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' Chapter I. Introductory Chapter

¥

* A.\ Aims and Guiding Principles of this Handbook.

% 1. This handbook is based on approaches which have been useful to the

author. These approaches do not always conform to a "standard treatment® of

PO

the subject. For example, the literature contains many analyses based on

the impedance circle diagram and the admittance circle diagram, which {

S - T

comprise offset %circles” in the complex plane. Heée Y or Z is given as

L]

SN
The author has for the most part used an alternative approach, by

extracting the two components of [A + jB] from the complex plane and
plotting them separately in the real plane, versus frequency. Eventually O

fgf‘ the interrelationship is shown between the plots in the real plane and the

P
T e g e

plots in the complex plane.

ﬂ} The handbook thus presents the reader with a choice of ways of

* ¢ analyzing transducers.

\{‘*~“\3x A situation constantly imagined was: If you are handed, e.g., an old
impedance-vs-frequency curve, unearthed in a file, what is the maximum

amount of information you can extract from it? One aim of this handbook is

¥
. -
. . ' . N
e AR Yty 7 areny LTSS

to help the reader maximize the obtainable information. (A well-documented
) circle diagram contains everything you need; but too often the frequencies

desired by the next inquirer are not called out. Hence the diagram loses

its value.) <€<——— R , -

~

-

4. This first volume is limited to an analysis of the untuned piezoelectric ‘ :

transducer, with no dielectric losses, using either the Mason- or the

Van Dyke-circuit approximations. The analysis includes a discussion of the
various forms of the performance data as commonly presented by a computer

v simulation or by a measurement station. This means, e.g., when discussing




the input impedance: the graphical appearance of Z-mag vs. frequency,
Z-angle vs. frequency; X and B and R and G vs. frequency; X vs. Ry, B vs. G;
etc.

Profuse illustrations are given of many equivalent sub-circuits and
their responses. Inverse relationships and not-quite-inverse relationships
are discussed.

5. All curves have been normalized around the frequency 1.0, and in most
cases log frequency rather than linear frequency has been used. This not
only confers left-right symmetry on the plot, but allows the reader to make
direct use of these curves for his own-design projects. For, the curves are
now universal; and in addition the frequency markings are quite accurate.

Occasionally a curve is plotted both ways, log frequency and linear
frequency, to help the reader visualize the quite different appearances of
the plotted function.

6. For the most part, the illustrations are on the left page. They contain
a minimum of explanatory statements, since these are given fully on the
right page. The illustrations are repeated as the left page is turned, with
the added feature that they move up the page, as in a Chinese scroll, to
keep them synchronized with the text.

This arrangement was chosen so that the handbook can provide the
asked-for information in an easily refrievable form.

7. Whenever deemed helpful, a geometrical interpretation of the numerator
or denominator of an equation is separately plotted; or even a portion of

the numerator or denominator may be plotted.




8. Two repeating sets of illustrations are used throughout.

a) An equivalent circuit has been chosen using simple numerical values,
viz: C0 = 1.5 nF, Cm = 0.5 nF, Hn = 0.5 henry, and Rm = 3200 ohms.
These give a resonance frequency fr = 10,000 Hz and an antiresonance
frequency fa = 11,500 Hz. When normalized these become 1.0 and 1.15
frequency units. The coupling coefficient k is thus seen to be 50%; and the
Q, = 10 at either f. or f,. The choice of these above values allows

the reader to verify a point by mental calculation, without resorting to a

slide rule or calculator.

b) A computer-simulation of a realistic sonar transducer has been
chosen, having three different radiation loadings which are purely
resistive. These frequencies have all been shifted so that fr = 1,0.

Since the k is 50%, f, again = 1.15. A1l relative magnitudes, on a dB
scale, have been preserved in the frequency translation; but the absolute
magnitudes are now not correct at the normalized frequency. However, since
both susceptance and reactance components (for example) were operated on by
the same transformation, the originally computed numbers will retain much

useful correlation between e.g. susceptance and reactance.

B. A Figure-of-Merit for Transducers

A figure-of-merit is usally an arbitrary formula which has proven
useful in a given discipline. People who design piezoelectric filters choose
k’meor their figure-of-merit. They would like a coupling coefficient
k > 60% and a mechanical Q (i.e. Qm) > 100; and the higher each component

the better. since a high qm means low friction losses.
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But designers of transducers for radiating or receiving sound energy
have a different criterion. They still would like a high k; but not too
high a Qm. In fact if the Qm became lowered due to an increased
radiation loss Rload (while maintaining the friction losses at a steady
value), this could be a highly desirable situation. It is known as matching
the transducer impedance to the load impedance. Hence a Qm in the range
of 2 to 5 is usually very desirable.

We will leave out Qm entirely from our figure-of-merit formula,
preferring to choose the optimum value of Qm on a case-by-case considera-
tion. Then our figure-of-merit reduces merely to k? or, more simply, to k

the coupling coefficient. (Note that we always use it in the form k? or k*,

never as k.)
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B. (cont.)
A Figure-of-Merit for Transducers (Coupling Coefficient)

The coupling coefficient k can be obtained from measurements on the
untuned transducer, which give us K. Basically k® starts with the total
reactive energy stored on the two sides of the transducer, mechanical and
electrical. Then 1/k* is the ratio of this total reactive energy to the
partial reactive energy transferred and stored on the other side; or k® s
the ratio of the transferred stored energy to the total stored energy. On
the electrical side, the reactive energy is stored in the capacitor (for a
piezoelectric transducer). On the mechanical side, all the reactive energy
is stored in the spring if we measure at dc (or extrapolate down to dc); the
value of the mass is thus irrelevant.

Figure I.1a shows the equivalent circuit we will work with. This is
the Mason-circuit or modified Van Dyke-circuit. It is valid in the
neighborhood of the fundamental resonance and at dc; but invalid elsewhere.
The mechanical branch uses the analog of force with voltage, and velocity
with current. It then can be shown that springs in parallel must be
represented by "mechanical condensers" in series. Also, a force generator
which produces the same displacement "X" across two springs in parallel, is
here represented by the force generator F which produces constant
displacement "X" through two "mechanical condensers” in series. "Mechanical

* * '3 » 3
inductances” Lm and "mechanical resistances” Rm combine in series precisely
as do true masses M and true viscosities R. The perfect electromechanical

turns-ratio (or perfect transformer)1:6 has the dimensions (volt: Newton)

in the MKS system.

Figure I.1b shows the low-frequency approximate equivalent circuit,

which is exact at dc.
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Then at dc. k2 = Energy transferred to mechanical condenser
’ Energy in mechanical condenser + Energy in electrical
capacitor

Two approaches are now possible, in calculating these energies.
1. It is sometimes convenient to send the mechanical condenser C;
through the perfect transformer 1:4, and work with Figure 1.2. The
mechanical condenser C; has now become the "motional capacitor® Cm.
The circuit of Fig 1.2 suggests that we should apply a voltage E to the
electric terminals and measure the energy transferred to the motional

element Cm (which is in parallel).

2
1/2 C_ E o
Then k? = —2 8 (1.1)
172 Cm EG +1/2 CO EG m ]
From this it follows that:
Fig 2¢ Fig 2e (see Chapter 2)
]
2 - oaug Co _ Cclamped _ X¢pee Xo(free)
1-k* = 3:4 = 3¢ = —¢ = 3 = = (1.2)
m 0 free clamped Xc]amped
[}
cC +C c X X
And _1 = 4:3 = -1 " o . - free _ c;amped - c]amped (1.3)
I-k 0 clamped free Xo(free)
c c X (%,
k2 m mot clamped mot)
AndI-:Ez-=13=t—=t—'—'— = X = (1-4)
(] clamped mot Xo(free)
]
12 c C X X (free)
And 12K = 3.1 - Eg - céamged ., mt _ "o : (1.5)
k m mot cTamped xmot }

2, It is sometimes more convenient to send the capacitor C0 through the
perfect transformer 1:4$, and work with Figure 1.3a. The capacitor C° has
now become the "mechanical condenser" C:. The circuit of Fig I.3a ; :
suggests that we should apply a force F in series with the "mechanical
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condenser" C;, and measure the energy transferred to the "electrical”
element C: (which is in series). Since the force generator F must have
zero internal impedance, the mechanical boundary is still "free", as is

required in these measurements.

L,
Z¢ c c c .4 c
Then k2 = il o o Jalbr S ' =t
2 2 1 . a2 . a2
R LT T
o m
° m (1.6)

Equally true, we could have sent the whole mechanical branch through
the transformer 1:¢, so that we could work with the circuit of Figure I.3b.

Note that displacement "X" then becomes charge "g".

~

1

z=1C31=ccmc- (1.7)
Q@ &=+ m+ o

Cm Co E;

1
F3

1g2
¢t

Then k2 =

o
o= o

Thus the value of k? is invariant, whether we inject electrical energy
and measure the transferred mechanical energy; or whether we inject
mechanical energy and measure the transferred electrical energy.

In closing, it should be mentioned that this dc value of k2, called the
static coupling coefficient, is not always duplicated at resonance. For
many designs the resonance coupling coefficient has a lower value than the
static value, sometimes dropping to as low as 75% static k. The static
value is still worth finding, however, as an upper-limit to the

possibilities of a newly-built model.




Chapter 1. Some Information Obtainable from the Input Immittance Magnitude
(Untuned).
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Chapter 1. Some Information Obtainable from the Input Immittance Magnitude
(Untuned).

1. Input Admittance and Input Impedance Magnitude shown as 20 log
|Yr or 20 log | Z| vs. log frequency.

2. Asymptotes By and (By + By) for “"clamped" and "free"
portions of the frequency band.

3. Two aspects of coupling coefficient k.

Preliminary Note: In this Handbook the operator || (parallel), when used

Ly « I
with impedance elements, will mean for example: Z,l[Zz = TvG With

admittance elements it means: Y,||Y2 = Y1 + Y. Likewise the operator i

i;(series), when used with admittance elements, will mean for example:

Y1 * Y2

Yi&Y, = 5——3— . With impedance elements it means: L%l = 7, + Z,.
Y, + Y2

In this chapter we will try to illustrate the usefulness of the loga-

rithmic scale in plotting magnitude of immittance. Not only does the log

scale make the max. and min. values of Y or Z more or less symmetrical about
their mean value (which is not the case with a linear scale); but in
addition the two asymptotic baselines are now displayed as parallel straight
lines (rather than converging or diverging hyperbolas). This facilitates
finding the separation between the "free" and “"clamped" asymptotes. This
mechanical terminology is analogous to electric circuit terminology as
follows. As will be shown in Fig. lc, mechanical "free" (where the motional

resistance Rm = 0) corresponds to a 4-terminal electric circuit whose

output terminals are short-circuit. And mechanical “clamped" (where the j

motional resistance Rm = o) corresponds to a 4-terminal electric circuit

whose output terminals are open-circuit. Note that the "free" immittance

occurs only below the resonance, fr; and the "clamped” immittance occurs

- only above the anti-resonance, fa.
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(Fig 1a). Then it can be shown that 1-k® = z—F——; or 20 log (1-k*) = AgB :
o m
v of[égﬁminus (Bo + Bm)éi.Thus the larger the spacing Bm between the
asymptotes, the higher the k static.
1 -2
RY

The separation between the "free" baseline and the "clamped" baseline
determines the static coupling coefficient. This static k is usually higher
than the dynamic k which prevails at resonance.

1. Figures la and 1b show experimental measurements of the magnitude of the
input admittance of two different barium titanate transducers, air-loaded,
plotted on semilog paper. We plot 20 log | admittancel as the ordinate.

