AD=ACS2 622

UNCLASSIFIED

MISSOURT UNIV=COLUMBIA COLL OF ENGINEERING
INHERENT ERROR

IN_ASYNCHRONOUS
FED 80 C SLIVINEKY, § PATUMTA

}{
.%OIVAL PLIGHT CONTROLS. (V)
ARORS

i

aiias

r/e 1777

IBAL m-'n-nu_




10 &
== & kZ 22
TR
g = 1

22 tee nis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-




Inherent Error in Asynchronous
Djgital Flight ConZ;ﬁgs
FOKH-To- 29
Final Technical Report
1 Feb. 1976 - 31 July 1




Inherent Error in Asynéhronous
Digital Flight Coni;?;s
FOSK-T0- 29
Final Technical Report
1 Feb. 1976 - 31 July 1979

[ This Gocument has been opp~ +
for public redease and sal~; i
distribution is uitirited.

This research was sponsored by the Air Force Office of Scientific
Research. The Program Manager was Major Charles L. Nefzger of the
Directorate of Mathematical and Information Sciences, Air Force
Office of Scientific Research (AFSC), Bolling Air Force Base, D.C.
20332. The Principal Investigator was Prof. Charles Slivinsky,

Electrical Engineering Department, University of Missouri-Columbia,
Columbia, Missouri 65211.

AIR FORCE OFUITT AF STISNTIPIC RESZARCH (AFSC)

UL P VeI
:gffcerL S L s woon reviewed and is
app:ov:d L. Lo bease AW s 19013 (b))
Distridu.ion is w.lizmited.
A. D. BLusd . :
Techuical Informatioa offiger - ¥




UNCLASSIFIED L.
SECURITY CLASSIFICATION OF THIS PAGE en Data Entered)

RT 60CUMENTA_TION BAGE READ INSTRUCT{ONS

BEFORE COMPLETING FORM
/|2 GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)

@' "INHERENT ERROR IN Asmcnnonous DIGITAL‘ ( ? Final #ﬂﬂ{ ¢

FLIGHT;ONTROLSQ R, ST

i 7€=31 Jul 72.)
7. AUTHOR(s)

/8 ) charles livinsk / !
Yy
Sudhiporn/éatumtawapibal Vé‘OSR-76—29687

8. PERFORN 1ON NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
University of Missouri - Columbia AREA & WORK UNIT NUMBE

College of Engineering v/ @
Columbia, MO 65211 61102F T 23684
11. CONTROLLING OFFICE NAME AND ADDRESS 12,

Air Force Office of Scientific Research/NM 7 Febnuany §8¢
Bolling AFB, Washington, DC 20332 125

14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)

@:—Z;Z 7 UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING
l ‘ SCHEDULE

8. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Redundancy Management Inherent Errors
Digital Flight Control Systems Asynchronous
Digital voter/Monitor
Comparison Monitor

R,

20. ABSTRACT (Continue on reverse side If necesaary and identity by bloe'k number)
Reference 1 provides the background information and results on the asynchronous

operation and design of closed-loop digital flight control systems that have
dual-redundant digital controllers. In the model use, the digital controllers
have the same sample rate but there is a fixed time skew, or offset between
their respective sample times. Also, this model requires that the same channel
; is selected as the output at all times. This latter assumption is roughly equi-
' valent to a channel-voting scheme that selects the upper median (for a four-
channel system) or the lower median (for a three or four-channel system) as the

DD ,"on'5s 1473 woimion oF 1 nov “ydo;"’/,é- UNCLASSIFIED : ‘}




e [ [N e £
T

IFIED ~_

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) _

™0, Abstract cont.

output when the channel outputs are either monotonically increasing or decrea-
sing in time.

Section IT below describes the same model as in Reference 1 except that the
input to the plant is the difference between the external input (pilofinput)
and the output ofthe first controller. An example, with a plot of the steady-

state covariances of the errors due to the time skew between controllers, is
shown at the end of the Section.

An extension to the model in Section II is developed in Section III. In this
extended model, the first channel computes two outputs. The first output is
the input to the plant and is exactly the same as the output of the first con-
troller of the model in Section II. The second output, which is an estimate
of the output of the second channel, is used to calculate the error due to the
time skew between the two controllers. Like the model in SectionlI, the sec-
ond channel computes only one signal. In this model, the inherent errors
depend on the difference of the second output of the first channel and the
output of the second channel. An example, with a plot of the steady-state co-
variances of the second output of the first channel and the output of the se-
cond channel, is presented at the end of the Section.

An algorithm to estimate the time skew between two asynchronous systems is
described in Section IV. The algorithm is based on the model in Section III.
The comparison between the new configuration in SectionIII (with the algorithm

to estimate the time skew in SectionIV) and the old configuration in Section
II is shown in Section VI.

Section V describes the application of the new model in asynchrounous redun-
dant digital flight control systems and Section VII contains the conclusions
and summary. General descriptions, flowcharts, user instructions and listings
for all the software in this report are shown in Appendices.
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SECTION I
INTRODUCTION

Reference 1 provides the background information and results
on the asynchronous operation and design of closed-loop digital flight
control systems that have dual-redundant digital controllers. In the
model used, the digital controllers have the same sample rate but
there is a fixed time skew, or offset between their respective sample
times. Also, this model requires that the same channel is selected as
the output at all times. This latter assumption is roughly equivalent
to a channel-voting scheme that selects the upper median (for a four-
channel system) or the lower median {for a three- or four-channel
system) as the output when the channel outputs are either monotonically
increasing or decreasing in time.

Section II below describes the same model as in Reference 1
except that the input to the plant is the difference between the
external input (pilot input) and the output of the first controller.
An example, with a plot of the steady-state covariances of the errors
due to the time skew between controllers, is shown at the end of the
Section.

An extension to the model in Section II is developed in Section
IT1I. In this extended model, the first channel computes two outputs.
The first output is the input to the plant and is exactly the same as
the output of the first controller of the model in Section II. The
second output, which is an estimate of the output of the second channel,

is used to calculate the error due to the time skew between the two




controllers. Like the model in Section II, the second channel computes
only one signal. In this model, the inherent errors depend on the
difference of the second output of the first channel and the output of
the second channel. An example, with a plot of the steady-state
covariances of the second output of the first channel and the output
of the second channel, is presented at the end of the Section.

An algorithm to estimate the time skew between two asynchronous
systems is described in Section IV. The algorithm is based on the
model in Section III. The comparison between the new configuration
in Section III (with the algorithm to estimate the time skew in Section
IV) and the old configuration in Section II is shown in Section VI.

Section V describes the application of the new model in asyn-
chronous redundant digital flight control systems and Section VII
contains the conclusions and surmary. General descriptions, flow

charts, user instructions and listings for all the software in this

report are shown in Appendices.
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SECTION II
STATE EQUATIONS, COVARIANCE, AND EXAMPLES
FOR BASIC MODEL

The model illustrated in Figure 1 is labelled the basic model;
the assumptions, techniques, and style of analysis are the foundation
for the new model described in Section III of this report. The basic
model is similar to the model in Reference 1, except that the input
to the plant is the difference between the external input (pilot
input) and the output of the first controller, while in the model of

Reference 1, the input to the plant is the output of the first controller.

1.  SYSTEM CONFIGURATION AND THE DYNAMIC EQUATION

| The system configuration for this closed-loop dynamic system
consists of a continuous-time plant and dual-redundant, single-rate
discrete-time controlilers. The plant output is sampled by each of the
controllers, using a common sample period but having a fixed time skew
between them. The output of one of the controllers serves as the
piecewise-constant input to the plant, along with an external input.

The plant equations include aircraft, sensor, and actuator dynamics,

as well as any dynamics associated with the pilot input and wind-qust

model input. The plant equations are assumed to be in the form
Xp = ApXp + Bpup (2-1)

where
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Xp = plant state vector (np x 1)

up = plant input vector (nyp x 1)

external input vector (nyp x 1)

¥c1= controller 1 output vector (nyp x 1)

Yp = plant output vector (nop x 1)
Ap = plant state matrix (rip x np)
By = plant input matrix (np x nyp)
Cp = plant output matrix (“op X np)

The solution to Equation 1 is
t
xp{t) = ¢(t,to)xp(to) + {o¢(t.S)Bpup(S)ds (2-3)

where ¢(t,to) is the state transition matrix and for constant Ap

is given by
o(t,ty) = exp [Ag(t-t))] (2-4)

The plant input up(t) is piecewise-constant over a given sampling

interval; i.e.,
up(t) = up(ty) tk <t < ten

and so for t = t,, t = tg,, and t . ~ t, = T, the second term in

Equation (2-3) can be written as

t

k+1

{ Q(tkf' ,s)Bpup(s)ds = y(tk+) stk)up(tk) (2-5)
k




where

.
v(tke1stk) = 1 exp [Ag(t)]Bpdt
0

Substitution of (2-6) into (2-3) gives
Xp(trs1) = o(tyaratidxp(ti) + wltearatyduplty)

fork=0,1, . ..

The discrete-time equations for controller #1 are
X1 (tay) = Fexer(ty) + Geuer (ty)
yc](tk) = chc](tk) + Ecuc](tk)

fork=0,1, ...

and for controller #2
Xcp(tygy *+ 1) = Fexco(te + 1) + Geuga(ty + 1)
yea(ty + 1) = Hexca(ty + 1) + Ecuca(ty + v)

fork=0,1, ...

where

Xel = controller 1 state vector (n. x 1)

Yc1 = controller 1 output vector (nyp x 1)
Xc2 = controller 2 state vector (nc x 1)
Yc2 = controller 2 output vector (nup x1)

F. = controller state matrix (nc x nc)

(2-6)

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)

e s




o
"

e controller control input matrix (nc x “op)

p= od
(2]
"

controller output matrix (states) (nup x n.)

m
(2]
[

= controller output matrix (inputs) (nyp x\nop)

The plant (aircraft, actuator, and sensor dynamics) and the

controllers are related by the equations

up(ty) = wplty) - yer{ty) (2-12)
ucy(te) = yplty) (2-13)
Ucz(tk +1) = .Yp(tk + 1) (2-14)

Substitution of Equation (2-12) into (2-7) gives

xp(tiar) = o(tkarstidxp(ty) +
Wltpaq tid g () - yer(ty)] (2-15)

and
yp(tk+]) = Cpxp(tk+]) (2-]6)

The quantity xp(tk + 1) can be written using the solution to
Equation (2-7) as

Xp(tk + T) = Q(tk + fitk)xp(tk) +
Bty + b)) = ye1(t)] (2-17)

and

ypltk + 1) = Cpxglty + 1) (2-18)




The piecewise-constant inherent error e(t) is written in two

parts, ep(t) and eg(t) as

eA(t) =Yl (tk) - ycz(tk + 1) (2-19)
for t, + <tc< tk+1’ 0<t<T,k=0,1,. .., and
eB(t) = yc](tk.ﬂ) = ycz(tk + 1) (2-20)

for g4y <t <ty + 1, 0<c<T, k=0,1,...

2. COVARIANCE ANALYSIS
Let the input wp(tk) be a Gaussian white noise random process
with zero mean, which is independent of x(0) (Reference 3). Then,

let Pe and PeB be the covariance of the errors e, and egs respectively.

A
Thus,

Pea(t) = Elep(t) e, (t)] 22
fortk+rit<tk+.|,01'r<T,k=0,1,...,and

Pep(t) = Eleg(t) e (t)] (2-22)
for tk+] <t«< teay + T 0<t<T,k=0,1, ...

Since the input p is a Gaussian white noise and the controllers

are discrete time controllers, the inherent errors ep and eg will be

random variables {eA], €2s + -+ - » eAN}’ and {egy» egos + -+ o eBN}'

ep 1s the error in the interval t, + t and t,,,

ey2 Is the error in the interval ty ) + v and ¢y,

T G G N vl el et e e P e e T M WEY e e e e
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AN is the error in the interval ty,y_1 + 1 and tyeN

and

egy is the error in the interval ty,; and tyyq + <

eg2 is the error in the interval ty ;7 and tgs2 +

egy s the error in the interval ty,N and tg,y + T

Let EA and Eb represent the sample means based on N samples of

{eA]’ eAz, e o o ’ eAN} and {eB], eBz, * o o 9 eBN}- Thus,

LT [eA] tept.. ot eAN] (2-23)

zl_a

and

From these two equations (2-23) and (2-24), the sample covariances

of the errors based on the interval from ty to t.,y are

N T
Pea =-% 151 leqs - Bl [eai - &) , (2-25)
and
N T _
PeB = ;‘- .'f] [eAf - EA] [GA.' - eA] (2-26)

For the steady state sample covariance of errors, k is the value

when the system is in steady-state.




3. EXAMPLE

As the example, consider the closed-1oop system shown in Figure
2 with a second-order plant and a first-order controller. Assume wp
to be Gaussian white noise with zero mean and variance = 1 and let
the sample period T equal 0.0125 seconds.

From the block diagram in Figure 2, the plant is described by

0
% * 0 -10
0
% ° 200
and
Cp= |1 0

The description of the digital controllers is obtained by starting
with the Laplace transform transfer function of an analog controller
and performing the Tustin transformation (also called the bilinear
transformation) to obtain the z transformation and the discrete-time

state equations.

The continuous controller transfer function is 1+0.03s |

1 + 0.02s
The substitution s = 3_ f:l performs the Tustin transformation.
1 2+
This yields

0.03 x 2 z-1
1 +0.03s . 1t T 237
1+ 0.02s 0.02 x 2 2z-1
T z#1
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Then, the transfer function can be written as

0.047
X1 = T+0.06 - T2 + 0.08T + 0.0016
Y, T+0.04 ;-004 -7

0.04 + T

where Xc](z) is the controller output and Yp(z) is the controller
input, which is also the plant output. A block diagram for digital
controller 1 appears in Figure 3.

The state equations corresponding to Figure 3 are

ye1(ty) = Hexcq(ty) + Ecyp(ty)

where t . - tx = T and

¢ 0.08 +T
Ge = 0.04T
T2 + 0.08T + 0.0016
He = 1
Ec = 0.06 + T
0.04 + T .
The state transition matrix ‘(tk+1'tk) from equation (2-4) is
| 1- 1 e-]OT
( ) 170 70
ot t) = -
k+1° "k 0 e 10T

The steady state sample variance of errors Pgpqg and PeBss from

Appendix B are plotted in Figure 4 as a funtion of r. The diagrams to
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the right of each plot show the times at which the controller outputs
are sampled for the calculation of ep and eg. The sample variances

are largest when the times at which Yo and y.o change are farthest
apart, as expected. The results indicate that some combination of

the two measurements of the channel inherent errors may be less affected

by the amount of skews than either error taken alone.
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SECTION III
STATE EQUATIONS, COVARIANCE, AND
EXAMPLE FOR NEW MODEL

According to the example of the basic model in Section II, the
tolerance value for two-channel operation is the maximum value of the
steady-state sample covariance PeAss and is reached at v = T. If
the steady-state covariance is greater than the tolerance value, the
error is due to a failed channel; if it is less than the tolerance,
the error is the inherent error due to sampling skew. However, the
above choice for the tolerance value may not be the best one to
distinguish the inherent error from the error due to a failed channel.

For example, if the time skew of the second channel is small and
the sample variance is greater than the average variance for that time
skew, then it is Yikely that there is a failed channel. If that sample
variance, which is greater thab the average variance for that skew
time, is less than the tolerance value (Pgpgs at t = T), the basic
model in Section II would indicate no failure.

To reduce the effect above, one possibility is for channel 1
to compute an approximation to the current output of channel 2. The .
difference betweenvthe true output of channel 2 and the estimated
output of channel 2 will be close to zero, assuming that the estimate
is a good one. The tolerance value for this approach can be a small
value and it is equal to the maximum steady-state sample covariance of
the difference between the estimated value and the actual value. The
model described in this section estimates the output of channel 2
from the input of channel 1 and the details of this approach are in

16
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the following subsections.

1. SYSTEM CONFIGURATION AND DYNAMIC EQUATIONS

The closed-loop system configuration for this new model appears
in Figure 5, and is almost the same as the basic model in Section II.
The output Yp of the plant, which consists of the aircraft, the sensor,
and the control actuator dynamics, is sampled by each of two digital
controllers. They use the same fixed sample period T, but there is
a constant skew t between the starting points of the two samplers.

In Figure 5, the input of channel 1, yp(tkL is used to compute
yei(ty) and yZo(ty + *), an estimate of yp(ty + 1) (z* is an estimate
of t). The difference between the external input wp and ycp is the
input to the plant. The block named OBSERVER (See Appendix D for
details) computes x;(tk), an estimate of xp(tx) based on the two
quantities yp(tk_]) and up(tk_]), which are the previous inputs of
channel 1 and the plant, respectively. 'y;(tk + t*) is an estimate of
yp(tk + 1) calculated from «", x;(tk), and yc1(tk); this estimate is
an input to the block named 2nd DIGITAL CONTROLLER #1. Finally,
y:z(tk +1*) is computed.

As in the basic model, the plant equations include the aircraft,
sensor, and actuator dynamics, as well as any dynamics associated with
the pilot input and the wind-gust model input. The plant equations

are assumed to be in the form

xp = Apxp + Bpup (3-1)

Yp = Cpxp ' (3-2)
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Without showing the details of the derivation (the details are avail-

able in Section II), the solution of equation (3-1) is

Xplteer) = (teys tdxplte) + wltesy, tkuplty)  (3-3)
where
up(ty) = wplty) - yer(ty) (3-4)

The first function of channel 1 is to compute the signal that

is fed back to the plant according to the equation

Yer(tk) = Hexep(ty) + Ecyp(ty) (3-5)
and

xe1 (1) = Foxe (t) + Geyplty) (3-6)
fork=20,1,2, ...

The second function is to compute the signals that are used to

calculate the inherent error according to

Veplty + %) = HoxBp(tk + ) + Ecyplty + ) (3-7)
and

' *

Xea(tear + T7) = Fexo(t + T) + Geyp(t + %) (3-8)
for k=0,1, 2, . . . Here,

* * o, .

ycz(tk + v ) is the estimate of ycz(tk + 1)

x:z(tk + %) is the estimate of xca(tg + )

and

y;(tk + 1*) is the estimate of yplty + 1)

19




Note: A1l * variables are in channel 1 and the computations are !
done at the times ty, tyyys tysps - - . » instead of ty + 1,
ta1 + T ta2 t T, .

