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CHAPTER I

STATEMENT OF THE PROBLEM STUDIED

Many time dependent physical phenomena are characterized by

nonlinear parabolic equations, the solution of which is character-

ized by a sharp front, sometimes a discontinuity, propagating

through the solution domain. Among problems of this type are non-

linear convective diffusion problems with dominant convective terms,

or Stefan type problems such as the flow of fluids through porous

media or the melting and freezing of ice. Such problems are dif-

f icult mathematically and numerically because of the poor regularity

of the solutions. Moreover, the mathematical theory underlying these

problems and their approximations is very much incomplete.

Toward resolving some of these issues, a three-year project was

initiated in 1976, designed to study not only the qualitative

features of solutions of nonlinear problems of this type, but also

in developing numerical schemes for solving such problems. Since

* then the research has basically taken two somewhat distinct directions.

I'irst, a study of the use of variational inequalities as a means of

formulating time-dependent Stefan problems was initiated. Classes of

problems considered here include the one-phase and two-phase Stefan

problems encountered in porous media applications and, in particular,

problems of ablation of metals and freezing and thawing of soils.

A variety of finite element schemeb were developed and studied for

these problems, some of which proved to be very effective. Using

variational inequalities as a basis, some new numerical methods were
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developed for two dimensional, two-phase Stefan problems with time

dependent boundary conditions. A variety of example problems was

solved, and a method was prcduced which seems to be very effective.

Some of the results of this portion of the study have appeared or

will appear soon in the literature. The analysis of the one-phase

Stefan problem was first completed, including not only the identi-

fication of effective numerical schemes but also the development

of a priori error estimates for finite element approximations. The

studies led to information on the qualitative and quantitative

behavior of the solution and its regularity, the behavior of the

error, and criteria for the selection of trial functions for finite

element approximations. In these studies, Stefan problems were

considered without convective terms.

At the end of the first year of the project it became clear that

to model realistically certain phenomena characterized by parabolic

equations and the propagation of fronts, it would be more appropriate

to include convective terms in the formulation. Indeed, the

presence of dominant convective terms in convection-diffusion pro-

cesses is known to lead to solutions with fronts and to notorious

numerical difficulties. Toward resolving some of these issues, a

theoretical analysis was initiated to study the behavior of highly

non-linear parabolic equations which contained convective type terms.

Here a study of the theory of evolution problems characterized by

pseudo-monotone operators was performed. Existence theorems,
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uniqueness theorems, regularity theorems, and stability results

were derived for operators of the form A(u) + lulqlVulr , where

q and r take on values appropriate to make the operator pseudo-

monotone, and A is a non-linear monotone operator. Existence

theorems using methods of elliptic regularization were also

investigated. Finally, a theory of Faedo-Galerkin approximations

and semi-discrete Galerkin approximations was devised and applied

to finite element approximations of these equations. A priori

error estimates were obtained and guidelines for the development

of appropriate numerical methods were established.

In recent months, it was discovered that the qualitative

analysis of nonlinear parbolic problems could be substantially

generalized to include the effects of degenerate coefficients and

to model such complex phenomena as two-temperature heat condition,

with degenerate equations and nonlinear convective and diffusion

terms, plus the effects of free boundaries. This work has been

completed only recently and required considerable effort. Professors

Oden, Showalter, and Kikuchi worked on this phase of the project,

and the recent work of Showalter on nonlinear evolution equations has

proved to be invaluable. We feel that a broad theoretical basis

has now been established for further work on approximations and the

numerical analysis of this class of problem.

The logical extension of this work will also be the development

! JIM ...
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of numerical algorithms for the study of degenerate nonlinear con-

vection diffusion problems of the type described above and the

numerical study of representative two-dimensional problems. Some

encouraging preliminary results have already been obtained in

this direction.



CHAPTER II

SUMMARY OF THE MOST IMPORTANT RESULTS

Important results were obtained in four areas:

One: Existence theorems, approximation theorems, a priori

error estimates, numerical schemes, and finally computer codes

were developed for the analysis of one- and two-dimensional, one-

and two-phase Stefan problems characterized by variational inequal-

ities.

Two: Existence theorems, uniqueness theorems, theorems on the

stability and asymptotic stability of solutions, and regularity of

solutions were developed for a large class of non-linear, convective

diffusion problems characterized by pseudo-monotone operators.

Three: A priori error estimates for Galerkin and Faedo-Galerkin

approximations (defined, in general, by finite element methods) were

established for nonlinear convection diffusion problems involving

general pseudomonotone operators.

Four: Existence theorems were obtained for a large class of

nonlinear, degenerate evolution equations with solutions involving

free boundaries. Applications to porous media and two-phase Stephan

problems were completed.
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APPENDIX A

A One-Phase Multi-Dimensional Stefan Problem by

the Method of Variational Inequalities

I.



7. TECHNiCAL DISCUSSIONS (APPENDICES)_

Appendix A

A One-Phase Multi-Dimensional Stefan Problem by

The Method of Variational Inequalities

1. Introduction

Stefan's problem has been considered by many authors since

STEFAN (11 formulated in 1891 his mathematical model of the phenomena of

a freezing of soils. One- and two-phase Stefan problems have been investi-
"I

gated by KAMENOMONSTSKAJA [11, OLEINIK [1], FRIEDMAN [1], and others. Vari-

ous numerical procedures have been developed by DOUGLAS and GALLIE [i],

JAN.T and BONNEROT [11, and others. However, while most existing methods

are applicable for one-dimensional problems, not all are extendable to

multi-dimensional problems, since 1raty arv bdsed on special characteristics

of one-dimensional case. We mention here some typical methods.

(1) After discretization with respect to the space variable,

the n-th time increment At is obtained by the "Stefan" condition,

dL_
i = Egrad on the frozen front

vn that the following nodal point becomes Frtzen by the condition

h 0n-1

At [grad

(2) By the Stefan condition, the location Ln of the frozen

front is obtained at the time t = n At through the formula

L 1 _ L 
n -  1

" = - [grad 0n - I

and then the domain of ice is discretized by appropriate finite element or

difference methods. Here . is the latent heat, L is the position of
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the frozen front, 0 is the temperature field, and II*)denotes

the difference of the left value and right value on the frozen front.

The first method seems to be possible only for one dimensional

problems. The second method is more general, but it becomes difficult

for the case in which many disjoint freezing parts exist. In many

problems, several frozen fronts may occur simultaneously and one frozen

a front may grow until it intersects another. Such phenomena are difficult

to model on the discretized domain at each time step.

The formulation introduced by DUVAULT [11 enables us to re-

solve the above difficulties, and has the structure of a strict mathe-

matical analysis. That is, after a special transformation from the

temperature field to the freezing index, the problem formulated by the

variational inequalities is a problem in which the dependent variable is

defined on the whole domain. Moreover, the freezing index u(x) is

expected to be continuously differentiable on the whole domain; that is,

there is no discontinuity of grad u on the frozen front, while grad 0

is discontinuous there. Thus, the problem can be solved within a fixed

domain without iteraition. The importance of this formulation is that

the unfrozen part is identifled with the portion where the freezing index

remains zero. That is, if we can obtain numerical values of the freezing

index, frozen and unfrozen parts can be distinguisehed by the value of

U.

The special transformation and the Stefan condition restrict

the freezing Index u to be non-positive on the whole domain. This leads
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us to the inequation formulation instead of usual weak forms. This inequa-

tion can be solved by appropriate optimization techniques; for example,

the projectional S.O.R. method, a penalty method, etc. The formulation by

variational inequalities due to DUVAULT is not only powerful for its compu-

tational aspects but also well-posed for mathematical and numerical analyt-

ic aspects, as shown by LIONS [11, JOHNSON [11, CFA and GLOWINSKI [1], and

9 so on. These numerical anal'yse3 are well-established.

In this paper, we describe the method of variational inequali-

ties for one-phase Stefan problems and give a computational technique to-

gether with various numerical examples. We compare the results of numeri-

cal experiments with rIKIONOV's exact solution of a one-dimensional case

(1], confirm our error estimates for finite element methods by numerical

experiments, and analyze some nontrivial two-dimensional one-phase Stefan

problems.

2. Formulation of One Phase Stefan Problem

2.1. Mathematical Model. Let D C IRn (n = 1,2,3) be an open domain

whose subset R defines the frozen portion. Let r be the boundary of

D . On r negative temperature g(t) is prescribed as a function of

time (a Dirichlet boundary condition), and on r we assume that the temp-

erature e maintains a value of zero. The flux is prescribed on rF (a

Neumann boundary condition). r0  is the interface of ice and water which

moves with time t . The function t - S(x) defines the time when the

water x E D changes to ice. That is, S(x) denotes the position of the
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-1
interface 1'0  its inverse relation, x = S (t) is given by L(t)

Then a mathematical model of the one phase Stafan problem is formulated

as follows (see also Figure 1).

PROBLEI I: For given g(t) , 0 < t < T , find {S-(t) , O(x,t)} such that

93
M- V- (kVP) in Q (2.1)

0 = 0 in D -S,

e(x,t) = g(t) on r. , (2.2)

8(x,t) = 0 on rc  (2.3)

aO = k - on r (2.4)
3 n F'

kV6 • VS(x) = k on r0  (2.5)

O(x,0) = 0 in every D . (2.6)

Here O(x,t) is the temperature, k(x) the thermal diffusivity, a the

constant for the heat radiation, £ is defined as E - LpC where L is

the latent heat per unit volume, p the density of the material, and C

the heat capacity.

,1.



5

The solution of the initial boundary value problem (2.1) -

(2.6) involves two major difficulties. One is that the domain of ice part

is unknown. Another is that the gradient of the temperature e is not

continuous, which makes it difficult to represent the problem variationally.

2.2. Duvaut's Transformation. Let us introduce a special transformation

of 0 into the freezing index u by

u(x,t) s O(x,I) dT in 0 , u(x,t) = 0 in D -

JS(X)
(2.7)

following DUVAUT [1]. As we mentioned earlier, the new function u(x,t)

and its first derivatives Vu(x,t) can be shown to be continuous on the

whole domain D , while ?f(x,t) is discontinuous on r C D . We have
o

ft
Vu(x,t) = V0 (x,t) dt in Q , Vu(x,t) = 0 in D- Q

JS(x)
(2.8)

since the temperature e is zero on rO , i.e., 8(x, S(x)) = 0 . This

shows, in fact, that Vu(x, S(x)) = 0 . Furthermore,

V . (kVu) = J V (kVO) dT - VS(x). [k(x)VO(x, S(x)))

Referring to equation (2.1) and (2.5), we haveI
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V (kVu) d Sx -r Z-

au
at

This shows that the field equation in the ice part Q2 becomes

II=V * (k~u) + Z. in P2 (2.9)

And in the water domain D - 1 we have

u -0 in D - Q (2.10)

It is noteworthy that tinder the transformation (2.7) the field equation

(2.1) does not change its form with the exception of the force term I.

Since the temperature 0 is below zero degrees centigrade in 1 , the

heat potential u is also less than zero:

u~x~t) -c 0 in Q (2.11)

Combining the above considerations, we have

u( V v.(k~u) -J 1 0 in D,

U< 0 in D ,(.2

2at V (kVu)-L < 0 in D.



We thus obtain a system (2.12) In which the unknown domain Q

does not appear explicitly.

Thus, the initial boundary problem I is transformed in the fol-

lowing form:

PROBLEM II: For given g(t) , 0 < t < T , with

g(O) = 0 , g(t) < 0 for t E (0,-) , (2.13)

find u(x,t) such that

u - V• (kVu) - = 0 in D , (2.14)

u < 0 in D , (2.15)

3 V - (kVu) - £ < 0 in D , (2.16)
3t

u(x,t) = g(t) on rG  (2.17)

u(x,t) = 0 on r (2.18)

u(x,t) - k Lu (x,t) on rF (2.19)

u(xO) = 0 in D (2.20)

RCIARK 2.1. In the above formulation, we have assumed that the initial

state is saturated by zero degree water, i.e., O(x,O) - 0 in D . If the

initial state is partially ice and partially O*C water, then it can be mod-

ified as follows. Let 0 be the ice domain in D at the initial stage.

The heat potential u is now defined by

.:
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ft~t O(xT) dr in .- £2

u~~)= S(x) 0rt

u(x,t) = i (xr) dr i 1? (2.)'S W 0

u(x,t) 0 in D - Q

This transformation, suggested by FRIEDMAN and KINDERLEHER [1], reduces the

field equation to

au
V • (kVu) + h (2.9)'

where h i in 12 0 and h =Oo(x) in 0o ,a 0(x) is the initial

temperature in Q20

REMARK 2.2. In thc above formulation, we have only considered the boundary

condition

k = a 0 on F
:)n F

if rF is located in the boundary of the domain £2 , defined in REMARK
F0

2.1, we may consider the boundary condition

k n 0 + 6 on (2.4)'

That is, by integrating from 0 into t in time, the condition



k = ru + 6 t on r1. (2.19)'

is obtained. The boundary condition (2.19) thus reduced to the condition

(2.19)'. We note that if 'F is located in the boundary So and 0,

then (2.19)' cannot be used.

3. Variational Formulation

The corresponding variational formulation for the problem II,

defined in the previous section, will be derived in this section. Let

(u,v) be the "inner product" on the domain C , i.e.,

(u,v) = f uv dx

and let w = /t

Suppose that u satisfies (2.13) - (2.20). Let v be arbitrary

function such that v < 0 q.e. in D x [0,T], v = 0 on r , v = g on-- C

FG , where T is a positive real number which indicates the time interval

of the problem. Then, by integration by parts,

(u, v-u)D + (kVu, V(v-u))D - (Z, v-u)D

(u- (kVu)- , v-U)D + (kVu n, v-u)D

where n (n1 , n2) is the outward normal unit vector on the boundary aD

... ..- mn-m.
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of the domain D From the boundary conditions,

Cu, v -)D + (kVu, V(v -u))D - (, v-u)D

V (kVu)-t, v)D - (ciu' v-u)

> -(au, v-

qHere we have used the fact that

(u - V• (kVu) - Z, V)D ->  0

by (2.12) and v < 0 a.e. in D , [0,T] . Thus,

(u, v-U) + ( Vu (v - D)) + (au, v-u., > (, v u),

a.e. in [0,T] (3.1)

is obtained. By integration of (3.1) in time [O,T] , we have the varia-

tional problem:

PROBLEM III: Find u E K stch that

0(u, v-u) D + (kVu, V(,v-u))D + ('1,, v u)}rF dt

(£, v-u)D dt (3.2)

J0

for every v E K , with the initial condition u(x,o) 0 a.e. in D

where



{v L 2 (o,T; HC)): ' E L 2(O,T; L (D))

v g a.e. on I"G x [0,T] , v = 0 a.e. on (3.3)

[0,T] , and v < 0 a.e. in D x [0,T])
c

L 2 2

Here the space L (O,T; V) means that for every v E L2 (0,T; V)

llvll" dt < +

0 V

where " is the norm of the space V . U

THEOREM 1. (LIONS [1]), also ICIlKAWA [1]). Suppose that mes (rG) > 0

Then there exists a unique solution u E K of the variational problem

(3.2) in the set (3.3) such that

u 2 (0,T; H ID)) ( L'(0,T; L2(D))

u-V • (kVu) % L 2(D x[0,T]) . ]

The eg (0T L 2

The regtlarity for the solution u , i.e., u ,T; (D))

enables us to consider the problem:

PROBLEM IV: Find u E K such that

Cu, v-u)D + (kVu, V(v>u))D + (Vu, v-U)r > ( U),

a.e. in [0,T] (3.4)

for every v E K
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K {v (I (D): v =g a.e. on I, v = 0 a.e. on r
(3.5)

and v < 0 a.e. in D)

4. Approximation of Variational Inequality

Since it is almost impossible to obtain analytical solutions

of PROBLEM III or other equivalent forms except for certain one-dimensional

cases, it is natural that we consider approximate methods. Here we describe

Galerkin approximations in space and discretization by finite difference

schemes in time. We use a finite element scheme for spatial approximations

since our problem may have an irregular boundary. It can be shown that the

finite element approximation converges to a solution of the given problem.

