~~q-p •.',,,PD,•.4 Rei,,,se , (CI.,,- r-2D)rWA?•d+ C,' L*1"(0Lý02(v)

The variance of the power response is given by (D- 11) in appendix D. A program for calculating the
average behaviors for the planar array is given in appendix D, table D-2.

EXAMPLES

Four curves are drawn in each of the figures discussed next. The bottommost curve in the deep
sidelobe region (the curve with the deep notches) is the ideal power response (21), which would be
realized for no element failures, gain perturbations, or phase perturbations; this curve is normalized
to 0 dB at its peak where the look angle equals the arrival angle. The second curve from the bottom (in
the deep sidelobe region) is the average power response (25) for the particular set of perturbation
statistics listed with each figure. The third curve from the bottom is a plot of the average plus one

12
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standard deviation of the power response, that is, (25) plus the square root of (27). The topmost curve
is the average plus two standard deviations of the power response, that is, (25) plus two times the
square root of (27). In the mainlobe region, the curves can cross each other; however, the ideal power
response curve always reaches 0 dB, and the other three average curves always lie in the order relation
indicated above. These facts enable the reader to discern the behavior of the four curves in any one
figure.

LINEAR ARRAY

We consider an equispaced linear array of N = 20 elements. The single variable, that all the array
responses depend on, is the variable u defined in (38),

for which the range (0,w) is sufficient to cover all cases of element spacing, look angle, and arrival
angle and wavelength.

In figure 1, a Dolph-Chebyshev -30 dB array design is indicated, for which the effective number of
elements, (47), is equal to 17.35. This result is especially useful for evaluating the average power
response in the deep sidelobe region; see (46) and (51).

The four parts (A, B, C, D) of figure I correspond, respectively, to (A) element failures only; (B)
weight perturbations only; (C) phase perturbations only; and (D) combined element failures, weight
perturbations, and phase perturbations. Quantitatively, we have

(A) probability of element failure Q - 0.001
(B) variance of relative weight perturbation O2 0.001
(C) variance of phase perturbation o2 0.001
(D) all the above combined.

The parameter values have been chosen so that the three variances are equal
(oa2 Q(1 - Q) 2 0.001); thus the average power response in the deep sidelobe region, (5 1), should be
equal for parts (A), (B), and (C). In fact, (51) gives 0.001/17.35 = -37.6 dB for the first three parts
of figure I and 3 x 0.001/17.35 = -42.4 dB for part (D). These calculations agree very well with the
results plotted in figure 1.

The curves in figures IB and IC, for weight and phase perturbations, are virtually identical; the
curves in figure 1 A, for element failure, indicate slightly poorer performance, about I dB larger at the
peaks of the sidelobes. Figure ID, for combined perturbations, is, of course, the poorest of all. The
mainlobe response is substantially unchanged in the four parts of figure 1.

Figure 2 is drawn under conditions identical to figure 1 except that the weighting is changed to
Hamming. For this N - 20 element array, Neff - 14.68. The results for the average power response in
figures 2A, 2B, and 2C are virtually identical; however the standard deviation of the power response
for element failures is somewhat greater, thereby leading to poorer performance in figure 2A.

Figure 3 is also drawn under identical conditions except that the weighting is now Hanning, for
which Neff - 13.33. The observations for this figure are identical to those for figure 2.

13
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PLANAR ARRAY

We consider an equispaced planar array of Nx x N - 20 x 18 elements, for a total of 360
elements. Since there is no simple single parameter like u, (77), in the linear array, we plot the results
versus the polar arrival angle or azimuthal arrival angle, for specified polar and azimuthal look
angles. The results in figure 4 et seq. employ element spacings in the x and y coordinates of a half
wavelength; however the program in table D-2 easily accommodates other spacings of interest. Figure
4 is drawn for a multiplicative weighting of -30 dB Dolph-Chebyshev design in each of the x and y
coordinates; the effective numbers of elements in the x and y coordinates are 17.35, i5.57, respec-
tively. The average responses in figure 4 (notice the much larger element perturbations) are plotted
versus the polar arrival angle +a in radians, while the azimuthal arrival angle and the look angles are
all zero. The results in figures 4A, 4B, and 4C are substantially the same; the case for combined
perturbations in figure 4D is, of course, poorer in terms of performance attainable.

The average power response at the peak of the mainlobe has dropped by about 1 dB in figure 4A
because of the effect of element failures, and by about 1/2 dB in figure 4C because of the effect of
phase perturbations. The combined effect in figure 4D is such as to lower the average power response
at the peak by about 2 dB.

The similarity of results, for weight perturbations or phase perturbations or element failures alone,
prompts us to confine further attention only to the case of combined nonzero perturbations. In figure
5, the same array is used as in figure 4, where now we have selected Q o02 o- 02 0.1. Part A
corresponds to a plot of average results vw'rsus azimuthal arrival angle 0a' while part B is for a varying
polar arrival angle +a. The reason that the ideal power response goes below -60 dB is a result of the
multiplicative effect of the individual x and y -30 dB patterns. This leads to average responses that are
virtually independent of the polar and azimuthal arrival angles.

Figure 6 is drawn under conditions simailar to figure 5 except that the weighting is changed to
Hanning. The effective numbers of the 20 x 18 elements are 13.33 x 12 in the x and y coordinates.
Finally, in figure 7, when we make the polar look and arrival angles +1, +a equal to n/2, we get two
large equal responses at 0. = O1 and B, + ff. This is a result of the element spacings being equal to a
half wavelength and, therefore, the array is unable to distinguish or reject arrivals coming endfire to
the array from the undesired opposite direction.

Additional results for other equispaced linear or planar arrays are easily available by using the
programs in appendix D for whatever set of parameters fits the user's application. Generalizations
should be obvious and easily realized from the general results presented in appendix A.

SUMMARY

General equations for the first four moments of a sum of independent complex random variables
have been derived with no restrictions on the statistics of the individual variables and no requirement
of identical statistics. A program for this case is available in appendix A, table A-I, for those ap-
plications requiring the most general case. This program has been thoroughly checked and also
compared with the results for Gaussian random -ariables.