Channel 2 computes the signal that is to calculate the inherent

error according to

and
XCZ(tk+] + 1) = FCXCZ(tk + 1)+ chp(tk + 1) (3-10)
From equation (3-3), we can write the equation of xp(tk + 1)
as

xp(t, + 1) = olty + 10 txp(t) + w(ty + T tuplty)  (3-11)

and the input of contraller #2 is
yp(tk + 1) = Cpxp(tk + 1) (3-12)

From Appendix D, the equation of the observed state x;(tk+])

is

xp(tean) = oltgays Bdxp(t) + ltkers tlup(ty)

+ ¥y (tyyrs tk)yp(tk) (3-13)
where

x;(tk) is the estimate of xp(t,)
and

—

¥1(tears tk) = 7 EXP(Ap(t))Ggdt

o

20
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where Gg is the feedback matrix of the observer which y; will approach
yp'
From equation (3-9), the equation of x;(tk + r*) can be written
as
*
xp(tk + T*) = ¢(tg + T*, tk)X;(tk)
oty + %, g duplty) (3-15)
where t* is the estimate of .
In computing yzz(tk + t*), the variable y;(tk + 1*) is calculated

from the equation
Yoty + %) = Coxplty + ) (3-16)

The piecewise-constant inherent error e(t) is written in two

parts, ep(t) and eg(t) as

ea(t) = yealt, + ) - yeplty + 1) (3-17)
for ty + <t <t 0<t<T,k=0,1, ..., and

eg(t) = yo,(tear + ©%) = yealty + v) (3-18)
for t g st<t v, 0<c<T,k=0,1,...

2. COVARIANCE ANALYSIS
As in the basic model, wp is the Gaussian white noise, which has
Zero mean and variance = 1. Thus, the samples covariance of errors

ex and ep are
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Pealt) = % 5 (ep; - &) (eg; - &) (3-19)
fortp + v <t <t ,0<t<T,k=0,1,.. ., and
— T
Peglt) = 1 ig] (By; - ) (3-20)

for tk+] <t«< tk+1 +1,0<t<T,k=0,1, . ..

3. EXAMPLE

As the example, consider the system in Figure 2 of Section II.
PeAss and Poggs Of equations (3-19) and (3-20) are plotted as a function
of 1 for v = 0, 1/5, 2T/5, 31/5, 4T/5, and T respectively in Figure 6
(from Appendix E). The diagrams to the right of each plot show the
times at which the controller output are used for the calculation of
ep (eq. 3-17) and eg (eq. 3-18). The sample variance (Pepss) are largest
when t* is farthest apart from t (or yga(t, + t°) is farthest apart
from yc.o(ty + 1)) as expected.

From the plot, if t* is equal to t, the inherent error (ep) of
this model is zero and the main disadvantage of the asynchronous operation
will be eliminated. If t* is close to t, the inherent error (eA) is
a small value. Then the deficiency of the basic model, which is de-
scribed at the beginning of this section, will be reduced. According to

the plot, the sample variance of ey (p ) is directly proportional

eAss
to the difference between t and t*. Then t can be estimated by comparing
the sample variances of e, for the values of « in [0, T] and <*

which corresponds to the smallest covariance will be the estimate of «.
The next section will describe the detatl of the algorithm for estimating

t by using the result discussed above.
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SECTION 1V
; ALGORITHM FOR THE ESTIMATOR <*

According to the example in Section III, the steady-state sample
covariance of ep (eq. 3-19) appears to be directly proportional to the
difference between 7 and «*. That is, when the difference between 1

and t* is large, the steady-state sample covariance of ey is large; when

the difference is small, the covariance is small; and when the difference
is zero, the covariance is zero. This relationship is the basis for the
technique, described in this section, to estimate . The technique
uses the model of Figure 7 and the assumption that the steady-state

sample covariance of ep depends on the difference between t and .

S

1.  DESCRIPTION OF THE ALGORITHM

The basic procedure for estimating ™ by using the model of Figure
7 is to change t* in an iterative manner until the smallest covariance
of ey is obtained. Let the single variable NT be the number of sub-
intervals in the interval (0,T) so that the length of each subinterval
in (0,T) is equal to N;_and (0,T) is divided into 0, T, .. ,

NT -1 4T, T. Let 0 and T be the first lower and upper limits in which
NT

T lies. Let v be the estimate of . By comparing the steady-state

sample covariance of e, when t* is the midvalue between the lower and
the upper limits and that of e when r* is the value which is greater

than the midvalue by _I » one can determine whether to increase or to
NT

decrease t*, to reduce the steady-state sample covariance. If the

previous steady-state sample covariance of e, (eq. 3-19) when t* is {

Lo e g by t N 13
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Q the midvalue is less than the current steady-state sample covariance

l of e, when * is greater than the midvalue by T, then t must be

NT :
‘ between the lower limit and the midvalue. Therefore, this midvalue
is selected as the new upper limit of the new interval of 1 while the

lower limit is unchanged. If the previous steady-state sample covariance

v

of e is greater than the current steady-state sample covariance of

—————

ep» then the lower 1imit is updated with the midvalue while the upper
limit is maintained. (Note that the values of the lower limits, the
upper limits, and the midvalues are restricted to the values 0, _I_,
EI, . . . 5 T.) This procedure is repeated until the new midvalgz
NT

differs from the previous midvalue by _;. Then the resulting interval
N

is the smallest interval in which v lies and any value of 1* in this
. smallest interval can be used as the estimate of .
When the smallest interval in which t lies is obtained, the

lower 1imit or the upper limit will be the previous midvalue. Then

the last current midvalue will differ from the lower or the upper

limits by _I. However, the midvalue is not necessarily equal to the

NT
exact midpoint between the lower and the upper limits. Figure 8

.

5 A
»

shows the two possible locations of the midvalue. (Note: the midvalue
in this report is the average value of the lower and upper limits in
which the average value is a truncated-integer division.) Since the
average value of the lower and upper limits is a truncated-integer
division, then there are three smallest intervals of t which is shown

in Figure 9. i
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FIGURE 9 : THREE POSSIBLE SMALLEST INTERVALS OF t
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This technique is similar to the 'HALF-INTERVAL SEARCH' which
is a method for obtaining an approximate solution to an equation
f(x) = 0 and it is available in almost every numerical analysis book.

A flowchart of this procedure appears in Figure 10. Before
discussing the flowchart, let us define the variables which are used
in this flowchart.

As mentioned before, NT is the number of subintervals.in (0,T)
and instead of using the real values of the subintervals in (0,T);

namely, (1-1) x T (2-1) x T | (NTI-1) x T, it is more
(NT1-1) (NT1-1) (NT1-1)

convenient to refer to the numbers 1, 2, . . . , NTl. N4 and N5 are

the integers which represent the lower and upper limits of 1 respec-
tively. The lower and the upper limits of the interval which 1 lies.
N3 is the truncated-integer midvalue of N4 and N5.

NTAU! and NTAU2 are the integers which represent t* at the
updated midvalue and the previous midvalue respectively. NTAU3 is
also the integers which represents ¥ at the midvalue plus one. PEASSI
and PEASS2 are defined to be the steady-state sample covariances of
ep which correspond to NTAUI and NTAU3 respectively.

The first step of the flowchart shows the initialization of
the key variables.

The second step shows the computation of the covariance of e
when t* is equal to the midvalue of the interval. NTAUl represents
the midvalue and PEASS] is the corresponding covariance.

The third step provides the decision used in terminating the

routine. This routine will terminate when the current midvalue (NTAU1)
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START

NTAU2=0,N4=0,N5=NT1,
N3=(N4+N5) /2

+

NTAU1=N3; COMPUTE PEASS1

N3=N3+1,NTAU3=N3;

COMPUTE PEASS2

N5=N3-1
N3=(N4+N5) /2
NTAU2=NTAU1

--—-——————-—-———-__.

FIGURE 10

N4=N3-1
N3= (N4+N5) /2
NTAU2=NTAU1

: FLOWCHART OF THE DETAILS OF
THE PROCEDURE FOR ESTIMATING t¥*
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no

T *=NTAU1*T/NT

STOP }

<
PEASS1:PEASS
>
< B —
|

NTAU2=NTAU1+1
COMPUTE PEASS2

NTAU2=NTAU1l-1 ;
COMPUTE PEASS2

T%=(NTAU1-1)*T/NT

T —
T %= (NTAUL-2) *T/NT J
1 | .

STOP {

PEASS1:PEASS

FIGURE 10 : (cont.)
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is one subinterval apart from the previous midvalue (NTAU2).

The fourth step provides another value of the covariance when
t* is equal to NTAU3.

The fifth step takes care of the comparison between the steady-
state sample covariance obtained from step 2 and that obtained from
step 4. The decision is made in this step in order to select a new
interval of 1. The steady-state sample covariance of ey is directly
proportional to the difference between t and t*; therefore, if PEASSI
is greater than PEASS2, then the lower limit N4 is updated with the
midvalue while the upper limit, N5, is unchanged. If PEASS1 is less
than PEASS2, then N5 will be updated with the midvalue while N4 is
unchanged. The procedure goes back to step 2 and repeats until the
condition in the third step is met.

The remainder of the flowchart (after the difference of the current
midvalue and the previous midvalue is equal to one) shows the details
of the technique for estimating tr. As discussed at the beginning of
this section, the estimate of t can be selected by comparing the steady-
state sample covariance of every quantized number between the updated
N4 and N5. The integer in this interval which corresponds to the
smallest zovariance denotes the estimate of .

If NT is an integer power of 2; i.e.,

NT = 2V
then there is only one possible smallest interval in which t lies
and it is type-b smallest interval, which is shown in Figure 9-a.
Furthermore, the maximum number of iterations to get the estimate of

1 for any value of NT can be estimated by the maximum number of
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FIGURE 11 : DIAGRAM OF THE NUMBER OF

INTERATIONS OF (a) NT=8,
(b) NT=9, (c) NT=10
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iterations when NT is equal to an integer power of 2. For example, '
if NT is 8, then the maximum iterations is 3 as shown in Figure 11-a.
The last iteration (3rd iteration) is the smallest interval of t when the

difference between the previous midvalue and the current midvalue is

o T~

one. All these intervals are type-b smallest intervals. If NT is increased
by 1 (NT = 9), then the last iteration (3rd iteration) contains three
type-b smallest interval and one type-c smallest interval and it is shown
in Figure 11-b. The same as NT = 8, the maximum iterations of NT = 9
is equal to 3.
The situation when NT is 10, 11, and 12 are shown in Figure 11-c,
d, and e, respectively, and the maximum iterations of these values of
NT is still equal to 3. When NT is 13, the maximum iterations, which
is shown in Figure 11-f, is 4. From these examples, the approximate

maximum iterations of any values of NT between the midvalue of 2V-1

oo ] o [ o) L P

and 2V and the midvalue of 2V and 2¥*1 is equal to V.
Another approach for ca]culating'the estimate of r is to determine

the steady-state sample covariance of ey for successive values of

P> v X}

™ in (0,T) until that covariance begins to increase. The t* which

corresponds to the smallest value of the steady-state sample covariance W
of ey is the estimate of . Since ™ for this approach starts from ‘
zero, the number of iterations to get the estimate of t depends on the !
value of t. If t is close to zero or a small value, then t" can be y

estimated in a few iterations. The maximum number of iterations of
this approach is equal to NT (when t is equal to T). This maximum number fa
of iterations is greater than the maximum number of iterations of the

previous approach. For example, if NT is equal to 2V, then the maximum i

ey
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number of iterations of this approach is equal to 2V while that of
the previous approach is only equal to V.

As an example, consider the system in Figure 2 of Section II
with a second-order plant and a first-order controller. The external

input w_ is Gaussian white noise, which has zero mean and variance = 1.

p
Let's assume T to be one of the values 0, T, . . . , T and let NT

—,

NT

be 50. A FORTRAN program to simulate the entire closed-loop system
in Figure 7 and to implement the algorithm for estimating t of the
above example is in Appendix F. All arrays of this program are the
same as those of the program of the new model.

The system in Figure 7 is simulated by the software in Appendix
F. The software which implements the algorithm for estimating r,
will wait until the state observers (x;) equal the state variables
(xp) and this system is in steady state. From Appendix A (this system
is in steady state at the time 200T) and Appendix C (the state observers
equal the state variables at time approximate equals 40T), the software
will wait for 200T, then this software starts to implement the algorithm
for estimate 1. As in the example in Section II and Section III, N
is given the value 100 in the equation for calculating the sample
covariance of the errors. With t which is supposed to be equal to

EI » this software computes the estimate of this t which is equal to
NT

3T and the number of iterations which is equal to 5.
NT

In this example, t is assumed to be one of the values 0, T,
NT
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2T, ..., T, and " is restricted to be any value among 0, T,
NT NT

EI, . « « s T. Therefore, t can be estimated exactly. In general,

T . .

Q will be between 0 and T, but it may not be one of the above values.
Thus, the estimate of v will generally not equal to t and the maximum

difference between t and t* is N;' The numerical values of this

difference can be reduced by increasing NT.

Since the time skew varies with time, it should be estimated
at regular, short interval of times. Thus, the execution time of the
algorithm in this subsection for estimating t should be very small.

From the above example, the total execution time for estimating

T is the sum of the time for computing Pgpeo and the time for executing
the algorithm for estimating 1. The time for executing the algorithm
for estimating v can not be reduced but the time for computing PeAss
can be reduced only by decreasing the number of values of e (The
difference between yZ,(t, + t*) and yo(ty + 1).)

Since the sample covariance of ep 1n equation 3-19 is the estimated
value of the actual covariance of e, the difference between the
estimated value and the actual value depends on the number of values
of ey used. By the 'Law of Large Number' of Probability and Statistics,
if N, which is the number of random variables of e used, is large,
there is a high probability that €, (the sample mean of eA) will be
closed to the actual mean of these random variables. Then, there is
high probability that the sample covariance of e, will be closed to
the actual mean, too. Otherwise, if N is small, the estimated value

may diverge from the actual value. According to the algorithm for
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estimating r, the accuracy of this algorithm only depends on how

smooth the curve PeAss is. Then the covergence or divergence of the

estimated value (the sample covariance of eA) to the actual value
(the covariance of eA) does not concern to this algorithm. The value
of N can be selected as small as the curve of Pgpg¢ Which is plotted
as a function of t and " is still smooth. However, with N = 10, the

curve of PeASS is as smooth as the curve of PeAss with N = 100.

2. CHARACTERISTICS OF THE TIME SKEW

By assumption, the time skew is constant over a short period of
time. However, in reality the value of time skew will change slowly
with time. As discussed in Reference 1, the time skew can be assumed
to vary linearity with time and it is equal to T at the time which the
two samplers return to synchronism. This characteristic variation of
time skew is shown in Figure 12.

In the algorithm for estimating t in last subsection, t is
assumed to be changing very slowly. However, this algorithm cannot
estimate r at that time at which 1 changes from T to zero. Another
means for estimating t is needed for this time interval.

After the first estimate of t is obtained, the characteristic
curve in Figure 13 can be drawn. Let OA in Figure 13 represent the
time that corresponds to the first 1*, which is represented by AB.
Since the time skew varies linearly with time, the estimate of the
time skew also varies linearly with time. The characteristic of <*

can be drawn by using the slope sg and the time which " equals T

is the approximate value which the two sample periods coincide. Thus,
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|
an approximation to the time at which two sample periods coincide ‘ 1
(point a in Figure 13) is given by 7 X AB | Thys, after the first
7 has been estimated, the time at wh?gh two sample periods coincide

is estimated from this latter equation. :
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SECTION V
OPERATION OF THE NEW MODEL

This section describes the asynchronous operation of a digital
flight control system using the technique in Section III. The output
of the first controller in the model used is always the input to the
plant. The outputs of both controllers are sent to the monitor, which

will compare these signals using the tolerance value from the technique

in Section 1IV.

1.  DUAL-REDUNDANT DIGITAL FLIGHT CONTROL SYSTEM.

A model for a dual-redundant digital flight control system is
shown in Figure 14. The output of the plant is sampled by each of the
controllers, using a common sample period but having a fixed time skew
between them. The output of the first controller serves as the input
to the plant. The outputs of the controllers go to the monitor and the
monitor will first isolate the bad signal and then select or calculate
the best signal from the remaining good signals.

Figure 15 shows the details of the monitor. All the previous
values of output of the plant (yp(tk-]))’ the output of channel 1
(yc](tk_])), and the external input to the plant (wp(tk-])) go to the
block named OBSERVER, which is a subsystem designed to estimate the
state variables of the plant. The observer produces x;(tk). an estimate
of xp(ty). x;(tk + 1*), an estimate of Xp(ty + 1), is computed from

x;(tk). yc1(tk), and *. Then yZz(tk + 1*), an estimate of ycz(tk + ")
that is used to calculate the inherent error, is computed from
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X;(tk + 1¥) and the state variables cf the 2nd DIGITAL CONTROLLER #1.

After the system in Figure 14 estimates t, both yzz(tk + )
and ycz(tk + 1) are sent to the monitor logic. If the sample covariance
of the difference between ycp(t, + *) and y_,(t, + 1) is greater
than the tolerance value which is discussed in Section IV, then
channel failures are probably present. The monitor logic will isolate
the bad signal (y.y or y.o) from the channel failure.

As discussed at the end of Section IV, the execution time for
estimating t can be reduced by decreasing N in the equation of the
sample covariance of ep (eq. 3-19). Section IV also shows that there
is no difference in the estimate of t for N equal to 100 or 10. Thus,
N in this section is selected to be equal to 10 for the purpose of

reducing the execution time above.

To estimate 1, the 2nd DIGITAL CONTROLLER #1 executing the algorithm

in Section IV for estimating t will wait 50T seconds (T = 0.0125 second)
until the state observer (x;) is equal to the state variables (xp)
(The details are in Appendix C.). Then the 2nd DIGITAL CONTROLLER #
will store the next ten values of ep for estimating r. After 50T
seconds, t can be estimated in the time required for obtaining 10
values of ep plus the time for estimating t. Since the ten values of
e, (from 51T second to 60T second) are used to estimate t, then this
t* is the estimated value of t between 51T second and 60T second.

While the 2nd DIGITAL CONTROLLER #1 is in the process of estimating
Ts ¥eq and Ye2 are always sent to the monitor. Then, for the time
interval o to the time at which the first t* is estimated (50T seconds

are required for the state observers to equal to the state variables.),
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the monitor logic should be disabled.

As in Reference 1, let P be equal to the period required for
T, and T2 to return to synchronism or

P = TITZ

———

h-T
Let e be the fractional error between the clock crystals controlling

the separate processors; i.e.,

then P

With T] = 0.0125 second and e = 0.017, it requires 10,000 samples
of T; and T2 to return to synchronism. Thus, r changes very slowly

with time, then the t in the previous time interval can reasonably

be assumed to be the estimated time skew over the current time interval.

As discussed in Section tv, the time at which the two sample
periods return to synchronism is important because t at this time
changes abruptly from T to 0. For the time at which t is equal to T
or 0, it can be estimated by the technique described in the last sub-
section of Section IV.

After 1" is estimated, the monitor will compare y:z(tk + %)
and ycz(tk + 1). If the difference of these two signals is greater

than the given tolerance value discussed in Section IV, then a channel

failure has occurred.
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2.  TRI-REDUNDANT DIGITAL FLIGHT CONTROL SYSTEM .