Let us consider the finite element discretization of PROBLEM

IV. Let

B(u,v) = (kVu, Vv)D + (au, V)

(uv) = (uv)D , and (f,v) (,v) D

Then (3.4) can be written by

, v-u + B(u, v-u) > (f, v-u) for v ( K (4.1)

Let V be defined by

V - {v E H (D): vlr g v1r c  0) (4.2)
r c

Then the admissible set (3.5) can be written

K = {v E V: v < 0 a.e. in D) , (4.3)
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Pow, in general, we want to construct finite element approxi-

mations In 1in (D) for some in 0. The following arguments are due to

ODEN and KIKUCHI [1]. Let P be a partition of 1) into E-subdomains
1m

(finite elements) {P E= such thate eI

E

(4.4)

0( \ = , for e f

where e denotes the closure of fPe Let he dia (0e) , and h =

max (h) We consider a finite dimensional subspace of H m(D) consisting
e

of polynomials of degree k , k > in > 0 . Let S he the finite-dimen-

sional subspace of 1 m(D) corresponding to each Ph determined by the

above polynomial spaces. We construct S so that it is an approximation

of Hm(D) . Let Pe = sup {diameters of all spheres in 0 } . Suppose we

have the condition: there is a constant C > 0 such that

1h /o < C for every e , I < e < E
e e - 0

then we assume there exists a constant C > 0 , which is independent of

u and h , such that

Iu-%u!I _ U S . C h" IlullH r

r 0 , 0 < s < min {m,r} , (4.5)

o min {k+l-s, r-s)

for every u E H r(D) Note that irh: Hr(D) " lS(D) is a projection of

Hr (D) onto Sh(D) 11m(D) . Then the family (Sh) can provide a basis of
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the real llilbert space for

U0 1 1 h  S (D) is everywhere dense in H m(D) (4.6)

Let {K,} be a closed convex subset of Sh (KC Sh) which has the fol-

lowing properties: for all v E K CV , a sequence (vh) in Kh  can be

constructed as

vh - v 1 K strongly for h - 0

and the weak limit u of the sequence {uI ) in Kh  also belongs to K

Note that in general Kh  K

Now in our one phase Stephan problem, m = 1 (recall (4.2)),

and k = 1 is taken. Thus, we select piecewise linear polynomials {€ }

as a basis of an N-dimensional space Sh(D) . Note that in (4.5),

r = k+l 2 Thus, Kh  can be defined by

N
Kh  = 'v Esh: ( i=l v , pi (vl IE) Y G G,

v - 0 , vI < 01 (4.7)

G C

where E, E, E denote the sets of all nodal points on rG r and

in D respectively. Note that vie < 0 implies v, 0 for all I

1 < i < N . Then % 1  K . For simplicity, we denote

N
u . = u1 ul €1 (4.8)

where u K ,u K
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Discretization in Space. Let u = u i , V Substituting these

into (4.1), we have

au.
M jt (vj -u.) + K iju(v. -u ) - f (v -u ) > 0 (4.9)

where Mij is a mass matrix, Kij a stiffness matrix, f a force vector

given by

N.j = (*i , j

K. = B(., , (4.10)

f = (f ' cJ)

We know that Mij and Kij are symmetric by (4.10). Then, interchanging

i and j

Du.
M a (v i -  ) + K Cv -u ) - f (vi u i) > 0 (4.11)ijaKijui i ui) - (i- --

Discretization in Time. For the time direction, we apply a finite difference

scheme:

n+1 n

M U j J (v-u ) + Kij un+

+ ( ) K ij (vj -ti) - fi(vi-ui) . 0 (4.12)
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n

where u.? denotes j-th point value of u = u iji E K. at the time step

n , At the time difference between n+l and n time step, 6 , 0 < 6

< 1 is the Crank-Nicoison coefficient. For 0 = 1 , (4.12) becomes

( u, v1 -uh) + B(uh, vh-u h ) - (f, V1uh) > 0

where a denotes the implicit finite difference operator such that

n _ n+l n

a = h t (4.13)
h At

Inequality (4.12) can be written explicitly in terms of un+1

as follows:

n+l n+l n+l
Ki uj (v-u ) > fi (v u (4.14)

where

Kij = Mij/At + OK ii

Fij = Mij/At - (1-0) Kij

f =f. F un

For the implicit finite difference scheme (0-1) in time and

the linear finite element method in space, the following error estimate has

been established by JOHNSON (1], and also by ODEN and KIKUCHI [I].

• ,
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THEOREM 2. (Error Estimate). Let u be the solution of (3.4) and (3.5).

nLet uh be the solution of the discrete problem (4.12) and (4.7) at the

n-th step in time (0 = 1.0), and let

n n
e = U-U

a
Suppose that the speed of propagation of the frozen front is of order t

Suppose that u E L(O,T: 2(D)) , u E L2 (0,T; HI(D)) , and u - V * (kVu)

L OE Lt(O,T: L'(D)) . Then

Max lie n1l + a n+1 2 At < C(h2 + At)
n

i =min (2, 3+2a)

where a , c are constants independent of u and u .

4. Methods of Optimization

The discrete problem (4.14) on the closed convex set (4.7),

defined in the section 3.2, can be solved by the projectional pointwise

S.O.R. method as long as the matrix Kij , (4.14), is positive definite,

c.f. CEA and GLOWINSKI [1].

Projectional S.O.R. Method

|n+l 0

(i) Pick up uh (0) E. Kh ; for example, set uh(0) - 0

(ii) Suppose that k-th iteration uh +(k) E K0 is known.

Lh

-.
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un+l (k+0.5) (1-u) Un+l ( + K . n+ lh ~= h, i  (k +i Uh, k+1

Uh, j (k) +f K (4.15)

(iii) Un+l (k + 1) = Min (O, Uh~l (k+ 0.5))

The iteration factor w is chosen so that 0 < w < 2 . Its optimal value

is decided by numerical experiments, while the convergence of the above

algorithm is obtained for 0 < w - 2 , if K is positive definite.

The convergence of the scheme (4.15) is understood by the

following criterion:

n (1 + 1) (k)
=I h'i - h,i

tolerance = - (4.16)

Jilk,i (k+1)

where c is a positive small number.

I... 
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It is certainly true that there are ;everal other ways to

solve numerically the problem of variational inequality (4.14). For

example, the penalty method, the Lagrange multiplier method, the fixed

point method, and so on. lerc we merely mention the final forms of the

above methods which we employed. Some numerical results of a one dimen-

sional problem using several. optimization methods are shown in the follow-

ing section (see Example 5.5).

Fixed point method: Instead of (4.15)2, we have

n+l 1_+l
U .(k + 0.5) U .(k)-c~ K U n (k +1)k,i k, i 1-3,i k~j

+ N K n+l (k) fiJ15)
j=i+l

The step (iii) in (4.15) is also applied. Here p , 0 < p 1 , is a con-

traction factor which strongly depends on the problem and the discretiza-

tion.

Lagrange multiplier method: We employ this method together with the con-

cept of the iteration scheme, i.e.,

n+1 ~ n+l .n+l

l+I (k+l1) (1i- w) Un~ (k) + I i Uk~ (k +1)
, ,i k,i (k) +i to

I Kij Ukn (k) + +i  q q(k +1)] /Ki

j-i+l

S(4. 15)L
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Here we have Lagrange multipliers q defined by

k
qi(k+1) = q M() - A Min (0, U (k))

where X is the iteration factor. The value of X also depends on the

problem. Note that w , 0 < w r 2 , is the iteration factor, and we do

not need to have the step (iii) in (4.15).

Penalty method: This is a direct application of the penalized equation of

(3.1) defined by

u - V (kVu) U t+/L = Z a.e. in 1) x [0,T]

+

where u = Sup (0, u ) , and r is a small enough constant. For details,c

see LIONS [1]. Then an iteration scheme can be constructed by the follow-

ing form:

U + ) (1-_w)n+l (k) -n+1

_n+l 1l) W [+w K (k+l1)
k,i Uki J= wj k,i

-N K U&+l k lK 4 l

J=i+l ij k,i (k)+ (41

where Ki K + Max (0, Si)/C

.n+l ,n+l

Si U nk1 (k)/ Uk i (k)l

ik
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5. Numerical Examples

Our numerical scheme obtained in (4.15) is used for fixed

mesh of finite elements and arbitrary time interval (for the stability

of the numerical scheme, it is required to bc small enough if 0 - e <1/2

is used in (4.12)), while other methods, for example, JAMET and BONNEROT

[il, DOUGLAS and CALLIE [1], employ variable meshes at each time step, or

variable time interval 1L for the fixed mesh to obtain the position of

the frozen front using the Stefan condition. The latter method can be

applied only for one dimunsional problems. Why we can use the fixed mesh

is that the freezing index u and its derivative grad u is continuous

on the whole domain including the region of ice, water and the frozen

front, as discussed in Section 2. Thus we can construct the variational

form and its approximation without any restriction of dimension of space.

5.1. One Dimensional Case. We have to check the validity of the formula-

tion of variational inequalities compared with some exact solutions, since

for one dimensional problem analytical solutions are known, see for example,

TIOCONOV [!1].

Suppose that the following one dimensional problem is con-

sidered.

30 2 ,
at = 9 - x

x2

0(x,0) = 0 V x [ [0,1] initial condition (5.1)

.(,t) = -1 V t E r+ boundary condition

K V e VS(x) 9 on F ; Stefan condition
!
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2
The thermal diffusivity k is given by k = -2 Then following TIKHONOV

[1], the exact solution is obtained by

I -] + C ' (x/2,',t f , or x <

3(x,t) !(5.2)

0 , for x > .rt-

where 4(x) is the error function, C the constant given by C O(a/2K) -I

* the constant which determines the frozen front by x = a Note that

* is obtained by solving a tranz~ceLdental equation.

The exact position of the frozen front is not obtained exactly,

but is obtained approximately by the freezing index.

It is notable that the formulation by variational inequalities

of one phase problem does not require the homogeneity of the material con-

stants k and 2 , while two phase problem does, see KIKUCHI and ICHIKAWA

[I].

Example 5.1. Let us select k = 1.0 and k = 1.0 V x E [0,11 . We use

linear finite elements with the mesh size h = 0.1 . The time interval

At is 0.1 uniformly. Then at time t = 0.2 , the numerical results are

compared with the Tikhonov's solution in Figure 5.1, which gives good

agreement. Here the temperature 8n at j-th nodal point on n-th time stepj

is approximated as 0n = (un - u n-l)/At . Since the linear finite elementJ J j

is used, the gradient Vun  in i-th element is constant in each element and
1

is obtained by (uj - u nl)/h . Numerical values of the gradient un

are corresponding with the Tikhomnov's solution at the center of each elemnt

exactly. *
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Example 5.2. In the previous example, ten finite elements have been u-sed

for the discretizatien, which is too coarse in order to get the position

of the frozen tront properly, whil.e the temperature and the gradient of

the freezinv index could be obtained closely enough to the exact value-,.

Thus, we comnpute the same model with fine mes;h (h = 0.01 , i.e., 100

elements), and obtain more prktcise position of the frozen front. These

results are shown in Figure 5.2.

Example 5.3. The case of non-homogeneous domain, i.e., kI = 1.0 for

x E [0,0.3) and k, = 1.00 for x E (0.3,11] , is considered. Figure 5.3

designates the difference of the propagation speed of the frozen front

between the homogeneous and the non-homogeneous region. Since kI << k2

the front propagates more rapidly in (0.3,1] for the non-homogeneous

case. Even though the values of kI and k2 are very different, the

projectional S.O.R. method converges within almost the same number of

iterations as the case of uniform material domain.

5.2. Error Norms. Since the exact solution is known for one dimensional

problem, we can compute discrete error normts, and observe the correspondence

of its theoretical estimate given in THEOREM 2.

Example 5.4. The model problem is the same as one given in Example 5.1,

i.e., with uniform k = Z = 1.0 . In Figure 5.4, the results of computa-

tions of error norms are shown. Results indicate that the order of the

error in H -norm is exactly h which agrees with the theoretical esti-

2_ 1.6
mates and that the order of the error In L -norm is h1 " 6

I .. )

'V I • .. . .Z
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5.3. Comparison of Several Optimization Schemes. As mentioned in the

previous section, there are several methods to solve the optimization

problem (4.14). Here we compare numerical results of those methods for a

one dimensional steady state problem.

Suppose the follk %wing one dirii;ional :;tvtady state problem:

u K: (u', (v-u)') - (Z, v-,) V v K (5.1)

where K = {v it 1I((,1): v(x) 0 a.. In [0,1] , v(O) 0.25 , and

we choose I = 1. Its exact solution is ' tven by

- " x - , If 0 < x

u(x)

jf 1
0 if x

Example 5.5. The domain [0,l) is divided into 20 finite elements. Using

the numerical schemes obtained in Section 4, the optimal values of w ,

p , etc. for each method are obtained as follows:

Projective S.O.R. w = 1.6

Lagrange Multiplier X m 0.04 (using w - 1.0)

Fixed Point p = 0.04

S-- It is notable that each optimal values strongly depend upon the problem

itself. However, X and p may be chosen by the following criterion:
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Co = C • Max(U i/f)

where C 0.01 - 0.05 , U and f1  the generalized displacement and

force, respectively, at a certain point.

For the penalty method the parameter F has to be chosen

small enough in order to get more accurate results, but it depends on its

discrete element length h , too. The selecting criterion of C may be

S- C • h

where h is the mesh size (for any space dimension) and C = 10 - 10 - 4

Table 5.1 exhibits the comparison of the results by these

methods via the exact solution. We note that the projective S.O.R., the

fixed point and the penalty methods are controlling the generalized dis-

placement directly, while the Lagrange multiplier method is controlling

the generalized force. According to the results, only the Lagrange multi-

plier method does not give the satisfactory result. Even though we iterate

400 times, the tolerance is bigger than 1.0E-5 in the Lagrange multiplier

method.

The projective S.O.R. method Is most effective among them in

this problem.

The converging rate O(c) of the penalty method in L -norm as

-2
c - 0 is almost 1.0, as shown in Figure 5.5. However, for c < 10

a small rate is obtained, which depends on the round off error of finite

element discretlzation. The number of iterations for convergence of (4.15)

are almost the same (about 40 times), that is, it does depend on c , if

-
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5.3. Two Dimensional Case. Since the formulation and the numerical pro-

cedure described earlier are independent of the dimension of the problem,

two dimensional problems can be solved without special considerations.

Here a two dimensional model is examined for At , w , and 0 in (4.14)

and (4.15). Then the effect of lamping of the mass matrix M is dis-

cussed. For the optimization, the projective S.O.R. method is employed in

the following examples since it is most efficient as shown in Example 5.5.

Example 5.6. The numerical model is shown in Figure 5.6(a). This model is

selected because the two frozen fronts become coupled after some finite

time, so that any other methods might have difficulties to solve this

problem. Suppose that k = 1.0 , R = 1.0 and h = .0 , i.e., the number

of finite elements is 10 x 10 100 . The maximum tolerance c givenc

in (4.16) is i.OE-5 . Let us fix the above dimensions in the following

examples.

For

At = 0.5

= 1.0 , for the projective S.O.R.

0 = 1.0 for time discretization

the numerical results are shown in Figure 5.6(b).

Example 5.7. Figure 5.7 exhibits the case At = 0.1 at time t - 5.0

which gives us almost the same results as the case At 0.5 as shown in

* '.. Figure 5.6(b). Here a 1.0 and w = 1.0 are used. According to the

* - ~ - -
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results, the time increment At may not Influence the numerical results so

much, if 0 = 1.0 (I.e., Implicit scheme) is chosen.

Example 5.8. Under the same conditions as in Example 5.6 except the relax-

ation factor w , its; affection to convergence is checked. We note that w

should be selceted in the range such as 0 -1 w - 2 . For w - 1.0 , 1.4 ,

and 1.8 , the number of iterations is given in Table 5.2 for each w . The

case of o = 1.0 , i.e., the projective "Guass-Seidel" method, gives the

fastest convergeace. The calculated temperature field 0 is the same for

any case of w

Example 5.9. Stability of the numerical scheme (4.14) is checked here for

some Crank-Nicolson's 0 . Since the matrices M and Kij are constant

for each time step, the result; of the linear parabolic problem may be applied;

the characteristic equation of (4.14) is written as

det PT[(i+ e At M- K))X + (-I+(l-0)At M-1K) P - 0 (5.3)

where M = Mii , K = Kj , I 6i. and P is the orthogonal transformation

associated with M- K , i.e., P M K P reduces to eigenvalues mI > m 2 >

> m,. Then A in (5.3) is obtained by

A, 1 - mi /(1+0 At mi)

for each mi . In order that the scheme (4.14) is stable, it is required

that Max JA . 1 . Clearly XI < 1 , so that we must have

(l-20)At ml L 2 (5.4)

Thus If 0 is selected between 1/2 and 1, the scheme is unconditionally

stable. However, for 0 < 1/2 the scheme may become unstable. In fact,

II I n. . ... . . . . . . -q
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0 0.25 and At = 0.5 give an unstable example as shown in Figure 5.8.

Example 5.10. The effect of lamping of the mass matrix M is discussed.
ij

Let M.. be a lampod mass nitrix of the consi;tent mass matrix M defined
ii i

by

N
m. if i j

M. = (5.5)

0 if i #j

That is, the non-diagonal terms are added up to its diagonal. It is notable

that some singular frozen fronts at the first time step t = 0.5 are

observed as shown in Figure 5.9(a), which is considered to be a discretiza-

tjon error. However, such a singular behavior on the frozen front is not

observed if the lamped mass scheme is applied as shown in Figure 5.9(b).

Furthermore, after several time steps are passed, the temperature field

becomes entirely the same in both cases as shown in Figure 5.10. The lamped

mass scheme gives a kind of "smoothing" effect to the solution.