These general equations have been specialized here to a beamforming application, including
equispaced linear and planar arrays. Additionally, for ease of programming and investigation,
identical statistics were assumed for all the array elements; however this restriction could easily be
eliminated by reference to the general results given earlier, To determine allowable tolerances on
element weight perturbations, phase perturbations, and element failures, it is recommended that

20
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initial guesses be made at the statistical parameters and, then, the average responses given herein
plotted and observed. Then another educated Suess can be made and the new responses observed. In
this manner one can quickly converge to tolerable limits on the different types of perturbations in
order to realize specified performance and sidelobe levels.
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APPENDIX A

DERIVATION OF FOURTH-ORDER MOMENT

GENERAL RESULTS

Here we will evaluate the complex quantity

IO,,,., k., '(A-I)

where complex random variables ak, bk, Ck, dk are statistically dependent amongst themselves for any
k, but these random variables are statistically independent of the random variables an, bn, cn, dn for
all n 0 k. The fourth-order sum in (A-i) can be broken down into many subcases: (1) all four sub-
scripts equal; (2) three equal and one different; (3) two pairs of two equal, but not to each other; (4)
two equal and two others different from each other and the two equal ones; and (5) all different. The
values of the components of S in each subcase are

S - S, + .• 5,, +$ + 5, + 5, ,(A-2)

where

and where denotes summation over all subscripts that are unequal in the summands. (As a check,
the number of terms in St-S5 are N, 4N(N-l), 3N(N-1), 6N(N-1)(N-2), and N(N-1)(N-2)(N-3),
respectively; these add to N4, as they must.)

Thc summations in (A-3)-(A-7) must be simplified. To do so, we adopt an abbreviated notation;

for example, (A-3) is denoted as

N (A-3)
k

(A-4

jI • "i
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In order to simplify (A-4) and (A-5), we develop

Notice that U.V denotes the product of two summations, whereas UV denotes one summation. Then

(A-4) becomes

+ 7-al- "C9 +÷=.A- MM, (A-10)

while (A-5) yields

" (A-il)

Thus, for example, the first two terms in (A-10) are

AB zl (A.,2)

To simplify (A-6), we use the development

4W., W. -A. W. V.
U V

w-(uV'v)- (U-VW- uvw) -(uV.v- vYw)
Q.V'W- UV.W- , -VW- V-.VW + 2 UVW, (A-13)

where we used (A-9). Then A-6 becomes

+ +

+ A A,.C-5A -C AL-c - X. 17c+ 42 OUC

Bt AýE-X5 D[SC*A - A - W + 1A

cj5~ i- XiJ- CD3 + 2A (A-i14)

Finally, we need the development

A-2

Nil I II [ . . ... .... .. ' ° 1 I I III I
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U #

X u - ;7 W. - V V V'U V, W. U"W.

4X. [u.v.w- uV.W- u'vW-.VW + 2 vVW1
-U, X.vw + UVX, W 4 VX VW +V VWX -2UVWX

-VXU,-W + UVX-W 4 UVWX4 XVUW- 2UVWX

- VVX.Q.V + UVWX4 U. VWX + V. UWX- 2 UVWX

U'vW. X- (uv x.w+vw.u.x+ uw.x.v ux.vw + vx, uw+ wx.u.v)
+ 2 (vvw, x + vwx~v .+ uvxw + vw•. u)

+ UX'VW + XV' UW + UV'WX- 4 UVWX, (A-15)

where we used (A-. 3). Then (A-7) becomes

; ~ ~ +- (u!CAPA 4 +~* ~X

+ 2(ki,64A (' b + Ai C+ 9 C5-i~

It is not possible to simplify or combine any of the 60 terms in (A-8), (A-10), (A-I 1), (A-14), and
(A-16) because they each employ different statistics. Thus, the general answer to (A-i) is given by (A-
2), where the five components are given in the equations just listed above. Repeating the notation, the
first and last terms in (A-16) are given by (I lk) (J b) (I Cm) (I an) and -6 ik k kdk, respectively.

SPECIAL CASE

We now set

A --i, D- -? C*, c-i,••, A I. 7, b•" (A- 17)

in which case (A-i) specializes to

5_; =,(A-18)

that is, S is now the mean value of the magnitude-fourth power of the sum. Then (A-8) yields

51 (A-19)

(A-10) yields

A-3
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.2 W. 2M' Y + c9-?* 0',,,s,,

+ 1- Fak(A-20)

and (A-I1) becomes

S ~ k (A-21)2~I

The quantity S4 in (A- 14) can be developed as follows:

54 .47 , RI- il 1•. -. In'-Z +2 i421i'J

:*+fi•.lz- q ,.,•} - • .•'2 ,'

+ 2R•R4 .(V" -2 , -,k + 11f 2•i• ej, (A-22)

Finally (A- 16) yields

+ "IP4 1 ,,'.2ýj+• 2 1 ,,..,,15•1X
+ ~ 42(~ ~¾j~I~ ~(A-23)

At this point, it is convenient to define the following 16 fundamental sums that appear above:

A-4
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It should be observed that the fundamental statistical quantities required of random variables {zt)
number only 5, namely

However, they combine in various ways to yield the 16 sums defined in (A-24), which in turn are
encountered in (A-19)-(A-23).

In terms of the sums defined in (A-24), the sum of (A-19)-(A-23) can be written as

44 "R. (T,-2-• .+

+ 2(, -T4% + r. + 4

+ + (T,-T,,) T, + 2 R4I(%.T-)TT'} + Tr. (A-26)

This is the general relation for the average of the magnitude-fourth power of the sum (A-18) of in-
dependent complex random variables.

Special cases of (A-26) are afforded by
•=T4,• - ' .Jfror N=I (A-27)

which is obviously correct, and by

" r5 41-- 2 T4-T.+ 2T,,+ jT w Z. 4r- all k, (A-28)

which is identical to (19) in reference 2 for Z = 0 there. That is, (A-28) applies to zero-mean random
variables {Zk) . If we let complex random variable

C ,(A-29)

then (A-26) is obviously an expression for I CI4. At the same time, (9) and (A-24) yield

IC T- T + [T, 2  (A-30)

Therefore (5), (A-26), and (A-30) yield

* Vo~i Too - T,+ 2 I1~14aT + + Rej 4-Q T+,

+ -;1 IT,,- rTl
4 2 (,,-,)T, l'+ ,2R (.- V-r (-31

A-5
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This is the general relation for the variance of the magnitude-squared value of the sum (A-29) of
independent complex random variables.