A model for a tri-redundant digital flight control system is
shown in Figure 16. The output of the plant is sampled by each of
the controllers, using a common sample period but having two fixed
time skews 1, and T, between channel 1 and 2, and channel 1 and 3,
respectively. The output of the first controller serves as the input
to the plant and the outputs of these three controllers go to the
monitor, as in the model of the previous subsection.

Figure 17 shows the details of the monitor. The output of the
first controller is used to calculate ¥:2(tk + r;), an estimate of
Yealty + 1) yealt, + t3), an estimate of y.(ty + 1,), where
r; and r; are the estimated values of 7y and T, respectively. Using -

the same technique as discussed in the last subsection, Ty can be

estimated from y;3(tk + 15) and yc3(tk + 12). Since the maximum }
differences between t} and 7y, and 13 and 1o are equal, then the tol- .
erance values between channel 1 and 2, and channel 1 and 3 are equal. f
In comparing channel 2 and 3, the tolerance value is approximately equal N
to the maximum covariance of the difference between ygp(t, + 17) and !
Ye3(ty + 12). Thus, if the covariance of the difference between 1
ycz(tk + T]) and yc3(tk + 12) is greater than the tolerance value )
between channel 2 and 3 described above, the malfunction must have ]
occurred in channel 2 or channel 3. -
The model for more than three channels can be described in a l
manner similar to the model for the three-channel system. For example, ’I

consider a four-channel system. This system has three time skews:
the time skew between channels 1 and 2 (1]), the tfme skew between :?
)
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channels 1 and 3 (12), and the time skew between channels 1 and 4

(13). The 2nd DIGITAL CONTROLLER will estimate these three time

skews for the estimated value of the output of channel 2, the estimated
value of the output of channel 3, and the estimated value of the out-
put of channel 4. As in the three-channel system, the maximum differ-
ences between ) and 1], the estimate of 7, tp and 15, the estimate

of 1y, 13 and 13, the estimate of t, are equal to T/NT. Then the
tolerance values of channels 1 and 2, channel 1 and 3, and channel 1

and 4 are equal to the maximum sample covariance between the estimated
value and the actual value of any one of the outputs of the controller
(the maximum sample covariance of the differences between the estimated
and the actual values of the output of the second channel, the estimated
and the actual values of the output of the third channel and the estimated
and the actual values of the fourth channel are equal). For channels 2
and 3, the tolerance value is equal to the maximum covariance of the
difference between the esiimated values of channel 2 and 3. Similarly,
the tolerance value of channels 2 and 4, and the tolerance value of
channel 2 and 4 are equal to the maximum covariance of the differences

between the estimated values of channel 2 and 4 and channel 3 and 4,

respectively.

¥_____.._............._.




SECTION VI
COMPARISON BETWEEN BASIC MODEL
AND NEW MODEL

The basic model can distinguish inherent errors from the errors
induced by channel failures by using the maximum steady-state sample
covariance of e, as the tolerance value. If the measured covariance
of eA is greater than this tolerance value, then the monitor indicates
a channel failure. Otherwise, if the measured covariance of ey is
less than this tolerance value, the monitor indicates that only inherent
errors are present. However, this tolerance value is not the best
value to use to distinguish inherent errors from errors induced by
a channel failure. If the measured covariance of e, is greater
than the covariance of eA of the present t but is less than the maximum
steady-state sample covariance of es (t = T), then the basic model would

not indicate the channel failure. To reduce this deficiency, the new

model computes a tolerance value equal to the maximum steady-state

sample covariance of the difference between y:z(tk + t*) and ycz(tk + 7).

Since this tolerance value is very small when it is compared with the
tolerance value of the basic model, the deficiency of the basic model
discussed above can be reduced.

The number of tolerance values of the new model depends on the
number of channels. There is one tolerance value for two channels,
two tolerance values for three channels, four tolerance values for
four channels, and so on. For the basic model, there is only one

tolerance value for any number of channels.

.- ]
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} The next comparison is the hardware structure. Both models (the

basic model and the new model) require a computer to calculate the

covariance of ep.. But the software of the new model is more complicated
than that of the basic model. The software of the new model is used to

compute x;, an estimate of xp, x;(tk + 1*), an estimate of xplty + 1),

yea(tg + ), an estimate of y.,(t, + ), t*, an estimate of t, and

the sample covariance of ep (The difference between yc1(tk) and

yc2(tyx + t) is ey of the basic model. The difference between y:z(tk + )
and yea(ty + 1) is e, of the new model.).




SECTION VII
SUMMARY AND RECOMMENDATIONS

Two models for the asynchronous digital flight control system
are described in this report. The basic model is almost the same as
the basic model in Reference 1 and 2 except that the input to the
plant is the difference between the external input and the output of

the controller. However, the input to the plant is always the output

of the first controller.

As discussed in Reference 1, this basic modé] is roughly equivalent

to the voter named 'median select' (the upper median for a four-
channel system or the lower median for a three- or four-channel system
is used as the voter output) when the channel outputs are either
monotonically increasing or decreasing in time. Figure 18 illustrates
the example of an asynchronous, dual-redundant digital flight control
system which produces a monotonically increasing output. Channel 1
produces the sampled outputs at times ty, ty 41, - . . » for k = 0,

1, . . . and channel 2 produces the sampled outputs at times t,,

tk + 1 Yyt ..., fork=0,1,.... Acomparison monitor
which compares the magnitudes of the outputs of the two channels will
observe differences illustrated as e, and ep in Figure 18.

Since the pilot's command or wind - gust which changes all the
time is the external input, then the random signal (Gaussian white
noise) is chosen to be the external input of the models. A comparison
monitor in this case (Gaussian white noise is the external input.) will

compare the signal by using the covariance of e, instead of ep-
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According to the results of the basic model in Section II, the

steady-state sample covariance of e, (p ) is largest when the times

eAss
at which y.; (output of the first controller) and Ye2 (output of the
second controller) change are farthest apart. Then the tolerance
value of this model is equal to the maximum steady-state sample
covariance of the difference between yC](tk) and ycz(tk + 1) (when
t=T).

The new model described in Section IIl is an extension of the

basic model in Section II. As in the basic model, the external input

to this model is a Gaussian white noise. This model tries to reduce

the deficiency of the basic model described at the beginning of Section

III by decreasing the tolerance value. There are two functions per-
formed by the first channel of this model. The first function is to
compute the control output to the plant. The second function is to
compute a signal used to calculate the inherent error; this signal is
an estimated value of the output of the second channel.

Acéording to the results of the new model in Section III, the
steady-state sample covariance of the difference between yzz(tk + r*)
and ycz(tk + 1) is directly proportional to the difference between
v and . If t* equals t, the difference between Y:z(tk + r*) and
yc2(tk + t) 1s equal to zero. Then the tolerance value of the new
model depends on the difference between t and t*.

The algorithm in Section IV for estimating t is based on the

results above. Let t and " be one of the values 0, T, ..., T.
NT

Then this algorithm computes the steady-state sample covariance of the
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difference between yzz(tk + 1) and ycz(tk + 1) when ¥ is the midvalue
between the first lower limit (0) and the first upper limit (T). If
the covariance of the difference between yzz(tk + 1) and ycz(tk + 1)
of this first v* is less than that of the next value of this first

1¥, then must be between O and the new upper limit (the midvalue).
Otherwise, if that of this first t* is greater than that of the next
value of this first ", then t must be between the new lower limit (the
midvalue) and T. By using this scheme, the interval containing t can
be reduced by half for each iteration. The algorithm will repeat this
technique until the current midvalue differs from the previous midvalue

by__I. In the last interval, any values of t* which corresponds to the
NT

smallest steady-state sample covariance of the difference between
y:z(tk + ) and ygp(t, + 1) is the estimate of t. In general, t may

not be one of these values 0, 1, . . . , T, then the maximum difference
NT

between t and T is _J.
NT

The results from Section III and Section IV can be applied to
the asynchronous operation of digital flight control system. For a
two-channel system, the DIGITAL CONTROLLER #1 in the monitor will wait
until the state observers (x;) equal the state variables (xp). Then
the DIGITAL CONTROLLER #1 will execute the algorithm for estimating
t by using the next 10 values of the difference between yca(t, + t*)
and ycz(tk + t). During the time DIGITAL CONTROLLER #1 is estimating the
first t*, the monitor will not compare the signals fg,(t, + ") and

Ye2(ty + t)). After the first t* is estimated, the monitor will compare
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the signal by using the first t* until the new 1* is estimated. Then

the monitor will compare the signals by using the new t* and so on.

However, during the time in which the first ™ s estimating (after the

state observers (x;) equal the state variables (xp)), the monitor can
compare the signals by using the tolerance value which is equal to the

sample covariance when ™ =0and t=T. t* can be estimated for every

time period except the time at which v changes from its maximum value

to its minimum value (The details are in Section IV.).

For a system with three or more channels, the number of time skews

depends on the number of channels. For example, there are two time

skews for the three-channel system: s the time skew between channels
1 and 2; and oY) the time skew between channels 1 and 3. For the

four-channel system, thereis one more time skew: T35 the time skew

between channels 1 and 4. All these time skews can be estimated by

using the same technique as in the two-channel system. After these

time skews are estimated, the monitor will compare channels 1 and 2,

channels 1 and 3, and so on by using the estimated output of channel

2 and the actual output of channel 2 for channels 1 and 2 and so on. If

the sample covariance of the difference between the estimated and the
actual values of channels 1 and 2 or channels 1 and 3 and so on is greater
than the tolerance value of the new model, then the channel failure is

occurred. For a pair of the channels 2, 3, . . . , the monitor will

compare a pair of the channels by using the estimated outputs of that

pair of the channels. For example, the monitor will compare channels

2 and 3 by using the tolerance value which is the maximum covariance

of the difference between the estimated values of channels 2 and 3.

If
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the sample covariance of the actual outputs of channels 2 and 3 is
greater than the above tolerance value, then a channel failure has
occurred.

The last section describes the comparison between the basic
model and the new model. The disadvantage of the basic model is that
the basic model would not indicate the channel failure although the
sample covariance is greater than the sample covariance of the present
t. The new model can reduce this deficiency by reducing the tolerance
value. However, the new model requires more hardware and is more

complicated to simulate.

It is recommended that the work be continued to accomplish the
following:

1. The software in this report can only implement the example
in Figure 2. Then the software for simulating the models should be
developed to be the general software. Thus, software for simulating
a class of systems is needed.

2. Increase the complexity and generality of the models and
covariance analysis to include such features as multirate sampling,
computational delays, processor word-length effects, sensor noise and
additional voter algorithms.

3. To reduce the complexity of the asynchronous operation of a
digital flight control system using the technique in Section IV, a
model of a new algorithm for a dual-redundant system is shown in Figure
19. 1In this model, t* is constant and equal to T/2. After the state
observers are equal to the state variables, the signals yzz(tk + 1/2),

and ycz(tk + 1) are sent to the monitor logic. The tolerance value to

59

2 st




A.ﬂlvﬂwv.ﬁﬂh

TANNVHD LNVANNQTY-TVNd
40 YOLINOW YOJd WHLINOITIV MAN : 61 MANOIL

AMoonsi Poncamy el

T/L = x1

(z/14%2) 54

—
?+MUV T

d1LVINOIVO

(z/1+%) %%

A5 (A3)da

THIZTIONINOD
TVLIOIC, 2

(z/1+33) %%

.

L,‘T



~TANNVHD _ INVANOQTE -T3L
40 YOLINOW Y04 WHIIN¥OYIV MIN : 07 TENOIJ

-

(z/1+13) $4

—pe

(t24%2) %
T#43TIONINGD .

61




use in this case is equal to the sample covariance of the difference
between ycz(tk + T/2) and ycz(tk + 0). This algorithm is simpler than
the algorithm described in Section V because t* is constant. But the
tolerance value of this new algorithm is larger than the tolerance
value of the algorithm in Section V. However, the tolerance value of
this algorithm is less than the tolerance value of the basic model by
half.

A model of a new algorithm for a tri-redundant system is shown in
Figure 20. In this system, the tolerance value between channels 1 and
2, and channels 1 and 3 are equal to the sample covariance of the

difference between ycz(tk + T/2) and ycz(tk + 1. It is not necessary

to estimate y _(t, + T/2) because y.(t, + T/2) is equal to y.,(t, + T/2).
c3 k c3VYk c2'“k

However, the tolerance value of channels 2 and 3 is the same as in the
basic model.

4. The number of values of ey for computing the sample covariance
should be studied with the objective of using as few values as needed

for a reasonable reduction in the variability of the estimate.
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APPENDIX A
SOFTWARE FOR THE BASIC MODEL

1. FLOWCHART AND DESCRIPTION OF MAJOR COMPONENTS AND SUBROUTINE

As in Reference 1, the main program of the software for the

basic model is.called PROGRAM SKEW. 1Its major computational tasks

are to develop the state variable model of the complete closed-loop
system and to compute the controller outputs, the errors ey and egs

and the steady-state covariances of the states.

A flowchart for the program appears in Figure 21. The blocks

in this figure correspond to the clearly identified components of the
main program.

The first block shows the data input. The variables are self-

explanatory except for the quantities NT, NTAU, and NT2. Since a

numerical integration is required to compute y(t), and (T), it is

necessary to quantize the time interval [0,T]. The user specifies

the degree of quantization by specifying NT, the number of subintervals
in [0,T] which are to be used in the computation.

the subintervals of [0,T] are designated 1, 2, . .
is equal to NT + 1.

For convenience,
. to NT1; where NTI

NTAU represents the value of which is computed

within the program as

vy = (NTAU; - 1) o T
(NTT - 1)

8-1

and

B-2

NTAU, = ITAU * NT_+1
NTZ

RVREDUGUUIONT




START

Read in heading and description of the plant and
the controller;nup,np,nwp,nop.nc,Ap,Blp,cp,Fc,Gc,

H,,T, NT, and NT2

C te the Gaussian white noise by using

SUBROUTINE RANDU
i

Calculate 0(11), and ¢ (T) by using eq.2-4

1

Calculate ?(ti), and ¥(T) by using the trapezoidal
rule for numerical integration

=

Calculate xcz(tht), Ye2(tg.1tt) by using eqs. 2-10

and 2-11
1

Calculate xcl(tK+1)' ycl(tK) by using eqs. 2-8

and 2-9
]

Calculate fé' and €§ by using eqs. 2-17 and 2-18

R

by using eqs. 2-23 and 2-24

Calculate PeAss' and PeBss

!

STOP

FIGURE 21 : FLOWCHART DESCRIBING THE MAJOR COMPUTATIONS
OF PROGRAM SKEW
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for ITAU=0, 1,2, . . . , NT2

where NT must be an integer.
NT2

In block two, the gaussian noise is computed by using the sub-
routine named RANDU. This subroutine is available in most IBM-based

computer systems.

The third block specifies the calculation of #(t;) and ¢(T).
The computations require ¢ from block 2, so that the required numerical
integrations can be performed. The numerical integrations use the

trapezoidal approximation.

In block five of Figure 21, the second controller state variable

Xco and the second controller Y2 are calculated by using equations
Xep(t, + 1) = Fexeplty y + 1) + GlUcp(ty y + 1)
ycz(tk_1 + T) = chcz(tk-1 + T) + EcUcz(tk_] + T)

in block six, the first controller state variable Xe1 and the

first controller output Yoy are calculated by using equations

Xty ) = Fexeq () + Gclgy(ty)
yc](tk) = Hexea(ty) + EU,(8,)

In block seven, the inherent errors e and eg are calculated

by using equations

ey(t) =y (t) - yeolty + 1)
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forty+r<t<t ,0<t<T,k=0,1,...

k+1
eB(t) = ycl(tk+]) = ycz(tk + T)
fOl"tk+-‘it<tk+~‘+T,0<1’f_T,k=0, ],..-

The final set of computations is given in block eight. The steady

state covariance PEASS and PEBSS are calculated by using the equations

Peass = § 121 leys - Elleys - 1
PeBss = 1 _N [e,. - &1[e,. ~ €]
N i=1 Bi B~ Bi B
where
eAi and eBi: are the errors when the system is in steady
state
and

EA and Eb: are the sample means of N samples of i and eBi

2. ’ INSTRUCTIONS FOR USING THE PROGRAM

The first data card is used to provide a message which will be
printed at the top of a new page of output. The next card specifies
NP, NUP, NWP, NOP, and NC using the format (5I3). These quantities
are the actual dimensions of the plant and controller. Next, the
matrices Ap. Bp. Cp
one row and one card at a time, using the FORMAT (F10.4, 213). The
next card specifies T, NT, and NT2 using FORMAT (F10.4, 315). Table

, Ec' Fc. GC, and Hc are specified in succession,

1 shows what values to assign to the given arrays.
The computer program 1isting for PROGRAM SKEW of the basic model

rred  ewed pumed  Gumew Gmpel GEEENd  pEmee pomet e

*

oo




written in FORTRAN appears in appendix B. PEASS and PEBSS for each

value of 7 are shown at the end of the listing.