Looking briefly at "the Basic Circuit" shown in Figure lc, which is a
simplified equivalent circuit (the Van Dyke-circuit) for the transducers
measured in Figures la and 1b: we see that since Zin = jxollzm and

21
Yin =T then !Yinifree

= |=%— + wii—l at low frequencies; and

c

,Yinl clamped = lﬁ%“ at high frequencies. Or identically,
0

lYinl = |jBo + ijl at low frequencies; and lYinl = ljBol at high frequencies.

Zm and Xm and Bm are "mechanical” components which have been

c
transformed to the electric side. They are then called motional components.
2. In Figures 1d and le the two baseline susceptances or reactances are
seen to plot as two parallel straight-line asymptotes: 8 or x]c1amped;

free®
3. The coupling coefficient k can be determined from each graph in two

and B or X]

independent ways. é
(a) Static k.

When the Q_ is Tow, the asymptote B can be guessed at and drawn ;:
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In practice, for an assembled PZT ceramic transducer in the 33 mode using a
stack of rings, static k33 is usually not greater than about 0.55. A PZT
transducer using the 31 mode in a stack of rings, will usually have static k31
not greater than about 0.30.

The meaning of k31 and k33 is the following. A long tube of
piezoelectric ceramic, electroded on its outer and inner faces and polarized (or
"poled") radially, is said to be working in the 3-1 mode when it vibrates
either longitudinally or radially. If this tube is now sliced up into rings and
reassembled as a stack of rings, it is still working in the 3-1 mode. We say we
have a stack comprised of 3-1 rings.

But if, after slicing the tube into rings, we take these rings and depolarize
them and remove the electroding; and then electrode each ring on its top and bottom
flat surface, and then pole each ring longitudinally (i.e. parallel to the axis):
We say that each ring is now working in the 3-3 mode. And if we reassemble these
3-3 rings (or any 3-3 rings) into a stack, we say we have a 3-3 stack.

If barium titanate is the ceramic, then using a stack of rings, static k33
is usually not greater than 0.35; and static k31 is usually not greater than
0.14.

If a single long tube of barium titanate is used, however, static k31
might = 0.19 (since now there are no multiple cement joints, which act to decouple
the mechanical domain from the electrical domain, thereby reducing k).

Figure la shows the input admittance of an underwater transducer measured in
air, on the bench. The "motor" was a stack of PZT rings operating in the 3-3 mode.
But the rings were known to be partially depolarized. The coupling coefficient was
therefore not calculable in advance (i.e. via theory).

In the figure, AdB = -1.5 dB. So (1-k?) = 0.84. And k = 0.40. If

static
we had read AdB = -1.4 dB, then kstatic = 0.385. The dynamic value of k
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runs lower, say 75% of these values, when the head and tail are relatively
light weight. If they are heavy, the dynamic value can be > 90% of

} ‘ Kstatic®

(b) Dynamic k.

Since we are primarily concerned with the behavior of an assembled

4 e

transducer around resonance, we can try going directly to the frequency-
variation method, using fa’ fr’ and Af = (fa'fr)' These terms are

usually derived at the electric terminals. However, if we look into the

T oaed T oW om.

mechanical instead of electrical terminals, fa (the "anti-resonance") is
merely the mechanical resonance when the electric terminals are open-circuit;
fr is the mechanical resonance when the electric terminals are
short-circuit; and Af is the difference between the twc. These three values :
can be determined fairly accurately when the Qm is high (>10); but Af, the
most important quantity, becomes blurry when the Qm, or mechanical Q, is

f Tow. Q

measured on a constant-voltage untuned Transmitting Response curve. The

js defined here as fr divided by the -3dB bandwidth in Hz, as

N

basic relationship for dynamic k is

PR

2 _ g2
K2 = ié-,_J}L_.

fa 2

This can be converted to other useful forms.

) Thus kz = f.t@.j_tt)ﬁ = 2 - é_f.. o é.f.
2 N
a a
2
Then & = %-f - (-f-f) . And if the second
a a
term is very small (as when k= 0.30 or less), k¥ = %—f
a

In Figure la, Af happened to equal 0.049 frequency units andl-}-f- = 0.047.

[+7)

! Then k' = 0.094 - .0022 = .0918. So k < 0.305. This is about 78% of the k

static value.
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If we had ignored the term - £ and simply used k* = e then
a

a
k 2 0.305. In any event the error is less than 2%.

Figure 1b shows the input admittance of a competitive transducer,
similar to that of Figure la. In Figure 1lb it is very difficult to draw the
BO asymptote since the next overtone (nominally the 3rd harmonic) distorts
the slope of Bo. This is because Qm is high for the overtone as well as
for the fundamental. (We note, in passing, that a high air-Q around any
resonance implies a high efficiency at that resonance.) But in spite of the
difficulty in finding Bo (which is Bc]amped) and hence AdB, we can
easily obtain Af. Here Af/fa is clearly 0.047. So again k = 0.30+.

Figs. 1d and le show a computer-simulation of a transducer comprised of
a stack of PZT rings in the 33 mode. (Three different values of radiation
resistance were used.) The value of dynamic k33 from Af is = 0.50.

The value of static k33 using the measured value B, = -3.3dB in the
admittance curve of Fig 1d (i.e. log Bclamped - log Bfree)’ gives <tatic
k33 = 0.56. Equally true, using AX = -3.3dB in the impedance curve of

Fig le (i.e. log X - log Xc]amped) gives static kss = 0.56. The

free
dynamic k’, is thus about 90% of the static k33 value, in this case.

For future reference:

Cr B =@ﬂ'ee - Bclamped)mhos from Fig 1d by

static k? = =
f0 + Cm BO + Bm *Ffree mhos

inspection. Using dB: 20 log (1-k?) = B.1amped (dB) - Bg .o (dB) = AdB.

If we try to do an analogous derivation for k* using Figure le and

reactances, w2 run into a problem. It is true that a similar form shows up,
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namely k2 =(XC13"‘P9d - X free )ohms_ *
X ohms  °
( clamped)

But the numerator implies a series arrangement for X d and

clampe

X Figure lc, however, shows only a parallel arrangement. What is

free®
needed is another form of Figure lc. This is discussed at length in

Chapter 3, where we use the terminology

X

k2 = S
X +X
0 m.
Here Xm is indeed the isolated "mechanical" (i.e. motional)

(o
reactance, analogous to Bm above. And Xo' is identical with X free®

* 1-Kk2 = BcTamped - Xfree

free Xc]amped
K2 = X 1amped ~ *free ONMS
Xc]amped ohms

7
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Chapter 2. Further Information Obtainable from |Zin|.

The Figures illustrate:

a. Input Impedance magnitude, shown both as 20 Tog |Z| vs. log
frequency and as linear-scale [Z| vs. log frequency.

b. Foster's Equivalent Circuits.

c. Determination of Qu from |Z| curve.

Preliminary Note: The operator || (parallel), when used with impedance

5L 7,
elements, will mean for example: Z;||Z, = v With admittance elements
1

it means: Yi[)Y, =Y, +Y,. Likewise the operator EF (series), when used

with admittance elements, will mean for example: ﬂ; Y S S U
Y, + Y,. With

impedance elements it means: 2, ¥ 1, =1, %+ 1,.

Introduction. Chapter 2 has two main purposes. (1) The first is to
familiarize the reader with "the other Basic Circuit" (seen in Fig 2e). This
is different in form from "the Basic Circuit” of Fig 2c, which is, in effect,
Mason's modification of the Van Dyke-circuit of Figure lc. Nevertheless the
circuits of Fig 2c and Fig 2e are interchangeable. The reader should practice
converting rapidly from Fig 2c to Fig 2e or vice versa. The numbers and
ratios are very simple in our repeating examples, often being 3/4 (from 1-k2)
or 3/1 {from [_I-k2 /k?), since our k = 0.50. Hence the converting can be done
in one's head. The pay-off to the reader will be large. For, all the
difficult manipulations required when the circuit of Fig 2c must handle
impedance problems in addition to the admittance problems it is especially
suited to—~—all this becomes greatly simplified as soon as the second circuit
is available. The Appendix 2-A shows the general method of converting,
following the approach of Shea, "Transmission Networks and Wave Filters".

(2) The second purpose of this chapter is to give an intuitively

reasonable derivation of the relation of the mechanical Q, or Qm, to the
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ratio |ZmaxL//|Zmin|' The standard derivations are much more complicated and

not much more accurate. The present derivation is worth the learning effort.
Figure (2a) shows linear lZinI vs log frequency for a low-Q

transducer. Figure (2b) shows log |Z in| vs log frequency for this

transducer when the Q's are much higher. If the frequency scale were linear

in Fig. (2a) the converging asymptotes X would be true

clamped and Xfree
hyperbolas. The log scale compresses the frequency axis and slightly
distorts the hyperbolas. But we will retain a log frequency scale

throughout this handbook because the shape of a curve, thereby, is invariant

as the resonance frequency is moved around. In Fig 2b the asymptotes are

é‘ two parallel straight lines.

hé. To show some further differences in appearance of things on a linear

scale vs. a log scale: In Fig (2a) a linear impedance curve is shown,
corresponding to one given value of Qm; and in Fig. (2b) log impedance
curves are shown corresponding to three different values of Qm. These
three curves intersect at a point close to the mean frequency, viz.
q?;7?;:_where f. is the resonance frequency and f_ is the anti-
resonance frequency, as discussed in Chapter 1. The point of inter-
section is seen, in Fig. (2b), to be located (along the ordinate) more

or less midway between log |Z . | and log |Zmax|' In Fig. (2a), linear

min

5 1Z,;,) and |z, | are clearly not symmetrically disposed about this point

| is = 0 and

; (interpolated). And indeed, if Q_ approaches infinity, |Z .

é ‘Zmaxl is = = and the asymmetry is all the clearer. But the two asymptotes

are unaffected by Q, and always enclose this point of intersection.

It has long been observed that a close relation exists between the

. . " . " -
ratio IZmax‘ lzminl and the mechanical "quality factor" or selectivity
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factor Qm. The desired relation can be found in the connection between
Fig. (2c) and Fig. (2e). Figure 2c is often taken (arbitrarily)as “the
Basic Circuit" of a transducer.

1. Foster's Equivalent Circuits

Figure (2e) is an alternate form of Fig. (2c). The two are exactly
equivalent and are discussed in detail (when Rm = 0) in Foster's paper "A
Reactance Theorem, and in writings by Shea, and Norton.* We will refer to
Fig. (2c) as the Half-Pi circuit and Fig. (2e) as the Half-Tee circuit. In
both circuits, ¢ is the electro-mechanical transformer (which is not needed
by Foster et al). Calculations made with either circuit will give the

correct and same impedance values over the whole frequency band.

Now if we reserve Fig (2c) for the band around the mechanical resonance

frequency fr (electric terminals short-circuit) and reserve Fig. (2e) for

the band around the "anti-resonance" frequency fa (the mechanical

resonance frequency for open-circuit electric terminals), the zin
calculations become greatly simplified for the the two regions, resonance
and anti-resonance. We have converted a Half-Pi input to a Half-Tee input
in changing Fig. (2c) to Fig (2e). The additional (purely electrical)
transformer N:1 is merely implied by Foster, but is explicitly used by Shea,
Norton, and others. It turns out that their N is exactly the same quantity
as our k2, as shown in Appendix 2-A. The equivalence of the circuits of
Figs. 2c and 2e can be confirmed by testing the open-circuit and
short-circuit input immittances, looking first into the left port and then
into the right port. Thus impedances like Rm transform as k* to become

R;. (Cf. the conversion of Fig 2d into Fig. 2e.)