The diagonal terms M.. of the lamped mass matrix are always

11greater than the diagonal terms M. of the consistent mass matrix (where

i is not summed); the procedure of lamping always gives more stability

than consistent scheme for 0 , ' < 1/2

*0



29

6. Conclusion

We have shown the theory and applications of one phase Stefan

problems using the freezing index. Following DIVAULT [1], the problem

described by the temperature field has been transformed to the variational

inequality in terms of the freezing index. Applying finite element meth-

ods in space and finite difference methods in time, the variational ine-

quality has been discretized into a system of linear Inequalities, which

can be solved by optimization methods. In this article, four kinds of

methods: the projectional S.O.R. method, the projectional fixed point meth-

od, the Lagrange multiplier method, and the penally method have been intro-

duced and carefully examined for their speed of convergence using a station-

ary problem. Along our numerical experiments, the projectional S.O.R.

method is the fastest optimization method among them.

Using the Tikhonov's one dimensional solution, the numerical

results by the variatonal inequality have been compared, and very close

agreement has been obtained. Moreover, using the same one dimensional

example, the convergence of finite element methods has been checked numer-

ically for the case of linear interpolations. Numerical results have agreed

with the theoretical one, again.

Several nontrivial two dimensional problems have been per-

formed, and the choice of At , 0 , and w have been discussed numerically.

Furthermore, the effect of lumping of the mass matrix has been checked.

The Crank-Nicolson's 0 for time integration should be selected between

1/2 and 1. According to numerical experiments, the iteration factor of the

An
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projectional S.O.R. method w = 1.0 is recommended. Lumping of the mass

matrix gives smooth frozen fronts at the first few steps of time

integration.

Thus, the formulation of one phase Stefan problems by the freezing

index is fairly effective for multi-dimensional problems as shown in our

discussions.
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Figure 5.2 Front propagation in one-dimensional model
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S 1.0 1.4 1.8

0.5 3 'i42

1.0 5 13 49

1.5 7 14 49

2.0 8 14 51
2.5 8 14 52

3.0 8 14 52
3.5 8 15 52
4.0 9 15 53
4.5 9 15 53

5.0 9 15 53

Table 5.2 Number of iterations for various w of S.0.R.
(e=1.0)
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Appendix B

Numerical Methods for lo-Phast.- Stef;in

Problems by Variat [onal Ilneq qtialit ius

1. Introduction

The problem of freezing and thawing of two- &nd three-dimensional ice

fields under time-dependent boundary conditions can be modelled as a two-phase

Stefan problem, with the free boundary, representing the interface of ice

and water unknown a priori. Relatively few effective numerical methods have

9been proposed for such problems and those which attempt to treat the free

boundary by schemes employing a fixed mesh arc seldom given a complete mathe-

matical Justification.

The present schemt, is based on th, ;h.orv of St('fan problems using the

freezing index which is obtained by the special transformation of the tempera-

ture field. This theory is first introduced by Duvaut [21, and studied by

Fremond [3]. its mathematical basis has be.en studied by Lions [5) and Aguirre-

Puente and Fre'mond [1].

The purpose of this article is to introduce a numerical scheme for solv-

ing two-phase Stefan problems using special fr.ezing index formulation and

to discuss its efficiency. While there are several mathematical results

available on the freezing index fotnulation, such as theorems on the existence,

uniqueness, and regularity of solutions, the attempts to solve it have been

limited to one-dimensional; see Aguirre-Plutente and ,r'iond [1]. We give here

multidimensional results together with some new numerical schemes.

In the following section, the field cquatiions in terms of the freezing

index are derived froml the gLvern;ng eqiintLou; of the temperature using a

special transformation. Then, a nonlinear nondifferentiable algebraic system

of equations are obtained by discretizing the asociatvd variational form of

.9 the freezing index, without specifically defining thc ,;paces to which admissible

" - , .. _ . .. .. .. , ... ... .. .. . . .. ..



functions belong and without discussing properties of finite dimensional sub-

spaces used in approximations. The nonlinear system of algebraic equations

is solved by a modified S.O.R. method, since it is nondifferentiable. If the

system is differentiable, the Newton-Raphson method or the incremental method

may be applicable, but in our case the methods are not applicable. Moreover,

the nature of the nonlinearity of the system implies that some restrictions

on mesh size, time increments, and physical c-nstants such as the conductiv-

ities of the ice and water are needed, whereas the S.O.R. method may converge

without any such restrictions for linear systems. We also discuss some smooth-

ing techniques to obtain a smooth interfacc oi icc and water and give some

numerical examples. Our numerical experiments indicLte that the freezing

index formulation can lead to a powerful, efficient, :nd simple method for

solving two-phase Stefan problims.

2. Two-phase Stefan Problems

2.1 A Mathematical Description. We give a brit-f description of a formulation

of a class of two-phase Stefan problems. Mere detailed discussions about for-

mulations of general two- (or one-) phase Stefhn problems can be found in the

monograph written by Rubinstein [6].

The case in which only the solid or th, molted phase is governed by

the heat equation and the temperature of the other phase remains constant, is

called the one-phase Stefan problem. The two-phase Stefan problem is charac-

terized by heat equations in both phases.

nLet D be an open connected subrtt of I n .  1, 2, 3, and let D be

divided into two part;: the solid part 1) :nd the melted part D2 . If the

temperature field of the domain at time t is r'pre,;e:itvd by 9 (x,t), then

1)1 and D2 are defined by
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f ol ( {x ,7D: A (x,t) < 0

(2.1) D2 (t) = CxC D: (x,t) > 0

The surface (or maybe subregion of D) 10 defined by

(2.2 )e(t) [x E D: 9(x,t) = 0)

is called the interface (or frozen front) of the solid phase D1 and the melted

phase D Let the boundary I of D be separated into three parts rl, r 2, and

r3 . The temperature field 9(x,t) is prescribed on the boundary PI" There

is no heat flux from the boundary r,, The heat flux on the boundary r3 is

assumed to be proportional to the temperature on 1 3" Then, the problem can

be represented by

ce = V.(k 1W) in D
(2.3) C 6 = V-(k N) in D,

1 2

Ie(x, t) g g(X, t) Lil T'

(2.4) 0i (x,t) = 0 on D .
*2 1

ip(x,) 0 -pi@(Xt) + q(x, t) on 'P3 D

(2.5) 9(x,t) = 0 on ro

[kIV VS + f1 = 0 on ro

(2.6) 9 (x,0) = 0 (x) on D

Here C and k,, i = 1,2, are the mass heat capacity and the heat conductivity

of i-th phase, respectively, g, pi, and q are given proper functions, 0

* n
is the initial temperature of the domain, e 19/t, 30 = ki Ea(Z I n (/ g

1,2, n = (nl, .. n n) is the outward normal unit vector on , and
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(2.7) jkVG I = k2(V) - ( P)

where (i)+ is the limit of V on P0 coming from D,., and ( ) is the limit of

00V n "0  coming from D I . The function t -- S(x) indicates the position of

r which is sometimes written by x = L(t). The value A is the latent heat

of the solid phase.

We remark that the portion of I' is unknown a priori, and that the
0

gradient VO of the temperature field is discontinuous on r0.

2.2 The Freezing Index

Because of the discontinuity of the gradient of the temperature on the interface

r0, the problem cannot be formulated variationally in the whole domain D for

the temperature field if the position of the interface r. is unknown. To
0

avoid this difficulty, Duvaut [2] introduces a special transformation, which

i; later called the freezing index by FrCmond [31:

t

(2.8) u(x,t) f- ki 9(x,T) dr
0

where

(2.9) 1i . lif x E. DI - 2 if x I T) 2( )

Since k, i = 1,2 are constants, u(x,-) is differentiable if G(x,) is con-

tinuous. More generally, if 9(x,.) is measurable, u(x,.) is differentiable

i n generalized sense. Then

(2.10) O(x,t) = 1 ((x,t)
ki

lhis implies that
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D 1(t) .x D: 6(x,t) < 0)

since ki > 0. Under the assumption that k and k are constants, (2.3)

implies

-C 1 (x,0) 4 C (Xt )  if x ) 1)(0) f Pl

V-Vu(x,t) = -CI9(X,0) + C2 (xIt) 4 i if x C D (0) 1-1 D2(t)

-C 2 9(x,0) + C2 (xt) if x D ,(0) n D 2(t)

2-C2 (x,0) 4 CI(X,t) - if x D (0) n Dl(t)

Applying (2.6) and (2.10),

C.
(2.1 2 i Ci(x, t) - V'u(x, t) Cj.0(x) C.

i 0 13

where

(2.13) 
2{ 1 if x C D (0), j .- 2 1f x D 2(0)

(2.14) c1 i -1 c " 0
12 ' W ' 1 :2

From (2.8),

t t
,u(x,t) kiV9(x,r0n(x) di - / Q(x,;) d

Then, putting

t
(2.15) 9(x,t) = k k g(x,t) dT, i 1 if g(xr) <0, i 2 if g(X,T) >0

0

t

(2.16) (xl t) ' q .(x , i f 1 x 1 (2)1 f 2 if x)
o .2

boundary conditions (2.4) can be transformed to

. .
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(2.17) u(x,t) 9(,t) on 1

(2. 18) u(x, t) 0 on I'.

and

1(2.19) cuxt k. U~ u(X,t) -~(X, Q on P3

whe re

i = I if x C D (t), i 2 if x C D2 (t)

12

Here we have already counted the initial condition of u, i.e.,

(2.20) u(x,0) , 0 in D

The interface conditions (2.5) have been a 1 s o taken into account in the

above considerations. Therefore, the two-phase Stefan problem (2.3)-(2.6)

is transformed to the field equation (2.12), the boundary conditions (2.17),

(2.18), and (2.19), and the initial condition (2.20) in terms of the freezing

index.

3. Discrete Two-phase Stefan Problems

We will now consider discrete problems associated with the problem

t(2.12), (2.17), (2.18), (2.19), (2.20)) using finite difference and element

methods. For details of mathematical analysis of the same class of two-phase

Stefan problems, see Lions (3), and Aguirre-Puente and Fr~mond [1].

I"|.
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3.1 A Variational Formulation

Under the presumption that C(x,t) belong to L 2(D) at every

t E [0,T], t C I,

f (di iv 4 V.u) dx
D

= f (8u) vds 4 1 ( vds + f (d i-VVu) vdx

r2 '3  D

for every v such that v on r I here dI : C i/k By (2.12), (2.18),

and (2.19),

f(d 6v + Vu'\v) dx 4 (u * )v ds f (C 90 v + e iLv) dx

I) P3  D

where ei  Pi/ik. That is, putting

(uv) f uv dx

D

(3.1) ai(u,v) f Vu'Vv dx - .1 eiuv ds
D r 3

Lj(v) = f Cjv dx i f v ds

we have, for every t C (0,T],

(3.2) uEK(t) (didv) 4 ai(uv) = (Cijfv) 4 L (v)

for every v C K 0 (t) with the initial condition

(3.3) u(x,) 0

where

(3.4) K(t)= (v(t) E H (D): v (t) t) a.e. on r

11
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3.2 Finite Difference Methods

Suppose that the domain D :]R 2  is a rectangle which is covered by

the uniform net ED" Let E be the set of all nodal points interior of the

domain. Let El' -2' and Y3 be sets of all nodal points on 1'1, r2, and

r , respectively. For simplicity, Y' 2  and 3 are assumed to be null. Let

the particular nodal point of the net be represented by the pair (CtM, which

indicates the position of the nodal point, i.e., the coordinates of the

point are given by (CIx, PSy) , where A. and Ay are intervals of nodal

points in x and y directions, respectively. In this article, for simpli-

city, Ax = Ay = A. Then, the variational problem (3.21) is reduced to the

nonlinear system:

u, . 4 1 _ (,
(3.6) d i ua, +2 u 12,u 1, u +u l)

4 j O C , + Cij

for (a, ) C Y, and

(3.7) ucz, t3

for (a,1) E Li" Here the summation convention is not applied.

Nonlinearities can be included in di t m

necessary to resolve the form (3.6)

10
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Now, the approximation of d a in time derivative is given by
i ulp

6a, (~t)1 n n
,(3.8) da (nt) = d i' (nnt) L (Ua, n u, )

where u (n6t), and At is the given time interval. Then (3.6)
a, a,

can be solved by a kind of S.O.R. method:

n () n-i
(i) put u (0) n-Iux, =

n n n nm- 1)
(ii) R , (M) = (u _.1,P (M) f LI .l ua, .m )

+ nr (m-l) + A2 C (9 o)a)
(3.9) a,: pp 1

(3.9) N( (m) C,(n,m)e - d (n I n(u (m-l) - uc, '

A2
n n n A nuC1 (m -) (1-c a (r-) (,(R (, f3- N() (M))

(iii) Repeat until

in (M) n (n-1) I/ fl' (i) I < C

where u ,(m) means the value of tn at m-th iteration of the S.O.R.

method, (11 is the iteration factor which is expected to be in the interval

(0,2), c is the admissible error of the convergence of iterations, and indices i

and J of Ca, (n,m) and da'(n.m) are

i ,(m) < 0 0 I if (9O)a,o < 0

(3.10)

i i 2 if 611,(m) > o j 2 if (9 ) > 0

U, 0 -
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whe re

n l un  1(-) - n-i

ua, & 'a = I

The nonlinear term C.. (n.m) 2 in (3.9) is va .s like a step function,

while other remaining terms in (3.9) are expected to change moderately.

This implies that the relationship

A22
(3.11m)Ra (n - (" uCd ,(mn) I">> (-i, j (nM)

must be satisfied in order to get convergence of the iterative scheme (3.9).

EXAMPLE 1. Let us consider the one-dimensional problem, whose domain D is

the interval (0,1), material constants d and d 2 (i.e., klk2' Cl, and C

are given constants. Let the initial temperature 90  be given by

9 0(x) - (x - 1/2) if x < I/2, -- 0 if x 1/2

The boundary conditions g(O, t) and g(l,t) are given by

g(0,t) = - i/2 g(l,t) t

Then, for t < 1,

'A(0,t = -k t/2 A ,(1,t 0 k t 2/2.

If n = 1, and cx. = 0.5, (3.11) bocomes

12 .1 2
10. 5 (uc (-in) W u4 1 (r-1)) - 0.25/.' di(1, m)Uc(m) >>0.256 £

Under the assumption that 61 is almost the same with t = %O, (i.e.,

the tirme interval zAt is takin tn be sufficivltly small), this becomes

S -t..



0. 5k 1 1 1t> 2 11.kl. • tO>.25A2C i.e.,

(3.12) 2k At >> A

That is, in order to satisfy the condition (.3.11), the relationships (3.12)

haa to be assumed. Under this condition, the iterative scheme (3.9)

may converge.

For the case that CI = 0.5, C2 = k I ' k 2 z 1.0. -- 100, and A = 0.02,

the convergence for the various time increments At is obtained in Table 1.

In Figure 1, the position of the interface is described for several

time increments At. This shows that the time Increment At has to be small

enough in order to treat the position of the interface. That is, it is pre-

ferable to use a At which is the almost-limit value for convergence of the

iterative scheme (3.9).

EXAMPLE 2. Let us again consider a one-dimeiirional,two-phase Stefan problem

whose material constants C, C2 , kl, k and £ arc obtained for a silty soil

with twenty.percent moisture content, i.e.

k = 60 kcal/m.day.0C k - 50 kcal/m-day. 0 C

3o 3C1  450 kcal/m . C C 2  600 kcal/m. oC

24000 kcal/m 3

Initially, the soil foundation is unfrozen so that the initial temperature

a0 is given by

2 ,'
00- ax, a = g(L,0)/L'
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where x is the depth of the foundation, and g(L,O) is the initial tempera-

ture at the end depth L. We specify boundary conditions g(O,t) and g(L,t)

described in Table 2. Let the depth of foundation be given by L = 5m. We

use a 3-point finite difference scheme for space discretization with the mesh

length A. For the time increment, At - 10 days is used.

By arguments similar to those in Example i, the criteria (3.11) be-

comes

1 2 12
•(3.13) '4k1 4-g(O,At) >:> A

Since the frozen front propagates from the surface of the foundation x = 0,

the condition (3.11) has to be evaluated at (x - 1 and n = 1. Since (0) 1

is almost zero at x = aA, the relation (3.13) is obtained under the assumption

that u 1  is small enough so that A'd 1i is negligible. Here g(0,t) is

the boundary temperature given on the surface of the foundation x - 0.