Special cases of (A-3 1) are afforded by
VartIClc', T41.- T2• 'I 4-' " r N: 1, (A-32)

which is obviously correct, and by

T,-2T,)- T+T7A4 ÷T.12 r Z .0 4O )ll k, (A-33)

which is identical to (22) in reference 2 for t = 0 there. That is, (A-33) applies to zero-mean randomvariables ( zk}.

A program that evaluates the general expression for the variance in (A-3 1) is given in table A-i. The
fundamental input statistics, (A-25), must be input in lines 90-190. This program has been checked
throughly for

I. N = 1, arbitrary moments
2. N = 2, arbitrary moments
3. N = 3, arbitrary moments
4. arbitrary N, complex Gaussian random variables with correlated real and imaginary parts, and

nonzero means. (See appendix B for this derivation.)

In terms of the fundamental sums defined in (A-24), the quantities encountered in (7)-(l 1) are
expressible as

Av r. - T,4 +T~

Av Tc T -FT, +

V.rýC] T _TI

Av=•.- )l1 = T i,- i;, (A-34)

j A-6
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Table A-1. Program for Varbame. (A-31)

I$ I MOMENTS OF C u SUM OP N IN4DEPENDENT (OMPLEX PA14WM VAPIAU&ES.
29 LINES 56-196 GENERATE INPUT STn9T1STIC;.

36 OPTION BASE I
46 DIM Zr9,I

76 1 TO INPUT THE FUNDAMENTAL STATISTICAL
as I QUANTITIES, REPLACE LINES 90-190.
90 RANDOMIZE SOR(.6'
166 FOR Kul TO N
li6 ZI."kK'RND
120 Zli(K)4RND
136 Z2m(KuwRND
148 Z2r(K)oRND
156 22i(K)wRND
166 23r(k)oRND
170 U9f(K)*RND
166 Z4(K)*RND
196 NEXT K

C 266 FOR Kul TO N
218 QloZle<K)^'2
226 Q2&2Ii<K',2
236 OpmQI+G2
246 QaoQI-Q2
256 Qca2*2Ir<KOeZi9(k)
269 TlroTIIrZleCK)
278 TIimTIi.21,(K1
266 T2IoT2I+Z2io(K>
298 T22rwT22e"4Z2r(IO
366 T221mT22v+Z21ioK
310 T23oT23+Qp
320 T24."aT24.P*Qm
338 T241uT24i~oc
346 T31raT3lr*23r(K)
356 T3tf.T3Ii*Z3iWi
368 T32roT32r*Z2#a(IO*Zlr(K)
378 T321mT32i+Z2m<K)a2II(K)
360 T3raT33r,22(K).Ztr'K).Z2ik.Z"ihi&ý
3qG T33laT33l,22it)aZlr(K)-Z2r<K)*Zlij(,
466 T34roT34r+Qp.Zlr<K)
416 T341wT341+Qp*Z2i(9
426 T4loT41+24.o)
430 T42raT42#*2Z3r(K)aZltr'K)'Z39~i".Zli(t,)
440 T43.T43*ZW0(K2
458 T44.T44+Z2r(K)ý2+Z2, <K)ý2

466 T45oT4$+Z2m(K)*Qp
476 T46r.T4Gr+Z2r(K)aQa+Z2t (K'*0c
466 T47aT4?+OP^2
496 NEXT K
596 RI.Tlr'^2
510 R2aTI1-2
528 R3-T2I-T23
536 R4aI22r-T24r
546 RtSwT22f-T24t
S58 RP-RI4R2
566 RmaR1-R2
576 Acw2*Tlr*T~l
500 VaT41-4aT42r-2*T43-T4446aT45+4*T46r-6*14'
59~9 YVaV4a(T31r-2*T32r-T33r+2*T34r,.Tlr
606 VaV.4a(T31i-2aT32,-T339+*Ta34i *Tti
616 VaVYft3-2+R4^2+R5'-2
628 VaV.2a(R3*Rp+R4aPm+P*Rc)
636 PRINT IN -";N4
648 PRINT "Ru(C *
650 PRINT "Rv<C^2) R4m;I;Sc;
666 PRINT "Av(Coag-2) -";R3+Rp
670 PRINT "Std Dev(Cm&912) w";Sorttl
690 PRINT "V~r(Cmag2) o";v
698 PRINT "Av<Cmag-i) i"(R3,RpP-2+V
760 END

N a 'S
Av'C' a ..40?42613063 +1( 4.64537585274

WC2 -4.37145748691 +i'. 32.48662S8~?
Av(Caag 2) - "3.4546032912 -
Stl Dto(Cmag-'2, a 6.7210029004
Var.kCa~q,2 * 45. 1718799672
AvtCa&q,4> a 1164.39236136

A-7/A-8
Reverse Blank
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APPENDIX B
COMPLEX GAUSSIAN RANDOM VARIABLES

For complex Gaussian random variables {(z}, the means, variances, and covariances add; thus all
we need to do is evaluate these quantities for a typical random variable z. We let the means be noted
by

X• 4' • +ib. (B-I)

If we denote the zero-mean components of the real and imaginary parts as

•,'=x-a,/• =i-b,(B-2)

then the variances and covariance are

To check the general results in appendix A, we need the five statistical quantities listed in (A-25).
They are

Av b-] I a ,(13-4)

a +0 - 4 o + (B-5)

The components required here are given by

((k *( +.r e7' 0 -Qr=4.2 I.C

+ (B-8)

Hence

(B-9)

B-1
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Lastly we need

for which the components are

h7+ 4 eel;~ o+ 3a3-'

(B- 11

Then there follows

and

A program that incorporates the above relations is presented below in table B-I. The Gaussian rules
occur in lines 280-320.