*See Appendix 2-A
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As an example, let us consider a transducer with k=0.50 and fr = 10

kHz. The specific value of ¢ is unimportant, but happpens to be 5N/volt.

Referring to Fig. (2c), let CO = 1.5nF, €, = 0.50F, L =~
0.5H, Xm = 32,000 ohms at the fr of 10 kHz, and Rm = 3200 ohms,
L
Xm
Then for constant-voltage drive Qg = —ﬁL = 10.

Moving over to Fig. (2d): C; 2.0nF, C; = 6.0nF, and N2:1 or k*:1 is

1/16:1. L and R, are unchanged as yet. Then progressing to Fig. (2e), C;

and C; are unchanged; but Lé and R; are now divided by 16. Thus Ré = 200

ohms, L. = .031 H and X =~ 2000 ohms at either f_ or f.. [This is an
m mL r a

approximate reactance value that an observer at the electric terminals sees
at the "anti-resonance" fa of 11.5 kHz. It is more useful for the moment

than the exact value of 2300 ohms which, under constant-current drive,

would give a Q;] of 11.5.]

The two transformers in Fig. (2e), N:1 and 1x, are usually combined

(multiplied) into a single transformer N4 or k¥ /p which is then called

N':1. In the present example this would be .05:1, since k¥ --% and ¢ = 5,

giving %6‘ But this combining conceals some useful information; so we will

keep them uncombined.
Note that Qg is still = 10, even though the (XL, R) impedance

level has dropped by 16 to one, or -24 dB on a 20 log scale. Alternatively,

we can retain the original (XL’ R) impedance level by sending Co and Cm

through the N:1 transformer thus multiplying by K, to become CON and CmN as
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shown in Fig. (2f). Then C.M = 0.125 nF and C_" = 0.375 nF. This clearly

TR . N R

shows how to compare the resonance frequency fr’ at sight, with the

i3

anti-resonance frequency fa, using CmN = 0.375 nF in Fig. (2f). The

.

anti-resonance fa (electric open-circuit) must therefore occur at a higher

frequency than the resonance fr (electric short-circuit) which uses Cm =

g aniier o ande ot pd

1= oW el

0.5 nfF in Fig. (2¢c). The frequency ratio is/0.5/0.375 or 4/3 or about

Lk

1.15:1. [This of course is one reason for having Foster's two forms always

R &

in mind.] In this handbook the values of 1.15 for fa, and 1.0 for fr

L )

will be used in every chapter, along with k = 0.50. Also the Qg (for

v

constant-voltage drive) will usually be arranged to be .10, in sample

calculations. The Q% (for constant-current drive) would then be 11.5.

But for convenience we will sometimes let Q; = Qg, giving the value 10 for

both the constant-current and the constant-voltage situations. And we will
then give it the undifferentiated name Qm.

It is sometimes useful to make one more conversion of Fig. (2e), into

B MO

m are unaffected. And if

B e s

an equivalent represented by Fig. (2g). C; and C

Q; is 10 or greater, Lm is approximately constant with frequency and has the

same value as in Fig. (2e). Then the only variable element is Rp, a
variable parallel resistance which has replaced the invariant series R;
of Fig. (2e). R' is called the inverse conductance of the "tank

P
’ circuit".

. . . 1
2. Derivation of "quality factor" Q, from|Z .| and|Z ;|

From prior knowledge we know that Qé ¥ 10. Now however we will

try to find this value by measurement, at the input terminals, pretending

that it is unknown. To derive Q;, the "quality-factor" around fa for
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constant-current drive, we will work with R;. Now

2 Iz '

l- I I~
Rp =(L+ Q)= Ry=0Qp « Ry (2.11)

From Fig. 2g this is seen to be 100 x 200 or 20,000 ohms, for the specific

example. Then at anti-resonance fa
Zin = on + Rp (2.12) ;

‘
But the contribution of on is usually small enough so that we can say

Z. - o ~nl2 !
| 1n|fa- Bp x Qm ‘ Rm . (2.13)
If now we take the ratio Izi | lZ. l which is also known as

nie inle

a r
Izmax] lzminl (as seen in Fig. 2a) we get
2 ] 3‘

z V4 = Qi * P (neglecting the small (2.2)
[ “max| [ “min] Rm contribution of jBo).

But this equation is not what we are looking for in order to isolate Q;‘. It

uses both R from Fig. 2c, and Ré from Figs. 2e and 29. So we must
go further.
If we proceed from Fig. 2g to Fig. 2h by sending all impedances to the

right through the turns-ratio %1, we multiply IZ | by %f. From input

max

measurements we can determine that k = 0.50 and that hence %v is 16 in this

case. Then
7 1 . 3 16=R .16 =g\, (R .16) =gl . R (2.3)
|“max|* k¥  |“max]° p° m2 V'm° m° om "
The value of |I is thus about 320,000 ohms in this case.

max| transformed
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And .
nd then for the general case,lZmaxl x 1/k* or 'Zmaxl transformed

divided by |Z . | gives:

min

R 2
_ m x m I
maxI X —://// min! =Q, - (2.4)

A geometrical meaning of |Z__ | x 1/k* is shown in Fig. 2i, where the

max

transformed |Z__ | is superposed on the simple |Z ] of the lowest-Q

max max

curve of Figure 2b. The transformed lzmaxl is” increased by 24 dB, as will
be shown.
If we convert Eg. 2.4 to dB (using a 20 log scale for our dB) and if we

also use some numbers; then, recalling that 1/k* or 16/1 is +24 dB:

20 Tog |2, | + 24 d8 - 20 Tog |z, | = 40 log QL. (2.51)
or

Igmaxl d8 - | m1n| dB + 24 dB = 2 Q dB (2.52)
or

M5B 12 48 = o} a8 (2.53)

° B
where AdB refers to|Z|at fa minule at f.; and the 12 dB is the value of

1/k 2.

Then in the general case, using a 20 log scale:

AdB + (I/kz)dB = Q dB. (2.6\

Or, on a linear scale:

1
Y4 z . T
I_ |'max | _ 1 ' max| * K
Q = ' x = . [Formerly . (2.71)
m ‘ |“min] k2 |“min |
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This equation sometimes occurs in the literature as:

z .|
1 | max

sz = (2.72)
m Zmin

And since Zmax = 1/Ymin (at fa) and zmin = 1/Ymax (at fr)’

Yool
I | max

k3Q, = , also. (2.73)
m Ym1'n

Now if we wish to find an expression for QE, the quality factor around

fr’ we must modify (Eq. 2.71). We could have used only the circuit of

Fig. 2¢ in deriving Q;. It was simply more convenient to use Figs. 29 and

2h in addition., We will now make further use of Figure 2c. We will short

the electric terminals, in order to find fr; and we will observe that
Rm = 3200 ohms at both fa and fr (and indeed over the whole band).
Hence the only factor that changes from fa to fr is the reactive term,

L
E _ Wylm
NOWQm-—R—m—.

L
I _“Ya'm E,nl _
And Qm = —q . So Qm/Qm = wr/wa.

. . =l 1
But from Fig. 2c, W, = v@;;f; and w, = T L

or =\, 1-x

(2.81)

0.375 _ /1.5
0.5 -\ 2.0

as can be easily seen from Eq. [.2.
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Then q; = Q; x mr/u)a = q; M1 -k . (2.82)

z
E_ l maxl .‘(i:%;gi—. (2.91)

And from Eq. 2.71, Qm
min

Now in Appendix 2-A, references are given to alternative derivations of

Qi, rather more difficult, which finally give:
Y | w 2
E | max a 1-k
k= L2, : (2.92)
" ’Yminl @y k2

(2.93)

And we see that this is the same as our Eq. 2.9l. {Since Ymax = Zmax
Ymin 7 min

Returning to Eq. 2.6 and Q) in dB:

ol (d8) = 48+ (1/k")as (2.6)

2
Now, the relatively small 1/k factor of 12 dB (in Eq. 2.53) or 4:1,
was due to the relatively large k of 0.50. Thus in Fig. 2b, the lowest-Q
curve shows a AdB of about 21.5 dB. This results in a Q;(dB) of only about

22.75 dB or q; = 13.7.

s

But when the k is reduced to 0.30, as in Fig. la (repeated here as Fig.
2j), the 1/k 2 factor is 11:1 or 21 dB. And then although AdB is only

9 dB, this results in a Q;(da) of 25.5 dB or q; = 19.

Bhl e m s
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The point is that when the coupling coefficient is fairly low, 30% in
this case, the decoupling (of the mechanical branch from the electrical
branch) is high. Hence even a slight bump from the mechanical branch

becomes significant. It means that Qm(dB) is > 0 dB + 21 dB; and hence

that Qm > 11.

This is shown in Fig. 2k, where the IZinl of a quartz resonant bar is
given. Quartz has a k of about 10%, so k? = 0.01. Observe that for such a
small k* the two asympototes are almost touching; AdB is very small; and
fa - fr is very small, That is, the "rectangular window" enclosing
[, and |Z

fas frs |2 | has shrunk on all sides. Then even if we

a max min
call AdB =~ 0 dB, 1/k* = + 40 dB and so Q > 100. In such an example another
indication is usually given that Q is high: the tiny peak and tiny dip are

very sharp.

2-10
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Using Af from
Reactance Curve

TABLE I
EXAMPLE OF THE MEASUREMENT OF oé

when k = 0.50;

Using AdB from

1/k* = 4:1 or +12 dB

Impedance Magnitude Curve

g -fa s
m fa

(1) R, =100 ohms MKS

mech

AdB = +77.5 dB
+13.5 dB
+64.0 dB

AdB/2 = +32 dB

Q(dB)

I,
Q, = 160

"

+32 dB + 12 dB = 44 dB

—t

(2) R = 5000 ohms MKS

mech

AdB = +62.5 dB
“ +31.0 d8B
+31.5 dB

AdB/2 = +15.8 dB

Q(ds)

1
Op -

"

+15.8 dB + 12 dB =

25

+27.8 dB

13

O
3
”

(3) Rmech

= 10,000 ohms MKS

AdB = +57.5 dB
~ +36.0 dB
¥21.5 dB

+10.8 dB

+10.8 dB + 12 dB =

AdB/2
Q(dB)

Q= 14

+22.8 dB

I T L

E —— £33 £ | s P owe ‘_'!,‘n [ ‘vosugs YUY G-

O —"n g I



[P

LT AR, T

ol od

lnd et R N

Ay I Sicn

L

~f

Table I shows a comparison between Q; via 8f, from the reactance curves

I

of Chap. 6; and Q. via AdB between Iz The transducer under

maxl and Izminl'
consideration is a realistic computer-simulated transducer whose
impedance-magnitude response is shown in Fig. 2b. A number of
reactance-response curves are shown in Figs. 61, 6m, and 6n. The large

detailed originals of these were used in preparing the Af portion of Table I
(where Af = fy - f3). For Qé values » 100, the Af was more difficult to read

than the AdB. For lower values the two methods seem equally reliable.
The Af method has the attraction that it does not require a
determination of 1/k?; it can be read off directly from a reactance curve,
or from an impedance circle diagram (see Fig. 7.2).
On the other hand the AdB method has the attraction that it is quick
and requires no sophisticated instrumentation such as a vector impedance

analyzer which automatically resolves Z into R and X. This method is then

convenient when only a voltmeter and an oscillator are available.
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Reversing an L-Network

Appendix 2-A
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Appendix 2-A

Reversing an L-Network

Figure 2-A.1 shows the basic network we will work with. We wish to
reverse only the CO and Cm portion, and not touch the L and R portion.