We calculate three cases, i.e., A : 0.1, A : 0.2, and A = 0.5. As

shown in Table 3, convergence of the scheme (3.9) is not obtained for the case

of A :: 0.5. For A = 0.2, the scheme (3.9) ii almost convergent. That is,

around the interface, values of the freezing index vary periodically, and

the criterion (3.9) is not satisfied, choosing c = 10 3 . However, the

case of A = 0.1 gives nice stable convergence of (3.9) except for the first

few time steps. For the first few steps, the relative tolerance may not

-3
reach the given criterion E = 10 , since the value of the freezing index

, is considerably smaller than the latent heat f,. Recall that by a phase change,

the latent heat i enters the force term in (3.9). However, after several

steps, the global result becomes stable and the large relative tolerance for

the first few steps does not affect the subtqiuent results. If we do not

expect large relative tolerances, they can be avoided by shifting the value
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of the initial freezing index. That is, in plac t that the freezing index is

assumed to be zero at the initial stage, we juist shift u(x,O) to some posi-

tive value u0  whose order of magnitude may be the same as the latent heat 2.

We also remark that the condition (3.13) indicates that the mesh size

has to be so small that the frozen front can exceed at least one mesh if the

system is far from equilibrium. 0

We shall discuss some modifications of the approximation (3.6) in

order to get an efficient method of solving (3.6).

First, the term d ', (nt ) is approximated by

( , 3 i n n-I

f , 1 1 ~ t Cr4 '(X, 3

instead of (3.8). Then, the coefficient di can be fixed at each time step.

That is, material constants at n-th step are determined by values at (n-l)-th

step which have been already obtained. This Implies the modification of

(3.9)- (iu) :

4UcQ,_l(m) 4 Uc ,j 1+(rn-i) + C 0C,

(3.9) '2 a, n-

d- i (n -1) -) 4 (u() u M

4 N,)(m) _

t a,, .u a , ( m ) _( ) u a . P ( m - l 1 )R , m + Z _ a ( ) )
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EXAMPLE 3. Here the problem described in Example 1 is solved by the iterative

procedure (3.9)' instead of (3.9) . Let C 0.5, C k1 - k2 = i £ 1.0, and

let the boundary conditions be given by

g(O,t) ::(t-l)/2, g(1, t) - t

The initial temperature 00 is s a m e as Example 1. Results, shown in

are obtained by the mesh size A 0.02, the time increment At = 0.05,
-3

the iteration factor co = 1.0 in (3.9), and the tolerance c = 10

According to numerical calculations, see Figure 3, (3.9) and the modified

scheme (3.9)' give almost the same propagation of the solid phase. However,

after reaching the limit of propagation of the solid phase, t he

modified scheme (3.9)' gives considerably different results from (3.9). This

difference comes from O(di) 0(A), i.e., the order of the latent heat I

is almost the same as the one of d = C /k1 and d2 1: C2 /k If Z is much

bigger than di,, t he n d i f f e re nc e s of results by (3.9) amd (3.9) ' may

not be so large.

We also solved the same problem by the method given by Nogi [7]. Details

of this 'comparison are found in Kikuchi [41.

Second, the term CijB £ of (3.6), which is related with the latent
ij

heat of the solid phase, is homogenized by

(3.15) C = (hl(C'ai f 4 4 + CeP) + t0J8/(4h+h

H tjI f ij ij j i

for proper number h1 and h2' Then, in (3.9)-(ii), the term eli (n,m) l

is replaced by eal, Z
H ij
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EXAMPLE 4. A two-dimensional model is considered in this example. Let

D = (0,0.4) x (0,0.4), C = 0.5, C_ k =k f-- 1.0. The initial temperature
1_ 1 2

0 is given by 00 = 0 in D. Boundary conditions are given by

g(O,y) = (0.8-y)(2t- 1)

g(x,0. 4 ) = (o.8-x) (2t- 1)

g(O. 4,y) - 0.5 I-y" (l-3t)

g(x,O) 0.5 rx (1-3t)

The uniform mesh is employed for the net of finite difference with

A = Ax = Ay = 0.02. The time increment At is 0.05. These satisfy the

criteria (3.12) and (3.13), i.e.,

2k At = 0. 1 > AI = 0.02

2klAt = 0.I >> A 2 = 0.0004

At the 9-th and 9-th time step, i.e., at t : 0.4 and t = 0.45, phase transi-

tion from the melted region to the solid region becomes very sensitive in

this example. At the 7-th time step, the range ((x,y): 0 < x < 0.4, 0 < y < 0.4,

and y > x) is melted with almost zero degree temperature. Then, during the

7-th step to 8-th step, the boundaries (x,0) and (0.4 ,y) become solid. Then,

the solid phase develops gradually fro'm the boundaries and there remains the

melted region inside the model. We examine how the isolated melted region

remains at t = 0.4 and t = 0.45 using the modification (3.15) for various factors h

and h2. Four cases are shown in Figure 4-(a) (at t - 0.4) and Figure 4-(b) (at t=0.45

Except for line of zero temperature, equi-contour lines coincide for

any choice of h and h2 at t - 0.4 and 0.45. That is, the homogenization

(3.15) does not affect the temperature field except around the frozen front.
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However, the position of the phase transition depends strongly upon the

choice of h1  and h2. Numerical results show that equi-distributed homo-

genization (hI = h2 = 1) gives a fairly smooth interface of the solid and

melted phases.

Third, the conditions (3.10) may be replaced by

= I if u* n (m) < -C k

(3.10)' "n

2 if u,(m) > ck2

for the term CXf(n,m) in (3.9). where c, and c2 are given small positive

numbers. The domain

(3.16) TR = (x C D: -clk1 1 u(x,t) < c,,k 2)

might be called the transient region of the solid and melted phases.

EXAMPLE 5. The same example described in Example 4 is solved by applying

(3.10)' instead of (3.10) in (3.9). Here h -0 and h2 = 1 are taken, i.e..,

no homogenizations are made. As Example 4, ntumerical results at t = 0.4

are shown in Figure 5. In the case of c 1 2 - 10- 2, shown in 5-(c),

the whole domain becomes solid. However, the transient region, indicated

by small circles, spreads widely. In this range, it cannot be precisely de-

termined whether the point is melted or frozen. We may say that intermediate

state occurs in that range. The reason the whole domain becomes solid is

that the body force due to the latent heat is entirely neglected in the tran-

siert region. In the case of cI = c2 
= 10- 3 as shown in Figure 5-(B), the

-2transient region certainly becomes narrower than the case of c1 = = 10

.. . , w ' ,. .... . ..... ' .• ..... 7 . _.. .... .. . . .... ..... . . . .. . , - , ,, I II II II
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The temperature fields away from zero degree almost coincide in both cases.

This means that the effects of the modification (3.10)' are limited to regions

around the phase change.

3.3 Finite Element Methods

For cases where the boundary conditions are not only the Dirichlet

type but also the Neumann and the third types, or their domains are con-

siderably irregular, finite element discretization is preferable. Let the

domain D be triangulated. Let ) be the set of all nodal points in D

and on 2. Let "%"1 and 3 be sets of all nodal points on 1 and r

respectively. Let 0 be the global interpolation function at C-th nodal

point which is constructed by local interpolation functions (shape functions)

attached to finite elements. Then, every function v(t) in HI (P) can be

approximated by

(3.17) v(x,t) = v (t) 0 (x)

Here the summation convention is applied. In this section, this convention

is used throughout--all repeated indices are summed throughout their range.

Putting 9,a = dvy/dt, (3.2) is discretized by

(3.18) [u a ) C Kh(t): u* CS v  US i vD FiJv L f3 for every vP} C KOM
h h) r3- ( Kh)

ft a(t IN a Act
(3.19) K h (t V(a~ I S1 () g( a C?
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(3.20) Kh(t) - Uv Ct) ) IN I N  v Q(t) 0 a >1

Recall that the index i depends upon the current value of 6C , and the index j

depends upon the initial value of &*, i.e., 0. More precisely,

i = 1 if U(t) < 0 f @0 < 0

(3.21) 41
i 2 if u (t) > 0 2 if 80 > 0

NX

Matrices ML and S are defined by

(3.22) Mi  = (d.0 i-C43 1~9 ~~d

Vectors F j  and Li are defined by

(3.23) F ij  (C io L , L Lj (0,r

0 ~ i3 r)r

Here (,.), ai(.,.), and L.(') have been defined in (3.1). Then, from (3.18),

it is necessary to solve the following nonlinenr system

a .ti" .j
(3.24) . u 3 Ci Kh(t) u + uSi = Fi j I Lj

This nonlinear system can be treated by the iterative algorithm described in

(3.9). Similar with the case of finite difference methods, modifications on

M S , and F
1i can be considered.

i i
First, matrices M . and S i may be replaced by

ti t M ~~(,kt) (di ( n  ir ¢
C4

(3.25) S (nAt) a iv,0 ((n-l)\t)

Then matrices M and Si  do not depend upon the current value of CI6(ci'at),
C4 e Crde

nonlinearity of matr-ices are disappeared at each time step.
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However, the homogenization discussed in (3.15) is difficult for

the finite element discretization. So we consider only the method of

modification (3.10)' instead of (3.10), i.e., (3.21) can be replaced by

i = I if uCa(t) < -I k
(3.21) ' i

i = 2 if u (t) > C2 k2

for the vector (F j}.

The numerical scheme which is employed here has the following final

form:

2,n N,n ( C I ', Nn i M(3.26) uk  uk- i a U S Uki -F

(a no summation)

Iere ikC n is the value of u ior the k-th iteration of the S.O.R. method

at time nLnt, w is the iteration factor, and

A i S i

(3.27) Fi F " " n-i _

o0< <1.

EXAMPLE 6. Figure 6-(a) shows the domain D and its boundary conditions. We

employ rectangular linear isoparametric elements with 16x 16 256 meshes

whose size is 0.025. Material constants are

k I = 1.0, C I 1.0 for solid part D1(t) ,

k 2 = 1.0, C2  0.5 for melted part D2 (t),

= 1.0.

0_ A M P - | |1" .. .m ii 11- _. .. . . . . . l ii l lE l



The initial temperature 00 is given by il 0C everywhere. Dirichlet boundaries

are considered at two points on the top surface given by

-. 0 if 0 < t < 0.4 and 0.5 < t < 0.6

e(xt) g(t)

0.5 if 0.4 - t < 0.5

On other parts of the boundary, the Neumann condition 09 = 0 is assumed.

The time interval At is 0.1. We use 0 = 1.0 in (3.27), i.e., the implicit

Or-scheme of time discretization and w' = 1.4 as the overrelaxation factor of

S.O.R. method. The judgement of convergence is done if the relative tolerance

cr,n anl yIa4.ua~ _ Ik 11' is less than 10-

In Figure 6(b) we show the case of cI =. 2 = 0 (see (3.21)'). Until

time step 3, the frozen front propagates monotonically with fairly smooth

interface, s i n c e the cooling at the top surface is monotone. The step 4

has somehow unstable values in temperature C, which has a fairly irregula r

shape of the frozen front. We think this Is because the frozen area is going

to vanish almost at this stage. In order to avoid this irregularity, we tried

several 6ases changing eI and c2, which are shown in Figure 6(c). If we

compare the figures at time step 4., we notice that the shape of the remaining

frozen part is strongly affected by the values ot c1  and c2. However,

fortunately, this frozen area does not affect aippreciably the temperature field

of the subsequent time step, since the values of the freezing index u hardly

change by the modification (3.10)'(the field variable is u, not temperature 0).

The selection of I and E2 depends on our numerical and experimental experience,

but it seems to us that c = c2  0.001 is tairly proper upon observing

* '.. Figure 6(c).

A
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Table 1. Convergence Test for EXAMPLE 1.

A t 2k 1 6 t convergence

10 20 2 o.k.

5 10 L o.k.

1 2 o.k.

0.5 1 2 o.k.

0.1 0.2 2 NO

k = 1.0

A : 0.02

£=100.

p



DAY (t) g(O, t) g(L, t)

10 -7.0 9.5
20 -9.5 8.5
30 -12.5 7.
40 -16.5 6.5
50 -19.0 5.5
60 -21.5 5.0
70 -24.0 5.0
80 -24.0 4.5
90 -21.5 3.5

100 -18.5 3.0
110 -16.0 3.0
120 -12.5 3.5
130 -7.5 4.5
140 -2.5 5.0
150 1.0 5.0
160 3.5 5.5
170 7.0 6.0
180 9.5 6.5
190 11.0 7.0
200 13.5 8.0

Table 2. Boundary Condition,; for EXAMPLE 2

I

* ..



Table 3. Convergence Test for EXAMPLE 2

16ki jtg(0,4 t)/2 zi2convergence

0.1 1500. 240. o.k.

0.2 1500. 960. No Good

0.5 1500. 6000. No

kI=60.

=Q 24000.
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APPENDIX C

Qualitative Analysis and Galerkin Approximations

of a Class of Pseudomonotone Diffusion Problems
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1. INTRODUCTION

In this paper, we present a qualitative analysis of solutions and Galerkin

approximations of a class of nonlinear diffusion problems characterized by nonlinear

parabolic equations of the type

- + A(u) = f

where u is an element of a separable reflexive Banach space W densely and

continuously embedded in another Banach space V and A is a coercive W-pseudomonotone

operator from its domain W in V onto the dual space V' . Since A is not

monotone, the analysis of problems of this type is complicated by the possibility

of non-unique solutions, an absence of continuous dependence on the data, and the

corresponding absence of stability.

Most of our attention will be focused on the following class of problems:

Find u = u(x,t) , (x,t) E Q x (0,T) , such that

au1
T + A(u) f x Q , 0 < t < T

u =0 , x E Q, 0 < t < T 
(1.1)

u(x,0) = u , xE J
where 

0

A(u) = A1 (u) + A2 (u)

= -V "a(x,Vu) + b(x,u,Vu) , x E Q (1.2)

a(xVu) = a(x)Vu + k(x) jVujP- 2Vu 1
a,kE LOD(Q) ,2 < p < (1.3)

a(x) > a° > 0 k(x) > k > 0 a.e. on J
and b(,C) = b(x,C, ) is a totally Fr~chet differentiable function in R x Rn

for which there are positive reals q and r such that

b(r,) < ,c l r

'a b(C) [ < c 1 1q-l G r (q 0 0) (1.4)

13 b( ,C). .. cr. q. r- .(r . 0)
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and

q 0 or q > , r 0 or r > 1

l q+r<p-.5)

Here Q is an open bounded domain in Rn with boundary Q , 0 < T < co f

is given data in Q x (0,T) , and u0  is initial data given on S1

The operator A is a generalization of a part of a nonlinear heat diffusion

operator proposed by Coleman and Mizel [4]. With a = 0 , it also corresponds,

when spaces of vector functions with zero divergence are considered, to the diffusion

part of the generalized Navier-Stokes equation studied by Lions in [10] and [11].

The general operator A2 may model a convective part of the process. For example,

convective terms such as those in the Navier-Stokes equations, or in heat conduction prob-

lems when convective terms due to chemical reactions are present. This type of diffusion

equation is important beyond the study of thermomechanical phenomena; it also occurs

in modeling biological, social and other phenomena (Cf. Fitzgibbon and Walker [6]

for a survey of nonlinear diffusion models.) We should mention Tsutsumi's study,

(16], where a non-monotone parabolic problem in which an equation of the form

~ut-n p2 isa(i=1 a(au/xilP2 au/axi)/axi - u
= 0 is analyzed, which is a special

case of the problem considered here.

This study is divided into two principal parts. Part I, Pseudomonotone

Parabolic Problems, is devoted to the study of the existence of solutions of a general

class of non-monotone, nonlinear parabolic equations. After some preliminaries

on properties of certain function spaces are laid down in the section following

this Introduction, a general class of nonlinear parabolic problems involving

coercive pseudomonotone operators is given in Section 3 together with an existence

theorem for such problems. An existence theorem for problems of this type has

been given by Lions [11], but to lay groundwork for our study of Galerkin approximations

taken up in Section 9 of the paper, we give an alternate proof. The principal tool,

both in the analysis of the general problem and in the approximation of the model

problem (1.1) - (1.5), is the construction of an elliptic regularization of the

-A|
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given problem. This regularization, of the type used by Lions [10], is introduced

and analyzed in Section 4 and the proof of the existence theorem for the pseudomonotone

parabolic problem is completed in Section 5. In Section 6 of the paper, we give

a brief summary of some results of Oden [131 which provide sufficient conditions

for pseudomonotonicity of nonlinear operators on reflexive Banach spaces.

Part II of this study is concerned with the specific class of nonlinear diffusion

problems characterized by (1.1) - (1.5). In Section 7, we show that the operator A

defined in (1.2) is coercive and pseudomonotone on a dense continuously embedded

subspace of the Banach space LP(0,T; W1 'P(Q)) and that solutions to (1.1) do
0

exist in L0(0,T; L2 (Q)) n LP(o,T; w £P(2)) under the conditions (1.3)- (1.5).
0

In general, multiple solutions will exist to (1.1) and there cannot exist a continuous

dependence on the data. However, regularity conditions on the solutions can be

given which will guarantee their uniqueness, and these are discussed in Section 8.

