ABSTRACT
Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two
Item 18 (Cont'd)

Syracuse University contract F30602-79-C-0011 under sponsorship of the Rome Air Development Center Compatibility Techniques Section for Rome Air Development Center.

Item 20 (Cont'd)

broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a µA741 operational amplifier (op amp).

Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.

The RF demodulation effects measured and calculated were characterized in terms of the second-order transfer function \(H_2(f_1,-f_2) \) where \(f_1 = f_{RF} \) and \(f_2 = f_{RF} - f_{AF} \). The frequency \(f_{RF} \) is the RF carrier frequency, and the frequency \(f_{AF} \) is the AF modulation frequency. (The AF voltage \(V_m \) at the amplifier output terminals caused by a 50% AM modulated RF signal at the IC amplifier input terminal can be expressed as \(V_m = (1/2 \sqrt{2})|H_2(f_1,-f_2)| A^2 \) where \(A \) is the RF carrier amplitude.) The experimental and calculated values for \(H_2(f_1,-f_2) \) were determined for the RF frequency range 50 kHz to 50 MHz with an AM modulation frequency of 400 Hz or 1 kHz. For the CA3026 cascode amplifier the experimental and calculated values for \(H_2 \) agree within 4 to 12 dB over the RF frequency range 50 kHz to 10 MHz.

Above 10 MHz both the experimental and calculated values for \(H_2(f_1,-f_2) \) decreased rapidly with increasing frequency. For the 741 unity gain voltage follower circuit the experimental and calculated values for \(H_2(f_1,-f_2) \) also agree quite well over the RF frequency range 50 kHz to 50 MHz. The experimental and calculated values for \(H_2(f_1,-f_2) \) for the 741 unity gain voltage follower circuit were approximately 40 dB less than those of the CA3026 cascode amplifier. This was a result of feedback in the op amp voltage follower circuit. A large increase in RFI effects was observed in the 741 op amp circuit when a 200 µF capacitor was connected to the 741 op amp inverting input. This increase was correctly predicted by NCAP. These comparisons demonstrate that the computer program NCAP can be used quite successfully to predict how AM modulated RF signals are demodulated in broadband IC amplifiers.
ACKNOWLEDGEMENTS

Many have contributed to the investigation of RFI effects in bipolar integrated circuits and to the report on the investigation. We are especially grateful to Professor Donald Weiner (Syracuse University) for his careful reading of a preliminary manuscript. Many of his comments, criticisms, and all of his suggestions which have helped the authors significantly, have been incorporated into the final manuscript. The additional manuscript proofreading by Gordon Chen (SUNYAB) and Carmen Paludi (RADC) have also helped to reduce the errors in this report; their efforts are appreciated. Also appreciated is the assistance provided by Jon Valente (RADC) to us in using the computer program NCAP.

Finally, thanks to Mrs. Joan Bennett for her expert typing of this report and Ms. Barbara Evans for her excellent artwork. Their patience in making numerous changes is especially appreciated.
TABLE OF CONTENTS

LIST OF TABLES 1x

LIST OF ILLUSTRATIONS x

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: TRANSISTOR MODELS AND PARAMETERS 6

2.1 DC Characteristics and Large Signal Models 7
 2.1.1 The Basic Ebers-Moll Model 7
 2.1.2 Early Effect 11
 2.1.3 Diffusion Capacitances and Junction Capacitances 11
 2.1.4 Bias Dependence of Current Gain 15
 2.1.5 Impact Ionization 16
 2.1.6 High Current Effects 17
 2.1.7 Temperature Effects 17

2.2 Linear Dynamic Characteristics and Small Signal Models 18
 2.2.1 Linear T-Model at Low Frequencies 19
 2.2.2 Linear T-Model at High Frequencies 25
 2.2.3 Linear Hybrid-Pi Equivalent Circuit 27

2.3 QuasiLinear Incremental Models 30
 2.3.1 Nonlinear Resistor 33
 2.3.2 Nonlinear Capacitor 34
 2.3.3 Nonlinear Inductor 35
 2.3.4 Nonlinear Dependent Current Source 36
 2.3.5 The Nonlinear Current Generator K(v_b) and the EmitterBase Nonlinear Resistive Coefficients 38
2.3.6 The Nonlinear Current Generator
\[\gamma_c(v_3-v_2) \] and the Collector-Base
Nonlinear Capacitance Coefficients

2.3.7 The Nonlinear Current Generator
\[g(v_2,v_3-v_1) \] and the Dependent
Current Source Nonlinear Coefficients

CHAPTER THREE: MEASUREMENT OF BJT MODEL PARAMETERS

3.1 Large Signal Parameter Measurements

3.1.1 \(I_{ES} \), Emitter Base Junction Saturation
Current and \(R_{ef} \), Emitter Base
Junction Diode Nonideality Factor

3.1.2 \(I_{CS} \), Collector Base Junction Saturation
Current and \(R_{cf} \), Collector Base
Junction Diode Nonideality Factor

3.1.3 \(I_s \), Transistor Saturation Current

3.1.4 \(\alpha_N, \beta_N \), Forward Current Gains

3.1.5 \(a, h_{FEmax}, I_{Cmax}, h_{FE} \) Nonlinearity

3.1.6 \(\alpha_I, \beta_I \), Reverse Current Gains

3.1.7 \(R_{SE}, R_{SC} \), Collector and Emitter
Bulk Resistances

3.1.8 \(R_B \), Base Bulk Resistance

3.1.9 \(V_{CBO}, \eta \), Avalanche Nonlinearity
and \(r_c \), Collector Resistance

3.1.10 \(V_A \), the Early Voltage

3.1.11 \(C_{jeo}, \Phi_E, m_e \), Emitter
Junction Capacitance Parameters

3.1.12 \(C_{jco}, \Phi_C, m_c, k \), Collector
Junction Capacitance Parameters
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Small Signal Parameter Measurements</td>
<td>76</td>
</tr>
<tr>
<td>3.2.1</td>
<td>r_b, Base Spreading Resistance</td>
<td>76</td>
</tr>
<tr>
<td>3.2.2</td>
<td>C_{je}, C_{ie}, NCAP Emitter-Base Capacitance Parameters</td>
<td>81</td>
</tr>
<tr>
<td>3.2.3</td>
<td>r_F, Forward Transit Time Constant</td>
<td>90</td>
</tr>
<tr>
<td>3.3</td>
<td>Large Signal Transient Measurements</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>Parasitic Elements</td>
<td>92</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary of Parameter Values</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>The CA3026 Dual Differential Pair</td>
<td>101</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Direct Measurement of DC Operating Points</td>
<td>103</td>
</tr>
<tr>
<td>4.1.2</td>
<td>NCAP BJT Model Parameters</td>
<td>105</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>The Use of Manufacturer's Data</td>
<td>105</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>The Use of Measured Data</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>The μA741 Operational Amplifier</td>
<td>117</td>
</tr>
<tr>
<td>4.2.1</td>
<td>SPICE2 BJT Model Parameters</td>
<td>122</td>
</tr>
<tr>
<td>4.2.2</td>
<td>NCAP BJT Model Parameters</td>
<td>123</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>The Use of Measured Data</td>
<td>123</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>The Use of Wooley's Data</td>
<td>125</td>
</tr>
<tr>
<td>5.1</td>
<td>Volterra Series Description of a Nonlinear System</td>
<td>136</td>
</tr>
<tr>
<td>5.2</td>
<td>The NCAP Determination of the Nonlinear Transfer Function</td>
<td>143</td>
</tr>
<tr>
<td>6.1</td>
<td>A Broadband JFET Amplifier Stage</td>
<td>147</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>(a) Physical Structure for the NPN Transistor 9</td>
</tr>
<tr>
<td></td>
<td>(b) Basic Ebers-Moll Model for the NPN Transistor 9</td>
</tr>
<tr>
<td>2-2</td>
<td>Ebers-Moll Model in π-Version 12</td>
</tr>
<tr>
<td>2-3</td>
<td>Diagram Illustrating How the Early Voltage V_A of a BJT is Determined 12</td>
</tr>
<tr>
<td>2-4</td>
<td>Large Signal Transistor Model in π-Version 13</td>
</tr>
<tr>
<td>2-5</td>
<td>Small-Signal Voltages and Currents for an Intrinsic Transistor. For the Intrinsic Transistor the Parasitic Resistances R_E, R_{SE}, and R_{SC} Are Zero 20</td>
</tr>
<tr>
<td>2-6</td>
<td>Conventional Circuit Model Illustrating γ-Parameters 22</td>
</tr>
<tr>
<td>2-7</td>
<td>Small Signal Equivalent Circuit in Turns of Admittances 22</td>
</tr>
<tr>
<td>2-8</td>
<td>Low to Medium Frequency Equivalent Circuits for BJT's (a) Large Early Effect Model (b) Small Early Effect Model 26</td>
</tr>
<tr>
<td>2-9</td>
<td>High Frequency Equivalent Circuit for Parasitic Elements Included 28</td>
</tr>
<tr>
<td>2-10</td>
<td>Linear Incremental Hybrid-Pi Model 28</td>
</tr>
<tr>
<td>2-11</td>
<td>Nonlinear Incremental π-Model. Note that the Nonlinear Behavior of Capacitors is not Explicitly Expressed in this Model. 32</td>
</tr>
<tr>
<td>2-12</td>
<td>Nonlinear Incremental T-Model. Note that the Emitter is Assumed to be the Datum Node. 32</td>
</tr>
<tr>
<td>2-13</td>
<td>Nonlinear Dependent Current Sources 36</td>
</tr>
<tr>
<td>3-1</td>
<td>Transistor Base-Emmitter Characteristic Test Configuration (a) for Low Currents and (b) for High Currents 49</td>
</tr>
<tr>
<td>3-2</td>
<td>I_E Versus V_{BE} Plot for a 2N5179 Device 50</td>
</tr>
<tr>
<td>3-3</td>
<td>Transistor Base-Collector Characteristic Test Configuration 53</td>
</tr>
<tr>
<td>3-4</td>
<td>I_C Versus V_{BC} Plot for a 2N5179 Device 53</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3-5</td>
<td>Transistor I_C Versus V_{BE} Characteristic Test Configuration</td>
</tr>
<tr>
<td>3-6</td>
<td>I_C Versus V_{BE} Plot for a 2N5179 Device</td>
</tr>
<tr>
<td>3-7</td>
<td>(a) DC Test Circuit for Measuring α_N and β_N at Low Current Levels</td>
</tr>
<tr>
<td></td>
<td>(b) Pulse Test Circuit for Measuring α_N and β_N at High Current Levels</td>
</tr>
<tr>
<td>3-8</td>
<td>$\beta_N(h_{FE})$ Versus I_C Plot for a 2N5179 Device</td>
</tr>
<tr>
<td>3-9</td>
<td>DC Test Circuit for Measuring α_I and β_I at Low Current Levels</td>
</tr>
<tr>
<td>3-10</td>
<td>β_I Versus I_E Plot for a 2N5179 Device</td>
</tr>
<tr>
<td>3-11</td>
<td>Circuit for the Measurement of Emitter and Collector Series Resistances</td>
</tr>
<tr>
<td>3-12</td>
<td>The Evaluation of R_{SE} and R_{SC} for a 2N5179 Transistor</td>
</tr>
<tr>
<td>3-13</td>
<td>Bulk Resistance (R_{SE} and R_{SC}) Determination with Two I_C-V_{CE} Curves</td>
</tr>
<tr>
<td>3-14</td>
<td>I_C Versus V_{CB} Plot for a 2N5179 Device</td>
</tr>
<tr>
<td>3-15</td>
<td>I_C Versus V_{CE} Plot for a 2N5179 Device Used to Determine Early Voltage V_A</td>
</tr>
<tr>
<td>3-16</td>
<td>Terminal Connections for Junction Capacitance Measurement (a) C_{je} Measurement and (b) C_{jc} Measurement</td>
</tr>
<tr>
<td>3-17</td>
<td>Typical Values of Emitter Junction Capacitance $C_{meas} = C_{je} +</td>
</tr>
<tr>
<td>3-18</td>
<td>Circuit for Measuring h_{ie} and h_{fe}. Note that the Quantities V_{e}, I_{e}, etc., Are the Complex Amplitudes of Sinusoidal Quantities. See Appendix I on Notation.</td>
</tr>
<tr>
<td>3-19</td>
<td>Hybrid-Pi Model for a Junction Transistor</td>
</tr>
<tr>
<td>3-20</td>
<td>Small Signal Equivalent Circuit for Measuring Common-Emitter Short-Circuit Input Admittance $y_{ie} = I_e/V_{be}$. Note that the Quantities I_b, V_{be}, etc., are the Complex Amplitudes of Sinusoidal Quantities. See Appendix I on Notation.</td>
</tr>
</tbody>
</table>
Small Signal Equivalent Circuit for Calculating the Common-Emitter Short-Circuit Input Impedance $h_{ie} = V_{be} / I_{b}$. Note that the quantities I_b, V_{be}, etc., are the complex amplitudes of sinusoidal quantities. See Appendix I on notation.

Input Impedance Locus Plot. The Intercepts of the Semicircle with the Real Axis Yield the Value of $r_b(R_b)$.

Typical $\text{Re}(h_{ie})$ Versus $\text{Im}(h_{ie})$ Locus Plot for a 2N5109 BJT. These Circles were Obtained by Somewhat Judicious Choice of Three Points. Choice of a Different Set of Three Points will Yield Slightly Different Circles.

Conventional Asymptotic Plot of $|h_{fe}|$ Versus f.

Plot of C_π Vs I_E Used to Determine NCAP Parameters C_{je} and C'_{2e}.

$1/2\pi f_T$ Versus $1/I_C$ Plot for a 2N5179 Device.

Test Configuration and Waveforms for the Measurement and the Evaluation of the Reverse Transient Time τ_R.

Schematic of RCA CA3026 Integrated Circuit.

Schematic of CA3026 Cascode Amplifier.

Typical Characteristics for Each Transistor in CA3026. (After Ref. (28)).

A Linear Plot of Emitter Capacitance Versus Emitter Current in Device CA3026.

Representative Plot of I_E vs V_{BE} for an Individual BJT in Device CA3026.

Representative Plot of h_{FE} vs I_C for an Individual BJT in Device CA3026.

Representative Output Characteristics of an Individual BJT in Device CA3026.

A Log-Log Plot of Collector-Base Junction Depletion Capacitance Versus Junction Voltage in Device CA3026.
FIGURE

4-9 Schematic of μA741 Operational Amplifier

4-10 Plan Views of the 741 Transistors. All Dimensions Are in Mils. (a) Small NPN (b) Large NPN (c) Lateral PNP (d) Large Substrate PNP (e) Dual-Collector Lateral PNP (f) Dual Emitter Substrate PNP. (After Wooley et al.29)

4-11 SPICE2 Coding Diagram of μA741 Operational Amplifier Unity Gain Buffer. This Diagram Is Used to Determine (1) DC Operating Points of Each Individual BJT in the IC, and (2) the Linear Response of the Unity Gain Buffer.

4-12 Normalized Plot of hFE vs Collector Current. Curve a for Small NPN, Large NPN, and Substrate PNP; Curve b for Lateral PNP

5-1 A Nonlinear System without Memory

6-1 The Circuit Diagrams of a Broadband JFET Amplifier (a) and Its AC Equivalent Circuit (b). Notations A, B, D, and E Represent the Nonlinear Transfer Functions at Nodes 1, 2, 3, and 4, respectively. Notations G, D, S', and S Represent Gate, Drain, Internal Source, and Source Terminals, Respectively.

6-2 A 2N5109 RF Amplifier NCAP Coding Circuit Diagram

6-3 A 2N5109 RF Amplifier Fortran NCAP Simulation Circuit Diagram, where Only the Linear Portion of the Amplifier is Shown.

6-4 Composite Branch Containing an Admittance Connected from Node i to Node j

6-5 Composite Branch Containing a Voltage-Controlled Current Source Along with the Controlling Branch

7-1 Experimental Systems for Measuring the First-Order Transfer Function H1(f) of the CA3026 Cascode Amplifier. Note that H1(f) = VOUT/VIN

7-2 Measured and Predicted Values for the First-Order Transfer Function VOUT/VIN of the Cascode Amplifier

7-3 Measured and Predicted Values for the First-Order Transfer Function VOUT/VIN of the Cascode Amplifier

7-4 A Linear Incremental Equivalent Circuit Model for the CA3026 Cascode Amplifier. Note That the Hybrid-Pi Model is Used for the BJT's
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5</td>
<td>182</td>
</tr>
<tr>
<td>Experimental System for Measuring the First-Order Transfer Function (H_1(f)) of the (\mu A741) Unity Gain Buffer. Note that (H_1(f) = VOUT/VIN)</td>
<td></td>
</tr>
<tr>
<td>7-6</td>
<td>183</td>
</tr>
<tr>
<td>(a) Measured and Predicted Values for the First-Order Transfer Function (VOUT/VIN) of the Unity Gain Buffer.</td>
<td></td>
</tr>
<tr>
<td>(b) Measured and Predicted Values for the First-Order Transfer Function (VOUT/VIN) of the Unity Gain Buffer (Note Change of the Scale.)</td>
<td></td>
</tr>
<tr>
<td>7-7</td>
<td>185</td>
</tr>
<tr>
<td>Measured and Predicted Values for the First-Order Transfer Function (VOUT/VIN) of the Unity Gain Buffer</td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>188</td>
</tr>
<tr>
<td>Experimental System for Measuring Second-Order Transfer Functions (H_2(f_1, f_2))</td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>190</td>
</tr>
<tr>
<td>CA3026 Cascode Amplifier Measured AF Voltage (V_M) at Wave Analyzer Input Versus Input Power Level</td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>191</td>
</tr>
<tr>
<td>(\mu A741) Op Amp Voltage Follower Measured AF Voltage (V_M) at the Wave Analyzer Input Vs Input Power Level</td>
<td></td>
</tr>
<tr>
<td>7-11</td>
<td>195</td>
</tr>
<tr>
<td>Schematic of the Thevenin Equivalent Circuit Measuring (H_2)</td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>199</td>
</tr>
<tr>
<td>Calculated and Measured Responses for the Second-Order Transfer Function of the CA3026 Cascode Amplifier</td>
<td></td>
</tr>
<tr>
<td>7-13</td>
<td>200</td>
</tr>
<tr>
<td>Calculated and Measured Second-Order Transfer Functions for the (\mu A741) Unity Gain Buffer. Inverting Input is Not Shunted with Capacitances. ((C = 0.))</td>
<td></td>
</tr>
<tr>
<td>7-14</td>
<td>201</td>
</tr>
<tr>
<td>Cascode Amplifier Circuit Diagram Used to Determine NCAP Input Data</td>
<td></td>
</tr>
<tr>
<td>7-15</td>
<td>203</td>
</tr>
<tr>
<td>The NCAP Coding Circuit Diagram for the (\mu A741) Unity Gain Buffer</td>
<td></td>
</tr>
<tr>
<td>7-16</td>
<td>207</td>
</tr>
<tr>
<td>Calculated and Measured Second-Order Transfer Functions of the (\mu A741) Unity Gain Buffer. Inverting Input is Shunted with a 0.2 (\mu F) Capacitor</td>
<td></td>
</tr>
<tr>
<td>7-17</td>
<td>208</td>
</tr>
<tr>
<td>Calculated and Measured Second-Order Transfer Functions of the (\mu A741) Unity Gain Buffer. Inverting Input is Shunted with a 200 (\mu F) Capacitor</td>
<td></td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>8-1</td>
<td>221</td>
</tr>
<tr>
<td>II-1</td>
<td>225</td>
</tr>
<tr>
<td>III-1</td>
<td>226</td>
</tr>
<tr>
<td>III-2</td>
<td>227</td>
</tr>
<tr>
<td>III-3</td>
<td>228</td>
</tr>
<tr>
<td>III-4</td>
<td>230</td>
</tr>
<tr>
<td>III-5</td>
<td>230</td>
</tr>
<tr>
<td>III-6</td>
<td>231</td>
</tr>
<tr>
<td>III-7</td>
<td>231</td>
</tr>
<tr>
<td>III-8</td>
<td>232</td>
</tr>
<tr>
<td>III-9</td>
<td>232</td>
</tr>
<tr>
<td>III-10</td>
<td>233</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2-1 NCAP INPUT PARAMETERS FOR 2N5109 BJT</td>
<td>45</td>
</tr>
<tr>
<td>2-2 NONLINEAR COEFFICIENTS FOR 2N5109 BJT</td>
<td>46</td>
</tr>
<tr>
<td>3-1 FORTRAN PROGRAM FOR DETERMINING JUNCTION CAPACITANCE PARAMETER VALUES</td>
<td>72</td>
</tr>
<tr>
<td>3-2 TYPICAL RESULTS OBTAINED USING THE FORTRAN PROGRAM IN TABLE 3-1</td>
<td>95</td>
</tr>
<tr>
<td>3-3 NCAP BIPOLAR JUNCTION TRANSISTOR MODEL PARAMETERS</td>
<td>96</td>
</tr>
<tr>
<td>3-4 SCEPFRE BIPOLAR JUNCTION TRANSISTOR MODEL PARAMETERS</td>
<td>97</td>
</tr>
<tr>
<td>3-5 SPICE2 BIPOLAR JUNCTION TRANSISTOR MODEL PARAMETERS</td>
<td>98</td>
</tr>
<tr>
<td>4-1 NCAP INPUT PARAMETERS FOR RCA CA3026 INTEGRATED CIRCUIT</td>
<td>104</td>
</tr>
<tr>
<td>4-2 SPICE2 µA741 BJT'S INPUT PARAMETERS</td>
<td>128</td>
</tr>
<tr>
<td>4-3 NCAP µA741 BJT'S INPUT PARAMETERS</td>
<td>130</td>
</tr>
<tr>
<td>4-4 741 OPERATIONAL AMPLIFIER SPICE2 CODING LIST</td>
<td>132</td>
</tr>
<tr>
<td>6-1 JFET NCAP MODEL PARAMETERS</td>
<td>157</td>
</tr>
<tr>
<td>6-2 CALCULATED VALUES FOR THE JFET NONLINEAR TRANSFER FUNCTIONS</td>
<td>159</td>
</tr>
<tr>
<td>6-3 CALCULATED RESULTS FOR THE FIRST AND SECOND-ORDER TRANSFER FUNCTIONS FOR THE 2N5109 TUNED RF AMPLIFIER AT THE OUTPUT NODE (20)</td>
<td>173</td>
</tr>
<tr>
<td>7-1 LINEAR INCREMENTAL HYBRID-PI PARAMETERS FOR BJT'S IN THE RCA CA3026 INTEGRATED CIRCUIT</td>
<td>181</td>
</tr>
<tr>
<td>7-2 SECOND-ORDER TRANSFER FUNCTION MEASUREMENT OF CA3026 CASCODE AMPLIFIER WITH Pgen = -35 dBm AND f_AF = 1 kHz</td>
<td>196</td>
</tr>
<tr>
<td>7-3 SECOND-ORDER TRANSFER FUNCTION MEASUREMENT OF µA741 UNITY GAIN BUFFER WITH Pgen = -10 dBm AND f_AF = 400 Hz</td>
<td>199</td>
</tr>
<tr>
<td>7-4 CASCODE AMPLIFIER NCAP PROGRAM CODING</td>
<td>209</td>
</tr>
<tr>
<td>7-5 UNITY GAIN VOLTAGE FOLLOWER NCAP PROGRAM CODING</td>
<td>211</td>
</tr>
</tbody>
</table>
EVALUATION

This investigation represents a significant and invaluable contribution to the Air Force Intraseystem Analysis Program (IAP) as pertaining to the Nonlinear Circuit Analysis Program (NCAP). By utilizing analysis, prediction and measurement techniques developed under the IAP, a new technique was developed which characterizes radio frequency (RF) demodulation effects in bipolar linear integrated circuits (IC's) which are designed to operate at audio frequency (AF). The results of this effort, which was performed in support of the RADC FY 77-79 Electromagnetic Compatibility (EMC) Technical Planning Objective (TPO) goal associated with the development of EMC prediction and analysis techniques, is twofold. It provides users of the IAP (particularly NCAP) with an application roadmap for performing nonlinear analysis on small scale bipolar linear integrated circuits. Secondly, a data base for linear IC input parameters required by NCAP has been established and will continue to expand with additional application. Because of the rigorous verification between measured and simulated data, input parameter measurements, and inclusion of parasitic effects, good agreement between measured results and NCAP predicted results is obtained. This agreement represents a sufficient degree of confidence in applying the technique developed in this effort of using NCAP to analyze and predict the nonlinear behavior, and the EMC profile of bipolar IC's.

CARMEN A. PALUDI, JR.
Project Engineer
CHAPTER ONE
INTRODUCTION

In recent years wideband monolithic analog integrated circuit amplifiers have become important building blocks in communication systems. These amplifiers, although designed to be linear, are not completely linear because of the inherent nonlinearity of the devices in the circuits. Therefore, in communication systems, where integrated circuits are used, nonlinear effects can cause some significant problems.

In the small signal amplifier circuit, a nonlinearity may generate a small amount of higher-order harmonic signals when excited by a single signal source or beat-frequency signals called Intermodulation Products (IMP's) when excited by two or more signal sources. (The unwanted signals will be referred to as distortion.) If the signal source excitations are sufficiently small, then the higher-order frequency components generated will be negligible when compared with the fundamental component. However, there are cases where the higher order frequency components are not negligible. An example is long-distance communication circuits, such as frequency-division wideband coaxial analog systems or cable TV systems, in which a repeater amplifier must be inserted every few miles to maintain signal strength. It has been observed that the undesirable higher order frequency components have a tendency to become additive along the line and can not always be neglected. Also when electronic circuits are operated in a multi-signal Radio Frequency Interference (RFI) environment, the
strengths of stray signal sources are not necessarily small and severe
RFI effects can result from a circuit nonlinearity. Perhaps the best
known example is that a heart pacemaker can be affected by a microwave
oven. Therefore, the study of nonlinear distortion* to predict
nonlinear effects such as gain compression, desensitization, cross-
modulation, intermodulation and demodulation due to RFI is import-
ant to electronic circuit design engineers as well as systems engineers
who must meet stringent RFI performance specifications on electronic
equipment. The predication of nonlinear effects using computer-aided
design (CAD) techniques can be especially useful to such circuit
designers. This is the subject of this dissertation.

Although other nonlinear devices such as the junction field effect
transistor (JFET) and metal-oxide-semiconductor field effect tran-
sistor (MOSFET) are used in integrated circuits, the bipolar junction
transistor (BJT) remains the most widely used nonlinear device in
integrated circuits. Unfortunately, when compared with the other
devices, the BJT due to its inherent emitter-base junction nonlinear-
ity generates more distortions and is more susceptible to non-
linear effects when operated in multiple-signal RFI environments.
Based upon different mathematical approaches which include the Vol-
terra series, the perturbation method, and the Picard

* The term distortion will be used to describe a wide variety of
nonlinear effects in electronic circuits such as the production of
harmonic frequency terms and intermodulation products (IMP's).
iteration method, the engineering literature includes many models that can be used to study the nonlinearities of the BJT. One such model is the integral charge control model (ICM), and another is the nonlinear T-model. In this dissertation the use of Nonlinear Circuit Analysis Program (NCAP) which incorporates the nonlinear T-model for the BJT and uses the Volterra series approach for the distortion analysis is described. The program NCAP has been developed through the joint efforts of government, industry and university in order to provide the EMC community with a useable procedure for analysing electronic equipment operated in a multi-signal RFI environment.

The Volterra series representation for nonlinear components in electronic circuits has proved to be a useful analysis tool in the calculation of distortion. Since transistor distortion is frequency dependent, a memory-less power series expression is inadequate. However, the Volterra series is a generalization of the power series. When analyzing distortions in electronic circuits, it offers the distinct advantage of being able to characterize a frequency dependent system, which includes nonlinear components with memory.

Appropriate nonlinear models for BJT analysis have to be chosen in order to predict accurately the actual transistor operation. However, there is tradeoff between the accuracy of device simulation and the complexity of the model. In NCAP, the nonlinear T-model, being a second-level transistor model, has been demonstrated to be an appropriate model for the calculation of distortion. In addition,
the 16 model parameters in the T-model can be easily extracted from measurements; thus the nonlinear T-model can be used with relative ease.

As indicated by the literature, very little has been reported upon on RFI effects in BJT integrated circuits. The object of this dissertation is to study the RFI effects in BJT integrated circuit amplifiers by using NCAP. Both NCAP and the Simulation Program with Integrated Circuit Emphasis (SPICE2) are used to demonstrate integrated circuit analysis. The user-oriented programs NCAP and SPICE2 use frequency domain analysis to predict linear and nonlinear effects in electronic circuits. Although these two programs are both capable of distortion analysis, the program NCAP by using the Volterra series approach to calculate nonlinear transfer functions for a given system gives more accurate results for the nonlinear effect. The program SPICE2 is used mainly to find the dc operating points for the transistors in the integrated circuits and to predict the linear performance of the circuits. Two typical BJT integrated circuits are selected for the RFI study. One integrated circuit amplifier uses a CA3026 dual differential pair in a broadband cascode amplifier. The differential pair is selected because it is the basic building block in bipolar linear integrated circuits. The other integrated circuit amplifier uses a 741 operational amplifier in a unity gain voltage follower circuit. The 741 op amp is selected because it is the most widely used bipolar linear integrated circuit. To verify the NCAP RFI analyses the NCAP calculated results are compared to experimental results.
This dissertation is organized in the following manner. In
Chapter Two transistor models are discussed. In Chapter Three measurement techniques for determining BJT model parameters are presented. The techniques described in Chapter Three are used to determine the parameter values for the BJT's in the CA3026 differential pair and 741 operational amplifier. The procedures and results are described in Chapter Four. In Chapter Five the fundamental procedures used for nonlinear system analysis are presented. Two examples of the basic nonlinear system analysis procedures are given in Chapter Six. One example involves a single stage junction field effect transistor (JFET) in a broadband amplifier circuit. The other example involves a bipolar junction transistor (BJT) in a tuned RF amplifier circuit. In Chapter Seven measured and predicted results for RFI effects in integrated circuits are compared. Briefly the computer program NCAP is used to calculate second-order transfer functions for the CA3026 differential pair in a broadband amplifier configuration and for the 741 op amp in the unity gain voltage follower configuration. The second-order transfer function calculated is directly related to the low frequency signal that appears at the IC output terminals when an amplitude modulated RF signal is incident upon the IC input terminals. A summary and conclusion is given in Chapter Eight.
CHAPTER TWO

TRANSISTOR MODELS AND PARAMETERS

The bipolar junction transistor (BJT) in integrated circuit (IC) form is easy to fabricate and occupies less space than a resistor or capacitor. Thus, the BJT in an IC costs less than a resistor or a capacitor in an IC. This development has brought a new era in electronic circuits. Now transistors rather than conventional components (resistors, capacitors, and inductors) are used predominantly. As a result the BJT has become one of the most widely used active devices in integrated circuits.1,2

The purpose of this chapter is to review several transistor models used in linear and nonlinear analysis of the BJT in integrated circuits. The most important model used in this dissertation is the NCAP nonlinear T-model. The NCAP nonlinear T-model is essentially a small signal incremental model. The nonlinear T-model parameters depend upon the transistor dc operating point. Therefore, an EMC engineer who wishes to use the program NCAP to analyze an electronic circuit containing BJT's must first perform a dc analysis. For an electronic circuit containing several active devices such as linear IC's, the use of an electronic circuit analysis program such as SPICE2 or SCEPTRE to perform the dc analysis is recommended. For this reason, the BJT models used in SPICE2 and SCEPTRE will be discussed. Furthermore, information on the BJT model parameters used in SPICE2 and SCEPTRE can be used to determine many (but not all) of the NCAP model parameters.3,4,5
The NCAP nonlinear T-model is an incremental model suitable for analyzing mild nonlinear effects in electronic circuits; for that reason, a review of linear incremental models for small signal analysis is presented. In particular how the NCAP nonlinear T-model corresponds to the widely used hybrid-pi model will be shown. Then the transition to the nonlinear T-model which is a nonlinear incremental (or ac) model is presented.

2.1 DC Characteristics and Large Signal Models

In this section the large signal models used in the electronic circuit analysis programs SPICE2 and SCEPTRE are described. These computer programs can be used to determine the dc operating point of all diodes and transistors in a linear bipolar integrated circuit. The operating point information is one of the inputs required by the computer program NCAP which is used to calculate RFI effects in linear bipolar IC's.

2.1.1 The Basic Ebers-Moll Model

Under usual operating condition, the dc current-voltage characteristic of BJT's can be described by the basic Ebers-Moll model. Using the standard IEEE notation for the BJT terminal currents and voltages given in Appendix I, these dc current-voltage relationships are

\[
I_E = -I_{ES} \left(\exp\left(\frac{qV_E}{kT}\right) - 1 \right) + a_1 I_{CS} \left(\exp\left(\frac{qV_C}{kT}\right) - 1 \right) \tag{2-1}
\]

\[
I_C = -I_{CS} \left(\exp\left(\frac{qV_C}{kT}\right) - 1 \right) + a_N I_{ES} \left(\exp\left(\frac{qV_{BE}}{kT}\right) - 1 \right) \tag{2-2}
\]

where the Ebers-Moll model parameters are defined as follows:

* Additional Ebers-Moll model parameters used in the computer program SCEPTRE are the ideality factors \(R_{EB} \) and \(R_{EC} \) for the emitter-base and collector base junctions. These factors appear in the denominator of the exponents in Eqs. (2-1) and (2-2).
\[V'_{BE} = V_{BE} + I_E R_{SE} - I_B R_B \]
\[V'_{BC} = V_{BC} + I_C R_{SC} - I_B R_B \]

The Ebers-Moll model for a NPN transistor is illustrated in Figure 2-1.
FIGURE 2-1
(a) Physical Structure for the NPN Transistor
(b) Basic Ebers-Moll Model for the NPN Transistor
In the forward active region, where emitter-base junction is forward biased and the collector-base junction is reverse biased, the Ebers-Moll model equations can be approximated as

\[I_E = -I_{ES} \exp\left(\frac{qV_E'}{kT}\right) \]
\[I_C = a_N I_{ES} \exp\left(\frac{qV_E'}{kT}\right) \]

Since the dc base current is given by \(I_B = -I_C - I_E \), the base current \(I_B \) can be written as

\[I_B = (1-a_N) I_{ES} \exp\left(\frac{qV_E'}{kT}\right) \]

We define the saturation current \(I_S \) and parameters \(\beta_N \) and \(\beta_I \) by:

\[I_S = I_{ES} \quad a_N = I_{CS} \quad a_I \]
\[\beta_N = \frac{a_N}{(1-a_N)} \]
\[\beta_I = \frac{1}{(1-a_I)} \]

Equations (2-1) and (2-2) can be written as

\[I_E = I_S \left\{ \exp\left(\frac{qV_E'}{kT}\right) - 1 \right\} - \frac{1}{\beta_N} I_S \left\{ \exp\left(\frac{qV_{BE}}{kT}\right) - 1 \right\} \]
\[I_C = I_S \left\{ \exp\left(\frac{qV_{BE}}{kT}\right) - 1 \right\} - \frac{1}{\beta_I} I_S \left\{ \exp\left(\frac{qV_{BC}}{kT}\right) - 1 \right\} \]

Based upon Eqs. (2-11) and (2-12) the basic Ebers-Moll model shown in Figure 2-1(b) can be recast into the \(\pi \)-model illustrated in Figure 2-2.
2.1.2 Early Effect

The basic Ebers-Moll model should be modified to include the Early effect. J. M. Early described the dependence of $\alpha_N (a_I)$ upon collector-base voltage. This dependence is related to the dependence of base width upon collector voltage. This base-width modulation effect can cause a non-zero output conductance g_o in the BJT, i.e.

$$g_o = \frac{\partial I_c}{\partial V_{CE}} \bigg|_{I_B} = \frac{I_B (\partial \alpha_N / \partial V_{CE})}{I_B} (1-a_N)^2 \neq 0$$ (2-13)

To account for the base-width modulation effect, the Early voltage is introduced. The Early voltage V_{A} is determined as shown in Figure 2-3. The Ebers-Moll π-model equation for I defined in Figure 2-2 is thus modified and becomes

$$I = -I_S \left(\exp(qV_{BC}/kT)-1 \right) - \left(\exp(qV_{BE}/kT)-1 \right) \left[1 - V_{BC}/V_A \right]$$ (2-14)

2.1.3 Diffusion Capacitances and Junction Capacitances

The large signal models in SPICE2 and SCEPTRE also account for the stored charges in the BJT. In modeling the stored charges in transistors, diffusion and junction capacitances both have to be considered. A suitable model is shown in Figure 2-4 with the capacitances defined as

- C_{je}: emitter-base junction capacitance
- C_{b}: emitter-base diffusion capacitance
- C_{jc}: collector-base junction capacitance
- C_{dc}: collector-base diffusion capacitance
FIGURE 2-2 Ebers-Moll Model in \(\pi \)-Version

\[
I = -I_S \left\{ \left[e^{\frac{qV_{BC}}{kT}} - 1 \right] - \left[e^{\frac{qV_{BE}}{kT}} - 1 \right] \right\}
\]

\[
I_{BC} = \frac{1}{\beta_I} I_S \left[e^{\frac{qV_{BC}}{kT}} - 1 \right]
\]

\[
I_{BE} = \frac{1}{\beta_N} I_S \left[e^{\frac{qV_{BE}}{kT}} - 1 \right]
\]

FIGURE 2-3 Diagram Illustrating How the Early Voltage \(V_A \) of a BJT is Determined
FIGURE 2-4 Large Signal Transistor Model in π-Version
The nonlinear charge stored in the base-emitter region is denoted by Q_{BE} and in the base-collector region is denoted by Q_{BC}. These are given by

\[
Q_{BE} = \tau_F I_S \left[\exp \left(\frac{qV_{BE}}{kT} \right) - 1 \right] + C_{jeo} \int_0^{V_{BE}} (1-(V/\phi_E)^{-m}) \, dV \tag{2-15}
\]

\[
Q_{BC} = \tau_R I_S \left[\exp \left(\frac{qV_{BC}}{kT} \right) - 1 \right] + C_{jco} \int_0^{V_{BC}} (1-(V/\phi_C)^{-m}) \, dV \tag{2-16}
\]

When the individual terms in the charge expressions are differentiated with respect to the appropriate junction voltage, we obtain the following expressions for the capacitances:

\[
C_{je} = C_{jeo} \left(1-(V_{BE}/\phi_E)^{-m} \right)^e \tag{2-17}
\]

\[
C_{jc} = C_{jco} \left(1-(V_{BC}/\phi_C)^{-m} \right)^c \tag{2-18}
\]

\[
C_b = \tau_F (qI_S/kT) \exp \left(\frac{qV_{BE}}{kT} \right) = \tau_F q I_C / kT \tag{2-19}
\]

\[
C_d = \tau_R (qI_S/kT) \exp \left(\frac{qV_{BC}}{kT} \right) = \tau_R q I_E / kT \tag{2-20}
\]

where the symbols introduced have the following definitions:

- C_{jeo}: emitter-base junction capacitance at zero bias
- C_{jco}: collector-base junction capacitance at zero bias
- m_e: emitter-base capacitance exponent
- m_c: collector-base capacitance exponent
- ϕ_E: emitter-base built-in potential
- ϕ_C: collector-base built-in potential
- τ_F: forward transit time
- τ_R: reverse transit time

14
In Eq. (2-19) the relationship $C_b = \tau_F q |I_C|/kT$ is valid when the BJT is operated in the normal region, and in Eq. (2-20) the relationship $C_d = \tau_R q |I_E|/kT$ is valid when the BJT is operated in the inverse region.

2.1.4 Bias Dependence of Current Gain$^9, 10$

The computer program NCAP accounts for the variation in the dc common-emitter short-circuit current gain parameter β_N (h_{FE} in NCAP).

The dc common-emitter short-circuit current gain parameter β_N varies with the value of the dc collector current I_C. At low collector current levels generation-recombination processes in the collector-base depletion region causes a decrease in β_N values. At high collector currents high-level injection effects in the neutral-base region cause a decrease in β_N. At high collector current levels there may also be an increase in the width of the neutral-base region. (This effect is called base push-out.) In the computer program NCAP the dependance of the parameter β_N (called h_{FE} in NCAP) is accounted for by the empirical relationship:

$$\beta_N = h_{FE} = h_{FEmax}/(1+a \log^2(I_C/I_{Cmax}))$$ \hspace{1cm} (2-21)

where h_{FEmax} is the maximum beta value and I_{Cmax} is the collector current level at which $\beta_N = h_{FEmax}$.