B-2
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Table 8.1. Clank Program for Complex Gaussian Random Variables

10 MOMIENTS OF C * SUM OF N INDEPENDENT COWILE.' RANI-LIM VAPIABLES.
20 GAUSSIAN TEST EXAMPLE.
30 OPTION BASE 1
48 DIM

60 REDIM ZrNZlN4mN,~~bZi'Z3~VZlN,4N
70 RANDOMIZE SOPtIE)
88 FOR Kul TO N
90 Au2*RND-I
188 B*2*RND-1
Il8 Sig~uRND
1610 SligynRND
138 Ahom2*RND-I
148 A2*AA2
158 32=3ý2
160 VxtaSigx'2
178 Y~aSigyA2
188 PaRho*SigX*sigy
198 Zlr(V)NA

218 Z2m(g)Af2+Vxc+32+Vy
22$ Z~r'K)*A2+Vx-r.32+Vv,)
Ž30 Z21<0u24(A*Y+P)
240 Z3r(K)uA*(A2+32.ý+d*(3*Vx+Vy)+2*9*P
25023(Km*2+)3*YJVYttP

270 Z4dK~aZ2n,(K).'2+Var
288 G-G.A IGAUSSIAN RULES
290 NHw+P GAUSSIAN RULES
380 VdaVd+V., GAUSSIAN RULES
310 VeoVe+Vy GAUSSIAN RULES
328 VcaVc+P GAUSSIAN RULES
330 NEXT K
340 FOR Kul TO H
'358 QlIZlr,(K)A,2
360 02.Zli(K)'2
370 0p'%A1+O 2

380 OmS01-02
398 Ocm2*ZlrdQ)*Z11(V')
400 tlruTlr+ZIr(V)
418 T1IaTl't+ZIi~k,)
420 T21*T2l+72m<K)
430 T22raT22r+Z2r'[K)
448 T221-T22i+22i Kl

450 T:3-T23+0pI460 T24raT24r+um
470 T24i-T24i4Qc
490 T31raT3IrtZ3r<K)
490 T3IimT3Ii+Z3i4K)
580 T32raT32r+Z~n(k)*Zlr(K'
510 T321-T32i+Z2m(KA*ZIi(K)
520 T33rmT3Gr+Z2r<K;*ZlrtIO<+221dý)*Z~l(I'.)
530 T33iaT331+Z21(K>)*Zlr(fr'J-Z2r(eK)'421(K:ý
540 134r7T34r+OpEZlr(I0
550 T34i.T34i+OptZ~l(K)
560 T41wT41+Z4(K)
570 T42raT42r+Z3r(K)*Zlr(K)+2ý3i(K)41li<r?)
588 T43wT43tZ2mdK ''2

600 T45-T45+22m(K)*0p
610 T4GrinT46r+22r(K.)*OM+221(K ,)*OC

*620 T47sT47+Op 2
e 63 NEXT K
648 frI-Tir, 2
650 R2wTlr12

660 P3uT21-TŽ3

4e4
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Table B-1. (Comt'd) Check Program for Complex Gausiau Random Varabesi

Z 7 0 R4*T22,- T24r
680 R~wT22!-T:Z41
690 Rp'ORI+pz
700 R#AMAl-R2
710. Rcm24Tlr*Thi
720~ YmT41-4*T42r-2&*T43-T44eg*T454+4*T46r-b.T47
730 YVuV4*(T31r,-2*T32r--T33r-+2*T34o, *Tlt,
740 VwV+4*(T 1i-2.T12i-T3ai+2*T34i *Tli
? 5 0 YaV+RVa^+R4,,2+R5.,2
760 YuY+2*(R3*,Rp+R4*Rr.i.R5*Rc)
?770 PRINT 'IN wI;H
780 PRINT "Av?,C) a u Tr
790 PRINT "Av(C^2> a
860 PRINT IIRu(Cmnag'2) n*IRl*+Rp
810 PRINT "Std.Dtk,(Cftag'2) w";SOR(V)
820 PRINT "Var\kCftog,2) u*";V
830 PRINT "AI.(Cim.g-4) sI';(R3+Rp),'24V
840 PRINT
850 PRINT "USING GAUSSIAN RULES:"
8 60 PRINT G; " I(;"IN; " )
870 PRINT G',+Vd-(N"2+Ve.ý;.i(:.2*G*H.Vc,;'I'"I
880 PRINT G',2+Vd+HA2+Vo
690 Varc.2'*eVd'2+V.*'2+2*Vc-,2)+4*(G',V2d+N,2*Vs+2*G*N*Vc)p
900 PRINT ý0R(Va.'c)
4)10 PRINT Varc
920 PRINT <Gý 2.Yd.N- 2+V#)^2+Varc
9ie END

AIý)- -.817.0999344.3 +i< .818915514559
,,C2),=- -.9q$771762e.742 +i(-.76138494979

Ak- Ch.a ' ,. 6. 17575336444
St-1 llrvýCmaq'2) - 6.009402.27934
var'"Calag,2) a 36.112915;1551
A''-(Cm~g-4) 11 74.1528453735

USING GAUSSIAN RULES:
-.ý,1709993443 *hý .81$95514559
..9877176.:W5 .1(-.76138494977?,
6. I?ý'5336445
16.00948227937
3.11291157554

(4. 2528453739

B-4
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APPENDIX C
EFFECTS OF POSITION AND DELAY PERTURBIATIONS

ON LINEAR ARRAY RESPONSE

Consider a plane-wave arrival, at frequency f,, from angle 0., propagating with speed c, as shown
in figure C-i. If the propagation time delay to reach the origin 0 is defined as zero, then the
propagation delay to reach position x on the linear array is

-1 (C-1)

S( 0 p - . xc l

-041 0- __ 0

Figure C-I. Linear Array, not Necesadly Equispeced

The processing of interest is depicted in figure C-2. The position of the k-th element in the lMsear

array is xk; the delay employed in the k-th branch of the beamformer is Dk (0k), which depends on the
desired look direction 8j; and the corresponding element weight is Wk. The voltage transfer function

of the propagation delay and beamformer, as applied to the arriving plane-wave, is then

. 2,4 -t-----F;D ( -2

PLNE PROPAGATION k-h =ELEMENT 1 ELEMENT

_ .... = DELAY ....EEETI DELAY [ WEIGHT
WAVE r(xk, 8a) OF ARRAY 09) wki 8a, fs

BEAMFORMER

FIgure C-2. Froeeiang of Plane-Wave Arrival

"C-I

.. r� I t •- -- k I
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Now suppose that the desired position of the k-th element in the linear array is dk, but that the
actual position is

p + 4k÷ , (C-3)

where Ak is a random (distance) variable. Notice that we are restricting consideration to longitudinal
element movement onjy along the linear array; this restriction is removed later.