Sections 9 and 10 are devoted to studies of Galerkin approximations of the

model problem (1.1) - (1.5). In Section 9, we describe properties of space - time

Galerkin approximations of solutions in LP(o,T; w1 'P(Q)) and we give an approximation
0

theorem which establishes their strong convergence (in LP(0,T; W1 'P(Q))). We
0

also derive error estimates for such approximations. Finally, in Section 10, we

describe Faedo-Galerkin (semi-discrete) approximations. We note that, in general,

this type of semi-discrete approximation is not necessarily well-defined for

coercive pseudomonotone parabolic problems. However, in the case of our model

problem, it is proved in Theorem 10.1 that sufficient conditions are satisfied

which guarantee existence and also uniqueness of Faedo-Galerkin approximations

to problem (1.1) - (1.5). We also prove sufficient conditions for weak and strong
I

convergence of such approximations and we establish corresponding approximation

error estimates.
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PART I. PSEUDOMONOTONE PARABOLIC PROBLEMS

2. Some Preliminaries

The following notations and conventions will be in force throughout this

study:

(V, ."1 ) f  a real, separable, reflexive Banach space.

(V', II "IL) = the dual space of V

= duality pairing on V' x V ; i.e., for v'E V' and

v E V , <v' ,v> = v' (v) .

(H,(.,.),I'I) = a real Hilbert space identified with its dual, in which V

is densely and continuously embedded: V (;H H'. Then H is a pivot space such

that
V H V1 ' (2.1)

Next, denoting by t E [0,T] , 0 < T < , the time variable, we introduce

the space of vector functions of time

(V, I III) = LP(OT;V)

{v: [O,T] - V ; Ilvilll

= [ I v(t)jIp  dt < p 2 < p < co (2.2)

which is a separable, reflexive Banach space, whose dual space can be identified

as (V',I-III) Lp I (O,T;V') I p' = p/(p-l) .

= duality pairing on V' x V , i.e., for v' E V' and

v v,

[v',v] = f v' (t) ,v(t)> dt (2.3)
0

(H,(',')H,'IH) = L2 (0,T;H) equipped with the natural inner product and norm,

which being identical with its dual, is a pivot Hilbert space such that

V(4 HC V' (2.4)

.((O,T)) = space of test functions defined on (0,T) ; i.e.,

1._..
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E D((O,T))*44) E Co((O,T)) with the usual locally convex linear topological

structure.

D'((O,T);X) = L(D((O,T)),X) = the space of distributions on P((O,T)) with

values in some normed linear space X

We observe that since VC' ((O,T);V) , every v V defines a distribution

on D((O,T)), also denoted by V , with values in v , given by

V(M -= vt td , V/ D((O,T))

whose distributional time derivatives, also belonging to D'((O,T);V) , are defined
by ;mv (Tb (- m T

by = ,.l~m v(t) d M ) dt V 4 E D((O,T))

atm  0O dtm

Finally, we introduce the separable, reflexive Banach spaces (U,11l.iIIU) and

(W, 11III llw) defined by

U = {v: v 6 V ,v=av/3t 6 H}
S= v(2.5)

W = {v: v -V , v = avlat6 V'1
Ci =Hff ~IvH(2.6)

111v111W = 111vlii + 111; 11* 2.6

which satisfy the relation (with dense inclusions and continuous injections)

U c; W q V (2.7)

and whose elements possess the following properties (cf. [8] and [10]):

i) W is continuously embedded in C([0,T];H) ; i.e., if ve W , then,

after an eventual modification on a set of measure zero in [0,T] , v

is continuous from [0,T] into H and there is a constant K

independent of v , such that

sup jv(t) I < K IvlllW (2.8)
t 6tO,T]

ii) If u,v 6 W , then u,v satisfy the Green's formula

[u,v] - (u(T),v(T)) - (u(0),v(0)) - [v,u] (2.9)

p.
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iii) The trace mappings v ' v(0) and v 1+ v(T) from W + H are surjective

and their restrictions to U have range dense in H ; i.e.,

{v(O): v E W} = H = {v(T): vE W} (2.10)

{v(0): v E U} and {v(T): v F U} are dense in H (2.11)

We also remark that we make frequent use of Young's inequality in subsequent

analyses: If x,y E IR , I < s < , s' = s/(s-l) , and b is any real > 0,

then y<b sth e< - + - - 'lyls '  (2.12)

3. Existence Theorem

With the conventions of the previous section in force, we now consider a

general class of non-monotone evolution problems characterized as follows:

Given f E V' and u E H , find u E W such that

Tu + A(u) = f
at (3.1)

u(O) = u J
Here A is an operator from V into V' , possibly depending upon the time

parameter t E (0,T) , satisfying the following conditions:
*

AI. A: V - V' is W-pseudomonotone , i.e.,

i) A is bounded in the sense that it maps bounded sets in V into

bounded sets in V' .

ii) If {u I C W is a sequence converging weakly to u E W and ifn

lim sup [A(u n) , u n-u] < 0
n-)oo

then, V v E V

lim inf [A(u ) , u -V ] > [A(u) , u-v]

n n~n -
x
°
o

All. A: V - V' is coercive, i.e.,

[Av) v] + -oo as ilvill[ +

We will refer to A: V - V' as pseudomonotone if it is V-pseudomonotone.
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Theorem 3.1. Let the operator A: V V' satisfy conditions (AI) and (All).

Then there exists at least one solution u E W to problem (3.1). (1

A proof of this theorem was given by Lions [11, Chap. 3] which makes use of

the method of elliptic regularization. Lions' method, which was introduced in his

study of linear parabolic problems 19], effectively involves converting (3.1) into

an elliptic problem, depending on a real parameter e > 0 , and constructing

solutions to (3.1) as limiting cases when c - 0+ . When A is a spatial

differential operator, the method described in Lions [11] leads to an integro-

differential equation involving e
9

However, one of the principal objectives of the present work is to study

properties of Galerkin approximations of (3.1) and, in particular, to obtain a

priori estimates for such approximations. The general method employed by Lions

does not lead to results from which a constructive approximation theory can be

easily established. For this reason, we give here an alternative proof of

Theorem 3.1. which was suggested by Lions [11], also based on the notion of

elliptic regularization, but in which a different form of the regularized problem

is used. We will show in Section 9 that the constructive nature of our proof

is useful in studies of Galerkin approximations. Our method generalizes those

used by Lions in his study of nonlinear parabolic problems [10] and by Dubinskii

in the analysis of parabolic problems with semibounded variation [5].

4. An Elliptic Regularization

We begin by recalling that U denotes the separable, reflexive Banach

space defined by (2.5) which is everywhere dense in W . We will denote by

duality pairing on U' x U

We next introduce a family of "elliptic" operators A U U', C is a

positive real number, defined by

"[(u)'v ]u . F[Du'aV - u,'v' + (u(T),v(T))

[A()vU Kat t)H tH
+ [A(u),v] ; u,ve U (4.1)
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where A is the operator in (3.1) which satisfies conditions (AI) and (All).

The problem of finding u E U such that

[A C(u ),v]U = [f,v] + (uov(0)) V v 6 U (4.2)

is an elliptic regularization of (3.1) obtained (formally) by adding to

2 2
au/at + A(u) the term -0 u/at . We will first show that (4.2) is solvable

and then prove that solutions to (3.1) are obtained as c - 0
Lemma 4.1 The operator A : U - U' defined by (4.1) is (i) U-pseudomonotone

and (ii) coercive.

Proof. (i) We observe that the operator A U - U' can be expressed byES

the sum A. = B + A where BC is the linear operator on U defined by

[B u,v]u = 6[ttS[ - 1uqt

+ (u(T),v(T)) ; u,v E U (4.3)

We prove first that B : U U' is positive (monotone) and continuous. Indeed,

[B U'Iu] =j~ 2 + lu(O) 12 +1 Iu(T) 12>0[Eu,] U IH 2 2
and

[Bu'V]u = (u';)H + (u'v)H + (u(O),v(O))

< jljHl IVIH + IiIH IvIH + 1u(o)I Iv(o)1

< (E + k + k2) Iuluilu IIIvIIIu

1 2where kI1 and k 2 denote the continuous embedding constants of VC;H and

UG*C([O,T];H) , respectively.

Next note that because of condition (AI), A is U-pseudomonotone as an

operator from U into U' • Hence the operator A is pseudomonotone sinceC

it is the sun of a continuous monotone linear operator and a pseudomonotone

operator (cf. [11, p. 189]).

[A (v),vIu = EI;I1 + _ v(o)12 +_I iv(T) 2

+ [A(v),v]
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Hence (v),vU [A(v),v]+F-II H 1 Ivo 2 +1 (T) I2

IIVI~ t lllVI I ;111 I I IIIIllu

Since A is coercive on V by assumption (AII), the first term in the last

result +- as IlIvILIU - - and this proves the coercivity of A on U . E

Therefore, since Lemma 4.1 establishes sufficient conditions for the

surjectivity of A : U - U' (cf. [11]), the following existence theorem holds.

Theorem 4.1. For any fixed e > 0 , there exists at least one solution

u E6 U of problem (4.2). DS

5. Proof of Existence Theorem 3.1

We now return tothe existence theorem (Theorem 3.1) for the nonmonotone

parabolic equation (3.1) in which the operator A: V - V' satisfies conditions

(AI) and (All). Up to this point, we have shown that the elliptic regularization

(4.2) has a solution in U for any c > 0 . We now show that solutions to (3.1)

are obtained as z - 0+. This is accomplished by following the standard

procedure: (a) establishment of a priori bounds using the boundedness and

coercivity of A ; (b) passage to the limit as c - 0+ ; (c) use of pseudomonotonicity

arguments.

Lemma 5.1. Let u 6 U be a solution of (4.2). Then, for every E > 0

there exist positive constants CI, C2 , C3 , and C4 , independent of E , such that

i C1 ; i.e., IIIu I < C1 and 1 C
(5.1

_) . ,UC I _ < l1a < C I

i i) € 3uE < C2  31

I-at 1H 
J

iii) lu (0)1 < C3 and Iu (T)l < C4

Proof. The first inequality in (i) and inequalities (ii) and (iii) follow

from the boundedness and coercivity of A . Indeed, replacing v in (4.2) by

u , we have
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H 2 C 2 2 [

= [f,u I + (UoU (0))

< CIfI* II 1 b2 l 1 + -L 1 0 1
C2 1 2

22b

where b denotes the Young's constant. Setting b = 1 produces the inequality

(A(u ),uC ] IU 2< 111f III* + - - ,-* IIIu CIII < C1

IluCIII - 2 1ju III

and by setting b = v7 the bounds (ii) and (iii) in (5.1) follow from

LiujH 1 + 1 Iu (O)l 2 + -1 Ju,(T) 12H 4 C 2

< (IIIA(u d) l* + IIIflII) IIIulII + luol 2

To prove the remaining bound in (i), we identify a solution u of (4.2)

with a distribution u 6 D'(0,T):V) in the sense that uC satisfies the

distributional equation

- uE + u = f - A(u) (5.2)

Then, proceeding as in 110], it follows that in H

-u u(0) + u (o) = u )
0 (5.3)

u (T) 0

and, by integrating (5.2),

M 1 e(t-T)/C [f(T) - A(T,u(T))]dT

from which

<IeI"/l 1f -IA(u )1[i,
I l II LI(-T,0)

< 11f - A(uP)III*

This, since A is bounded, completes the proof. 0

Lemma 5.2. Let {u }C U be a sequence of solutions to problem (4.2)

obtained as E - 0+ . Then there exists a subsequence, also denoted {u ,

and functions u 6 W and X 6 V' such that, as c 0
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)u ~ -~ u weakly in W in fact,

u -s u weakly in V and

au 3u weakly in V'

ii)t - , 0 weakly inH

iii) A(u C) -~ X weakly in V'

iv) u (0) -s u(0) weakly in H

u F-(T) -~u(T) weakly in H

Proof. The convergence results (i), (iii) and (iv) follow from Lemma 5.1

the fact that the Banach spaces W , V and H are reflexive, and the boundedness

of A . To establish (ii), note that from Lemma 5.1 Y7fu < C 2 ,£> 0

Hence, IV w EH,

t(u Cw) <2. C 2 1w! - 0 as : -~ 0 +

Therefore, by virtue of Lemma 5.2 and 11'reen's formula (2.9), we see that

in the limit as c -~ 0 + equation (4.2) becomes

[u'vI + [X'vl = 1f'v] + (u -u(0),v(0)) V v C. U

Then, using the fact that U is dense in V and property (2.11), we conclude

that the limit u of u Esatisfies the following equation:

VI+ [X'v] = [f,v] V' v 6 V

uCO) = u 0in H 
(54

It remains to be shown that X = A(u) in V' . Toward this end, we observe

that from (4.2), Lemma 5.2 and (5.4)

lim fc{ £ fu C~ - u C + t(uC (T),uC (T)) + [A(u ),uC

= [f,uI + Cu ,u(0))

= lim {-[ u Cu] + (u C(T),u(T)) + (A(u C),u~J
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from which it follows that

lim [A(u ),u -u] - lir cju£I1
-+ 0 F- +0 H

+] -1u (O)-u(O)l 2+ ju (T)-u(T)l

<0

Hence, since A: V V V' is W-pseudomonotone,

lir inf [A(u ),u-v] "- [A(u),u-v] V v F V
C+0

and

lim inf [A(u ),u -vl < lim sup [A(u ),u ] - [xv]
6+0 C+0

< lim sup [A(u ),u] - [x,v]

= [x,u-vI

Consequently,

[A(u)-X,u-v] < 0 V v 6 V

and we conclude that

X = A(u) in V' (5.5)

The proof of Theorem 3.1 now follows immediately from (5.4) and (5.5).

6. Some Sufficient Conditions for Pseudomonotonicity

We will review briefly here some results of Oden [13] which provide useful

tests for pseudomonotonicity of a certain class of operators. We first state

a corollary of Aubin's compactness theorem [2].

Theorem 6.1. Let V1 be a Banach space in which V is continuously

embedded and consider the Banach space Y defined by

V= v , -Lv Ll (0, T; VI ) ,

v1 < Pl < 00 (6.1)

L (0, T;V

IIIVI1
t
y = 11iivi + 14L 1 P(0,T;V 1 ) 0 (6.1)Y

If X is a Banach space continuously embedded in V1 and in which V is

S
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compactly embedded:
C

Vc IXc:V 1  (6.2)

then the injection from V into the space LP(O,T;X) is compact:
c

VYC, Lp (0,T;X) (6.3)

0

Following Oden [13], let A(u) denote values of an operator A from the

Banach space V into its dual V' which has the property that there exists a

map (u,v) 1+ A(u,v) , t E (0,T) , from V x V into V' such that A(u,u) = A(u)

and the following conditions hold:

BI. IV v 6 V , u f+ A(u,v) is hemicontinuous from V into V' ; i.e.,

V u,v,w 6 V , the function

(s)= [A(u+sw,v),w] , s F_ R

is continuous in s

BII. V u,vEB (0) = (w F V: liwl1l < 1, 1 > 01

[A(u,u)-A(v,u),u-v] > -H(ii,Jl u-vl ) (6.4)
- LP(0,T;X)

where H: e x -R +  (R = [0,co)) is a function continuous in each of its

arguments with the property that

lim H(x, y) = 0 V x,y6R (6.5)
6+0

and LP(o,T;X) is as in Theorem 6.1.

Bill. If u n- u weakly in Y of (6.1), then
n

lim inf [A(v,u n) - A(v,u),u n -ul > 0 V v F. V 1n- o
ando (6.6)

and(
lim inf [A(v,un) - A(v,u),w] = 0 V v,w e V
n-+co

BIV. A: V - V' is bounded.

The importance of these conditions is made clear in the following theorem

proved in [13].

Theorem 6.2. Let A: V - V' satisfy conditions (BI), (BII), (Bill), and (BIV).

Then A: V - V' is Y-pseudomonotone.
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PART II. A MODEL PSEUDOMONOTONE DIFFUSION PROBLEM

7. Existence Analysis

In this part, we are concerned with the qualitative analysis, Galerkin and

Faedo-Galerkin approximations of the following generalized nonlinear diffusion

problem: Let Q be an arbitrary bounded domain in Rn with boundary

and 0 < T < . Given data f in R x (0,T) and initial data u ono

find u = u(x,t) , (x,t) E Q x (0,T) , such that

t - V • a(Vu) + b(u,Vu) = f , in Q = Q x (0,T) 1
u = 0 , on E = 3Qx (O,T) (7.1)

u(',O) = uo, on

a(Vu) = aVu + kiVulp- 2 Vu

a,k E L'(Q) , 2 < p < (7.2)

a(x) > a 0 > 0 and k(x) > k > 0 a.e. x J
and b(u,Vu) = b(x,u(x,t), Vu(x,t)) is subject at a.e. (x,t)6 Q to the

conditions:

CI. lb(Ct)l < cl ,q I11r , V (CC) R x Rn

q = 0 or q > , r= 0 or r >

(7.3)
1 < q + r < p -1i i

CII. b(C,C) is totally Fr~chet differentiable in R x Rn and its partial

derivatives a b: R x R n - L(RR) and Cb: R x R n - L(n,R) are such that, for

(q,r) satisfying (7.3) and V (C, ) 6 R x n

Ja < cq 1,1q- 1 l1 r , if q # 0

a b,1)< cr J q IjI r-l , if r 0 0

The case r = 0 will be understood as b = b(u) (not function of Vu), and the

case q = 0 as b = b(Vu) (not function of u).