15
2.1.5 Impact Ionization11,12

The computer program NCAP also accounts for avalanche effects in the collector-base junction. The collector current for uniform avalanche multiplication in the collector base depletion region is given by

\[I_C = -\alpha_N M I_E \] (2-22)

where \(M \) the multiplication factor is given empirically by

\[M = \frac{1}{1 - (V_{CB}/V_{CBO})^\eta} \] (2-23)

The parameter \(V_{CBO} \) is the open-emitter common-base breakdown voltage and the exponent \(\eta \) is a constant of the order of 2 to 4 for silicon. At low collector-base voltages \(M \) is close to unity, and it increases as the voltage increases.

Under the open-base common-emitter condition, collector-emitter voltages will reach a breakdown voltage \(V_{CEO} \) at which the current \(I_C \) (or \(I_E \)) is limited only by the external resistance in the circuit.

The emitter-base breakdown voltage \(V_{CBO} \) is given by

\[V_{CEO} = V_{CBO} (1 - \alpha_N)^{1/\eta} \] (2-24)

For high gain transistors, the breakdown voltage of \(V_{CEO} \) is usually much less than \(V_{CBO} \). The parameters \(V_{CBO} \) and \(\eta \) are used in NCAP but not in SPICE2 or SCEPTRE. These parameters can also be determined from the BJT common-emitter characteristics using Eq. (2-24).

16
2.1.6 High Current Effects13,14

At high current levels the basic Ebers-Moll current-voltage equations have to be modified to account for additional effects. One effect is called the base push-out effect. The base push-out effect is associated with the excessive amount of forward diffusion charges stored in the base region. These charges cause a shift in the location of the collector-base depletion layer region. Another effect at high current levels is the conductivity modulation effect. The high level of the injected minority carriers in the base region causes an increase in the base material conductivity, and an increase in the recombination rate in the base region. The base push-out effect and the conductivity modulation effect both contribute to the decrease in the parameter $\beta_N (h_{FE})$ at high current levels. In NCAP the decrease in the parameter $\beta_N (h_{FE})$ is accounted for by using Eq. (2-21). In the basic Ebers-Moll model used in SPICE2 and SCEPTRE, these effects are not accounted for at all. However, in SPICE2 a more complete BJT model called the Integral Charge Control Model (ICM) is available, and this model does account for high level injection by introducing additional model parameters.15,16

2.1.7 Temperature Effects1

The actual BJT junction temperature is a significant parameter. In some computer programs such as SPICE, the BJT operating temperature T can be specified. In other computer programs such as NCAP, the junction operating temperature cannot be specified directly. Fortunately, a
subterfuge can be used to account for the junction temperature \(T \) in the expression \(\frac{q\sqrt{V}}{BE} \). The parameter \(\text{Ref} \) called the diode non-ideality factor can be modified to account for a junction temperature different from 300 K. For example, if the actual values are \(T = 390 \) K and \(\text{Ref} = 1.0 \), the values \(T = 300 \) K and \(\text{Ref} = 1.3 \) can be used. The main point is that the product \((\text{Ref}) \cdot (kT) \) has the same value. This subterfuge does not account for the temperature variations in the parameters \(h_{F \text{Emax}} \) and \(I_{C \text{max}} \), which account for the variations in \(\beta_N \) (\(h_{FE} \)) with \(I_C \). The BJT junction temperature \(T \) can be estimated from data provided by the manufacturer for a small signal transistor such as a 2N918. The junction temperature \(T \) is estimated to increase 1 °C per milliwatt dissipated power. For a higher power transistor such as a 2N5109, the junction temperature increase is estimated to be 0.2 °C per milliwatt dissipated power.

2.2 Linear Dynamic Characteristics and Small Signal Models

As stated previously, the NCAP nonlinear T-model is an incremental (ac) model suitable for analyzing mild nonlinear effects in integrated circuits. Before discussing the NCAP nonlinear T-model, it seems desirable to review the linear incremental models frequently used for small signal analysis. In this way, it is possible to show how the NCAP nonlinear T-model corresponds to the linear T-model and the widely used hybrid-pi model.

If the BJT is considered as a two port network, different representations such as \(y \)-parameters, \(z \)-parameters, \(h \)-parameters, and \(s \)-parameters, etc., can be used to predict the linear dynamic behavior
of the BJT. The adequacy of the modelling and the ease of determining the model parameters often determine how frequently these models are used by engineers.

Among the different representations, the y-parameter representation can be converted quite easily into a T-model small signal equivalent circuit. Since the T-model is used in the computer program NCAP in the analysis of BJT's, the derivations for both the low and high frequency T-models are briefly reviewed in this section. Also presented is the hybrid-pi model used in the computer analysis program SPICE2.

2.2.1 Linear T-Model at Low Frequencies

The linear T-model will be developed first for the intrinsic transistor. Intrinsic transistor large signal models can be obtained from the large signal models shown in Figures 2-1(b), 2-2 and 2-4 by setting the parasitic resistances R_B, R_{SE}, and R_{SC} equal to zero. Then the external transistor terminals E, B, and C and the internal model nodes E', B', and C' are identical as shown in Figure 2-5.

Using the notation given in Appendix I, the y-parameter representation for an intrinsic transistor in the common-base configuration is given as

$$i_e = y_{ib}v_{eb} + y_{rb}v_{cb}$$

$$i_c = y_{fb}v_{eb} + y_{ob}v_{cb}$$

(2-25)

(2-26)

where i_e, v_{eb} and i_c, v_{cb} are intrinsic small signal currents and voltages for the internal emitter-base and collector-base junctions.
Small-Signal Voltages and Currents for an Intrinsic Transistor. For the Intrinsic Transistor the Parasitic Resistances R_B, R_{SE}, and R_{SC} Are Zero.
respectively. (See Figure 2-5.) The symbol ' is used to denote intrinsic voltages. In the intrinsic transistor model the ohmic resistances R_{SE}, R_B, and R_{SC} illustrated in Figure 2-1 are omitted. The conventional circuit model used to illustrate the y-parameter is given in Figure 2-6. Using Thevenin's theorem, the small signal equivalent circuit shown in Figure 2-7 is obtained from Figure 2-6.

Using Figures 2-6 or 2-7, the standard definition for the y-parameters can be given. Using standard IEEE notation for the total instantaneous variables, the equations defining y-parameters can be written as

$$y_{ib} = \frac{\partial i_E}{\partial v_{EB}} \bigg|_{v'_C = v'_B} \quad (2-27)$$

$$y_{rb} = \frac{\partial i_E}{\partial v'_{CB}} \bigg|_{v'_E = v'_B} \quad (2-28)$$

$$y_{fb} = \frac{\partial i_C}{\partial v'_{EB}} \bigg|_{v'_C = v'_B} \quad (2-29)$$

$$y_{ob} = \frac{\partial i_C}{\partial v'_{CB}} \bigg|_{v'_E = v'_B} \quad (2-30)$$

The total instantaneous emitter current i_E and collector current i_C are given by

$$i_E = i_E + \frac{d}{dt} (Q_{BE}) \quad (2-31)$$

$$i_C = i_C + \frac{d}{dt} (Q_{BC}) \quad (2-32)$$

If the Early effect is not considered, we can find the y-parameters using Eqs. (2-1), (2-2), (2-15), and (2-16). When the BJT is operated in the normal region at low frequencies, the results are
FIGURE 2-6 Conventional Circuit Model Illustrating y-Parameters

FIGURE 2-7 Small Signal Equivalent Circuit in Terms of Admittances
\[y_{ib} = q | I_E | / (kT) \quad (2-33) \]
\[y_{rb} = \alpha I_{CS} \exp \left(\frac{qV'_B}{kT} \right) q / (kT) = 0 \quad (2-34) \]
\[y_{fb} = \alpha_n q | I_E | / (kT) \quad (2-35) \]
\[y_{ob} = I_{CS} \exp \left(\frac{qV'_B}{kT} \right) q / (kT) \quad (2-36) \]

where Eqs. (2-33) - (2-36) are obtained without considering the capacitive effects.

If the Early effect (the base-width modulation effect) is considered, the magnitudes of admittances \(y_{rb} \) and \(y_{ob} \) have to be modified. However, the magnitudes of \(y_{ib} \) and \(y_{fb} \) remain the same because they are not affected by the Early effect. The corrections for the Early effect can be obtained using the circuit shown in Figure 2-2 to obtain expressions for the dc collector current \(I_C \) and emitter current \(I_E \).

Using Eq. (2-14) for the current \(I \) illustrated in Figure 2-2, the approximate expressions for the dc collector current \(I_C \) and emitter current \(I_E \) under normal operating conditions for the BJT are

\[I_C = -I_S \left(\exp \left(\frac{qV'_B}{kT} \right) (1 - V_{BC} / V_A) \right) \quad (2-37) \]
\[I_E = -I_S \left(\exp \left(\frac{qV'_E}{kT} \right) (1 - V_{BC}' / V_A') (1 + 1 / \beta_n) \right) \quad (2-38) \]

Next using the definitions for \(y_{rb} \) and \(y_{ob} \) given by Eqs. (2-28) and (2-30), the following results are obtained:
where the resistance parameter r_e is defined by

$$r_e = kT/q|I_E|$$ \hspace{1cm} (2-43)

It is noted that the Early effect adds a nonzero real part to y_{rb} and y_{ob}.

The next step in developing the linear T-model equivalent circuit is to use Eqs. (2-39), (2-40), (2-41), and (2-42) to obtain expressions for the circuit elements shown in Figure 2-7. The resulting expressions are

$$y_{ib} = 1/r_e$$ \hspace{1cm} (2-44)

$$(-y_{rb}/y_{ib}) v_{cb} = -(I_C/V_A) r_e v_{cb}$$ \hspace{1cm} (2-45)

$$y_{ob} - y_{rb}y_{fb}/y_{ib} = 1/r_c$$ \hspace{1cm} (2-46)

$$(-y_{fb}/y_{ib}) i_e = a_N i_e$$ \hspace{1cm} (2-47)

where the resistance parameter r_c is defined by

$$r_c = (V_A/I_C)/(1-a_N)$$ \hspace{1cm} (2-48)

and the voltage parameter v_a is defined by
\[v_a = -(I_C/V_A) r_e \] (2-49)

The next step in developing the linear T-model is to insert the capacitors \(C_b, C_d, C_{je}, \) and \(C_{jc} \) to account for the energy storage elements in the transistor. The resulting linear T-model is shown in Figure 2-8(a). The collector capacitor \(C_d \) is neglected because \(C_d \) is small compared to the capacitance \(C_{jc} \) in the collector-base junction when the transistor is operated in the normal region. Equations (2-45) (2-46) and (2-47) are valid only at frequencies where \(y_{ib} \) and \(y_{ob} \) are real. Equation (2-44) is valid up to frequencies where the transistor short-circuit current gain approaches unity, however, Equation (2-46) appears valid at frequencies only up to near 10 MHz. In order to obtain the linear T-model used in NCAP, shown in Figure 2-8(b) it is necessary to ignore the voltage source \(v_a \) in the emitter-base branch. This is valid only when the Early voltage \(V_A \) is sufficiently large.

2.2.2 Linear T-Model at High Frequencies

At high frequencies, neither the parasitic resistances nor capacitances can be ignored. The high frequency equivalent circuit including parasitic elements developed by Abraham is shown in Figure 2-9. In Figure 2-9, the capacitances \(C_1, C_2, \) and \(C_3 \) represent direct parasitic capacitances between the various transistor terminals, and the resistances \(r_b', r_c', \) and \(r_e' \) represent bulk parasitic resistances in series with the intrinsic transistor terminals. These parasitic elements can also be added to the basic linear T-model shown in Figure 2-8. Thus, these parasitic elements can be easily incorporated into NCAP as external elements. The significant difference between the basic
T-model shown in Figure 2-8 and Abraham's model shown in Figure 2-9 is that the base diffusion capacitance C_b in Figure 2-8 is replaced by a series R-C combination. In this way Abraham's model accounts for the transit time effect in the neutral base region. For additional information on this model the reader is referred to Abraham's original paper.17

![Diagram of T-model and Abraham's model](image)

FIGURE 2-8 Low to Medium Frequency Equivalent Circuits for BJT's
(a) Large Early Effect Model
(b) Small Early Effect Model
2.2.3 Linear Hybrid-Pi Equivalent Circuit

The linear hybrid-pi equivalent circuit is used in the computer program SPICE2 to calculate the linear small signal performance of BJT circuits. The linear incremental hybrid-pi model shown in Figure 2-10 can be developed from the large signal π-model shown in Figure 2-4. In Figure 2-10 the resistors r_μ and r_π are the dynamic resistances of the diodes D_A and D_B shown in Figure 2-4. The transconductance parameter g_m is essentially the derivative $\partial I / \partial V_{BE}$ where I is given by Eq. (2-14). The resistance parameter r_π arises from the base-width modulation effect, and the value of r_π is approximately equal to r_μ / β_N. Detailed derivations of the hybrid-pi model can be found in Ref. (18).

The hybrid-pi model can be shown to be equivalent to the linear T-model for the usual case where the resistance r_μ is large. To establish this equivalence the internal collector current i_c at low frequencies can be written as:

$$i_c = g_m v_{be}$$

$$= g_m i_b r_\pi$$

Next substituting $i_c = \beta_N i_b$ into Eq. (2-50), we have

$$g_m = \beta_N / r_\pi$$

(2-51)
FIGURE 2-9 High Frequency Equivalent Circuit for Parasitic Elements Included

FIGURE 2-10 Linear Incremental Hybrid-Pi Model
Next the emitter current i_e can be written as

$$i_e = i_c + i_b$$

$$= g_m v_{be} + v_{be}/r_n$$

$$= (1 + \beta_N) v_{be}/r_n$$ \hspace{1cm} (2-52)

Defining the resistance r_n by the equation

$$r_n = r_e (1 + \beta_N)$$ \hspace{1cm} (2-53)

$$i_e = v_{be}/r_e$$ \hspace{1cm} (2-54)

and using Eqs. (2-51) and (2-54), we obtain

$$i_c = g_m v_{be}$$

$$= \beta_N v_{be}/r_n$$

$$= \beta_N v_{be}/(r_e (1 + \beta_N))$$

$$= a_N v_{be}/r_e$$ \hspace{1cm} (2-55)

where

$$a_N = \beta_N/(1 + \beta_N)$$ \hspace{1cm} (2-56)

Equations (2-54) and (2-55) demonstrate the equivalence between the hybrid-pi model and the T-model. The parameters g_m and r_n in the hybrid-pi model transform to the parameters a_N and r_e in the linear T-model. The capacitive elements are identically the same in each model.
2.3 Quasi-Linear Incremental Models

When the amplitudes of the signal variations are sufficiently small, the linear incremental models just presented are valid. When the amplitudes of the signal variations are very large, the large signal Ebers-Moll model should be used. Of interest to us is the intermediate case where the amplitudes of the signal variations are not large compared to the dc values of the transistor currents and voltages but are large enough to cause weak nonlinear effects. This case is often called the quasi-linear case. Recall that the derivation for the linear model was based upon the expressions for the \(y \)-parameters given by the Eqs. (2-27) to (2-30). The \(y \)-parameters expressions included only the first-order derivatives of the total terminal currents with respect to the total terminal voltages. To account for weak nonlinear effects the higher-order derivatives (such as second-order and third-order) will be considered. (Although in this dissertation only the second and the third-order derivatives will be considered, the computer program NCAP includes derivatives of order greater than the third-order.)

Before presenting detailed mathematical expressions, it is instructive to show the circuit configuration of the nonlinear-incremental models for the BJT. First let us consider a nonlinear-incremental \(\pi \)-model which is based upon the large signal \(\pi \)-model shown in Figure 2-4. In Figure 2-4 the \(\pi \)-model currents \(I_{BE}' \), \(I_{BC}' \), and \(I' \) can be expressed in terms of a Taylor series. The number of terms included in the Taylor series depends upon the order of the distortion analysis.
to be performed. Shown in Figure 2-11 is a nonlinear incremental π-model with three current generators. Each current generator corresponds to the appropriate Taylor series expansion for the current generators I'_{BC}, I'_{BE} and I. (The dc components are omitted.) Although several investigators have used this model, it is not the model used in NCAP.19,20,21

The NCAP nonlinear incremental T-model is shown in Figure 2-12.

As presented in Figure 2-12, the nonlinear T-model differs from the linear incremental T-model shown in Figure 2-8 in the following aspects:

1. The base-emitter resistor r_e has been replaced by the nonlinear incremental current generator $K(v_2)$ for the base-emitter junction exponential nonlinearity. (The node voltages V_1, V_2 and V_3 are illustrated in Figure 2-12.)

2. The collector capacitances C_{jc} and C_d have been replaced by the nonlinear incremental current generator $\gamma_c(v_3-v_2)$.

3. The linear dependent current source $a_n v_3 / r_e$ has been replaced by the nonlinear incremental dependent current generator $g(v_2, v_3-v_1)$ which includes both the h_{FE} nonlinearity and the avalanche nonlinearity.

4. The emitter capacitances C_{je} and C_b have been represented by the nonlinear incremental current generator $\gamma_e(v_2)$.

5. Parasitic elements shown in Figure 2-9 such as the bulk resistances r_e' and r_c' and the parasitic capacitance C_2 between emitter and collector terminals are not included in the model. They may be added as external components by the NCAP user.
FIGURE 2-11. Nonlinear Incremental τ-Model. Note that the Nonlinear Behavior of Capacitors is not Explicitly Expressed in this Model.

In the remainder of this section we shall derive expressions for three of the four nonlinear current generators in the NCAP nonlinear incremental T-model. Specifically expressions for the current generators $K(v_2)$, $\gamma_c(v_3 - v_2)$ and $g(v_2, v_3 - v_1)$ will be presented up to the third order. An expression for the current generator $\gamma_e(v_2)$ is derived in Section 3.2.2. However, the computer program NCAP does account for all four current generators. The nonlinear current generators in the NCAP nonlinear T-model exhibit three of the four basic nonlinear components available in NCAP. The four basic nonlinear components available in NCAP are the nonlinear resistor, the nonlinear capacitor, the nonlinear inductor and the nonlinear voltage-dependent current source. We shall begin with a discussion of the basic nonlinear components. Then we shall consider the NCAP nonlinear T-model current generators.

2.3.1 Nonlinear Resistor

A nonlinear resistor can be characterized by a current-voltage relationship $i_R(v_R)$. We can expand the nonlinear characteristic current i_R about its dc operating point (I_R, V_R) as follows:

\[
\begin{align*}
i_R &= I_R + \left(\frac{\partial i_R}{\partial v_R}\right|_{v_R = v_R} (v_R - V_R) \\
&\quad + \frac{1}{2} \left(\frac{\partial^2 i_R}{\partial v_R^2}\right|_{v_R = v_R} (v_R - V_R)^2 \\
&\quad + \frac{1}{6} \left(\frac{\partial^3 i_R}{\partial v_R^3}\right|_{v_R = v_R} (v_R - V_R)^3 \\
&\quad + \text{higher-order terms}
\end{align*}
\]

(2-57)
Let us express the incremental resistor current \(i_r \) by \(i_r = i_R - I_R \) and the incremental voltage \(v_r \) by \(v_r = v_R - V_R \). From Eq. (2-57) we obtain

\[
i_r = K_1 v_r + K_2 v_r^2 + K_3 v_r^3 + \text{higher-order terms} \tag{2-58}
\]

where

\[
K_1 = \left. \frac{\partial i_R}{\partial v_R} \right|_{v_R = V_R}
\tag{2-59}
\]

\[
K_2 = \left. \frac{1}{2} \left(\frac{\partial^2 i_R}{\partial v_R^2} \right) \right|_{v_R = V_R}
\tag{2-60}
\]

\[
K_3 = \left. \frac{1}{6} \left(\frac{\partial^3 i_R}{\partial v_R^3} \right) \right|_{v_R = V_R}
\tag{2-61}
\]

2.3.2 Nonlinear Capacitor

A nonlinear capacitor can be characterized by a charge-voltage relationship \(q_C(v_C) \), where \(q_C \) is the charge stored in the capacitor, and \(v_C \) is the voltage across the capacitor. The Taylor series expansion for the charge about its dc operating point is

\[
q_C = Q_C + \left(\frac{\partial q_C}{\partial v_C} \right|_{v_C = V_C} (v_C - V_C) + \left(\frac{1}{2} \right) \left(\frac{\partial^2 q_C}{\partial (v_C)^2} \right|_{v_C = V_C} (v_C - V_C)^2 + \left(\frac{1}{6} \right) \left(\frac{\partial^3 q_C}{\partial (v_C)^3} \right|_{v_C = V_C} (v_C - V_C)^3 + \text{higher-order terms} \tag{2-62}
\]

Let the incremental charge \(q_c = q_C - Q_C \) and the incremental voltage \(v_c = v_C - V_C \). Then the charge \(q_c \) is given by

\[
q_c = C_1 v_c + C_2 v_c^2 + C_3 v_c^3 + \text{higher-order terms} \tag{2-63}
\]
and the incremental capacitor current dq_c/dt is given by

$$i_c = C_1(dv_c/dt) + C_2(dv_c^2/dt) + C_3(dv_c^3/dt)$$

$$+ \text{higher-order terms} \quad (2-64)$$

where

$$C_1 = \frac{\partial q_c}{\partial v_c} \bigg|_{v_c} = v_c \quad (2-65)$$

$$C_2 = (1/2)\left(\frac{\partial^2 q_c}{\partial v_c^2} \bigg|_{v_c} = v_c \right) = (1/2)(\partial C_1/\partial v_c) \quad (2-66)$$

$$C_3 = (1/6)\left(\frac{\partial^3 q_c}{\partial v_c^3} \bigg|_{v_c} = v_c \right) = (1/6)(\partial^2 C_1/\partial v_c^2) \quad (2-67)$$

2.3.3 Nonlinear Inductor

A nonlinear inductor can be characterized by a current-flux relationship $i_L(\phi_L)$ where i_L is the current through the inductor and ϕ_L is the stored inductor flux. The Taylor series expansion of $i_L(\phi_L)$ about its dc operating point is

$$i_L = I_L + (\partial I_L/\partial \phi_L\bigg|_{\phi_L=\phi_L}) (\phi_L - \phi_L)$$

$$+ (1/2)(\partial^2 I_L/\partial \phi_L^2\bigg|_{\phi_L=\phi_L}) (\phi_L - \phi_L)^2$$

$$+ (1/6)(\partial^3 I_L/\partial \phi_L^3\bigg|_{\phi_L=\phi_L}) (\phi_L - \phi_L)^3$$

$$+ \text{higher-order terms} \quad (2-68)$$

Let the incremental flux $\phi_L' = \phi_L - \phi_L$ and the incremental inductor current $i_L' = i_L - I_L$. Then Eq. (2-68) becomes

$$i_L' = \gamma_1 \phi_L' + \gamma_2 \phi_L'^2 + \gamma_3 \phi_L'^3 + \text{higher-order terms} \quad (2-69)$$
where

\[\gamma_1 = \frac{\partial i_L}{\partial \phi_L} \bigg|_{\phi_L} = \phi_L \]
\[\gamma_2 = \frac{1}{2}\left(\frac{\partial i_L}{\partial \phi_L}\right)^2 \bigg|_{\phi_L = \phi_L} \]
\[\gamma_3 = \frac{1}{6}\left(\frac{\partial^3 i_L}{\partial \phi_L^3}\right) \bigg|_{\phi_L = \phi_L} \]

2.3.4 Nonlinear Dependent Current Source

A nonlinear dependent current source is illustrated in Figure 2-13:

FIGURE 2-13. Nonlinear Dependent Current Source

The nonlinear dependent current source \(f(v_x, v_y) \) is dependent upon voltages \(v_x \) and \(v_y \). If we expand the current source \(f(v_x, v_y) \) about its dc operating point \((v_x, v_y) \), we obtain
\[f = f_{dc} + \frac{\partial f}{\partial v_x} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_x - v_x') \]
\[+ \frac{\partial f}{\partial v_y} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_y - v_y') \]
\[+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial v_x^2} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_x - v_x')^2 \right) \]
\[+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial v_y^2} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_y - v_y')^2 \right) \]
\[+ \frac{\partial^2 f}{\partial v_x \partial v_y} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_x - v_x')(v_y - v_y') \]
\[+ \text{higher-order terms} \]

(2-73)

The incremental voltages \(v_x \) and \(v_y \) are given by \(v_x = v_x' - v_x \) and \(v_y = v_y' - v_y \), and the incremental current \(i_y \) is given by \(i_y = f - f_{dc} \).

Then Eq. (2-73) becomes

\[i_y = G(v_x',v_y') \]
\[= g_{10}v_x + g_{01}v_y + g_{20}v_x^2 + g_{02}v_y^2 + g_{11}v_xv_y \]
\[+ \text{higher-order terms} \]
\[= \sum_{m,n} g_{mn} v_x^m v_y^n \quad m,n = 0,1,2,... \]

(2-74)

where

\[g_{10} = \frac{\partial f}{\partial v_x} \bigg|_{(v_x',v_y')} = (v_x',v_y') \]

(2-75)

\[g_{01} = \frac{\partial f}{\partial v_y} \bigg|_{(v_x',v_y')} = (v_x',v_y') \]

(2-76)

\[g_{20} = \frac{1}{2} \left(\frac{\partial^2 f}{\partial v_x^2} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_x - v_x')^2 \right) \]

(2-77)

\[g_{02} = \frac{1}{2} \left(\frac{\partial^2 f}{\partial v_y^2} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_y - v_y')^2 \right) \]

(2-78)

\[g_{11} = \frac{\partial^2 f}{\partial v_x \partial v_y} \bigg|_{(v_x',v_y')} = (v_x',v_y') (v_x - v_x')(v_y - v_y') \]

(2-79)
\[g_{30} = \left(\frac{1}{6}\right) \left(\frac{3}{3}X^3 \frac{\partial^3 y}{\partial x^3} \right) \begin{pmatrix} v_x, v_y \end{pmatrix} = \begin{pmatrix} v_x, v_y \end{pmatrix} \]
(2-80)

\[g_{21} = \left(\frac{1}{6}\right) \left(\frac{3}{3}X^2 \frac{\partial^2 y}{\partial x^2} \right) \begin{pmatrix} v_x, v_y \end{pmatrix} = \begin{pmatrix} v_x, v_y \end{pmatrix} \]
(2-81)

\[g_{12} = \left(\frac{1}{6}\right) \left(\frac{3}{3}X \frac{\partial y}{\partial x} \right) \begin{pmatrix} v_x, v_y \end{pmatrix} = \begin{pmatrix} v_x, v_y \end{pmatrix} \]
(2-82)

\[g_{03} = \left(\frac{1}{6}\right) \left(\frac{3}{3} \frac{\partial^3 y}{\partial y^3} \right) \begin{pmatrix} v_x, v_y \end{pmatrix} = \begin{pmatrix} v_x, v_y \end{pmatrix} \]
(2-83)

2.3.5 The Nonlinear Current Generator \(K(v_2)\) and the Emitter-Base Nonlinear Resistive Coefficients

If the transistor is operated in the normal region, the total instantaneous emitter current \(i_E\) expressed by Eq. (2-5) can be approximated at low frequencies as

\[i_E = -I_E \exp\left(\frac{qv_{BE}}{R_{ref}kT}\right) \]
(2-84)

where the ideality factor \(R_{ref}\) used in NCAP and SCEPTRE has been included. Using a Taylor's series expansion about the operating point \((I_E, V_{BE})\), Equation (2-84) can be expanded as

\[i_E = I_E + \sum_{n=1}^{\infty} \left(\frac{1}{n!}\right) \left(\frac{\partial^2 I}{\partial v_{BE}}\right)^n \left(\frac{\partial^2 I}{\partial v_{BE}}\right)^n \begin{pmatrix} v_{BE} = v_{BE} \end{pmatrix} \]
(2-85)

We define the nonlinear current generator \(K(v_2)\) using the relationships

\[K(v_2) = i_E - I_E \]
(2-86)

\[v_2 = v_{BE} - v_{BE} \]
(2-87)

where we continue to assume the emitter is the datum node.

From Eqs. (2-57) and (2-58), we obtain

\[K(v_2) = \sum_{n=1}^{\infty} \left(\frac{1}{n!}\right) v_2^n \begin{pmatrix} \partial^2 I \partial v_{BE}^n \begin{pmatrix} v_{BE} = v_{BE} \end{pmatrix} \right) \]
(2-88)
The nonlinear coefficients \(K_1, K_2, \) and \(K_3 \) (Eqs. (2-59)-(2-61)) are given by

\[
K_1 = \frac{\partial^1 I_E / \partial V_{BE}}{(v_{BE} = V_{BE})} = \frac{(q/RefkT)I_E}{2} \tag{2-89}
\]

\[
K_2 = \frac{(1/2)(\partial^2 I_E / \partial V_{BE})}{(v_{BE} = V_{BE})} = \frac{(1/2)(q/RefkT)^2I_E}{2} \tag{2-90}
\]

\[
K_3 = \frac{(1/6)(\partial^3 I_E / \partial V_{BE})}{(v_{BE} = V_{BE})} = \frac{(1/6)(q/RefkT)^3I_E}{3} \tag{2-91}
\]

2.3.6 The Nonlinear Current Generator \(\gamma_c(v_3 - v_2) \) and the Collector-Base Nonlinear Capacitance Coefficients

When the BJT is operated in the normal region and when the magnitude of the collector-base voltage is large, the collector base capacitance term given by the sum of Eqs. (2-18) and (2-20) can be approximated as

\[
C_{BC} \approx k|V_{CB}|^{-m_c} \tag{2-92}
\]

where \(k \) is the scale factor, \(m_c \) the capacitance exponent, and \(V_{CB} \) the reverse bias voltage of the base-collector junction. Note that the assumption \(|V_{CB}| > > |\phi_c| \) is being made.

Referring to Eq. (2-64), the capacitance nonlinearity can be represented by a current source.
\[\gamma_c(v_3 - v_2) = C_1\frac{d(v_3 - v_2)}{dt} + C_2\frac{(v_3 - v_2)^2}{dt} + C_3\frac{(v_3 - v_2)^3}{dt} + \text{higher-order terms} \quad (2-93) \]

with the nonlinear coefficients defined by Eqs. (2-65) - (2-67).

Note that the coefficient \(C_1 \) in Eq. (2-65) is identical to the capacitance \(C_{BC} \) given by Eq. (2-92). The collector-base nonlinear capacitance coefficients are given by

\[C_1 = k|V_{CB}|^{-m_c} \quad (2-94) \]
\[C_2 = -(1/2)km_c|V_{CB}|^{-m_c} - 1 \quad (2-95) \]
\[C_3 = (1/6)km_c(m_c + 1)|V_{CB}|^{-m_c} - 2 \quad (2-96) \]

2.3.7 The Nonlinear Current Generator \(g(v_2, v_3 - v_1) \) and the Dependent Current Source Nonlinear Coefficients

From Eqs. (2-9), and (2-22), the total instantaneous collector current \(i_C \) can be related to the total instantaneous emitter current \(i_E \) in the following manner:

\[i_C(1 + h_{FE})/h_{FE} = M_i \quad (2-97) \]

Again, applying a Taylor series expansion at the operating point \((V_{CB}, I_C)\) to both sides of the above equation, we obtain

\[i_C(1 + h_{FE})/h_{FE}(V_{CB}, I_C) + \sum_{n=1}^{\infty} \frac{1}{n!}(i_C - I_C)^n \]
\[\cdot \frac{\partial^n}{\partial i_C^n} \left(V_{CB}, I_C \right) \]
Equation (2-23) for M is repeated below

$$M = \frac{1}{1 - \left(\frac{V_{CB}}{V_{CBO}}\right)^n} \quad (2-23)$$

If we assume the current I_C varies slowly enough that capacitive effects are negligible, and also if we neglect the resistance r_c in the collector, then the nonlinear dependent current generator $g(v_2, v_3 - v_1)$ is defined by the relationship

$$g(v_2, v_3 - v_1) = I_C - I_C \quad (2-99)$$

where

$$v_3 - v_1 = V_{CB} - V_{CB} \quad (2-100)$$

Next we equate the first order incremental terms on both sides of Eq. (2-98) and by using Eqs. (2-99) to (2-101) obtain the result

$$\frac{\partial}{\partial v} (1/n!) g(v_2, v_3 - v_1)^n \left(\frac{\partial^n (I_C (1 + h_{FE})/h_{FE})/\partial I_C^n | (V_{CB}, I_C)}{(V_{CB}, I_C)} \right)$$

$$= \frac{\partial}{\partial v} (1/n!) (v_3 - v_1)^n \left(\frac{\partial^n (I_C (1 + h_{FE})/h_{FE})/\partial I_C^n | (V_{CB}, I_C)}{(V_{CB}, I_C)} \right) I_E + M_{le} \quad (2-102)$$

where higher-order terms in the expression M_{le} have been ignored.*

Now we define the parameters z and a_n by expressions

$$z = \frac{\partial}{\partial v} (1/n!) (v_3 - v_1)^n \left(\frac{\partial^n (I_C (1 + h_{FE})/h_{FE})/\partial I_C^n | (V_{CB}, I_C)}{(V_{CB}, I_C)} \right) I_E + M_{le} \quad (2-103)$$

and

$$a_n = (1/n!) \left(\frac{\partial^n (I_C (1 + h_{FE})/h_{FE})/\partial I_C^n | (V_{CB}, I_C)}{(V_{CB}, I_C)} \right) \quad (2-104)$$

Equation (2-102) becomes

$$\frac{\partial}{\partial v} a_n g(v_2, v_3 - v_1)^n = z \quad (2-105)$$

* Here only the first order incremental terms are considered for simplicity. This simplification is only true when the transistor is operated at a region far away from that of avalanche. A complete treatment which includes all higher-order terms can be found in Ref. (40).
Assuming that the power series expression given in Eq. (2-104) can be inverted, a compositional inverse power series in \(z \) can be expressed as

\[
g(v_2, v_3 - v_1) = \sum_{n=1}^{\infty} b_n z^n
\]

with

\[
b_1 = a_1^{-1}
\]

\[
b_2 = -a_2/(a_1^3)
\]

\[
b_3 = (2a_2^2 - a_1^2 a_3)/(a_1^5)
\]

If we are interested in the nonlinearity only up to the third order, Eq. (2-103) can be expressed as

\[
z = (x_1(v_3 - v_1) + x_2(v_3 - v_1)^2 + x_3(v_3 - v_1)^3)I_E
\]

\[
+ M(K_1 v_2 + K_2 v_2^2 + K_3 v_2^3)
\]

where we use Eq. (2-85) to approximate* the nonlinear incremental current \(I_e \):

\[
I_e = K(v_2) = K_1 v_2 + K_2 v_2^2 + K_3 v_2^3
\]

The derivatives \(x_1, x_2, \) and \(x_3 \) are defined by

\[
x_1 = \partial M/\partial v_{CB} \mid (v_{CB}, I_C)
\]

\[
x_2 = (1/2)(\partial^2 M/\partial v_{CB}^2 \mid (v_{CB}, I_C))
\]

\[
x_3 = (1/6)(\partial^3 M/\partial v_{CB}^3 \mid (v_{CB}, I_C))
\]

* The approximation is that the \(v_2(v_2) \) contribution to \(I_e \) is ignored. However, in the computer program NCAP, the \(v_2(v_2) \) contribution is fully accounted for.
From Eq. (2-110) we obtain for the terms z^2 and z^3 the expressions

\[z^2 = M^2 K_1 v_2^2 + 2x_1 x_2 I_E v_2 (v_3 - v_1) + x_1^2 I_E^2 (v_3 - v_1)^2 \]
\[+ 2x_1 x_2 I_F^2 (v_3 - v_1)^3 + 2K_1 K_2 v_2^3 + 2K_2 M x_1 I_E (v_3 - v_1) \]
\[. v_2^2 + 2x_1 K_1 M x_2 I_E (v_3 - v_1)^2 v_2 + \text{higher-order terms} \quad (2-115) \]

and

\[z^3 = M^3 K_1 v_2^3 + x_1^3 I_E^3 (v_3 - v_1)^3 + 3M^2 K_1 x_1 I_E^2 v_2^2 (v_3 - v_1) \]
\[+ 3M K_1 x_2 I_E^2 v_2 (v_3 - v_1) + \text{higher-order terms} \quad (2-116) \]

Substituting Eqs. (2-110), (2-115) and (2-116) into (2-106), we obtain the following expression for the nonlinear current generator $g(v_2, v_3 - v_1)$

\[g(v_2, v_3 - v_1) = v_2 b_1 M x_1 + (v_3 - v_1) b_1 x_1 I_E + v_2^2 (b_1 M x_2 \]
\[+ b_2 M^2 K_1^2) + (v_3 - v_1)^2 (b_1 x_2 I_E + b_2 x_1^2 I_E^2) \]
\[+ 2v_2 (v_3 - v_1) b_2 K_1 x_1 M I_E + v_2^3 (b_1 M x_3 \]
\[+ 2b_1 K_2 M + b_3 M K_1^3) + (v_3 - v_1)^3 (b_1 x_3 I_E \]
\[+ 2b_2 x_1 x_2 I_E^2 + b_3 x_1^3 I_E^3) + v_2^2 (v_3 - v_1) \]
\[. (2b_2 K_2 M x_1 I_E + 3b_3 M^2 x_2 I_1^2 I_E) + v_2 (v_3 - v_1)^2 \]
\[. (2b_2 x_2 K_1 M I_E + 3b_3 M K_1^2 I_1^2 I_E) \]
\[+ \text{higher-order terms} \quad (2-117) \]
Therefore, the coefficients g_{ij} are given by

\begin{align*}
g_{10} &= b_{1}MK_1 \\
g_{01} &= b_{1}IEX_1 \\
g_{20} &= b_{1}MK_2 + b_{2}M^{2}K_1^2 \\
g_{02} &= b_{1}I_Ex_2 + b_{2}x_1^2 I_E \\
g_{11} &= 2b_{2}K_1Mx_1 I_E \\
g_{30} &= b_{1}MK_3 + 2b_{2}K_1K_2M^2 + b_{3}M^{3}K_1^3 \\
g_{21} &= 2b_{2}K_2Mx_1 I_E + 3b_{3}M^{2}K_1^2x_1 I_E \\
g_{12} &= 2b_{2}K_1Mx_2 I_E + 3b_{3}MK_1x_1^2 I_E^2 \\
g_{03} &= b_{1}x_3 I_E + 2b_{2}x_1x_2 I_E + b_{3}x_1^3 I_E^3
\end{align*}

(2-118) \quad (2-119) \quad (2-120) \quad (2-121) \quad (2-122) \quad (2-123) \quad (2-124) \quad (2-125) \quad (2-126)

At a given operating point (V_{CB}, I_C), all the coefficients defined in Sections (2.3.5) to (2.3.7) can be calculated when the NCAP parameters for a BJT are known. The NCAP parameters for a 2N5109 BJT were measured using the techniques to be described in the next chapter. The 2N5109 BJT parameter values are listed in Table 2-1. Using the parameters listed in Table 2-1, the nonlinear coefficients for 2N5109 BJT were calculated. The results are given in Table 2-2.