The solution requires adding a transformer with turns-ratio N:1. (Note that
we are allowed to reverse merely the central portion of a network, without
disturbing the elements to the left or the right of it.)

To find the desired relationships, we would ordinarily equate the
open-circuit and short-circuit impedances Z from each end of Fig. 2-A.3, to
the respective open-circuit and short-circuit impedances of Fig. 2-A.4. Or
equally well, we could work with the admittances Y. But since the Y of a

capacitive network is wC, we can drop w and equate the various capacitances C.

We will use C0 as our reference capacitance (Fig. 2-A.1), and express
all other capacitances as fractions of Co. In Fig. 2-A.1 we are given the
value of a, since we have measured the ratio of Cm/co‘ We will solve
for the other values b, e, and N in terms of a. (We have written in the
answers, however, to allow the reader to check things as we proceed.)

1. Open-circuit condition. (We use only terminals 1-2, 3-4.)

oc - . be ,
C-2) =% b%e " %o (2-A1)

ocC = 4 = aN2 -

2. Short-circuit condition. (We use only terminals 1-2, 3-4.)

sc = . =
C(l_z) = (a"’l) CO bCO

cf§_4) = aC, = (bte)N* - C

2A - 1
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" We can use any three of these four equations. Thus:

b = a+l (2-A5)

b+e=be; e:n; e:—a-— (Z-AG)
2 = a . 2 = a [ 1’. = a 2
N VM ewre (a_ﬂ') (2-A7)
_a
So N = a—_q- (Z-AB)
But our definition of k2 has been Cr which equals aC, (cf. Eq. 1.1)
C +C a+
mto .. ()
-2 = _Q T e e ey e
\‘_J So N=k -a—_'_T (2 A9)
t
- We will now rework the a formulas in terms of k2.
: K2
i‘.’ 3 % 12 (2-A10)
4
.5 1
i b =atl = {57 (2-A11)
A atl _ 1
e = —-a—— = Ez' (2-A12)

In the present example since a = 1/3 (Fig. 2-A.1)
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Note also that the relation of the two shunt elements is

¢
= kz.

2" -{o

And the relation of the two series elements is

L = K2
T - - k .

C

Figures 2-A.5 and 2-A.6 show the two networks drawn as 2-terminal
rather than 4-terminal networks. (This is somewhat the way Foster might
draw them.) In addition we have sent all elements through the transformer.

Figure 2-A.5 high-lights the resonance frequency fr of the networks.

Figure 2-A.6 high-lights the anti-resonance frequency fa of the
network., A simple mental calculation gives the ratio of fa/fr’ thus

again showing the usefulness of using the two Foster forms.

-

- 2A - 3
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Chapter 3,

The reactance curves of the two basic circuits; and
how to sketch them "at sight".
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CHAPTER 3. The Reactance Curves of the Two Basic Circuits; and
how to Sketch Them "at sight®.

We will arbitrarily select the circuit of Fig. 3a as our Basic Circuit and
derive all the other circuits from it. We could as well have chosen Fig 3c as
our basic circuit; and some writers do. This is merely another form of Fig
3a, i.e. a Half-Tee instead of a Half-Pi, as shown in Foster's Reactance
Theorem paper for the case of infinite Q; and as discussed by Shea, Norton,
and others. Fig 3a, the Half-Pi, is especially useful when behavior around
the resonance region fr is explicitly asked for. Fig 3¢, the Half-Tee, is
especially useful when behavior around the anti-resonance region fa is

explicitly asked for. Both circuits give identical values for Zin and

! ac  5SC ! R !
zin’ 7, 2°%, Yin and Yin’ the series reactances XS and Xs’ etc.
. . J'Xo‘(Rm * ij) . (
In Fig 3a, zin = JXO I Zm T TR TN RS + JXS . (3.1)
0 m m
. . . _ - -1 .
Here, + jX_ will mean + J(XmL + ch), where XmL =wl and ch = o That is,

we use + ij for - jn%~. We therefore never expect to see a term - jxm .
c m c

This is the A.S.A. convention. (Some books use -~ ij for - jw%-. To convert
c m

to the convention used here, simply multiply ch, every time it appears,
by (-1).) |

Now the analysis of Zin by Equation 3.1 gives unsatisfying results when
Rm?o, and especially when  is very low. However, the analysis becomes
clear when Rm= 0 and hence Q= =, Figure 3b, dashed curve, is then the

resultant of the series-resonance circuit X fE; Xy connected in
c L

parallel with xclamped' Thus, the series-resonance branch goes to zero at
the resonance frequency fr’ shorts out xc1amped' and makes the total XS

it otk




Circuit useful for analysis of behavior
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admittance components.
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Circuit useful for analysis of behavior
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impedance components.

At low frequencies:
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equal zero at fr' As the frequency increases, the series-resonance hranch
changes from capacitive to inductive and soon anti-resonates with xclamped
at the anti-resonance frequency fa’ making the total Xs equal infinity at

f_. 1t then becomes capacitive again and follows the X

a asymptote.

clamped
But when R> 0 and Q is low the reactive response curve XS (Fig 3b, thin
Solid Curve) in the region of resonance fr and of anti-resonance fa’ has
no simple intuitive explanation from this network. Indeed it is not obvious
how this purely reactive curve (derived from Fig 3a) manages to stay below the
axis both at fr and also in the vicinity of fa‘ The reactive behavior of
Figs. 3a and 3b is discussed in greater depth at a later point.
Their susceptance behavior is discussed in Chapter 4. For, it turns out

that in the analysis of the circuit of Fig 3a, it is more useful and

instructive to convert Zin to Yin and work with the admittance components.

1 1 1 1 R
Then Y, = 55— = = = 57— +5—, Thus Y, =B + VY . (3.2)
in Zin lJXJl Zmi JXo Zm in 0 m

The resultant variable parallel resistance Rp (in parallel with CO);
or better, variable parallel conductance G,'its inverse, which is the real
component of Ym (see Chap. 4), will then be independent of such variables as
cable capacitance added in parallel to the electrical capacitance CO. Such
independence will not exist for the variable resistance R, (a series
component; see Chap. 5) which is the real component of total Zin in Eq. 3.1
and also (with identical values) of total Z;n in Eq. 3.3. This equation

pertains to Figures 3c and 3d.
] ] ] 1 1 ] 1 R ] .
z in = L 4; Ztank = Xyt {(Rm + X mL) [| 3X mc} = RS + X (or R, + JXS).
(3.3)

In both Z equations, 3.1 and 3.3, the effective variable series resistance

RS will change every time the cable capacitance changes. This is easily

3-2
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seen in Eq. 3.1, where an added cable capacitance modifies X0 (e.g., in the
denominator) and hence modifies the resultant RS. It is less easily seen in

Eq. 3.3, but we know that it must be so here also. [Mechanism: the cable
capacitance modifies not only X; but aiso X'm (by changing the value of the
c

coupling coefficient k); thence the Q of the tank (Fig. 3c) and thence Rns.]
The components of Yin and Z;n will be analyzed in Chapters 4 and 5,
We now turn again to the illustrations of Chapter 3.

Figures 3b and 3d look alike —— grossly. But many details are different .

) ] 1
1. InFigs. 3c and 3d, X qappeq Must be derived, from X, cj; xmc.

2. But in Figs 3a and 3b, X exists alone, as Xo.

clamped
3. In Fig 3d the operator ﬂ; ("series”) tells us to add + X; to the

hyperbolic baseline Xo (free), thereby first raising and then lowering the

position of the curve; which also means first lowering and then raising the

value of the curve. This distinction arises during inversions, as from G to

Rp, B to Xp, etc. The factor Xm is discussed in Chapter 5. It is shown here

in Fig 3e.

4, But in Fig 3b the operator I ("paraliel”) calls for something more
complicated than adding. For the sake of illustration, we will work here only
with impedance components rather than admittance components. We must start
with the other hyperbolic baseline Xo (clamped) and then "parallel" the
contribution of the reactive portion of Zm or of (Rm j; jxm) after it
has been transformed to the equivalent parallel representation (Rp||jXp).

[See Chap. 4 and Fig. 4i.] A plot of Xp is shown in Fig. 3f. We then represent
total Z, as Rp I [?Xo ||jXp:’ . Note that the parallel motiona)

component X_is quite different from the series motional component x;

p
which is shown in Fig. 3e. In fact for the 00-Q case they would be duals

3 -3
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if only they were centered about the same reference frequency. This can be

seen from Fig 3f, which itself will be discussed further at a later point.
Now, X°||Xp still does not give us the XS of Fig 3b, although

paralleling any curve of Fig 3f with the X, (clamped) curve of Fig 3b gives

a resultant curve which, for the first time, somewhat resembles the family of

curves in Fig 3b. (In fact, away from fr and fa agreement is perfect.)

As the final step, we must now “paraliel” R_ with on||jXp and

p
convert this (which of course is total Zin) into the series form Rs$xs

or jdentically, R; X;. We will then have, explicitly, the exact reactance
curves shown equally correctly in either Fig 3b or Fig 3d.

The above exercise helps explain why it is easier to deal with Fig 3a via
parallel susceptance and conductance components rather than via parallel
reactance and resistance components; except when Q 15\0Q,_ The analysis via
the admittance components is treated in Chapter 4. We will now elaborate on
Fig 3b and discuss how to sketch out the paralleling of X0 with Xp "at
sight".

(a) We start at the low-frequency region by paralleling C, and Cp. We

travel up the X(free) hyperbola until we approach fr‘ (b) At fr if qQ is

high (dotted curve and dashed curve), the Net X must = 0 since Xo has been
shorted out by Xm. But if Q is low, the Net X # 0 at fr (solid curve).

{This low-Q case is not easily handled by the Fig 3a-approach. But it is very

easily handled by the Fig 3c-approach.} (c) Jumping to the region far above
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fa we see that the parallel branch, X, (Fig 3a) has jammed and that only
the X0 branch is functioning. S0 we are now traveling up the Xc]amped

hyperbola, namely Xo' (d) Now we back up. We know from Foster's Reactance

i i e

Theorem that the resonance at f,. must be followed by an anti-resonance at
fa' How to locate fa? One man's anti-resonance is another man's

resonance. We look from the mechanical terminals toward the open-circuited ;
electrical terminals, and see a "mechanical" resonance caused by :

an, $ ch § Xo’ This is fa’ made higher than fr because of 4

XO in series. Using numbers: Cm ﬁ; C0 is 0.375 nf = Cnet'
Then Cm/Cnet = 0.5/0.375 = 1.33/1. Then the square root is 1.15/1., And

this is indeed the ratio of fa to fr.

We now add a comment on Figs. 3c and 3d. If we were to take all components

through the transformer k2:1; as shown in Fig 2f, we would get at once

Qn 1; Co’ with the value 0.375 nf. This combination would now appear

as the single "motional condenser" C:' These circuits of Fig 3c and Fig 2f

will give quantitative answers around f, more readily than will the circuit

of Figure 3a.
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Chapter 4. Derivation of the Susceptance and Conductance curves. ' 1
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CHAPTER 4. Derivation of the Susceptance and Conductance Curves.

Preliminary Note: The operator || (parallel), when used with impedance

Zl . Zz
elements, will mean for example: IZ,]|Z, = 7T With admittance elements
3 2

it means: Y,||Y, = Y, + Y,. Likewise the operator .ﬂ; (series), when used

Y"Ya
with admittance elements, will mean for example: Y, ﬂ; Y, = —
Y, + Y,

With

impedance elements it means: Z, $ L, =12, +1,.