Also suppose that the desired k-th element time delay to steer the array in direction e1 is (ignoring a
common bulk delay for all elements)

- 4smne • , (C-4)

but that the actually employed delay is

D•. w 1C. +, (C.5)

where dk is a random (time) variable. (Notice that this choice of element delay takes no account of
distance perturbation Ak; a case where this distance perturbation is taken into account is considered
later.)

The trinsfer function of the linear array is then*

V i iM U-2wf. -iLSlrq- d

- ~~~2w4a -(Yin 0. -i 2, f, ('C S'. . (C-6)

The effect of the position and delay perturbations leads to the k-th random phase shift term "xP1i4k],
where

0. + -2, ew, L +(C-7)

Here A. is the wavelength of the plane-wave arrival, and Ta is the period of the arrival. The fraction of
a wavelength movement, 4k/Aa, and the fraction of a period delay, dk/Ta, are obviously important
parameters.

Now if the position and delay perturbations have the propertiest

A•t,, W o, 541 •,,tA1 6-- }j ,
fbr al k'

and Ak iS uncorrelated with dk' then we find

* Weight perturbations and element failures are easily incorporated by replacing Wk by
Wk(l + rk)gk, where rk is a zero-mean random variable and gg is a (0, 1) random variable; these
features are not included in this appendix.

t These could be generalized to allow dependence on k.

C-2
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Av o,J SW NI 2r [6z S'VA (c-9)

which is a function of arrival angle G.. Thus, if we plot average properties of the beamformer, by
varying the look angle 0, while holding arrival angle 0,, fixed, we can treat a# as a constant. However,
if we do the reverse, we must take into account a varying o# with arrival angle. Of course, if od - 0 (no
position perturbations), then a - 2w ot/T, is a constant independent of any angles. We might also
note that •or broadside arrivals, *,,- 0, o# is a minimum and, in fact, positional perturbations

(od A 0) do not affect the transfer function, (C.6).

Instead of choosing element delay Dk(O,) without taking account of position perturbation &k,
assume that we have this information (perhaps via measurements after construction of each array)
and decide to use it by employing, instead of (C-5), the time delay

r(e,). --c - -- s• 'me, (C.l0)

where 6 k is again a random (time) variable. (Of course tAw} could still be random variables from one
array construction to another.) Then the transfer function of the linear array is

V, v i24 3i . 4- ÷ K 2. 4.

The effect of the position and delay perturbations then leads to the k-th random phase shift term

"exp[i4k, where now

2w, 4{~.1 - i. J =-2r~Lin, iw3~1i.Q+- (C- 12)
Keeping the same statistical properties as assumed above, we now find

which is now a function of both arrival angle O. and look direction 0,. If od - 0 (no position per-
turbations), then a# - 2n ot/Ta is independent of any angles. For od 0 0, the minimum of o+ is realized
when 8- 8a.

For positional perturbations into the x,y plane (rather than just along the x-axis), we have instead
of (C-1), propagation delay

N' - C#5 e (C-14)

Then the voltage transfer function of the linear array becomes

V = ::ýW tXi 2A, i2,rf Dk(C-15)

Now, instead of (C-3), let element position

;~~ ~~~ , . , , .- ,( -16)

C-3

, = l l ;l i '• I l' • '• l!Ir l ~ r' P l I ~Il
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where A4 and Yk are random (distance) variables. Then, if we still use the same delay as in (C-S),

P. ( 
4

) L %; 4A+ 
(C-17)

we find the perturbed transfer function to be

where now

Analogous to (C-S), if we now assume

where nonzero 9 corresponds to correlated x,y movement of an element, we find

AN --o,

This is independent of 08, as was (C-9); thus the comments directly under (C-9) are relevant in this

case too.

C-4
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APPENDIX D
VARIANCE OF POWER RESPONSE

LINEAR ARRAY

The variance of the power response was given in (A-31). We now specialize it to the equispaced
linear array. Define

C, pi)•, It C4- P4 Ys (D-1)