As mentioned previously these expressions for g_{ij} are valid only when the transistor is operated at a region far away from that of avalanche - the usual situation. For transistors operated near the avalanche region, the complete expressions given by Weiner and Spina should be used. See Ref. (40).
TABLE 2-1
NCAP INPUT PARAMETERS FOR 2N5109 BJT

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Avalanche exponent</td>
<td>6.0</td>
</tr>
<tr>
<td>V_{CB} (V)</td>
<td>Collector base bias voltage</td>
<td>5.0</td>
</tr>
<tr>
<td>V_{CBO} (V)</td>
<td>Avalanche voltage</td>
<td>40.0</td>
</tr>
<tr>
<td>μ</td>
<td>Collector capacitance exponent</td>
<td>0.285</td>
</tr>
<tr>
<td>I_C (mA)</td>
<td>Collector bias current</td>
<td>50.0</td>
</tr>
<tr>
<td>$I_{C_{max}}$ (mA)</td>
<td>Collector current at maximum</td>
<td>18.0</td>
</tr>
<tr>
<td>a</td>
<td>h_{FE} nonlinearity coefficient</td>
<td>0.363</td>
</tr>
<tr>
<td>$h_{FE_{max}}$</td>
<td>Maximum d.c. current gain</td>
<td>84.6</td>
</tr>
<tr>
<td>k (pF-V$^\frac{1}{2}$)</td>
<td>Collector capacitor scale factor</td>
<td>0.42</td>
</tr>
<tr>
<td>Ref</td>
<td>Diode nonlinearity factor</td>
<td>1.0</td>
</tr>
<tr>
<td>C_{je} (pF)</td>
<td>Base-emitter junction space</td>
<td>10.0</td>
</tr>
<tr>
<td>C_{2}' (pF/mA)</td>
<td>Derivative of base-emitter</td>
<td>3.6</td>
</tr>
<tr>
<td>r_b (Ω)</td>
<td>Base resistance</td>
<td>15</td>
</tr>
<tr>
<td>r_c (kΩ)</td>
<td>Collector resistance</td>
<td>32.9</td>
</tr>
<tr>
<td>C_1 (pF)</td>
<td>Base-emitter capacitance</td>
<td>0.1</td>
</tr>
<tr>
<td>C_3 (pF)</td>
<td>Base-collector and overlap capacitance</td>
<td>0.56</td>
</tr>
<tr>
<td>Nonlinear Incremental Current Generator</td>
<td>Coefficient</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>K (v<sub>2</sub>)</td>
<td>K<sub>1</sub> (mho)</td>
<td>1.9724</td>
</tr>
<tr>
<td></td>
<td>K<sub>2</sub> (mho/V)</td>
<td>38.419</td>
</tr>
<tr>
<td></td>
<td>K<sub>3</sub> (mho/V<sup>2</sup>)</td>
<td>498.87</td>
</tr>
<tr>
<td>γ<sub>C</sub>(v<sub>3</sub>−v<sub>2</sub>)</td>
<td>C<sub>1</sub> (F)</td>
<td>0.26549 x 10<sup>-12</sup></td>
</tr>
<tr>
<td></td>
<td>C<sub>2</sub> (F/V)</td>
<td>-0.75664 x 10<sup>-14</sup></td>
</tr>
<tr>
<td></td>
<td>C<sub>3</sub> (F/V<sup>2</sup>)</td>
<td>0.64819 x 10<sup>-15</sup></td>
</tr>
<tr>
<td>g(v<sub>2</sub>,v<sub>3</sub>−v<sub>1</sub>)</td>
<td>g<sub>01</sub> (mho)</td>
<td>0.22851 x 10<sup>-6</sup></td>
</tr>
<tr>
<td></td>
<td>g<sub>10</sub> (mho)</td>
<td>1.9446</td>
</tr>
<tr>
<td></td>
<td>g<sub>02</sub> (mho/V)</td>
<td>0.11426 x 10<sup>-6</sup></td>
</tr>
<tr>
<td></td>
<td>g<sub>20</sub> (mho/V)</td>
<td>37.754</td>
</tr>
<tr>
<td></td>
<td>g<sub>11</sub> (mho/V)</td>
<td>-0.28734 x 10<sup>-7</sup></td>
</tr>
<tr>
<td></td>
<td>g<sub>03</sub> (mho/V<sup>2</sup>)</td>
<td>0.30475 x 10<sup>-7</sup></td>
</tr>
<tr>
<td></td>
<td>g<sub>30</sub> (mho/V<sup>2</sup>)</td>
<td>487.88</td>
</tr>
<tr>
<td></td>
<td>g<sub>12</sub> (mho/V<sup>2</sup>)</td>
<td>-0.14367 x 10<sup>-7</sup></td>
</tr>
<tr>
<td></td>
<td>g<sub>21</sub> (mho/V<sup>2</sup>)</td>
<td>-0.2718 x 10<sup>-6</sup></td>
</tr>
</tbody>
</table>
CHAPTER THREE

MEASUREMENT OF BJT MODEL PARAMETERS

In the previous chapter large signal BJT models used in SPICE2 and SCEPTRE were discussed. These models can be used to determine the dc operating point information for the individual diodes and transistors in bipolar integrated circuits. The dc operating point information is required by the program NCAP used to predict RFI effects in bipolar IC's. Also discussed were linear incremental models for BJT's. These models included the linear \(\pi \)-model and the linear T-model used in NCAP. Also discussed was the nonlinear T-model used in NCAP. All these models contain parameters which must be specified. In this chapter, the experimental techniques used to measure the important model parameters will be presented. The data processing techniques used to extract the model parameters and certain parasitic elements from experimental results will also be presented.

This chapter is organized in the following manner. First dc and pulse techniques used to determine many of the large signal model parameters will be described. Then the small signal techniques used to determine many of the incremental model parameters will be presented. Finally for completeness transient techniques useful in determining other model parameters will be given. At the end of this chapter, a table is presented which contains values for the 2N5179 and 2N918 BJT parameters used in the computer programs SPICE2, SCEPTRE and NCAP.
3.1 Large Signal Parameter Measurements

3.1.1 I_{ES}, Emitter Base Junction Saturation Current and Ref, Emitter Base Junction Diode Nonideality Factor

The saturation current I_{ES} and parameter Ref are determined from active region measurements of the emitter base junction voltage as a function of emitter current. The test configuration used in obtaining the emitter-base characteristics is shown in Figure 3-1. Shown in Figure 3-1(a) is a dc measurement method useful when the emitter current I_E is less than 0.1 mA. For I_E values greater than 5 mA, the pulse method shown in Figure 3-1(b) is recommended. Below 5 mA the pulse method was difficult to carry out. Consequently the curve for currents between 0.1 mA and 5 mA is interpolated from the results of the two methods. The equipment illustrated in Figure 3-1 is standard laboratory equipment.

Typical data are plotted in Figure 3-2. For $-I_E < 0.1$ mA the dc data points are observed to lie on a straight line. For $-I_E > 0.1$ mA, increases in the junction temperatures cause the dc data points to deviate from the straight line drawn through the dc data points for $-I_E < 0.1$ mA. Now let us examine the pulse data at $-I_E > 1$ mA; the parasitic base spreading resistance R_B and parasitic emitter resistance R_{SE} have a significant effect. The voltage drop across these resistors cause the pulse data to lie to the right of the straight line drawn through the dc data obtained for $-I_E < 0.1$ mA.
(a) DC measurement method

(b) Pulse measurement method

FIGURE 3-1 Transistor Base-Emitter Characteristic Test Configuration (a) for Low Currents and (b) for High Currents
Figure 3-2 \(I_E \) versus \(V_{BE} \) plot for a 2N5179 device
At I_E values low enough, the voltages drops across the parasitic resistances R_B and R_{SE} can be neglected. Then under normal operating conditions Eq. (2-5) relating the emitter current I_E to the base-emitter voltage V_{BE} can be written as

$$I_E = -I_{ES} \exp\left(\frac{qV_{BE}}{R_{Ref}kT}\right) \quad (3-1)$$

where the parameter Ref used in NCAP and SCEPTRE has been inserted.

The emitter base junction coefficient Ref is calculated by evaluating Eq. (3-1) at two points (i.e. (V_{BE1}, I_{E1}) and (V_{BE2}, I_{E2})) on the straight line portion of the log I_E vs V_{BE} plot shown in Figure 3-2. The equation used to calculate the parameter Ref is

$$Ref = \left(\ln\left(\frac{I_{E1}}{I_{E2}}\right)/(V_{BE1} - V_{BE2})\right)q/kT \quad (3-2)$$

Solving Eq. (3-1) for the saturation current I_{ES}, we obtain

$$I_{ES} = -I_E/\exp\left(\frac{qV_{BE}}{RefkT}\right) \quad (3-3)$$

The saturation current I_{ES} is determined by evaluating Eq. (3-3) at any point (V_{BE}, I_E) on the straight line portion of log I_E versus V_{BE} plot shown in Figure 3-2.

3.1.2 I_{CS}, Collector Base Junction Saturation Current and R_{cf},

Collector Base Junction Diode Nonideality Factor

The saturation current I_{CS} and diode nonideality factor R_{cf} are determined in a manner similar to that used in the previous section except that the emitter and collector terminals are interchanged.
(The transistor is actually operated in the region known as inverse region.) Since only low current level measurements are needed, pulse measurements are not required. The dc measurement test configuration is shown in Figure 3-3. Typical data are shown in Figure 3-4.

As shown in Figure 3-4 a straight line is drawn through the dc data at low I_C values. Points on this straight line are used to determine values for parameters R_{cf} and I_{CS}. The procedures used are identical to those described in Section 3.1.1. The equations used are

\begin{equation}
R_{cf} = \frac{\ln (I_{C1}/I_{C2})/(V_{BC1} - V_{BC2})q}{kT} \quad (3-4)
\end{equation}

and

\begin{equation}
I_{CS} = I_{C1}/(\exp(qV_{BC1}/R_{cf}kT) - 1) \quad (3-5)
\end{equation}

where the points (V_{BC1}, I_{C1}) and (V_{BC2}, I_{C2}) lie on the straight line shown in Figure 3-4.

3.1.3 I_S, Transistor Saturation Current

When the transistor is operated in its normal active region at low current levels so that the voltages across the parasitic resistance R_B and R_{SE} are negligible, the collector current expressed by Eq. (2-12) can be written as

\begin{equation}
I_C = I_S(\exp(qV_{BE}/R_{ef}kT) - 1) \quad (3-6)
\end{equation}

Again the emitter-base diode nonideality factor R_{ef} has been introduced. The parameter I_S (Ref is assumed known) can be determined using the procedures described in Section 3.1.1. Values of the dc
FIGURE 3-3 Transistor Base-Collector Characteristic Test Configuration

FIGURE 3-4 I_C Versus V_{BC} Plot for a 2N5179 Device
FIGURE 3-5 Transistor I_C Versus V_{BE} Characteristic Test Configuration

FIGURE 3-6 I_C Versus V_{BE} Plot for a 2N5179 Device
collector current I_C as a function of the dc base-emitter voltage V_{BE} are measured using the circuit shown in Figure 3-5. Typical data are shown in Figure 3-6.

Solve Eq. (3-6) for the saturation current I_S. Then evaluate the resulting equation at a point (V_{BE}, I_{C1}) on the straight line shown on Figure 3-6 which is drawn through the data at low I_C values. The saturation current I_S is given by the expression

$$I_S = I_{C1}/(\exp(qV_{BE}/RefkT) - 1) \quad (3-7)$$

3.1.4 α_N, β_N, Forward Current Gains

The forward current gain parameters α_N and β_N are determined as a function of collector current in the normal operating region. The dc base current I_B and the dc collector current I_C are measured. The parameter α_N and β_N are calculated using the expressions;

$$\alpha_N = I_C/(I_B + I_C) \quad (3-8)$$

$$\beta_N = I_C/I_B \quad (3-9)$$

The dc test circuit shown in Figure 3-7(a) was used for measurements at low current levels ($I_C < 1 \text{ mA}$). The pulse test circuit shown in Figure 3-7(b) was used for measurements at high current levels ($I_C > 1 \text{ mA}$). Typical β_N data are given in Figure 3-8.

3.1.5 a, $h_{FE_{\text{max}}}$, $I_{C_{\text{max}}}$, h_{FE} Nonlinearity

As shown in Figure 3-8, the forward current gain β_N (h_{FE}) varies as the collector current levels changes. The parameter $h_{FE_{\text{max}}}$ and
FIGURE 3-7

(a) DC Test Circuit for Measuring α_N and β_N at Low Current Levels

(b) Pulse Test Circuit for Measuring α_N and β_N at High Current Levels
$I_{C_{\text{max}}}$ are determined from the smooth curve drawn through the data shown in Figure 3-8. The maximum value for h_{FE} is the parameter $h_{\text{FE}_{\text{max}}}$ and the collector current corresponding to $h_{\text{FE}_{\text{max}}}$ is the parameter $I_{C_{\text{max}}}$. The parameter a may be determined by using the parameter values $I_{C_{\text{max}}}$ and $h_{\text{FE}_{\text{max}}}$ and the values of I_{C} and h_{FE} at the dc operating point using the expression

$$a = \frac{(h_{\text{FE}_{\text{max}}} - h_{\text{FE}})}{(h_{\text{FE}} \log^2(I_{C}/I_{C_{\text{max}}}))} \quad (3-10)$$

An alternate method for determining a involves choosing two points $(I_{C_1}, h_{\text{FE}_1})$ and $(I_{C_2}, h_{\text{FE}_2})$ on the smooth curve drawn through the h_{FE} vs I_{C} data; the two points should be chosen so that $I_{C_1} < I_{C} < I_{C_2}$ where I_{C} is the dc operating current. The parameter a can be calculated using the expression

$$a = \frac{(h_{\text{FE}(I_{C_2})} - h_{\text{FE}(I_{C_1})})}{(h_{\text{FE}(I_{C_1})}\log^2(I_{C_1}/I_{C_{\text{max}}})}$$

$$- h_{\text{FE}(I_{C_2})}\log^2(I_{C_2}/I_{C_{\text{max}}})) \quad (3-11)$$

3.1.6 α_{I}, β_{I}, Reverse Current Gains

The reverse current gain parameters α_{I} and β_{I} used in SCEPTRE can be measured using techniques identical to those described in the previous section except that the emitter and collector terminals are interchanged. Since the current levels involved are low, a dc measurement technique is usually satisfactory. The dc emitter current I_{E} and dc base current I_{B} are measured. The test circuit is shown in Figure 3-9. The parameters α_{I} and β_{I} are calculated by using the expressions
\[\alpha_I = \frac{I_E}{I_B + I_E} \]
(3-12)

\[\beta_I = \frac{I_E}{I_B} \]
(3-13)

Shown in Figure 3-10 is a plot of \(\beta_I \) vs \(I_E \) for 2N5179 BJT.

3.1.7 \(R_{SC} \), \(R_{SE} \), Collector and Emitter Bulk Resistances

The emitter bulk resistance \(R_{SE} \) can be determined by measuring the voltage across the transistor from collector to grounded emitter as a function of base current with the collector current constrained to be zero. The dc measurement circuit used is shown in Figure 3-11. A pulse measurement technique could also be used.

Using Ebers-Moll model Eqs. (2-1), (2-2), and (2-8) with \(I_C = 0 \), and assuming that the transistor is operated in the saturation region where both the emitter and collector junctions are forward biased we obtain the relationship

\[V_{CE} = -(kT/q)\ln \alpha_I + I_B R_{SE} \]
(3-14)

The plot (a) of \(V_{CE} \) vs \(I_B \) shown in Figure 3-12 is a straight line and its slope gives the value of \(R_{SE} \).

If the transistor collector and emitter terminals are interchanged, a value for \(R_{SC} \) can be determined. In Eq. (3-14) the parameters \(\alpha_N \) and \(R_{SC} \) are substituted for the parameters \(\alpha_I \) and \(R_{SE} \); the plot (b) of \(V_{CE} \) vs \(I_B \) is a straight line and its slope gives the value of \(R_{SC} \). Results measured for a 2N5179 transistor are given in Figure 3-12.
FIGURE 3-9. DC Test Circuit for Measuring α_I and β_I at Low Current Levels

FIGURE 3-10. β_I vs I_E Plot for a 2N5179 Device
FIGURE 3-11 Circuit for the Measurement of Emitter and Collector Series Resistances

- DC Data - Normal Region
- DC Data - Inverse Region
- Smooth Curve Through Data

(a) Slope = $R_{SE} = 2.45 \Omega$

(b) Slope = $R_{SC} = 1 \Omega$

FIGURE 3-12 The Evaluation of R_{SE} and R_{SC} for a 2N5179 Transistor
The resistances R_{SC} and R_{SE} can also be rapidly determined by using a transistor curve tracer. Two measurements are made of the collector-emitter saturation voltage at low I_C values. The base current values used are widely separated (i.e. 0.1 mA and 10 mA). The experimental results are illustrated in Figure 3-13. The resistances R_{SE} and R_{SC} can be obtained using the information given on Figure 3-13.

3.1.8 R_B, Base Bulk Resistance

The base bulk resistance R_B can be determined from the dc and pulse data for I_E vs V_{BE} plot shown in Figure 3-2. As discussed previously in Section 2.1.1 the base-emitter terminal voltage V_{BE} is related to the intrinsic base-emitter voltage V'_{BE} by

$$V_{BE} = V'_{BE} + I_E R_{SE} + I_B R_B$$

(3-15)

![FIGURE 3-13. Bulk Resistance (R_{SE} and R_{SC}) Determination with Two I_C-V_{CE} Curves](image-url)
Equation (3-1) relates the emitter current to the base-emitter voltage at low current levels, and this voltage is V'_{BE}. Substituting V'_{BE} for V_{BE} in Eq. (3-1) and solving for V'_{BE}, we obtain

$$V'_{BE} = (kT/q)R_{fin}(-I_E/I_{ES}) \quad (3-16)$$

Equation (3-16) is represented in Figure 3-2 by the straight line drawn through the dc data for low I_E values. Next this straight line is extended to high current values. At a high current level $I_{E3} \ (I_{E3} > 10 \text{ mA})$ the voltage difference ΔV between the actual terminal voltage V_{BE} and internal base-emitter voltage V'_{BE} is illustrated in Figure 3-2. Solving Eq. (3-15) for $\Delta V = V_{BE} - V'_{BE}$, we obtain

$$\Delta V = I_E R_{SE} + I_B R_B \quad (3-17)$$

Next we relate I_B to I_E using $I_B = I_E/\left(\beta_N + 1\right)$. The result is

$$\Delta V = I_E R_{SE} + (I_E/\left(\beta_N + 1\right)) R_B \quad (3-18)$$

The value for $\beta_N \ (h_{FE})$ is taken from Figure 3-8 assuming $I_C = -I_E$. Solving Eq. (3-18) for R_B, we obtain the result

$$R_B = \left(\Delta V - I_E R_{SE}\right)/(I_E/\left(\beta_N + 1\right)) \quad (3-19)$$

Using values for ΔV and I_{E3} shown in Figure 3-2, the β_N value taken from Figure 3-8 at $I_C = I_{E3}$, and the value for R_{SE} determined from previous section, Equation (3-19) can be solved for the base bulk resistance R_B.

Some comments are in order concerning the measurement techniques.
described for \(R_B \) in this section and \(R_{SE} \) in the previous section. Inconsistencies have been observed. Occasionally the \(R_B \) value obtained using Eq. (3-19) is negative. Part of the difficulty may result from using low current levels to determine \(R_{SE} \) and high current levels to measure \(R_B \). The \(R_{SE} \) value illustrated in the previous section was \(R_{SE} = 2.45 \) ohms. This value appears to be too large. Since values for \(R_{SE} \) are expected to be a fraction of an ohm, the term \(I R_{SE} \) in Eq. (3-19) is often omitted.\(^5\)

It is worthwhile to mention that the base bulk resistance \(R_B \) does depend upon the base current level. Furthermore for ac signals this resistance (denoted \(r_b \) in incremental models) also depends upon the frequency. Thus, the value for the base bulk resistance \(r_b \) used in incremental models should be measured at the actual dc operating point and at the frequency of interest. In a subsequent section a small signal technique used to determine the resistance \(r_b \) is described. Finally it should be pointed out that representing the base bulk resistance by a simple resistor is a gross over simplification. The base bulk resistance region is more properly represented by a distributed R-C model.\(^2\)

3.1.9 \(V_{CBO} \), \(\eta \), Avalanche Nonlinearity and \(r_c \) Collector Resistance

The parameters \(\eta \) and \(V_{CBO} \) and resistance \(r_c \) can be obtained from the common base output characteristics as shown in Figure 3-14. These characteristics can be measured on a transistor curve tracer. Using Eqs. (2-22) and (2-23) and assuming \(a_N = 1 \), the collector current
FIGURE 3-14 I_C Versus V_{CB} Plot for a 2N5179 Device
I_C corresponding to the emitter current I_E can be approximated by

\[I_C = -I_E/(1 - (V_{CB}/V_{CBO})^n) + V_{CB}/r_c \]

(3-20)

where the additive term \(V_{CB}/r_c \) accounts for the slope of the linear portion of the curve when \(V_{CB} \ll V_{CBO} \). The resistor \(r_c \) is related to the Early effect discussed in Section 2.1.2. The resistor \(r_c \) can be determined from the slope of the linear portions of the curves \(I_C \) vs \(V_{CB} \) as shown in Figure 3-14. The parameters \(n \) and \(V_{CBO} \) are obtained by selecting two data points with \(V_{CB} \) values near \(V_{CBO} \) such as \((V_{CA}, I_{CA}) \) and \((V_{CBB}, I_{CB}) \). From Eq. (3-20), we have

\[I_{CA} = I_{C1}/(1 - (V_{CBA}/V_{CBO})^n) + V_{CBA}/r_c \]

(3-21)

and

\[I_{CB} = I_{C1}/(1 - (V_{CBB}/V_{CBO})^n) + V_{CBB}/r_c \]

(3-22)

where \(I_{C1} \) is the intercept of the linear portion of the \(I_C \) vs \(V_{CB} \) plot on the \(I_C \) axis. If we define the parameters \(K_A \) and \(K_B \) by the expressions

\[K_A = I_{CA} - V_{CBA}/r_c = I_{C1}/(1 - (V_{CBA}/V_{CBO})^n) \]

(3-23)

\[K_B = I_{CB} - V_{CBB}/r_c = I_{C1}/(1 - (V_{CBB}/V_{CBO})^n) \]

(3-24)

we have

\[(V_{CBA}/V_{CBO})^n = 1 - (I_{C1}/K_A) \]

(3-25)

and

\[(V_{CBB}/V_{CBO})^n = 1 - (I_{C1}/K_B) \]

(3-26)

Division of the two expressions yields the result

\[(V_{CBA}/V_{CBB})^n = (K_B/K_A)((K_A - I_{C1})/(K_B - I_{C1})) \]

(3-27)

Taking the logarithm of both sides of the above equation, the following
expression for the avalanche exponent \(\eta \) is obtained

\[
\eta = \log\left(\frac{(K_B/K_A)(K_A - I_{Cl})/(K_B - I_{Cl})}{\log(V_{CBA}/V_{CB})}\right) \tag{3-28}
\]

The value for \(V_{CBO} \) can be calculated using the expression

\[
V_{CBO} = V_{CBA}/((K_A - I_{Cl})/K_A)^{1/\eta} \tag{3-29}
\]

or can be determined directly from the common-base characteristics shown in Figure 3-14. If measurements of the parameters \(\eta \) and \(V_{CBO} \) at high collector current levels are made, the characteristics of the collector currents will be observed to increase slowly with time because of junction heating effects. To avoid junction heating effects the dc curve tracer method could be replaced by a pulse technique method to measure the common base output characteristics.

3.1.10 \(V_A \), The Early Voltage

The Early voltage \(V_A \) can be determined from the common emitter output characteristics obtained from a transistor curve tracer. Upon examining the \(I_C \) vs \(V_{CE} \) characteristics shown in Figure 2-3, a geometrical procedure for the Early voltage can be developed. The slope of the straight line portion of the \(I_C \) vs \(V_{CE} \) curve is usually called the output conductance \(g_o \). Let the intercept of the straight line portion extended through the \(I_C \) axis be denoted as \(I_{Cl} \). Then the Early voltage can be determined using a relationship

\[
V_A = I_{Cl}/g_o \tag{3-30}
\]
This geometrical procedure is illustrated on the I_C vs V_{CE}
common emitter output characteristics shown in Figure 3-15.
Typical value of V_A ranges from 20 to 100 V.

3.1.11 C_{jeo}, ϕ_E, m_e, Emitter Junction Capacitance Parameters

The emitter junction capacitance parameters C_{jeo}, ϕ_E, and
m_e can be determined from measurements made on a 1 MHz capacitance
bridge. Measurements of the junction capacitance C_{je} vs the
junction voltage V_{BE} are made. The transistor terminal connections
are given in Figure 3-16(a).

For an NPN BJT, Equation (2-17) gives the variation of the
emitter junction capacitance with the base-emitter junction voltage.*
Because device parasitic capacitances related to packaging exist, an
extra constant capacitance C_x is present in the capacitance C_{meas}
measured. Adding the capacitance C_x to the junction capacitance
C_{je}, we obtain

$$C_{meas} = C_{jeo} (1-(V_{BE}/\phi_E))^{-m_e} + C_x \quad (3-31)$$

The capacitance C_x can be determined in four ways: (1) by
estimation (the range 0.4 to 0.7 pF is appropriate for TO-5 cans),
(2) by measurement (for a discrete device a dummy can is used),
(3) by computer parameter optimization, or (4) by a graphical
technique.

* This expression is reasonably accurate for negative values of base-
emitter voltage such that the ratio V_{BE}/ϕ_E is less than -0.5.
\[V_A = I_C / g_0 \]
\[V_A = 2.4 \text{ mA} / 48 \mu \text{mho} = 50 \text{ V} \]
\[I_B = 60 \mu \text{A} \]

Figure 3-15
\(I_C \) Versus \(V_{CE} \) Plot for a 2N5179 Device Used to Determine Early Voltage \(V_A \)
For a discrete BJT the dummy can method is recommended. This method requires an identical device to be destroyed before C_x is measured. The emitter-base junction is destroyed in order to obtain an open circuit. This can usually be accomplished by putting a very large current through the emitter-base junction with the collector terminal not connected. For a damaged transistor with an emitter-base open circuit the capacitance measured is just C_x. The C_x value is assumed to be the same for all BJT's of one type. Next the C_{je} vs V_{BE} data for a good transistor is measured with the base-emitter junction reverse biased. Knowing the C_x value and using the Eq. (3-31), the parameter values for C_{je0}, ϕ_E, and m_e can be obtained either by a graphical method or by a computer optimization technique.

The graphical technique will be described later in this section. The computer optimization technique uses the Fortran program given in Table 3-1. This program is based upon a least-square-fit algorithm. Typical results obtained using the computer program optimization technique are given in Table 3-2 at the end of this chapter.* It should be pointed out that the computer program optimization technique does not yield a unique solution. The computer solution obtained does depend upon the initial values used.

A graphical method can also be used to determine the parameters C_{je0}, ϕ_E, m_e, and C_x. An initial value for C_x is assumed.

For a BJT in a TO-5 can typical values for C_x lie in the range 0.4 -

* Table 3-2 is placed at the end of the chapter with Tables 3-3 through 3-5 so that all data are located at one place.
0.7 pF. An initial value for the parameter ϕ_E is also assumed. For silicon BJT's typical values for ϕ_E lie in the range 0.5 - 0.7 V.

Next values of $(C_{\text{meas}} - C_x)$ are plotted vs $\phi_E + V_{BE}$ on log-log paper. If a straight line having a reasonable slope (−0.5 to −0.167) is obtained, the values chosen for the parameters C_x and ϕ_E are assumed to be correct. If the resulting plot is not a straight line, a second guess of C_x and ϕ_E is made and another plot is made. If the curve is concave, the ϕ_E value is decreased and the C_x is increased. If the curve is convex, the ϕ_E value is increased and the C_x value is decreased. This process is iterated until a straight line is obtained. This graphical method is illustrated in Figure 3-17. The set of parameter values obtained using the graphical technique is not unique. For silicon BJT's solution sets with the parameter ϕ_E near 0.7 V and m_e near 0.333 are recommended.

3.1.12 C_{jco}, ϕ_C, m_c, k, Collector Junction Capacitance Parameters

The collector junction capacitance parameters C_{jco}, ϕ_C, and m_c are determined in the same manner as the emitter junction capacitance parameters. Measurements of the junction capacitance C_j vs the junction voltage V_{BC} are made. The transistor terminal connections are shown in Figure 3-16(b). For silicon BJT's typical values for the parameter ϕ_C lie in the range 0.5 - 0.7 V and typical values for the parameter m_c lie in the range 0.5 to 0.167. There is also a device parasitic capacitance C_y related to packaging. For a silicon BJT in a TO-5 can typical values for C_y lie in the range 0.4 - 0.7 pF. The capacitance C_y can be measured.
TABLE 3-1
JUNCTION CAPACITANCE VOLTAGE LEAST-SQUARE-FIT PROGRAM

PROGRAM FANG(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
DIMENSION A(10,3),B(3,1),C(10,1),F(10,1),V(10,1),R(3,10),S(3,3),W(3,1)
DIMENSION CC(12),VV(12),LABEL(8,3),FACTOR(3,3),NCAP(3),NCHAR(3)

100 FORMAT(3F5.2)
200 FORMAT(2F5.2)
300 FORMAT(1X,2AH, "44VERGENT IN THE PROCESS")
400 FORMAT(1X,5H, "F5.2,6PHI = ,F5.2,4HM = ,F5.2,12HITERATION = ,I")
500 FORMAT(5,7A,10,A5)
600 FORMAT(3F10.0)

C READ IN INITIAL C, PHI, AND M
C READ(5,100) (B(I,1),I=1,3)
C READ MEASURED C AND V
C READ(5,200) (C(I,1),V(I,1),I=1,10)
DO 6 I=1,10
V(I,1)=V(I+1)
6 CONTINUE
C SET UP THE CAPACITANCE FORMULAS
C NC=1
25 DO 5 I=1,10
F(I,1)=B(I,1)*(1.-V(I,1)/B(I,1))*(-B(3,1))
5 CONTINUE
C SET UP THE LEAST SQUARE MATRIX A
C DO 10 I=1,10
A(I,1)=1./(1.-V(I,1)/B(I,1))*(-B(3,1))
A(I,2)=(B(I,1)+B(I,1)^2)/B(I,1)^2*V(I,1)*(1.-V(I,1)/B(I,1))*I
A(I,3)=-B(I,1)*ALOG(1.-V(I,1)/B(I,1))*V(I,1)+(1.-V(I,1))/B(I,1)**(-B(3,1))
10 CONTINUE
C CALCULATES THE INCREMENT OF B TO UPDATE THE PARAMETERS
C NP=1
NR=10
NC=3
CALL GMTRA(A,RP,NR,NC)
CALL GMPRD(RP,CT,NC,NC,RP)
CALL INV(A,NC,WORK1,WORK2)
CALL GMPRD(CT,RP,NC,NC,RP)
DO 15 I=1,10
CF(I,1)=-C(I,1)-F(I,1)
15 CONTINUE
CALL GMPRD(CT,CF,DELTA,NC,RP,YP)

72
TABLE 3-1 (Continued)

C UPDATE THE PARAMETERS B
C
DO 20 I=1,3
B3(I,1)=B(I,1)
B(I,1)=B(I,1)+DELA(I,1)
IF(B3(I,1).LE.0.)B3(I,1)=B3(I,1)
CONTINUE
C TEST THE CONVERGENCE
C
NN=NN+1
IF(NN.GT.20)GO TO 30
T1=ABS(DELA(1,1)/B3(1,1))
T2=ABS(DELA(2,1)/B3(2,1))
T3=ABS(DELA(3,1)/B3(3,1))
IF(T1.LT.0.1.AND.T2.LT.0.1.AND.T3.LT.0.1)GO TO 35
GO TO 25
C PRINT OUT DIVERGENT MESSAGE
C
WRITE(*,300)
30 WRITE(*,400)B(I,1),I=1,3,NN
DO 40 I=1,10
CC(I)=C(I,1)
VV(I)=V(I,1)+B(I,1)
CONTINUE
CALL PLOTS
N=10
KODE=2
READ(5,500)NCHAR(I),(LABEL(J,1),J=1,8)*I=1,3)
READ(5,600)FAC
CALL LGPLOT(VV,CC,N,KODE,LABEL,NCHAR,FAC)
ISYM=0
KKDE=ISYM+100
NI=10
DO 50 I=1,10
CC(I)=B(I,1)**(-1.-V(I,1)/B(I,2))**(-B(I,3))
CONTINUE
CALL LGPLOT(VV,CC,-NI,KKDE)
CALL FPLOT
STOP
END
FIGURE 3-16
Terminal Connections for Junction Capacitance
Measurement (a) C_{je} Measurement and (b) C_{jc} Measurement

- $C_x = 0, \phi_E = 0$
- $C_x = 0.323 \text{pF}, \phi_E = 0.7 \text{V}$

 $$m = 0.342, C_{je0} = 0.94 \text{pF}$$

- Smooth Curve Through Data

- Convex Curve (Incorrect Curve)
- Straight Line (Correct Curve)

 $\text{Slope} = -m_E$

FIGURE 3-17
Typical Values of Emitter Junction Capacitance
$C_{meas} - C_x$ Vs $\phi_E + |V_{BE}|$ for a 2N918 BJT
using the dummy can procedure described in the previous section. The collector-base junction is destroyed intentionally at high collector current levels in order to obtain an open circuit in the collector-base junction. The capacitance measured for the damaged device with the terminal connections shown in Figure 3-16(b) is \(C_y \). The measured values for the capacitance \(C_{\text{meas}} \) vs the collector-base voltage \(V_{CB} \) are processed in the manner described in the previous section to obtain values for the parameters \(C_{jc0} \), \(\phi_c \), \(m_c \), and \(C_y \).

The computer program NCAP uses the following relationship for the collector-base junction capacitance \(C_{BC} \)

\[
C_{BC} = k |V_{BC}|^{-\mu}
\]

(2-92)

where the parameter \(k \) is called the collector-base capacitance scale factor and the parameter \(\mu \) is called the collector-base capacitance exponent. By comparing Eq. (2-92) to Eq. (2-18), the following relationship can be obtained for the special case where

\[
|V_{BC}/\phi_c| >> 1 :
\]

\[
k = C_{jc0} \phi_c^m_c
\]

(3-32)

\[
\mu = m_c
\]

(3-33)

An alternative procedure is to fit Eq. (2-92) directly to measured data using a computer simulation procedure or a graphical procedure similar to those described in the previous section. Of course the parasitic capacitance \(C_y \) should be taken into account.
3.2 Small Signal Parameter Measurements

The BJT model parameters used in SPICE2, SCEPTRE and NCAP are essentially large signal model parameters. Exceptions are the junction capacitance parameters discussed in Sections 3.1.11 and 3.1.12. Other exceptions are the NCAP emitter-base diffusion capacitance parameters C_{je} and C_2'. These parameters are measured using small signal techniques. It is also desirable to make a small signal measurement for the base spreading resistance r_b because this parameter depends on the operating frequency. In this section small signal measurements for these parameters are discussed.

3.2.1 r_b, Base Spreading Resistance

The incremental model base spreading resistance r_b can be measured in many ways. In this section both low frequency and high frequency methods will be discussed. (Note that the base parasitic resistance for large signal analysis was denoted by R_{B}.)

(a) Low Frequency AC Measurement

The base spreading resistance r_b can be determined from measurements of the small signal transistor h-parameters h_{ie} and h_{fe} at 1 kHz. The parameters h_{ie} and h_{fe} are defined respectively as the incremental input impedance and the incremental forward current gain of the BJT in the common emitter configuration with the output shorted. The appropriate equations are
The parameters h_{ie} and h_{fe} can be measured by using the test configurations shown in Figure 3-18. (The branch containing the 50 Ω resistor and capacitor C_2 is considered to be a short-circuit at 1 kHz.)

Expressions for h-parameters will be given in terms of parameters of the hybrid-pi model shown in Figure 2-10. This model is shown in conventional form in Figure 3-19 where the capacitances C_μ and C_π are defined by

$$C_\mu = C_{je} + C_d$$ \hspace{1cm} (3-36)

$$C_\pi = C_{je} + C_b$$ \hspace{1cm} (3-37)

At 1 kHz these capacitors are essentially open circuits and the parameters h_{ie} and h_{fe} are given approximately by

$$h_{ie} = r_b + r_\pi$$ \hspace{1cm} (3-38)

$$h_{fe} = g_m r_\pi$$ \hspace{1cm} (3-39)

where the assumption that r_μ is large has been made.

Using Eq. (2-51) for g_m which is $g_m = q|I_C|/kT$ in the above equations, the following expression for r_b is obtained

$$r_b = h_{ie} - (kT/q|I_C|)h_{fe}$$ \hspace{1cm} (3-40)
(b) High Frequency AC Measurement

Figure 3-20 shows a small signal equivalent circuit that can be used to calculate the common-emitter short-circuit input admittance y_{ie}. The following equation is obtained:

$$y_{ie} = i_b/v_{be}$$

$$v_{bc} = 0$$

$$y_{ie} = \frac{g_b (g_\pi + g_\mu + j\omega (C_\pi + C_\mu))}{g_b + g_\pi + g_\mu + j\omega (C_\pi + C_\mu)}$$ \hspace{1cm} (3-41)$$

where

$$g_b = 1/r_b, \quad g_\pi = 1/r_\pi, \quad \text{and} \quad g_\mu = 1/r_\mu.$$

If the frequency is high so that the following inequalities are true

$$g_b \ll \omega (C_\pi + C_\mu)$$ \hspace{1cm} (3-42)$$

$$g_\pi \ll \omega (C_\pi + C_\mu)$$ \hspace{1cm} (3-43)$$

$$g_\mu \ll \omega (C_\pi + C_\mu)$$ \hspace{1cm} (3-44)$$

then Eq. (3-41) yields the result

$$r_b = \frac{1}{Re(y_{ie})}$$ \hspace{1cm} (3-45)$$

By using an admittance bridge to measure y_{ie} at a single high frequency, a value for r_b can be obtained.

The method for determining the incremental base-spreading resistance r_b just described is very much an oversimplified method. Both the parasitic base resistance r_b and emitter resistance r_e' depend upon the current level and the frequency. This subject has
FIGURE 3-18 Circuit for Measuring h_{ie} and h_{fe}. Note that the Quantities V_s, I_b, etc., are the Complex Amplitudes of Sinusoidal Quantities. See Appendix I on Notation.

$\begin{align*}
 h_{ie} &= 1 \text{M}\Omega \frac{V_b}{V_s} \\
 h_{fe} &= \left(1 \text{M}\Omega / 50 \text{\Omega}\right) \frac{V_0}{V_s}
\end{align*}$

FIGURE 3-19 Hybrid-Pi Model for a Junction Transistor

FIGURE 3-20 Small Signal Equivalent Circuit for Measuring Common-Emitter Short-Circuit Input Admittance $y_{ie} = I_b / V_{be}$. Note that the Quantities I_b, V_{be}, etc., are the Complex Amplitudes of Sinusoidal Quantities. See Appendix I on Notation.
NONLINEAR SYSTEM ANALYSIS IN BIPOLAR INTEGRATED CIRCUITS. (U)
JAN 80 T FANG, J J WHALEN

UNCLASSIFIED

223

RADC -TR-79-324

ML
been discussed by several investigators.21,26 An excellent review paper on this subject is the one by Sansen and Meyer. Although it is not our intent to discuss this paper fully in this dissertation it is worthwhile to point out that the determination of the incremental parasitic resistances r_b and r_e' is complicated by several effects. These effects are caused by parasitic capacitances associated with package wires, bond wires, and the distributed resistive and capacitive aspects of the base region responsible for r_b. One of the methods reviewed in the paper by Sansen and Meyer is the circle diagram method. This method involves plotting the locus of the short-circuit input impedance h_{ie} ($h_{ie} = 1/y_{ie}$) in the complex plane as a function of frequency. Using the circuit shown in Figure 3-21, a first-order analysis indicates that the locus for h_{ie} is a semicircle that intercepts the real axis at low frequencies where

$$h_{ie} = r_n + r_b + (1 + g_m r_n) r_e' \quad (3-46)$$

and at high frequencies where

$$h_{ie} = r_b + r_e' \quad (3-47)$$

This locus is shown in Figure 3-22. (The actual device experimental results may deviate from this locus at high frequencies because of the effects due to other parasitic elements not shown in Figure 3-21.)

Of particular interest to us is Eq. 3-47 which can be used to determine a value for $r_b + r_e'$. By plotting the experimental re-
results for h_{ie} at high frequencies on the complex plane as shown in Figure 3-23 for a 2N5109 BJT, the high frequency real axis intercept can be determined by drawing a circle through the data. The value for $r_b + r_e'$ is observed to lie in the range 30 to 35 ohms. For alternate data processing techniques the reader is referred to the original paper of Sansen and Meyer.\(^{26}\)

3.2.2 C_{je}', C_{2}', NCAP Emitter-Base Capacitance Parameters*

The NCAP emitter-base capacitance parameters C_{je} and C_{2}' can be determined from measurements of the parameter f_T versus the dc emitter current I_E. The parameter f_T is the frequency at which the magnitude of the common emitter incremental short-circuit current gain extrapolates to unity. In order to establish how the parameters C_{je} and C_{2}' are determined from measurements of f_T, the theoretical expression for the NCAP nonlinear current generator $\gamma_e(v_{be})$ shown in Figure 2-12 must be established. The necessary relationships will now be derived.

Rewriting Eq. (2-15) for the charge stored in the emitter-base region in terms of the total instantaneous charge q_{BE} and intrinsic emitter-base voltage v_{BE}', we have

$$q_{BE} = \tau_F I_B \{\exp(qv_{BE}/kT) - 1\} + C_{je0} \int_{0}^{v_{BE}'} (1 - v'/\phi_E) e^v dv \tag{3-48}$$

* Note that the parameter C_{je} used in NCAP is not actually the emitter-base junction depletion layer capacitance. Instead it is a parameter determined by an extrapolation process as is discussed in this section.
FIGURE 3-21
Small Signal Equivalent Circuit for Calculating the
Common-Emitter Short-Circuit Input Impedance $h_{ie} = V_{be}/I_b$.
Note that the Quantities I_b, V_{be}, etc., are the Complex
Amplitudes of Sinusoidal Quantities. See Appendix I on
Notation.