TABLE 1
REQUIRED DIMENSIONS OF ALL ARRAYS

AP (NP, NP) YP (NOP)
BP (NP, NwP) XPTAU (NP)
CP (NOP, NP) YPTAU (NOP)
FC (NC, NC) upP (NUP)
GC (NC, NoP) W (1000)
HC (NUP, NC) YC1 (NUP)
EC (NUP, NOP) XC1 (NC)
ECCP (NUP, NP) YC2 (NC)
PHST1 (NP, NP) XC2 (NC)
PHTAU (NP, NP) E1 (NUP)
PHTAU1 (NP, NP) E2 (NuP)
PSST (NP, NUP) EA (1000)
PSTAU (NP, NUP) EB (1000)
PSTAUT (NP, NUP) PEASS (30)
XP (NP) PEBSS (30)

Since the example is in the steady-state at time approximately equal
2007 (T = 0.0125 second), then the first value of § in equation (2-23),
(2-24), (2-25), and (2-26) is 201 and let's assume the value of N in
these equations equals 100.
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COMPUTER PROGRAM LISTING
FOR
PROGRAM SKEW AND EXAMPLE
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¥

COMMON ELEMX»MAXT yMAXJ
LIMENSION AF(292) 9y BIF(292)sCPCLy2) yFC(292)9GC(271)»PHIT(4,4),
HC(2y2YyEC(29 1) yFPHIT1(4v45101)yPSIT1(454) »PHTAUC4,4) yFETAU(A»4)»
INDEXC4) yW(4000)yFS(4r4) yYCL1(2)sPSIT(454) 2 XW3(2)
YC2(2)»EL(2)sER(2) o XP(2) o XPTAUC2) s XPL(2) s YF(2) s YFTAUC2) »

XCL(2) o XC2(2) v AM(454) sFTC(Ar4)yF1(4+4) ¢ [11(454),
N2¢CAr4)y03¢4)»yXWL1(2) v XW2(2)vECCF(454)T1(454)

FEASS(S0) »yFEBSS(S50)yEA(1100)sER(1100)

awamsw

LILCL FROVIDE MAXIMA FOR CALLED ARRAYS

NFM = 2

NUFM = 2

NWFM = 2

NOFM = |

NCM = 2

NHM = NFM + NUFM
NFM = NFM + 2XNCM
NRRM = 2kNFM +4

KKK KKK KKK KK K K KKK KK K8 K K K K 3 300K 3 3 K 3K 3 KK 3K 3K K XK K KKK K K 3K 0K XOK K K K0k
READ INFUT DATA

(
!
¢
C AKCARAKKNOKOK KK K KK KK 3K KK 3K 3 K 30 3K 2 3 00K 0K 3K KK 08 K KKK K K K 3K KK OK KKK K K K K KK
c

WRITE(&4,897)

899 FORMATC 1)

100 READ(S,900) 1D
200 FORMAT (20A4)
WRITE(6s902) ID
90% FORMAT(’17y20A4)
READI(5»906) NF s NUF y NWF » NOF » NC
906 FORMAT(SI3)
WRITE(&,908) NF»NUPsNWFyNOF » NC
208 FORMAT(’ONO, OF FLANT STATES = ‘,13/
1 ‘ NO. OF PLANT INFUTS = ‘,13/
2 ND. OF DISTUREANCE INFUTS = ‘y I3/
4 ’ NO. OF FLANT OUTPUTS = ‘y 13/
5 ¢ NO. OF CONTROLLER STATES (EACH CONTROLLER) = /,I3)
WRITE(45910) '
710 FORMAT (‘OPLANT STATE MATRIX ~- AP’)
110 DO 112 I = 1sNF
READI(S»914) (AF(IyJ)rJ=1yNF)

112 WRITE(69213) (AP(IyJ) s J=1yNF)
213 FORMAT(’ “»8G13.6)

?14 FORMAT(&F12.7)

215 FORMAT(8G13.6)

1

WRITE(&L&r?16)
P14 FNORMAT(OFLANT CONTROL INFPUT MATRIX -~ BiF’)
120 DO 122 1 = 13NF

READ(S»9214) (BI1F(IyJd) »Jd=1sNUF)

22 WRITE(6vP13)(BIP(IvJd) v =1+ NUP)
WRITE(6y918)

218 FORMAT (- QOBSERVER MATRIX-- GE’)

132 WRITECSsP13) (GE(IrJ)»J=1yNWP)

130 10 132 I=1,NP
READ(S»914)CGE(I s )y J=1 sy NWF)
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WRITE(6y920)
920 FORMAT(‘OPLANT OQUTFUT MATRIX -- CF)
140 NO 142 I=1,NOP
READ(Sy914)(CP(IsJ)»J=1sNF)
142 WRITEC(Ay?13)(CP(IvJ)rd=1sNF)
WRITE(69922)
222 FORMAT(/OCONTROLLER STATE MATRIX -- FC’)
150 DO 152 I =1y4NC
READCS»y914)(FC(IsJ) v J=19NC)
152 WRITE(&»P13)(FC(IvJ)rJ=1sNC)
WRITE(4y924)
P24 FORMAT(/QCONTROLLER CONTROL INFUT MATRIX --— GC 7))
160 DO 162 I=1+NC
READN(S»y?14)(GC(IrJ) v J=1yNOF)
162 WRITE(A6sF13)(GC(IyJ)y d=1vNOF)
WRITE(6,925)
225 FORMAT( ‘OCONTROLLER QUTFUT MATRIX (STATES) -- HC’)
170 NO 172 I=1+NUF
READ(S»914) (HC(I» J)» J=1yNC)
172 WRITE(&6y913)(HC(Iy )2 =1 9NC)
WRITE(46»926)
926 FORMAT(‘QCONTROLLER QUTFUT MATRIX (INFUTS) -- EC’)
180 DO 182 I=1yNUP
READ(S ¢y R14XCECC(IvJ) v J=1 s NOF)
182 WRITE(S6y?13)(ECC(I»J)yd=1sNOF)
REAR(S:928) ToeNT
928 FORMAT(F10.4,13)
XNT = NT
DELTA = T/(XNT-1)
WRITE(A6,9230) ToNT
230 FORMATC( 1T = ‘9F10.,4/
1 7 NT = 915/
3 4 T = SAMFLE RATE.’/
& 7 DELTA = T/(NT-1) = INCREMENT USEDI IN THE NUMERICAL'/
7’ INTEGRATIONS TQ COMFUTE PSITAUSFSIT»PSIT27/
® FSITAUL1 USING TRAFEZOIDAL RULE. /7
WRITE(4y9231)
931 FORMAT(2Xy’ W IS THE EXTERNAL INPUT (WHITE GAUSSIAN NOISE WITH
17 MEAN = 0.0» AND VARIANCE = 1.0’)
C
(8 ORI AR KKK 3 33K 3 200 3K 2 K K 3 o K A K K 3 0 3 3K 3 3K K 20 8 30 0 3 30K 3K KKK K K 3K 0K KK XK 3K K KKk K
c GENERATE WHITE GAUSSIAN NOISE WITH MEAN = 0 AND VARIANCE = 1
C AR OKKOK K KK KKK KK K K K 3K 3K 33K KK 3K K 3K K KK 3K K3 K oK 0K 3K KK oK KK K K KK 3K K KKK K
C
IX = 11111
DO 192 I = 15,1200
A= 0.0
D0 193 J = 1412
CALL RANDUCIX»1YsY)
IX = 1Y
193 A = AtY
192 W(I) = A-6
DO 1199 1 = 1,NUP
DO 1199 J = 1sNP
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1199
802
835
C

C

4¢3
402

400
860

861

Ci

ECCF(I,J) = 0.0

D0 11929 K = 1yNOP

ECCP(XsJd) = ECCF(Isd) + ECC(IsKIXCP(KyJ)
FORMAT(SX»56G13.6)

FORMAT(SX»5613,6)

KKK 0K K Kk 3 33K K Ok 0K 0K 3K OK KK B K K 3K K 3K 0K 30K OKOK 3K K K K KK K 3K K 3K 3K KK 00K 0K 3K KK K0k K K X X
CALCULATE FHIT(O) »yFHIT(LELTA) s FHIT(2XIELTA) vs o o yFHIT(T)
KK 3K KKK K K KK KK KK K KK 3OK 3K0K 3K K K 3K K 3K 3 K K oK 3K 30 30K 00K K 3K K00 3K K KO 0 K KK KOk K

DELHLF = DELTA/2.0

T = 0.0

O 402 IT = LeNF

DO 402 AJ = 1eNF

IFCITLEQ.JJ)Y GO TO 403
FHITIC(ITIyJds1) = 0.0

G0 TO 402

FHIT1CILy )1y = 1.0

CONTINUE

no 4 11 = 29NT

TI = TI+DELTA

FHITLC(1yleIl) = 1.
FHITLCL»2211) = (1./10.3%(1L,~EXP(~-10.%XTI))
FHIT1C(Z2y1s11) = Q.0
FHIT1(2s2sI1) = EXF(-10.%TI)

DD 400 I1 = 1sNF

DO 400 JJ = 1sNF

FHITC(ITyJJ) = PHIT1C(IXr»JJsNT)
WRITE(6+860)

FORMAT (5Xy ‘FHIT’)

N0 861 1 = 1LeNF

WRITE(6s802)Y (FHIT(IvJ)yJ=1sNF)
N1l = O

DO 1800 KK2 = 1y6

TAU = N1%0.0125/5.0

N1 = N1 + 1 :

NTAU = (KK2-1)%10

NTAU = NTAU + 1

INITIAL VALUE YC2(-TIME+TAU)» YC3(-TIME)» YC1(-TIME)
DO 31 I = 1sNUF

YC2(I) = 0.0

YCLCLY = 0.0

0 32 I = 1sNUF

E1¢(I)> = YC1(I) -~ YC2(I)

FROM INITIAL VALUE XF(TIME)r» AND YFP(TIME) ARE EQUAL TO ZERO
O 35 I = 1sNFP

XPC(I) = 0.0
DO 36 I = 1,NOP
YP(I) = 0.0

FROM INITIAL VALUE XC1(TIME+T)s» YCI1(TIME) ARE EQUAL TO ZERO
DO 37 I = 1sNC

XC1¢I) = 0.0

XC2¢(I) = 0.0

DO 52 I = 1sNUP

n




28

YC1(I) = 0.0
200K 2 8 20 0 0 3K 0K 8 KK KK KK 2K 3 KK K8 K KK KKK K 3K K oK 3K 2K 30 K 3K 3K 30K 38K 3 KK K 3K 3K 3K K K XKk XK

CALCULATE FHIT(TAU) . 1

oo oow

L2223 2222022280200 0820320000003 0032 883883333233 83383¢3383853333:
IDEL = O
O S000 I = 1sNT
IDEL = IDEL + 1 *
IF(IDEL.EQ.NTAW) GO TO 16
GO TO 5000 - {
16 Do 17 11 = 1yNF

Do 17 JJ = 1sNF ¢
17 FHTAUCITI»JJ)Y = FHIT1(II»JdJdyIDEL) »
3000 CONTINUE

tas ]
i

¢ RO IOOROROKICOORRRKK KKK KRR KKK KKK KA KK K
C CALCULATE FSIT(TAU) yFSIT(T)
c KRR ORI KRR ORRK KRR KRR KKK KKK
¢
DD S50 T = 1,NF
DO 550 J = 1sNWF
S50 PS(Iyd) = 0,0
[0 551 1 = 1sNF
DO 551 J = 1sNWF
FSTAUCI»J) = 0,0
FSITCIrd) = 0.0
DO 551 K = L1sNP
FSTAU(IsJ) = PSTAUCI»J) + FHIT1CIsKsNTAU)XELF(Ky.)
551 FSIT(I»d) = FSIT(IrJ) + FHIT1CIsKsNT)RELF(K»J)
| D0 552 I = 1sNF
10 552 J = 1sNWF
FSTAUCI»J) = DELHLFXPSTAU(IyJ)
552 FSIT(I»J) = DELHLFXFSIT(IyJ)
60 DD 61 I1 = 2yNT
I2 = NT-I141
DO 62 I = 1yNF
D0 62 J = 1yNWF
62 PSIT(IrJd) = FSIT(Ird) + FS(Isd)
DD 63 I = 1,NF
DO 63 J = 1,NWF
PS(IsJd) = 0.0
DO 63 K = 1sNP £
63 PS(Iyd) = PSCIrd) + PHITA(IsKsI2)XBIF(KsJ) H
DO 64 I = 1,NF
DO 64 J = 1sNWF
64  PS(IsJ) = DELHLFXPS(IyJ) )
DO 66 I = 1sNP |
DO 66 J = 1sNWF B
66  FSIT(I»J) = PS(IrJ) + PSIT(IrJ) ;
61  CONTINUE !
67 DD 68 I = 1sNF
DO 68 J = 1,NWP 2
68  PS(Isd) = 0.0

72
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IF(NTAULEQ.1) GO TO 58

GO TOQ 69

o 58 II = 1sNF

B0 38 JJ = 1yNWF

FSTAUCII» ) = 0,0

G0 10 77

no 70 11 = 2,NTAU

12 = NTAU-T1+1

O 71 I = 1sNF

DO 71 J = 1oNWF

FSTAU(IrJ) = FSTAUC(IyJ) + FPS(Isd)
DO 72 1 = 1-NF

DG 72 J = LyNWF

FSC(Isdd = 0.0

n 72 K 1yNF

FSCIsd) = PS(IrS) + PHITL(IKyI2)XRIF(Ky. DD
DO 73 1 = 1sNP

O 73 J = 1yNWF

FS(lyd) = DELHLFXFS(Ly)

[0 76 T = 1sNF

RO 76 J = 1yNWF

FSTAUCI»J) = FS(I»J) + FSTAUCI
CONTINUE

CONTINUE

#

AOK KK KK KK K KKK KK 3K KOK KK 3K K K K K 3K 3 K K 3 K 0K K K ORI OIOK AR OK K KK K KK K KR AOK KKK K K
START TIME LOOF

TIME = 0

0K 30K 3K 0K A OK 0K K K K KKK 3 30K K KK KKK 3K 00K OIORIOK K RCIOR K0OK 3K KOK 3K 8 K K KK K K OK K 0K KK XK X K

NN1 = 1

DO 412 T = 1»NOF

UPCTD)Y = WONNLY-YCLCI)

K K 50K 3K KK 3K 3 4 8¢ KK K K K K A B0k 8 K ROK KKK K ¢ K 3k R OK 33 R K K OK KK K KK K K 3K KOK KK K0K0kK 3k
CALCULATE XF(TIME+TAU)» AND YF(TIME+TAU)

KK 5K 3K 0K K 335K 3K K K K 3K K K o 3K K3 300 0 K 0K KK 9K 350 40 3 KK 0K KK K XK 0K KK KKK KK XK K0k
Do 470 I = 1sNUF

E2¢(I) = YC1<(I) - YC2¢I)

0o 220 111 = 1,400

O 253 1 = 19NF

Q@ = 0.0

O 254 ) = 1sNFP

Q= Q@ 4+ FPHTAUCI» JI)XXF (D)

XWic(I) = @

DO 255 I = 1sNFP

@ = 0,0

DO 256 J = 1yNUP

Q= Q 4+ FSTAUC(I» HDXUF(J)

XW2¢(I) = Q
N0 257 L = 1sNF )
XPTAU(I) = XW1<(I) + XW2¢I)
o 260 I = 1,NOF
Q= 0,0
DO 261 J = 1LyNP
73
—
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300
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304

306
30%

308
307

309
C

290
G
c
373

H01
S500

503

502

Q= Q + CFCI»DIXXFTAUCY)

YFTAUCI) = Q

K 2 3300 0K KK K K K K 3 KOK 3 3K 350K K K K K 8 K 350K 3 3K 3K K K 3K K 3 3K 3 3 3K K 3 3 3K K 3K 3K K KK 3K K K KK 30K K Ok X
TIME = TIME + T

CALCULATE XC2(TIME+T+TAU) yAND YC2(TIME4TAU)

K0 0K 0OK 2K K K 0K 3K K 0K 33 3 3K 3K K K K K 2K K KKK 3 3K K KK K K K K K K K 30K 3K K 33K 3K K 3K K 3K 2K 30K 2K 30K 3 KKK KK K
DO 300 I = 1sNUP

O 301 J = 1sNC

Q = 0 + HC(L»2XXC2C(D)

XWidcI) = @

ng 302 1 = 1eNUF

Q= 0.0

DO 303 J = 1sNOF

Q= Q + EC(I+ JIXYFTAUCD)

XW2¢(I) = Q

no 304 1 = 1yNUF

YE2(I)Y = XWi<I)> + XW2(I)D

0 305 1 = 1yNC

Q = 0.0

N0 306 J = 1+NC

Q = Q 4+ FOOLy DHXXC2CD

AWICT)Y = @

no 307 I = 1yNC

Q= 0,0

nag 308 J = 1sNOF

Q= Q + GC(IIXYFPTAUCLD

XW2(I) = @

RO 309 1 = 1+NC

XC2¢(TI) = XWI<I» + XW2(I)

20003 3 30K K 3K 3K KK K K K 0OK K K 2K 0K 8 K 0K 0K KK 3K K 0K 30K 3K 3 2K 3K 3K K 0 3K 350K KK K KOK 3k 3K 350K K K 30K 3 K K
CALCULATE E1

KOK K KK K 30K 3K 3K 3K K 3k 3 3K 3K 30K K0 30K 3 K 3K 3K 30 K KO8 3K 3K K 3KOKKOK K 8 3K 0 K K K K K K 0K K KOk k0K K K
N0 290 1 = 1leNUF

E1¢I) = YC1(I) - YC2C(I)

2K 3k 3K K KK 6 3K KK X8 3K 0K K KK K XK KK 30K 3K K 0K 3K K KK ¢ KK K 3K K K K 3K K 33K 3KOK K 3K 3K 300K K 3 K 20K 0K Kk
CALCULATE XFP(TIME)>s AND YF(TIME)

0K 0K BOK K 3K KOK 30K 3KOKOK K 3K K K 3K 3K 3K 3K 3K K K 3K K 3K 8 25K 3 3K 3K 80K 3K 0K 3K 3K KK K KKK 80K K 0K KK KK Kk
DO 500 I = 1sNF

Q= Q0,0

no 501 J = 1leNF

Q= Q@ + PHITC(I DXXF(D)

XWi(I) = @

NO 502 I = 1eNP

Q = 0,0

Do 503 J = 1sNUF

Q= Q + FPSIT(Iy»DXUFC(J)

XW2(I) = Q@

DO 504 I = 1sNF

XP(I) = XW1(I> + XW2(I)

DO 507 I = 1sNOF

Q@ = 0,0

DO 508 J = 1¢NP

@ = Q@ 4+ CP(IrvJIXRXF(J)
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701
700

703

202

704

706

705

708

207

709

221

C

540

h

360

203G

3

[anlian
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YFCI) = Q

20K 00K KK K3 38 0 K 3K K K K KKK KKK 3K KK KK K K K K 30K 30K 30K 3K KK 0K KK 50K KK 30K K K o % K K K o
CALCULATE XCL(2XTIME)>» AND YC1(TIME)

2K K 3K 0 0K K K 280K 3 8 K 3K K K8 K K KK K 3K KK 3K K KK 0K K K 25K 38 KKK 30OK KK 30K 30K K 0K KK K 3 3 0K XK K KOk X
ng 700 t = 1sNUF

D0 7201 J = 1sNC

Q = Q@ + HC(Ty DXXCLCD

XWLCel) = @

DO 702 1 = 1NUF

Q= ¢,0

g 703 4 = 1¢NOF

G = Q@ + EC{Ly JIXYFCD)

XW2(T) = @

DO 704 1T = 1sNUF

YCL(I) = XWi<(I) + XW2¢I)

no 705 I = 1sNC

g = 0,0

no 706 J = 19NC

Q = Q + FC<CIs DXXCLC)

XWicIy = Q@

no 707 I = 1+NC

@ = 0.0

00 708 J = 1«NOF

0= Q + GCCLy DIXRYFC))

XW2¢(1) = @

DO 7209 1 = 19NCG

XC1CI) = XW1¢I) + XW2(I)

NN1 = NN1 + 1

00 221 I = 1»NOF

UFPFCT) = WONNL)-YCLC(T)

0.2 0 XK 3K 2K K 3K 3 K 2K 3 30 K KK K K K K B K 3K KKK 3K 0K K K K 3K 3K 2K 3 3K 3K K 3K 2K K K 3K 3K KK 3K 3K K 3O K K K XK X ¥
CALCULATE EZ2

3K A K B 3K K XK K 3 3K 3K KK 3K K K K K K 3K 0K 3K 8 3K 38 K K 3K 50K 3K 30K 3 3K 3 K K K 3K K K 6 3K K 0K 3K K 0K K K 3K ok oK K K k
no 540 1 = 1sNUF