Then the various quantities cTrij in (A-24) may, with the aid of (18) and (40) and the realness of Y1,Y4,

be expressed as

"T, a TC11, c- (ar•La t,- Cx , C Cl,-L

T4,- C W. wC., T.) + : 4 wC. wo

T4,- (" W,. ,"T, co C ."(, W,., ,,+ T" .'; (D-2)

The only terms in (D-2) that depend on u, are T1, T22, T 24, and jT1j}I, by virue o" depending onL

L2, L1. Now (A-3 1) can be expressed as

+41T 4T-274 1 - T. r., 4t T.6

+~~ T,., -, ÷T,.-T.) + 2 (T,-t+ ,-r.) T,

+(- T -+2 (..- c+; T, +•c,,..* c~ - c. ,

+ 4 C, ((, 2 C Cr + 2 C,) L, L,
! ~ ~+ (C,.•),'',. 4•,- C,)' L:

,r vV;. .;w + (C.,,- CJ)Ll] L: (1-
h ~L(- c)'(c 1 CKL(D-3)

in terms of the quantities in (D-1) and (40). Finally we rearrange (D-3) to read

. , W + F, L.L, + F,,,W, + F,ýLt + FlaW. L:, F,, L , (D-4)

D-1
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where
F4. - C*-I- C, Cý-z 2C4 - +. 7 C C',. + + C'1C.,.- 6 C,'

F, C1,¢(C)-2c,Cb c,.-c¢¢..+ a:)F3-+C (Q,,- 2 C. -+ 2
F,la.c•;,-cO, ,- 2cK(c..I-c;) (D-s)

Since L, and L3 only occur in the combinations L, L3 and Li, we note, using the properties of L-, L2,
L3, that (D-4) is even in u and has period 2n in u. Therefore we need only to evaluate (D-4) in the range
(0, it) for u for this equispaced linear array. The program for evaluating (42) and (D-4) is presented
below.

DEEP SIDELOBE REGION

In the deep sidelobe region, L1, L2, and L3 of (40) are approximately zero; then the only {Tjj) in (D-
2) that are nonzero are T21, T23, and { T4j). It then follows from (D-4) that

Vctrtl~la 4e~4 + l~ WL ~ Lp 3. .k D e (D-6)

where these quantities are given in (D-5) and (40). The constants needed in (D-5) are given by (D-l).

No simpler expression for (D-6) appears possible.

Alternative expressions and interpretations for F2a and F4 in (D-6) are possible; let

Yk (1 0lt~ e=lk (13-7)

where we used (16). Also let

Xk = ] ,• (13-8)

Then we find

Comparing these results with (40) and (44) in reference 2, we see that F, and F4 are equal to the
cumulants A,1 and A22 of random variable Pk.

PLANAR ARRAY

The variance of the power response is given in (A-3 1); we now specialize it to the planar array. With
the aid of (A-24), (18), (D-1), and (75) and the realness of yI Y2, there follows

D-2



TR6191

*,. C Of,(v)

C) c'wY , of -c: 1' Mv(l', W

ETc C , rC. .", C."CýonIQ, C WL 04((D-10)

The terms that depend on u and v are TI, T22, T24, and {Tsj)}, by virtue of depending on LI, L2 , L3,
defined in (75).

Now (A-31) can be expressed as the upper half of (D-3), which, in turn, can be developed, as above,
into

vort)c~j FOTOV-.' + F; L *1) L ý'(0)L" 10 L'(V)

+ F2 W."W + " + F (, L()

+ [F, W t + F, L!(M) L?(VI L,(u)L , (V), (D-l1)

where the F-constants are given by (D-5). This is the final result, where the necessary functions are
defined in (75).

Programs for linear array results, (42) and (D-4), and for planar array results, (76) and (D-1 1), are
presented below in tables D-I and D-2, respectively. For the linear array case in table D-1, the inputs
required of the user are

H in line 20, the number of elements on one-half of the linear array
Q in line 40, the probability of element failure
Sigmar (Or) in line 50, the standard deviation of the relative error of the weights
Sigmap (o) in line 60, the standard deviation of the phase perturbation in radians
{Wk}I' in lines 80-90, the H weights on one half of the array.

Alternative weight structures are available in lines 220-240, if desired.

For the planar array in table D-2, the inputs required of the user are

PhLJ (+t) in line 20, the polar look angle in radians
Theta_J (Of) in line 30, the azimuthal look angle in radians
Slice = I or 2 in line 40, depending on polar or azimuthal slice
Thet"a (8,) in line 60, the azimuthal arrival angle or PhLJa (+.a) in line 80, the polar arrival angle
HX, Hy in lines 90 and 110, the number of elements in the halves of the array in the x and y coor-

dinates
DxJam, Dy.lJam in lines 130 and 140, the ratio of x and y array spacing to the arrival wavelength

{w M)NIx, {w')}JrY in lines 150-200, the weight structures in the x and y coordinates
Q in line 210, the probability of element failure