FIGURE 3-22
Input Impedance Locus Plot. The Intercepts of the
Semicircle with the Real Axis Yield the Value of $r_b(R_B)$
Figure 3-23: Typical $\text{Re}(h_{ie})$ versus $\text{Im}(h_{ie})$ locus plot for a 2N5109 BJT. These circles were obtained by somewhat judicious choice of three points. Choice of a different set of three points will yield slightly different circles.

Circle A: $r_b + r_e = 32.5 \Omega$
Circle B: $r_b + r_e = 33.5 \Omega$

$V_{CE} = 15V, I_C = 50mA$
Our goal is to relate the NCAP nonlinear current generator \(\gamma_e(v'_{be}) \) to the current \(\frac{dq_{BE}}{dt} \) evaluated in the vicinity of the BJT operating point \((v'_{BE}, I_E)\). For a BJT operated in the normal region, the emitter-base junction is forward-biased. Expanding Eq. (3-48) about the operating point and differentiating the result with respect to time \(t \), the following result is obtained

\[
\gamma_e(v'_{be}) = \tau_F I_E \frac{(1/n!)(q/kT)}{n} \frac{d}{dt}(v'_{be})^n \\
+ \frac{1}{n!} \frac{d}{dt} \left[C_{jeo} (1-v'_{BE}/\phi_E)^{-m_e} \right] \frac{d}{dt} (v'_{be})^{n-1}
\]

Note that the NCAP parameter list does not include the parameters \(C_{jeo}, \phi_E \) or \(m_e \) used in SPICE2 and SCEPTRE. Instead the NCAP computer code is written for an approximate version of the above equation.

The approximation is believed to be that the second sum is represented by a single linear term \((n = 1)\) which is \(C_{je} \frac{dv'_{be}}{dt} \). Thus the NCAP nonlinear current generator \(\gamma_e(v'_{be}) \) must be equivalent to

\[
\gamma_e(v'_{be}) = \tau_F I_E \frac{(1/n!)(q/kT)}{n} \frac{d}{dt}(v'_{be})^n \\
+ C_{je} \frac{dv'_{be}}{dt}
\]

The parameter \(\tau_F \) is not used in NCAP. Instead a parameter \(C' \) is used. The parameter \(C' \) is the derivative of the coefficient of the linear term in the above equation with respect to the dc emitter current \(I_E \). The linear term in the above equation is the current \(\gamma_{e(1)}(v'_{be}) \) where \(\gamma_{e(1)}(v'_{be}) \) is given by

\[
\gamma_{e(1)}(v'_{be}) = (\tau_F I_E (q/kT) + C_{je}) \frac{dv'_{be}}{dt}
\]
The coefficient \((r_F I_E(q/kT) + C_{je})\) is identical to the parameter \(C_\pi\) in the hybrid-pi model. This can be seen by noting that the term \(r_F I_E(q/kT)\) is approximately equal to the capacitor \(C_b\) defined by Eq. (2-19) because \(|I_E| \approx |I_C|\) for a BJT operated in the normal region. The hybrid-pi model parameter \(C_\pi\) is given by \(C_\pi = C_b + C_{je}\). Thus the hybrid-pi model parameter \(C_\pi\) can be expressed by

\[
C_\pi = (r_F I_E(q/kT)) + C_{je}
\]

(3-52)

The NCAP parameter \(C'_2\) is thus given by

\[
C'_2 = dC_\pi/dI_E = r_F(q/kT)
\]

(3-53)

By plotting the hybrid-pi parameter \(C_\pi\) versus the dc emitter current \(I_E\), the NCAP parameters \(C'_2\) and \(C_{je}\) can be determined from the slope and intercept of the resulting curve.

Next we want to relate the cutoff frequency \(f_T\) to \(C_\pi\). The relationship between \(f_T\) and \(C_\pi\) can be derived by beginning with the definition of the common emitter short-circuit current gain h-parameter \(h_{fe}\) at a frequency \(f\). From Figure 3-20 the parameter \(h_{fe}\) can be calculated assuming that \(r_\mu >> 1/\omega C_\mu\); the result is

\[
h_{fe} = I_c/I_b = g_m r_\pi/(1+j\omega(C_\pi + C_\mu) r_\pi)
\]

(3-54)

Equation (3-54) is plotted in Figure 3-24 in the conventional manner which is a plot of \(\log |h_{fe}|\) vs \(\log f\). The low frequency asymptote is \(g_m r_\pi\), which is the \(h_{fe}\) value measured at 1 kHz. The corner frequency \(f_\beta\) is given by \(f_\beta = 1/2\pi r_\pi(C_\pi + C_\mu)\). The NCAP parameter \(C'_2\) can be determined directly from the large signal model parameter \(r_F\) used in SPICE2 and SCEPTRE by using Eq. (3-53).
frequency at which $|h_{fe}| = 1$ is by definition the frequency f_T. Let the measurement frequency f_m have any value in the range $f_B < f_m < f_T$, then the important result

$$f_T = f_m |h_{fe}(f_m)|$$

(3-55)

can be obtained by geometrical arguments based upon Figure 3-24.

Thus by measuring $|h_{fe}(f)|$ at a frequency f_m in the range $f_B < f_m < f_T$, a value for f_T can be determined using Eq. (3-55). Measurements of the frequency f_T were made on a commercial bridge (Automatic Measurement, Inc. Model OH-100) specifically developed for this purpose at $f_m = 100$ MHz.

When the operating frequency becomes very large, the term 1 in the Eq. (3-54) can be neglected compared with the term $j\omega (C_\pi + C_u) r_\pi$. Therefore Eq. (3-54) can be written as

$$h_{fe} = g_m/(j\omega (C_\pi + C_u))$$

(3-56)

Using the definition of f_T that $|h_{fe}| = 1$ at $f = f_T$, we obtain

$$|h_{fe}(f=f_T)| = g_m/2\pi f_T (C_\pi + C_u) = 1$$

(3-57)

Since $|I_E| \approx |I_C|$ in the normal region, we may express g_m by $g_m = q|I_E|/kT$ and substitute this result in Eq. (3-57) to obtain the desired result for the capacitance C_π which is

$$C_\pi = (1/2\pi)(q/kT)|I_E|/f_T - C_u$$

(3-58)

By measuring values of the cutoff frequencies f_T at different emitter current levels, we can use Eq. (3-58) to calculate values
FIGURE 3-24. Conventional Asymptotic Plot of $|h_{fe}|$ vs f
for the capacitance C_n. Usually when the BJT is operated in
normal region, the capacitance C_n is negligible in comparison
with the capacitance C_{be}. The C_n values are plotted as a function
of emitter current level I_E. Typical measured data for C_n vs I_E for
a 2N5179 BJT are plotted as shown in Figure 3-25. The intercept on the
C_n axis yields a value for $C_{je} = 4.5 \, \text{pF}$. The slope yields a value for
$C'_2 = 4.77 \, \text{pF}/\text{mA}.$

*It should be noted that the parameter f_T is not a constant but
depends upon the emitter current I_E. This is specially true at low
values of emitter current I_E where the dominant contribution to the
charge stored in the emitter-base region is the depletion layer
charge given by Eq. (2-17). It should be further noted that the plot
of C_n as defined by Eq. (3-58) does not have the value C_{jeo} at $I_E=0$.
Instead the value of C_n as defined by Eq. (3-58) at $I_E=0$ is C_{je},
which is the parameter used in NCAP.
FIGURE 3-25

Plot of C_π vs I_E Used to Determine NCAP Parameters

C'_{je} and C_2

$C_2 = \text{Slope} = 4.77 \text{pF/mA}$

$C_{je} = \text{Intercept} = 4.8 \text{pF}$

2N5179 BJT
3.2.3 \(\tau_F \), Forward Transit Time Constant

The transit time \(\tau_F \) is used in both the computer programs SPICE2 and SCEPTRE. A value for \(\tau_F \) is needed in order to determine the capacitor \(C_c \) which appears in the linear equivalent circuit (the hybrid-pi model) used for ac analysis in both of these programs. It is also required for transient analysis.

Equating Eqs. (3-52) and (3-58) for \(C_c \) and using the approximation \(|I_E| = |I_C| \), the following expression relating the cutoff frequency \(f_T \) and the forward transit time \(\tau_F \) is obtained.

\[
\frac{1}{2\pi f_T} = \tau_F + (C_{je} + C_c)kT/(q|I_C|) \quad (3-59)
\]

By plotting the factor \(1/(2\pi f_T) \) vs the dc collector current \(I_C \), a value for the forward transit time \(\tau_F \) can be determined from the intercept as shown in Figure 3-26. This method works very well for high frequency transistors having values of \(f_T > 300 \text{ MHz} \) and values for \(\tau_F < 0.5 \text{ nsec} \).

3.3 Large Signal Transient Measurements

The forward transit time \(\tau_F \) and the reverse transit time \(\tau_R \) used in the computer program SPICE2 and SCEPTRE can be measured in the time domain. The small signal method used to determine the \(\tau_F \) value just described seems superior to transient measurement methods. This is specially true for \(\tau_F \) values less than 0.5 nsec. However, the small signal method can not be used to determine a value for the reverse transit time \(\tau_R \) because the short-circuit current gain is less than 1 for a BJT operated in reverse region.
FIGURE 3-26 $1/2\pi f_T$ Versus $1/I_C$ Plot for a 2N5179 Device

- Experimental
- Smooth Curve Through Data
Thus a time domain measurement method for the reverse transit time is used.27

The basic scheme used to measure the reverse transit time τ_R is illustrated in Figure 3-27. Three pulses with rise times short compared to the pulse duration are used. The pulse amplitudes V_1, V_2, and V_3 are adjusted so that the emitter-base voltage v_{EB} observed on an oscilloscope (CRO) is zero. The procedure used is to set V_2 at a low value and to adjust the amplitudes V_1 and V_3 until the v_{EB} transient response vanishes. The amplitude for $V_1 = V_1^0$, $V_2 = V_2^0$ and $V_3 = V_3^0$ are recorded.

Next the amplitude V_2 is increased, and the procedure is repeated. By plotting the time $(V_3^0 / V_2^0) CR_2$ vs the current (V_2^0 / R_2) as shown in Figure 3-27, a value for τ_R can be determined. For additional details the reader is referred to Ref 27. Finally it should be noted that since the BJT is operated in the normal region that the reverse transit time τ_R is not an important parameter. In this case a default value such as $\tau_R = 100$ nsec can be used.

3.4 Parasitic Elements

At frequency greater than 100 MHz many parasitic elements may affect BJT operation. These include the lead inductances associated with the bond wires attached to the emitter and base metallizations and the three BJT leads used to make external circuit connections. Also important are the capacitive parasitic elements. In the computer program NCAP the parasitic capacitors C_1 and C_3 are used to denote the
FIGURE 3-27 Test Configuration and Waveforms for the Measurement and the Evaluation of the Reverse Transient Time τ_R.

Input waveforms for V_1, V_2, and V_3.
capacitances between emitter and base leads and between collector and base leads respectively. Another parasitic capacitance between collector and emitter leads also exists. In an integrated circuit additional parasitic capacitances exists for the BJT. These include the junction capacitance of each PN junction used to provide isolation. One of these is denoted in SPICE2 as the substrate capacitance C_{CS}, which is the capacitance between the collector region and the substrate.

There is really no way to determine values for each individual parasitic component directly. The most widely used procedure is to include the parasitic elements in a small signal linear incremental model for a transistor and to adjust parasitic element values to obtain the best fit between measured and calculated parameters such as y-parameters. Although this procedure is tedious and time consuming and does not usually lead to a unique set of parasitic elements values, there is simply no other way.

3.5 Summary of Parameter Values

In this section the parameter values measured for two discrete transistors are summarized. In Table 3-3 the NCAP parameter values are presented for two NPN BJT's: the 2N5179 and the 2N918. In Table 3-4 the SCEPTRE parameter values for these transistors are given. In Table 3-5 the SPICE2 parameter values are given for these transistors. Since there are actually two different large signal models available in SPICE2, parameter values for both models are given. The procedures
used to determine the Ebers-Moll model parameters have been described in this chapter. Additional methods not described in this chapter were used to obtain values for the SPICE Integral Charge Control Model (ICM) parameters. For completeness ICM model parameters are also included in Table 3-5.

TABLE 3-2
TYPICAL RESULTS OBTAINED USING THE COMPUTER PROGRAM OPTIMIZATION TECHNIQUE LISTED IN TABLE 3-1

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Output Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{meas} (pF)</td>
<td>$C_{\text{meas}} - C_x$ (pF)</td>
</tr>
<tr>
<td>3.6</td>
<td>2.36</td>
</tr>
<tr>
<td>3.46</td>
<td>2.22</td>
</tr>
<tr>
<td>3.38</td>
<td>2.14</td>
</tr>
<tr>
<td>3.31</td>
<td>2.07</td>
</tr>
<tr>
<td>3.21</td>
<td>1.97</td>
</tr>
<tr>
<td>3.04</td>
<td>1.8</td>
</tr>
<tr>
<td>2.86</td>
<td>1.62</td>
</tr>
<tr>
<td>2.74</td>
<td>1.5</td>
</tr>
<tr>
<td>2.60</td>
<td>1.36</td>
</tr>
</tbody>
</table>

C_{jeo} (pF) | ϕ_E (V) | m_e | No. of Iteration |
| 2.36 | 0.36 | 0.2 | 4 |

95
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>2N5179</th>
<th>2N918</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Avalanche Exponent</td>
<td>3.26</td>
<td>8.61</td>
</tr>
<tr>
<td>V_{CB}(V)</td>
<td>Collector Base Bias Voltage</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>V_{CBO}(V)</td>
<td>Avalanche Voltage</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>µ</td>
<td>Collector Capacitance Exponent</td>
<td>0.37</td>
<td>0.328</td>
</tr>
<tr>
<td>I_C(mA)</td>
<td>Collector Bias Current</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>I_{Cmax}(mA)</td>
<td>Collector Current at Maximum DC Current Gain</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>h_{FE} Nonlinearity</td>
<td>0.122</td>
<td>0.879</td>
</tr>
<tr>
<td>h_{FEmax}</td>
<td>Maximum DC Current Gain</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>k(pF-V^1/2)</td>
<td>Collector Capacitor Scale Factor</td>
<td>0.588</td>
<td>0.85</td>
</tr>
<tr>
<td>Ref</td>
<td>Diode Nonideality Factor</td>
<td>1.006</td>
<td>1.027</td>
</tr>
<tr>
<td>C_{je}(pF)</td>
<td>Base-Emitter Junction</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>C_{2}(pF/mA)</td>
<td>Space Charge Capacitance</td>
<td>4.77</td>
<td>5.68</td>
</tr>
<tr>
<td>r_b(Ω)</td>
<td>Derivative of Base-Emitter Diffusion Capacitance</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>r_c(MΩ)</td>
<td>Base Resistance</td>
<td>1.254</td>
<td>0.473</td>
</tr>
<tr>
<td>C_{1}(pF)</td>
<td>Collector Resistance</td>
<td>7.16</td>
<td>7.0</td>
</tr>
<tr>
<td>C_{3}(pF)</td>
<td>Base-Collector and Overlap Capacitance</td>
<td>0.48</td>
<td>1.27</td>
</tr>
</tbody>
</table>
TABLE 3-4

SCEPTRE BIPOLAR JUNCTION TRANSISTOR MODEL PARAMETERS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>2N5179</th>
<th>2N918</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_E (=q/(Ref)kT)</td>
<td>Emitter-Base Junction Constant</td>
<td>38.23</td>
<td>37.45</td>
</tr>
<tr>
<td>θ_C (=q/(Rcf)kT)</td>
<td>Collector-Base Junction Constant</td>
<td>16.65</td>
<td>-</td>
</tr>
<tr>
<td>I_Es (A)</td>
<td>Emitter-Base Saturation Current</td>
<td>2.4E-16</td>
<td>8.62E-16</td>
</tr>
<tr>
<td>I_Cs (A)</td>
<td>Collector-Base Saturation Current</td>
<td>4.6E-10</td>
<td>-</td>
</tr>
<tr>
<td>α_n</td>
<td>Forward Current Gain</td>
<td>0.979</td>
<td>0.98</td>
</tr>
<tr>
<td>α_I</td>
<td>Inverse Current Gain</td>
<td>0.556</td>
<td>0.636</td>
</tr>
<tr>
<td>n_E (=m_E)</td>
<td>Emitter Junction Grading Constant</td>
<td>0.283</td>
<td>0.342</td>
</tr>
<tr>
<td>n_C (=m_C)</td>
<td>Collector Junction Grading Constant</td>
<td>0.37</td>
<td>0.328</td>
</tr>
<tr>
<td>Φ_E (V)</td>
<td>Emitter-Base Junction Contact Potential</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Φ_C (V)</td>
<td>Collector-Base Junction Contact Potential</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>COE (=Cjoe Φ_E (pF-V^2))</td>
<td>Emitter Transition Capacitance Constant</td>
<td>0.65</td>
<td>0.83</td>
</tr>
<tr>
<td>COC (=Cjco Φ_C (pF-V^2))</td>
<td>Collector Transition Capacitance Constant</td>
<td>0.59</td>
<td>0.85</td>
</tr>
<tr>
<td>T_E (=τ_F (nsec))</td>
<td>Emitter Diffusion Capacitance Constant</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>T_S (=τ_R (nsec))</td>
<td>Collector Diffusion Capacitance Constant</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>RB (=R_B =r_b) (Ω)</td>
<td>Base Bulk Resistance</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>RC (=R_SC =r_c') (Ω)</td>
<td>Collector Bulk Resistance</td>
<td>1</td>
<td>1.11</td>
</tr>
<tr>
<td>R1 (Ω)</td>
<td>Emitter-Base Junction Leakage Resistance</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R2 (=r_C) (kΩ)</td>
<td>Collector-Base Junction Leakage Resistance</td>
<td>1250</td>
<td>475</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DESCRIPTION</td>
<td>2N5179</td>
<td>2N918</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BF(=β_N)</td>
<td>Ideal Forward Current Gain</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>BR(=β_I)</td>
<td>Ideal Reverse Current Gain</td>
<td>1.25</td>
<td>-</td>
</tr>
<tr>
<td>IS(=I_S)(A)</td>
<td>Saturation Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB(=R_B=r_b)(Ω)</td>
<td>Base Ohmic Resistance</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>RC(=R_SC=r_c')(Ω)</td>
<td>Collector Ohmic Resistance</td>
<td>1</td>
<td>1.11</td>
</tr>
<tr>
<td>RE(=R_SE=r_e')(Ω)</td>
<td>Emitter Ohmic Resistance</td>
<td>2.45</td>
<td>1.75</td>
</tr>
<tr>
<td>VA(=V_A)(V)</td>
<td>Forward Early Voltage</td>
<td>50</td>
<td>28</td>
</tr>
<tr>
<td>*VB(V)</td>
<td>Reverse Early Voltage</td>
<td>32.5</td>
<td>27.5</td>
</tr>
<tr>
<td>*IK(mA)</td>
<td>Forward High-Current Knee Current</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>*C2</td>
<td>Forward Low-Current Nonideal Base Current Coefficient</td>
<td>80.4</td>
<td>930</td>
</tr>
<tr>
<td>*NE</td>
<td>Nonideal Low-Current Base-Emitter Emission Coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IKR (mA)</td>
<td>Reverse High-Current Knee Current</td>
<td>100+</td>
<td>100+</td>
</tr>
<tr>
<td>*C4</td>
<td>Reverse Low-Current Nonideal Base Current Coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*NC</td>
<td>Nonideal Low-Current Base-Collector Emission Coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF(=τ_F)(nsec)</td>
<td>Forward Transit Time</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>TR(=τ_R)(nsec)</td>
<td>Reverse Transit Time</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>CCS(=C_CS)(pF)</td>
<td>Collector-Substrate Capacitance</td>
<td>1.28</td>
<td>1.3</td>
</tr>
<tr>
<td>CJE(=C_jeo)(pF)</td>
<td>Zero-Bias B-E Junction Capacitance</td>
<td>0.72</td>
<td>0.94</td>
</tr>
<tr>
<td>PE(=φ_E)(V)</td>
<td>B-E Junction Potential</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>*ME(=m_e)</td>
<td>B-E Junction Grading Coefficient</td>
<td>0.283</td>
<td>0.342</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>DESCRIPTION</td>
<td>2N5179</td>
<td>2N918</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>GJC(=C_jeb)(pF)</td>
<td>Zero-Bias B-C Junction Capacitance</td>
<td>0.76</td>
<td>1.065</td>
</tr>
<tr>
<td>PC(=\phi_c)(V)</td>
<td>B-C Junction Potential</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>*MC(=m_c)</td>
<td>B-C Junction Grading Coefficient</td>
<td>0.37</td>
<td>0.328</td>
</tr>
<tr>
<td>EG (eV)</td>
<td>Energy Gap</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>**PT</td>
<td>Saturation Current Temperature Exponent</td>
<td>3.0†</td>
<td>3.0†</td>
</tr>
<tr>
<td>**KF</td>
<td>Flicker Noise Coefficient</td>
<td>6.6E-16†</td>
<td>6.6E-16†</td>
</tr>
<tr>
<td>**AF</td>
<td>Flicker Noise Exponent</td>
<td>1†</td>
<td>1†</td>
</tr>
<tr>
<td>*FC</td>
<td>Forward-Bias Nonideal Junction Capacitance Coefficient</td>
<td>0.5†</td>
<td>0.5†</td>
</tr>
</tbody>
</table>

* Integral Charge Control Model Parameters

** Flicker Noise Model Parameters

† Typical Values are Used
CHAPTER FOUR
INTEGRATED CIRCUIT MODEL PARAMETERS

In this dissertation two integrated circuits have been investigated. One is a dual differential pair and the other is an operational amplifier. The RCA CA3026 dual differential pair was selected because the differential pair is the basic building block used in integrated circuit and because it is relatively simple to analyze. The Fairchild µA741 monolithic operational amplifier was selected because it is one of the most widely used linear integrated circuits.

In this chapter procedures used to determine the transistor model parameters for the BJT's in these two integrated circuits will be described. Parameter values were determined in three ways. One method involves the use of the manufacturer's data, when such data are available for individual BJT's in the IC.* The second method involves the use of probe techniques. The IC case is opened and the metallization areas of an individual BJT are contacted with small area metal probes. The third method involves using the model parameters reported by other investigators.

In the next section BJT model parameter for the RCA CA3026 dual differential pair will be discussed. Then the model parameters for the BJT's in the Fairchild µA741 operational amplifier will be discussed.

* Manufacturer's data for the individual transistors in the CA3026 dual differential pair were available. This is very unusual. Such data are normally not available.
4.1 The CA3026 Dual Differential Pair

Shown in Figure 4-1 is a schematic diagram of the RCA CA3026. There are two separate differential pair circuits in this IC. The transistors Q1, Q2, and Q3 form one unit and the transistors Q4, Q5, and Q6 form the other unit. All the six transistors are identical in structure. A cascode amplifier using a CA3026 dual differential pair was built. It is a two stage amplifier with a common-emitter first stage and a common-base second stage. Since the input impedance of the common-base stage is low, the amplifier has a wide bandwidth with a decent voltage gain.

As shown in Figure 4-2, the cascode amplifier uses four of the BJT's in the CA3026. The transistor Q3 serves as the gain stage in a C-E configuration; the transistor Q2 serves as a buffer stage in a C-B configuration. The transistor Q1 which is often used for automatic gain control (AGC) has its collector connected to ac ground through a capacitor C5 so that no AGC action is provided by Q1 in the cascode amplifier circuit shown in Figure 4-2. The transistor Q4 is used as part of the dc bias circuitry as a current mirror diode. Resistors R1, R2, R3, and R4 are used for dc bias. The input signal for the amplifier is coupled into the base terminal of the Q3 through a coupling capacitor C1, and the output signal is coupled out at the node between the resistors R5 and R6. The output impedance of the amplifier was set near 51 ohms at midband frequencies by the resistor R5 so that 50 ohms input impedance measuring instruments could be connected directly to the amplifier.
FIGURE 4-1 Schematic of RCA CA3026 Integrated Circuit

FIGURE 4-2 Schematic of CA3026 Cascode Amplifier
Since the computer program NCAP will be used to calculate the nonlinear performance of this amplifier, dc operating point information for all transistors is needed. This information will be determined first.

4.1.1 Direct Measurement of DC Operating Points

The resistors R1-R4 were selected to provide dc collector currents in the 1-5 mA range. By measuring the voltages across the resistors R4, R5, R6 and R7 shown in Figure 4-2, the dc collector currents I_{C1} and I_{C2} for transistor Q1 and Q2 can be determined. The emitter current I_{E3} for Q3 is approximately the sum of I_{C1} and I_{C2}. By measuring the voltage across the resistor R2, the emitter current I_{E4} for Q4 can be determined. Since the transistor Q4 is operated in a diode mode and is shunted by a large capacitor ($C2 = 0.1 \mu F$), the transistor Q4 does not affect the cascode amplifier ac operation. Thus the transistor model parameters for Q4 are not presented. The collector-base voltages V_{CB1} and V_{CB2} for the transistors Q1 and Q2 can be measured directly. The collector-base voltage V_{CB3} can be determined by measuring the voltage V_{82} between pin 8 and pin 2. The voltage V_{CB3} is given approximately by $V_{82} - 0.6 V$ where a base-emitter voltage value of 0.6 V is assumed for the transistor Q1. A summary of the dc operating points for the BJT's in the CA3026 cascode amplifier is given in Table 4-1.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Meas.a</td>
<td>4.67</td>
<td>4.67</td>
<td>4.67</td>
</tr>
<tr>
<td>$V_{CB}(V)$</td>
<td>Meas.</td>
<td>2.20</td>
<td>0.25</td>
<td>1.36</td>
</tr>
<tr>
<td>$V_{CBO}(V)$</td>
<td>Meas.</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>u</td>
<td>Meas.</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>I_C(mA)</td>
<td>Meas.</td>
<td>1.25</td>
<td>1.83</td>
<td>3.12</td>
</tr>
<tr>
<td>$I_{C_{max}}$(mA)</td>
<td>Meas.</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>a</td>
<td>Meas.</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$h_{FE_{max}}$</td>
<td>Meas.</td>
<td>110.0</td>
<td>110.0</td>
<td>110.0</td>
</tr>
<tr>
<td>k(pF-V2)</td>
<td>Meas.</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>Ref</td>
<td>Meas.</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>C_{je}(pF)</td>
<td>Manu.b</td>
<td>5.13</td>
<td>5.13</td>
<td>5.13</td>
</tr>
<tr>
<td>C_{2}(pF/mA)</td>
<td>Manu.</td>
<td>9.86</td>
<td>9.86</td>
<td>9.86</td>
</tr>
<tr>
<td>r_b(ohm)</td>
<td>Manu.</td>
<td>512.0</td>
<td>554.0</td>
<td>483.0</td>
</tr>
<tr>
<td>r_c(kohm)</td>
<td>Meas.</td>
<td>40.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>C_1(pF)</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C_3(pF)</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

a Meas: Determined from Measurements

b Manu: Determined from Typical Transistor Data Provided by Manufacturer
4.1.2 NCAP BJT Model Parameters

Also given in Table 4-1 are typical values for all the NCAP BJT model parameters for the CA3026. These typical parameter values were determined in two ways. When available the typical data for the individual transistors in the CA3026 provided by the manufacturer were used. Unfortunately not all the NCAP model parameters for the BJT's in the CA3026 can be determined from manufacturer's data. Probe techniques were used to determine the additional data required. The probe techniques are destructive techniques. By destructive techniques we mean that a CA3026 which has been probed to determine the BJT's model parameters used in NCAP can no longer be used in the cascode amplifier shown in Figure 4-2. Therefore, the NCAP model parameters for the CA3026 determined by probing are representative values determined from the 10 - 15 IC's probed. First we shall describe how some of the parameter values can be determined from manufacturer's data and then how the remaining parameter values can be determined by using probing techniques.

4.1.2.1 The Use of Manufacturer's Data

Shown in Figure 4-3 are typical characteristics for an individual transistor in the CA3026 provided by the manufacturer. From these data, values for the NCAP parameters C_2, C_{je}, and r_b can be determined.

The high frequency parameters C_{je} and C_2' can be determined using the data given in the plot of the gain-bandwidth product f_T vs collector current I_C. The procedures described in Section 3.2.2 are used.

105
Typical Characteristics for Each Transistor in CA3026. (After Ref. (28)).

Equation (3-58) is modified by including the emitter base diode nonlinearity factor Ref and by neglecting C_u. The result is

$$C_n = q|I_E|/(2\pi f_T \text{Ref} K_T) \quad (4-1)$$

It is also assumed that the dc emitter current I_E and dc collector current I_C are equal. (A value for $\text{Ref} = 1.044$ was determined using probe techniques to be described later.) Convenient values of I_E (I_C) are selected and the corresponding values of f_T are determined from Figure 4-3. Next the values of C_n are calculated by using Eq. (4-1) and plotted vs I_E as shown in Figure 4-4. The numerical values of parameters I_E, f_T, and C_n used are tabulated on the following page.
FIGURE 4-4 A Linear Plot of Emitter Capacitance Versus Emitter Current in Device CA3026
From Figure 4-4, the slope (C'_2) and the intercept (C_{je}) were found to be:

\[C'_2 = 9.86 \text{ pF/mA} \]
\[C_{je} = 5.13 \text{ pF} \]

These values are given in Table 4-1.

Values for the base spreading resistance r_b can be determined using Eq. (3-40) and the data presented in Figure 4-3 for the short-circuit input impedance h_{ie} and the short-circuit current gain h_{fe}. Values for the dc operating point collector current I_C are taken from Table 4-1. The following table summarizes the numerical results:

<table>
<thead>
<tr>
<th>I_C (mA)</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.25</td>
<td>1.85</td>
<td>3.12</td>
</tr>
<tr>
<td>h_{fe}</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>h_{ie} (ohm)</td>
<td>2.8k</td>
<td>2.1k</td>
<td>1.4k</td>
</tr>
<tr>
<td>r_b (ohm)</td>
<td>512</td>
<td>554</td>
<td>483</td>
</tr>
</tbody>
</table>

Upon examining Figure 4-4, the value $C_{je} = 4$ pF now appears more appropriate than the value $C_{je} = 5.13$ pF. However, the value $C_{je} = 5.13$ pF is entered in Table 4-1 and was used in the NCAP analysis.
The values determined for r_b for each transistor are also listed in Table 4-1. It is appropriate to point out that the manufacturer's data given in Figure 4-3 were measured at 1 kHz. At frequencies greater than 10 MHz, the values for r_b may be less. As discussed in Section 3.2.1 the base region modelled by the resistor r_b is actually a distributed R-C transmission line.

It is also possible to determine a typical parameter value for the collector resistance r_c using the manufacturer's data for the open circuit reverse transfer parameter h_{re} shown in Figure 4-3. Furthermore if it is assumed that the large signal forward-injection common-emitter short-circuit current gain h_{FE} is equal to the small signal common-emitter short-circuit current gain h_{fe}, values for the NCAP parameters I_{Cmax}, h_{FEmax} and a could be determined using the data shown in Figure 4-3. This was not the procedure used in this dissertation. These parameters were determined by using probing techniques as described next.

4.1.2.2 The Use of Measured Data

In this section the procedures used to determine the NCAP BJT parameters by direct measurements will be described. In an IC such as the CA3026 the BJTs are all interconnected. It is not possible to measure the characteristics of one BJT in the CA3026 by making measurements at the IC terminals. The best procedure seems to be one based upon probing techniques. The first step is to cut off the transistor header. This was done on a lathe. Next the glass passivation layer
is removed from the areas to be probed. This was done using a sharp probe with a tungsten tip under a microscope. (See Appendix II on probe preparation.) Considerable care, effort, and time are required. Next a single transistor on the IC is isolated from all other transistors on the IC. This was done by using a sharp probe with a tungsten tip to cut the metallizations connected to the transistor. Finally the emitter, base, and collector metallizations of the isolated transistor are contacted with sharp metal probes held in micro-manipulators and viewed under a microscope with magnification 200X.

(1) Ref, Base-Emitter Diode Nonideality Factor

Using the procedures described in Section 3.1.1, the emitter base diode nonideality factor Ref can be determined. Values of the dc emitter current I_E are plotted vs dc emitter-base voltage V_BE for a representative BJT in the CA3026 as shown in Figure 4-5. Data measured for other BJT's in the CA3026 are similar. Using Eq. (3-2) and the points (V_{BE1} = 0.639 V, I_{E1} = 20 μA) and (V_{BE2} = 0.759 V, I_{E2} = 500 pA), we obtain Ref = 1.044. This representative value for Ref is listed in Table 4-1. Values determined for Ref for BJT's in other CA3026 IC's are the following: 0.998, 0.880, 1.057.

(2) h_{FEmax}, I_{Cmax}, h_{FE} Nonlinearity Parameters

Using the procedures described in Section 3.1.5, the maximum dc current gain h_{FEmax} and the collector current at maximum dc current gain I_{Cmax} can be determined. Values of the dc common-emitter forward-injection short-circuit current gain h_{FE} are plotted...
FIGURE 4-5. Representative Plot of I_E vs V_{BE} for an Individual BJT in Device CA3026
vs dc collector current I_C as shown in Figure 4-6 for a representative BJT in the CA3026. Values for $h_{FE\text{max}} = 110$ and $I_{C\text{max}} = 2$ mA taken directly from this figure are listed in Table 4-1. Values for other BJT's in other CA3026 IC's are the following: $h_{FE\text{max}}' = 113, 133; I_{C\text{max}}' = 1$ mA, 2 mA. The value for a is calculated using Eq. (3-10).

The values for a depend upon the point (I_C, h_{FE}) used in Eq. (3-10). At several sample points (I_C, h_{FE}) a value for a is calculated. The following results were obtained.

<table>
<thead>
<tr>
<th>I_C (mA)</th>
<th>h_{FE}</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>99</td>
<td>0.3065</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
<td>0.701</td>
</tr>
</tbody>
</table>

An average value $a = 0.5$ was entered in Table 4-1 for all transistors. Values for other BJT's in other CA3026 IC's would be similar.

(3) V_{CBO}, η, Avalanche Nonlinearity Parameters and r_c Collector Resistance

Using the procedures described in Section 3.1.9, the collector-base breakdown voltage V_{CBO}, the avalanche nonlinearity parameter η, and the collector resistance r_c can be determined. Values for the collector base breakdown voltage V_{CBO} and the collector emitter breakdown voltage V_{CEO} were determined directly from transistor curve tracer displays. Typical measured values for several CA3026 BJT's were $V_{CBO} = 60$ V and $V_{CEO} = 35$ V. Using Eq. (2-24) and assuming value for α_N approximately equal to 0.9 at the vicinity of avalanche
FIGURE 4-6 Representative Plot of h_{FE} vs I_C for an Individual BJT in Device CA3026
breakdown, a value for $\eta = 4.67$ was obtained. This value is given in Table 4-1. Values for other BJT's in the other CA3026 IC's are similar. Values for the collector resistance r_c were determined from the common-emitter I_C-V_{CE} characteristics such as those shown in Figure 4-7. The value for r_c was calculated using the relationship

$$1/r_c = (\Delta I_c/\Delta V_{CE})/h_{FE}. \text{ This equation is essentially Eq. (2-48) with } 1 - a_N \text{ replaced by } 1/h_{FE}.$$

The following results were obtained:

$$r_c(Q1) = 50 \, k\Omega; \quad r_c(Q2) = 50 \, k\Omega; \quad \text{and} \quad r_c(Q3) = 40 \, k\Omega.$$

These values are listed in Table 4-1. Again values for other BJT's in other CA3026 IC's would be similar.

(4) k, μ, Collector Base Capacitance Parameters

Using the procedures described in Section 3.1.12, the collector base capacitance scale factor k and the collector base capacitance exponent μ can be determined. Values for the collector base junction capacitance vs collector base junction voltage for a representative CA3026 BJT are plotted in the manner shown in Figure 4-8. A value for the collector-base junction potential $\phi_C = 0.7 \, V$ was assumed (see Section 3.1.12). A value for $\mu = -0.34$ is determined directly from the slope of the capacitance vs voltage plot. The capacitance C_{jeo} is determined at $V_{CB} = 0$ directly from this plot as shown in Figure 4-8. The value $C_{jeo} = 2.25 \, pF$ was obtained; using Eq. (3-32) the value $k = 1.993 \, pF$ was calculated. These values are given in Table 4-1. Values determined for other BJT's in other IC's are the following:

$$\mu, 0.20, 0.25, 0.11; \quad k, 1.92, 2.60, 2.20 \, pF-V^{1/2}.$$
FIGURE 4-7 Representative Output Characteristics of an Individual BJT in Device CA3026
\[\phi_C = 0.7 \text{V} \]
\[C_{jc} = C_{jco}(1 + \frac{|V_{BC}|}{\phi_C})^{-\mu} \]

Slope = \(\mu = 0.340 \)

FIGURE 4-8 A Log-Log Plot of Collector-Base Junction Depletion Capacitance Versus Junction Voltage in Device CA3026
4.2 The μA741 Operational Amplifier

The schematic of a μA741 operational amplifier and the top view connection diagram for a TO-99 package are shown in Figure 4-9. There are 24 component BJT's in the circuit diagram. The transistors Q7, Q8, Q9, Q10, Q11, Q12, and Q13 constitute the bias circuitry of the operational amplifier. The input transistors Q1 and Q2 are emitter followers that maintain high input impedance and low input current. The two transistors drive the emitters of the common-base differential pair of PNP devices Q3 and Q4. The transistors Q5 and Q6 form an active load for Q3 and Q4 to provide high voltage gain in the input stage. The six transistors Q1, Q2, Q3, Q4, Q5, and Q6 of the input stage provide features such as a differential input with high common-mode rejection, level shifting, and differential to single-ended conversion.

The transistor Q16 is an emitter follower that buffers the loading effect of Q17 to the active load formed by Q5 and Q6. The transistor Q17 is a common-emitter amplifier that has an active load formed by Q13B (designated as Q26 in SPICE2 and NCAP simulations), and this stage gives a large voltage gain. The transistor Q24A (designated as Q24 in SPICE2 and NCAP simulations) is another emitter follower that reduces the loading effect of the output stage on the gain stage. The output stage is composed of transistors Q14 and Q20. These two transistors provide a class AB output. The transistors Q19 and Q21 serve as a level-shifting unit, whereas the transistors Q15, Q23, Q25, and Q24B are included for protection to prevent damage that might occur to Q14,
Q17, and Q20. Since the transistor Q24B is not active under normal operating conditions, the device Q24B (designated as diode D1 in SPICE2 and NCAP simulations) is modelled as a small capacitance.

The BJTs in the μA741 op amp can be catalogued into five categories as illustrated in Figure 4-10. These are the small NPN (Q1, Q2, Q5, Q6, Q7, Q10, Q11, Q15, Q16, Q17, Q19, Q21, Q22, Q23), the large NPN (Q14), the lateral PNP (Q3, Q4, Q8, Q9, Q12, Q25), the large substrate PNP (Q20), the dual-collector lateral PNP (Q13A, Q13B), and the dual-emitter substrate PNP (Q24A, Q24B).

Resistors R1, R2, R3, R4, R5, R7, R9, R10, R11, R12, and R13 are used in the μA741 as part of the bias and level-shifting circuitry. A 30 pF capacitor C1 is used in the μA741 op amp for internal frequency compensation. This compensation capacitor is connected around the Darlington pair Q16-Q17 and produces a pole with magnitude about 4.9 Hz. This action makes the unity gain frequency of the op amp to be 1.25 MHz, the phase margin 80° and the low-frequency gain 108 dB.

A unity gain buffer amplifier with a μA741 IC was selected for the investigation of RFI effects in 741 operational amplifiers (op amp). Shown in Figure 4-11 is the circuit diagram of the unity gain buffer amplifier. The resistor \(R_O = 620 \, \Omega \) is used as a feedback resistor connected from the output terminal of the μA741 (node 6) to the inverting input terminal (node 2). The resistor \(R_G \) is the source impedance of the signal generator VG. For a Hewlett Packard model 650A signal generator, the value for \(R_G \) is 600 Ω. Thus at midband frequencies, the magnitude of the voltage gain which is \(R_O/R_G \) of the
FIGURE 4-10

Plan Views of the 741 Transistors. All Dimensions Are in Mils. (a) Small NPN (b) Large NPN (c) Lateral PNP (d) Large Substrate PNP (e) Dual-Collector Lateral PNP (f) Dual Emitter Substrate PNP. (After Wooley et al.)
FIGURE 4-11 SPICE2 Coding Diagram of μA741 Operational Amplifier Unity Gain Buffer. This Diagram Is Used to Determine (1) DC Operating Points of Each Individual BJT in the IC, and (2) the Linear Response of the Unity Gain Buffer.
amplifier is about 1.03 (= 620/600).