E2¢I) = YC141) -~ YCQCI)

DO 560 I = 1sNUF

EA{ITL) = E1CD)

ERCIILY = E2<(I)

CONTINUE

20K KKK K K KR OKOK K K A0 3K AR K KK KKK OKOK K OKOKKOK KKK OK K HOK K KKK OO KOK ¥ 0h ™ R NOK K KKK .
CALCULATE THE STEADY STATE SAMFLE COVARIANCE OF ERRORS
0000 3K 2K 2 63K ok K K KK 30 K 8K 0 38K 35 8 30 K KK K KK 80K K 3 5 K K KK 33K 0 38 KK K 30K 3K K K K KKk

SMEANA = 0.0

SMEANE = 0.0

vo 541 I = 501,800
SMEANG - SMEANA + EAC(I)
-t ANF - SHEANB + EB(I)

MEANA - SMEANA/300
SHEANB - SHMEANB/300

O
o

AN L)
*h - 0.




e S,

1800

-~

D0 563 I = 501,800

VEA = VEA + (EA(I)-SMEANA)X%2
VEBR = VER + (ER(I)-SMEANB)Xx%2
PEASS(KK2) = VEA/300
FERSS(KK2) = VEB/300

CONT INUE

WRITE(6+570) TaAU

FORMAT(5Xy ‘FEASS( TAU =
WRITE(65571) (FEASS(I)»I=1+4)

FORMAT
WRITE
FORMAT

(3XrF18.10)
62572) TAU
(GX» ‘FEBSS( TAU

TrF12.8y7) )

“eF12.8y 7))

WRITE(6yS571)(FERSS(I)»1=1:4)
CONTINUE

STOF
ENI

SUBRQUTINE RANDUCIXrIY»YFL)

1y = 1
IF (1Y)
Iy = 1I
YFL
YFL =
RETURN
END

H

XK65539

Sebeb

Y + 2147483647+1
IY
YFLX0.44656613E~9
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EXAMFLE -~ -~--2TH ORDER FLANT, 1ST OKDEK CONTROLLER
NO. OF FLANT STATES = 2

NO. OF FLANT INPUTS = 1

NO. OF EXTERNAL INFUT = 1

NO. OF FLANT QUTFUTS = 1

NO. OF CONTROLLER STATES ¢ EACH CONTROLLER) = 1

FLANT STATE MATRIX -~ AF

+0 1.0
+ O “"100()
FLANT CONTROL INPUT MATRIX -- RP
.0
200,0

FLANT QUTEUT MATRIX ~-—- CF
1.0 )

CONTROLLER STATE MATRIX -- FC
523810

CONTROLLER CONTROL INFUT MATRIX -~ GC
~e 18162

CONTROLLER QUTFUT MATRIX (STATES) -—- HC
1.0

CONTROLLER OUTFUT MATRIX C(INFUTS) -- EC
1.381
NT = 51
1T = SAMFLE FERIOD = 0.0125 SEC
DELTA = T/(NT~1) = INCREMENT USED IN THE NUMERICAL
INTEGRATIONS TO COMPUTE FSITAUSFSIT»FSITY,
FSITAUL USING TRAFEZOIDAL RULE.
W 15 THE EXTERNAL INFUT (WHITE GAUSSIAN NOISE WITH
MEAN = 0,0y AND VARIANCE = 1,0
THE GTEADY STATE SAMFLE VARIANCE OF ERRORS
FEASS
0.0
0.0002195683
0.0008547062
0.0018880414
0.0033245913
0.0051899776
FEESS
0.0051899776
0.0033477221
0,0019137899
0.0008709673
0.0002244494
0.0

{-.—..—-




APPENDIX C
DESIGN OF THE STATE OBSERVER i
In section III, yp(tk) the input to channel 1, go through the ;

blocks named 1st DIGITAL CONTROLLER AND OBSERVER. The output of

the first block serves as the input to the plant and the output of the l

second is the estimate of the state variables of the plant and is used

to estimate yéz(tk + t¥). This appendix describes how to estimate the l

state variables xp(ty) from yp(t,). I

1. DESIGN OF STATE OBSERVER I
Reference 3 defines an observer as the subsystem that estimates :

the state variables of a dynamical system, based on measurements of i

the input up(t) and the output yp(t). Figure 22 shows the block ‘

diagram of an observer which is formulated as a feedback control with

Gc as the feedback matrix. The design objective is to select the

feedback matrix Gy such that yp(t), the estimate of yp(t), will approach

yp(t) as fast as possible. When yp(t) equals y;(t), the dynamics

of the state observer are described by
¥ = * -
xp(t) Apxp(t) + Bpup(t) c-1

which is identical to the state equation of the system (plant) to
be observed. In general, with up(t) and yp(t) as inputs to the

observer, the dynamics of the observer are represented by

Xp(t) = [A, - GeCplxp(t) + Bpup(t) + Geyp(t) c-2




FIGURE 22 : BLOCK DIAGRAM OF AN OBSERVER




Since yp(t) equals Cpxp(t), the equation C-2 is written as )
% - * - * -
xp(t) = Apxp(t) + Bpuy(t) + 6Cylxp(t) - xp(t)] Cc-3 i

The significance of this expression is that if the initial values
of xp(t) and x;(t) are identical, the equation reverts to that of

equation C-1, and the response of the observer will be identical to

that of the original system. [In the model in Section III, the initial )
value of x;(tk) is unknown. Therefore, the design of the feedback

matrix G, for the observer is significant only if the initial conditions

[

of xp(t) and x;(t) are different.

If we subtract equations (C-3) from (C-1), we have {
[xp(t) - x5(t)] = [A, - GeCpllxp(t) - xp(t)] c-4

which may be regarded as the homogeneous state equation of a linear {
system with the coefficient matrix [A - Gecp]' The characteristic

equation of [A - Gecp] and of the state observer is then

1A - (A - GCp)| =0 c-5

g ——

Since we are interested in driving x;(t) as close to xp(t) as possible,

e P——

the objective of the observer design may be stated as to select the
elements of Ge so that the natural response of equation C-4 decays to
zero as quickly as possible. In other words, the eigenvalues of 4
[A - 64C,] should be selected so that x;(t) approaches xp(t) rapidly.
However, it must be kept in mind that the approach of assigning tie

(et |

eigenvalues of [A - Gecp] may not always be satisfactory for the

[y, |

purpose of matching all the observed states to the real state, since




R S

)
l the eigenvalues control only the denominator or polynomial of the
} l transfer relation, while the numerator polynomial is not controlled.
; More details and an example of the statement above are available in
| l Reference 4.
! 2.  EXAMPLE
The following example, which is the example used in Section II
l and III, is used to illustrate the technique described above.
; From the example in Section II, we have
Ap =10 1 c-6
‘ 0 -10
; Bp = 0 c-7
200
i and
¢ =1 o c-8
Let the feedback matrix be designated as
- Ge = | 9 ¢-9
9e2
'
r‘ Substitution of equations (C-6), (C-8), and (C-9) into (C-5), gives
5 - (A -6C)] =[x 0-§10 1] -]gq O
j P~ et g o -10] | o
y

=x 0!- {-g¢7 1
0 2 i 1-922 -10'

9p . A+ 10

i

|

| cpreg | c-10
l | |

i




Then the characteristic equation of the state observer is ‘
a4 (10 + ge])x + (10gg) + gg2) = 0 c-1 !

Let the eigenvalues of Al - (A, - Gecp) be A = -15, -15 then

the characteristic equation should be i

A2 + 30A + 225 = 0 C-12 !

Equating like terms of equations (C-11) and (C-12) gives |

91 = 20

Figure 23 illustrates the responses xp](t) and x;1(t) for the

following initial states

| |

%2 = 25 |
I
!

xp(O) =

ol. x5(0) = ‘z‘

0 0

Shown in the same figure is the response of x;](t) when the state

observer is designed for eigenvalues at A = -20, -20; in this case

ge] = 30 and g, = 100. However, it is seen from the figure that 'E

x;1 for both gg; = 20, gop = 25 and gg) = 30, gop = 100 are approxi- 1

mately the same deviation from Xp. A
Figure 24 illustrates the response xpz(t) and x;Z(t) for the

two cases of observer design. The characteristics of x;2 for both

de1 * 90, ggz = 25 and ggy = 30, gop = 100 are the same as that of

both x;] which are approximately the same deviation from x,.

82

As mentioned earlier, the eigenvalues may not always be satis- i ;
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factory for the purpose of matching all the observed states to the
real states. Reference 4 shows that the selecting larger values for
e and ge2 to give faster transient response for the observer is
not always best. Sometimes, the large values of g, and 9e2 will

only give faster transient response for one of the observed states

but not the other and the details are in Reference 4.

Since both x;] and xsz converge to Xp1 and Xp2 respectively at

e ]

the same rate for X = -20, -20 and A = -15, -15, then we can select

b either set of eigenvalues for this example.

e

-

——

—
——————




APPENDIX D
SOFTWARE FOR THE NEW MODEL

1. FLOWCHART AND DESCRIPTION OF MAJOR COMPONENTS AND SUBROUTINE

The main program in the software for the new model is called
PROGRAM SKEW1. Its major computational tasks are to develop the state
variable model of the complete closed-loop system and to compute the
steady-state covariance of the states, the controller outputs and the
errors e, and eB. This program is almost the same as PROGRAM SKEW,
described in Appendix A, except that the inherent errors are computed
from the output of channel 2, ycz(tk + 1), and its estimated value
from the input of channel 1, y:z(tk + t*). A1l the variables from
Appendix A plus the variables for calculating the estimated value of
the output of the output of channel 2 are used in this program.

A flowchart for this program appears in Figure 25. The first
block shows the data input. The variables are self-explanatory and
discussed in Appendix A except for a new variable NTAU1, which represents

the value of t* as

™ = {NTAUH - T D-1

NTAUTi = ITAUT * NT =1 D-2
NT2

for ITAU1 =0, 1,2, . . ., NT2

and

where NT must be an integer. }
NT2 ‘

In block two, gaussian noise is computed by using subroutine RANDU. l




START

Read in heading and description of the plant and
the controller;np,nup,nwp,nop,nc,Ap,Blp,Cp,Ec,Fc,
G.,H,,6,,T,NT, and NT2

| "¢’ ¢’ e T

Compute the Gaussian white noise by using
SUBROUTINE RANDU

Calculate ¢(ri), ¢(€§), and ¢(T) by using eq.2-4

T

Calculate W(ti), W(Ti), ¥(T), and Wl(T) by using
the trapezoidal rule for numerical integration

5

e pwmy euen D ) SN s o

! Calculate X3(ty), Xh(LehTh), yE(EhT®), XXy (Eg 1 +7%),
and y_,(tg+t*) by using eqs. 3-13, 3-15, 3-16, 3-7,
z and 3-8

[ ]

Calculate xcz(tK+1+t), ycz(tK+1) by using eqs. 3-9,
and 3-10

‘ .
Calculate xcl(tK+1)’ ycl(tK) by using eqs. 3-5, and 3-6

=

Calculate eA’eB’PeAss’ and P
3-18, 3-19, and 3-20

FIGURE 25 : FLOWCHART DESCRIBING THE MAJOR COMPUTATIONS
OF PROGRAM SKEW1

eBss by using eqs. 3-17,

-

87
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The third block specifies the calculation of ¢(tj), O(T;),
and ¢(T).

The fourth block specifies the calculation of w(t;), w(1}),
and ¢(T) by using the same technique in Appendix A.

In block five, x;(tk), xS(tk + ), xzz(tk+] + 1), and

ye2(t, + **) are calculated from equations

xplte) = oltes o1 )xplte ) + wltks te)Up(t-1)
+(tes telypltyoy)

xp(tic + T = ot + 2%, tie)xp(tq) + ot + <t Uplt o)
+ (g + 7, tr-1)yp(tyoy)

xc2(tisr + %) = Foxgplte + o) + Geyplt, + <)
y:Z(tk + %) = chgz(tk + %) + Ecya(tk + %)

In block six, x ,(t ,; + 7) and Yeo(ty + t) are calculated

from equations
xcz(tk+] + T) = chcz(tk + T) + chp(tk + 'l')
Yealty + 1) = Hexeplty + 1) + Ecyy(ty + )

In block seven, x.j(tx4) and y . (ty) are calculated from

equations
%1 (ten) = Fexer(ty) + Gy (ty)

Yer(ty) = Hexep(ty) + Eyp(t,)

—r
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In block eight, the inherent errors, eps egs and the steady-

state covariance of errors: PEASS, PEBSS, are computed from equations
eA(t) = yc](tk) - ycz(tk + 1.)

ettt 1’ 0<t<T,k=0,1,. ..

k+
eB(t) = yC](tk'ﬂ) - ycz(tk + T)

tk+]it<tk+]+T,0<T<T,k=o,],ooo

:
PEASS = 1 [ep; - &) [ep; - ®al
N =201 AT T SAd L8ai T A
" [ 1L 17
PEBSS = 1 e,: - 6 €nh: - @
N =207 =~ Bi - °8Y LBi ~ O

Since the majority of this program is the same as the program in

Appendix A, then only new arrays will be shown in the following

XP1 (NP) XC3 (NC)
YP1 (NOP) XPTAU1 (UP)
YC3 (NUP) PSIT2 (NP, NUP)

2. EXAMPLE

The computer listing for PROGRAM SKEW1, of the new model, written
in FORTRAN, appears in Appendix E. For each value of T PEASS and
PEBSS for each value of r? are shown at the end of the listing. To
compute PEASS and PEBSS of the new model, the system has been waiting
until the state observer x; is equal or close to Xp and the system is
in steady-state transition.

From Appendix C, the state observer x; equals Xp at approximately




30T (ge] = 20, g2 = 25). Thus, PEASS and PEBSS can be computed at
the same time (between 200T and 300T) as PEASS and PEBSS of the basic

model in Appendix A are computed.
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APPENDIX E
COMPUTER PROGRAM LISTING

FOR
PROGRAM SKEW1 AND EXAMPLE
OF OUTPUT WRITTEN IN FORTRAN
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CCCCC FROVIDE MAXIMA FOR CALLEDN ARRAYS

NEM = 2
NUPM = 2 £
NWFM = 2
NOPM = 1
NCM = 2 )
NHM = NPM + NUFM h!
NFM = NPM + 2XNCM
NRRM = 2%NFM +4 i
c .
C FRAAKRIKHAORKKIAAIAAKANOR KK IR ARR AR AR AR AR KA KAAI AR K AR ARK I KK
¢ READ INPUT DATA
C RAHHAOORAKARRARK A AR KA A AR IR KAAK AR KA KK KRAK IR AOKAKK K AR KKK K KKK K ]
C
WRITE(6»899)
BYY  FORMAT(/17) ]
100 READ(S,900) I

200 FORMAT(204A4)
WRITE(6,9202) ID
P02 FORMAT( "1’ »20A4)
READ(Sy P08 ) NF » NUF » NWF » NOF » NC
906 FORMAT(S513)
WRITE(6,208) NPyNUF»NWFyNOFsNC
908 FORMAT(ONO. OF FLANT STATES = “»13/
‘ NO. OF PLANT INPUTS = “»13/
‘ NO. OF DISTUREBANCE INFUTS = “y 13/
’ NO. OF PLANT QUTPUTS = ‘» 13/
* NO. OF CONTROLLER STATES (EACH CONTROLLER) = “»I13)
WRITE(659210)
210 FORMAT(’OPLANT STATE MATRIX -- AF‘)
110 DO 112 I = 1yNFP
REAL(Sy?14) (AF(IyJ) s J=1sNF)
112 WRITE(6»213) (AF(IvJd)rJ=1sNF)
P13 FORMAT(’ “»86G13.6)
@14 FORMAT(&F12.7)
915 FORMAT(8G13.6)
WRITE(69916)
916 FORMAT(/OFPLANT CONTROL INFUT MATRIX -~ B1F‘)
120 DO 122 1 = 1sNP
READ(Ss214) (B1P(IsJ)r J=1sNUP)
122 WRITE(6»913) (B1F(Iy.J)»J=1yNUF)
WRITE(6,918)
P18 FORMAT ( OOBSERVER MATRIX-- GE’)
130 10 132 I=1sNF
READ(S»?14) (GE(IvJ) r J=1sNWP)
132 WRITE(69P13)(GE(IrJ)».J =1y NWF) A
WRITE(6,920) ;
920 FORMAT(’OPLANT OUTPUT MATRIX —— CF’)
140 DO 142 I=1sNOFP
READ(5,214)(CP(IyJ)»J=1rNP)
142 WRITEC(A»913)(CP(IrJS)rJ=1NP)
WRITE(6,922)
922 FORMAT (/OCONTROLLER STATE MATRIX -- FC’)
150 DO 152 I =1,NC

DR
RN [ S R

]

+ [] )
L] et
PO
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e

924
160

162

925

170
172

P26
180

182

928

930

P31

1

[

L O SR

193
192

LIRS RS

READ(S5y914) (FC(
WRITE(6,913) (FC
WRITE(45924) ‘ 1
FORMAT ¢ OCONTROLLER CONTROL INFUT MATRIX -~ GC /)
DO 162 I=1sNC
READ(S+914) (BC(1rJ) s J=1NOF)
WRITE(4s913) (BC(Ivd)rJ=1yNOF)
WRITE(6r925)
FORMAT ( OCONTROLLER OUTFUT MATRIX (STATES) —-- HC’)
DO 172 L=1sNUF
READ(S¢914) (HCC(IsJ) s J=19NC)
WRITE(6:913) (HC(Iv.J) s J=1sNC)
WRITE(6y926)
FORMAT ( OCONTROLLER OUTFUT MATRIX C(INFUTS) -~ EC’)
DO 182 I=1sNUP
READ(5,914) (EC(1yJ) »J=1yNOF)
WRITE(65913) (EC(IsJ)rJ=1sNOF)
READN(S»928) ToNT
FORMAT (F10,4,15)
XNT = NT
DELTA = T/(XNT~1)
WRITE(69930) TyNT
FORMATC/ LT = ‘sF10.4/
©ONT = e 15/
* T = SAMPLE RATE,’/
* DELTA = T/(NT-1) = INCREMENT USED IN THE NUMERICAL’/
’ INTEGRATIONS TO COMPUTE FSITAUsPSITyFSIT2/
FSITAUL USING TRAPEZOIDAL RULE.’//)

I»d)r»J=19sN0C)
(IvJ)9Jd=1yNE)

WRITE(&6r931)

FORMAT(2Xy* W IS THE EXTERNAL INPUT (WHITE GAUSSIAN NOISE WITH
! MEAN = 0.0y AND VARIANCE = 1.07)

SR AR R JORK A KKK K A AR KA KAOK ORI KKK A KKK A KRR KK KKK Kk KKKk Xk
GENERATE WHITE GAUSSIAN NOISE WITH MEAN = O AND VARIANCE = 1
KK KKK AN AR NOK K 0K KK KKK KKK S K AR KK KK KK K KKK AR R AR K KKK XK K K o K K