Figure 4a shows the simplified Basic Circuit that we will work with for
susceptance and conductance. A1l "mechanical" quantities have been
transformed to the electrical side, where they are now called "motional"
quantities. They are now components of Zm, the "motional impedance".

1
The term | on [ or Bo’ the clamped susceptance, is plotted in Fig. 4b.

It will act as a bias or a new baseline for the motional susceptance term Bm
of the "motional admittance" Ym‘ A Tinear frequency plot was chosen, to
show how simple the bias function is. In general, we will use log frequency
plots.

The term Ym = -%—- = ﬁ——l—v~— resolves into G + jB. It is shown in

m m* Jxm
Fig. 4c, which is equally valid for Ym or Zm.

Y=R~1~'x 'imq':((m:RRTx +jR-X':x (4.1)
m J m J m m2 m2 m2 m2

- m:' - m
Thus Gm = ﬁ;;-—+-———x 2 and Bm R 2—°—7—— (4.2)
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We will ignore Gm for the moment and concentrate on Bm.

2 2
Bm = Numerator/Denominator = N/D. D is |Zm| and % = |Ym| . It plots
>
as shown in Fig. 4d: norma]ized(mhoé)vs. log frequency. The "log" reveals

the left-right symmetry which is obscured in a linear frequency plot.
N is - Xm = -(wLm - GE;). Now this describes a negative L and a negative C

in series, So -Xm is the reactance of a negative series-resonance circuit.
It plots as shown in Fig 4e.1 and is merely the mirror-image of the usual
plot. This becomes clearer if we look at Fig 4e.2 which uses the familiar
linear frequency axis.

When N of Fig 4e is multiplied by 1/D of Fig 4d, we get Fig 4f., Note that
this multiplication automatically produces at fr the negative slope whjch
always shows up, except when Q is infinite, as the curve crosses the axis.
Most textbooks fail to comment on this negative slope, probably because of
concern about violating Foster's Reactance Theorem (which is actually not
violated). This curve is found also in plots of the hyperbolic tangent
function, tanh (a+jB), which describes a lossy transmission line. It should
be noted that negative elements are not a mathematical fiction. They can
actually be built now, and they are stable.

In detail: Figure 4f shows, dashed curve, the typical susceptance plot of
a series-resonance circuit having infinte Q. This curve goes from + ®@to ~ oo
without passing through zero at fr’ But when the Q is finite the curve,
instead of having the value infinity at the susceptance "pole" fr, has the
value zero—-a rather drastic exchange. Multiplying N by 1/D gives the
solid curve of Fig 4f when Q<900 ., Thus for a low Q, the |Ym|2 curve or

1

ﬁ;;—;~7;; of Fig 4d has a finite peak at L But the -X, curve, which will
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multiply with it, has a zero precisely at fr. The zero term wins out. So
the product is zero.

If now we let R go to 0 and Q go toos, -Xm is of course zero at fr.
But |Ym|z is c<>2 at fr. The square term wins out; so the product, or
net B, isporather than zero at fr when § iso9 .

-X 1
The other way to show this is: B = m_ = . And this gives a

0+ x* (-xm)

simple o0 at fr. This ©<Q - Q curve is of course merely the inverse of the

negative series-resonance curve (-Xm) of Fig de.l, linverting the j-operator in

1 _ _1 produced the desired negative sign; j.e. 1 would be all wrongZ] i

B ]

Im ~ Jm +X,) )

Another circuit equivalent to the "motional branch" of Fig 4a and commonly
used for analysis of Y functions is shown in Fig 4g.1. This looks much like

the dual of the circuit for Zm shown in Fig 4c; but of course it must not be!

[A circuit and its dual cannot both represent the same Z.] Since all the
elements must be variable anyway, we cannot call it wrong. But is is not
terribly useful, except right at resonance. A more useful equivalent circuit
is probably that of Fig 4g.2. This at least hints at the proper response at
very low frequencies and very high frequencies. It fails to be useful at
resonance, however.

T -X
Actually the equation G + jB =G + j ﬁ—;—fnf~; demands only the equivalent
m m

circuit of Fig 4h. But the equation certainly implies that a better eguiva-
lence might exist.

And indeed a good approximate equivalent circuit for the Bm component

alone of the Ym of Fig 4h does exist. It is shown in Fig 4i and it contains

only fixed elements. It is a lossless series-resonance circuit in series with
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a lossless negative parallel-resonance circuit. Hence Bm = Bs ﬁ; (-Bp) or

B B
Bm =B + Bs . These terms B

p
obtainable from Fig 4c. [The mechanism by which Fig 4f's low-Q curve is

and B . ratter €

series
obtained, is a little different this time from above. Although the curve for
-Bp is practically identical with the -Xm of Fig 4e, we do not multiply
the curve this time with Nm I{ Instead, we multiply it with Bs’
obtaining a constant value for the numerator. We then divide by (-Bp + B;)
This sum, the denominator term, has a shape somewhat 1ike one cycle of a
cosecant curve; hence its inverse or 1/D will look somewhat like one cycle of
a sine curve: it starts with zero value at d-c, rises to a peak below fr’
goes to zero at fr’ proceeds to a negative peak, and then heads up toward
zero value. Furthermore, the higher the value of Ql in Fig 41, the more the
"sine curve" is distorted, the peak moving closer to fr, and the slopes
conforming better to Fig 4f's solid curve. And this is just what we need.]
Actually, mentally sketching out the current through -Bp ft; BS (cf.
Fig 4i) is the preferred way, whenever possible. Thus: at the resonance
frequency, where BS =00 (calling for anoo current) Bm reduces to -Bp.
This equals 0 and calls for a O current; which is what we observe in Fig. 4f.

At very low frequency and very high frequency, where -B_ is very large, B

p m

reduces to Bs; SO -Bp has no effect., This also is apparent in Fig 4f.

The effect of the coefficient Q. is to control the slope of the -Bp curve
and hence the size of the positive peak and negative peak of Bm itself.
This -Bp curve is practically identical to the -Xm curve of Fig 4e. As

Q' +00, the curve becomes steeper and steeper by rotating clockwise toward

]
the ordinate axis. This Q 1ds closely related to the true Q, which is
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related to Rm' [%s an aid to working with these susceptances, it is
permissible to construct the dual circuit and work with its reactances. The
curves are the same. The dual circuit to Fig 4i is shown in Fig 5i and its
response curves are shown in Fig 5f.]

One term remains to be discussed: Arof Fig 4i. No useful equivalent
circuit using constant elements has appeared yet. The plot of G appears in
Fig 4j, dotted curve. The curve is, in effect, the same sharp curve |Ym|2

Rn

that appears in Fig 4d, solid curve. For, G = Rz + X2 or R« Y 2. So R
is just a scale factor; and it is a constant. The d-c value of G is zero.
The maximum value is 1/Rm; 0.31:10'3 mhos in this example.
Note that the dotted curve in Fig 4d for [Y | or 1/VR , + X, is
much less sharp. This curve acts as the envelope for the rectified B curve
-X

. : . . - m _ 2. _
shown in Fig 4j, solid curve. For, B ﬁ;;—;fi;; or Xm . |Ym| ; and the Xm

2
factor (shown in Fig 4e) acts to "fatten up" the |Ym| curve at low
frequencies and high frequencies, into |Ym| (using rectification appropri-

ately). This is seen alternatively if we let Rm go to zero (henceod Q).

Then B = il Which is merely the inverse of Fig 4e, (namely the ©<9-Q curve

m
of Fig 4f). And this of course, when rectified, must follow the |Ym|

envelope except near resonance.
The two peaks of the rectified B curve (Fig 4j) intersect the G curve at
exactly half the maximum value of G. (This can be proved analytically.) The

two associated frequencies f, and f, are thus the half-power frequencies.

f
. E E r . .
. = . t is, at these two frequenci
And these determine Q-, since Q .- F That is, a e wo frequencies,
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Ile or I is 0.707 of Ile max or I max (see Fig 4d); and these are thus
called the -3dB frequencies (using a 20 log scale). Since power at these
frequencies equals Einx(0'707 I max) x cos 45°, the power is 0.50 of maximum
power. But alternatively, at these two frequencies the G value is 0.50 of G
max. And since power also equals E:nx G, the power is clearly reduced here
to 0.50 of maximum power. Hence again, -3dB; this time using a 10 log scale.

A study of Fig 4d will clarify these points.

~ e
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CHAPTER 5, Derivation of the Reactance and Resistance curves.

Figure 5a shows the simplified Basic Circuit that we will work with for
reactance and resistance. All "“mechanical" quantities have been transformed to

the electrical side, where they are now called "motional" quantities. They are

now components of Zm: the "motional impedance". Then Z in equals jX ;+ Zm:

The term Xo', the "free" reactance, is plotted in Fig 5b. It is a hyper-
bola. It will act as a bias or a new baseline for the motional reactance
component of Zm.

[} ] [}
The term Zm consists of a resistance and a reactance and is ij I (Rm +

c }
jxé ). By inspection Zm is seen to be a simple damped "tank circuit”, as seen ;
2.
in Fig 5c. 1
[} ] 1 ) ]
) JX (R + jX ) JX . R - X X R - jX A
Then: Z_ = m . ¢ ? ., m m (5.1) ;
JXc + (Rm * sz) R + X0 Ry = 3%q
Note that jx; is the series reactance j(XQ + X;), obtained by going around

the loop in Fig 5c¢.

[} 1 ] 1 ] ] i
' “X . Xo.R + X (X, + X ).R X . X, .x + x R
7' = ¢ m _¢ % €My, 2 (5.2)

m
Rmz + sz Rmz + X m2

/B\sews-n\ + X series or gk,
CORL (X)) (L /e" )X+ R (-1/uc )
Zm —-—T)—-—' +j i) (5.3)

i [
And the denominator D = Rm1 + sz.

- This compares quite closely with Chapter 4's formulation for Ym'

| — Yy = —2M j _—n__ : but here D = R2 + x2 (5.4)
m D D m m
’____A___,-_A-—-—“
G parallel +jB paraliel

SOME DIFFERENCES:
v 1 always has the terms

3|l2. 3"2 .
Ohms /1ZV + j Ohms /VZt = RS ohms + JXS ohms.

I
I 5-1
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Y always has the terms
2 2
onms /|Z| + j Ohms/|Z| = G mhos + jB mhos.

G goes to zero at d-c, as seen in Eq. 5.4.

R; goes to R; at d-c, due to the factor (X;)z, as seen in Eg. 5.3 and in
Figs 5a and 5c.

X; has an additional factor, (-lﬂnCA).Réz, which perturbs the X; curve
slightly, as seen in Eq. 5.3 .

[The mechanism of the perturbation is as follows: the curve of the factor
-X;. (L'/C>in Fig 5¢ has its axis-crossing shifted to the left and down, since
it is now sitting on a -1/wC baseline (like Fig 5b). This action in turn
shifts the whole "simplified X; curve" (Fig 5f) to the left and down, thereby

Towering the antiresonance frequency fa' The lowering is given by the

relation v = u V1-1/¢%. ]

We will ignore the real term RS for the moment and concentrate on X; =

Numerator/Denominator = N/D.

] ] " n
D= Rm2 + sz or IZml2 where Z_ is the series impedance for a current

looping inside the tank. (See Fig 5¢c). (This is always the meaning of the

2
ml

denominator when any two networks are paralleled.) Then 1/D is —-%—2 or |Y
m
Its response is shown in Fig 5d, solid curve.