Since the computer program NCAP will be used to calculate the nonlinear performance of this amplifier, dc operating point information for all transistors is needed. This information will be determined by a SPICE2 simulation. Since the computer program SPICE2 will be used to calculate the dc operating point information of the transistors in the op amp, the SPICE2 BJT model parameters values for all transistors are required. Values of the SPICE2 BJT model parameters will be determined first.

4.2.1 SPICE2 BJT Model Parameters

Given in Table 4-2 are two sets of representative values for most of the SPICE2 BJT model parameters for the μA741. One set of values were obtained from the results reported by Wooley, Wong, and Pederson. The other set of values were determined using the probe measurement techniques discussed in Section 4.1.2.2. However, probe techniques were not used to determine the SPICE2 BJT parameters BR, TF, TR, CCS, and EG. Typical values suggested by SPICE2 users' manual (BR = 0.1, TF = 0.1 nsec, TR = 10 nsec, CCS = 2 pF, and EG = 1.11 eV) are used in this dissertation.

By using probing techniques dc characteristics and junction capacitance characteristics were obtained. Shown in Figures III-1 to III-10 given in Appendix III are representative dc and junction capacitance characteristics for the BJT's in the μA741 op amp.

Values for the BJT parameters shown in Table 4-2 were determined
from these figures by using the procedures described in Chapter Three. Using the procedures described in Sections 3.1.3, 3.1.4, 3.1.7, 3.1.10, 3.1.11, 3.1.12, and 3.2.1 the values for the saturation current IS, the forward current gain BF, the collector ohmic resistance RC, the Early voltage VA, the zero-bias emitter junction capacitance CJE, the zero-bias collector junction capacitance CJC, the built-in potentials PE and PC, and the base spreading resistance RB for the BJT's in the µA741 op amp can be determined. If Eq. (3-40) is used to determine values of RB, values of the h-parameter h_{ie} have to be known first. From the definition of $h_{ie} = \frac{\partial v_{be}/\partial i_b}{v_{ce=0}}$, the values of h_{ie} can be readily obtained from the base current I_B vs base-emitter voltage V_{BE} plots given in Figure III-2 in Appendix III.

4.2.2 NCAP BJT Model Parameters

By using the computer program SPICE2 with the BJT's parameter values given in Table 4-2, the dc operating points for all the BJT's in the µA741 were calculated. The calculated dc operating points information (V_{CB}, I_C) of all the BJT's are listed in Table 4-3. The SPICE2 µA741 op amp computer program input data coding list is given in Table 4-4 while the coding circuit diagram is illustrated in Figure 4-11. In order to avoid redundancy, only the Wooley's SPICE2 BJT's data are presented in the Table 4-4.

4.2.2.1 The Use of Measured Data

Also shown in Table 4-3 are values for the other NCAP model parameters for the BJT's in the µA741. These parameter values except
those for C_{je} and C_2' were determined by using the procedures described in Section 4.1.2.1. By utilizing the information given in Appendix III, values for these parameters (except C_{je} and C_2') can be readily determined.

Values for the high-frequency parameters C_{je} and C_2' for the BJT’s were calculated from C_π vs I_E data as described in Sections 3.2.2 and 4.1.2.1. The parameter C_2' is the slope of a straight line drawn through the C_π vs I_E data and the parameter C_{je} is the intercept of that line on the C_π axis. The value for C_{je} used is that given in Table 4-2 for CJE. This value is the zero-bias emitter-base junction depletion layer capacitance C_{jeo}. An approximation is involved here in that the C_{je} value used in NCAP is that for a forward-biased emitter-base junction at $I_E = 0$. The actual value of C_{je} should be larger than that of C_{jeo}. Next a value for C_π is calculated using Eq. (4-1). The values for the cutoff frequency f_T at the corresponding emitter current level I_E for the various types of BJT’s given in Ref. (30) were used. These values are listed below. The value for C_2' is calculated using

$$\omega_2' = \frac{(C_\pi - C_{je})}{(I_E - 0)}.$$

<table>
<thead>
<tr>
<th>Device Type</th>
<th>f_T (MHz)</th>
<th>I_E (mA)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small NPN</td>
<td>500</td>
<td>1</td>
<td>Q1, Q2</td>
</tr>
<tr>
<td>Small NPN</td>
<td>350</td>
<td>1</td>
<td>Q5, Q6, Q7, Q10, Q11, Q15, Q16, Q17, Q19, Q21, Q22, Q23</td>
</tr>
<tr>
<td>Large NPN</td>
<td>300</td>
<td>10</td>
<td>Q14</td>
</tr>
<tr>
<td>Lateral PNP</td>
<td>5</td>
<td>0.1</td>
<td>Q3, Q4, Q8, Q9, Q12, Q25</td>
</tr>
<tr>
<td>Large sub PNP</td>
<td>15</td>
<td>0.1</td>
<td>Q20</td>
</tr>
<tr>
<td>Dual-collector</td>
<td>5</td>
<td>0.1</td>
<td>Q13, Q26</td>
</tr>
<tr>
<td>lateral PNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-emitter</td>
<td>15</td>
<td>0.1</td>
<td>Q24</td>
</tr>
<tr>
<td>substrate PNP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

124
As an illustration, sample calculations in determining the parameters C'_2 for the BJT's Q1 and Q3 are tabulated below:

<table>
<thead>
<tr>
<th>Device</th>
<th>Q1</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Small NPN</td>
<td>Lateral PNP</td>
</tr>
<tr>
<td>f_T (MHz)</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>I_E (mA)</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ref</td>
<td>1.091</td>
<td>1.336</td>
</tr>
<tr>
<td>C'_T (pF)</td>
<td>11.22</td>
<td>91.64</td>
</tr>
<tr>
<td>C_{je} (pF)</td>
<td>1.23</td>
<td>0.88</td>
</tr>
<tr>
<td>C'_2 (pF/mA)</td>
<td>9.09</td>
<td>908</td>
</tr>
</tbody>
</table>

4.2.2.2 The Use of Wooley's Data

The NCAP BJT model parameters obtained based upon Wooley's results are also presented in the Table 4-3. Because Wooley's data do not provide enough information for the parameters η, μ, and Ref, typical values for these parameters are used as tabulated below:

<table>
<thead>
<tr>
<th>Device/Parameter</th>
<th>η</th>
<th>μ</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small NPN</td>
<td>4</td>
<td>0.333</td>
<td>1</td>
</tr>
<tr>
<td>Lateral PNP</td>
<td>1.5</td>
<td>0.333</td>
<td>1</td>
</tr>
<tr>
<td>Large substrate PNP</td>
<td>1.5</td>
<td>0.333</td>
<td>1</td>
</tr>
<tr>
<td>Dual-emitter sub PNP</td>
<td>3.5</td>
<td>0.333</td>
<td>1</td>
</tr>
<tr>
<td>Large NPN</td>
<td>1.5</td>
<td>0.333</td>
<td>1</td>
</tr>
<tr>
<td>Dual-collector lateral PNP</td>
<td>1.5</td>
<td>0.333</td>
<td>1</td>
</tr>
</tbody>
</table>
The characteristics of the dc short-circuit current gain h_{FE} versus the dc collector current I_C are provided from Wooley's paper in a normalized plot as shown in Figure 4-12. Using the data in Figure 4-12 and the procedures described in Section 4.1.2.2 (2), the parameter values can be obtained. The results are listed in Table 4-3. The parameter values for C'_2 were determined using Eq. (3-54); i.e. $C'_2 = \tau_F(q/kT)$. Again the zero-bias emitter-base junction capacitance C_{je0} value is assumed to be equal to the parameter C_{je} value. Values for C'_2 and C_{je} are tabulated in Table 4-3. Also the collector capacitor scale factor k can be obtained using Eq. (3-32). A value for the built-in potential $\Phi_C = 0.7$ V is assumed for all the BJT's in the μA741.

126
FIGURE 4-12 Normalized Plot of h_{FE} vs Collector Current. Curve a for Small NPN, Large NPN, and Substrate PNP; Curve b for Lateral PNP
| Pa | BF | BR | IS (\times 10^{-12} \text{A}) | RB (\Omega) | RC (\Omega) | RE (\Omega) | VA (V) | TF (\text{nsec}) | TR (\text{nsec}) | CCS (pF) | CJE (pF) | PE (V) | JC (pF) | PC (V) | EG (eV) | COMMENT |
|----|----|----|-----------------|----------|-----------|----------|------|------------|-------------|--------|--------|-------|-------|-------|-------|--------|---------|
| Q1 | 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q1 | 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q3 | 35 | 3.8 | 3.15 | 500 | 150 | 0 | 55 | 27.4 | 2540 | 5.1 | 0.1 | 0.7 | 1.05 | 0.5 | 1.11 | Lateral PNP |
| Q4 | 35 | 3.8 | 3.15 | 500 | 150 | 0 | 55 | 27.4 | 2540 | 5.1 | 0.1 | 0.7 | 1.05 | 0.5 | 1.11 | Lateral PNP |
| Q5 | 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q6 | 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q7 | 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q8 | 35 | 3.8 | 3.15 | 500 | 150 | 0 | 55 | 27.4 | 2540 | 5.1 | 0.1 | 0.7 | 1.05 | 0.5 | 1.11 | Lateral PNP |
| Q9 | 35 | 3.8 | 3.15 | 500 | 150 | 0 | 55 | 27.4 | 2540 | 5.1 | 0.1 | 0.7 | 1.05 | 0.5 | 1.11 | Lateral PNP |
| Q10| 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q11| 210 | 2.5 | 1.26 | 830 | 300 | 0 | 180 | 1.15 | 405 | 3.2 | 0.65 | 0.7 | 0.36 | 0.5 | 1.11 | Small NPN |
| Q12| 35 | 3.8 | 3.15 | 500 | 150 | 0 | 55 | 27.4 | 2540 | 5.1 | 0.1 | 0.7 | 1.05 | 0.5 | 1.11 | Lateral PNP |

TABLE 4-2

SPICE2 μA741 BJT's Input Parameters
<table>
<thead>
<tr>
<th>Pa</th>
<th>BF (10^6 A)</th>
<th>BR (Ω)</th>
<th>IS (10^4 A)</th>
<th>RB (Ω)</th>
<th>RC (Ω)</th>
<th>RE (Ω)</th>
<th>VA (V)</th>
<th>TF (nsec)</th>
<th>TR (nsec)</th>
<th>CCS (pF)</th>
<th>CJE (pF)</th>
<th>PE (V)</th>
<th>CJC (pF)</th>
<th>PC (V)</th>
<th>EG (eV)</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q13</td>
<td>0.38</td>
<td>1.4</td>
<td>0.9</td>
<td>1000</td>
<td>80</td>
<td>0</td>
<td>84</td>
<td>27.4</td>
<td>55</td>
<td>4.8</td>
<td>0.1</td>
<td>0.7</td>
<td>0.3</td>
<td>0.5</td>
<td>1.1</td>
<td>Dual Coll. L. PNP</td>
</tr>
<tr>
<td>#</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Q14</td>
<td>400</td>
<td>6.1</td>
<td>0.395</td>
<td>185</td>
<td>15</td>
<td>0</td>
<td>270</td>
<td>0.76</td>
<td>243</td>
<td>7.8</td>
<td>2.8</td>
<td>0.7</td>
<td>1.55</td>
<td>0.5</td>
<td>1.1</td>
<td>Large NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>19.9</td>
<td>501</td>
<td>65</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q15</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q16</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q17</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q19</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20</td>
<td>120</td>
<td>4.8</td>
<td>1.76</td>
<td>80</td>
<td>156</td>
<td>0</td>
<td>58</td>
<td>26.5</td>
<td>2430</td>
<td>-</td>
<td>4.05</td>
<td>0.7</td>
<td>2.8</td>
<td>0.5</td>
<td>1.1</td>
<td>Substrate PNP</td>
</tr>
<tr>
<td>#</td>
<td>60</td>
<td></td>
<td>120</td>
<td>190</td>
<td>50</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q21</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q22</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q23</td>
<td>210</td>
<td>2.5</td>
<td>1.26</td>
<td>670</td>
<td>300</td>
<td>0</td>
<td>180</td>
<td>1.15</td>
<td>405</td>
<td>3.2</td>
<td>0.65</td>
<td>0.7</td>
<td>0.36</td>
<td>0.5</td>
<td>1.1</td>
<td>Small NPN</td>
</tr>
<tr>
<td>#</td>
<td>300</td>
<td></td>
<td>9.97</td>
<td>1040</td>
<td>465</td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q24</td>
<td>81</td>
<td>1.5</td>
<td>0.79</td>
<td>1100</td>
<td>170</td>
<td>0</td>
<td>80</td>
<td>26.5</td>
<td>9550</td>
<td>-</td>
<td>1.1</td>
<td>0.7</td>
<td>2.4</td>
<td>0.5</td>
<td>1.1</td>
<td>Dual Em. Sub. PNP</td>
</tr>
<tr>
<td>#</td>
<td>80</td>
<td></td>
<td>0.79</td>
<td>15400</td>
<td>19.5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Q25</td>
<td>75</td>
<td>3.8</td>
<td>3.15</td>
<td>500</td>
<td>150</td>
<td>0</td>
<td>55</td>
<td>27.4</td>
<td>2540</td>
<td>5.1</td>
<td>0.23</td>
<td>0.7</td>
<td>1.0</td>
<td>0.5</td>
<td>1.1</td>
<td>Lateral PNP</td>
</tr>
<tr>
<td>#</td>
<td>35</td>
<td></td>
<td>769</td>
<td>681</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Q26</td>
<td>1.76</td>
<td>1.5</td>
<td>2.25</td>
<td>1600</td>
<td>120</td>
<td>0</td>
<td>84</td>
<td>27.4</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.7</td>
<td>0.9</td>
<td>0.5</td>
<td>1.1</td>
<td>Dual Coll. L. PNP</td>
</tr>
</tbody>
</table>

* Data obtained from Wooley's result.

Data obtained from our probe data except for BR, TF, TR, CCS, and EG.

Typical values () are used for them.
<table>
<thead>
<tr>
<th>Pa</th>
<th>De</th>
<th>V_C (V)</th>
<th>V_{CB0} (V)</th>
<th>V_{CB0} (V)</th>
<th>I_C (mA)</th>
<th>I_{CEm} (mA)</th>
<th>a</th>
<th>k (pF/V)</th>
<th>Ref</th>
<th>C_{je} (pF)</th>
<th>C_{be} (pF/mA)</th>
<th>R_B (Ω)</th>
<th>R_C (pF)</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>#</td>
<td>4.34</td>
<td>14.42</td>
<td>100</td>
<td>0.333</td>
<td>9.66</td>
<td>0.3</td>
<td>4.35</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
</tr>
<tr>
<td>Q2</td>
<td>#</td>
<td>4.34</td>
<td>14.42</td>
<td>100</td>
<td>0.333</td>
<td>9.66</td>
<td>0.3</td>
<td>4.35</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
</tr>
<tr>
<td>Q3</td>
<td>#</td>
<td>1.48</td>
<td>13.05</td>
<td>100</td>
<td>0.376</td>
<td>7.69</td>
<td>0.11</td>
<td>0.807</td>
<td>75</td>
<td>0.834</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>Q4</td>
<td>#</td>
<td>1.48</td>
<td>13.05</td>
<td>100</td>
<td>0.376</td>
<td>7.69</td>
<td>0.11</td>
<td>0.807</td>
<td>75</td>
<td>0.834</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>Q5</td>
<td>#</td>
<td>3.79</td>
<td>0.53</td>
<td>100</td>
<td>0.254</td>
<td>7.66</td>
<td>0.5</td>
<td>1.21</td>
<td>300</td>
<td>0.61</td>
<td>1.0</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
</tr>
<tr>
<td>Q6</td>
<td>#</td>
<td>3.79</td>
<td>0.585</td>
<td>100</td>
<td>0.254</td>
<td>7.66</td>
<td>0.5</td>
<td>1.21</td>
<td>300</td>
<td>0.61</td>
<td>1.0</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
</tr>
<tr>
<td>Q7</td>
<td>#</td>
<td>3.79</td>
<td>28.93</td>
<td>100</td>
<td>0.333</td>
<td>12.0</td>
<td>0.3</td>
<td>4.35</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
</tr>
<tr>
<td>Q8</td>
<td>#</td>
<td>1.48</td>
<td>15.57</td>
<td>100</td>
<td>0.333</td>
<td>18.8</td>
<td>0.11</td>
<td>0.912</td>
<td>75</td>
<td>0.834</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>Q9</td>
<td>#</td>
<td>1.48</td>
<td>15.57</td>
<td>100</td>
<td>0.333</td>
<td>19.5</td>
<td>0.1</td>
<td>1.17</td>
<td>35</td>
<td>0.77</td>
<td>1.34</td>
<td>0.23</td>
<td>914</td>
<td>681</td>
<td>0.575</td>
</tr>
<tr>
<td>Q10</td>
<td>#</td>
<td>3.79</td>
<td>13.46</td>
<td>100</td>
<td>0.254</td>
<td>19.8</td>
<td>0.5</td>
<td>0.62</td>
<td>300</td>
<td>0.61</td>
<td>1.0</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
</tr>
<tr>
<td>Q11</td>
<td>#</td>
<td>3.79</td>
<td>0.1</td>
<td>100</td>
<td>0.254</td>
<td>718</td>
<td>0.5</td>
<td>0</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
</tr>
<tr>
<td>Q12</td>
<td>#</td>
<td>1.48</td>
<td>0.1</td>
<td>100</td>
<td>0.376</td>
<td>615</td>
<td>0.11</td>
<td>1.61</td>
<td>7.5</td>
<td>0.34</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>500</td>
<td>0.5</td>
</tr>
<tr>
<td>Pa</td>
<td>De</td>
<td>(\eta)</td>
<td>(V_{CB}) (V)</td>
<td>(V_{CEO}) (V)</td>
<td>(\mu)</td>
<td>(I_C) (mA)</td>
<td>(I_{CRMx}) (mA)</td>
<td>(a)</td>
<td>(h_{FREMX})</td>
<td>(k) (pF-V(^{-2}))</td>
<td>Ref</td>
<td>(C_{je}) (pF)</td>
<td>(C_e) (pF/nC)</td>
<td>(R_B) ((\Omega))</td>
<td>(R_C) ((\Omega))</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>-------------</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Q13</td>
<td>1.5</td>
<td>13.68</td>
<td>90</td>
<td>0.333</td>
<td>22</td>
<td>0.03</td>
<td>8.6</td>
<td>0.3</td>
<td>0.24</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>1000</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q13</td>
<td>1.72</td>
<td>13.89</td>
<td>130</td>
<td>0.32</td>
<td>45.3</td>
<td>0.2</td>
<td>0.48</td>
<td>0.6</td>
<td>0.38</td>
<td>1.22</td>
<td>0.36</td>
<td>1000</td>
<td>61</td>
<td>1.14</td>
<td>0.1</td>
</tr>
<tr>
<td>Q14</td>
<td>1.5</td>
<td>14.36</td>
<td>100</td>
<td>0.333</td>
<td>22.4</td>
<td>0.3</td>
<td>5.06</td>
<td>400</td>
<td>1.23</td>
<td>1.0</td>
<td>2.8</td>
<td>29.5</td>
<td>15</td>
<td>4.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q14</td>
<td>1.42</td>
<td>14.42</td>
<td>110</td>
<td>0.327</td>
<td>2.0</td>
<td>1.26</td>
<td>300</td>
<td>1.0</td>
<td>1.05</td>
<td>1.0</td>
<td>0.88</td>
<td>19.1</td>
<td>500</td>
<td>3.96</td>
<td>0.1</td>
</tr>
<tr>
<td>Q15</td>
<td>4</td>
<td>0.64</td>
<td>100</td>
<td>0.333</td>
<td>4.37E</td>
<td>0.3</td>
<td>10</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q15</td>
<td>3.79</td>
<td>0.573</td>
<td>100</td>
<td>0.254</td>
<td>4.37E</td>
<td>0.5</td>
<td>4.33</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Q16</td>
<td>4</td>
<td>28.76</td>
<td>100</td>
<td>0.333</td>
<td>13.1</td>
<td>0.3</td>
<td>3.54</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q16</td>
<td>3.79</td>
<td>28.88</td>
<td>110</td>
<td>0.3</td>
<td>0.29</td>
<td>0.89</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q17</td>
<td>4</td>
<td>13.19</td>
<td>100</td>
<td>0.333</td>
<td>61.0</td>
<td>0.3</td>
<td>0.82</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q17</td>
<td>3.79</td>
<td>13.50</td>
<td>100</td>
<td>0.254</td>
<td>66.6</td>
<td>0.5</td>
<td>0.65</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Q18</td>
<td>4</td>
<td>0.1</td>
<td>100</td>
<td>0.333</td>
<td>11.8</td>
<td>0.3</td>
<td>4.35</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q18</td>
<td>3.79</td>
<td>0.1</td>
<td>100</td>
<td>0.3</td>
<td>0.29</td>
<td>0.87</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q19</td>
<td>4</td>
<td>0.594</td>
<td>100</td>
<td>0.254</td>
<td>10.1</td>
<td>0.3</td>
<td>4.35</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q19</td>
<td>3.79</td>
<td>0.54</td>
<td>100</td>
<td>0.3</td>
<td>0.29</td>
<td>0.73</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q20</td>
<td>2.5</td>
<td>14.46</td>
<td>90</td>
<td>0.333</td>
<td>22.3</td>
<td>0.11</td>
<td>2.44</td>
<td>117</td>
<td>2.22</td>
<td>1.0</td>
<td>4.05</td>
<td>1030</td>
<td>80</td>
<td>0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>Q20</td>
<td>2.67</td>
<td>14.47</td>
<td>90</td>
<td>0.3</td>
<td>0.29</td>
<td>1.03</td>
<td>60</td>
<td>1.5</td>
<td>1.13</td>
<td>1.25</td>
<td>360</td>
<td>190</td>
<td>0.147</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q21</td>
<td>4</td>
<td>1.24</td>
<td>100</td>
<td>0.333</td>
<td>8.45</td>
<td>0.3</td>
<td>10</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q21</td>
<td>3.79</td>
<td>1.12</td>
<td>100</td>
<td>0.254</td>
<td>8.45</td>
<td>0.5</td>
<td>4.65</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Q22</td>
<td>4</td>
<td>0.1</td>
<td>100</td>
<td>0.333</td>
<td>61.0E</td>
<td>0.3</td>
<td>10</td>
<td>210</td>
<td>0.286</td>
<td>1.0</td>
<td>0.65</td>
<td>44.6</td>
<td>670</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q22</td>
<td>3.79</td>
<td>0.1</td>
<td>100</td>
<td>0.3</td>
<td>0.29</td>
<td>1.85</td>
<td>300</td>
<td>0.61</td>
<td>1.04</td>
<td>0.88</td>
<td>15.07</td>
<td>1040</td>
<td>15.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q23</td>
<td>3.5</td>
<td>13.94</td>
<td>90</td>
<td>0.333</td>
<td>21.8</td>
<td>0.015</td>
<td>5.4</td>
<td>80</td>
<td>1.906</td>
<td>1.0</td>
<td>1.1</td>
<td>1030</td>
<td>1100</td>
<td>10.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q23</td>
<td>3.69</td>
<td>14.09</td>
<td>50</td>
<td>0.252</td>
<td>46.2</td>
<td>0.2</td>
<td>7.4</td>
<td>80</td>
<td>5.08</td>
<td>1.45</td>
<td>1.75</td>
<td>280</td>
<td>195</td>
<td>13.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q24</td>
<td>1.5</td>
<td>15.0</td>
<td>95</td>
<td>0.333</td>
<td>2.31E</td>
<td>0.11</td>
<td>10</td>
<td>75</td>
<td>0.834</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>500</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Q24</td>
<td>1.48</td>
<td>15.0</td>
<td>100</td>
<td>0.376</td>
<td>5.04E</td>
<td>0.1</td>
<td>1.66</td>
<td>35</td>
<td>0.77</td>
<td>1.34</td>
<td>0.23</td>
<td>1307</td>
<td>681</td>
<td>0.575</td>
<td>0.1</td>
</tr>
<tr>
<td>Q25</td>
<td>1.5</td>
<td>15.49</td>
<td>95</td>
<td>0.333</td>
<td>60.8</td>
<td>0.07</td>
<td>1.0</td>
<td>1.5</td>
<td>0.715</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>1600</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q25</td>
<td>1.72</td>
<td>15.37</td>
<td>130</td>
<td>0.3</td>
<td>0.2</td>
<td>0.87</td>
<td>6.63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.5</td>
<td>0.715</td>
<td>1.0</td>
<td>0.1</td>
<td>1060</td>
<td>1600</td>
</tr>
</tbody>
</table>

* Data obtained from Wooley's results.
Data obtained from our probed data except for \(C_1 \) and \(C_2 \).
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*741 OPERATIONAL AMPLIFIER UNIT GAIN BUFFER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CIRCUIT DIAGRAM IS DESCRIBED AS follows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*MODIFIED VERSION ON 8/6/78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*RESISTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*BUFFER FEEDBACK RESISTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R0 2 6 620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*SOURCE RESISTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG 28 3 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 1 4 1K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 4 5 1K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3 4 12 50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4 4 26 5.0K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5 15 27 40K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7 19 18 50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R9 6 21 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10 6 22 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11 4 17 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12 4 16 50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13 23 4 50K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLD 60 0 1MEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIN 3 0 1MEG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CAPACITOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLDI 6 0 55P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLD2 60 0 55P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN 3 0 171PF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 14 29 30P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD1 14 29 1P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLD 6 60 275N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*DIODES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8 9 9 7 Q9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q11 15 15 4 Q5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12 27 27 7 Q9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q19 20 20 19 Q5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q23 23 23 4 Q5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*JUNCTION TRANSISTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 9 3 25 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2 9 2 24 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3 11 10 25 Q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4 14 10 24 Q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5 11 12 1 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6 14 12 5 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q7 7 11 12 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9 10 9 7 Q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10 10 15 26 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13 20 27 7 Q13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q14 7 20 21 Q14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q15 20 21 6 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q16 7 14 16 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q17 29 16 17 Q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20 4 18 22 Q20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q21 20 19 18 Q1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4-4 (Continued)

Q22 14 23 4 Q1
Q24 4 29 18 Q24
Q25 23 22 6 Q3
Q26 29 27 7 Q26
*TRANSISTOR MODELS
.MODEL Q1 NPN(BF=210 BR=2.5 IS=1.26E-15 RB=670 RC=300 RE=0
+VA=180 TF=1.15N TR=405N CCS=3.2P CJE=0.65P PE=0.7 CJC=0.36P
+PC=0.5 EG=1.11)
.MODEL Q3 PNP(BF=75 BR=3.8 IS=3.15E-15 RB=500 RC=150 RE=0
+VA=55 TF=27.4N TR=2540N CCS=5.1P CJE=0.1P PE=0.7 CJC=1.05P
+PC=0.5 EG=1.11)
.MODEL Q13 PNP(BF=0.38 BR=1.4 IS=0.9E-15 RB=1000 RC=80 RE=0
+VA=84 TF=27.4N TR=55N CCS=4.8P CJE=0.1P PE=0.7 CJC=0.3P
+PC=0.5 EG=1.11)
.MODEL Q14 NPN(BF=400 BR=6.1 IS=0.395E-15 RB=180 RC=15 RE=0
+VA=270 TF=0.76N TR=243N CCS=7.8P CJE=2.8P PE=0.7 CJC=1.55P
+PC=0.5 EG=1.11)
.MODEL Q20 PNP(BF=120 BR=4.8 IS=17.6E-15 RB=80 RC=156 RE=0
+VA=58 TF=26.5N TR=2430N CCS=0 CJE=4.05P PE=0.7 CJC=2.8P
+PC=0.5 EG=1.11)
.MODEL Q24 PNP(BF=81 BR=1.5 IS=0.79E-15 RB=1100 RC=170 RE=0
+VA=80 TF=26.5N TR=9550N CCS=0 CJE=1.1P PE=0.7 CJC=2.4P
+PC=0.5 EG=1.11)
.MODEL Q26 PNP(BF=1.76 BR=1.5 IS=2.25E-15 RB=1600 RC=120
+RE=0 VA=84 TF=27.4N TR=220N CCS=4.8P CJE=0.1P PE=0.7
+CJC=0.9P PC=0.5 EG=1.11)
*DC POWER SUPPLY
VP 7 0 DC 15
VN 4 0 DC -15
*SIGNAL SOURCE
VG 28 0 AC 1.0
*OUTPUT
.PRINT AC VDB(60)
.CALPLT AC 1
.PRINT AC VDB(3)
.CALPLT AC 1
.PRINT AC VP(60)
.CALPLT AC 1
.PRINT AC VP(3)
.CALPLT AC 1
*FREQUENCY RANGE
.AC DEC 10 1 10MEG
.END

133
CHAPTER FIVE
NONLINEAR SYSTEM ANALYSIS

The RFI effects in an electronic communication system such as crossmodulation and intermodulation products can be generated by interactions between unwanted signals and desired signals. The interactions generating the RFI effects are the result of system nonlinearities. In this chapter, the use of Volterra series expressions to characterize the nonlinearities of a communication system is discussed. Also discussed is the Nonlinear Circuit Analysis Program NCAP which can be used by electromagnetic compatibility (EMC) engineers to calculate RFI effects in electronic circuits. The actual use of NCAP for the computation of a nonlinear transfer function is demonstrated in the next chapter.

To illustrate the fundamental computational procedures, we shall begin with a simple case of a nonlinear system without memory. Referring to Figure 5-1, a memory-free nonlinearity can be effectively represented by a power series expansion:

$$y(t) = \sum_{n=1}^{\infty} a_n x^n(t)$$ \hspace{1cm} (5-1)

where \(y(t)\) is the output response, \(x(t)\) is the input excitation, and the coefficients \(a_n\) determine the nonlinear behavior of the system. For a linear system, the coefficients \(a_n\) for \(n > 2\) are all equal to zero.
FIGURE 5-1 A Nonlinear System without Memory

Suppose that the input \(x(t) \) is composed of a desired signal \(S_1(t) \) and an unwanted modulated signal \(I_2(t) \)

\[
S_1(t) = S_1 \cos \omega_1 t
\]

\[
I_2(t) = I_2 (1 + m(t)) \cos \omega_2 t, \ m < 1
\]

where \(\omega_1 \) and \(\omega_2 \) are angular frequencies. Then the output signal \(y(t) \) at frequency \(\omega_1 \) will include the following terms:

\[
y(t) = a_1 S_1 (1 + \frac{3a_3}{4a_1} S_1^2 + \frac{3}{2} \frac{a_3}{a_1} I_2^2 + \frac{3a_3}{a_1} m I_2^2) \cos \omega_1 t
\]

where the terms with factors \((3a_3/4a_1)S_1^2 \), \((3a_3/2a_1)I_2^2 \), and \((3a_3m/a_1) \) \(I_2^2 \) in the above expression are called the compression, the desensitization, and the crossmodulation respectively.

Should the input \(x(t) \) be composed of three unmodulated tones

\[
x(t) = S_1 \cos \omega_1 t + I_2 \cos \omega_2 t + I_3 \cos \omega_3 t
\]

then the output response \(y(t) \) is given as:
\[y(t) = a_1 S_1 \left[1 + \frac{3a_3}{4a_1} S_1 + \frac{3}{2} \frac{a_3}{a_1} (I_2^2 + I_3^2)\right] \cos \omega_1 t \]

\[+ a_2 I_2 I_3 \left[\cos(\omega_2 + \omega_3) t + \cos(\omega_2 - \omega_3) t \right] \]

\[+ \frac{3}{4} a_3 [I_2^2 I_3 \cos(2\omega_2 + \omega_3) t + I_2 I_3^2 \cos(2\omega_3 + \omega_2) t] \]

\[+ \ldots \text{(other terms)} \quad (5-6) \]

In the right-hand side of the above equation the terms at frequencies \(\omega_2 \pm \omega_3 \) are second-order intermodulation products (IMP's), while the third terms at frequencies \(2\omega_2 \pm \omega_3 \) and \(2\omega_3 \pm \omega_2 \) are third-order IMP's. If any of these frequency combinations fall in the system passband near \(\omega_1 \), the IMP's can cause a serious RFI problem.

5.1 Volterra Series Description of a Nonlinear System

In a nonlinear system, distortion* can be generated by the nonlinear interaction of multiple-input signals. This distortion can be accurately analyzed using NACP which uses a frequency domain approach where the Volterra functional series expressions are employed.

The Volterra functional series was first applied to nonlinear circuit problems by Wiener\(^{32}\) in 1942. Narayanan\(^{33}\) used the same technique to analyze distortion in a transistor amplifier in 1967 and in cascade and feedback amplifiers at a later time\(^{34,35}\). In 1972, Poon used Volterra analysis to study the third-order distortions in BJT

* The term distortion is used to describe a wide variety of nonlinear effects including RFI effects.
stages using an integral charge control transistor model36. In the same year Kuo developed a computer program to calculate the distortion in amplifier circuits37. The Volterra analysis was also used by Meyer in an investigation of crossmodulation effects in amplifiers38.

A Volterra functional $G(x(t))$ can be expanded into a series of homogeneous functionals F_n of various degrees n31

\[
G(x(t)) = \sum_{n=0}^{\infty} F_n(x(t))
\]

\[
= K_0 + \int_a^b K_1(u)x(u)du + \int_a^b \int_a^b K_2(u_1,u_2)x(u_1)x(u_2)du_1du_2 + \ldots \tag{5-7}
\]

where

\[
F_n(x(t)) = \int_a^b \ldots \int_a^b K_n(u_1,u_2,\ldots,u_n)x(u_1)x(u_2)\ldots x(u_n)du_1\ldots du_n \tag{5-8}
\]

Applying the Volterra series expansion to a nonlinear system in the time domain with the input expressed as $x(t)$ and the output as $y(t)$, we have39

\[
y(t) = \sum_{n=1}^{\infty} y_n(t)
\]

\[
y_1(t) = \int_{-\infty}^{\infty} h_1(\tau)x(t-\tau)d\tau
\]

\[
y_2(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_2(\tau_1,\tau_2)x(t-\tau_1)x(t-\tau_2)d\tau_1d\tau_2 \tag{5-9}
\]

\[
\ldots
\]

\[
y_n(t) = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h_n(\tau_1,\ldots,\tau_n)x(t-\tau_1)\ldots x(t-\tau_n)d\tau_1 \ldots d\tau_n
\]

137
The function \(h_n(t_1, t_2, \ldots, t_n) \) may be interpreted as the nth order nonlinear impulse response of the system. The nth order Fourier transformation of the nth order nonlinear impulse response of the system \(h_n(t_1, \ldots, t_n) \) transforms a time domain signal into the frequency domain. We use the following relationships to make such transformations:

\[
H_n(f_1, f_2, \ldots, f_n) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h_n(t_1, \ldots, t_n) e^{-j2\pi(f_1 t_1 + \ldots + f_n t_n)} \, dt_1 \cdots dt_n \quad (5-10)
\]

\[
h_n(t_1, \ldots, t_n) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} H_n(f_1, f_2, \ldots, f_n) e^{j2\pi(f_1 t_1 + \ldots + f_n t_n)} \, df_1 \cdots df_n \quad (5-11)
\]

Substituting Eq. (5-11) for \(h_n \) into Eq. (5-9) for the output response \(y(t) \), we obtain

\[
y(t) = \sum_{n} y_n(t)
\]

\[
y_n(t) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d_1 \cdots d_n H_n(f_1, \ldots, f_n) e^{j2\pi(f_1 t_1 + f_2 t_2 + \ldots + f_n t_n)} \right] \times \frac{1}{n} \times (t - t_i) \, dt_i \quad (5-12)
\]

\[
= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d_1 \cdots d_n \left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d_1 \cdots d_n H_n(f_1, \ldots, f_n) \left\{ \int_{-\infty}^{\infty} d_1 \cdots d_n \frac{n}{n} x(t - t_i) \right\} \right] \times \exp[j2\pi(f_1 t_1 + \ldots + f_n t_n)]
\]

The multiple integral in the bracket in Eq. (5-12) can be further expressed as

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d_1 \cdots d_n x(t - t_1) x(t - t_2) \ldots x(t - t_n) e^{j2\pi(f_1 t_1 + \ldots + f_n t_n)}
\]

\[
= \int_{-\infty}^{\infty} d_1 x(t - t_1) e^{j2\pi f_1 t_1} \int_{-\infty}^{\infty} d_2 x(t - t_2) e^{j2\pi f_2 t_2} \ldots \int_{-\infty}^{\infty} d_n x(t - t_n) e^{j2\pi f_n t_n} \quad (5-13)
\]
Using the Fourier transformation expressions

\[F(x(t)) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt = X(f) \] (5-14)

and

\[\int_{-\infty}^{\infty} d\tau_1 x(t-\tau_1) \exp(j2\pi f_1 \tau_1) \]

\[= \int_{-\infty}^{\infty} d\tau_1 x(t-\tau_1) \exp[-j2\pi f_1 (t-\tau_1)] \exp(j2\pi f_1 t) \]

\[= \exp(j2\pi f_1 t) \int_{-\infty}^{\infty} d\tau_1 \exp[-j2\pi f_1 (t-\tau_1)] \]

\[= \exp(j2\pi f_1 t)X(f_1) \] (5-15)

We have

\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d\tau_1 d\tau_2 \cdots d\tau_n x(t-\tau_1) x(t-\tau_2) \cdots x(t-\tau_n) \]

\[\cdot \exp[j2\pi(f_1+\cdots+f_n)] \]

\[= \exp[j2\pi(f_1+f_2+\cdots+f_n)t]X(f_1)\cdots X(f_n) \] (5-16)

or

\[y_n(t) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} df_1 \cdots df_n H_n(f_1,\ldots,f_n) \]

\[\cdot X(f_1)X(f_2)\cdots X(f_n) \exp[j2\pi(f_1+\cdots+f_n)t] \] (5-17)

Note that \(H(f_1, f_2, \ldots, f_n) \) is not the nth order transform of \(y_n(t) \). However, \(H_n(f_1,\ldots,f_n) \) \(X(f_1) \ldots X(f_n) \) is the nth order transform of \(y_n(t_1, t_2, \ldots, t_n) \).* We mention here that the computer program NCAP calculates \(H_n(f_1,f_2,\ldots,f_n) \) in the frequency domain.
Now let us consider the important special case where the input
signal \(x(t) \) is a \(M/2 \)-tone input where \(M \) is an even integer. The
Fourier transformation of \(x(t) \) will be

\[
X(f) = \frac{1}{2} \sum_{m=1}^{M} A_m \delta(f-f_m); \quad f_m = -f_1, \quad A_m = A_1^* \quad (5-18)
\]

where the coefficient \(A_m \) is the complex amplitude of the \(m \)-th tone at \(f_m \).