IX = 11111

Do 192 I = 1,1200
A = 0.0

00 193 J = 1,12
CALL RANDUCIXyIY»sY)

IX = 1Y ;
A = A+Y '
WI) = A-4 :
DO 1199 I = 1sNUP ;
DO 1199 J = 1sNF H
ECCF(IsJ) = 0.0 :
DO 1199 K = 1sNOF i
ECCP(IvJ) = ECCP(Ivd) + EC(IvKIXCP(KsJd) :
FORMAT(5Xs5613.6) '

FORMAT (5X¢5613.6)

REEREKRREKKXEEKEREKXKKEKKKKKKERRRREKRRKERRKREKRAERXERRKKRRRKKKERK KKK
CALCULATE FPHITC(O)»PHIT(DELTA) yPHIT(2RDELTA)» o2 PHIT(T)
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403
402

400

436
435

36

37

S2

8333333333333 33333333033 033830 03303333303 32932043 230833823233 333¢42%4
DELHLF = DELTA/2.0

TI = 0.0
DO 402 II = 1»NF
o 402 JJ = 1sNF

IF(II.EQ.JJ) GO TO 403
FHIT1(IIsJJdrl) = 0.0
GO TO 402
FHIT1(IIrJdsl) = 1.0
CONTINUE

D0 4 I1 = 2¢NT

TI = TI4+DELTA

PHIT1(1+1,1I1) = 1.
FHIT1(19291I1) = (14/102%(1L.~EXF(~10.%TI))
PHIT1(2y151I1) = 0.0

FHITI(2,2,11)
DO 400 II = 19NF
DO 400 JJ = 1sNP
FHITC(IIsJd) = PHITLIC(II»JJsNT)
N1 =0
DO 1801 KK1 116
NTAUl = (KK1-1)X%10
NTAU1 = NTAULl + 1
TAUU = N1%0.0125/5.
N1 = N1 + 1
DO 1800 KK2 = 1,6
NTAU = (KK2-1)%10
NTAU = NTAU + 1
INITIAL VALUE YC2(-TIME+TAU)» YC3(-TIME)» YC1(-TIME)
D0 31 1 = 1yNUP :
YC2¢(I) = 0.0
YC3(I) = 0.0
YCLC(I) = 0.0
DO 32 I = 1yNUF
E1¢(I) = YC3(I) - YC2(I)

FROM INITIAL VALUE XP(TIME)» AND YP(TIME) ARE EQUAL TO ZERO
DO 35 I = 1/NP

XP1(I) = 2.0

EXF(~10.XTI)

XP(I) = 0,0
DO 435 I = 1sNOF
Q= 0,0

DO 436 J = 1sNF

@ = @ + CP(IsIRXPL(D)
YPI(I) = @

DO 36 I = 1yNOF

YP(I) = 0,0

FROM INITIAL VALUE XC1(TIME+T)» YCL(TIME) ARE EQUAL TO ZERO
DO 37 I = 1sNC

XC1¢I) = 0.0

XC3¢I) = 0.0

XC2¢(I) = 0.0

00 52 I = 1HNUP
YC1(I) = 0.0

—
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0K KK KKK 2K K KKK KK 3K K0 3K 0K KK K K 3K 03 3 KK KoK K0 K K 3K 2K 30K KK K 3K 3K 3K KK 0K 3 3 0K K 3Kk X
CALCULATE FHIT(TAU)

0K XK KK KKK KK K KKK 20K K N K K K 3K K 28K K 28 K 2K 3K 3 0 0 3K K KK 38 KK 0 080K 3 3K K 3K 3K 3K K K K K KK % X
IDEL = O

[0 5000 I = 1,NT

IDEL = IDEL + 1
IF(HTAULER.NTAUL .AND.IDEL (EQ.NTAD) GO TO 7
IFCIDEL.EQ.NTAL) GO TO 16

TFC(IDEL EQ.NTAUL)Y GO TO 22

GO TO 59000

DO 8 I = 1.NF

o 8 JJ = 1eNF

FHTAUCIIyJJd) = PHITIC(II»JJyIDEL)D
FHTAULC(ITIy»JJ) = PHITIC(IIyJdJs IDEL)

GO TO G000

Nno 17 II = 1snF

NN 17 Q) = LeNF

FHTAUCII v Jd) = PHIT1(ITI»Jds IDEL)

GO TO 3000

D0 23 II = 1sNF

no 23 JJd = 1s#NF

FHTAULC(IIyJJ) = PHIT1(IIy»JJsIDEL)

CONTINUE

1322003302322 83308338 0833033323 3833333233333 3383383333323 2832883

CALCULATE FSIT(TAU) »FSIT(T)
0K 0K 0K A0 KKK KK K KK KK K K 3K K K8 3K K 0 308 K K 3K K K 3K 00 80K K K 2K K K K K KK K X

D0 350 I = 1sNF

Do 530 J = 1sNWF

F1(IsJ) = 0.0

FS(IyJd) = 0.0

no 551 I = 1sNF

DO G531 J = LyNWF

FSIT2(IyJ) = 0.0

FSTAUCI»J) = 0.0

PSTAULC(I»J) = 0.0

FSIT(IrvJd) = 0.0

N0 551 K = 1,NF

FSIT2(Ir ) = PSIT2(Ir»J) + PHITLI(IsKyNTIRGE(KsJ)
PSTAUCI ) = FSTAUC(Iv»J) + PHITL(IsK»NTAU)XBRLIP(KsJ)
PSTAUL(TI+J) = FSTAULC(IsJ) 4+ PHIT1(I»KyNTAUL)XBIF(K»J)
FSIT(IvJ) = FSIT(IsJd) + PHITIC(IsKeNTIXRIP(KrJ)
g 5352 I = 1+NP

00 532 J = 1sNWP

PSIT2(IyJ) = DELHLFXPSIT2(IsJ)

FSTAUC(I»J) = DELHLFXPSTAUC(I»J)

FSTAUL(I»J) = DELHLFXPSTAUL(I,J)

FSIT(IvJ) = DELHLFXPSIT(I»J)

DO 61 I1 = 2¢NT

I2 = NT-I1+1

DO 62 I = 1yNP
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63

64

ob
61

80

e

93

94
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68
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0 62 J = 1yNUWE :

FSIT2(Iy ) = FSIT2(IyJ) + PICIs D)
FSIT(IyJd) = PSIT(I+J) + PSCIsd)

G 63 I = 1sNF

DO 63 1y NWF

FL{Isd) = 0.0

FS(Isd) = 0.0

nod 43 K = 14NF

FL(Ivd) = FLCIsd) + PHITLCIsKy I2)KGECK Y J)
FS(Ird) = PE(Isd) + PHITLC(I+KeI2)XBLIFC(Kyd)
DO 64 I = 1yNF

it

If) 64 J = 1sNWF
F1(IrJ) = DELHLFXF1(IyJd)
FS(Ird) = DELHLFXFS(IyJ)
DO 66 I = LeNF

DO 66 J = 1sNWF

FGIT2(IyJ) = F1(Isd) 4+ FSIT2(1,4)
FSIT(I» ) = PS(Ivd) + FSITC(Ivd)
CONT LNUE

DO 80 I = 1eNF

0O 80 J = 1LyNWF

FS(Ird) = 0,0

IF(NTAUL.EQ.1) GO TO 85

GO TO 90

N0 846 IT = 1yNF

DO 86 JJ = LyNWF

FETAUL(ITsUdy = 0.0

GO TO 67

O 91 I1 = 2yNTAUL

I2 = NTAUl-11+1

o 92 1 = 1eNF

oo 92 4 = 1yNWF

FSTAULC(I» ) = PSTAUL(I»J) + FS(Isd)
DO 93 I = 1yNP

DO 23 4 = 1sNWF

FS(Ird) = 0.0

DO 93 K = 1sNP .
FSCIsd) = FS(I9J) + FPHITIC(IsKyI2)XEIF(KyJ)
0o 94 1 1sNP

0o 924 U 1»NWF

FS(Iy J)=DELHLFXFS(IsJ)

(M0 96 1 = 1yNF

DO 96 J = 1 yNWF

FSTAULC(Ld) = FS(Isd) + PSTAULC(I»d)
CONTINUE

N0 68 I = 1sNF

DO 68 . = 1sNWF

FS(IvdY = 0,0

IF(NTAU.EN.1) GO TO 55

GO TO 49

00 58 II = 1sNP

o 58 JJ = 1yNWP

FSTAUCII»JS) = 0,0

GO0 TO 77

i
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69 O 70 11 = 2»NTAU
I2 = NTAU-TI1+1
Da 71 I = 1sNF
N0 71 J = 1eNWF ‘
71 FSTAUCI»J) = FSTAUCI»J) + FS(IyD)
D0 72 1 = 1sNF
Do 72 4 = 1rNWF
FS(IsyJ) = 0.0
no 72 K = 1sNF
72 FSCIvd) = FS(Isd) + FHITLC(I»KsI2)XRIF(Ky»J)
no 73 1 1»NF
no 73 J = LyNWF
73 FS(Ird) = DELHLFXPS(IvJd)
no 76 I 19 NF
DO 76 .0 = 1sNWF
76 FSTAUC(I»S) = PS(IsJ) + PSTAUCI»J)

i
it

il

7 CONTINUE
77 CONTINUE
C
C KKK 3K 30K KK 3K 30K KK 3K KK 30 K K K 3K K 2K 0 3K KK 3K KK KK KK K KK oK XK 3K KKK XK ok KKK K
C START TIME LOOF
¢ TIME = 0O
C NOR KK 3K K K 8K K IOK KK KK KKK K K 3K K K 30K 3K 0K 3K 3K KKK KOK K K NOK XOK 3K 30K K 30K KK K K KKK
c
NNL = 1

00 412 1 = 1sNOF
412 UF{I) = W(NNL)-YCL1(I)

D0 413 I = 1sNF

Q= 0,0

D0 414 J = 1sNF
414 Q = Q + FHTAULC(I» J)XXF1(J)
313 XWi(l) = Q

DO 415 I = 1sNF

0 = 0,0

N0 416 J = 1+NUF
6 Q= Q + FPSTAUL(TIy D) XUF (D)
415 XW2(I) = Q

DN 417 I = 1sNP
417 XPTAULCI) = XWIC(I) + XW2<(I)

DO 418 I = 1sNOP

Q@ = 0.0

DO 419 J = 1:NF
419 Q= Q + CP(I»J)XXPTAULC(J)
418 YFTAULCI) =

DO 420 I = 1sNUP

Q= 0.0

DO 421 J = 1sNC
421 Q= Q@ + HCC(Is JI)XRXCICD)
420 XWic¢rL) = @

DO 422 I = 1sNUFP

Q = 0.0

D0 423 J = 1yNOF
423 Q@ = 0+ EC{I»JIRYPTAULC(D)
422 XW2¢(I) = @

AR IS 21 035y e e § 5T Ty e T 2T
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301
300

303
302

304

DO 424 1 = 1sNUF

YC3C(I) = XWi<(I) + XW2(I)
NO 425 I = 1»NC

Q= 0.0

N0 426 J = 1sNC

Q= Q + FC(I+IXXCICD)

XWicI) = @

DO 427 1 = 1syNC

Q= 0.0

DO 428 J = 1yNOFP

Q= Q + GCIrJIXYFTAUL(Y)

XW2(1) = Q

DO 429 I = 1sNC

XC3(I) = XWI(I) + XW2(I)>

DO 430 I = 1yNUF

E2CL) = YC3(I) -~ YC2CI1)

Do 220 111 = 1,300

KK 0K K K 3K 0K 3K KK 3 8K 3K 3 00K 3K KK 0K K KK K 0K K KK 38 KK K KKK 3K 3K K KKK K 0K KOKOK 0K
CALCULATE XP(TIME+TAU)» AND YP{TIME+TAL)
AWK OK KKK 9K 0K 0 3K 50 K0 K 0K 3 0K B0k 38 8 K KKK KKK K K KK K KK 3 8 3 0K 3 0K 30K A k30K 0Kk k
ng 253 I = 1sNF

Q = 0,0

DO 254 J = 1sNF

(= Q 4+ FHTAUCI » JIXXF (D)

XWi(r) = @

O 2595 I = LsNP

@ = 0,0

O 256 J = 1sNUF

Q = Q + FSTAUCTI» JIXUF (D)

XW2(I) = @

DO 257 T = 1eNF

XPTAUCI) = XWICI) 4+ XW2(I)

o 260 1 1+ NOF

@ = 0,0

Do 261 J = 1eNF

= Q 4+ CR(I- DEXFTAUC)

YPTAUCI) = @

P33 333883233228 333 28333333838 8033 333383233383 322008 382338 0082232%¢:
TIME = TIME + T

CALCULATE XC2(TIME+T+TAU) »AND YC2(TIME+TAU)
0K 0K K 3K KK 0 KK KK KK 3 0 3K oK oK o 3K 2K B KKK 3K K 3K K K KKK AOK Ok K K XK
o 300 1 = 1sNUF

Q= 0,0

Do 301 J = 1»NC

Q= Q + HCC(I» HXXC2()

XWicI) = Q

DO 302 I = 1sNUFP

Q= 0,0

o 303 J4 = 1+NOF

Q@ = Q 4+ EC(I»)XYFTAUCD)

XW2¢(1) = Q

DO 304 I = 1+NUF

YC2(I) = XW1(I) + XW2¢(I)

DO 305 T = 1sNC

.-~
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Q@ = 0,0
DO 306 J = 1sNC
306 Q= Q + FCCIy DAXC2¢D)
305  XW1(I) = @
D0 307 I = 1sNC
@ = 0.0
DO 308 J = 1,NOP
308 Q= Q + GC(Iy DXYFTAUCY)
307 XW2(I) = @
§§ PO 309 I = 1sNC
309 XC2(I) = XWI(I) 4+ XW2(I)
] ” 33333328288 838 33228 0088838333323 3333328333338 83 ¢3383333tces2t
‘ c CALCULATE E1
- ¢ KKK A KRR AR A KR A K KK KK KK KKK K K KKK 3K KK KKK 3K 3K 3K K KK KK 3K KKK KoK oK
00 290 I = 1sNUF

{ 290 E1(I) = YC3(I) ~ YC2(I)

L c AKAROKIOK 3K 2K KK K K K K 3K K K KK K 3 K 3K oK 3 KKK 3K 3 3K KK K K 3K K 3K KK HOK KO KKK 3K K K K
¢ ESTIMATE XFX(TIME)y AND YFX(TIME)
C 3K KKK K K K K K 0 3 K0k K 3 KK K K K 3K K 3 K K 20 3K 50K KK K KKK 0K KKK K K K KK KK K0K XK K KK K X

DO 432 I = 1sNUF
432 YP2(I) = YP(I) -~ YFI1(I)
Nng 405 I = 1yNP
Q@ = 0.0
DO 406 J = 1sNF
406 Q= Q 4+ FHITC(I+ J)XXF1C(D)
405 XWi(I) = @
O 407 1 = 1yNF

Q= 0.0

00 408 J = 1sNUP
408 Q=0 4+ FEIT(I+JIXUF(D)
407 XW2(I) = Q

NO 409 I = 1sNF

Q= 0.0

O 410 J = 1lyNUF
410 Q= Q + FSIT2(I»JIXRYFP2(J)
409 XW3(I) = Q
nNO 411 I = 1+NF
411 XP1CI) = XW1CI) + XW2(I) + XW3(I)
DO 433 I = 1,NOP
Q= 0,0
DO 434 J = 1sNF
434 Q@ =Q + CF(Iy )XXP1(D)
433 YFIC(I) = Q

c KK 200 KK 30K 20 20 30K 30K K 00003 2 00 KK KK 3 30K K KK KK K KK K K KK KK KK K KKK KKk K
C CALCULATE XP(TIME)>y AND YFP(TIME)
C 20000 20 8 0K 2K KK KK 0K 3K 3K 3 8 308 3K 30K K KK 3K 3K K K KK K K KKK KK K Kk
373 DO 500 I = 1sNF

Q= 0.0

Do S01 J = 1sNP
501 0= Q + FHIT(Iy)AXP(S)
500 XWi(I) = Q

Do 502 1 1sNP
Q@ = 0.0 :
DO 503 J = 1sNUP
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504

508
507

oG

701
700

703
702

704

706
705

708
707

709

QA= Q + PSITC(IyJIXUFCD)

XW2(I) = Q@

00 3504 I = 1sNF

XFCI) = XW1(I) + XW2(¢(I)

DO 507 I = 1sNOP

Q@ = 0,0

0o 508 J = 1yNF

Q= Q + CFR(I+DIRXF(D)

YF(I) = @

20K KK K K KK KK KK 3K 3K OK KK 3K KK K K KK 3K 3 3K K 3 3K 3K K K K K 3 3K 3K 3K K K 3K KK 3 K 2 08 3K oK A K K K 20K K K K XK
CALCULATE XC1(2%TIME)>» AND YC1(TIME)

200K K 2K 035 KKK 0 3 3 00 3K 30 3K 3K 3 3 K 2K KK K 3K 2K 2K KK 38 K 3 K KK 2 K 3K 3K 3 30K 3 3K 3K 3K 3K 2K K KK KK KK KK K
Do 700 I = 1yNUF

Q= 0.0

ng 701 J = 1sNC

Q= Q@ 4+ HC(I»IXXC1<(D)

XWicI) = Q

O 702 I = 1+sNUP

Q = 0.0

DO 703 J = 1.NOP

Q = Q + ECCIDIXYP(D)

XWa2(I) = @Q

DO 704 I = 1yNUF

YC1(I) = XWI{(I) + XW2¢I)

0 705 I = 1sNC

Q = 0.0

D0 706 J = 1yNC

Q= Q + FC(Iy)XXC1CD)

XW1(I) = Q

D0 707 I = 1yNC

Q= 0,0

DO 708 J = 1sNOF

Q= Q 4+ GCCI» IXYF(D)

XW2(I) = Q@

D0 702 I = 1yNC

XC1(I) = XW1(I)> + XW2(I)

KK KK KK K K KK 3K K KK KK KK 3K K% K KK K 3K 3K 3K K K K K K KK 3K K KKK K 0OK KK K K KK K KOk K K0k Xk
ESTIMATE XFX(TIME+TAU)y AND YFPX(TIME+TAU)

KKK KK KK KK K 8 300 3 K 3 3K 3K KK 0K 3K K K KK 3K 3K K 2K oK 0K 3 K 3 2K 3K K K 0K K 0K 0K 3K K K K 3K KK K XK K K K K
NN1 = NN1 + 1

DO 221 I = 1,NOP

UFCI) = W(NN1)>-YCI1(I)

DO S20 I = 1sNF

Q= 0.0

DO 521 J = 1yNF

Q = Q + FHTAUL(IsJ)XXF1(J)