Note that although D describes a series-resonant circuit we call its
resonance frequency fa because it is merely another way of looking at the
anti-resonance frequency of the tank. Now, fa occurs at a higher frequency

than does fr of the Y curve in Chapter 4. This can be easily seen by looking

at the values of C; and L; in Fig 5¢c or Fig 2f, as opposed to the values of Cm

and L in Fig 3a or Fig 2c.
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In addition we will simplify the X; term of Eq. 5.3 by letting the factor

(-1/wCI).Rr;|2 = 0. For when Q 2 10, this factor performs only a small perturba-
tion on the main factor -(L'/C').X;. We then see that X; should be very

X (L)X
similar to the B_ term in Fig 4f. 1In fact B_ = ———, whereas X_ = ——————o0.,
m m IZmlz S 7,2
| “m|
L /C' is merely a scale factor, of dimensions Ohm*. The minus sign is present
"
in both terms. Zm is the impedance of a series-resonant circuit with a reso-

nance frequency f, somewhat higher than that of Z_ (cf. Fig 4c) with its
)
fr’ That is, Xm resonates at fa’ a frequency somewhat higher than the fr of Xm.

Fig 5e shows-(L'/C >-Xl:1. And Fig 5f shows the resultant X;. Comparison
with Figs 4d, 4e, and 4f shows a surprising similarity between the motional

reactance~-component curves and the motional susceptance-component curves, even

though duality has not entered the discussion.

We now turn to Figures 5g, 5h, and 5i. These all are possibie equivalents
to the motional branch (Fig 5c) of the total circuit (Fig 5a). A circuit
commonly used for analysis of Z functions is shown in Figure 5g. This is

useful at low frequencies and high frequencies but fails to be useful at

resonance when Q <oo0.

' ] ] '(L/C )xm i
Actually the equation RS + jXS= RS + j————— demands only the :

Rmz + sz

equivalent circuit of Figure 5h. But the equation certainly implies that a

more useful equivalence might exist.

And indeed a good equivalent circuit for the X; component alone of the Zm
of Fig 5h does exist. It is shown in Fig 5i and it contains only fixed ele-

ments. (Actually it is the dual of Fig 4i.) It is a parallel-resonance

5-3
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[}
circuit Xp in parallel with a negative series-resonance circuit (-X*s). Hence

*
* 1 1
XS = -xS [ Xp or XS =P [The mechanism by which Fig 5f's low-Q curve

is obtained, is similar to the mechanism given in Chapter 4. The curve for

-X: is basically given by Fig 5e. The curve for X; is identical with the>< -
curve of Figure 5f. Multiplication and division finally produce the low-Q
curve of Figure 5f, just as described in Chapter 4.]

Actually, mentally sketching out the voltage across -X: I X; (viz. sketch-
ing out the impedance of the combination) is preferable, wherever possible.

Thus: at the antiresonance frequency f , where X’ s, X' reduces to -X* .
a p s S

This equals O, which is what we observe in Figure 5f. At very low frequency

! *
and very high frequency, where -X: is very large, XS reduces to Xp; o) -XS has

no effect. This also is apparent in Fig 5f. The effect of the coefficient Ql

*
is to control the slope of the -XS curve (Fig 5e) and hence the size of the
positive peak and negative peak of XS jtself. As Q * o9, the curve becomes

1)
steeper and steeper by rotating clockwise toward the ordinate axis. This Q is

closely related to the true Q, which is related to Ré and to R m
] ]
One term remains to be discussed: RS of Figure 5i. RS is identical with

R.in of Chapters 6 and 7, since the $ addition of C0 does not affect this R.
No useful equivalent circuit using constant elements has appeared yet.

The plot of R; appears in Fig 5j. The curve is nearly the same sharp curve

e 2
|Y;| that appears in Fig 5d, solid curve (cf. also Fig 5k).

[ y 2 w 2
or [km - (X.) ]’ Ile . So the numerator N is

5 -4

(5.5)
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"2
basically a simple scale factor, R;; times the perturbation factor (Xc) which
] (]
acts to raise Rs above zero at d-c, as seen in Fig 5j. The d-c value of Rs is

2 ]
R; itself; 200 ohms in this example. The maximum value = Q - Rm; 20,000 ohms

in this example.

Note that the dotted curve in Fig 5d for [Y | = 1/ \/Rn;z + X2 is much

less sharp. This curve acts as the envelope for the rectified X; curve shown

. |'M’(L/C) i " w 2
in Fig 5k (solid curve). For, X & ——————— or “Xq (L /C ). |Ym| ; and

S
+
Rmz sz

[ [] "n 2
the -Xa °(L'/C ) factor (shown in Fig 5e) acts to "fatten up" the |Y;| curve

"
at Tow frequencies and high frequencies into Yy (using rectification appropri-

ately). This is seen alternatively if we let R; go to zere (hence &0 Q). Then

] [}
XS = SL—49—1 , which is merely the inverse of Fig 5e if we normalize the scale

-Xm

factor (L'/C') for the moment. That is, this inverse of -X; is merely the

o0 - Q curve of the X; family in Figure 5f. And this curve, when rectified, is

the lY;l envelope of Fig 5d — except near resonance.

The two peaks of the rectified X; curve (Fig 5k) would intersect the R;
curve almost exactly at half the maximum value of R;, if we removed the pede-
stal (of approximately R; ohms d-c) on which the left leg of the R; curve is

standing. Nhen the Q is 2 10, a simple counter-clockwise pivot-

ing of the R; curve around the right-leg extremity, down to the frequency axis,

L1}
would produce a good “"simplified Curve",Rs. The two frequencies of intersection

5-5

(5.6)

(5.7)
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f, and f,, of R; with Xs’ would then be the half-power frequencies. And these

determine QI, since QI = fa . That is, at these two frequencies, |Zm| or E

fa-f1

is 0.707 of |Z;| (see Fig 5d) or of Enax> and these are thus called the

max
-3 dB frequencies (using a 20 log scale). {Some approximations to |Zm| for
high Q are given in Appendix 5-A.} Since power at these two frequencies equals

I;, - (0.707 € ) - cos 45°, the power is 0.50 of maximum power. But

alternatively, at these two frequencies the R; value is 0.50 of Rg max. And
since power also equals I?n-R;, the power is clearly reduced here to 0.50 of
maximum power. Hence again, -3 dB; this time using a 10 log scale. A study of

Fig. 5d will clarify these points.
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Appendix 5-A: A Useful Approximation to the Input Impedance of the Motional Network.

An approximation to the input impedancella]of Fig 5¢'s tank circuit, is

shown in Fig 5d. The dotted curve represents

lY&l or ——%——- or L

1z, | VD
And in the region around antiresonance, when Q 2 10.

|2'| > Constant
m

VD

§
Note also that for constant-current drive, E'”|Zm|-

]
We will now derive this lZml approximation and two others, starting from

Equ. 5.2 or 5.3 and squaring it.

v 2 12 lq :. ! 2. 02 2
Then |z | | Rp 2. X+ (X - X ) X2 +8

(5A.1)
] t 2
2
(Ry2 + %2 )
There are three interesting frequency regions and hence three different
approximations.
) ]
1) Near d-c, th in the denominator takes control. It equals Xc“ and so
12
| Zy| = R, 2 and
n ~ ) ‘
| Zm| = R, s the d-c resistance of the tank. (5A.2) |
2) Near fa’ |Xc | =X £|. Hence
) ' [} [}
vo2 2. X b4+ X B X 24 §2
AR SR (5A.3)
"2 + )('2)2
(Ry m
5A - 1
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V2! y ( Laa X 2) + 2
12,17, 2 Fn 2" P Ll (5A.4)
(R 2+ xmz)2
1210 Xt sk L e
m' = D . WhenQZ10, —% 0.
(Rm 2+ Xm
VX2 |x' X (L")
Then IZm] ~ ¢ s 1’c z' = C (5A.5)

R 2+ x 2 J D yD
m m
Note that (L'/c') is a constant.

3) Above f,, g takes control. It now equals Xl“.

1 1 2 1
2 0+ (X - X )X 2+0
| 2,12 c___ % - 2 (5A.6)
! ]
(RS2 + X, 2)
t 2 ’
~ 2
| Z,,| X
) ~ ] _ _]
2, 1% I} =~ (5A.7)
wC

1)
This is the reactance of the motional capacitance Cm of Figure bc.
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Chapter 6.

The combining of component responses from Chapters 4 and 5; and comparison
with responses from Chapters 3, 2, and 1.
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Chapter 6. The Combining of Component Responses from Chapters 4 and 5;

and Comparison with Responses from Chapters 3, 2, and 1.
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The aim of this Chapter is to dis-
play Figs. 6g (above, right) and 6h
(below, right) and to review how they were
created. Figures 6g and 6h are our first
examples of a susceptance curve and a re-
actance curve actually generated by a com-
puter performing a realistic simulation of
an experimental transducer. (The "clamped"
or "free" bias curve was plotted manually.)

Figure 6g (above) is basically the
sum of Fig. 6b (motional susceptance Bm)

in parallel with the solid curve of Fig. 6a, B - clamped or Bo’ a bias
curve. They can be conveniently added at fr or 1.0. There is also shown in
Fig. 6a how the linear bias curve B0 (clamped) distorts when a log frequency

scale is used (as in Fig. 6g).

Figure 6¢ shows the basic circuit which is the

most useful starting point for obtaining Fig. bg.

Figure 6h (below) is basically the sum of Fig 6f (motional reactance X;) in

series with the solid bias curve of Fig. 6e, X' - free or X;. They can be
conveniently added at fa or 1.15 (log scale). There is also shown, in Fig.
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Fig 6 b

6e, how the hyperbolic bias curve X; (free)
distorts when a log frequency scale is
used (as in Fig. 6h).

Note that the log-scale B-curve
(Fig. 6a) and the log-scale X-curve (Fig.
6e) show great symmetry; i.e., they are
jdentical after two reflections. This
double-reflection symmetry is also ex-
hibited in a simple series-resonance
curve, negative or positive. This is seen
in Fig. 4e.l, as contrasted with Fig.
4e.2. Figure 6d shows the basic circuit
which is the most useful starting point
for obtaining Fig. 6h.

6 -1
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A curve "similar" to Fig 6h (now called Fig 61) is shown in Fig 2a, for
[Zin|. At first glance this looks like a simple “rectification” of the input
reactance curve X'in. However, the reactance minimum and maximum values
"hover around” the fa ordinate. Their frequency separation is used in
determining Q. But the |Zin| (which we have sometimes called |Z in| ) has
minimum and maximum values which start below fr and end above fa.

Their frequency separa-
tion is used in determining k.

The contrast in the frequency-separation aspect is even more striking in
Figure 6n (and again in the susceptance curve Fig 6k). Moreover, when the Q
is very high as in Fig 6m or 6n, one can "rectify” the reactance curve and
obtain an approximation to the }Zin| curve of Figure 2a. (Such “"rectification"
is quite misleading however with a Tow-Q curve such as Figure 61; the apparent
resonance and antiresonance frequencies are all wrong!)

The group of susceptance curves Figs 6i, Jj, k; and the group of reactance
curves Figs 61, m, n are presented here mainly to accustom the readers eye
to the quite different appearances of “the same" curve when the computer
chooses different plotting scales.

Again, these high-Q susceptance curves, whose peak and dip "hover around"
the fr ordinate, must not be confused with the "similar” high-Q admittanée
curve of Figure 1d. This is a log-log curve of input admittance magnitude

JYin]. Its maximum value occurs at or below f.i and its minimum value
occurs at about fa. The frequency separation is used in determining k; it
tells us nothing about Q.