Then the first-order output response becomes

\[
y_1(t) = \int_{-\infty}^{\infty} df H_1(f) \frac{1}{2} \sum_{m=1}^{M} A_m \delta(f-f_m) \exp(j2\pi ft)
\]

\[
= \frac{1}{2} \sum_{m=1}^{M} A_m H_1(f_m) \exp(j2\pi f_m t) \quad (5-19)
\]

and the second-order output response is given as

\[
y_2(t) = \int_{-\infty}^{\infty} df_1 df_2 H_2(f_1, f_2) \frac{1}{2} \sum_{m_1=1}^{M} \sum_{m_2=1}^{M} A_{m_1} A_{m_2} \delta(f_1-f_{m_1}) \delta(f_2-f_{m_2}) \exp[j2\pi (f_1+f_2)t] \]

\[
= \frac{1}{4} \sum_{m_1=1}^{M} \sum_{m_2=1}^{M} A_{m_1} A_{m_2} H_2(f_{m_1}, f_{m_2}) \exp[j2\pi (f_{m_1}+f_{m_2})t] \quad (5-20)
\]

For a single-tone input \(M \) equals 2, and \(X(f) \) becomes

\[
X(f) = \frac{1}{2} A_1 \delta(f-f_1) + \frac{1}{2} A_2 \delta(f-f_2) \quad (5-21)
\]

* \(y_n(t_1, \ldots, t_n) \) equals \(\cdots \int h_n(\tau_1, \tau_n) \frac{n}{\tau} x(t_1-\tau_1) dt_1 \)

Note that \(y_n(t) = y_n(t_1, \ldots, t_n) \) where \(t_1 = t_2 = \ldots = t_n = t \).

where \(f_2 = -f_1 \). The first-order response \(y_1(t) \) and the second-order
response \(y_2(t) \) are given by

140
\[y_1(t) = \frac{1}{2} A_1 H_1(f_1) \exp(j2\pi f_1 t) + \frac{1}{2} A_2 H_1(f_2) \exp(j2\pi f_2 t) \]
\[y_2(t) = \frac{1}{4} A_1^2 H_2(f_1, f_1) \exp[j2\pi(2f_1 t)] + \frac{1}{2} A_1 A_2 H_2(f_1, f_2) \exp[j2\pi(f_1 + f_2) t] \]
\[+ \frac{1}{4} A_2^2 H_2(f_2, f_2) \exp[j2\pi(2f_2) t] \]
\[(5-22) \]

For a double-tone input \(M = 4 \), and \(X(f) \) becomes
\[X(f) = \frac{1}{2} A_1 \delta(f-f_1) + \frac{1}{2} A_2 \delta(f-f_2) + \frac{1}{2} A_3 \delta(f-f_3) + \frac{1}{2} A_4 \delta(f-f_4) \]
\[(5-23) \]

where \(f_3 = -f_1 \), \(f_4 = -f_2 \), \(A_3 = A_1^* \), and \(A_4 = A_2^* \). The first-order response \(y_1(t) \) and the second-order response \(y_2(t) \) are given by
\[y_1(t) = \frac{1}{2} A_1 H_1(f_1) \exp(j2\pi f_1 t) + \frac{1}{2} A_2 H_1(f_2) \exp(j2\pi f_2 t) \]
\[+ \frac{1}{2} A_3 H_1(f_3) \exp(j2\pi f_3 t) + \frac{1}{2} A_4 H_1(f_4) \exp(j2\pi f_4 t) \]
\[y_2(t) = \frac{1}{4} A_1^2 H_2(f_1, f_1) \exp[j2\pi(2f_1 t)] + \frac{1}{2} A_1 A_2 H_2(f_1, f_2) \exp[j2\pi(f_1 + f_2) t] \]
\[+ \frac{1}{4} A_1 A_3 H_2(f_1, f_3) \exp[j2\pi(f_1 + f_3) t] + \frac{1}{2} A_1 A_4 H_2(f_1, f_4) \exp[j2\pi(f_1 + f_4) t] \]
\[+ \frac{1}{4} A_2 A_3 H_2(f_2, f_3) \exp[j2\pi(f_2 + f_3) t] + \frac{1}{2} A_2 A_4 H_2(f_2, f_4) \exp[j2\pi(f_2 + f_4) t] \]
\[+ \frac{1}{4} A_3 A_4 H_2(f_3, f_4) \exp[j2\pi(f_3 + f_4) t] + \frac{1}{4} A_4^2 H_2(f_4, f_4) \exp[j2\pi(2f_4) t] \]
\[(5-24) \]

In general, the nth degree output response for a \(M/2 \)-tone input (where \(M/2 \) must be an integer) can be given as
\[y_n(t) = \int \ldots \int df_1 df_2 \ldots df_n H_n(f_1, \ldots, f_n) X(f_1) \ldots X(f_n) \]
\[\cdot \exp[j2\pi(f_1 + \ldots + f_n) t] \]
$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} df_1 df_2 \ldots df_n H_n(f_1, \ldots, f_n) \left[\frac{1}{2} \sum_{q_1=1}^{M} A_{q_1} \delta(f-f_{q_1}) \right] \ldots$$

$$\left[\frac{1}{2} \sum_{q_n=1}^{M} A_{q_n} \delta(f-f_{q_n}) \right] \exp \left[\frac{j2\pi}{q_1} (f_1 + \ldots + f_n) t \right]$$

$$= \left(\frac{1}{2} \right)^n \sum_{m_1! m_2! \ldots m_M!} H_n(f_1, \ldots, f_1, f_2, \ldots, f_2, \ldots, f_M, \ldots, f_M)$$

$$\cdot \exp \left(j2\pi f_{\Sigma} t \right)$$

(5-25)

where m_1 denotes the number of times the frequency f_1 appears in a particular frequency mix f_{Σ}. Equation (5-25) is valid for $n > M$, and M is the number of discrete frequencies ($M/2$ is the number of positive frequency terms) in the input frequency spectrum with

$$f_{\Sigma} = m_1 f_1 + m_2 f_2 + \ldots + m_M f_M$$

(5-26)

$$n = m_1 + m_2 + \ldots + m_M$$

(5-27)

Note that in the above expressions the summations are made on all possible combinations of m_1, m_2, ..., and m_M, where m_j denotes the number of times the frequency f_j is repeated in an nth order transfer function.

Equation (5-25) determines the terms of nth order transfer functions for an input signal with M frequency components. For additional information on this subject the reader is referred to Refs. 39 and 40.
5.2 The NCAP Determination of the Nonlinear Transfer Functions

Let the nonlinear system have a single input \(V_G(t) \) which can be expressed as a sum of exponential functions

\[
V_G(t) = \sum_{i=1}^{M} \exp(\jmath 2\pi f_i t)
\]

(5-28)

where \(f_1, f_2, \ldots, f_M \). Note that \(M \) may be an odd or even integer.

An output response \(V_L(t) \) can be expressed as a sum of nonlinear responses which up to the 3rd order are

\[
V_L(t) = \sum_{i=1}^{M} H_1(f_i) \exp(\jmath 2\pi f_i t) + \sum_{i=1}^{M} \sum_{j=1}^{M} H_2(f_i, f_j) \exp(\jmath 2\pi (f_i + f_j) t) + \sum_{i=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} H_3(f_i, f_j, f_k) \exp(\jmath 2\pi (f_i + f_j + f_k) t) + \ldots
\]

(5-29)

If the output voltage \(V_L(t) \) can be determined and put into the form of Eq. (5-29), the linear and the nonlinear transfer functions at the output node and at the specified frequencies can be identified by matching the coefficients of the exponential terms. Note that the coefficient of \(\exp(\jmath 2\pi f_L t) \) at the frequency \(f_L \) contains a number of terms. It is quite tedious to find a nonlinear transfer function in this manner. However, from Eqs. (5-25), (5-26) and (5-27), for an \(M/2 \) tone input which produces \(M \) complex exponentials the amplitude of an \(n \)th degree output response \(y_n(t) \) at frequency \(f_L \) determines the nonlinear transfer function \(H_n(f) \)

\[
H_n(f) = \sum_{m_1=1}^{M} \sum_{m_2=1}^{M} \sum_{m_M=1}^{M} \exp(\jmath 2\pi (f_1 + f_2 + \ldots + f_M) t)
\]

where \(f \) is the particular frequency mix \((f_1, \ldots, f_1, f_2, \ldots, f_2, \ldots, f_M, \ldots, f_M) \)

Based upon this fact, the computer program NCAP calculates the nonlinear transfer function \(H_n(f) \) for a given system by computing the amplitude of the \(n \)th degree output response \(y_n(t) \) at the frequency \(f_L \). The
computer program NCAP analyses the equations of the system by using a frequency domain small signal ac circuit analysis approach.

The procedures used by NCAP to find the transfer functions are outlined below:

(1) The nodal equations are constructed according to the network topology using the Kirchhoff Current Law (KCL).

The KCL states that the nodal admittance matrix \(Y \), the nodal voltage vector \(V \), and the equivalent nodal current source vector \(J \) are related to one another in frequency domain by

\[
Y(s)V(s) = J(s)
\]
(5-30)

or

\[
Y(s)(V_k(s) + V_d(s)) = J_k(s) + J_d(s)
\]
(5-31)

where \(J_k(s) \) denotes the linear equivalent nodal current source vector and \(J_d(s) \) the nonlinear equivalent nodal current source vector, while \(V_k(s) \) is the linear node-to-datum voltage vector, \(V_d(s) \) the nonlinear node-to-datum voltage vector. The parameter \(s \) denotes \(j\omega \).

Equations (5-30) and (5-31) are evaluated at appropriate discrete values of \(s = j\omega = j2\pi f \) corresponding to the \(M \) values of the frequencies \(f_i \) in the input signal spectrum. For a single (\(M = 1 \)) input excitation \(V_G(t) = \exp(j2\pi f_1 t) \), and the current column vector \(J_k \) can be expressed in time domain as

\[
J_k(t) = (1/Z_g)\exp(j2\pi f_1 t), 0, \ldots, 0 ^T
\]
(5-32)

where \(Z_g \) is the source impedance operator. The vector \(J_k \) can also be expressed in frequency domain as
\[J_L(s) = (1/Z_g)(1, 0, \ldots, 0)^T \]
\[(5-33) \]

where \(T \) denotes the transpose of the row matrix and \(Z_g \) the source impedance of the voltage excitation \(V_G \).

(2) The network first-order (linear) responses with the current source \(J(f_i) = J_L(f_i) \) at all the frequencies \(f_i \) in the input signal spectrum are determined.

\[H_1(f_i) = [Y(f_i)]^{-1} J_L(f_i); \quad i=1, 2, \ldots, M \]
\[(5-34) \]

(3) The second-order nonlinear current source vector \(J_d(f_i, f_j) \) is determined at the frequency \(f_i + f_j \) using the values for the first-order node voltages at the two frequencies \(f_i \) and \(f_j \) for all \(i \) and \(j \).

The network second-order transfer function \(H_2(f_i, f_j) \) is calculated using the expression

\[H_2(f_i, f_j) = \frac{1}{2}[Y(f_i + f_j)]^{-1} J_d(f_i, f_j); \quad \text{for all } i, j \]
\[(5-35) \]

The value for the second-order transfer function \(H_2(f_i, f_j) \) depends upon the value of the network admittance matrix evaluated at the frequency \(f_i + f_j \) and upon the second-order current vector \(J_d(f_i, f_j) \).

(4) The third-order nonlinear current source vector \(J_d(f_i, f_j, f_k) \) is determined at the frequency \(f_i + f_j + f_k \). To determine values for \(J_d(f_i, f_j, f_k) \), the values for the first-order transfer functions \(H_1(f_i), H_1(f_j), \) and \(H_1(f_k) \) and for the second-order transfer functions \(H_2(f_j, f_k), H_2(f_i, f_k), \) and \(H_2(f_i, f_j) \) are used. Then the network third-order transfer function \(H_3(f_i, f_j, f_k) \) is calculated using the expression

\[H_3(f_i, f_j, f_k) = \frac{1}{6} [Y(f_i + f_j + f_k)]^{-1} J_d(f_i, f_j, f_k); \quad \text{for all } i, j, k \]
\[(5-36) \]
The value for the third-order transfer function $H_3(f_i, f_j, f_k)$ depends upon the value of the network admittance matrix evaluated at the frequency $f_i + f_j + f_k$ and upon the third-order current source vector $J_d(f_i, f_j, f_k)$.

The fourth and higher-order transfer functions can be found by using a similar process. In practice the need to evaluate the non-linear transfer function of fourth and high orders does not occur often. The computer program NCAP can calculate nonlinear transfer functions to the 6th order.

The procedures that NCAP uses to calculate nonlinear transfer functions of the nth order can be made much clearer by studying specific examples. In fact it may be that the NCAP computational procedures can be best understood by studying specific examples. For this reason two such examples will be given in the next chapter.
CHAPTER SIX
COMPUTATION OF NONLINEAR TRANSFER FUNCTIONS

In this chapter two examples are given to illustrate how the NCAP algorithm is implemented to calculate linear and nonlinear transfer functions. These examples will also demonstrate some computational techniques used for nonlinear circuit analysis. One example involves a simple junction-gate field effect transistor (JFET) in a broadband amplifier circuit. The other example involves a bipolar junction transistor (BJT) in a tuned RF amplifier stage. First, second, and third order transfer functions will be calculated by using a direct process and by using the computer program NCAP. The two sets of values calculated will be compared.

6.1 A Broadband JFET Amplifier Stage

The circuit diagram for a broadband JFET amplifier stage is shown in Figure 6-1. Since the third-order transfer function is to be calculated, the input signal source $v_s(t)$ consists of three complex exponentials of unit amplitude and is given by

$$v_s(t) = \sum_{i=1}^{3} \exp(j2\pi f_i t)$$

First the matrix equations for the network will be developed. Then the nonlinear coefficients of the JFET will be given. Finally the calculated values for the nonlinear transfer functions (up to third-order) will be presented.

* This example is chosen to illustrate the direct process used to calculate nonlinear transfer functions. Although the dissertation is devoted to bipolar integrated circuits, the JFET is chosen because the JFET nonlinear analysis is relatively simple.
FIGURE 6-1
The Circuit Diagrams of a Broadband JFET Amplifier (a) and Its AC Equivalent Circuit (b). Notations A, B, D, and E represent the linear Transfer Functions at Nodes 1, 2, 3, and 4, respectively. Notations G, D, S', and S represent Gate, Drain, Internal Source, and Source Terminals, respectively.
The incremental gate current i_c is the current generator that corresponds to a nonlinear capacitor which was discussed in Section 2.3.2. The incremental drain current i_d is a voltage controlled nonlinear dependent current source which was discussed in Section 2.3.4.

The incremental gate current i_c and drain current i_d are given by

\[i_c = C_1 \frac{d}{dt} v_{13} + C_2 \frac{d}{dt} v_{13}^2 + C_3 \frac{d}{dt} v_{13}^3 + \text{higher-order terms} \]
(6-1)

\[i_d = a_1 v_{13} + a_2 v_{13}^2 + a_3 v_{13}^3 + \text{higher-order terms} \]
(6-2)

where $v_{13} = v_1 - v_3$.

Using the Kirchhoff current law and neglecting fourth and higher-order terms, we obtain

\[\frac{v_{13} - v_1}{R_1} - C_1 \frac{d}{dt} (v_{13} - v_3) - a_2 \frac{d}{dt} (v_{13} - v_3)^2 + C_3 \frac{d}{dt} (v_{13} - v_3)^3 = 0 \]
(6-3)

\[C_1 \frac{d}{dt} (v_1 - v_3) + C_2 \frac{d}{dt} (v_1 - v_3)^2 + C_3 \frac{d}{dt} (v_1 - v_3)^3 + a_1 (v_1 - v_3) \]

\[+ a_2 (v_1 - v_3)^2 + a_3 (v_1 - v_3)^3 + (v_4 - v_3)/R_S = 0 \]
(6-4)

\[\frac{v_3}{R_S} + v_4 \left(-\frac{1}{R_S} - \frac{1}{R_4}\right) = 0 \]
(6-5)

\[-a_1 (v_1 - v_3) - a_2 (v_1 - v_3)^2 - a_3 (v_1 - v_3)^3 - \frac{v_2}{R_3} = 0 \]
(6-6)

Next Eqs. (6-3) to (6-6) can be recast in a matrix form as

\[
\begin{pmatrix}
-\frac{1}{R_1} - C_1 \frac{d}{dt} & 0 & C_1 \frac{d}{dt} & 0 \\
C_1 \frac{d}{dt} + a_1 & -C_1 \frac{d}{dt} - a_1 - \frac{1}{R_S} & \frac{1}{RS} & \frac{1}{R_4} \\
0 & 0 & \frac{1}{R_S} & -\frac{1}{R_S} - \frac{1}{R_4} \\
-a_1 & -\frac{1}{R_3} & a_1 & 0
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{pmatrix}
\]
To obtain the first-order transfer functions, we omit the quadratic and cubic terms in Eq. (6-7) and assume an excitation v_s of the form $v_s = V_s \exp(j2\pi f_1 t)$ with $V_s = 1$.

Then the first-order transfer function can be calculated using

\[
\begin{pmatrix}
\frac{1}{R_l} - C_1 j\omega_1 & 0 & C_1 j\omega_1 & 0 \\
0 & -C_1 j\omega_1 - \alpha_1 & 0 & \frac{1}{RS} \\
0 & 0 & \frac{1}{RS} & -\frac{1}{RS} - \frac{1}{R_4} \\
-\alpha_1 & -\frac{1}{R_3} & \alpha_1 & 0
\end{pmatrix}
\begin{pmatrix}
A_1(f_1) \\
B_1(f_1) \\
D_1(f_1) \\
E_1(f_1)
\end{pmatrix} = \frac{1}{R_l}
\]

(6-8)

where the A_1, B_1, D_1, and E_1 denote the first-order node voltages (transfer functions) at nodes 1, 2, 3, and 4 respectively. The subscript 1 denotes first-order transfer functions.

In order to obtain the matrix equation for the second-order transfer functions we begin by expressing v_1, v_2, v_3, and v_4 in form of a summation of exponential functions. These equations are
\[v_1 = \frac{3}{j} \left[A_1(f_1) \exp(j2\pi f_1 t) + A_2(f_1, f_2) \exp(j4\pi f_1 t) \right. \\
+ A_3(f_1, f_1, f_1) \exp(j6\pi f_1 t) + \frac{3}{j} \sum_{j \neq 1} A_2(f_1, f_j) \exp(j2\pi (f_1 + f_j) t) \\
+ 3A_3(f_1, f_1, f_j) \exp(j2\pi (2f_1 + f_j) t) \right] \\
+ 6A_3(f_1, f_2, f_3) \exp(j2\pi (f_1 + f_2 + f_3) t) + \text{high-order terms} \\
\triangleq F(A) \quad (6-9) \\
v_2 \triangleq F(B) \quad (6-10) \\
v_3 \triangleq F(D) \quad (6-11) \\
v_4 \triangleq F(E) \quad (6-12) \\
\]

where in Eqs. (6-9), (6-10), (6-11), and (6-12) the \(A_2(f_1, f_j), B_2(f_1, f_j), D_2(f_1, f_j), \) and \(E_2(f_1, f_j) \) denote the second-order voltage transfer functions at nodes 1, 2, 3, and 4 at frequency \(f_1 + f_j \) respectively. The \(A_3(f_1, f_j, f_k), B_3(f_1, f_j, f_k), D_3(f_1, f_j, f_k), \) and \(E_3(f_1, f_j, f_k) \) denote the third-order voltage transfer functions at nodes 1, 2, 3, and 4 at frequency \(f_1 + f_j + f_k \) respectively. The function \(F(A) \) for the voltage \(v_1 \) is defined by Eq. (6-9). The functions \(F(B), F(D), \) and \(F(E) \) for the voltages \(v_2, v_3, \) and \(v_4 \) are defined in a similar manner.

Equations (6-9) to (6-12) are substituted in Eq. (6-7). Then coefficients of identical terms on both sides of the resulting equation are equated. As an example the coefficients of \(\exp(j2\pi (f_1 + f_j) t) \) for \(i \neq j \) will be given.
The coefficient of this term in the expression $C_2 \frac{d}{dt}(v_1 - v_3)^2$

\[+ C_3 \frac{d}{dt} (v_1 - v_3)^3 \]

is

\[C_2 4\pi(f_i + f_j)[A_1(f_i) - D_1(f_i)][A_1(f_j) - D_1(f_j)] \]

The coefficient of this term in the expression $-(\alpha_2 + C_2 \frac{d}{dt})(v_1 - v_3)^2$

\[-(\alpha_3 + C_3 \frac{d}{dt})(v_1 - v_3)^3 \]

is

\[-2[\alpha_2 + C_2 j2\pi(f_i + f_j)][A_1(f_i) - D_1(f_i)][A_1(f_j) - D_1(f_j)] \]

The coefficient of this term in the expression $\alpha_2 (v_1 - v_3)^2 + \alpha_3 (v_1 - v_3)^3$ is

\[2\alpha_2 [A_1(f_i) - D_1(f_i)][A_1(f_j) - D_1(f_j)] \]

Using these results the matrix Eq. (6-7) at the second-order frequency $f_i + f_j$ can be written as
\[
\begin{bmatrix}
-1/R1 - C_1 j 2\pi (f_i + f_j) & 0 & C_1 j 2\pi (f_i + f_j) & 0 \\
C_1 j 2\pi (f_i + f_j) + \alpha_1 & 0 & -\alpha_1 - \frac{1}{RS} & -C_1 j 2\pi (f_i + f_j) & \frac{1}{RS} \\
0 & 0 & 1/RS & -\frac{1}{RS} & -\frac{1}{R4} \\
-\alpha_1 & -1/R3 & \alpha_1 & 0 & 0
\end{bmatrix}
\]

\[
\begin{align*}
A_2(f_1, f_j) \\
B_2(f_1, f_j) \\
D_2(f_1, f_j) \\
E_2(f_1, f_j)
\end{align*}
\]

\[
2 \begin{bmatrix}
C_2 j 2\pi (f_i + f_j) [A_1(f_1) - D_1(f_i)] [A_1(f_j) - D_1(f_j)] \\
-\alpha_2 + j 2\pi C_2(f_i + f_j) [A_1(f_1) - D_1(f_i)] [A_1(f_j) - D_1(f_j)] \\
\alpha_2 [A_1(f_1) - D_1(f_1)] [A_1(f_j) - D_1(f_j)] \\
0
\end{bmatrix}
\]

(6-13)

Note that the time domain operator \(d/dt\) becomes the term \(j 2\pi (f_i + f_j)\) in the frequency domain. Therefore, the second-order nonlinear transfer functions \(A_2(f_1, f_j), B_2(f_1, f_j), D_2(f_1, f_j),\) and \(E_2(f_1, f_j)\) can be obtained by solving the matrix Eq. (6-13). Note that \(i\) and \(j\) take on the values 1, 2, 3 and that there are three distinct frequencies \(f_1 + f_2, f_2 + f_3,\) and \(f_3 + f_1\) for which \(f_i \neq f_j.\)
The third-order matrix equation at the frequency \(f_1 + f_2 + f_3 \) is obtained by equating the coefficients of the exponential
\[\exp(j2\pi(f_1+f_2+f_3)t). \]

The coefficient in the expression for \(C_2 \frac{d}{dt}(v_1-v_3)^2 + C_3 \frac{d}{dt}(v_1-v_3)^3 \) is
\[C_2^2 \beta \pi(f_1+f_2+f_3)[[A_1(f_1)-D_1(f_1)][A_2(f_2,f_3)-D_2(f_2,f_3)]+[A_1(f_2)-D_1(f_2)][A_2(f_1,f_3)-D_2(f_1,f_3)] -D_2(f_1,f_3)]+[A_1(f_3)-D_1(f_3)][A_2(f_2,f_1)-D_2(f_2,f_1)] \]
\[-D_2(f_1,f_3)]+[A_1(f_3)-D_1(f_3)][A_2(f_2,f_1)-D_2(f_2,f_1)]+C_3^2 \beta \pi(f_1+f_2+f_3) \]
\[\cdot[A_1(f_1)-D_1(f_1)][A_2(f_2)-D_1(f_2)][A_1(f_3)-D_1(f_3)] \]
and that in the expression for \(-a_2+C_2 \frac{d}{dt}(v_1-v_3)^2-(a_3+C_3 \frac{d}{dt}(v_1-v_3)^3 \) is
\[-4a_2+2\beta C_2(f_1+f_2+f_3)[[A_1(f_1)-D_1(f_1)][A_2(f_2,f_3)-D_2(f_2,f_3)]+[A_1(f_2)-D_1(f_2)] \]
\[\cdot[A_2(f_1,f_3)-D_2(f_1,f_3)]+[A_1(f_3)-D_1(f_3)][A_2(f_2,f_1)-D_2(f_2,f_1)] \]
\[-6a_3+C_3^2 \beta (f_1+f_2+f_3)[[A_1(f_1)-D_1(f_1)][A_1(f_2)-D_1(f_2)][A_1(f_3)-D_1(f_3)] \]
and that in the expression for \(a_2(v_1-v_3)^2+a_3(v_1-v_3)^3 \) is
\[4a_2[[A_1(f_1)-D_1(f_1)][A_2(f_2,f_3)-D_2(f_2,f_3)]+[A_1(f_2)-D_1(f_2)][A_2(f_1,f_3)-D_2(f_1,f_3)] \]
\[+[A_1(f_3)-D_1(f_3)][A_2(f_2,f_1)-D_2(f_2,f_1)]+6a_3[A_1(f_1)-D_1(f_1)][A_1(f_2)-D_1(f_2)] \]
\[\cdot[A_1(f_3)-D_1(f_3)] \]

Using these results the matrix Eq. (6-7) at the third-order frequency \(f_1 + f_2 + f_3 \) can be written as
\[
\begin{bmatrix}
-\frac{1}{R_1} -c_1 j(\omega_1 + \omega_2 + \omega_3) & 0 & c_1 j(\omega_1 + \omega_2 + \omega_3) & 0 \\
-c_1 j(\omega_1 + \omega_2 + \omega_3) + \alpha_1 & 0 & -(\alpha_1 + \frac{1}{R_5}) - j c_1 (\omega_1 + \omega_2 + \omega_3) & 1/RS \\
0 & 0 & 1/RS & -\frac{1}{R_5} - \frac{1}{R_4} \\
-\alpha_1 & -\frac{1}{R_5} & \alpha_1 & 0
\end{bmatrix}
\]

\[
A_3(f_1, f_2, f_3) \\
B_3(f_1, f_2, f_3) \\
D_3(f_1, f_2, f_3) \\
E_3(f_1, f_2, f_3)
\]

\[
C_2 18\pi (f_1 + f_2 + f_3) \{ [A_1(f_1) - D_1(f_1)] [A_2(f_2, f_3) - D_2(f_2, f_3)] + [A_1(f_1) - D_1(f_1)] [A_2(f_1, f_3) - D_2(f_1, f_3)] \}
\]

\[
-4 \{ a_2 + 2\pi c_2 (f_1 + f_2 + f_3) \} \{ [A_1(f_1) - D_1(f_1)] [A_2(f_2, f_3) - D_2(f_2, f_3)] + [A_1(f_2) - D_1(f_2)] \}
\]

\[
-6 \{ a_3 + 12\pi c_3 (f_1 + f_2 + f_3) \} \{ [A_1(f_1) - D_1(f_1)] [A_2(f_2, f_3) - D_2(f_2, f_3)] + [A_1(f_3) - D_1(f_3)] \}
\]

\[
0
\]

\[
4 a_2 \{ [A_1(f_1) - D_1(f_1)] [A_2(f_2, f_3) - D_2(f_2, f_3)] + [A_1(f_2) - D_1(f_2)] [A_2(f_1, f_3) - D_2(f_1, f_3)] \}
\]

\[
+ [A_1(f_3) - D_1(f_3)] [A_2(f_2, f_1) - D_2(f_2, f_1)] + 6 a_3 [A_1(f_1) - D_1(f_1)] [A_1(f_2) - D_1(f_2)]
\]

\[
\cdot [A_1(f_3) - D_1(f_3)]
\]
The matrix Eq. (6-8) can be solved for the first-order transfer functions $A_1(f_1)$, $B_1(f_1)$, $D_1(f_1)$, and $E_1(f_1)$. The matrix Eq. (6-13) can be solved for the second-order transfer functions $A_2(f_i, f_j)$, $B_2(f_i, f_j)$, $D_2(f_i, f_j)$ and $E_2(f_i, f_j)$. The matrix Eq. (6-14) can be solved for the third-order transfer functions $A_3(f_i, f_j, f_k)$, $B_3(f_i, f_j, f_k)$, $D_3(f_i, f_j, f_k)$, and $E_3(f_i, f_j, f_k)$. This is best done numerically using a digital computer. In order to solve these equations numerically, values for the nonlinear coefficients C_1, C_2, C_3, a_1, a_2, and a_3 must be known.

Values for the JFET nonlinear coefficients a_1, a_2, and a_3 can be determined by using the equation that relates the JFET drain current I_D to the internal gate-source voltage V'_{GS}. Values for the JFET nonlinear coefficients C_1, C_2, and C_3 can be determined by using the equation that relates the JFET gate-source capacitance C to the internal gate-source voltage V'_{GS}. The JFET saturated drain current formula used in NCAP is given by

$$I_D = 3 I_{D \text{MAX}} \rho \left\{ -\frac{\rho}{2} + \frac{1}{2} \rho^2 + 4 \left(\frac{1}{3} - \frac{V'_{GS} + \psi}{V_p + \psi} + \frac{2}{3} \left(\frac{V'_{GS} + \psi}{V_p + \psi} \right)^{3/2} \right) \right\}^{1/2}$$

The parameters used in Eq. (6-15) are described in Table 6-1. Typical values are also given.
TABLE 6-1

JFET NCAP MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\text{D\text{MAX}}}$</td>
<td>0.013 A</td>
<td>Drain Current Parameter</td>
</tr>
<tr>
<td>ψ</td>
<td>-0.5 V</td>
<td>JFET Barrier Potential</td>
</tr>
<tr>
<td>V_P</td>
<td>-1.70 V</td>
<td>Pinch-off Voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>-1.50 V</td>
<td>External Gate-Source Voltage</td>
</tr>
<tr>
<td>R_S</td>
<td>37 Ω</td>
<td>Source Resistance</td>
</tr>
<tr>
<td>ρ</td>
<td>1.722</td>
<td>Drain Current Parameter</td>
</tr>
<tr>
<td>K</td>
<td>2.20 pF-V1_2</td>
<td>Gate-Source Capacitance Parameter</td>
</tr>
<tr>
<td>V_o</td>
<td>-0.5 V</td>
<td>Gate-Source Capacitor Built-in Voltage</td>
</tr>
<tr>
<td>m</td>
<td>0.5</td>
<td>Asymptotic Slope of $C(V_{\text{GS}})$</td>
</tr>
</tbody>
</table>

The first step is to determine the JFET operating point. By an iterative method, the drain current for the circuit shown in Figure 6-1 was calculated to be 7.938×10^{-5} A, and the voltage $V_{\text{GS}}' = V_{\text{GS}} - V_{\text{DS}} R_S$ was calculated to be -1.503 V. Knowing I_D and V_{GS}', the nonlinear coefficients a_1, a_2, and a_3 can be calculated from the following equations:

$$a_1 = \frac{3I_D}{V_{\text{GS}}'}$$ \hspace{1cm} (6-16)

$$a_2 = \frac{1}{2} \frac{3^2 I_D}{V_{\text{GS}}'^2}$$ \hspace{1cm} (6-17)

$$a_3 = \frac{1}{6} \frac{3^3 I_D}{V_{\text{GS}}'^3}$$ \hspace{1cm} (6-18)

The following values were obtained

$$a_1 = 8.115 \times 10^{-4} \text{ mho}$$
\[a_2 = 2.103 \times 10^{-3} \text{ mho/v} \]

\[a_3 = -1.460 \times 10^{-4} \text{ mho/v}^2 \]

The nonlinear capacitance-voltage relationship used in NCAP for the gate-source capacitance \(C \) is given by

\[C = K |V_o + \frac{V'}{V_{GS}}|^m \] \hspace{1cm} (6-19)

The parameters used in Eq. (6-19) are described in Table 6-1. Typical values are also given. The nonlinear coefficients \(C_1 \), \(C_2 \), and \(C_3 \) can be calculated using

\[C_1 = C(V'_{GS}) \] \hspace{1cm} (6-20)

\[C_2 = (1/2) \frac{\partial C}{\partial V'_{GS}} \] \hspace{1cm} (6-21)

\[C_3 = (1/6) \frac{\partial^2 C}{\partial V'_{GS}^2} \] \hspace{1cm} (6-22)

The following values were obtained.

\[C_1 = 1.555 \times 10^{-12} \text{ F} \]

\[C_2 = 1.940 \times 10^{-13} \text{ F/V} \]

\[C_3 = 4.844 \times 10^{-14} \text{ F/V}^2 \]

Using these values for the coefficients \(a_1 \), \(a_2 \), \(a_3 \), \(C_1 \), \(C_2 \), and \(C_3 \), and the matrix Eqs. (6-8), (6-13), and (6-14), values for first-order, second-order, and third-order transfer functions were calculated. Standard subroutines in computer libraries such as IMSL available at SUNYAB were used. The results are given in Table 158.
Also given in Table 6-2 are the numerical results calculated using the computer program NCAP at Rome Air Development Center, Griffiss Air Force Base, New York. The two sets of results agree well for the dominant transfer functions. The differences observed for the very low valued terms are believed to be related to numerical inaccuracies in the matrix inversion routines used.

TABLE 6-2

CALCULATED VALUES FOR THE JFET NONLINEAR TRANSFER FUNCTIONS

<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>IMSL (SUNYAB)</th>
<th>NCAP (RADC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 (1 kHz)</td>
<td>$-j0.948E-8$</td>
<td>$1-j0.948E-15$</td>
</tr>
<tr>
<td>B_1 (1 kHz)</td>
<td>$-78.79+j0.00002839$</td>
<td>$-78.78+j0.00227$</td>
</tr>
<tr>
<td>D_1 (1 kHz)</td>
<td>$0.0292+j0.340E-6$</td>
<td>$0.0292+j0.280E-4$</td>
</tr>
<tr>
<td>E_1 (1 kHz)</td>
<td>$0.788E-6+j0.920E-11$</td>
<td>$0.788E-6+j0.757E-9$</td>
</tr>
<tr>
<td>A_2 (1 kHz, 0.9 kHz)</td>
<td>$-0.901E-15-j0.862E-9$</td>
<td>$-0.219E-18+j0.350E-15$</td>
</tr>
<tr>
<td>B_2 (1 kHz, 0.9 kHz)</td>
<td>$-0.192E3+j0.719E-4$</td>
<td>$-0.192E3+j0.209E-1$</td>
</tr>
<tr>
<td>D_2 (1 kHz, 0.9 kHz)</td>
<td>$0.712E-1+j0.528E-8$</td>
<td>$0.712E-1+j0.124E-3$</td>
</tr>
<tr>
<td>E_2 (1 kHz, 0.9 kHz)</td>
<td>$0.192E-5+j0.143E-12$</td>
<td>$0.192E-5+j0.336E-8$</td>
</tr>
<tr>
<td>A_3 (1 kHz, 0.9 kHz, 1.1 kHz)</td>
<td>$0.182E-14-j0.776E-9$</td>
<td>$0.188E-18-j0.151E-15$</td>
</tr>
<tr>
<td>B_3 (1 kHz, 0.9 kHz, 1.1 kHz)</td>
<td>$0.412E2-j0.224E-4$</td>
<td>$0.152E2+j0.509E-1$</td>
</tr>
<tr>
<td>D_3 (1 kHz, 0.9 kHz, 1.1 kHz)</td>
<td>$-0.152E-1+j0.370E-7$</td>
<td>$-0.564E-2+j0.353E-4$</td>
</tr>
<tr>
<td>E_3 (1 kHz, 0.9 kHz, 1.1 kHz)</td>
<td>$-0.412E-6+j0.100E-11$</td>
<td>$-0.152E-6-j0.954E-9$</td>
</tr>
</tbody>
</table>
6.2 Tuned RF Amplifier BJT Stage

In this section a second-order transfer function for a tuned RF amplifier BJT stage will be calculated. Results obtained using a direct calculation procedure and the computer program NCAP will be presented and compared. The direct calculation procedure involves the use of computational techniques for computer-aided circuit analysis programs. This is necessary because the network equations used to calculate the second-order transfer functions are complicated.

Shown in Figure 6-2 is the circuit for a tuned RF amplifier stage using a 2N5109 NPN bipolar junction transistor (BJT). Results for this circuit including the linear equivalent circuit have been reported upon previously. It is instructive to show the computational procedures used by NCAP to calculate first and second-order transfer functions. The bookkeeping involved in calculating third-order transfer functions is so complicated that it was not attempted. The calculation of the third-order transfer functions for the circuit shown in Figure 6-2 is a task best left to the computer program NCAP. Since this example will illustrate both first and second-order transfer function calculations, the BJT stage is excited by two independent voltage sources of unit amplitude at frequencies \(f_1 \) and \(f_2 \) as shown in Figure 6-2. The voltage sources are transformed to current sources as shown in Figure 6-3. The network linear responses at the two frequencies \(f_1 \) and \(f_2 \) and nonlinear response at the frequency \(f_1 + f_2 \) will be calculated.
A 2N5109 RF Amplifier NCAP Coding Circuit Diagram

50Ω 6. 50Ω
5. 10nH
8. 0.531μF
7. 10nH
0.534μF
1. 50Ω

2N5109

10nH 22 0.001Ω

390Ω

99.9999 nH

5 nH

2.5 nH

9.912 pf

10 10.9 Ω

293 nH

3250pf

500Ω

500Ω

1V, 1V

V Generator

1V, 1V
FIGURE 6-3 A 2N5109 RF Amplifier Fortran NCAP Simulation Circuit Diagram, where Only the Linear Portion of the Amplifier is Shown.
6.2.1 Construction of the Linear Nodal Admittance Matrix Y and the Linear Current Excitation Source Vector J_L

We used a direct construction method to build the nodal admittance matrix Y and the linear current source vector J_L. The method is summarized briefly.

(1) Illustrated in Figure 6-4 is a composite branch connected from node i to node j. This branch includes an admittance y_L in series with an independent voltage source e_L, both of which are shunted by a linear current source j_L. The contributions of this branch to the ith and jth rows and columns of the admittance matrix Y and to the ith and jth row of the linear current source vector J_L are shown next:

$$
Y = \begin{pmatrix}
1_{1} & \cdots & y_L & \cdots & -y_L & \cdots \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
1_{i} & \cdots & y_L & \cdots & -y_L & \cdots \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
j & \cdots & -y_L & \cdots & y_L & \cdots \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
j & \cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix} \quad (6-23)
$$

$$
J_L = \begin{pmatrix}
1_{1} & \cdots & -y_L e_L \\
\vdots & \ddots & \vdots \\
1_{i} & \cdots & -y_L e_L \\
\vdots & \ddots & \vdots \\
j & \cdots & -(j_L - y_L e_L) \\
\vdots & \ddots & \vdots \\
j & \cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix} \quad (6-24)
$$
FIGURE 6-4 Composite Branch Containing an Admittance Connected from Node i to Node j

FIGURE 6-5 Composite Branch Containing a Voltage-Controlled Current Source Along with the Controlling Branch
Note that the product $Y^{-1} J_k$ generates the linear node-to-datum voltage vector V_k.

(2) Illustrated in Figure 6-5 is a composite branch connected from node i to node j containing a dependent voltage-controlled current source $g_m v_c$ in series with an independent voltage source e_k, both of which are shunted by a linear current source j_k. The control voltage v_c is defined by a voltage developed in a composite branch connected from node k to node m. The contribution of these components to the ith and jth rows and kth and mth columns of the admittance matrix Y and to the ith and jth rows of the linear current vector J_k are as follows:

\[
Y = \begin{bmatrix}
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & g_m & -g_m & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 \cdots & -g_m & g_m & \cdots \\
\end{bmatrix}
\]

(6-25)

\[
J_k = \begin{bmatrix}
 \cdots \\
 j_k & -g_m e_c \\
 \cdots \\
 \cdots \\
\end{bmatrix}
\]

(6-26)
The procedure for constructing Y and J_L is initiated by setting $Y = 0$ and $J_L = 0$. Composite branches are added to the network one by one. First the admittance branches of the kind shown in Figure 6-4 are added, and then the controlled source branches of the kind shown in Figure 6-5 are added. When all the composite branches are added, the final results are the desired Y and J_L.

After Y and J_L are constructed, the linear response of the network (i.e. the first-order transfer function) are calculated from the matrix equation

$$YV_1 = J_L$$

(6-27)

at each excitation frequency of interest. (For example two source excitation frequencies f_1 and f_2 are used when second-order transfer functions are to be calculated.) Based upon the values of the first-order transfer functions, the second-order current source vector J_{d2} can be evaluated.

6.2.2 Calculation of the Second-Order Current Source Vector J_{d2}.

The magnitude of the second-order nonlinear current source vector J_{d2} is dependent upon the second-order nonlinearities of the nonlinear components in the circuit and the first-order node voltage vector V_1 at each excitation frequency of interest. For the BJT used in the circuit shown in Figure 6-2 several nonlinearities will be considered. One of these is the base-emitter nonlinear resistance. Another is the collector-base nonlinear capacitor. The third is the collector-base nonlinear dependent current generator. The nonlinear base-emitter capacitance was modelled as a linear capacitor for simplicity. The
contribution to the second-order nonlinear current vector J_{d2} by each of these three BJT nonlinear components will now be presented.