In this case, we take as spaces V and H the usual Sobolev spaces
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V w P(Q) 2 < p <0 - (7.4)
H = 2(Q)

Then, with the conventions of Section 2 in force, the model problem (7.1) assumes

the following form:

Find u 6 W such that

u + A(u) = f , f given in V'

u(O) = u° , u given in L2(M) (

where A: V - V' is defined by
[A(u),v] = [Al(U),V] + [A2(u),v]

(A l(u)'V = f a(x,Vu(x,t)).Vv(x,t) dxdt (7.6)

[A2 (u)'v] = f Q b(x,u(x,t),Vu(x,t))v(x,t) dxdt
Q

in which a(Vu) is as defined in (7.2) and b(u,Vv) is subject to conditions

(CI) and (CII).

We now proceed to establish the existence of solutions to problem (7.5).

The following two theorems determine fundamental properties of the operator A

Theorem 7.1. Let A: V - V' be the operator defined in (7.6). Then

i) A is bounded, ii) A is coercive, and iii) A is locally Lipschitz

continuous in the sense that V u,v E B (0) = {v E V: llvIll < P > 0}

w F V , there is a positive constant C(p) such that

I [A(u)-A(v),w]I < C(P) llu-vll lIIwlIH (7.7)

Proof. We shall use the notation aM = ia

~L°L(Q)kCO 1fi kH L ,(Q)  , and 11 I SQ .11 L s (Q)

0I i) Applying Hblder's inequality, we obtain, V v,w 6 V

j[Al(v),W'l < [alVvl + kOJVvP- l} Vw'dQ

< a mes(QfP2)/Pv 1Vvll kll vvIl ;-1 I1I Vwl
+pQ pQ
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< c Qmes (Qfp-l-qr)/plI vii pq 11 vii rQ 11 W11
p Q p Q p,Q

Hence,p-

iiiA(v) III* <j a., mes(Q) 'P ilvili + kiiijviiip-

+ mes(Q) p' _1 ~j~r ~ V (7.8)

ii) From Friedrichs' inequality, it follows that, 3J v F_ L s (0,T;W l's(0))
0

l<s <

ilvl =lvi + 11 VVII

LS (QT;W 0 (Q))sQsQ

< (c (Sn) mes(Q2) sn+ 1) 11 VVii s (7.9)

Thus,

[A(v),v] fQ (ao Vv, 2 + k IVvip)dQ - fQ cll+,vrd

> a~i IVvjI 2, + k (l + cp(p,n) mes(,)p n) iiiviiip

-c mes(Q) p ilvili l ,~ VJ v E.V (7.10)

But using Young's inequality (2.12) in the last term in (7.10) and choosing b

small enough leads to

[A(v),vI > a 11Vvii 2 + -Y11 1 1  -Y2 T , V v F-V (7.11)

where y1and y2are > 0 .Therefore,

[A(v),v] jvjj- - -,. + - as IIivili

iii) By the inequality in R [151

x Ir- 2 x _ ly I r-2y < c~Iixl + iyi}r-2 x~yi
c/F? if 2<r 3, c -l f 3 r~w(7.12)

and Holder's inequality, we obtain, V u,v 6 B p(O)c V , w CEV

I[A 1 (u)-A 1 (v ),w~I

<f faoV(u-v)i + k,,c(p)(Vui + IVvi)p- 2,V(u-v), iVwidQ

<ta0 mes (Q) p + k -c(p )( 2 jp 21iiiu-viii Iliwili (.3
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We now use hypothesis (CII). First we observe that

[A2 (u)-A 2 (v),w] = db(, w dOdQ2 Qf0 de dd

j {a Eb(,V )n + avCb(,VE)'Vnw dOdQ (7.14)

where = v + On , n = u-v and 0 6 [0,1] . Hence, because of (CII) and H6ider's

inequality,

I[A2(u) - A2 (v)•w]I

JJVqql rl., + c rlql,,Ir- Vn} IwidQdO
p-l-q-r

< (cq + C )r mes (Q) P IC11, ljq+r-ldellinill 11wil

Then, since u,v E B (0)C V

I[A2 (u)-A 2 (v),w]I < 3IYq+r-l Ilu-vII W11 Lp (Q) .
p-l-q-r (7.15)

Y3 = (cq + c r ) mes(Q) P

Therefore, from estimates (7.13) and (7.15), (7.7) follows and this completes

the proof of the theorem. 0

The next property of A , established below, is crucial, not only in proving

the existence of solutions to (7.5) but in subsequent studies of approximations.

Theorem 7.2. The operator A: V - V' defined in (7.6) satisfies the

following nonlinear Garding-type inequality:

(A(u)-A(v),u-v] > aoaoII u-vII L2 (0TH1  + alIu-vIl p

(  0, , 0I (0))
- 2(p)1 u-VII (7.16)LP(Q)

V u,vFB (0) = {w6V: liwill < P P> >0}

Here H1 (Q) = w1'2( ) and a 1 , 2( )are constants satisfying
0 0 02

a0 > 0 , a > 0 , 2 (i) > 0

Proof. We observe that, V u,v 6 V
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[A(u) - A(v), u - v] > [AI(u) - A1 (v), u - v)

- I[A2 (u) - A2 (v), u - vII (7.17)

From the inequality in 1~n  [15]

(Ixlr-2x - lylr-2y,xy) > 21-rlxylr , 2< r < (7.18)

and (13.9), it follows that

[A1 (u)-A I(v),u-v]

-> f aoV(u-v)12 + k 2-plv(u-v) dQ

> a i+c2(2,n) mes()2/n 1 - I  2 2 10- o Lu- 2 (O,T;WI,0 (0))

21-Pl+c P (p,n) me -  
(7.19)

oes(Q)P/n3 Iflu-vl 1p

On the other hand, according to (7.15) and Young's inequality (2.12), for

u,vE B (0)CV I

I[A2 (u)-A 2 (v),u-vIl < llu-vhflp

yp' (q+r-l)p'

+ 311 II P (7.20)
p'b p  LP(Q)

Therefore, introducing (7.19) and (7.20) into (7.18) and choosing b small

enough, the desired result (7.16) is obtained. 0

Theorem 7.3. For any data f 6 V' and u 0 L 2(Q) , there exists at least

one solution u E W to problem (7.5).

Proof. Theorem 7.1 confirms that conditions (BI), (Bill) with y = W , and

(BIV) of Theorem 6.2 are satisfied ((Bill) is trivially satisfied). Condition (BII)

with X = LP(Q) (C;V' and in which V is compact (cf., e.g., [1])) also holds

since, by virture of (7.16),

[A(u)-A(v),u-v] > -H(I(,I u-vil ), Lp (Q)

V u,v,. B P(0)0C V , where

H(p,y) = a 2(p)y p' , y , p' = p/p(p-l)

Therefore, A is coercive and W-pseudomonotone from V V' and, by virtue of

%A.
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Theorem 3.1, the assertion of the theorem follows. 0

Remark 7.1. From the proofs of Theorems 7.1 and 7.2, it is apparent

that the operator A of (7.6) regarded as a map from V into V' , is bounded,

coercive and locally Lipschitz continuous, and satisfies the Garding-type inequality

<A(u)-A(v),u-v> > 0aOl u-vI 20 1 + alI u-vil P

- d(iu-l , 'J u,v6B (0) CV

pL
p () P (7.21)

According to Oden [13], A: V -* V' is necessarily (V-)pseudomonotone. Hence,

from the theory of pseudomonotone elliptic equations (cf. [111), A is surjective

from V + V1 ; i.e., there exists at least one solution in V to the stationary

problem

A(u) f , f given in V' (7.22)

The evolution problem (7.5) possesses at least one equilibrium state for each

f E.V' . 03

8. Sufficient Conditions for Uniqueness

We now proceed to determine sufficient conditions for uniqueness, of

solutions to the pseudomonotone diffusion problem (715).

In the case of monotone parabolic problems, "monotonicity" ==t-"uniqueness"

and this follows from the differential inequality of Caratheodory type:

dju(t)-v(t)12/dt < 0 , a.e. t E[O,T] Iu(O)-v(0)12 = 0 , whose unique solution

is Iu(t)-v(t)1 2 = 0 ; u and v are supposed solutions of the problem. This
0

suggests that in the non-monotone case with Garding-type inequality, the possibility

of establishing a differential inequality of the form

~d lu(t)-v(t)ls < lu(t)-v(t)l s

aFeR, 2<s<oo, for a.e. tfj[O,T] (8.1)

lu(0)-v(0)j = 0 J
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would be sufficient for concluding uniqueness. Indeed, from Theorem 3 of Olech

and Opial [14], u(t)-v(t)1] = 0 is the unique solution to (8.1). We show that

in certain particular cases and, in general, for sufficiently smooth solutions

of problem (7.5), this is the case.

Theorem 8.1. Let u 6 W be a solution of problem (7.5). Then u is

unique in the following three cases:

i) r = 0 and q = I

ii) r - 0 and n < p (8.2)

iii) a > 0 and u 6_ L(0,T;W 0 (M)
0 0

Proof. Assume that u = u(t;f,u ) and v = v(t;f,u ) are two solutions

of problem (7.5) and define n = u-v . As is apparent from (7.19),

<Al(u(t))-Al(v(t)),n(t> > ;aoI n(t) II 2 + ill n(t)l p

H ()0

for a.e. t 6 [0,T] (8.3)

where a > 0 and a1 > 0 . Thus, from the difference of the equations satisfied

by u and v , we obtain the integral inequality

1 IT1 2 + I22 r]o[ +°'a° IIn I ° a dt

< If<2 (u (t))-A 2(v (t))',n (t)> dtj

0
a0> 0 , IV T 6 [0,T] (8.4)

We now estimate the right-hand side term via the formula (7.14) with

i) r = 0 and q = 1 . In this case we have the estimate

i~ 2(u(t))-A2vt)Bt dt< C 1~~)2 dt

T E [0,T] (8.5)

which combined with (8.4) gives the integral inequality

*In this case, the question of existence appears to be open.

...
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[()2 < 2cq O[[.n(t).2dt ,V T E [0,T] (8.6)

But this is equivalent to (8.1) with a = 2c and s 2 Consequently, n = 0q

Q i) r = 0 and n < p . From the Sobolev embedding theorem (cf. [1, Chap. 5]),
wIP(I)o is continuously embedded in CB(Q) = 1v E C(O): v bounded in W} whenever

n < p . Then

LP(o,T;w ,P (0))(:;LP(O,T;L'(Q)) , n < p (8.7)

Let p be chosen such that u,v E B (0) C V . Then, from (7.14) with w =

and using (8.7), we obtain, V T E [0,T]

TT

A2 (u (t))-2 (v (t)) , t>d

< "lOfOf q[E(x't)jIq-llrl(x't)j 2 dxdtdO

_ I T (t) 12dtdOJ~f O L 0 ( Q) 2

< CqPq - I  jn(t) isdt , 2 < s = 27 < p (8.8)q-' - p+l-q

Introducing this estimate into (8.4) produces the integral inequality

In(T)I < (2cq q- 1) Jl (t)ISdt , V T E [0,T] (8.9)
0

which is equivalent to the differential inequality (8.1) with a 2c=Iq1 /

and 2 < s = sp/(p+l-q) < p . Therefore, n = 0 .

iii) a > 0 and u E L (0,T;W'(Q)) . Let p > 0 be such that

u,v E B (0)(L'(0,T;W'* (0)) . Then, from (7.14) with w f n , we obtain

V T E [0,T].

IJ0A2 (u(t))-A2 (v(t)) Tl(t)> dt

0 0<~~~~ l ( r--lV(xtl r(xt)

+ c r &(xt) Hq(V6(x2t)Ir-l nl(xt)1 In(x ,t) Idxdtd 8

< q"r- I( q ( ,) m s Q I/ c o~'1 n tI H Wlo ( t) l (8.10)

0 0
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Hence, since by hypothesis a > 0 , we can apply Young's inequality with

constant, e.g., b = vao, to obtain the upper bound for (8.10)
0 0

ansT 2 eT~i.

21o n(t) dt + 0r(t) 12dt20 Hl
2

where a = a(l/b 2 ) > 0 . Combining these results with (8.4) gives

n(T) 12 < a JTn(t) I2dt (8.11)
0

and, consequently, (8.1) holds with s = 2 and rj = 0 . 0

9. Galerkin Approximations

In this section, we study Galerkin approximations of the model problem

(7.5) which are based on an elliptic regularization of (7.5) obtained using

the ideas described in Section 4. We will establish some results on the strong

convergence of such approximations.

For the model problem (7.5), we introduce the corresponding elliptic

regularization (4.2):

E:(u ,v )- (uS,v)H + (u (T),v(T)) + [A(u ),v]

- [f,v] + (Uo ,v(0)) , IV v E U (9.1)

where A is the operator defined in (7.6). According to Theorems 7.1 and 4.1,

a solution u 6 U exists to such a regularization for every e > 0 . Moreover,

according to Section 5 , in the sense of V'C. L(D((0,T)),W-I'P'(Q)) , u satisfies

the distributional equation

- + u + A(u) f in V' ]
-u(0) + u (0) =u in L2 (0) (9.2)

u (T) 0 in L (0)

which is equivalent to (5.1), and for any sequence {u } E>C U of solutions, there

exists a subsequence, also denoted {uE } > such that, as c - 0 , E converges

weakly to a solution u of (7.5) in the sense of Lemma 5.2 with X A(u) .

' "To construct Galerkin approximations of (9.1), we introduce a family of
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subspaces {Uh}O<h<l of U such that i) ULh is finite-dimensional with

basis functions {i' 2' .... m} , with dimension mh o as h - 0+ and

ii) U Uh  is dense in U A Galerkin approximation of (9.1) involves seekingh

a function U h  such that

E:(h' - NUh,$k)H + (U h(T),4,k(T)) + [A(U h)4 I
C k E:k H E kE; k

= f'k ] + (uo,4k(0)) , k = 1,2,... ,mh (9.3)

The solvability in Uh of (9.3) is assured by Lemma 4.1. Similarly as in

the proof of Lemma 5.1, if {Uh} is a sequence of Galerkin approximate
E; 0<h<l

solutions, it can be shown that there exist constants K., K2, K3 and K4, independent

of h , such that IIIU1hIII <K, ~I < K IlUh(O)l < K and IUh(T)I <1(4

Then, via weak compactness and pseudomonotonicity arguments (as those used in

Section 5), it follows that there exists a function u and a subsequence, also
h 0+

denoted {Ujf }<h 1  , such that, as h ,0

U u weakly in V

h uweakly in L 2(Q)

A(U) -  A(u) weakly in V' (9.4)

U(0) - -u (0) weakly in L 2(Q)

u(T) u (T) weakly in L 2 (Q)
E C

We will now demonstrate that for our model problem (7.5) much stronger

results can be obtained.

Theorem 9.1. Let {u E>0C U be a weakly convergent subsequence of

solutions to problem (9.1) and let u E W be the corresponding weak limit, solution

of problem (7.5). Then, as c - 0

u u strongly in V

v u 0 strongly in L 2(Q)£2(9.5)

u C (0) u strongly in L2 ()

u (T) + u(T) strongly in L2 (0)
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Proof. We regard equation (7.5) as holdfing on 1i aiid -iah strat (9. 1)

from it. The following orthogonality condition is obtained:

-(. Hv) + (U -U (0),v(0))

+ [u-u ,v] + [A(u)-A(u ),v] = 0 V v E U (9.6)

According to the a priori bound (5.1)1 2 there is a p > 0 independent of C
0

such that u , u 6 B (0)C V . Hence, using formula (2.9) and the Garding-type

inequality of (7.16), we see that

luo-U (0) 2 + [u-u ,u-u ] + [A(u)-A(u5 ),u-u ]

>1 IUoUEO)12 +1 lu(T)-uE(T)l 2

+ Ull lu-u CliP - c2(w I1 u-uEli p,Lp (Q) (9.7)

Next, combining these two results, we conclude that

1 ju -U (o) 2 + 1 ju(T)-u(T) 2 + oiIiu-u fl i p

< u-u K + (u o-U (0),Uo -v(O))
2 Lp(Q)

+ [u-u 5 ,u-v] + [A(u)-A(u ),u-v] + (E:uv)H -S uc2

v U (9.8)

Due to the compact embedding of W in LP(Q) (cf. Theorem 6.1) and the weak

convergence result of Section 5, (9.5) follows. 0

Theorem 9.2. Let {U 6 U } < be a subsequence of Galerkin approximate
C h O<h<l

solutions defined by (9.3), converging weakly, in the sense of (9.4), to a solution

u 6 U of problem (9.1). Then, for fixed c > 0 , as h 0+

U- u strongly in V

h u strongly in L2(Q)
- 2 (9.9)

Uh(o) - u (0) strongly in L2 ()
C E

U(T) u (T) strongly in L2 ()
C

Proof. We follow similar arguments to those given previously. Restricting

(9.1) to U h and subtracting (9.3) from it, we obtain the orthogonality condition

M-h
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-,:W)H - (U -UW) + (u ()-UT),W())

+ [A(u )-A(Uh),W] = 0 , V W EU h  (9.10)

Now, from (5.1)1 and since IIJuIII < K1 V h E (0,1] there is a i > 0

independent of h such that uh,u E B (0)C V . Then, by virture of (2.9) and

(7.16), it follows that

h1 (uU ,uU) + ujT)-Uh(T)12

+ [A(u )-A(U ),u -U h

h2 2 2 1 h (  2

> ctjj -U + 1 2u 10- +

C> ClI-h H 2 C C Iu (O)-uh)oU E+ -T1

+ L11 u -U hl 2 + a u-Uh ~
L2 (0,T;H1 (Q)) 111Iu,

Therefore, combining (9.10) and (9.11)

, i u (0(0)0)2 (T)_uh(T)2

+ a Iu -U hI 2  1 2 IIIUht( bIIp
o C C L£ 2 (0,T;H1 (Q))+ £11 Fp

0

_t ( 12 u-uhfl I + E(u h -uW)
2 Lp (Q)

(u- Uh u-W) + (u (T)-Uh(T),u (T)-W(T))

+ [A(u )-A(U h ) ,u - W] V W FU (9.12)

But, according to Theorem 6.1, U is compactly embedded in LP(Q) and Uh

converges weakly to u in the sense of (9.4). Hence, the right side of (9.12) * 0

as h + 0+  and this proves the theorem.