The susceptance curve of Fig 6i gives a reliable measurement of mechanical

Q for constant voltage drive. (Figure 6b, which uses no bias curve, would be

even more accurate.)

™
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f .
13 1 f2 - f1
Q = . A]SO - = .
m™ T, - ¥, € f

The reactance curve of Fig 61 gives us a reliable measurement of mechanical
Q for constant current drive. (Figure 6f, which uses no bias curve, would be even

more accurate.)

f
I_._'a A fs - fs
O =77, . Also o
Q
m
' E 1
i For Q, > 10, Q= O
£ 2 (Ffy - 1)
o Note that (see Chap. 1) k2 - —F This has an invariant frequency
o a
}’ separation; whereas the ﬁl' separation varies from: much narrower ,to somewhat
m
broader than the k separation, depending on R?oad'
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Chapter 7. The Admittance Components and the Admittance Circle; The
Impedance Components and the Impedance Circle.

It can be shown analytically that equation 4.1 for Ym plots as an

offset circle in the complex plane. To repeat Eq. 4.1:

Rm -Xm (7.1)
Y = ——— +J' . 7.1
m Rm + Xm R; + X;

Here Ym refers to the admittance of the mechanical components of Fig. 4a
after being transformed to the electrical side. Ym is called the

"motional admittance”.
It can also be shown analytically that equation 5.3 for Z; plots as an

offset circle in the complex plane. Indeed it must, since its circuit is

approximately the dual of the Ym circuit. To repeat Eq. 5.3:

Rt 1)
J .

m 2 '2 ‘2 ‘2
R ¢ + Xm Rm + Xm

(7.2)

Here Z; refers to the impedance of the mechanical components of Fig. 5a after
being transformed to the electrical side. Z; is called the "motional
impedance".

When the bias curves or sloping baselines B0 or X; are suitably added in

1;(§eries) or in || (parallel) with these motional circles, the sum gives
the offset "circles” shown in Figure 7.1. The input admittance "circle" and
the input impedance "circle", as vehicles for a concise presentation of both
the input immittance and motional immittance data, have been extensively
covered by Kennelly, Dye, Cady, Woollett, and others; as well as by the [EEE
Standard 177 (196¢).

ke
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Now, Figure 7.1 shows not only the admittance circle but also its
conductance and susceptance components, shown earlier in Chapters 4 and 6.
The figure also shows not only the impedance circle but its resistance and
reactance components, shown earlier in Chapters 5 and 6. Two different
Q-values are illustrated. Both are too low to let the piezoelectric
immittance "go inductive," which happens when the Q is sufficiently high.
That is, B would go negative, X would go positive; and each circle would
cross the horizontal axis.

Some of the things to note in Figure 7.1 are the following:

1. The resistance curve and the conductance curve are offset in
frequency from each other (by 15% in this case, since k = 0.50). Likewise
the reactance curve and the susceptance curve are offset in frequency by the
same amount.

It is easy to spot fr and fa from the conductance or resistance
curve, even when the Q is less than 5; but in general it is not easy to do
this from the susceptance or reactance curve. The eye has been assisted in
Figure 7.1 in two ways. First, two curves of different Q-values have been
computer-plotted, and these intersect at f. (or fa). Second, the bias
curve has been manually plotted and superposed, and this crosses the
intersection point itself at fr (or fa)'

In the real world, only one susceptance or reactance curve is usually
provided, and so these "crutches" are not available. Note that the bias

curve BO or B-clamped is the high-frequency asymptote for the B curve;

) 1]
whereas the bias curve Xo or X -free is the low-frequency asymptote for the

[}
X curve.
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2. Inverting the input susceptance curve does not quite produce the
input reactance curve. This can be demonstrated numerically by inverting

the susceptance curve Bin of Figure 7.1, and comparing this with the
reactance curve X;n. The inverted curve will then be seen to be displaced
slightly to the left. It crosses the X'-free bias line very close to

[}
fr; whereas the reactance curve Xi crosses this bias line at fa' This

n
result is anticipated also by Figures 3e and 3f, and by Figure 41J However
when we properly combine the susceptance with the conductance, and the
reactance with the resistance, then the resultant complex admittance Yin
does indeed invert into the resultant complex impedance Zin‘ This is seen
in the two circle diagrams, where the circles have been juxtaposed so as to
share a common zero. It is also seen in Chapter 1, Figures 1d and le.

The max Y occurs at f_, with a value (for the large circle) of about
0.51 x 10'3 mhos, since each component is about 0.36 x 10'3 mhos. The
phase angle is about +46°, This inverts to give a Z with a value 1960
ohms and a pnase angle of -46°. This Z however is not the max Z; which
occurs at fn on the impedance circle. Rather it is the min Z, which
occurs at fm on the impedance circle,

The max Z (at fn) has a value of about 6800 ohms, since each
component is about 480 x 101 ohms. The phase angle again is -46°. This

3 mhos and

Z inverts into min Y (at fn) with a value of about 0.147 x 10~
a phase angle again of +46%. Similar relations hold for the two small
circles. It is interesting that Ymax and Ymin have approximately the

same phase angle; likewise Zma

and Zmin'

X
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When we turn to Figure 7.2, we see a slightly different arrangement of
the same six graphs. The usefulness of this type of presentation is to
allow the reader to read off directly the frequencies fr or fa with the
help of guiding lines extending from the peak values of the G and R curves.

Additional guiding lines extending from B peak and B dip, allow the reader
to read off directly the frequencies f, and f, for Qg; and f; and f, for Q;

(see Chapter 6).
Note that extending the fr diameter-line onto the B curve gives us,
graphically, a point on the curve of BO or B-clamped (at the intersection

with the B curves). Likewise, extending the fa diameter-line onto the X'
curve gives us, graphically, a point on the curve of x; or X'-free (at the
intersection with the X' curves).

f f
It can be shown that Q; = ?:-{—?: , and Q; = ?:~%—F; ; and that the

larger the circle the larger the Q, for both impedance and admittance. Now
a large admittance circle (high Q) calls for a large Gin-max; and this is

reasonable because Gin-max = 1/Rm (see Eq. 4.2).
But a large impedance circle (high Q) calls for a large R;n-max; and

this feels wrong. However, R;n-max or R;~max (see Eq. 5.3) is actually equal

"2 ' 2
(x.) (X.)
to ? which is E—-:—%;—. (See Appendix 7-A.) And so we have an inverse re-
m

R

lationship between R;n-max and Rm. In fact the Q-behavior of a transducer

]
vs a variable Rin~max (a series resistance) is very similar to the Q-behavior

(7.3)
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of a "tank circuit” (parallel resonance circuit) vs. a variable parallel re-

sistance Rp. This is hinted at in Figure 2g9. In each case, the higher the

Q, the higher the Rp, and the higher the R;n-max (which is also R;-max).

When the Q is high enough so that the circles cut through the horizontal

axis (abscissa), at two frequencies, these frequencies need names. We will
] ]
call them fr (close to fr) and fa (close to fa)' They are shown in Figure

7.3. The IEEE Standard 177”uses a different nomenclature for these 4
frequencies. However the IEEE piezoelectric vibrator is measured on a bench
in air and has a high Q (greater than 40). Our vibrator is generally an
underwater transducer, measured in water; and it has a low Q (less than 5).
Hence the situation (of axis-crossing) doesn't arise in our everyday work.

Nevertheless, to help the reader follow the more general literature, we
have presented Figure 7.3, as discussed above. The impedance circles
correlate nicely with the input reactance curves. However, the susceptance
curves corresponding to the admittance circles were not available. Hence a
single susceptance curve is shown instead; and it bears a close

correspondence to the smailer admittance circle, even though the scales are

different. And to repeat, fr and fa do not ordinarily show up in underwater

transducer measurements. The symbol f will be discussed in a later Figure.

Note that as the Q gets higher, each offset circle swings around in

such a way that fm or fn tends to line up with the abscissa (the axis of

\ (]
resistance or conductance). Concurrently, f. and fm close in on fr; and fa
and fn close in on fa. A1l this is often desirable, since a resistive

Z or Y can be driven by a smaller and more efficient amplifier than is

required for a reactive Z or Y.
*See Appendix 7-8 7.8
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Can fm or fn of the offset circle be swung down to the axis of
resistance when we have a low-Q transducer? Yes. This is one of the
bonuses that electrical tuning accomplishes, via either a series inductor or
a parallel inductor. However, this will not be discussed here, since we
have limited ourselves here to an analysis of the untuned transducer.

We have shown in Figure 7.2 how a phasor of the admittance circle can

be resolved, using a rectangular coordinate system, into two orthogonal

components. Thus, Yin = Gin + ] Bin‘
Likewise a phasor of the impedance circle can be resolved into two

orthogonal components. Thus, Zin = Rin +J Xin'

But we can equally well use a polar coordinate system and resolve any
. = . o3
p 3 Yp ]Ypl e (p)

1 1
But Z_ = ¢~
P Tl T

phasor at fregquency f

S lz] - e
So Zp IZpl e (p) .
I
In words, IZpl at frequency fp equals TVET ; and the phase angles are

mirror images. Thus Ymax and its inverse Zmin occur at +em and -em

respectively. Ymin and its inverse Zmax occur at +en and -en

respectively. And the magnitudes are inverses.
All this can be seen in Figure 7.4. The magnitude curves and phase

curves actually pertain to six circles not shown here. If |Z | = Tl—T ,

then log IZpI = -log IYpl. This is clearly shown in the logarithmic

plots.
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The curve for phase angle o of Z is clearly the negative of the curve
for phase angle of Y. And it can be seen that § crosses the 0% axis at
both fr and fa, approximately, when Q is very high; but does not cross
when @ is low (as with an underwater application).

Moreover when Q is very high, the crossover region, between fr and
fa’ means that the admittance "has gone inductive"; therefore By remains
~.at approximately -90% in this region and then returns to +90°,

Likewise the crossover region between fr and fa means that the

impedance "has gone inductive"; therefore 07 remains at approximately
+90° in this region, and then returns to -90°, With tower values of Q !
this performance is aimed at but not attained. j

We now reiterate some of the pros and cons of the complex-plane

¥
¥
{}, . representation vs. the real-plane representation. The real-plane plot (of
gk phase, for example) has the great advantage that the frequency scale is
5,
" uniform, whether a log scale or linear scale is under discussion. A uniform

scale allows easy interpolation of frequencies, with fairly good accuracy.
The complex-plane plot, on the other hand, has' a highly non-uniform

frequency scale, which does not allow easy interpolation of frequencies.

Thus from about +45° to about -45° (moving clockwise on each circle),
almost a full half-circle is used up to display the very narrow Af which is

required in the Q-determination around either fr (using f, and f,) or

~

fa (using f, and f,). The peak phase-curve frequency % is crowded next to

fa (Y~-circle) or to fr (Z-circle) in the circle plots; but this frequency £

occurs at the center of the phase band in the real-plane plots, where it is

ol not at all crowded. One result of all this is that, for example in the
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design of amplifiers for driving an untuned transducer, the real-plane
presentation of the phase curve is usually more useful than the circle
presentation. Other examples could be given.

On the other hand, the circle presentation is an easy-to-store one-plot
collection of all the input immittance data. Moreover, if one requires only

em, the one circle plot is just as informa-

Z = Ian . en or Yo = 1Y ). eJ
tive as the corresponding two real-plane plots.

A few more points deserve a brief commentary.