(1) Base-emitter nonlinear resistance

The base-emitter nonlinear resistance is connected from node 5 to node 6 in the circuit shown in Figure 6-3. In this circuit the linear term (0.516 Ω) is shown. Now we shall show how the second-order current source associated with the nonlinear base-emitter resistor is determined. The results presented in Section 2.3.5 for a nonlinear resistor are used. For a nonlinear resistor, the second-order current source can be written in the time domain as

$$J_{R2} = K_2 v_r^2$$

where v_r is the voltage across the nonlinear resistor. If the nonlinear resistor is connected from node 5 to node 6, the second-order current source vector J_{R2} in the time domain for the nonlinear resistor contains non-zero elements only in the rows 5 and 6 as shown below.

$$J_{R2} = \begin{cases} \cdot \\ \cdot \\ 5 & -K_2(v_5 - v_6)^2 \\ 6 & K_2(v_5 - v_6)^2 \\ \cdot \end{cases}$$

(6-29)

In the frequency domain at frequency $f_1 + f_2$, Equation (6-29) has the following form:
\[
J_{R2} = \begin{bmatrix}
V_5^1(\mathcal{E}_1) - V_6^1(\mathcal{E}_1) & \cdots & \cdots & \cdots \\
-K_2(V_5^1(\mathcal{E}_1) - V_6^1(\mathcal{E}_1))(V_5^1(\mathcal{E}_2) - V_6^1(\mathcal{E}_2)) \\
6 K_2(V_5^1(\mathcal{E}_1) - V_6^1(\mathcal{E}_1))(V_5^1(\mathcal{E}_2) - V_6^1(\mathcal{E}_2)) \\
\vdots \\
\end{bmatrix}
\]

where \(V_5^1 \) and \(V_6^1 \) denote the first-order transfer functions of voltages \(v_5(t) \) and \(v_6(t) \) respectively.

(2) Collector-base nonlinear capacitance

The collector base nonlinear capacitance is connected from node 11 to node 5 in the circuit shown in Figure 6-3. In this circuit diagram the linear term (0.2655 pF) is shown. Now we shall show how the second-order current source associated with the nonlinear capacitor is determined. The results presented in Section 2.3.2 for a nonlinear capacitor are used. For a nonlinear capacitor the second-order current source \(J_{C2} \) can be written in time domain as

\[
J_{C2} = C_2 \frac{d}{dt} v_c^2
\]

where \(v_c \) is the voltage across the nonlinear capacitor. If the nonlinear capacitor is connected from node 11 to node 5, the second-order current source vector \(J_{C2} \) in the time domain for the nonlinear capacitor contains non-zero elements only in the rows 11 and 5 as shown below:
\[\mathbf{J}_{C2} = \begin{pmatrix} \vdots \\ C_2 \frac{d}{dt}(v_{11} - v_5)^2 \\ \vdots \\ -C_2 \frac{d}{dt}(v_{11} - v_5)^2 \\ \vdots \\ \end{pmatrix} \]

(6-32)

In the frequency domain at frequency \(f_1 + f_2 \), Equation (6-32) has the following form:

\[\mathbf{J}_{C2} = \begin{pmatrix} \vdots \\ 5 j(\omega_1 + \omega_2)C_2 [v_{11}^1(f_1) - v_{11}^1(f_2)] [v_{11}^1(f_2) - v_{11}^1(f_2)] \\ \vdots \\ 11 -j(\omega_1 + \omega_2)C_2 [v_{11}^1(f_1) - v_{11}^1(f_2)] [v_{11}^1(f_2) - v_{11}^1(f_2)] \\ \vdots \\ \end{pmatrix} \]

(6-33)

where \(v_{11}^1 \) denotes the first-order transfer function of the voltage \(v_{11}(t) \).

(3) Nonlinear dependent current source

The nonlinear dependent current source is connected from node 11 to node 5 in the circuit shown in Figure 6-3. In this circuit diagram the linear term (1.99446V) is shown. Now we shall show how the second-order current source associated with the nonlinear dependent current source is determined. The results presented in Section 2.3.4 for a nonlinear dependent current source \(j_y \) can be
written in time domain as

\[J_y = g_{20} v_x^2 + g_{02} v_y^2 + g_{11} v_x v_y \] \hspace{1cm} (6-34)

where \(v_x \) is the voltage across the controlling branch \(x \), and \(v_y \) is the voltage across the controlled branch \(y \). If the nonlinear dependent current generator is connected from node 11 to node 5, with the controlling branch connected from node 5 to node 6, the second-order current source vector \(J_{G2} \) in the time domain for the nonlinear dependent current source contains non-zero elements only in rows 11 and 5 as shown below:

\[
J_{G2} = \begin{bmatrix}
\vdots \\
5 & g_{20}(v_5-v_6)^2 + g_{02}(v_{11}-v_5)^2 + g_{11}(v_5-v_6)(v_{11}-v_5) \\
\vdots \\
11 & -g_{20}(v_5-v_6)^2 - g_{02}(v_{11}-v_5)^2 - g_{11}(v_5-v_6)(v_{11}-v_5) \\
\vdots
\end{bmatrix}
\] \hspace{1cm} (6-35)

In the frequency domain at frequency \(f_1 + f_2 \), Equation (6-35) has the following form:
By adding together all the components for the second-order nonlinear current vector given in Eqs. (6-30), (6-33), (6-36), we obtain the desired second-order nonlinear current source vector \(J_{d2} \) in the frequency domain at the frequency \(f = f_1 + f_2 \).

6.2.3 Calculation of the Second-Order Nonlinear Transfer Functions

The second-order transfer function vector \(H_2 \) for the tuned RF amplifier stage shown in Figure 6-2 is calculated at frequency \(f = f_1 + f_2 \) by solving the matrix equation

\[
Y(f_1 + f_2) H_2(f_1, f_2) = \frac{1}{2} J_{d2}
\]

where the current source vector \(J_{d2} \) is the sum of the matrix Eqs. (6-30), (6-33), and (6-36). The admittance matrix \(Y(f_1 + f_2) \) is the linear nodal matrix evaluated at frequency \(f_1 + f_2 \). The computer program given in Appendix IV was used. This computer program will now be described briefly.
First the circuit information shown in Figure 6-3 is entered so that the nodal admittance matrix Y can be calculated at each frequency of interest. Next the NCAP input data for the 2N5109 BJT given in Table 2-1 are entered. The computer program given in Appendix IV calculates the nonlinear coefficients for the BJT. The results were given previously in Table 2-2. Next the two excitation frequencies are selected. The values $f_1 = 10$ MHz and $f_2 = -9$ MHz were used. At this point all the data necessary for the computation are entered. Now the computation can begin.

First the computer program given in Appendix IV solves for the network first-order transfer functions at $f_1 = 10$ MHz and $f_2 = -9$ MHz. A subroutine for solving matrix equations in the library IMSL available at SUNYAB is used. Next the second-order current vector J_{d2} at frequency $f_1 + f_2$ is computed. Also the admittance matrix $Y(f_1 + f_2)$ at the frequency $f_1 + f_2$ is computed. The matrix Eq. (6-37) is solved using the IMSL subroutine. The results for the tuned RF amplifier output transfer function (at node 20 in Figure 6-3) are given in Table 6-3.

Also given in Table 6-3 are the computer program NCAP results for the tuned RF amplifier output transfer function. The NCAP results and the results calculated using the computer program given in Appendix IV are in excellent agreement. The very small numerical differences between these two sets of results may be related to the fact that the computer program NCAP accounts completely for the base-emitter nonlinear diffusion capacitance.
TABLE 6-3

CALCULATED RESULTS FOR THE FIRST AND SECOND ORDER TRANSFER FUNCTIONS FOR THE 2N5109 TUNED RF AMPLIFIER AT THE OUTPUT NODE\(^a\)

<table>
<thead>
<tr>
<th>ORDER</th>
<th>TRANSFER FUNCTION</th>
<th>SUNYAB PROGRAM (Appendix IV)</th>
<th>NACP(RADC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DB</td>
<td>ANGLE</td>
</tr>
<tr>
<td>n = 1</td>
<td>(H_1(10 \text{ MHz}))</td>
<td>19.412</td>
<td>-167.313</td>
</tr>
<tr>
<td>n = 1</td>
<td>(H_1(-9 \text{ MHz}))</td>
<td>12.622</td>
<td>128.528</td>
</tr>
<tr>
<td>n = 2</td>
<td>(H_2(10 \text{ MHz}, -9 \text{ MHz}))</td>
<td>-29.215</td>
<td>-71.317</td>
</tr>
</tbody>
</table>

\(^a\) The output node is node 20 of the FORTRAN coded circuit diagram Figure 6-3, or node 23 of the NCAP coded circuit diagram Figure 6-2.
In Chapter Four two amplifier circuits using integrated circuits were presented. The broadband amplifier circuit shown in Figure 4-2 uses a CA3026 dual differential pair as the active device. The unity gain voltage follower circuit shown in Figure 4-11 uses a μA741 operational amplifier (op amp) as the active device. The NCAP model parameters for these two integrated circuits were given in Tables 4-1 and 4-3. Using the circuit information given in Figures 4-2 and 4-11 and NCAP parameters given in Tables 4-1 and 4-3 the second-order transfer functions of the two amplifiers can be calculated by the computer program NCAP. However, as discussed in Chapters Five and Six, the simulation program NCAP first calculates the first-order (linear) voltages at all the nodes in the network at all frequencies of interest. The second-order responses depend upon the values of these first-order node voltages. Thus, accurate values for the first-order node voltages are needed, if accurate results for the second-order calculations are desired. Thus, it is necessary to have accurate linear models for the electronic circuits. Therefore, in this chapter the linear models determined for the complete CA3026 cascode amplifier and the μA741 unity gain buffer amplifier are presented. Accurate linear models are developed by comparing calculated and measured linear transfer functions and by making adjustments to the linear models as appropriate. Then second-order transfer functions of the amplifiers are calculated and compared to values measured in our laboratory.
This chapter is organized in the following manner. First the linear models determined for the CA3026 cascode amplifier and the μA741 op amp unity gain buffer are presented. The measured and predicted values for the output first-order (linear) transfer function of the amplifiers are given. Also included is a description of the experimental system used to measure the second-order transfer functions of the amplifiers and the calculation method used to compute the transfer functions from the measured voltages. The NCAP computer program input data listing for the two amplifiers are tabulated. The NCAP predicted and the experimental measured results are presented and compared at the end of the chapter.

7.1 Linear Model of the CA3026 Cascode Amplifier

The linear model for the CA3026 cascode amplifier is determined by comparing experimental and calculated results of the amplifier linear transfer function \(\frac{V_{OUT}}{V_{IN}} \) over the frequency range 100 Hz to 30 MHz. Experimental values of \(\frac{V_{OUT}}{V_{IN}} \) for the cascode amplifier were measured using the measurement system shown in Figure 7-1. The experimental results for the magnitude and phase of \(\frac{V_{OUT}}{V_{IN}} \) are shown in Figures 7-2 and 7-3.

Also shown in Figures 7-2 and 7-3 are calculated values of \(\frac{V_{OUT}}{V_{IN}} \) obtained using the computer program SPICE2. The calculated values were obtained using the linear equivalent circuit for the cascode amplifier shown in Figure 7-4. The linear equivalent circuit contains linear models for the three CA3026 BJT's (Q1, Q2, and Q3) and linear models for the passive components. The passive component
NONLINEAR SYSTEM ANALYSIS IN BIPOLAR INTEGRATED CIRCUITS. (U)
JAN 80 T FANG, J J WHALEN
F30602-79-C-0011
RADC TR-79-324
ML
FIGURE 7-1
Experimental Systems for Measuring the First-Order Transfer Function $H_1(f)$ of the CA3026 Cascode Amplifier. Note that $H_1(f) = \frac{V_{OUT}}{V_{IN}}$.

Diagram:
- HP 606A or HP 650A Signal Generator
- Cascode Amplifier
- Tektronix RM33A Oscilloscope
FIGURE 7-2 Measured and Predicted Values for the First-Order Transfer Function \(\frac{V_{OUT}}{V_{IN}} \) of the Cascode Amplifier
FIGURE 7-3 Measured and Predicted Values for the First-Order Transfer Function \(\frac{V_{OUT}}{V_{IN}} \) of the Cascode Amplifier
A Linear Incremental Equivalent Circuit Model for the CA3026 Cascode Amplifier. Note that the Hybrid-Pi model is used for the BJT's.
models accounted for parasitic effects. Values for the hybrid-pi model parameters used in the linear models for the BJT's are listed in Table 7-1. Methods used to determine the BJT hybrid-pi model parameter values are discussed in Chapter Two and in Ref. (18). Procedures for determining component parasitic elements are described in Ref. (44).

The calculated and experimental values for the magnitude response shown in Figure 7-2 agree within 5 dB over the frequency range 100 Hz to 30 MHz. The calculated and experimental values for the phase response shown in Figure 7-3 agree within 25 degrees over the frequency range 100 Hz to 20 MHz. Above 20 MHz the experimental values for the phase response appear to be beginning to deviate from the measured values. Thus, the linear model for the cascode amplifier circuit shown in Figure 7-4 should be quite suitable for NCAP calculation involving RF frequencies up to 30 MHz which is the upper limit for the HF frequency range. The NCAP calculated results will be given in Section 7.4.

7.2 Linear Model of the μA741 Unity Gain Buffer Amplifier

The linear model for the μA741 unity gain buffer amplifier is determined by comparing experimental and calculated results of the amplifier linear transfer function VOUT/VIN over the frequency range 100 Hz to 3 MHz. Experimental values of VOUT/VIN for the unity gain buffer amplifier were measured using the measurement system shown in Figure 7-5. The experimental results for the magnitude and phase of VOUT/VIN are shown in Figures 7-6 and 7-7.
Also shown in Figures 7-6 and 7-7 are two sets of calculated values of VOUT/VIN obtained using the computer program SPICE2. The calculated values were obtained for the circuit diagram shown in

<table>
<thead>
<tr>
<th>TABLE 7-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR INCREMENTAL HYBRID-PI MODEL PARAMETERS FOR BJT'S IN THE RCA CA3026 INTEGRATED CIRCUIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_b (ohm)</td>
<td>512</td>
<td>554</td>
<td>483</td>
</tr>
<tr>
<td>C_u (=C_{jc} +C_{b}) (pF)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C_n (=C_{je} +C_{d}) (pF)</td>
<td>17.46</td>
<td>23.37</td>
<td>35.89</td>
</tr>
<tr>
<td>r_c (ohm)</td>
<td>2M</td>
<td>2M</td>
<td>2M</td>
</tr>
<tr>
<td>g_m (m mho)</td>
<td>48.077</td>
<td>71.154</td>
<td>120.0</td>
</tr>
<tr>
<td>r_e (ohm)</td>
<td>20.61</td>
<td>13.93</td>
<td>8.26</td>
</tr>
<tr>
<td>r_n (k ohm)</td>
<td>2.288</td>
<td>1.546</td>
<td>0.917</td>
</tr>
</tbody>
</table>

a The dc operating point bias emitter currents for transistors Q1, Q2, and Q3 are: I_{EQ1} = 1.25 mA, I_{EQ2} = 1.85 mA, I_{EQ3} = 3.12 mA.
FIGURE 7-5
Experimental System for Measuring the First-Order Transfer Function $H_1(f)$ of the μA741 Unity Gain Buffer.

Note that $H_1(f) = \text{VOUT/VIN}$
FIGURE 7-6 (b) Measured and Predicted Values for the First-Order Transfer Function VOUT/VIN of the Unity Gain Buffer. (Note Change of the Scale.)
FIGURE 7-7 Measured and Predicted Values for the First-Order Transfer Function VOUT/VIN of the Unity Gain Buffer
Figure 4-11; the SPICE2 coding list is given in Table 4-4. The SPICE2 BJT parameter values are given in Table 4-2. One set of calculated values for VOUT/VIN were obtained using Wooley's BJT parameter values. The other set of calculated values for VOUT/VIN were obtained using the BJT's parameter values determined from probe measurement.

Now let us compare the experimental and calculated values for the op amp magnitude response shown in Figures 7-6(a) and 7-6(b). Expanded scale is used in Figure 7-6(b). Below 100 kHz the measured and calculated values agree exactly. In the frequency range 100 kHz to 3 MHz the measured values and values calculated using our probe data agree within 3 dB. The values calculated using Wooley's data show a peaking effect at 1 MHz and differ from the measured value by 6 dB at 1 MHz. Above 3 MHz the measured and calculated values for the magnitude response decrease rapidly as shown in Figure 7-6(b). Now let us compare the experimental and calculated values for the op amp phase response shown in Figure 7-7. Below 100 kHz the measured and calculated values agree exactly. In the frequency range 100 kHz to 1 MHz the measured values and values calculated using our probe data agree within 10 degrees. The values calculated using Wooley's data differ from the measured value by 40 degrees. Above 1 MHz the measured and calculated values for the phase response are changed rapidly as shown in Figure 7-7. The linear model for the 741 op amp circuit shown in Figure 4-11 has been developed for frequencies up to 3 MHz. However, as will be shown later, RFI predictions at frequencies greater than 3 MHz can be made quite satisfactorily for this circuit. The NCAP calculated results will be given in Section 7.4.
7.3 The Measurement of Second-Order Transfer Functions

There are several second-order transfer functions that could be measured for the IC amplifiers investigated in this dissertation. Both IC amplifiers are basically broadband amplifiers for the frequency range 100 Hz to 1 MHz (or higher). Of particular interest to us is determining how well NCAP can predict how RF signals are demodulated in IC's to produce low frequency response within the frequency region where the IC amplifier is designed to operate. Therefore, the IC amplifiers shown in Figure 4-2 and 4-11 were excited by amplitude modulated RF signals. The RF frequency was varied over the range 50 kHz to 60 MHz; the amplitude modulation index was 0.5, and the AM modulation frequency was either 400 Hz or 1 kHz. At the integrated circuit amplifier output the voltage at the AM modulation frequency was measured using a tuned audio frequency (AF) voltmeter. As will be shown, the voltage measured on the tuned AF voltmeter is directly related to the IC amplifier second-order transfer function $H_2(f_1-f_2)$.

The measurement system for determining the second-order transfer function $H_2(f_1-f_2)$ is shown in Figure 7-8. The frequency f_1 is the RF carrier frequency f_{RF}; the frequency f_2 is the lower sideband frequency $f_2 = f_{RF} - f_{AF}$ where the frequency f_{AF} is the modulation frequency. The measurement circuit is simple. The low pass filter is included between the amplifier output and the tuned AF voltmeter in order to reduce RF signals at the AF voltmeter input. This is done because an amplitude modulated RF signal at the tuned AF voltmeter could generate audio frequency responses in the tuned AF voltmeter.
RF Sig. Gen. and Attenuator HP 606A

Amplifier Under Test

Low Pass Filter (Passive)

Tuned AF Voltmeter GR 1600

\[f_1 = f_{RF} \]

\[f_2 = f_{RF} - f_{AF} \]

Modulation: 50% AM at \(f_{AF} \)

FIGURE 7-8 Experimental System for Measuring Second-Order Transfer Functions \(H_2(f_1, f_2) \)
Shown in Figure 7-9 for the CA3026 cascode amplifier and in Figure 7-10 for the 741 op amp voltage follower are the tuned AF voltmeter readings V_M plotted versus the generator available RF power P_{gen}. (The RF power P_{gen} is that which will be delivered by the generator to a 50 ohms load resistor.) At low enough values for P_{gen} a 5 dB increase in the P_{gen} value causes a 10 dB increase in the V_M value. The analysis to be presented in this section shows that this is to be expected when nonlinear terms of the order greater than two are not important. Thus, the RF generator power must be less than -35 dBm for the CA3026 cascode amplifier and less than -10 dBm for the μA741 op amp voltage follower to avoid higher-order ($n > 2$) nonlinear effects.

Using data such as those presented in Figures 7-9 and 7-10, the second-order transfer function $H_2(f_1,-f_2)$ can be determined. We begin by expressing the RF generator input signal as

$$V_G = A (1 + m \cos 2\pi f_{\text{AF}} t) \cos 2\pi f_{\text{RF}} t$$

$$= A \cos 2\pi f_{\text{RF}} t + \frac{mA}{2} \cos 2\pi (f_{\text{RF}} - f_{\text{AF}}) t + \frac{mA}{2} \cos 2\pi (f_{\text{RF}} + f_{\text{AF}}) t$$ \hspace{1cm} (7-1)

where A is the amplitude of the modulating signal, m the modulation index, f_{AF} the frequency of the modulation signal, and f_{RF} the RF carrier frequency. Next the frequencies f_1, f_2, and f_3 are defined by the following equations:

$$f_1 = \frac{\omega_{\text{RF}}}{2\pi}$$ \hspace{1cm} (7-2)

$$f_2 = \frac{\omega_{\text{RF}} - \omega_{\text{AF}}}{2\pi}$$ \hspace{1cm} (7-3)
CA3026 Cascode Amplifier

AM Modulation
50% at 1kHz

FIGURE 7-9
CA3026 Cascode Amplifier Measured AF Voltage V_M at Wave Analyzer Input Versus Input Power Level
FIGURE 7-10 μA741 Op Amp Voltage Follower Measured AF Voltage V_M at the Wave Analyzer Input Vs Input Power Level P_{gen}

741 Op Amp Voltage Follower

AM Modulation
50% at 400 Hz

RF Freq.
- 50 kHz
- 100 kHz

Gen. Available RF Power P_{gen} (dBm)

Tuned AF VM Reading
$20 \log_{10} (V_M/1mV)$ (dB)
\[f_3 = \frac{\omega_{RF} + \omega_{AF}}{2\pi} \quad (7-4) \]

Note that
\[f_{AF} = f_1 - f_2 = f_3 - f_4 \quad (7-5) \]

Then the input signal \(V_G \) can be written in the form
\[
V_G = x(t) = \frac{1}{2} \left[A_1 e^{j2\pi f_1 t} + A_2 e^{j2\pi f_2 t} + A_3 e^{j2\pi f_3 t} + A_4 e^{j2\pi f_4 t} + A_5 e^{j2\pi f_5 t} + A_6 e^{j2\pi f_6 t} \right] \quad (7-6)
\]

where \(A_4 = A_1^*, A_5 = A_2^*, A_6 = A_3^*, f_4 = -f_1, f_5 = -f_2, \)
and \(f_6 = -f_3. \) (The symbol \(*\) denotes the complex conjugate of an expression.)

The output response \(y(t) \) of the amplifier can be written as a combination of transfer functions of different orders:
\[
y(t) = \frac{1}{2} \sum_{m=1}^{6} A_m H_1(f_m) \exp(j2\pi f_m t) + \frac{1}{2} \sum_{i=1}^{6} \sum_{k=1}^{i} A_i A_k H_2(f_i, f_k) + \text{higher order terms} \quad (7-7)
\]

Of interest to us are the components in the above equation to which the tuned AF voltmeter responds. The AF voltmeter responds only to terms at the modulation frequency \(f_{AF} \). Thus only four components in the above expression contribute to the signal \(v_m(t) \) to which the AF voltmeter responds.
The expression for $v_m(t)$ is

$$v_m(t) = \frac{1}{4} A_1 A_5 H_2(f_1, f_5) \exp[j2\pi(f_1 + f_5)t]$$

$$+ \frac{1}{4} A_1 A_6 H_2(f_1, f_6) \exp[j2\pi(f_1 + f_6)t]$$

$$+ \frac{1}{4} A_2 A_4 H_2(f_2, f_4) \exp[j2\pi(f_2 + f_4)t]$$

$$+ \frac{1}{4} A_3 A_4 H_2(f_3, f_4) \exp[j2\pi(f_3 + f_4)t]$$

(7-8)

Now using the relationships $A_4 = A_1^* = A$, $A_5 = A_2^* = mA/2$, $A_6 = A_3^*$

$= mA/2$, $f_1 + f_5 = f_{AF}$, $f_1 + f_6 = -f_{AF}$, $f_2 + f_4 = -f_{AF}$, and $f_3 + f_4 = f_{AF}$, and assuming the transfer functions $H_2(f_1, f_5)$, $H_2(f_1, f_6)$, $H_2(f_2, f_4)$, and $H_2(f_3, f_4)$ are all equal, Equation (7-8) can be written as

$$v_m(t) = mA^2 H_2(f_1, -f_2) \cos[2\pi(f_1 - f_2)t]$$

(7-9)

The AF voltmeter indicates a value for the rms voltage which is
denoted as V_M. The AF voltmeter V_M reading can be expressed as

$$V_M = \frac{1}{\sqrt{2}} mA^2 \left| H_2(f_1, -f_2) \right|$$

(7-10)

because the amplitude of the audio frequency signal to which the
voltmeter response is $(mA^2)H_2(f_1, -f_2)$ as can be seen by examining
Eq. (7-9). The measured rms voltage on the tuned AF voltmeter can
also be expressed in dB with respect to a 1 mV reference level as

$$20 \log \left| \frac{V_M}{1 \text{mV}} \right| = 20 \log \left[\frac{1}{\sqrt{2}} mA^2 \left| H_2(f_1, -f_2) \right| \right] - 20 \log (10^{-3})$$

$$= 57 + 20 \log m + 40 \log A + 20 \log \left| H_2(f_1, -f_2) \right|$$

(7-11)
Referring to the Thevenin equivalent circuit shown in Figure 7-11 for the H_2 measurement, we can express the average power delivered from the signal generator into a 50 ohms load impedance R_1 as

$$P_{\text{gen}} = \frac{V_1^2}{R_1} = \left(\frac{A}{\sqrt{R_G + R_1}} \right)^2 / R_1$$

(7-12)

where A is amplitude of the unmodulated RF carrier voltage, and V_1 is an rms value. Since $R_G = R_1 = 50$ ohms, Equation (7-12) becomes

$$P_{\text{gen}} = \frac{A^2}{400}$$

(7-13)

Expressing Eq. (7-13) in dBm, the following result is obtained

$$P_{\text{gen}} \text{ (dBm)} = 10 \log \left(\frac{A^2}{400} / 10^{-3} \right) = 4 + 20 \log A$$

(7-14)

Substituting Eq. (7-14) into Eq. (7-11) with $m = 0.5$, we obtain

$$20 \log \frac{V_M}{\text{1mV}} = 2 P_{\text{gen}} \text{ (dBm)} + 43 + 20 \log |H_2(f_1,-f_2)|$$

(7-15)

Upon examining Eq. (7-15) we note that a 5 dB change in the P_{gen} value should cause a 10 dB change in the measured V_M value. As discussed previously only those regions in Figures 7-9 and 7-10 where this rule is obeyed can be used to determine values for the second-order transfer function $H_2(f_1,-f_2)$. Rearranging Eq. (7-15), we obtain the following result for the second-order transfer function

$$20 \log |H_2(f_1,-f_2)| = 20 \log \frac{V_M}{\text{1mV}} - 43 - 2 P_{\text{gen}} \text{ (dBm)}$$

(7-16)

Using Eq. (7-16), values for the second-order transfer function were extracted from the AF voltmeter readings at different RF frequencies. Typical results are given in Table 7-2 for CA3026 cascode amplifier and in Table 7-3 for uA741 op amp voltage follower.
FIGURE 7-11 Schematic of the Thevenin Equivalent Circuit
Measuring H_2
TABLE 7-2
SECOND-ORDER TRANSFER FUNCTION MEASUREMENT
OF CA3026 CASCODE AMPLIFIER WITH
P_{gen} = -35 \text{ dBm AND } f_{AF} = 1 \text{ kHz}

<table>
<thead>
<tr>
<th>RF Freq. (f_{RF}) (Hz)</th>
<th>AF VM Read. (VM (rms mV))</th>
<th>$H_2(f_1, f_2)^a$ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 k</td>
<td>1</td>
<td>27.</td>
</tr>
<tr>
<td>100 k</td>
<td>1.1</td>
<td>27.83</td>
</tr>
<tr>
<td>200 k</td>
<td>1.15</td>
<td>28.21</td>
</tr>
<tr>
<td>500 k</td>
<td>1.17</td>
<td>28.36</td>
</tr>
<tr>
<td>1 M</td>
<td>1.15</td>
<td>28.21</td>
</tr>
<tr>
<td>2 M</td>
<td>1.05</td>
<td>27.42</td>
</tr>
<tr>
<td>5 M</td>
<td>1</td>
<td>27.</td>
</tr>
<tr>
<td>7 M</td>
<td>0.92</td>
<td>26.96</td>
</tr>
<tr>
<td>10 M</td>
<td>0.82</td>
<td>25.28</td>
</tr>
<tr>
<td>15 M</td>
<td>0.66</td>
<td>23.39</td>
</tr>
<tr>
<td>20 M</td>
<td>0.51</td>
<td>21.15</td>
</tr>
<tr>
<td>30 M</td>
<td>0.32</td>
<td>17.10</td>
</tr>
<tr>
<td>50 M</td>
<td>0.16</td>
<td>11.08</td>
</tr>
</tbody>
</table>

a The frequency $f_1 = f_{RF}$, and the frequency $f_2 = f_{RF} - f_{AF}$ where $f_{AF} = 1 \text{ kHz}$
TABLE 7-3
SECOND-ORDER TRANSFER FUNCTION MEASUREMENT OF
μA741 UNIT GAIN BUFFER WITH Pgen = -10 dBm and f_{AF} = 400 Hz

<table>
<thead>
<tr>
<th>RF Freq. (Hz)</th>
<th>AF VM Read. (rms mV)</th>
<th>H_2(f_1-f_2) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 k</td>
<td>0.008</td>
<td>-64.94</td>
</tr>
<tr>
<td>60 k</td>
<td>0.011</td>
<td>-62.17</td>
</tr>
<tr>
<td>70 k</td>
<td>0.015</td>
<td>-59.48</td>
</tr>
<tr>
<td>80 k</td>
<td>0.019</td>
<td>-57.42</td>
</tr>
<tr>
<td>90 k</td>
<td>0.0235</td>
<td>-55.58</td>
</tr>
<tr>
<td>100 k</td>
<td>0.029</td>
<td>-53.75</td>
</tr>
<tr>
<td>150 k</td>
<td>0.064</td>
<td>-46.08</td>
</tr>
<tr>
<td>200 k</td>
<td>0.112</td>
<td>-42</td>
</tr>
<tr>
<td>250 k</td>
<td>0.18</td>
<td>-37.9</td>
</tr>
<tr>
<td>300 k</td>
<td>0.27</td>
<td>-34.37</td>
</tr>
<tr>
<td>400 k</td>
<td>0.525</td>
<td>-28.6</td>
</tr>
<tr>
<td>500 k</td>
<td>0.92</td>
<td>-23.724</td>
</tr>
<tr>
<td>600 k</td>
<td>1.5</td>
<td>-19.48</td>
</tr>
<tr>
<td>700 k</td>
<td>2.2</td>
<td>-16.15</td>
</tr>
<tr>
<td>800 k</td>
<td>3.0</td>
<td>-13.46</td>
</tr>
<tr>
<td>900 k</td>
<td>3.85</td>
<td>-11.29</td>
</tr>
<tr>
<td>1 M</td>
<td>4.7</td>
<td>-9.56</td>
</tr>
<tr>
<td>1.5 M</td>
<td>7.1</td>
<td>-5.97</td>
</tr>
<tr>
<td>2 M</td>
<td>6.4</td>
<td>-6.88</td>
</tr>
<tr>
<td>3 M</td>
<td>6.4</td>
<td>-6.88</td>
</tr>
<tr>
<td>4 M</td>
<td>7.0</td>
<td>-6.2</td>
</tr>
<tr>
<td>5 M</td>
<td>7.9</td>
<td>-6.2</td>
</tr>
<tr>
<td>6 M</td>
<td>7.4</td>
<td>-5.6</td>
</tr>
<tr>
<td>7 M</td>
<td>8.2</td>
<td>-4.72</td>
</tr>
<tr>
<td>8 M</td>
<td>9.0</td>
<td>-3.92</td>
</tr>
<tr>
<td>9 M</td>
<td>9.8</td>
<td>-3.18</td>
</tr>
<tr>
<td>10 M</td>
<td>10.5</td>
<td>-2.58</td>
</tr>
<tr>
<td>15 M</td>
<td>13.5</td>
<td>-0.393</td>
</tr>
<tr>
<td>20 M</td>
<td>13.5</td>
<td>-0.393</td>
</tr>
<tr>
<td>30 M</td>
<td>14.5</td>
<td>-0.23</td>
</tr>
<tr>
<td>40 M</td>
<td>13.5</td>
<td>-0.393</td>
</tr>
<tr>
<td>50 M</td>
<td>12.0</td>
<td>-1.42</td>
</tr>
<tr>
<td>60 M</td>
<td>11.0</td>
<td>-2.17</td>
</tr>
</tbody>
</table>

a The frequency f_1 = f_{RF}, and the frequency f_2 = f_{RF} - f_{AF} where f_{AF} = 400 Hz.
The experimental values for $H_2(f_1,f_2)$ given in Table 7-2 for the CA3026 cascode amplifier are plotted versus frequency as shown in Figure 7-12. The experimental values for $H_2(f_1,f_2)$ given in Table 7-3 for the μA741 unity gain buffer amplifier are plotted versus frequency as shown in Figure 7-13.

7.4 Comparison of Experimental and Calculated Values for the Second-Order Transfer Functions

In this section the experimental values for the second-order transfer function $H_2(f_1,f_2)$ presented in the previous section will be compared to the values calculated using NCAP. First a comparison of experimental and calculated results for the CA3026 cascode amplifier will be made. Then a similar comparison of experimental and calculated results for the μA741 unity gain voltage follower will be made.

Shown in Figure 7-12 for the CA3026 cascode amplifier are experimental values for $H_2(f_1,f_2)$ and values calculated using the computer program NCAP. The calculated values were obtained using the NCAP coding circuit diagram for the CA3026 cascode amplifier shown in Figure 7-14. This coding circuit diagram gives the node numbers used in the NCAP program. The associated NCAP input coding list is given in Table 7-4. Upon comparing the calculated and experimental results given in Figure 7-12 it is observed that the calculated values show a little more variation with frequency than do the experimental values. In the frequency range 50 kHz to 10 MHz the experimental values for $H_2(f_1,f_2)$ are in the range 27 to 29 dB.
FIGURE 7-12 Calculated and Measured Responses for the Second-Order Transfer Function of the CA3026 Cascode Amplifier
FIGURE 7-13 Calculated and Measured Second-Order Transfer Functions for the μA741 Unity Gain Buffer. Inverting Input is Not Shunted with Capacitances. ($C = 0$.)
FIGURE 7-14 Cascode Amplifier Circuit Diagram Used to Determine NCAP Input Data
and the calculated values for $H_2(f_1,-f_2)$ are in the range 25 to 32 dB. In this frequency range the difference between the experimental and calculated values for $H_2(f_1,-f_2)$ is 4 to 1 dB. Above 10 MHz the experimental and calculated values for H_2 decrease rapidly with increasing frequency with the calculated values being less than the experimental values. The agreement between the calculated and experimental values for $H_2(f_1,-f_2)$ shown in Figure 7-12 for the CA3026 cascode amplifier may be characterized as being very good qualitatively and quantitatively.

Shown in Figure 7-13 for the unity gain voltage follower are experimental values for $H_2(f_1,-f_2)$ and values calculated using the computer program NCAP. The calculated values were obtained using the NCAP coding circuit diagram for the μA741 unity gain voltage follower shown in Figure 7-15. This coding circuit diagram gives the node numbers used in the NCAP program. The associated NCAP input coding list is given in Table 7-5. The parameter values for the BJT's used in Table 7-5 are those determined using probe measurements. (See Table 4-3). NCAP calculated results were also obtained using Wooley's values for the BJT model parameters which were given previously in Table 4-3. Both sets of calculated results are presented in Figure 7-13. At the RF frequency of 50 kHz both the measured and calculated values for H_2 are less than -50 dB, an extremely small value. As the RF frequency increases from 50 kHz to 1 MHz, both the experimental and calculated values for H_2 increase rapidly. At frequencies near 1 MHz the experimental
values for H_2 begin to reach a plateau in the -10 to 0 dB range. The calculated values for H_2 reaches a plateau region at frequencies in the 5 to 10 MHz range. In the frequency range 10 to 50 MHz the experimental values for H_2 are fairly constant with values near 0 dB. The values calculated for H_2 using Wooley's data are in very good agreement with the experimental values for frequencies in the range 10 to 50 MHz. The values for H_2 calculated using the probe data decrease more rapidly than do the experimental values in this frequency range. Why the values for H_2 calculated using the probe data are lower than those calculated using Wooley's data at frequencies above 10 MHz is not completely understood at this time.

One importance difference between the two sets of data is that the collector-substrate capacitance values reported by Wooley (See Table 4-3.) are higher than the 2 pF typical value (not measured) used with the probe data. It appears that a more careful evaluation of the effects of the collector-substrate depletion layer capacitance associated with the collector-substrate junctions used to provide isolation is needed for RF frequencies greater than 10 MHz. Until that evaluation is completed, it is recommended that Wooley's data be used for calculations of nonlinear transfer functions for 741 op amps involving RF frequencies above 10 MHz and that the probe data be used for such calculations involving RF frequencies less than 10 MHz.
The values for H_2 shown in Figure 7-13 for the μA741 unity gain voltage follower are 30 to 40 dB lower than the values for H_2 shown in Figure 7-12 for the CA3026 cascode amplifiers. This result is a circuit effect caused by the large amount of feedback used in the μA741 unity gain voltage follower circuit. (See Figure 4-11.) It is recognized that both AF signals and RF signals were being fed back from the op amp output to the inverting input. It was thought worthwhile to determine the effect of reducing the RF signals feedback by placing a bypass capacitor C from the inverting input to ground. At high enough frequencies the capacitor will tend to behave as an ac short circuit. Two capacitance values selected were 0.2 μF and 200 μF. The new sets of experimental and calculated values for the second-order transfer function H_2 of the μA741 voltage follower are shown in Figure 7-16 ($C = 0.2 \text{ } \mu\text{F}$), and in Figure 7-17 ($C = 200 \text{ } \mu\text{F}$).

Upon comparing Figures 7-13 and 7-16 it is observed that the 0.2 μF capacitor causes a large increase in the measured and calculated values of H_2 at RF frequencies below 100 kHz, and a small increase in the measured and calculated values for H_2 at RF frequencies above 1 MHz. Upon comparing Figures 7-13 and 7-17 it is observed that the 200 μF capacitor causes a large increase (approximately 50 dB) in the measured and calculated values for H_2 over the frequency range 50 kHz to 50 MHz. Clearly the use of a large capacitor such as a 200 μF connected to the op amp inverting input as an RFI suppression element would be very counterproductive in that it will cause a very large increase in RFI effects in the 741 op amp circuit. This is just one more example of the often unexpected effects that occur in feedback
amplifiers when a circuit change is made.