Sigmar (Or) in line 220, the standard deviation of the relative error of the weights
Sigmap (a) in line 230, the standard deviation of the phase perturbations in radians.

D-3
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Table D-I. Program for Equlupaced Limear Array

10 1 RANDOM SEAMFORfIER; EQUI-SPACEID LINE ARPH'
20 HsI0 I NUMBER OF ELEMENTS ON ONE HALF? OF AHQRA'
30 !SYMMETRIC WEIGHTS; TOTAL NUMB~ER OF ELEMENTS a H
40 0u.001 1PROBABILITY OF ELEMENr FAILURE
50 si.gnkIU.01 ISTANDARD DEVIATION OF RELATIVE ERROR QF WEIGHT
60 $i~..pv.01 ISTANDARD DEVIATION OF PHASE ýPAJ)iithS>
70 1 DOLPH-CHEBYSI4V WEIGHTS FOR -10 DS SIDELODES:
e0 DATH 2.405798938,2.a33866168,2. 195114975, 1.99927769?, 1.7597$8704
90 DA7A I.492415162,I.21399?844,.940757;ý,4,.6870419i302,.70335035?1
100 PRINTEtR IS 0
110 PRINT "EQUI-SPACEIJ LINE ARRAY TOTAL NUMBER OF ELEMENTS =u;2*H
120 PRINT "Pr'obability of elemenit failure al;O
130 PRINT "Standard dtvi&t ion' oe r.1&tive ýrror of wl;Sigmar
14 0 PRINT " St. ndard dtv i t ion of phasc ( i n t ad iar, s S 9fighp
150 DIM Mu(1:4),Nu(1:4),Gamma 1:2),W(1I50)
160 DIM Ideal power 0: 256), Averag~power (0: 256) , S igmarower(O:2156)
170 Nlimw256 I NUMBER OF PLOTTED POINTS <a 256
180 REDIM W(I:H>
190 READ W<*)
200 Twg

210 FOR Kai TO N
220 1 Jl,mý).54+.46*COS(PI*ý'K-.5:).H) HRfMI1ItI WEIGH'I$
230 1W%:uIýtCO$(PI*(K-.5'/H) H~f~hItI', WEIGH'.$
240 1 WýK>.1 UNIFORM W.EI,'HTS
250 T=T+WkK)
260 NEXT K
270 W2uW4a0
280 FOR Kul 'TO H
290 W(K~wlI1(K)/7
300 PaW(K).-2
310 W2-W2+P
320 W4.W4+P^2
330 NEXT K
340 W2=142,2
35c) PRI14T "Effecct i vt numiber of cel ernt s 1 1-2
360 PRINT LIN(I)
370 W40W4' 8

390 Vp-Sigmap,2
400 Mu(1).Mu~Ž.~uMu('3'sMi.,-4)*1-6
410 flu k. 1aI
420 N"(2:.a*1Vr-
430 Nw<3)%1+3*Vr
440 Nu(4)x1+S*Vr+3*Vr '2
450 Gaam&,I)EXP'-.5*Yp)
460 Gamm&I(2)vEXP(-2*Vp)

480 C2i(iuMu(2.-,*1uk 2)
490 Crfa2*u . G~a2
500 C3*Mu()*Nu3,ý*Gamm&ý I
510 C4-ilL,(4'*Nu(4.I
520 Cl12Ct-2
530 Con*C2ndC2r
540 F4r.C4-4*C1*C3-2*C2m' ,ý6-C2rý^2+4*C1Ž*C~n-6.ý'12 2
5!50 F3=44C1*(C3-Ci*Co+2*C12*C1,
560 AaaC2M-C12a
157 0 Ab-C`r -C 12
5530 F2&uA&,,Z
5 90 F2bs-Ab-'2
100 Flam2*C12*A.*
6 10 Flbs2*C.12*Ab
6;ZO ComaF4*W4tF?&*W2 2
6:j0O Flaw2aFla*W2
640 Vr, -.. Ot-A&*W2:.O
65% PaPTihuin Hum

D-4
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Tabie D.1. (Cont'd) Program for Equlepacu Lnear ArraY

678 UftI*P
680 Ll-LoiL3ý4
690 FOR Val TO N
788 SwW(K)
710 TaS*COS(ýK-.5>*U)
728 SwSA3
738 LlwLI+T
740 L2wL2+2*T^2-S
750 L3nL3+S*T
768 NEXT K
778 L2=L2,12
788 Lwt3uL34
798 Id*&1pow~rUI>wL1^2
888 Rv~ragepower(tI>wC12*ld~al power'~ I>+Vtkr_-,olt

020 Sigmapowcr( I)aS0R(Var~pow~r)
830 NEXT I
848 PLOTTER IS "GRAPHICS"
858 GRAPHICS
868 SCALE 0,Num,-7,0
878 GRID Num'18,1
888 PENUP
890 FOR Iw8 TO Hum
900 AaIda.lpower(I>
918 IF A>IE-7 THEN 940
9ZO PENUP
930 GOTO 950
948 PLOT 1,LGT(A)
9.50 NEXT I
960 PENUP
970 FOR Iw0 TO Hum
960 PLLT I,LGT(Rveragepow~t'(I))
990 NEXT I
100e PENUP
1810 FOR lot TO Num
1020 PLOT 1,G(vrgpwrl)Sgaoirl)
1030 NEXT I
1040 PENUP
1050 FOR t.0 TO Num

1060 PLOT 1,LGT(Averag~pcowtr(I)+2*SigfiI&po~t e-:I ))

1078 NEXT I
1080 PENUF'
1090 PAUSE
1106 DUMP GRAPHICS
1i18 PRINT LIN(S)
1120 PRINTER IS 16

1130 END

'I D-5
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Table D-.2 Program for Equispaced Pisaur Army

10 RANDOM 8EAr1FOPMER; EUUI-SP6CEI) PLAINAR APR~A'
:0 INPUT "Polar, Look Angle eif) radians) = ',-"Fhi 1
30 1INPUT "Azimw~,hal Look Angle ('in radian:'- % IT
40 INPUT " For Polarý Slice in Arrival Aingle, enter T

For Az'imut~hal Slice in Arrival Atnglf% enter 21,lc
'40 ON Slice GOTO 60,90
60 INPLUT "Pi xed Azim~uthal Arrival Angle (in rudi~tna) a ?1,Thet&aa
70 GOTO 90
90 INPUT 'Fixed Pola&r Arr ival Angle ('in -&J~i st~ %Ph'i _a
90 Hx*10 NUMBER OF ELEMENTS ON ONE HALF CF ilRRAY, IN ýý:DIRECTION
100 SYMMIETRIC WEIGHTS; tOTAL NUMBER OF ELEMENtS IN X a 2 Hx
110 Hu9- NUMBER OF ELEMENTS ON ONE HALF OF ARRR)', IN Y-DIRECTION
120 SYMMETRIC WEIGHTS; TOTAL NUMBER (Ir ELEMENTS IN Y a 2 Hy
130 D x- I ato ! -SPACING'WAVELENGTH
140 Duim. Y -SPACING/WAVELENGTH
1S0 10 DOLPH-CHEBYSHEV WEIGHTS FOR -*.'3 DBSIDELOBE$1'
160 DATA 2.405798938,2. ý3866160,2. 1951149 5,1.-43927-697,1.7?59768?784