XWi(I) = @ :
ng S22 1 =
Q= 0,0
DO S23 J = LeNUP

Q = Q 4+ PSTAUL(I» J)XUF(J)
XW2¢(I) = Q@

DO 524 I = 19NF

XFTAULC(TI) = XW1(I) + XW2¢(1I)»

1oNF

100




DO 525 I = 1yNOF

Q= 0.0

DO 526 J = 1sNF
526 Q=0 + CPCIy DHXXFTAUL D
525 YFTAUL(I) = &

C 208 KK HOKOK O K R K K 3K K KK A K KK 0K K 8 8K K K3 3K 3K K K 3K KK 0K 3 3K 3K 80K K K 30K 3K 3K KK 30K K OK 90K %k
£ CALCULATE XCk(2ATIME+TAUX)y AND YUX(TIME+TAUX)
C KK R KOK K KK KK KKK K KKK K 3K 80K K KK KK K K KKK K 3K K K KK K 30K 3K 3K 3OK XK 330K Ok K0K K %
nO 529 I = 1sNUF
Q= 0.0

DO 530 4 = 1sNC
530 Q = Q + HC(I» DXXC3(JD)
529 XW1d(I) = Q
DO 531 I = 1sNUF
Q= 0.0
Do 532 0 = 1sNOF
532 @ = Q 4+ EC(IyIXYFTAUL(D)
531 XW2¢(I) = Q
O 533 I = 1rNUF
533 YC3C(I) = XW1<(I) + XW2(I}
DO 535 I = 1sNC
Q= 0.0
DO 536 J = 1yNC
G336 Q = Q + FC(Iy DXRXCIC(Y)
535 XWicI) = Q@
O 337 I = 19NC
Q@ = 0,0
O 538 J = LyNOF
538 @ =0 + GC(Iy NXYPTAUL(J)
o 59392 I = 1sNC
539 XC3(I) = XWL(I) + XW2(I)
c 20K K K 2K OK K K K K K K 000 3K K 30K 3K K KK 3K 2K ok 8 K K K 3K K K 3 3K 3K K K KKK K KK K 3K K K K K 3K 3k KK K 30K K K0K K K
C CalL.CULATE E2
C 0 003 2830 KKK 3K KK oK K 3K KRB K0k o8 K0 3 3 oK 2K oK oK 3 o KK KK 3 o oK 36K K KK KKK KOk XOK
DO 540 I = 1sNUP
540 E2(I) = YC3(I) - YC2(I)
DO 360 I = 1sNUF
EA(II1) = E1C(D)
560 EB(IILl) = E2(IY
220 CONTINUE

SMEANA = 0.0

SMEANE = 0.0
, DO 561 I = 201,300
3 _ SMEANA = SMEANA + EACI)

561  SMEANB = SMEANE + EE(I)

SMEANA = SMEANA/100
a SMEANE = SMEANB/100
5 VEA = 0,0

VEE = 0.0
d DO 563 I = 201,300 :
l VEA = VEA + (EA(I)-SMEANA)XX2 i

563 VEB = VEB + (EB(I)-SMEANE)XX2 i
FEASS(KK2) = VEA/100 :
PEBSS(KKZ2) = VEB/100

100

.
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CONT INUE i
FORMAT (5Xs ‘FPEASS( TAUX = ‘yF12.8y°)7)

WRITECS2571) (FEASS(I) rI=1+64) i
FORMAT(5X»F18.10) :
WRITE(65572) TAUL

FORMAT(SXy 'PERSSC TAUX = “9F12.857)7) i
WRITECSs571) (FERSS(I1)yI=1s4) :
CONTINUE

STOR , : .
END {

SUBROUTIME RANDUCIX»IYsYFL)
IY = IXX&553%

IF(IY)Ssér s

IY = IY + 2147483447+1

oot e ¥

YFL = IY

YFL = YFLXO.4856613E~9

RETURN

END
f
f
1
i
!

-

i
;
!
i
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EXAMFLE~~~--= 2TH ORDER FLANT: 1ST ORDER CONTROLLER
NO. OF FLANT STATES = 2

NO. OF PLANT INPUTS = 1
NO. OF EXTERNAL INFUT =
NO. OF FLANT OUTFUTS = 1
NO. OF CONTROLLER STATES ( EACH CONTROLLER) = 1

1

FLANT STATE MATRIX -- AF

.0 1.0
.0 ~-10.0
FLANT CONTROL INPUT MATRIX -- BF
«0
200,0

FLANT QUTFUT MATRIX -- CF
1.0 + 0

CONTROLLER STATE MATRIX -- FC
523810

OBSERVER MATRIX -- GE
20.0
25.0

CONTROLLER CONTROL INFUT MATRIX -- GC
~+ 18162

CONTROLLER QUTFUT MATRIX (S8TATES) -~ HC .
1.0

CONTROLLER OUTFUT MATRIX (INFUTS) —-- EC

1.381
NT = 51

T = SAMPLE FERIOD = 0.012% SEC

DELTA = T/(NT-1) = INCREMENT USED IN THE NUMERICAL
INTEGRATIONS TO COMFUTE FSITAUsFSITsESITZ,
FSITAUL USING TRAPEZOIDAL RULE.
W IS THE EXTERNAL INFUT (WHITE GAUSSIAN NOISE WITH
MEAN = 0,0y AND VARIANCE = 1,0
THE STEADY STATE SAMFLE VARIANCE OF ERRORS
FEASS( TAUX = 0.0 ) :
0.0 ;
0.0002195683 ;
0.0008547062 {
0.0018880414 :
0.0033245913
0.0051899776
FEBSS( TAUX = 0,0 )
0.0051899776
0.0033477221
0.,0019137899
0.0008709673




0.0002244494 !
0.0

FEASS( TAUX = 0.0025 )
0.0002195683
0.0 i
0.0002097336 !
0.0008310248
0.0018685847 .
0.0033477221 {

FEESS( TAUX = 0.0025 )
0.0074686036
0.0052524656
0.0034256702
0.0019714807
0.0008955150 }
0.0002240368 |

—

FEASS( TAUX = 0.005 ) .
0.0008547062 (
0.0002097334 :
0.0
0.0002076342 )
0.0008371675 . !
0.001913789%

FEBSS( TAUX = 0.005 )
0.0100931898
0.0075152330
0.005309244% i
0.0034589050 {
0.0019702637 .
0.0008699684

N ot

PEASS( TAUX = 0.0075 ) !
0.001888041 4
0.0008310268 w
0.0002076342 (
0.0
0.0002127137
0.,0008709473 1
FEBSS( TAUX = 0.0075 )
0.0130441934
0.0101163760 : 1
0.0075445175
0.0053128712
0.0034278994 .
0.0019165913 I

PEASS( TAUX = 0.01 )
0.,0033245913 ]
0.0018485847
0.0008371675

0,0002127137 l

0.0
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0.0002244494
PEBSS( TAUXx = 0.01 )
0.0163251571
0.0130585449
0.0101340003
0.0075355470
0.0052701645
0.0033652126

PEASS( TAUXx = 0.0125 )
0.0051899776
0.0033477221
0.00191378%99
0.0008709673
0.0002244494
0.0

FEBSS( TAUX = 0.0125 )
0.0199597441
0.0163656212
0.0131007358
0.0101497732
0.0075195357
0.0052378476

[
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APPENDIX F

COMPUTER PRO%RAM LISTING
FOR
ALGORITHM FOR ESTIMATING <
AND EXAMPLE OF OUTPUT WRITTEN
IN FORTRAN
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DIMENSION AP (292) yRIF(292)9GE(22 L) yCF (1 v 2)sFL(292)»yGC(2y 1)y
HC(292)sEC(29 1) yFHIT1(A4545101) +PSIT1(454) yPHTAUC(4y4) »YFPI(2)y
FHIT(454)sFSTAU(494) yFEIT(4,4)
INDEX(4)sW{4000) rFS(A24) yFHTAUL (45 4) yFETAUL (4,42, YEL(2)
YC2(2)sEL(2)sEQ2(2) y XF(2) o XPTAU(2) s XFL1(2) y YF(2) y YFTAU () »
YRPL(2)»XCL(2) 9 XC2(2) yAM(A494) sFT(494)sF1(4s4)yD1(4r4),

LD2(4,4)yD3(A4) s XWL(2) » XW2(2) yECCP(25y2) s NI (4+4) » YFTAUL(2)
FPEASS(S5Q) »PERSS(50) yEA(300) yER(300) s YCI(2) y XCI(2)»UF(2)

XW3I(2) s XFTAUL (2)

CCCCC PROVIDE MAXIMA FOR CALLED ARRAYS

899
100
900
902

206

NFM = 2
NUFM = 2

NWPM = 2

NOFM = 1

NCM = 2

NHM = NFM + NUFM
NFM = NFM + 2KNCM
NRRM = 2ANFM +4

o

KK K KKK 2K K 3K KK K KK 30K 3 35 3 K K 3K KKK KKK K K K KK K KK A A K ok 3K 0K 0k ok %
READ INFUT DATA
3K KK K K 30 oK K KK K K K KKK KK K3 K K 0 oK 30 KKK KKK K KK KKK oK K 0K 3K K0k KOk KK

WRITE(6,899)

FORMAT (1)

READN(S»900) 1D

FORMAT (20A4)

WRITE (46,702 1IN
FORMAT( 17 20A4)

READ (5 9065 NF s NUF » NWF « NOF' » NC
FORMAT(SI3)

WRITE(6y708) NF s NUF s NWFyNOF s NC

P08 FORMAT( ONO. OF FPLANT STATES = I3/

1
2
4

]

7 NO« OF FLANT INFUTS = “»I3/

’ NO. OF DISTURBANCE INPUTS = “» 13/

* NO. OF PLANT QUTPUTS = ‘» I3/

 NO. OF CONTROLLER STATES (EACH CONTROLLER) = ‘+13:
WRITE(S6r?10)

910 FORMAT(’OPLANT STATE MATRIX —-- AP’)
110 DO 112 I = 1sNF

112
?13
?14
P15

READ(Ss914) (AP(IvJ)r»J=1sNF) i
WRITEC(Ar913) (AP(IsJ)rJ=1yNF) ;
FORMAT(’ ‘»8G13.64)

FORMAT(&F12.7)

FORMAT(8G13.4)

WRITE(6r914)

FORMAT( OPLANT CONTROL INFUT MATRIX -~ BiF‘)
DO 122 I = LyNF
READ(S5»914) (E1P (15 J) v J=1 s NUF)

WRITE(49913) (BIP(IyJ) v J=1yNUF)

WRITE(6y918)

FORMAT ( OOBSERVER MATRIX~- GE’)
DO 132 I=1/NF
READ(S»914)(GE(19Jd) s J=1/NWP)

107
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WRITE(49213)(GEC(I»J) rJ=1rNWF)
WRITE(6,920)

FORMAT ¢ OPLANT QUTPUT MATRIX -~ CP7)
DO 142 I=1/,NOP

READ(S»?214) (CP(IyJ) » J=1sNF)
WRITECS»213)(CF(IvrJd) s d=1»NF)
WRITE(45922)

2 FORMAT(’OCONTROLLER STATE MATRIX -~ FC’)

7 w— R

ot

150 D0 152 I =1sNC
READ(S5+214)(FC(IrJ)ryJ=1sNL)
152 WRITE(6¢P13)(FC(IvJ)yd=1sNC)
WRITE(6,924)
924 FORMAT(’/OCONTROLLER CONTROIL. INFUT MATRIX -~- GC )
160 DO 162 I=1sNC
READ(S»9214)(GCC(IyJ)) v J=1¢NOF)
162 WRITE(&69P13)(GC(IrJ)yJ=1sNOF)
WRITE(6,225)
925 FORMAT(’/OCONTROLLER OUTFUT MATRIX (STATES) -- HC’)
170 DO 172 I=1sNUF
READ(55914)CHC(IsJ) 2 J=19NC)
172 WRITEC(6s913)(HC(IrJ)»Jd=1yNC)
WRITE(&¢926)
924 FORMAT(/OCONTROLLER OUTPUT MATRIX (INPUTS) -- EC’)
180 DO 182 I=1sNUP
READ(S+914) (EC(IyJ)»J=1sNOF)
182 WRITEC(A&sP213)(EC(TvJd) s d=1sNOP)
READ(S»928) TsNT
928 FORMAT(F10.4+13)
XNT = NT
DELTA = T/(XNT-1)
WRITE(6s930) TrNT
930 FORMAT(’1T = ‘sF10.4/
1 7 NT = “»IS/
3’ T = SAMFPLE RATE,’/
4 ’ NT-1 = NR., OF EVENLY-SPACED SUBINTERVALS INTO WHICH T 1S°/
S DIVIDED.’/
6 ‘ DELTA = T/(NT~1) = INCREMENT USED IN THE NUMERICAL '/
7’ INTEGRATIONS TO COMPUTE VZTy JZTAUs aAND‘/
@ 7 VZTAU1 USING THE TRAPEZOIDAL RULE.‘//)
WRITE(6»931) .
?31 FORMAT(2Xs’ W IS THE DISTURBANCE VECTOR (WHITE GAUSSIAN NOISE’/
17 WITH MEAN = 0 AND VARIANCE = 1)’) .
c |
C KKK RRERKAKIRARKKRRERRK KK RKKKRKREERKKRKRERKRRRRERKKERKKRKKRR KKK -
C GENERATE WHITE GAUSSIAN NOISE WITH MEAN = O AND VARIANCE = 1
g **“*l*tlt**‘***#**l*#l**#*********3‘.***l*t*l‘*ltltl***‘#******* ]
IX = 11111
DO 192 I = 11,1200
A= 0,0
| DO 193 J = 1,12
CALL RANDUCIX»IY»Y)
IX = IY
193 A = A4Y




!

172 W(I) = A-6
DO 1199 1T = 1sNUF

0 1199 4 = 1sNF
ECCFP(Is ) = 0.0 1
N0 11992 K = 1yNOF .

1199 ECCF(Is)) ECCF(Ird) + EC{IsKIXCF(KsJ)
802 FORMAT(5X»5G13.6)
835 FORMAT(GX»5G13.6)

c
: C AOKOKKORKIORAOKACOK IR ACK KKK AOKIOKR KRR K OK 3K 0K 30K K KK KK KOKI0K 0K 30K A K 30K Kk KKK K0k
: C CALCULATE FHIT(T)y FSIT(TAU)»

¥ C FHIT(O)y PHITKDELTA)s PHIT(RDELTA) vy ooy FHIT/T-DELTAY »

' C FSIT(O)y FSIT(DELTA)y PSIT(2DELTA)y .oy PSIT(T-DELTA)

¢ C HORIKAKNAKR AN AR KKK KK KA KKK KK K KKK KKK XK KKK KK KK oK KKK K KKK K X K ¥ ok ¥
, c

TLI = 0.0
DELHLF = DELTA/2.0
D0 402 Il = 1sNF
o 402 JJ = 1LsNF
IF(IIL.EQ.JJ) GO TO 403
FHITI(II»JJr1) = 0.0
GO To 402
403 FHIT1CII»JJs1) = 1,0
402 CONTINUE
N0 4 Il = 2.NT
TI = TI4DELTA
FHIT1i(1s1s30) = 1.
FHIT1(1,2»11) (1+710.0%C1.~EXF(~-10.XT1))
FHIT1(2s1»1I1) 0.0
4 FHIT1(2¢2,I1) = EXF{(~10.%XTI)
N0 400 II = 1sNF
DO 400 JJ = 1sNP
4090 FHEITC(II»JJd) = FHITL1C(IXsJJyNT)

i

(TS gEEN G P e s e (el g G SR D BB

NTAU2 = 0
: N7 = 2000
! N8 = 300
: N9 = 50
i ICOUNT = 0
ICUNT1 = 1
N4 = 0
NS = 51
NTAU = 4

N3 = (N4+NI)/2
600 NTAUL = N3
ICOUNT = ICOUNT + 1

CALL COVAR(AFsB1PsCPyFCyGCyHCrECYGEYECCFyWsPHITIFHIT1 yNTAUNTAUL
1 EAYPEASSyNPMyNUFMyNOFMsNCM s NHM s NWFMs N7 » NB» ICOUNT o N?» DELHLF)

WRITE(H2655) NTAUL/NTAU2
655 FORMAT (5X» ISsSXr IS)

NERROR = IABS(NTAU1-NTAU2)

IF (NERROR.EQ.1) GO TO 605

IF(ICUNT1.NE.1) GO TO 601

N3 = N3 + 1

NTAU3 = N3

en R X
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NTAUL = NTAU3
ICUNT2 = ICOUNT
ICUNTL = O
GO TO 600
601 IF (PEASS(ICUNT2) .LT.PEASSC(ICOUNT)) GO TO 602
N4 = N3 - 1
N3 = ( N4 + N5 )/2
NTAUZ = NTAU1
ICUNT1 = 1
GO TO 600
6502 N5 = N3 - 1
N3 = (N4+NS)/2
NTAU2 = NTAU1
ICUNT1 = 1
GO TO 600
605 IF(NTAULl.EQ.1) GO TO 606
IF(NTAUL1.LT.NTAU2) GO TO 408
ICUNT2 = ICOUNT ~ 1
IF(PEASSC(ICUNT2).LT.PEASS(ICOUNT)) GO TO 4613
616 NTAU1 = NTAU1l + 1
ICOUNT = ICOUNT + 1

[

vt

CALL COVAR(APYBLFyCFIFCyGCIHCrECsGEYECCFyWoFHIT»FHITLsNTAUYNTAUL

1 EAsPEASS yNFMy NUFM» NOPMs NCMy NHMy NWFPMs N7y N8y ICOUNT y NP » DELHLF)
ICUNT2 = ICOUNT - 1
IF(PEASS(ICUNT2).LT.PEASS(ICOUNT)) GO TO 615
TAUl = (NTAU1-2)%0.0125/50
GO TO 612
615 IF(NTAUL.LT.NS5) 6O TO 616
TAU1 = (NTAU1-1)%0,0125/50
GO TO 612
613 TAU1l = (NTAU1-2)%0.0125/50
GO TO 612
606 ICUNT2 = JCOUNT - 1
IF(PEASS(ICUNT2) .LT.PEASS(ICOUNT)) GO T0O 607
TAU1 = (NTAU1-1)%0.0125/50
GO TO 612
607 TAUL1 = NTAU1%0.0125/50
60 TO 612
608 ICUNT2 = ICOUNT - 1
IF(PEASS(ICUNT2) .LT.PEASS(ICOUNT)) 6O TO 609
NTAUL1 = NTAULl -~ 1
ICOUNT = ICOUNT + 1
CALL COVAR(AFsBIPsCPsFCyGLrHCYECYGE»ECCPyW)PHITyFHITLyNTAUYNTAUL
1 EAIPEASS/NPMsNUFPM»NOPM»NCMs NHM s NWPM»N7 N8 » ICOUNT » N9 » DELHLF)
ICUNT2 = JCOUNT - 1
IF(PEASS(ICUNT2).LT.PEASS(ICOUNT)) GO TO 610
TAU1 = NTAU1%0.0125/50
GO TO 412
610 TAUL1 = (NTAU1-1)%0,0125/50
G0 TO 612
609 TAUL = (NTAU1-1)%0,0125/50
612 WRITE(6,650) TAUL
6350 FORMAT(SXy’ THE SKEW OF THE SECOND CONTROLLER IS = ’»F13.8)
657 FORMAT(5Xy'THE NUMEER OF ITERATIONS I8 ‘»15)