We next give an error estimate for the Galerkin approximations of the

regularized elliptic problem (9.1).

Theorem 9.3. For fixed c > 0 , let u E U be a solution of problem (9.1)£

which is the strong limit (in the sense of (9.9)) of a subsequence of Galerkin
approximate solutions {Uh E U defined by (9.3). Then the following

appoxiat h 0<h<1

p-
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approximation error estimate holds V W EU h

- Cl ICu (0)-U (0)12 + 1 lu (T)-0h(1) 2

C L

+ (1a all uCul 2h +1 1 ll-U lI" + Iu -6h,2
SL2 (0,T;H1 (Q))+ a I C C

0

< a hi + c21u (o)-W(o)l 2 + c3 u 2-wIH
- 211 U Lp(Q)

+ Cllu -will p + c4  -l (9.13)

where Cl, i = 1,..., 4,a, = aI(a ), (2 = X2(T P ) ( = e(s) and C = C(C(T,w))

are strictly positive constants. Here C(T,p) is the local Lipschitz continuity

constant of (7.7).

Proof. The estimate (9.13) follows directly from (9.12) upon applying

formula (2.9), the local Lipschitz continuity of A , (7.7), and inequality (2.12).

10. Faedo-Galerkin Approximations

We are concerned here with Faedo-Galerkin approximations of the model

pseudomonotone diffusion problem (7.5). We note that this type of approximation

process is not necessarily well-defined for non-monotone parabolic problems: the

corresponding weak convergence is a conditional property. We shall show that

Faedo-Galerkin approximate solutions to problem (7.5) exisi: and are unique, and

determine sufficient conditions for weak and strong convergence.

Let {Vh } <h< be a family of finite-dimensional subspaces approximating

the space V(= wl'P(Q)) in the following sense: (i) {Wi 2 ,... ,m h} denotes
0~ + M

a basis for V , with dimension mh - as h - 0 , (ii) U V is dense in
hmh .00h h

V . A Faedo-Galerkin approximation in Vh  of problem (7.5) is defined as an

absolutely continuous function Uh  from [0,T] + Vh , i.e., Uh E CA([0,T];Vh)

solution of the system

< h(t),k>+<M(h ), k>=uh(0) = uh } )k 1,2,.... (h 0.

0

*0 .. . .
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for a.e. t C [0,T] and where Uh  ) 0 . We

h 

*h

observe that if U is solution of (10.1), then its time derivative U belongs

to ,p ' (0,T;V h) but not necessarily to V' = Lp' (0,T;W- I ' p (12)) (CU Lp ' ( 0 ,T;Vh))
h

We next establish the solvability of problem (10.1).

Theorem 10.1. For each h E (0,I] , the Faedo-Galerkin approximation problem

(10.1) possesses a unique solution U h C A([0,T];V h) continuous with respect

h
to U

0

Proof. The local existence of solutions to (10.1) in C A(0,t h];Vh

th > 0 , is implied by the pseudomonotonicity property of A (cf. Remark 7.1).

Indeed, f E V and A is necessarily bounded and demicontinuous from V + V'

and these are sufficient conditions for the vector field F(t,U) = (<f(t),p,> -

<A(U(t)), k >) from D = [0,T] x Rm "1 - R"m to satisfy the Carathgodory

conditions in D . Here U 61Rmh denotes the coordinate vector of U E Vh

with respect to the reciprocal basis of Vh

The uniqueness and continuous dependence on the initial data of local solutions

to problem (10.1) follows from the condition [7]: for each compact set wCD

there is a function gw ' L (0,T) such that

IF(t,U)-F(t,W)' < gw(t)lU-Wl , (tU),(tW) F. w (10.2)

which is satisfied because A is locally Lipschitz continuous from V - V'

(cf. Remark 7.1).

It remains to be proved that the interval of existence [0,th] [0,T]

This is a consequence of the coercivity of A from V 4 V' , as follows from

part (1) of the proof of Theorem 10.2 given below.

We now proceed to analyze the convergence of the Faedo-Galerkin approximation

process.

Theorem 10.2. From the sequence of Faedo-Galerkin approximate solutions

defined uniquely by (10.1), there is a subsequence, also denoted {uh }0<h<l and
.an

I-
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there exist functions u E W and X E V' such that, as h - 0

uh -- U weakly in V

U1 -U weakly* in L'(O,T;L 2())
b (10.3)

A(W) -X weakly in V'

U h(T) -- u(T) weakly in L2 (Q)

and

[ I V] + [X'v] = f'v] , IV v E V 11 (10.4)

u(0) = u

Moreover, the limit function u is a solution of problem (7.5) (i.e., X = A(u))

provided one of the following conditions is satisfied:
) h V, , 0 < h < 1 , and h 0<h<l is bounded (10.5)

ii) A: V - V' of (7.6) is V-pseudomonotone (10.6)

Proof. We follow the usual pseudomonotone method:

(1) a priori bounds, (2) passage to the limit and (3) the pseudomonotonicity

argument.

1) From the proof of the coercivity property of A , (7.11), it is

apparent that A is also coercive from V - V':

aA(v),v _> aolVVI2 + y 111 vi1 p - y2 , V v E V (10.7)

Hence, by integrating equation (10.1) with respect to time from 0 to T E [0,T]

and using formula (2.9) and (10.7), we obtain

1 1uh(T) 2  - 1 Uh!2 + Y 01 uh(t) I, p  dt - Y2 T

l2 2 o dt

< <f(t),Uh(t)> dt

_< , I1f(t)ll, dt+ b 11 uh( t ) p dt
* p'b p  0

Then, by choosing b > 0 such that - bp /p > 0 , it follows that the sequence

Uh I is bounded In V and in Lm (O,T;L (Q))

2) With the previous result and the boundedness of A from V - V' given

L.
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by (7.8), the validity of (10.3) follows via weak compactness arguments and,

then, upon the passage to the limit in equation (10.1), (10.4) is easily concluded.

All of this proceeds as in the case of monotone parabolic problems; cf. 11, Chap. 2].

3) It remains to be proved that, if either (10.5) or (10.6) holds, then

[X,v] = [A(u),v] , V v EV (10.8)

From (10.1), (10.3) and (10.4), we see that

lim {[uh,Uh] + [A(Uh),Uh]} = lim [f,U h I = [f,u]
h40 h40

= [u,ui + [X,u]

= lim [ 1u h + [A(Uh),u]}
h+0

Therefore,

lim [A(U )1U = - lim [U-u,] = - 2 lim Uh (T)-u(T)I2

h+O h+O 2 h+O

< 0 (10.9)

Now, by identical arguments to those given in the proof of (5.5), (10.8) follows

from (10.9) and (10.3)1 when assuming either (10.5), and using the W-pseudomonotonicity

property of A: V - V' (cf. Theorem 7.3), or (10.6). This completes the proof

of the theorem.

We next show that condition (10.5) is also sufficient for the strong convergence

of the approximation process.

Theorem 10.3. Suppose the condition (10.5) holds with bound ii' > 0 . Then

the subsequence {U h} o<h< of Faedo-Galerkin approximate solutions converging

weakly to a solution u E W of problem (7.5), in the sense of Theorem 10.2, is

such that, as h - 0+

, h u strongly in L 2(,T;L (Q))

U h u strongly in V (10.10)

In fact, the following approximation error estimates hold V Z E LP(o,T;Vh):
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h < uh ~~ hl p'/2Ju(T)-uh(-)I < lUo-Uh0 + KI1(T,P)}Ilu-uh11 p'/2)

+ Lp(T)1/2
+ K2(T,0,1')IIu-ZlIII IV 1 6 [0,T] (10.11)

I lu_UhllH < K~ ~h2/P + k4T [ u~hl 1/(p-1)

II - K 3u - 0 Lp (Q)

+ K 5(T,P,P')Ilu-ZII
lli (10.12)

where p > 0 is a bound for u and {Uh}0<h<l in V

0
Proof. By using formual (2.9) and the Garding-type inequality (7.16) in

LP(0,T;W1 'P(Q)) , t F [0,T] , it follows that

'rh h

f T(t)-U Ct) + A(u(t)) -A(Uh(t)) ,u(t)_Uh (t)> dt

>1I u(t)_uh([)12 1 100 h 2 c+i I u(t) _Uh (t) Pdt->2 2 UoUo 0 + 0o

- cc2 ( i) [TI u(t)-Uh (t) LPp  dtjp' / p  (10.13)S0 Lp ()

and, from equations (7.5) and (10.1), the following orthogonality condition holds:

Th
f<u(t)-uh(t) + A(u(t)) - A(Uh(t),Z(t)>dt = 0

V Z 6 LP(,T;V h )  (10.14)

Hence, introducing (10.14) into (10.13) and using the local Lipschitz continuity

property (7.7), we obtain

2 10
< Iu(1 -Uh() 2 + al u(t)-uh(t) pdt

2)2 o 0 2 LP (Q)

+ cj(v)II hIIIu-0h[ + Il IlI*}[IIlu-ZIII

V T E [0,T] , V Z 6 LP(0,T;V h ) (10.15)

Therefore, the approximation error estimates (10.11) and (10.12) are implied by

(10.15). Note that the strong convergence of Uh - u in LP(Q) is a consequence

of (10.3)1 , assumption (10.5) and the compact embedding of W into LP(Q)
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(cf. Theorem 6.1). 0

The Potential Case. We conclude this section by showing that if the
C

bounded, coercive, locally Lipschitz continuous, Carding-type operator A of

(7.6), is potential in the sense

CIII. A is the gradient of some Gateaux differentiable functional J: V - R

for which there is a constant y > 0 such that

J(v) > flj v I p , V v E V (10.16)

then, for data

(f,u) E L (Q) xV (10.17)• 0

Uh - u strongly in V (10.18)0 0

the Faedo-Galerkin sequence of approximations defined uniquely by (10.1) is

such that

{Uh}o<h<l is bounded in L (0,T;V) (- (10.19)

W0<h<l is bounded in L (Q)

Since L2 (Q)( V' , property (10.19)2 is stronger than (10.5) and, consequently,

the results of Theorems 10.2 and 10.3 are true in this potential case.

We now prove this result and establish the corresponding regularity of

limit functions.

Theorem 10.4. Let the operator A of (7.6) satisfy condition (CIII) and

consider problems (7.5) and (10.1) with data (10.17), (10.18). Then the Faedo-

Galerkin sequence of approximate solutions {uh}O<h<l is bounded in the sense

of (10.19). Furthermore, there is a subsequence of approximations, also denoted
{uh} , converging strongly to a solution u F W of problem (7.5) in the

sense of (10.10), such that, as h 0+

Uh -k u weakly* in L (0,T;V) . (10.20)

-h u weakly in L2(Q)
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Proof. Let { <h<l be the Faedo-Galerkin sequence defined uniquely by

(10.1), (10.17), (10.18), which approximates problem (7.5) with data (10.17), and

suppose that condition (CIII) holds. Then, by replacing k by ' in equation

(10.1), integrating with respect to time from 0 to T E [0,T] and, then,

observing that dJ(Uh(t))/dt =<A(Uh(t)),Uh (t)> and (f(t),Uh(t)) < 1/21f(t)f2

+ 1/2 Uh(t)12 for a.e. t F.(O,T), we obtain

-+yf+ Jf (t)~ 2dt
ST lb(t)Imdt + Uh (T) J p < j (Uh) + 02 0 0 2 f

T E [O,T] (10.21)

But, from the boundedness of A as a map from V + Vt  (cf. Remark 7.1),

J(U~')= 3+fl <A(sUh),IPU s + fJ11 A(sU )I dsI u1 t Uh const.0_)~ Jo 0 0od 0 0

Therefore, (10.19) is true.

Next observe that from Theorem 10.3, there is a subsequence of approximations

{uh} 0<h<l that converges strongly to a solution u of problem (7.5) in

v n L (0,T;L (Q)) . Hence, Uh -u weakly in V (q LI(0,T;V) densely) and

this together with (10.19) 1 is equivalent to (10.20) . Also {} <h<l is

bounded in U (C, V densely) and this with Uh---u weakly in V is necessary

and sufficient for Uh-- u weakly in U (cf. [17, Sec. V.1]). Then (10.20)2

necessarily holds and this completes the proof of the theorem.0

I

.1;
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CONCLUSIONS

For the nonlinear evolution problems considered here, we have shown that

coerciveness and W-pseudomonotonicity of A: V - V' guarantees the existence

of solutions of (3.1) whereas condition (8.1) implies uniqueness of solutions.

The elliptic regularization ideas discussed in Section.4 provide a general frame-

work for Galerkin approximations of W-pseudomonotone problems. We have established

criteria for the existence and weak convergence of such approximations in Sections
0

4, 5 and 9 and strong convergence whenever a Garding-type inequality of the type

in (7.16) holds. More generally, our approximation results in Section 9 apply
0

to operators satisfying inequalities of Garding-type. In particular, the

existence and weak convergence of such approximations were proved in Section 4,

5 a d 9 and, from the analysis of Section 9, it follows that their convergence
0

is strong provided A satisfies a nonlinear Garding-type inequality of the form

[A(v)-A(w),v-w] > iI v-wl v - H(p, 11 v-wl )
LP (0,T;X)

V v,wE B (0) C V

where a 1 > 0 , and X is a Banach space continuously embedded in H and in

which V is compactly embedded. Also, if in addition, A: V - V' is locally

Lipschitz continuous, we have shown that error estimates for Galerkin approximations

can be derived.

The Faedo-Galerkin method was considered as an alternative method for

constructing approximate solutions. In these cases, coercivity, boundedness and

demicontinuity of A from V - V' are sufficient conditions for existence, and

local Lipschitz continuity from V - V' is a sufficient condition for uniqueness.

As we have seen, the convergence of this method is a conditional property in the

case that A be non-monotone. In general, we may conclude the following convergence

results: Let A satisfy the existence conditions for the abstract problem and

9,.

p _m _.



C.2

its Faedo-Galerkin approximation: the conditions discussed in Sections 3 and 10. Then

the Faedo-Calerkln method is weakly convergent If (I) the se'quence of time derivatives

of the approximate solutions is bounded in V' , or if (ii) A: V - V' is

( -) pseudomonotone. The convergence of the method is strong if (iii) condition

(i) holds and A satisfies a nonlinear Garding inequality of the type given above.

Furthermore, in the case in which condition (iii) is satisfied, error estimates

are derivable which are compatible with the interpolation theory of finite-elements

in Sobolev spaces [12], [3].

A fundamental convergence condition for the Faedo-Galerkin method when

applied to W-pseudomonotone parabolic problems is that the sequence time derivatives

of the approximate solutions be bounded in V' . We have shown that this condition

is satisfied whenever A is, in addition, continuous and potential from V - V'

its potential is coercive, and the data (f,u0) E H x V . In this potential case,

the convergence condition holds in HC ,V' Furthermore, the approximate solutions

form a sequence bounded in L° (0,T;V)(V . Then the regularity in time result

"(u,au/at) E L (O,T;V) x H" holds for the exact solutions of the problem.