On comparing the experimental and calculated values for $H_2(f_1-f_2)$ for the μA741 unity gain voltage follower shown in Figures 7-13, 7-16, and 7-17, it can be said that the computer program NCAP predictions are quite good. Qualitatively the curves of the experimental and calculated values for H_2 versus frequency have essentially the same shape. (Except that there are some unimportant resonance effects which may be related to parasitic elements which are not fully accounted for.) Quantitatively the experimental and calculated values for H_2 versus frequency are in good agreement especially at frequencies above 3 MHz. At frequencies less than 3 MHz the experimental and calculated results decrease rapidly as the frequency decreases and the curves are shifted in frequency from one another by a small amount (of the order of an octave). It is recommended that NCAP nonlinear transfer function calculations be made using our probe results at RF frequencies less than 3 MHz and Wooley's data at RF frequencies above 10 MHz.
FIGURE 7-16 Calculated and Measured Second-Order Transfer Functions of the μA741 Unity Gain Buffer. Inverting Input is Shunted with a 0.2 μF Capacitor.
FIGURE 7-17

Calculated and Measured Second-Order Transfer Functions of the μA741 Unity Gain Buffer. Inverting Input is Shunted with a 200 μF Capacitor.
Program and Cascode Amplifier Using CA3026 IC

Submitted Over SUNY at Buffalo

Start Circuit

Generator

<table>
<thead>
<tr>
<th>Node</th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 1</td>
<td>1.0E4 100E6 10 LIN</td>
</tr>
<tr>
<td>AMP 1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

| FR 2 | -0.9E3 -9.9999E7 10 LIN |
| AMP 1.0 | 0.0 |

Impedance

| IMP | 50.0 0.0 |

Linear Components

R 1	2 0.01
R 5	34 52.1
R 9	30 3.0E3
R 12	16 3.0E3
R 11	15 3.0E3
R 13	32 0.1
R 15	18 10.0
R 21	15 51.8
R 22	23 1.0E3
R 24	25 0.1
R 24	28 10.0
R 24	29 20 0.1
R 20	7 10.0
R 8	0 0.1
R 9	26 0.001
R 39	0 0.1
R 9	11 0.001
C 30	38 0.095E-6
C 3	4 0.095E-6
C 10	0 0.096E-6
C 16	14 0.098E-6
C 15	13 0.094E-6
C 15	0 3.5E-12
C 24	0 4.45E-12
C 20	0 3.8E-12
C 33	0 5.0E-12
L 38	0 24.53E-9
L 2	3 17.7E-9
L 4	5 18.83E-9
L 34	30 22.6E-9
L 10	9 17.0E-9
L 31	0 10.0E-9
L 11	12 10.0E-9
L 15	39 35.78E-9
L 32	0 19.575E-9
TABLE 7-4 (Continued)

L 14 0 25.0E-9
L 21 22 38.22E-9
L 23 24 10.0E-9
L 25 33 10.0E-9
*LINEAR COMPONENTS
R 35 36 1.0E4
R 36 37 1.0E5
R 37 0 1.0E6
C 24 35 0.01E-6
C 37 0 306.0E-12
**DIODE D1
C 30 31 1.0E-9
R 30 31 100
*TRANSISTOR
NODE 16
4.67 0.25 60.0 0.34 1.83E-3 2.0E-3 0.5 110.0 1.99E-12
1.044 5.13E-12 9.86E-9 512.0 14.31E6 0.1E-12 0.1E-12
*TRANSISTOR
NODE 26
4.67 0.25 60.0 0.34 1.83E-3 2.0E-3 0.5 110.0 1.99E-12
1.044 5.13E-12 9.86E-9 554.0 11.7E6 0.1E-12 0.1E-12
*TRANSISTOR
NODE 5
4.67 0.32 60.0 0.34 3.12E-3 2.0E-3 0.5 110.0 1.99E-12
1.044 5.13E-12 9.86E-9 483.0 8.18E6 0.1E-12 0.1E-12
*PRINT SELECT
NODE 37
*END CIRCUIT
*END
PROGRAM FOR 741 UNITY GAIN BUFFER
SUBMITTED OVER SUNY AT BUFFALO

START CIRCUIT
GENERATOR

NODE 101 0
FR 1 0.1E6 1.0E6 5 LIN
AMP 1.0 0.0
FR 2 -0.996E5 -9.996E5 5 LIN
AMP 1.0 0.0
IMP 0.0 0.0

LINEAR COMPONENTS

R 101 0 50
R 101 1 560
R 33 3 190
R 12 4 0.01
R 25 11 100
R 25 19 465
R 20 0 1000
R 32 0 0.01
R 33 31 100
R 21 17 0.01
R 27 0 465
R 28 21 0.01
R 21 0 50000
R 33 29 0.01
R 13 9 0.01
R 33 7 190
R 16 8 0.01
R 104 15 100
R 104 23 465
R 24 0 1000
R 36 0 0.01
R 35 13 100
R 39 13 465
R 40 0 5000
R 41 37 0.01
R 104 61 0.01
R 102 5 620
R 48 0 0.01
R 47 45 100
R 45 41 40000
R 43 41 465
R 44 0 0.01
R 63 0 465
R 64 0 50000
Table 7-5 (Continued)

<table>
<thead>
<tr>
<th>R</th>
<th>97 45 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>65 64 0.01</td>
</tr>
<tr>
<td>R</td>
<td>89 67 465</td>
</tr>
<tr>
<td>R</td>
<td>68 0 100</td>
</tr>
<tr>
<td>R</td>
<td>100 0 0.01</td>
</tr>
<tr>
<td>R</td>
<td>99 89 625</td>
</tr>
<tr>
<td>R</td>
<td>83 61 465</td>
</tr>
<tr>
<td>R</td>
<td>84 0 0.01</td>
</tr>
<tr>
<td>R</td>
<td>49 45 0.01</td>
</tr>
<tr>
<td>R</td>
<td>91 0 25</td>
</tr>
</tbody>
</table>

*LINEAR COMPONENTS

<table>
<thead>
<tr>
<th>R</th>
<th>52 0 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>53 51 625</td>
</tr>
<tr>
<td>R</td>
<td>71 53 465</td>
</tr>
<tr>
<td>R</td>
<td>77 72 0.01</td>
</tr>
<tr>
<td>R</td>
<td>92 77 50000</td>
</tr>
<tr>
<td>R</td>
<td>85 81 0.01</td>
</tr>
<tr>
<td>R</td>
<td>85 0 50000</td>
</tr>
<tr>
<td>R</td>
<td>69 53 0.01</td>
</tr>
<tr>
<td>R</td>
<td>69 79 465</td>
</tr>
<tr>
<td>R</td>
<td>92 80 0.01</td>
</tr>
<tr>
<td>R</td>
<td>59 53 465</td>
</tr>
<tr>
<td>R</td>
<td>96 60 0.01</td>
</tr>
<tr>
<td>R</td>
<td>95 85 95</td>
</tr>
<tr>
<td>R</td>
<td>87 85 465</td>
</tr>
<tr>
<td>R</td>
<td>88 0 0.01</td>
</tr>
<tr>
<td>R</td>
<td>57 56 0.01</td>
</tr>
<tr>
<td>R</td>
<td>102 60 0.01</td>
</tr>
<tr>
<td>R</td>
<td>93 76 0.01</td>
</tr>
<tr>
<td>R</td>
<td>80 73 0.01</td>
</tr>
<tr>
<td>R</td>
<td>55 0 65</td>
</tr>
<tr>
<td>R</td>
<td>102 56 27</td>
</tr>
<tr>
<td>R</td>
<td>102 76 22</td>
</tr>
<tr>
<td>R</td>
<td>75 0 50</td>
</tr>
<tr>
<td>R</td>
<td>103 102 47000</td>
</tr>
<tr>
<td>R</td>
<td>103 0 44890</td>
</tr>
</tbody>
</table>

*LINEAR COMPONENTS

<table>
<thead>
<tr>
<th>C</th>
<th>33 0 2.0E-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>33 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>9 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>13 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>25 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>104 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>29 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>33 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>13 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>41 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>45 0 2.0E-12</td>
</tr>
<tr>
<td>C</td>
<td>49 0 2.0E-12</td>
</tr>
</tbody>
</table>
TABLE 7-5 (Continued)

<table>
<thead>
<tr>
<th></th>
<th>C 53 0 2.0E-12</th>
<th>C 89 0 2.0E-12</th>
<th>C 53 0 2.0E-12</th>
<th>C 69 0 2.0E-12</th>
<th>C 85 0 2.0E-12</th>
<th>C 93 0 2.0E-12</th>
<th>C 97 0 2.0E-12</th>
<th>*LINEAR COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q3</td>
<td>Q4</td>
<td>Q5</td>
<td>Q6</td>
<td>Q7</td>
<td>Q8</td>
<td>Q9</td>
<td>Q10</td>
</tr>
<tr>
<td>NODE 1</td>
<td>4.34 14.566 20 0.165 7.85E-6 0.5E-3 12.0 400 1.23E-12</td>
<td>1.091 1.23E-12 9.09E-9 830 5.33E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 5</td>
<td>4.34 14.566 20 0.165 7.85E-16 0.5E-3 12.0 400 1.23E-12</td>
<td>1.091 1.23E-12 9.09E-9 830 5.33E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 9</td>
<td>1.48 1.046 100 0.394 7.69E-6 0.1E-3 1.07 35 0.77E-12</td>
<td>1.34 0.23E-12 914E-9 520 0.575E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 13</td>
<td>1.48 12.992 100 0.394 7.69E-6 0.1E-3 1.07 35 0.77E-12</td>
<td>1.34 0.23E-12 914E-9 520 0.575E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 17</td>
<td>3.79 0.53 100 0.247 7.66E-6 0.5E-3 1.21 300 0.61E-12</td>
<td>1.04 0.88E-12 15.07E-9 1040 15.3E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 21</td>
<td>3.79 0.585 100 0.247 7.66E-6 0.5E-3 1.21 300 0.61E-12</td>
<td>1.04 0.88E-12 15.07E-9 1040 15.3E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE 25</td>
<td>3.79 28.933 100 0.254 108E-6 0.5E-3 0.84 300 0.61E-12</td>
<td>1.04 0.88E-12 15.07E-9 1040 15.3E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

213
<table>
<thead>
<tr>
<th>Node</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
<th>Q14</th>
<th>Q15</th>
<th>Q16</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>1.48</td>
<td>0.1</td>
<td>100</td>
<td>0.376</td>
<td>14.9E-6</td>
<td>0.1E-3</td>
<td>1.23</td>
<td>35</td>
<td>0.77E-12</td>
</tr>
<tr>
<td>33</td>
<td>1.48</td>
<td>15.453</td>
<td>100</td>
<td>0.376</td>
<td>19.5E-6</td>
<td>0.1E-3</td>
<td>1.17</td>
<td>35</td>
<td>0.77E-12</td>
</tr>
<tr>
<td>37</td>
<td>3.79</td>
<td>13.464</td>
<td>100</td>
<td>0.247</td>
<td>19.8E-6</td>
<td>0.1E-3</td>
<td>0.62</td>
<td>300</td>
<td>0.61E-12</td>
</tr>
<tr>
<td>41</td>
<td>3.79</td>
<td>0.1</td>
<td>100</td>
<td>0.247</td>
<td>718E-6</td>
<td>0.1E-3</td>
<td>0.62</td>
<td>300</td>
<td>0.61E-12</td>
</tr>
<tr>
<td>45</td>
<td>1.48</td>
<td>0.1</td>
<td>100</td>
<td>0.394</td>
<td>549E-6</td>
<td>0.1E-3</td>
<td>1.37</td>
<td>35</td>
<td>0.77E-12</td>
</tr>
<tr>
<td>49</td>
<td>1.72</td>
<td>13.886</td>
<td>130</td>
<td>0.32</td>
<td>45.3E-6</td>
<td>0.1E-3</td>
<td>0.48</td>
<td>0.6</td>
<td>0.38E-12</td>
</tr>
<tr>
<td>53</td>
<td>1.42</td>
<td>14.424</td>
<td>100</td>
<td>0.327</td>
<td>110E-6</td>
<td>2.0E-3</td>
<td>1.26</td>
<td>300</td>
<td>1.0E-12</td>
</tr>
<tr>
<td>57</td>
<td>3.79</td>
<td>0.573</td>
<td>100</td>
<td>0.247</td>
<td>2.43E-12</td>
<td>0.5E-3</td>
<td>4.33</td>
<td>300</td>
<td>0.61E-12</td>
</tr>
<tr>
<td>61</td>
<td>3.79</td>
<td>28.879</td>
<td>100</td>
<td>0.247</td>
<td>11.9E-6</td>
<td>0.5E-3</td>
<td>0.89</td>
<td>300</td>
<td>0.61E-12</td>
</tr>
<tr>
<td>Q17</td>
<td>TRANSISTOR</td>
<td>NODE 65</td>
<td>3.79 13.504 100 0.247 65.6E-6 0.5E-3 0.65 300 0.61E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q18</td>
<td>TRANSISTOR</td>
<td>NODE 69</td>
<td>3.79 0.1 100 0.247 11.4E-6 0.5E-3 0.87 300 0.61E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q19</td>
<td>TRANSISTOR</td>
<td>NODE 69</td>
<td>3.79 10.4 100 0.247 10.4E-9 1040 15.3E6 0.1E-12 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20</td>
<td>TRANSISTOR</td>
<td>NODE 73</td>
<td>2.67 14.469 90 0.565 109.0E-6 0.3E-3 1.03 60 1.5E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q21</td>
<td>TRANSISTOR</td>
<td>NODE 77</td>
<td>3.79 0.54 100 0.247 33.6E-6 0.5E-3 0.73 300 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q22</td>
<td>TRANSISTOR</td>
<td>NODE 77</td>
<td>3.79 1.121 100 0.247 4.76E-12 0.5E-3 4.65 300 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q23</td>
<td>TRANSISTOR</td>
<td>NODE 81</td>
<td>3.79 1.121 100 0.247 9.7E-17 0.5E-3 1.85 300 0.1E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q24</td>
<td>TRANSISTOR</td>
<td>NODE 85</td>
<td>3.79 0.1 100 0.247 9.7E-17 0.5E-3 1.85 300 0.61E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q25</td>
<td>TRANSISTOR</td>
<td>NODE 89</td>
<td>3.69 14.092 50 0.252 46.2E-6 0.2E-3 7.4 80 5.08E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q26</td>
<td>TRANSISTOR</td>
<td>NODE 93</td>
<td>1.48 14.997 100 0.368 5.04E-9 0.17E-3 1.66 35 0.77E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q27</td>
<td>TRANSISTOR</td>
<td>NODE 97</td>
<td>1.72 15.37 130 0.32 66.3E-6 0.2E-3 0.87 0.6 1.14E-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRINT SELECT

NODE 103 101

*END CIRCUIT

*END
The main objective of this dissertation has been to determine how well the nonlinear circuit analysis program NCAP can predict RFI effects in bipolar integrated circuits. Specifically the computer program NCAP has been used to calculate how RF signals are demodulated in broadband IC amplifiers to produce undesired low frequency responses. The NCAP calculated results and experimental results have been compared for two broadband integrated circuit amplifiers. One circuit is a broadband cascode circuit which uses a CA3026 dual differential pair IC. This IC was selected because the differential pair is the basic building block in linear bipolar integrated circuits. The other circuit selected is a unity gain voltage follower circuit which uses a 741 operational amplifier. This IC was selected because the 741 op amp is the most widely used IC.

An important part of this investigation was the determination of the NCAP parameter values for the bipolar transistors in the CA3026 differential pair and the 741 operational amplifier. The NCAP parameter values for the LJT's in the CA3026 are given in Table 4-1 and for the BJT's in the μA741 op amp are given in Table 4-3. Many months of effort were required to determine these parameter values. Probe techniques were used to make measurements from which the NCAP parameter values were determined. Also a combination of analysis techniques were used to convert manufacturer's data (when available) and other investigator's data (especially Wooley) into the format re-
quired by NCAP. It is anticipated that almost all EMC engineers wanting to use NCAP to predict RFI effect in bipolar linear IC's cannot take the time required to determine their own NCAP parameter values. Therefore, it is suggested that the NCAP BJT parameter values given in Tables 4-1 and 4-3 be used. It is recommended that the IC schematic provided by the manufacturer be examined to determine which transistors are NPN's and which are PNP's. Also by studying the IC circuit diagram the substrate PNP transistors can be identified. The remaining PNP transistors are usually lateral PNP's. The input stage and intermediate stage transistors are usually small transistors. The output stage transistors are usually large transistors. Dual emitter transistors and dual collector transistors are treated as two transistors. It will usually be necessary to determine the values for the dc collector currents and dc collector-base voltages for each BJT in the integrated circuit. To determine appropriate values for the BJT dc currents and voltages it is recommended that an electronic circuit analysis program such as SPICE2 be used to perform a dc operating point calculation. The Ebers-Moll model parameter values given in Table 4-2 can be used for the dc operating points analysis.

When the NCAP parameter values for the BJT's in an integrated circuit are known, the computer program NCAP can be used to calculate nonlinear transfer functions which are directly related to RFI effects. The program NCAP uses a quasi-linear distortion analysis algorithm based upon a perturbation method. This algorithm is summarized below:
(1) Calculate the dc operating point and expand each nonlinear function by a Taylor series about the quiescent point.

(2) Calculate the linear voltages of the circuit elements by neglecting all nonlinearities of degree \(n \geq 2 \).

(3) Determine the voltages associated with each second-order distortion current source.

(4) Calculate the second-order distortion products by analyzing the linear circuit with the appropriate distortion current sources at the prescribed frequency.

(5) Determine the voltages associated with each third-order distortion current source.

(6) Calculate the third-order distortion products by analyzing the linear circuit with the appropriate distortion current sources at the prescribed frequency.

(7) Repeat steps 5 and 6 for calculating higher-order distortion products.

Values for the second-order transfer function \(H_2(f_1,-f_2) \) were calculated for the CA3026 cascode amplifier and 741 op amp voltage follower circuits. The second-order transfer function \(H_2(f_1,-f_2) \) is directly related to the low frequency voltage produced at the IC amplifier output by an amplitude modulated RF signal at the IC amplifier input. (See Eq. 7-15.) A comparison of calculated and experimental values for \(H_2(f_1,-f_2) \) was presented in Chapter Seven. This comparison demonstrated that the computer program NCAP can be used quite successfully to predict how amplitude modulated RF signals are demodulated in broadband IC amplifiers.
There are areas where additional efforts are needed. One area involves the determination of accurate linear models for all the components (including resistors, capacitors, inductors, and leads) in the IC amplifier circuit. The accuracy of the linear analysis results determine the accuracy of the second-order analysis results, which in turn determines the accuracy of the third-order analysis results, etc. It is known that parasitic elements play a very important role at frequencies above 1 MHz. New techniques for determining values for parasitic elements are needed. One method that appears promising is the adjoint network gradient optimization technique. 45,52 This method has been applied to the CA3026 cascode amplifier and the results obtained to date look encouraging. It appears possible that this linear optimization scheme could be incorporated directly into NCAP, but first it should be investigated more completely. This is a task worthy of additional effort (by someone else).

There is another area where additional research activity is needed. If the bipolar integrated circuits are analysed at very high frequencies, the NCAP nonlinear T-model may not be appropriate. At frequencies greater than f_T (the frequency at which the common emitter short circuit current gain is 1) the four lumped parasitic elements R_b, R_c, C_1 and C_2 used in the NCAP BJT model may be insufficient to characterize the BJT. For integrated circuit BJT's additional parasitic elements may have to be included. A model illustrating some additional parasitic elements is shown in Figure 8-1. The additional parasitic elements shown in this model account for some of the distributed
R–C transmission line effects associated with the region between the base contact and the active region of the base–emitter junction and with the region between the collector and substrate. It is suggested that models similar to the one shown in Figure 8-1 be developed for RFI analyses for IC amplifiers at RF frequencies greater than 10 MHz. At RF frequencies greater than f_T, there is another factor that also should be considered. The nonlinear T-model is an extension of the linear T-model which in turn can be developed from the Ebers-Moll model. The Ebers-Moll model is one form of the charge-control model. The charge-control model is based upon the quasi-static approximation. The quasi-static approximation assumes that the distribution of minority carrier stored in the neutral base region is identical to the dc distribution. At frequencies greater than f_T, this basic assumption is probably violated. Therefore, it is reasonable to question the validity of the nonlinear T-model at frequencies greater than f_T. An investigation to determine how well the nonlinear T-model predicts RFI effects in BJT circuits (discrete or integrated) appears to be very much needed. This is a task other researchers might pursue. When improved techniques for determining parasitic elements in passive components and in bipolar junction transistors are developed and questions concerning the validity of the nonlinear T-model at frequencies greater than f_T have been resolved, additional efforts to determine how well the computer program NCAP can predict RFI effects in bipolar linear circuits for RF frequencies in the range 50 to 1000 MHz should be pursued.
FIGURE 8-1 Schematic Cross Section of a Transistor with an Equivalent Circuit of Parasitic Elements (a), and the Suggested Nonlinear T-Model (b)
The h, y, and z two-port parameters are identified with a double-subscript notation. The first subscript denotes the function of the parameter:

- i: Input driving-point parameter
- o: Output driving-point parameter
- f: Forward transfer parameter
- r: Reverse transfer parameter

When these parameters are used to describe BJT properties the second subscript denotes the configuration:

- e: Common-emitter
- b: Common-base
- c: Common-collector

Currents and voltages at the terminals of transistors are designated in the following manner: Subscripts are used to indicate the terminal at which a current flows (reference direction is in the terminal) or the terminal pair at which a voltage appears (reference direction is defined by the order of the subscripts; the plus sign is associated with the terminal identified by the first subscript). Variables of four types are defined:
DC or operating-point variables--upper-case symbols with upper-case subscripts
Total instantaneous variables--lower-case symbols with upper-case subscripts
Incremental instantaneous variables--lower-case symbols with lower-case subscripts
Complex amplitudes of incremental components--upper-case symbols with lower-case subscripts

A voltage \(v \) or \(V \) next to a node is assumed to be measured with respect to datum, i.e. it is a node-to-datum voltage. Unless otherwise marked, the reference direction is such that the node is positive with respect to ground when \(v \) or \(V \) is positive.
APPENDIX II
PROBE PREPARATION

Sharp tungsten probe tips are prepared by an etching process. To retain a uniform cross-section for a tungsten tip, a tungsten wire is etched as rapidly as possible. The usual etching reagents such as alkaline potassium ferricyanide or ammonium persulphate act rather slowly and tend to develop a crystalline surface on the wire. Therefore, an electrolytic etching process is used to obtain a sharp tungsten tip.

The electrolytic etching process is illustrated in Figure II-1. As shown in this figure, a tungsten wire with the diameter of 10 mil is made the anode and a tungsten bar the cathode. A saturated solution of potassium hydroxide is used as the electrolyte between the anode and the cathode. This solution is contained in a beaker. Suitable dc current levels range between 100 mA to 400 mA with a corresponding dc voltages range from 10 V to 20 V are employed for the electrolytic etching process. A clock motor providing a mechanical dipping action is used to generate a sharp tip for the tungsten wire. The above electrolytic etching process will take about one minute to provide a satisfactory sharp tip, e.g. tip dimension of 0.1 mil2 can be readily prepared in 1 to 2 minutes. The actual process time varies with the current level and the probe dipping frequency.
Probe Point Etching

Etch - KOH at 25°

FIGURE II-1 Sharp Tungsten Tip Preparation Diagram
APPENDIX III

μA741 BJT's DC and Junction Capacitance Characteristics

FIGURE III-1
Typical \(I_E \) vs. \(V_{BE} \) Characteristics of BJT's in the μA741 Operational Amplifier
FIGURE III-2 Typical Input Characteristics of BJT's in the \(\mu A741 \) Operational Amplifier

- Small NPN (Q1 at \(V_{CE} = 1\text{V} \))
- Lateral PNP (Q3 at \(V_{CE} = -1\text{V} \))
- Small NPN (Q5 at \(V_{CE} = 5\text{V} \))
- Large NPN (Q14 at \(V_{CE} = 5\text{V} \))
- Large Sub PNP (Q20 at \(V_{CE} = -5\text{V} \))
- Dual-Emitter (Q24 at \(V_{CE} = -5\text{V} \))
- Lateral PNP (Q9 at \(V_{CE} = -5\text{V} \))
FIGURE III-3 Typical DC Current Gain h_{FE} vs Collector Current I_C for BJT's in μA741 Operational Amplifier
FIGURE III-3. Typical DC Current Gain h_{FE} vs Collector Current I_C
Plot for BJT's in μA741 Op Amp. (Continued)
FIGURE III-4. Typical I-V Characteristics of the Small NPN Transistor
(Data Obtained from Q5 Measurements).

FIGURE III-5. Typical I-V Characteristics of the Large NPN Transistor
(Data Obtained from Q14 Measurements).
FIGURE III-6. Typical I-V Characteristics of the Lateral PNP Transistor (Data Obtained from Q3 Measurements).

FIGURE III-7. Typical I-V Characteristics of the Large Substrate PNP Transistor (Data Obtained from Q20 Measurements).
FIGURE III-8. Typical I-V Characteristics of the Dual-Collector Lateral PNP Transistor (Data Obtained from Q13 Measurements).

FIGURE III-10 Typical Junction Capacitance vs Junction Voltage Plot of the BJT's in the μA741 Op Amp
APPENDIX IV

FORTRAN PROGRAM FOR CALCULATING FIRST AND SECOND-ORDER TRANSFER FUNCTIONS FOR THE TUNED RF AMPLIFIER SHOWN IN FIGURE 6-2

PROGRAM NCAP(INPUT,OUTPUT,TAPE7,TAPE5=INPUT,TAPE6=OUTPUT)
C THIS PROGRAM SIMULATES RAC NONLINEAR CIRCUIT ANALYSIS PROGRAM NCAP
C SAMPLE CALCULATION OF A 2N5109 RF AMPLIFIER IS GIVEN
C--
EXTERNAL FIEsFh ICEAL k1,K2#K3#ICICMAX#MUKipMoN
REAL L
DIMENSION Wfl(b48)
ic,
DIMENSION Y2(2.,Z4),YFI(2.1.,Z4),YF2(.24,24),UAI24,1.),J1E2'.,13JZ(Z',,1)
1PVl12'.)PV2(2e)
COMPLEX UAOMTSAOMTFIADMTFZADMT,,lY2gJ1,JZDV1.V2,VSYFIYFZTID
IT20T3
C COMMON /P/
C35 lC3
DATA G/I1G/,R/IRIPC/I1HC/#LI1NL/
1500 FORMAT(2E13.5)
501 FORMAT(E13.5)
1000 FORMAT(4E13.5)
1100 FORMAT(1X,*13.5,13,13E13.5)
C READ IN INPUT EXCITATION
C -----------
READ(I5,1500)X1X2
C READ IN INPUT SOURCE IMPEDANCE
C-------------------------------------
READI5,2000)X1X2
C READ IN 2N5109 NCAP INPUT PARAMETER
C---
READ(5,1000)VCB,VCBO,NU
READ (5,1000) IC, ICMAX, A, HFEMAX
READ (5,1000) K, REF, C2P, C2P
READ (5,1000) R, RC, C1, C3

C PRINT ZM5109 NCAP INPUT PARAMETER
WRITE (6,1030)
WRITE (6,1030) N, VCB, VCB, M, IC, ICMAX, A, HFEMAX, K, REF, C2P, R, RC, C1, C3

C CALCULATE NONLINEAR COEFFICIENTS OF THE ZM5109
CALL COEF (K1, K2, K3, G1, G2, G3, G1, G2, G3)
WRITE (6,3500) K1, K2, K3
WRITE (6,4500) G1, G2, G3
WRITE (6,4500) G1, G2, G3

C READ IN SCAFF FREQUENCY INFORMATION
READ (5,5000) FSAN, FSTOP, FINC

C READ IN ZM5109 RF AMPLIFIER AC CIRCUIT INFORMATION
WRITE (6,5100)
DO 50 I = 1, 40
READ (5,2000) TYPE, NFROM, NTO, VALUE, MFC, NTC
WRITE (6,2100) TYPE, NFROM, NTO, VALUE, MFC, NTC
CONTINUE
REWIND 7
READ (6,5500)
DO 60 I = 1, 40
IF (TYPE.EQ.0) GO TO 15
IF (TYPE.EQ.1) GO TO 20
IF (TYPE.EQ.2) GO TO 25
CONTINUE
YF1(I, 1) = 1, /RX
YF2(I, 1) = 1, /RX
YF3(I, 1) = 1, /RX
READ (7,2100) TYPE, NFROM, NTO, VALUE, MFC, NTC
IF (TYPE.EQ.0) GO TO 15
IF (TYPE.EQ.1) GO TO 20
IF (TYPE.EQ.2) GO TO 25
ADMTF1 = 1, /VALUE
ADMTF2 = 1, /VALUE
ADMTS = 1, /VALUE
GO TO 29
20 IF (TYPE.EQ.3) GO TO 30
115 ADMTF1=U*W1*VALUE
ADMTF2=U*W2*VALUE
ADMS=U*W1*W2*VALUE
GO TO 25

120 IF(TYPE.NE.1)GO TO 10
ADMFF1=1./U*W1*VALUE
ADMFF2=1./U*W2*VALUE
ADMS=1./U*W1*W2*VALUE

125 IF(FNT.GT.0)GO TO 10
YF1(NFRO,M,FROM) = YF1(NFRO,M,FROM)+ADMFF1
YF2(NFRO,M,FROM) = YF2(NFRO,M,FROM)+ADMFF2
Y2(NFRO,M,FROM) = Y2(NFRO,M,FROM)+ADMS
IF(FNT.GT.0)GO TO 10
YF1(NFRO,M,FROM) = YF1(NFRO,M,FROM)+ADMFF1
YF2(NFRO,M,FROM) = YF2(NFRO,M,FROM)+ADMFF2
Y2(NFRO,M,FROM) = Y2(NFRO,M,FROM)+ADMS

130 YF1(NFRO,M,FROM) = YF1(NFRO,M,FROM)+ADMFF1
YF2(NFRO,M,FROM) = YF2(NFRO,M,FROM)+ADMFF2
Y2(NFRO,M,FROM) = Y2(NFRO,M,FROM)+ADMS

GO TO 10

135 ADMFF1=VALUE
ADMFF2=VALUE
YF1(NFRO,M,FROM) = YF1(NFRO,M,FROM)+ADMFF1
YF2(NFRO,M,FROM) = YF2(NFRO,M,FROM)+ADMFF2
Y2(NFRO,M,FROM) = Y2(NFRO,M,FROM)+ADMS

CONTINUE

140 CALL GAUSS(YF1,J1)
CALL GAUSS(YF2,J2)
CONTINUE

145 CALL GAUSS(YF1,J1)
CALL GAUSS(YF2,J2)
CONTINUE

150 CALL GAUSS(YF1,J1)
CALL GAUSS(YF2,J2)
CONTINUE

155 DD 35 I=1,Z4
J1(I)=O
J2(I)=1
CONTINUE

160 J1(I)=I
J2(I)=I
CONTINUE

165 CALL GAUSS(YF1,J1)
CALL GAUSS(YF2,J2)
CONTINUE

170 WRITE(6,2500)J1(J2),V1(J2),F1
WRITE(6,2500)J2(J2),V2(J2),F2
C CALCULATE SECOND ORDER CURRENT SOURCE

175 DO 45 I=1,24
180 CONTINUE

185 T1=-K2*(V1(5)-V1(6))*V2(6))
190 J1(5,1)=T1+J1(5,1)
195 J1(6,1)=J1(6,1)-T1
200 T2=(F1+F2)*0.2830+G2A2*(V1(11)-V1(15))*(V2(11)-V2(15))
205 J1(11,1)=J1(11,1)+T2
210 J1(15,1)=J1(15,1)-T2
215 T3=G2W*(V1(11)-V1(15))*(V2(11)-V2(15))-0.5*G1W*(V1(11)-V1(15))*(V2(15)
220 (5)-V2(5))
225 J1(11,1)=J1(11,1)+T3
230 J1(15,1)=J1(15,1)-T3

C CALCULATE THE SECOND ORDER TRANSFER FUNCTION

235 CALL GAUSSEV(Y2,J1)
240 DO 50 I=1,24
245 CONTINUE

250 WRITE(6,3000) V1(20),V1(22),F1,F2
255 CONTINUE
260 WRITE(6,6000)
265 STOP

270 END

FUNCTION F1(X)

FUNCTION OF AVALANCHE MULTIPLICATION

F1=1./(1.0-S1)
RETURN
END

FUNCTION F2(X)

FUNCTION OF EMITTER CURRENT

F2=X*(1.0+51)/S2
RETURN
END
SUBROUTINE GAUSSYJ)
C SIMULTANEOUS EQUATIONS SOLVER BY USING GAUSSIAN ELIMINATION
C
5 COMPLEX Y(24,24),A(24,25),PIVOT,8,J(24,1)
N=24
DO 10 I=1,24
DO 25 J=1,25
10 IF(12.EQ.25) A(I,1)=J(1,1)
IF(12.GT.25) GO TO 20
A(I,1)=Y(I),1)
20 CONTINUE
NP=NO
EPS=1.0E-30
IC=1
IR=1
1 PIVOT=A(IR,IC)
PIV=IR
DO 2 I=IR,N
2 IF(CABS(A(I,1),LE.CABS(PIV)) GO TO 2
PIV=A(I,1)
PIV=I
CONTINUE
IF(CABS(PIV),LE.EPS) GO TO 8
IF(1=PIV,EQ,IR) GO TO 4
DO 3 K=IC,MP1
B=A(IPV),K)
A(IPV),K)=A(IPV),K)
A(1R,K)=B
3 CONTINUE
4 CONTINUE
5 DO 5 K=IC,MP1
A(IR,K)=A(IR,K)/PIVOT
IF(12,6=0) GO TO 10
INP=IR-1
7 IF(1,P=IPV,N)
B=A(IP,IC)
IF(CABS(B),LE.EPS) GO TO 7
DO 6 K=IC,MP1
A(IP,1)=A(IP,1)-A(IR,K)*B
6 CONTINUE
7 CONTINUE
IR=IR+1
IC=IC+1
GO TO 1
8 WRITE(6,9)
9 FORMAT(1X,'DETERMINANT EQUAL TO ZERO. NO UNIQUE SOLUTION."
STOP
10 MN1=M-1
DO 12 K=1,MN1
NNK=K
DO 12 J=1,K
NP1=N+1
A(NMK,MP1)=A(NMK,MP1)-A(NMK,MP1)*A(NMK,MP1)
12 CONTINUE
DO 13 J=1,M
13 CONTINUE
CONTINUE
RETURN
END
SUBROUTINE COEF(K1,K2,K3,GA1,GA2,GA3,G01,G02,G20,G11,G03,G30,G12,G21)

THIS SUBROUTINE CALCULATES NONLINEAR COEFFICIENTS OF A BJT

K1, K2, K3 ———— Emitter-Base Resistive Coefficients
GA1, GA2, GA3 —— Base-Collector Junction Capacitance Coefficients
G01, G02, G20, G11, G03, G30, G12, G21 ———— Base-Collector Dependent Current Source Coefficients

DIMENSION B(3),AA(3),DER(3),DM(3)

EXTERNAL FILE
REAL K1,K2,K3,K10,KM,KN,IE
COMMON /P/ KVB,VCB,MU,IC,ICMAX,NU,K,NM,IE
COMMON /F/ K1,KVB,VCB,MU,IC,ICMAX,NU,K,REF,CJE,C2P,RC,C1,IC3

M=0.0, KVB=0.2567041
XIC=IC
IE=IE(XIC)
K1=IE/XKTQ
K2=IE/((XKTO/REF)**2.1/2.0
K3=IE/((XKTO/REF)**3.1/6.0
RE=1/K1
GA1*K1*(VCB)**(1-NU)
GA2=0.5*KVB*(VCB)**(1-NU-1.1)
GA3=(1.1/6.3)*KVB*(NU-1)*(VCB)**(1-NU-2.1)
M=1/(1.-(|VCB/VCB10|))*H
CALL DERIV(FE,XIC,DER)
AA(1)=DER(2)
AA(2)=DER(2)**2.0
AA(3)=DER(3)**6.0
B(1)=AA(1)
B(2)=AA(2)/(AA(1)**3.0)
B(3)=(2.0*AA(2)°AA(2)-AA(1)°AA(3))/AA(1)**3.0
XVCB=VCB
CALL DERIV(FH,XVCB,DER)
DM(1)=DER(1)
DM(2)=DER(2)**2.0
DM(3)=DER(3)**6.0
G10=8.1/ROM(1)**1E
G20=8.1/ROM(2)**2.0
G30=8.1/ROM(3)**3.0
G11=2.0*ROM(1)**1E
G21=2.0*ROM(2)**2.0
G31=2.0*ROM(3)**3.0
G12=2.0*ROM(1)**2.0
G22=2.0*ROM(2)**2.0
G32=2.0*ROM(3)**2.0
G13=2.0*ROM(1)**3.0
G23=2.0*ROM(2)**3.0
G33=2.0*ROM(3)**3.0
RETURN
END
SUBROUTINE DERIV(FCT, DER)
C SUBROUTINE OF NUMERICAL DIFFERENTIATION
C
EXTERNAL FCT
DIMENSION DER(3), XX(15), Z1(15), Z2(15), Z3(7)
X = T
N = X/500.
X = X - 0.001
DO 1 I = 1, 15
X = X + H
XX[I] = FCT(X)
1 CONTINUE
N = 15
CALL DETS(H, XX, Z1, N, IER)
DER(1) = Z1(0)
DO 2 I = 1, 15
J = I - 2
XX(I) = Z1(J)
2 CONTINUE
N = 11
CALL DETS(H, XX, Z2, N, IER)
DER(2) = Z2(0)
DO 3 I = 1, 9
J = I - 2
XX(J) = Z2(J)
3 CONTINUE
N = 7
CALL DETS(H, XX, Z3, N, IER)
DER(3) = Z3(4)
RETURN
END
2N5109 NCAP Input Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6.6E00E+01 VCB = 5.0E00E+01 VCBO = 4.0E00E+02 MU = 2.85E00E+00</td>
</tr>
<tr>
<td>IC</td>
<td>5.0E00E-01 ICMAX = 1.80E00E-01 IA = 3.6E00E+00 HFEMAX = 9.4E00E+02</td>
</tr>
<tr>
<td>K</td>
<td>4.2E00E-12 REP = 1.0E00E+01 CJ = 1.0E00E-10 CP = 3.0E00E-08</td>
</tr>
<tr>
<td>R8</td>
<td>1.5E00E+02 RC = 3.2E00E+05 C1 = 1.0E00E-12 C3 = 3.6E00E-12</td>
</tr>
</tbody>
</table>

Resistive Nonlinear Coefficients:

K1	1.9724E+01
K2	3.8419E+02
K3	4.9807E+03

Capacitive Nonlinear Coefficients:

C1	2.6349E-12
C2	-7.564E-14
C3	6.4819E-15

Transconductive Nonlinear Coefficients:

G01	2.2851E-06 G10 = 1.9446E+01
G02	2.1123E-06 G20 = 2.7375E+02 G11 = -2.0734E-07
G03	3.0475E-07 G30 = 4.0788E+03 G12 = -1.4316E-07 G21 = -2.7180E-06
2N3109 RF AMPLIFIER AC CIRCUIT INFORMATION:

<table>
<thead>
<tr>
<th>J</th>
<th>1</th>
<th>0</th>
<th>2.0E-01</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
<td>21</td>
<td>1.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
<td>21</td>
<td>5.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>21</td>
<td>22</td>
<td>5.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>22</td>
<td>0</td>
<td>5.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>3</td>
<td>1.0E+07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>4</td>
<td>9.3E-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>0</td>
<td>4.0E+03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0</td>
<td>1.0E+12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>5</td>
<td>1.0E+02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>5</td>
<td>6</td>
<td>5.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6</td>
<td>1.9E-09</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>6</td>
<td>7</td>
<td>3.9E+03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>7</td>
<td>6</td>
<td>1.0E+02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>8</td>
<td>0</td>
<td>2.0E+07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>0</td>
<td>9.1E-09</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>10</td>
<td>24</td>
<td>1.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>10</td>
<td>25</td>
<td>1.0E-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>11</td>
<td>5</td>
<td>1.9E+01</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>L</td>
<td>11</td>
<td>12</td>
<td>6.7E-07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>12</td>
<td>14</td>
<td>9.0E-02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>11</td>
<td>13</td>
<td>5.0E+08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>14</td>
<td>3.2E-08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>14</td>
<td>14</td>
<td>1.0E+07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>14</td>
<td>15</td>
<td>1.0E+02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>15</td>
<td>16</td>
<td>3.6E-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>16</td>
<td>17</td>
<td>1.0E+03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>17</td>
<td>0</td>
<td>1.0E+08</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
<td>10</td>
<td>1.0E-07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>23</td>
<td>9.5E-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>23</td>
<td>0</td>
<td>1.0E+00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>11</td>
<td>19</td>
<td>1.0E-07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>19</td>
<td>20</td>
<td>5.0E-06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>20</td>
<td>0</td>
<td>5.0E+02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>6</td>
<td>1.0E+12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.2640e+01</td>
<td>-3.3457e+01</td>
<td>H1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-1.1537e+01</td>
<td>-2.0208e+01</td>
<td>H1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2053e-01</td>
<td>-3.4298e-01</td>
<td>H2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-4.9080e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.1220e+01</td>
<td>-2.3263e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2345e-01</td>
<td>-3.4208e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.2640e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-1.1537e+01</td>
<td>-2.0208e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2053e-01</td>
<td>-3.4298e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-4.9080e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.1220e+01</td>
<td>-2.3263e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2345e-01</td>
<td>-3.4208e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.2640e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-1.1537e+01</td>
<td>-2.0208e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2053e-01</td>
<td>-3.4298e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-4.9080e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.1220e+01</td>
<td>-2.3263e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2345e-01</td>
<td>-3.4208e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.2640e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-1.1537e+01</td>
<td>-2.0208e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2053e-01</td>
<td>-3.4298e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-4.9080e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.1220e+01</td>
<td>-2.3263e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2345e-01</td>
<td>-3.4208e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.2640e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-1.1537e+01</td>
<td>-2.0208e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2053e-01</td>
<td>-3.4298e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-4.9080e+01</td>
<td>-3.3457e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X1(20)</td>
<td>-2.1220e+01</td>
<td>-2.3263e+01</td>
<td>M1(22)</td>
<td>-4.823e+00</td>
<td>-4.79e+02</td>
</tr>
<tr>
<td>X2(20)</td>
<td>-1.2345e-01</td>
<td>-3.4208e-01</td>
<td>M2(22)</td>
<td>-3.5135e+00</td>
<td>-3.3738e+02</td>
</tr>
</tbody>
</table>
REFERENCES

245