.

|




31

[ IR 5
8]

gt
)

4346
435

36
c

37

WRITE(6y657) ICOUNT

STOF

END

SUBROUTINE COVARC(AFsBLIFsCFsFCrGCYHCYECYGEyECCP yWrFHIT »FHITL y

1 NTAUSNTAULl»EAYFPEASSyNPMyNUFMs NOPMy NCMy NHMy NWFMs N7 » NEy TCOUNT s NG »
2 DELHLF)

DIMENSION ECCP(NPMsNUFM)

DIMENSION AF(NFMyNFM) yBLF (NFMsNUFM) »CP{NOFMyNFM) s FCONTMyNCM 2 »

1 GCCNCMsNOFM) s HC (NUPM s NCHM) yEC (NUFM» NOFM) » GE (NFMy NWFM) 2 W(N7) -
2 FHITCNHMsNHM) sPHITL(NHMyNHM»101) yEACNS) »PEASS(N9) »

3 FHTAUC474) yPHTAUL(454) yFSIT1(AB4) yFSTAL(4,4) 7 YC1(2) » YF2(2),
S YC2(2)E1(2)yE2(2) »XF(2) yXFTAUC2) s XP1(2) y YF(2) y YFTAU(2)

6 YPL(2)yXC1(2)sXC2(2) yAM(474) sFPS(474) rF1(474) 201 (4r4)

7 D2(474) yI3C4) yXW1(2) yXW2(2) s [1(424) » YFTAUL(2) s YCI(2) s XTI (2)
9 XW3(2)sXFTAUL(2) yFSTAUL (474) yFSIT2(474) sPSIT(424) yUF (2)

NF = 2

NOF = 1

NC = 1

NWF = 1

NUF = 1

NT = 50

[0 31 I = 1sNUP

YC2(I) = 0.0

YC3(I) = 0,0

YC1(I) = 0.0

Do 32 1 = 1+NUP

E1¢I) = YC3ICTY - YC2(I)

FROM INITIAL VALUE XF{(TIME)s, AND YF(TIME) ARE EQUAL TO ZERD
D0 35 I = 1sNP

XPL(I) = 0.5

XP(I) = 0.0

DO 435 1 = 1e«NOP

@ = 0.0

DO 436 J = 1sNF

Q= + CPLs IXRXFLON)

YPIC(I) = @
DO 36 1 = 1sNOF
YF(I) = 0.0

FROM INITIAL VALUE XCL(TIME+T)s YC1(TIME) ARE EQUAL TO ZER(
N0 37 I = 1+NC

XC1<¢I) = 0.0

XC3(I) =
XC2(I) =
DO 52 I =
YC1(I) =
IDEL = O
DO 5000 I = 1»NT

IDEL = IDEL + 1
IF(NTAU.EQ.NTAU1.AND.IDEL.EQ.NTAU) GO TO 7
IF(IDEL.EQ.NTAU) GO TO 14
IF(IDEL.EQ.NTAUL1) GO TO 22

GO TO 5000

DO 8 II = 1sNFP

DO 8 JJ = 1sNP

0.0
0.0

1+ NUP
0.0




PHTAUCII»JJ) = PHIT1(IX,JJyIDEL)
8 PHTAULC(II»JD) PHIT1(II»JJ»IDEL)
GO TO S000
16 DO 17 II = 1yNP 1
DO 17 JJ = 1sNP
17 PHTAUCII»J)) = FHIT1C(II»JJyIDEL)
GO TO S000
22 DO 23 I1I = 1sNP
DO 23 JJ = 1sNFP
23 FHTAU1(IIyJJ) = PHIT1(IIsJJ»IDEL)
5000 CONTINUE
[0 S50 1 = 1.NP

il

L

s [ ") [ "1 —— [

DO 550 J = 1,NWP
P1(I+J) = 0.0
550  PS(IyJ) = 0,0
IO 551 I = 1sNF
DO 551 J = 1,NWF
PSIT2(IsJ) = 0.0
FSTAU(IsJ) = 0.0
FSTAUL(IyJ) = 0,0
FSIT(IyJ) = 0,0
PO 551 K = lvNP -
FSIT2(IyJ) = PSIT2(IsJ) + PHIT1(IsKsNTIXGE(KsJ) i
FPSTAUCIyJ) = PSTAUCI»J) 4 FHIT1(IyKsNTAU)REIP(KyJ) |

PSTAUL(IrJ) = PSTAUL(I»J) + PHIT1(IsKyNTAUL)KEIF(KyJ)
551  PSIT(I»J) = PSITC(Isd) + PHIT1C(I»KyNTIXBIP(KrJ) I

DO 552 I = 1sNP .

DO 552 J = 1,NWP

PSIT2(1sJ) = DELHLFXPSIT2(I,J)

PSTAUCIsJ) = DELHLFXPSTAUCI,J) a

PSTAU1(I»J) = DELHLFXFSTAUL(I»J)
552  PSIT(I,J) = DELHLFEPSIT(I».J)
60 DO 61 Il = 2,NT

I2 = NT-I1+1

DO 62 I = 1sNP

DO 62 J = 1s,NWP )

PSIT2(IsJ) = PSIT2(I,J) + P1(Is)) : i
62 PSIT(IyJ) = PSIT(Isd) + PS(Isd)

DO 63 I = 1sNP _
DO 63 J = 1sNWP ]
P1(Isd) = 0.0
PS(Ird) = 0.0
DO 63 K = 1sNP g
P1(IsJd) = P1(IyJd) 4 PHIT1(IsKrI2)XGE(KydJ) \

63  PS(Isd) = PS(IyJ) + PHITICI+KsI2)XB1P(KrJ) |
DO 64 I = 1,NP _ |
DO 64 J = 1,NWP ‘ ‘) ~
P1(IsJ) = DELHLFAP1(IsJ) Sl .

64  PS(I»J) = DELHLFEPS(IyJ) ;
DO 66 1 = 1sNF

- DO 66 J = 1,NWP

PSIT2(IsJ) = Pi(IsJd) + PSIT2(IrJ)
66  PBIT(Isd) = PS(Ird) + PSIT(Isd)
61  CONTINUE

==




DO 80 I = 1+NP
DO 80 J = 1,NWF
80 FS(Isd) = 0.0
IF(NTAUL.EQ.1) GO TO 8%
GO TO 90
=] DO 86 TI = 1yNF
Do 86 JJ = 1LsyNUWF
86 FETAULC(IT ) = 0,0
GO TO &7
?0 DO 91 I1 = 2yNTAUL
I2 = NTaUL-I1+41
D0 922 I = LyNF
0 92 4 = 1yNWF
92 FSTAUL(I»J) = PSTAUL(Iyd) + FS(Ivd)
DO 93 I = L1sNF
DO 93 J = 1yNWF
FS(Is D) 0.0
o 93 K 1sNF
?3 FS(IsyJ) FS(Ied) + PHITL(I+KeI2)XKBIF(Ky )
no 94 1 1-NF
D0 24 J = 1sNWF
?4 FS(I» J)=DELHLF¥FS(I,.J)
DO 926 I = 1sNFP
DO 96 J = 1sNWF
Y6 FSTAUL(I»J) = FSCIvd) + PSTAULCIYY)
91 CONTINUE

|
'
!
I
I
|
l
|
l
1
1
t
i
I
!
I
|
!

El
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DO 68 J = 1yNWF

68 FS(Isd) = 0.0

IF(NTAU.EQ.1) GO TO S5

GO TO 69

D0 58 II = 1,NF

0 S8 JJ = 1,NWF

58 FSTAUCIIyAS) = 0.0
GO TO 77

69 DO 70 I1 = 2,NTAU
I2 = NTAU-I141
DO 71 I = LeNF

. N0 71 J = 1,NWF

71 PSTAU(IsJ) = FSTAUCIsd) + FS(Is.J)
Do 72 1
0o 72 J
FS(IsJ)
Do 72 K

72 PS(IsJ)
Do 73 1
Do 73 J

73 PS(Isd)
DO 76 1 = 1sNP
DO 76 J = 1,NWP

76 PSTAUCI»J) = PS(IsJ) + PSTAUCI»J)

70 CONTINUE

4}
o

1sNF

1 » NWF

0.0

1sNF

FSCIvd) 4+ PHITL(IvKyI2)XBIP(Ky ) :
1sNF £
1 » NWF
DELHLFXPS(IsJ)

HIE ]

@ i

olouou

*t#tll#***#*tt***t*****#**t**t###*#**#***#*t*#*t**lt*#*#*#*****t*
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414
413

416
415

417

419
418

421
420

428
427

429
430

START TIME LOOF
TIME = O

13302332233 233333333323333033323233338 323330003230 8330833833338%%]

NNL = 1

DO 412 I = 1+NOF
UF(I) = WNNL)-YCL1(I)
DO 413 I = 1sNF

Q= 0.0

0 414 J = 1sNF

Q = Q + PHTAUL(I>» D XXP1(.))

XWi(I)y = Q@

D0 415 I = 1sNF

Q= 0.0

DO 416 J = 1sNUF

Q=Q + FSTAULCT» D XUF(.))
XW2(I) = @

DO 417 1 = 1sNF

XFTAUIC(I) = XW1(1) + XW3(
DO 418 I = 1,NOF

Q= 0.0

DD 419 J = 1sNP

@ =8 + CF(Iy DXXFTAUL (D)
YFTAULC(I) = @

D0 420 I = 1sNUF

Q= 0.0

DO 421 4 = 1sNC

Q=0 + HC(I» DXRXCI(I)
XWi(I) = @

DO 422 I = 1sNUF

Q= 0.0

DO 423 J = 19NOF

Q= Q + ECCIyIXYPTAULC(D)
XW2¢I) Q

D0 424 = 1 sNUF

YC3C(I) = XW1(I) + XW2(I)
DO 425 I = 1sNC

Q= 0.0

DO 426 J = 1vNC

Q@ =Q + FCCIyHXXCI(I)
XWi(l) = Q@

DO 427 I = 14NC

Q = 0.0

DO 428 J = 1¢,NOP

Q=0 + GC(IJIXYPTAUL(D)
XW2¢(I) = Q

Do 429 1 = 1sNC

XC3(I) = XW1(I) + XW2'I)
DO 430 I = 1,NUP

E2(I) = YC3(I) -~ YC2(I)
Do 220 111 = 1,60

DO 253 I = 1sNP

Q= 0.0

DO 254 J = 1»NF

[ ]

oS

]
1
|
1
1
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254
253

S
|44
[: 0 8

r

[ &3
~ 3
~

261
260

301
300

303
302

304

306
305

308
307

309

406
405

408
407

@ = Q4 FHTAUCT » DDEXF (D
XW1(I) = @

DO 255 I = 1sNP

Q= 0.0

DO 256 J = 1yNUF

Q=0 + FSTAUCT, DXUF(D)
XW2¢(TI) = Q@

DO 257 I = 1sNF

XFTAUCI) = XW1C(I) + XW2¢1)
DO 260 I = 1yNOF

Q= 0,0

no 261 J = 1sNF

Q= Q 4+ CP(IYy NDRXFTAUCYY
YPTAUCI)Y = Q

DO 300 I = 1yNUF

Q= 0,0

DO 301 J = 1,NC

@ = Q + HC(T» )XRXC20))
XWI¢I) = @

DO 302 I = 1sNUP

Q= 0,0

o 303 J = 1sNOF

Q=0 4+ ECCILyIXYPTAUCY)
XW2(1) = Q@

0 304 I = 1sNUF

YC2(I) = XWI{I) + XW2(1)
DO 305 I = 1sNC

Q= 0,0

N0 306 .J = 1eNC

Q=80 + FC(IyJOXXC2¢D)
XW1(I) = Q

na 307 I = 1syNC

QA = 0.0

Do 308 J = 1:NOF

Q= Q + GCCIs HIRYFTAUCS)
XW2¢1) = @

DO 309 1 = 1sNC

XC2¢T) = XW1C(I) 4+ XW2¢1I)
DO 290 I = 1yNUF

E1¢I) = YC3(I) ~ YC2(I)
DO 432 1 = 1,NUP

YP2(1) = YF(I) - YPI(I)
DO 405 I = 1sNF

Q= 0,0

DO 406 J = 1sNFP

Q= Q + FHIT(IsJ)RXFLC( D
XWi(I) = @

DO 407 I = 1sNF

Q@ = 0.0

DO 408 J = 1s.NUP

Q=0 4+ FSIT(I,JJ)XUP(J)
XW2(I) =

DO 409 I = 1yNP

Q= 0,0
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410
409

411

434
433
373

501
500

701
700

703
702

704

706
705

708
707

709

221

DO 410 J = 1.NUF
Q@ = Q + FSIT2(IyJIXYF2(J)

XW3(I) = Q |
D0 411 I = 1,NF » :
XP1CI) = XWLCI) 4+ XW2(I) + XW3(I)

D0 433 I = 1,NOF }
Q = 000 e
DO 434 J = 1sNF

Q = Q + CF(IyJ)RXPL() 3
YF1(I) = Q l
DD 500 I = 1,NP

ﬂ % 000

DO 501 J = 1:NP

Q=0 + PHIT(I»J)RXF(J)
XWicI) = Q@

00 502 I = 1sNF
0:0.0

DO 503 J = 1sNUF

Q=0 + FPSITCIyJIRUFCD)
XW2(I) = Q@

DO 504 I = 1sNF

XF(I) = XWi(I) + XW2(I)»
N0 507 I = 1yNOF
0—'—’000

DO 508 J = 1sNFP

L ] ot -t 4

rnemmed

Q=0 + CP(IsIIRXP(S) .
YF(I) = Q )
DO 700 I = 1sNUP

(. -"-"000 s
D0 701 J = 1sNC ‘
@ = Q + HCCIsJ)RXC1(J) :
XW1(I) = Q

DO 702 I = 1sNUP

Q= 0.0

DO 703 J = 1,NOP

Q= Q + ECCLr IRYP () *
XW2(I) = @ !
DO 704 I = 1,NUP

YC1(I) = XW1(I) + XW2(I) .
DO 705 I = 1sNC ;
G=0.0 '
D0 706 J = 1yNC ,

Q=@ + FCCLyJ)AXC1(J) 1
XWi¢I) = @ ;
DO 707 I = 1,NC .

Q= 0,0 . N

DO 708 J = 1yNOP )
@ =Q + GCCIyJIXRYP(J)

XW2¢I) = @ .
DO 709 I = 1,NC ;}
XC1¢I) = XW1(I) + XW2(I) |

NN1 = NN1 + 1
DO 221 I = 1/NOP n
UPCI) = W(NN1)~-YC1(I)

S TR
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‘a

G532

531

5933

36
35

ugan

538
537

539
540
560
220

961

963

@R = 0,0
DO 521 J = 1yNF

@ = Q + FHTAUL(T+J)%XXF1(.))
XWL1(I) =

DO 522 T = 1.NF

Q= 0,0

[0 523 J = 1yNUF

Q@ = Q + FSTAULCT» ) XUF (D)
XW2(I) = Q )

DD 524 I = 1,NF

XPTAUL(T) = XW1<¢I) + XW2(I)
DO 525 1 = 1,NOF

Q= 0.0

D0 526 J = 1,NF

Q=0 + CPR(Iy H)XXFTAUL (D)
YPTAULC(I) = @

N0 529 I = 1:NUP

Q=000

[0 530 J = 1sNC

Q= 0 + HC(LyJ)XXC3(J)
XW1c¢I) = Q

0 531 I = 1,NUF

Q= 0,0

DO 532 J = 1sNOF

Q=0 + ECCIyDIXRYFTAUL(D)
XW2(I) = @

00 533 I = 1sNUF

YC3CI) = XWI1(I) + XW2(I)
D0 535 I = 1,NC

Q==0.0

DO 536 J = 1,NC

@ = Q 4+ FCCIy DIXXC3 (D)
XW1(I) = Q

DO 537 1 = 1,NC

G==0.0

DO 538 J = 1,NOF

Q=0 4+ 6C(IyDXYPTAUL (D)

XW2(I>) = Q
o 339 I = 1sNC
XC3(I) = XWic(I) + XW2(I)

00 540 I = 1,NUF

E2¢I> = YC3(I) - YC2(I)
DO 560 I = 1sNUF
EACIIL) = E1(I)
CONTINUE

SMEANA = 0,0

DO 561 I = 51,60
SMEANA SMEANA + EAC(I)
SMEANA = SMEANA/10

VEA = 0.0

DO 563 1 = 51,60

VEA = VEA + (EACI)~SMEANA) XX
PEASS(ICOUNT) = VEA/10
RETURN

i1
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END

SUBROUTINE RANDUCIX»IY»YFL)
IY = IX%X&65539

IFCIY)Srb96

IY = 1Y + 2147483647+1

YFL = 1Y

YFL = YFLX0.46564613E~-9
RETURN

END
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l EXAMPLE - —=—~--2TH ORDER FLANT» 1ST ORDER CONTROLLER
NO. OF FLANT STATES = 2
NO. OF FLANT INFUTS = 1

l NO. OF EXTERNAL INFUT = 1
NO., OF PLANT QUTFUTS = 1

l NO. OF CONTROLLER STATES ( EACH CONTROLILEFY = 1

FLANT STATE MATRIX -- af
+ 0 1.0
00 '"1000

FLANT CONTROL INFUT MATRIX -~ EF
.0
200.0

FLANT QUTFUT MATRIX -- CF
1.0 O

CONTROLLER STATE MATRIX -~ FC
+ 523810

ORSERVER MATRIX -- GE

20.0

25.0
CONTROLLER CONTROL INFUT MATRIX —- U
~+ 18162

CONTROLLER OUTPUT MATRIX (STATES) -~ HC

l 1.0
CONTROLLER OUTPUT MATRIX ¢(INFUTS) -~ EC

t 1.381

- NT = 351

_ T = S5AMFLE FERIOD = 0.012% SEC
‘ DELTA = T/MT-1) = INCREMENT USED IN THE NUMERICAL
INTEGRATIONS TO vOMIPUTE PEITAUSPEI G LTy
FSITAUL USING TRAPEZOIDAL RULLE.
W IS THE EXTERNAL INFUT (WHITE GAUSSIAN NOISE WITH

‘ MEAN = 0.0y AND VARIANCE = 1,0
THE SKEW OF THE SECOND CONTROLLER 8 0.0072%5 :
THE NUMBER OF ITERATIONS 16 & i

o
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