Acknowledgement. The work reported here was completed during the course of a

project supported by the U.S. Army Research Office - Durham under grant DAAG 29-

77-G-0087.
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APPENDIX D

A Pseudo-Parabolic Variational Inequality

and Stefan Problem

I



1. Introduction.

Let A and B be maximal monotone operators and let C be a non-empty

closed convex set in the real Hilbert space H. We shall give existence and

uniqueness results for evolution inequalities (formally) of the form

d
(1.l.a) u(t) c C: (d(Au(t)) +Bu(t)-f(t), v-u(t))H > 0 , v C C

0<_ t<T,
0 < t<

(1.1.b) (Au(O)-v 0 , v-u(O)) H  0 , V C C

when f e L2 (0,T;H) and v 0 c A(u0 ) are given. In Section 2 we introduce a

new notion of weak solution of (1.1) and verify uniqueness when A is linear

self-adjoint and B is strictly-monotone. Existence of a weak solution is

proved when A is sLrongly-monotone, B is a subgradient, and both operators

are locally bounded.

Variational inequalities of the form (1.1) are of interest on their own as

extensions of corresponding evolution equations of Sobolev type (where C= H).

Early work on such inequalities is described in [2]; we mention [6] specifically

as a source of examples of initial-boundary value problems for the seudo-para-

bolic partial differential equation

(1.2) (u-au) = kAu

with a > 0, k > 0. Such equations arise as models for diffusion, and they pro-

vide an interesting alternative to the classical diffusion equation wherein a= 0.

In Section 3 we recall the two-temperature heat conduction model from [3] and de-

velop a corresponding one-phase Stefan problem for (1.2). Then we show that such

a problem leads to the variational inequality (1.1). This development is parallel

,... . to that of the classical case a=0 which is described, e.g., in [7]. Existence

of a classical solution of a Stefan problem for (I.") in one dimension was given

in 19] by entirely different methods.
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2. The Variational Inequality.

We denote by L 2(0,T;H) the Hilbert space of (Bochner) square-integrable

functions on the interval (O,T) with values in the Hilbert space H. Let

1 1(0,T;H) denote the absolutely continuous l-valued functions v whose deriv-

atives dv belong to L 2(0,T;H). Denote the dual of H by H* and recall the

natural identification L 2(O,T;H) = L 2(0,T;H)* ; thus we obtain the (dual) iden-

tification L 2(O,T;H)c-- HI(0,T;H)*  by restriction. The derivative
d H1 *' L
dt : H(,T;H) + L2(0,T;H) is a bounded linear operator which determines the dual

d* 2 1
operator L=-(t) L (O,T;H) + H (O,T;H) by the formula

dv ? 1(0

(Lf,v --(f,-)L2 f E 12 (0,T;H) , v c H (OT;H)

The restriction of Lf to H-valued test functions is the (distribution) derivative

df Moreover, for f c H (0,T;H) we havedt"

(L f, v) = (! ,- v) + (f(0),v(0))|- (f(T), v(T)) v H (0,T;H)
dt' 2' H(OT)

Thus, we can regard "Lf +f(T)" as formally equivalent to the Cauchy operator
,d~f + f (0)"
dt

We shall use basic material on maximal monotone operators [1]. Specifically,

recall Ac HxH is monotone if [x* , yI c A for J=l and 2 imply

(X1-X2 , yl-Y2)H > 0, strictly monotone if in addition equality holds only if

xI = x2 , and strongly monotone if there is a c > 0 for which (xl-X2 , yl-Y2) H

cjIxl-x2 1H2 for all such pairs ixj , yj]. If (p: H + R U ( +,) is proper, convex

and lower semicontinuous, its subgradient defined by

)(Px) -(u 6 H: (u,y-x)H< .P(y)-tp(x) for all y c H)
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for x e H is maximal monotone. More specifically, if t. is ,a non-empty, convex

and closed set in 11, its indicator function

I (x) -

is proper, convex and lower semicontinuous, and we have u e dIc (x) if and only

if

x c C: (u,y-x) < 0 for all y c C

We shall be concerned with maximal monotone operators A with domain D(A)- H.

That is, A(x) is non-empty for every x c H. This is known to be equivalent

to A being locally bounded: for each x c H there is a neighborhood of x on

which A is bounded. This does not imply A is bounded in general unless H

has finite dimension or A is linear.

Suppose we are given a pair A,B of maximal monotone operators on the

L2
Hilbert space H, a closed convex subset C of H, f c L (0,T;H) and

[u0 , v0 ] c A. The triple fu,v,w) is a strong solution of (1.1) if
, Lw

u,v F HI(0,T;H); w c (0,T;H)

(2.1.a) C:t) v C: +w(t)-f(t), x-u(t))H _ 0 , x E C

v(t) e A(u(t)) and w(t) c B(u(t)) for a.e. t c [OT] , and

(2.l.b) (v(O)-v 0 , x-u(O)) H  0 , x e C

Note that since u and v are continuous, C is closed in H and A is

closed in HxH, it follows that the inclusions u(t) £ C and v(t) F A(u(t))

hold for all t E [O,T]. Also, (2.1) can be restated as
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(2.2.a) dv t + w(t) + OIc(U(t)) 3 f(t)dt

(2.2.b) v(0) + (Ic(u (0)) v0

in terms of the indicator function.

We shall relax the requirement that v E HI (0,T;H) as follows. Set
H1

K-(u c H (0,T;H): u(t) c C, 0 . t < T). Define a weak solution of (1.1) to be

a triple (u,v,w) satisfying

2
u e K ; v,w c L (0,T;H)

v(t) e A(u(t)) , w(t) e B(u(t)) , a.e. t e [0,T]

and for some c A(u(T)) we have

(2.3) (Lv+w-f ,-u)+(Q,,il(T)-u(T)) H > (vO , (O)-u(0))H , e K

Note that if (u,v,w) is a strong solution then it is a weak solution with

t=v(T). Moreover we have the following elementary result.

Theorem 1. Let A be continuous, linear, self-adjoint and monotone; let B be

strictly monotone. Then the first two components of a weak solution are uniquely

determined.

Proof: Let [uj, vi, wj) be weak solutions for j =1,2. By our assumptions on

A we may assume (after modification on a null set) v=Au c HI 1(0,T;H) and

jA(u (T)). Thus we have

(LAu1 +w-f,u2-u1 ) + (AuI(T),u2 (T)-uI(T))H >_ (vO , u2 (0)-ul(O))H

(LAu2 +w 2-f,ul-u2) + (Au2(T),ul(T)-u 2 (T))H >' (v O , ul(O)-u 2 (O))H
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For any u e HI(0,T;H) we have

(LAu,u = 1/2((Au(O),u(O))H- (Au(T),u(T))H)

so adding the two inequalities and applying this identity with u= uI -u 2  gives

(wl'w 2 , Ul'u 2 ) 2 + 1/ 2 (Au(T),u(T))H + 1/2(Au(O),u(O))H < 0
L (O, T;H)

Strict monotoneity of B shows u = u2 •

Remark. Without additional assumptions on the set C we should not expect any

uniqueness of the third component, w. For example, in the extreme case C= (0),
L2

(2.3) is vacuous and we need only choose v,w E L (0,T;H) with v(t) c A(O) and

w(t) c B(0) to obtain a weak solution. On the other hand, if C=H then any

dv 2
weak solution is a strong solution of the equation d+wf in L (OT;H) with

initial condition v(O) =v 0 . See [5] for such Cauchy problems.

The primary objective here is the following existence result.

Theorem 2. Let C be a non-empty, closed convex set in Hilbert space H. Let

A and B be maximal monotone operators on H such that A is strongly monotone

with domain D(A) = H, B is a subgradient, B =.,p, with D(B) = H and p(x) -> 0

for all x e H. For u0 C C, v0 c A(u0 ), and f c L2 (0,T;H) given, there is at

least one weak solution (u,v,wl of (1.1).

Remarks. Since A is strongly monotone we may assume it is of the form A+I.

Thus we wish to replace (2.3) by

(2.4) (L(u+()+w-f,-u)+(u(T)++,vi(T)-u(T))H  N + v (O O) ) , c K

Proof: For each E - 0 let I be the Yoshida approximation of the indicator

function I .The subdifferential oIE is a maximal monotone Lipschitz continuous
C C
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function on H and we have ,(9+I ) =P+oI . From Theorem 1 of [51 we obtain

a strong solution of the approximating Cauchy problem

(2.5) d(U(t) +v (0) + w (t) + )Ic(UCt)) - f(t)
dt E E c C E

v (t) e A(u E(t)) w (t) E B(u (t)) , a.e. t c [0,T]

u (0) = u0 , v (0) = v0 e A(uO)

with u , v E HI(o,T;H) and w c L 2(O,T;H). Taking the inner product with

du

dt in (2.5) and using the chain rule (1, Lemma 3.3] give

t I u E2 tt du

SO so so

(We dropped the non-negative term

t dv du

SO -) dH

by monotoneity of A.) Therefore

duE122+ P (u (t)) + IE(U Wc)) < fuI 2l 2 + ( +I (Uo)
S-IIL 2 (0, T ;H )  --CE L (0,T;H) 11 dtL (0,T;H) 0(u0)

Recall that

(2.6) 1x) W 9Llx-ProJc(x)l x, c H

thus E(u(t)) > 0 and IE(u 0)O since u e C. From 9(x) > O, x e H, we

obtain

du
(2.7) sup luE(t) IH + 11 dtcl: 2 <

O<t -' 1. (OT;H)
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(2.8) sup Ic(u(t)) <M
O<t<T

where M depends on u0  and f but not E. By the Ascoli-Arzela Theorem we may

pass to a suitable subnet (indexed again by c) and obtain

(2.9) u (t) + u(t) , strongly in H , uniformly in t

duE du 2
(2.10) dt + dt , weakly in L (O,T;H)

H1
The limit u e H (0,T;H) is continuous so its range is a compact path in H.

Since A and B are locally bounded there is an t such that for 0 < C < 0

and t 0,TJ

IvE(t) IH+ Iw (t) IH<M

Thus we may use the maximality of A and B to pass to a subnet (again indexed

by r) for which

(2.11) v (T) - weakly in H , and

(2.12) v + v , w E w weakly in L2(O,T;H)

where c A(u(T)) and v(t) c A(u(t)), w(t) ( B(u(t)) for almost every t e [0,T].

We shall show the triple (u,v,wl is a weak solution. From (2.6), (2.8)

follows

u (t)_Proj (u (t))l2 < 2EM , t c [0,T]

so (2.9), (2.10) show u e K. For any r9 c K we obtain from (2.5)

(L(u E +v C +w E-f,r)-u ) + (u C (T) + VE (T), ' T)-u C (T))H

C
(-c0£(u),1uC)L 2 (O,T;H) + (u (0)+v (0),(O)-u (0))H

Ccc 0,T;) C
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From the definition of subgradient and the inclusion e e K we obtain

T
(-,31c (U ,-u ) (OT ;H) o(SIc(uC(t))-Ic(i(t))dt > 0

so there follows

ML u C+v ) +wc-fj-u ) + (u (T ) + v C( T ) , I( T ) - u  (T)) H  (u. + v . ,  (0)-u (0)) H .

Using (2.9)-(2.12) and the weak continuity of L, we take the limit as c + 0

in the preceding inequality and obtain (2.4).

Remark. The approximation of (2.4) by (2.5) is an abstract penalty method.

3. A Stefan Problem.

We consider a problem of heat diffusion involving a solid-liquid phase

change at a prescribed temperature. One application we have in mind is the

melting of ice (initially at temperature zero) suspended in areservoir or porous

medium. The novelty in this treatment is that we assume the heat diffusion is

governed by the pair of equations

'A-= k , Q = -aAtp.
(It

Chen and Gurtin 131 introduced such a model for heat conduction in non-simple

materials where the energy, entropy, heat flux and thermodynamic temperature

O(x,t) depend on the conductive temperature cp(x,t) and its first two spatial

gradients. Here the heat flux is determined by the conductive temperature and

the phase is determined by the thermodynamic temperature. Thus 0 > 0 in the

region occupied by water and Q= 0 corresponds to the frozen region.
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We describe the geometry of the problem. Let the bounded domain G in Rn

be the medium in which the ice/water is suspended and let its boundary 6G consist

of two disjoint pieces, P0  and P. Set 11=Gx (O,T), where T > 0, and note

that its lateral boundary is B0 U BI , where B1 = 1 x (0,T) for J-0,1. The

water-region Ql=[(x,t) c s.: Q(x,t) > 0) is separated from the ice-region

0 = 
((x,t) c : G(x,t)=O) by an interface S which is the phase boundary. The

unit outward normal on 62'1 is denoted by N= (Nx, N t), N x R . If V(t) is

the velocity in Fn  of the interface at time t, then it follows by the chain

rule that V(t)N +Nt =0 on S. Set n =N/IN x11, the unit outward normal in

Rn of the lateral boundary of " Of course n= N on B, and N -0 where

t=O or t=T.

The problem is formulated as follows. We are given the conductivity k > 0,

temperature discrepancy a > 0, and latent heat b > 0, of the material and a

constant h > 0 representing conductivity across the lateral boundary B1 * The

initial thermodynamic temperature 00 (x), x e G, and applied conductive temper-

ature g(x,t), (x,t) c B1 , are given with 9=0 on rF0 0 > 0 on rI , and

g > 0. The local form of the problem is to find a pair of non-negative functions

0,9 on i. for which we have

(3.1) A- = k p , =fpi-a&p in 0

(3.2) k 2 + bV(t).n= 0 on S

(3.3) k h(p-g) = 0 on I'

6on 1
(3.4) p= 0 on 0

(3.5) 0(,0) = o0 on G
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Note that if 0,4p is a solution of (3.1)-(3.5) and 00> 0, then

(9

(3.6) (a/k) 2-- 0 = in i

so it follows that (p=0 on ,.0 U S. Since g > 0, the maximum principle for

the elliptic equation in (3.1) on the region G(t) =(x e G: (xt) e a1 shows

that 0 > 0 in i., and T< 0 on S. Thus N < 0 on S and G(t) is in-
Ifn t

creasing with t.

We shall show that the problem (3.1)-(3.5) leads to a variational inequality

of the form (1.1). Letting H I(G) denote the Sobolev space of functions v in

2 .iv 2
L (G) for which all derivatives ,v , 1 < j S_ n, belong to L (G), we define

V v=0. Here V 0  is the trace on the boundary of G; see

[8,101 for details. Regarding regularity of a solution, we assume 00 E V,

9: [0,T] + V is absolutely continuous, (p c L I(0,T;V), and (c.f. (3.6))

(37) d(t) + 9(t) = (p(t) , a.e. t c [0,T]
k dt

Define the continuous linear B: V + V by

Bu(v) = (Vu- Vv)dx + h(uv)ds , u,v c V
G1'1

For a test function v c Co((O,T),V) we obtain

Btp(t)(v(t))dt kVp. Vvdxdt + hopvdsdt

so I.IIJ

= (-kLp)v dxdt +S k Vqp'Nxvdsdt +S h5 vdsdt
B

ffi - v + hgv + bNtv

B S

t1
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from (3.1)-(3.4). Furthermore we have

Ntv = = JH( .- itOt

in the sense of V -valued distributions, where H(s) = I for s > 0 and

H(s) = 0 for s < 0 is the Heaviside function. We can summarize the above

calculations as

(3.8) -(0+b14(Q)) + Bp (hg),, in LI(OT;V* )
dt

where we define

(hg) (t) (v) = hg(s,t)v(s)ds , v c V , t c [0,T1

Combining (3.7) and (3.8) we find that the absolutely continuous function

0: 10,T] * V satisfies

d(3.gha d 1 *

(3.9.a) (0+(a/k)B(0) +bH( )) + B(0) =(gh) in L (0,T;V
dt P

(3.9.b) G(O) - o, and

(3.9.c) G(x,t) > 0 , a.e. x F, G , t c [0,T]

If we integrate (3.9.a) and set

t
u(t) - so0(s)ds

t
f(t) (I + (a/k)B +bH)% O -b + O (hg) (s)ds

there follows

- -- - - -"- -
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dt
(3.10) d(I+(a/k)B)u + Bu- f(t) = b(1-H(Q)).

Finally we note that H(u)= H(G) since G(t) is increasing in t, hence,

u(l-H())O in ii.

The preceding computations show that u e HI (0,T;V) and it satisfies

u(O) = 0,

J u(t) > 0 in V,

(3.11) -(I+ (a/k)B)u(t)+Bu(t) > f(t) in V , and
d

(d (I+ (a/k)B)u(t) +Bu(t)-f(t))(u(t)) = 0, 0 < t < T
dt

Setting C = (v e V: v > 0 a.e. in G) we see that u is a strong solution of

(1.1) with A=I+(a/k)B and uo= Vo=0; c.f. (2.1). Note that we can trivially

rephrase the material of Section 2 in the H-H duality instead of the H -H

pairing through the scalar product.

Theorem 1 asserts uniqueness of a solution of (3.1)-(3.5) under conditions

considerably weaker than those leading to (3.11). Theorem 2 establishes existence

of a weak solution to (3.11) which possesses certain additional regularity prop-

erties. These topics will be developed elsewhere by other methods [4,11].

I

A

A "k I , , . . . . .@ , .. . . . . .. .
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