1. Size of the circle. In Chapter 2 it was shown in Figure 2k (now
called Figure 7.5a) that when k ~ 10%, that even though Q was on the order
of 100, the input impedance curve showed only a tiny dip and a tiny peak.

The retlation we used was: QI = \/IZmaxl @f; . lz' Or equally well
m [z . [ @fr k

min

lzmaxl |Ymax| (7.4)

Y ] ef.

I l max r 1 2.1
Q=\/1—T—-—'—r.ThenkQ= = T
m Ymin @fa k m IZminT [Ymin

When these admittance or impedance curves of Figure 2k are translated
to the complex plane, as in Figure 7.2, the same kind of thing shows up.

That is, the circle becomes merely a tiny loop, or even a cusp, on an
] [}
otherwise smooth curve Bo which is B-clamped, or X0 which is X -free. Note

that the circle becomes tiny if either k? or Q is very small. Figure 7.5b
shows the "circular loops" that often occur with a real untuned transducer,
measured in water. The degeneration of circles into cusps at the higher
frequencies is mainly due to the low coupling coefficient at the higher

resonance modes of the transducer.
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2. Determination of k. If in the complex plane, referring to any of

the circles discussed, we subtract the bias contribution BO which is
] ]
B-clamped,or X, which is X -free (Figure 7.2),

we can show that: ‘ ’

k2 E_ Dy Gy -max . .
% * O = E; = 5 where B  is evaluated at f. [This follows at
£ l/ow
once from Figure 2¢ where Qm * R . But from Egs. I.4 and 4.2, this is
m
wColl k’TT"zj'l/ X Gy -max E 21 vavunf L GinTMax Dy
mel"e]y, I/Gin‘max = Bo(kg/l-kj) = Qm. Then (k /l‘k )'Qm = —___—-Bo = B—O' .] (7.5)

Then after Qlfl has been determined from f2 and f; and fr, we can calculate k.

In like manner we can show that:

k2 I DZ R‘.n-max ' . 7
1xZ ° Qm = x. = X' , where Xo is evaluated at fa. This follows at (7.6)
o 0
R‘
once from Figure 2g where Q; = ——R—T . But from Chapter 5 and Figure 2e and
1/wC
m
Rin-max Rin-max .
ch Ic4, this iS ﬂ'eY'E]y 1 = x|(k2 1 k2 = Qm . (7-7)
= X, (k?/1-k?)
wCo(l-kzlkz)
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Then 1337 - Q = X =

*
.] Then after Q; has been determined (7.8)

from f, and f, and fa’ we can calculate k.

3. Tan §. In the real world of Figure 7.5b, the simple equivalent
circuit of Figure 2c is modified to have at least one more factor: a
dielectric loss Ge] shunted across Co, the blocked electrical
capacitance. The ratio Gellwco or Ge]/Bclamped is called tan §, the
loss-tangent. It is a dissipation term and is like an inverse-Q.

If G, were constant over the frequency band, a given admittance

el
circle would shift to the right by a constant amount. A better assumption
is that tan § is constant over the frequency band. This means that Gel
must increase linearly with frequency. In practice tan § is often taken to
be the measured ratio GeI/Bfree or Gel/wcfree at some low frequency
(at least two octaves below fr)‘

In the real world of Figure 7.5b we find that the total Gin’ which is

the sum of Ge) and G increases non-linearly with frequency. Far

mot’
below resonance, however, it should be possible to isolate Ge] and hence

tan 5.

*If we wish to use X’-clamped instead of X'-free or X;, as is sometimes done:

N I R;n-max
. Rearranging, k2 . Qm = —_
X,/(1-k2) |
0 ‘ f
But X /(1-k2) is X -clamped. (This was touched on in Chap. 3.) (7.9) |
R, D
-max
- Hence k2 « QI = — in o . (7.100
X -~clamped X -clamped

7-~10
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Conclusion
We have shown that the components of the admittance and the impedance

are similar in appearance, but are not really duals. Hence they do not
quite invert from one to the other. When the real and imaginary components
are geometrically added to produce Y or Z however, the vector Y is indeed
the inverse of the vector Z.

We have also shown how the size of the circle is controlled by Qm and
k?; and how the circle can even "go inductive" when k’Qm js sufficiently
high.

We have allowed the reader to compare alternative presentations te the
“circle components" (all of which have their merits).

And we have shown that the real world has an additional complication in

the form of tan 6. That is, the equivalent circuit is modified to include a

shunt resistance in parallel with Co.

o




Appendix 7-A

Alternative Derivation of R%n' max. / 1 2 ,
! 212 Dy '
- ("m"‘) e °k’) |
We can rewrite Eq. 7.3 as R} - max = < or\—" , (7A.1) '
n R R
m m ‘
where C& is that motional capacitance shown in Figure 3c. In this specific !

case it has a value of 6 nF. Then if k = 50%, k? = 1/4 and
(Cﬁ o k2) in Eq. 7A.1 equals 6 x 1/4 which equals 1.5 nF.
If now we look at Figure 3a (which is merely another form of Figure 3c)
we see that co also equals 1.5 nF, where Co is the clamped electrical

capacitance. And in fact we can generalize:

(¥*) ;
(Cre k) = C and x,;‘c/k2 = Xy (7R.2) @
i
X2
Hence R%n - max = §i~. (7A.3)

(This is a common formulation of R;n - max.)

(**) The ratio of the clamped electrical capacitance of the admittance

%- circuit, to the motional capacitance of the impedance circuit is thus

. Co/Cn = k? (or 1.5/6 = 1/4). (7A.4)
But the ratio of the free electrical capacitance of the impedance

circuit, to the motional capacitance of the admittance circuit is the

LN

inverse: C/C. = 1/k? (or 2/0.5 = 4/1.) (7A.5)
Other relationships can be explored. Thus, multiplying:
CO/C,;l X C(')/Cm = k2e1/k? = 1.
Rearranging, Co/Cm X Cé/Cé = 1.
- Then C/C, = Co/Co (note the inversed relation). (7A.6)
| 1.5 6 _ 1-k*

0.5 72 g2




Appendix 7-B

Extract from IEEE Standard on the Piezoelectric Vibrator;

and Comments thereon.

This appendix contains an extract from the 1966 Standard, IEEE Standard
177-1966, on the Piezoelectric Vibrator.

The Standard's Figures 2 and 3 summarize some of the results derived in
this Handbook. Their |Z]| curve is shown more fully in our Chapter 2, Fig 2a;

and discussed in Chapter 5. The three critical frequencies fn, f , and fa are

p
shown in our Chapter 7, Fig 7.4 and touched upon in Fig 7.1; and also in Figs.

5f and 5j.

The linear curve Xl, occurring above fregquency fs’ is first shown in our
Fig 4e.2. In addition the |Y|, B, and G curves corresponding to the |Z|, X,
and R curves are shown and discussed in our Chapter 4, and also in our Figures
7.4 and 7.1.

In fact, our Handbook has analyzed the main features presented by the

g Standard; and a great deal more.
’ % Kk k k k k k k k Kk Kk K k k k Kk k k k k k Kk %k Kk %k h k k k k k k k k k k & & *k %k &

; DEFINITIONS AND METHODS OF MEASUREMENT
FOR PIEZOELECTRIC VIBRATORS

. INTRODUCTION: rived from them. At a given frequency the pa-

. rameters of the equivalent electric circuit gen-
This Standard is a revision of the IRE Stand- ;1 4o0c0ach constant values as the amplitude

srd on Piezoelectric Crystals—The Piezoelectric 0~ oy o 0 o i
" i cti pproaches zero. The amplitude
Vibrator: Definitions and Methods of Measure- ). con be tolerated before the parameters

] 1 N . o
- ‘ :'l':nm(;l ’:‘i:d‘:z sli,:?hi?ﬁeﬁz ,_':"d & continus~  ore appreciably affected varies widely between

ibrat '
An introductory review of the equivalent elec-  termined g;":;'o“? types and can only be de-

tric circuit of a piesoelectric vibrator snd its
perameters is followed by a discussion of the de-
terminstion of these perameters by the transmis-
sion method. This method was putlished in
19518 and Liecsme the bass for the 1957 IRE S
S:ardard! Since that time, 8 therough investi-
gation of the transmission method has resulted in 1
more precise expressions which permit a more LI o L)

-~ accurete evaluation of the parameters® This 8 Ny &
method is suitable for frequencies up to about

£ 30 MHz lor the commonly encountered ranges L
of the capacitsnce ratio r and the figure of merit ,
M, provided that errors due to instrumentation
are taken into account. The equations presented
in tris Standard have been formulated to correct Foves 3

these errors. Equivelent Electrie Clreuit of o Plossoloctric Vibrater

Neear o
H-L\;inl

~




and do not represent s perticular piezoelectric
vibrator.?

For further clarification, the impedance and
sdmittance circles of a piezoelectric vibrator
sre reproduced in Figure 3. However, the cir-
cle representation of the impedance or admit-
tance of s piezoelectric vibrator is valid only if
the circle diameter of the admittance diagram is
large compared with the change of 2#/C. in the
resonance range or if r € Q7 which is fulfilled
in most vibrators. If the latter conditions are
not fulfilled, the admittance curve shows a cis-
soidal character. Throughout the remainder of

practical purposes, the following assumptions
can be made: [, == f, — fgend § = 1, =},

More exact relations between the characteris-
tic frequencies 1., f, 1., /.. {,, and the series
resonance frequency f. of a vibrator, valid for
the figure of merit M > 10 and the capacitance
ratio r > 10, are shown in Table 4. These rels-
tionships have been derived by various au-
thors *-® under the assumption that M > 1.

The separation between parallel and series
resonance frequencies is given by:

’Q’ - l-’_ — _Cl —_— 1

this Standard, it is assumed that the impedance £? C. r @
(or admittance) of the vibrator can be repre- Th L
sented by a circle diagram. Table 3 gives data ¢ approximation
for Q, r, and Q?/r for various types of vibrators, ¢, — £, ST
indicating that this assumption is valid for afl ~— ¢~ = V1+¢'~1
practical cases, 1 1 1
It is necessary to make approximations in de- =5 = o T~ g,
riving practical equations for general use. It is
the error of these approximations, in addition - 1 G
to the errors of instrumentation, that govern the 2 C 3)

overall accuracy of the experimentally derived
parameters.

As s first approximation sufficient for many

INPEDANCE

can be used for larger values of r (for example,
when r is greater than 25 the error is less than
1 percent.)

12y

! FREQUENCY
Fiounz 2
Impedance |2!, Resistance Re. Resctance Xe, and Series i

Arm Reactance Xy of s Pieroelectric Vibrator s» & Fune-
tion of Frequency. Zm and Zn dencte minimum and
maximum impedance, Rr and R, the impedances st sero
phase angle. For the meaning of the diffevent frequencies, 1 9
see Table 1A end Figure 2. b ‘

78 -2
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Impedonce and Admittance Disgrem of a Piesoelectric
Vidrator. The eymbols conform with thoss ia Table 1A

snd Pigure 2,

2. TRANSMISSION CIRCUIT METHOD
OF MEASURING THE PARAMETERS
OF THE EQUIVALENT ELECTRIC
CIRCUIT
2.1  Messurement, General

‘This method is based on measuring the fre-
quency and impedance st maximum transmis-

78 -3

sion (maximum transfer impedance) of a -
network containing the equivalent electric circuit
of the vibrator under test in the series branch,
as shown by Figure 4. The frequency f.r st
maximum transmission (maximum output volt-
sge) is measured both with and without the ca-
pacitance C;, in series with the vibretor. From
these measusrements, the motional resonance fre-