170 DATA 1.492415162,1.213997044,.9407573274,.68?e41;O2,.?'833'503571

le-0 9 DOLPN-CHEBYSHEV WEIGHITS FOP -30 Dk !-'IfELOBES:
190 DATA .8148,8730,,9444,.OO0,.173'5
200 DATAl. 6 l 4 ,. 2 9 2S,2114 03 *
210 Qw.01 !PROBABILITY OF ELEMENT FAILURE
220 Sigmarn.02 'STANDARD DEVIATION OF PELrATIVE ERROR OF WEIGHT
030 Sigmapu. I STANDARD DEVIATION OF PHA,,E (RPDIANS>
240 PRINTER IS 0
250 PRINT "Equ'i-s.,aced planar array' iot a1 trut EC 0* of elements u";2*HxZC*Hv
260 PPINHT "X-spsc ing/walvel rgt h w";Dx~l aim,Y-:'r4~lrt ;~
270 PRINT "Pt'cbabilitv of *loment failure ml;O
280 PRINT "Standard dev'iation of relative error of lowiht, =1;Sigmar
290 PRINT "Stitridard deviation of phase 0~n rhd'ian- -';Sigmap

310 DIM

320D Numw256 I NUMBER OF PLOTTED POINTS 256
:330 REDIM Wx1I:Hx>,Wk)(I:HV)
340 READ W/(*),Wv<*)
350 T-II SUM(W\
.360 W2xuW4xm*0
370 FOR Kul TO Hx
380 Wx(K)-WxAI*T
390 P wWx (:K )1.2
400 W2x=W2x +P
410 W4x=W4. *P'Ž
420 NEX:T K.
4:,0 W2x-W2,.'2
440 W4x.W4.x,. 8
450 Tw1'SUM'ýWv)
460 W~vyW4yaO

,?0 FOR Kul1 TO Hy
480 Wv.(Is.)wWy<K)*T
490 P a W-,(K ) 12
'500 W2'ZýW2y+P
$10 W4V=W42,+P',2
.520 NEXT K'

530 mi2-
540 W4$-W4y 83
550 FRI NT "Ei'fe ?i vi no.mber* of el) *tient s ito -:,j I' ̀  ~< W2ot
$60 PRINT LIN(:1
57 Q PRINT "Polsr- Lool, Angle ".;Phi 1
'560 PRINT "Azimiiuthl Look Angle Tha1
$90 ON Slice. GOTO 600,630
600 PRINT "Fi :!,&. Ax ium i-al Ar' ival Angle~ Th-i '_i
610 PPINT "Polar- 'Z ice* in Arr'ik.al Angle froto ý7 t -I
P; .: GO10 650
63 0 PRINT "Fi :ed Po:lar Arrival Angle ;h_
$40 PRINT ARZtt'1.At)`0&l S1 'icd in Prri~al (4ngljfo ' F
650 VroSigreat 2

D-6 ~THIS pAG3E IS BE~ST QUALITY! PRAOTlCABL3g
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Table D-2. (Comt'd) Progamm for Equispaced Planar Array

660 Vpms,'gmap'2
670 Mu-:1)ahu(2)-I'u(3>-Mu(4>a-1-

690 Hu<2.)u1+l r
700 NuC$)1t+3eVr
710 Nu(4)s1+6*Vr+3*Vr'2
720 Gamma( I )EXP(-. 5*Vp)
730 Gaomma(2)UEXP(-2*Vp)
740 CluMur(0*Nu.1)*Gamma(1)
750 C2msMu(2)*Nu(2)
760 C2raMu(2)*Nu(2)*Camma(2)
770 C~aMwd3.a-Nu(3I#G*amma 1)
780 C4*Mu(4)*Nu(4)
790 C12-C1",2

8k0 0 C~o:2*C2mC2r

820 F3u4*C1*(CS-C1*CC+2*C12*C1)
836 Aas02a,-C12
840 AbC02r-C12
850 P2&*AIA2
860 F~b.AbA,2
87071siCsa
800 71b-2eC12*Ab
896 Comt~F4*W4x* W4u,+F2a*(W2,<*W2,)- l2
900 FlIaw2aF Ia*W12x*W2v
910 Var kvoltuA**W2x*W2v
920 $l-SIN(Phi 1)
930 Axin2*PJ*Dx lam
946 A9=2*PI*D9 lam
950 UlaAx*8l*COS(Ths~ta i:
960 Yi~*1$NTe~I
970 ON $lice GOTO Polar-, Azmuthal
986 Polar: ua-Az*COsTheta a)
990 VanAk.*SIN(Theta a-&
lO000 P..5*PI'tlum
1010 FOR 1=0 TO Hum
1020 Phi a=P*I
1030O SaSTINPhi a)
1046 U.I)=Ul-Ua*Sa
1650 V(1inVl-Va*Sa
1060 NEXT I

I'0GOTO Common
1080 Azimuthal: $a-SIN(Phi a)
1090 Ua=AK*Sa
1100 Vaa8v*Sa
1110 Pm2*PIJNum
11410 FOR, I-C TO Hum
IlI.f'- Thet a tuPtI
1140 U'!)lUaCO.Tea)a
1150 NEXT 1 1 /le~htaa:
1160 MN E:-Yl -I clP ht
1170 Commo#: FUR 1-8 TO 111m
1180 I.luinL~wL~uwO
1 190 Ui-UWI
1200 FOR. i-I TO0 H,,
12 1u I saw..;(I)
12120 T-$.C OS 5 -V5*i)
1230 $aS82
l1,40 Llu.Llu+T
I `1350 L~u-LZu+2'Tý2-S

16 0 L 3u aL 3u4 S *T
lZ70 NEXT V.t
12808~L~2<
1290 L3usL31.4/

130L1QL2')L3*-O

1310 Vsvf'½

3316 MiwI)D-7
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Table D)-2. (Comt'd) Proran for Equls(Mcnd Planar Arrmy

0~20 FOR Km1 TO HV
030 sawy(io
1340 TnS*COS<K-.5)*Vi)
1359 SUSS2
1360 LlvwLlv+T
1370 L2vwL2k,+2*T^'2-S
1380 L3vuL3y+§*T
1390 NEXT K
1400 L2tuL2v/2
1410 L3'v'L3v/4
142.0 LlukuuLlu*LI.,
1430 L2uv-L2u*L2o
144e Id*a1powe,-(I)wLluv),-2
1450 Avwragepotwer(1 c IeI ~ tI~i
1460 Vtr pwru~+3Lu*~~,FbL.- ~~i:4~.'L1.
1470 Sigmiapower(1 ~uSORý'ar~po'oeti-.
1480 NEXT I
1490 PLOTTER IS "GRAPHICS"
1500 GRAPHICS
1510 SCALE O,Num,-7,0
1520 GRID Num/.10,1
1$30 PEHUP
1540 FOR 1=0 TO Hum

1560 IF A>1E-7 THEN 159~0
1570 PENUP
1580 GOTO 1600
1590 PLOT 1,LGTA,)
1600 N EX T I
1610 PENUP
1620 FOP, i-e TO Hum
16,30 PLOT I ,LGT(Ak'r.At- sepoiwr* 1.
1640 N ET 1
1650 PEHUP
1660 FOR lul TO Hung
1670 PLOT I
1680 14EX T 1
1690 PEHUP
1(00 FOR 1-0 TO Hum
I ,ý10 PLOT
1720 NEXT I
1 7'?O PE14LP
1740 PAIJ$E
1750 DUMP GRAPHIC$
176.0 PRINT LIH4(S'-
1:10 PRINTER IS 16
170 0 END

D-8
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