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NECESSARY AND SUFFICIENT CONDITIONS

FOR OPTInL CONTROL OF QUASILINEAR

PARTIAL DIFFERENTIAL SYSTEMS

by

N.A. Derzko, S.P. Sethi, and G.L. Thompson

(1) ABSTRACT

This paper studies the problem of optimal control of quasilinear

partial differential systems. A maximum principle necessary condition

is derived and shown to be sufficient when the Hamiltonian and boundary

conditions satisfy a convexity condition. The derivation is made using

Stokes theorem and a generalized version of Green's theorem. Management

science applications are suggested to problems of cattle ranching,

perishable inventories, manpower planning, and advertising.
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1. Introduction

In this paper we deal with the optimal control problem

max J(u) - JF(xu, t)d * J G(x,t) -do (1.1)

subject to

A(t)x f(x,u,t) (1.2)

where t e n n, u(t) e K R, A(t) is a linear partial

differential operator and aQ denotes the boundary of 0 as

usual. We assume x is scalar valued for simplicity in

- exposition. Generalization to vector valued x is possible.

Suitable boundary conditions for (1.2) will be introduced

later. We call (1.2) quasilinear because it is linear in the

derivatives of x (but x itself can appear nonlinearly).

We derive the maximum principle for this problem using methods

which treat all the components of t on an equal basis,

thereby allowing more generality in certain directions than

the usual approach to distributed parameter systems. In

particular 0 does not need to be a cylinder set. Further-

b. more this approach uses Stokes Theorem and a generalized

version of Green's theorem. It leads to a clean concise

- *methodology which can take advantage of existence theory when

available, and yields useful formulas even when existence

theory is not available. Finally, by making a convexity

"-..
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assumption on the Hamiltonian and boundary conditions as in

(2, 7, 8] we obtain a sufficiency result as well.

There are numerous classical optimal control problems

currently handled as distributed parameter systems - optimal

heating of solids, efficient extraction of crude oil from oil

fields, optimal drying processes, and optimally controlled

large scale chemical reactions, to name a few. Governing

differential equations and typical objective functions for

such problems are described in [41. The results of this

paper will allow solution for more general geometries and

time profiles than hitherto possible.

In addition this theory is applicable to several new

areas in management science, for example: cattle ranching

(5]; perishable inventories (3]; manpower planning

(Gaimon-Thompson, unpublished]; and advertising problems

[Seidman-Sethi-Derzko, unpublished]. Many other applications

are possible given the generality of the partial differential

operator and objective functional used in this work.

L
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Preliminaries

To make this paper more generally accessible we review

some concepts and results of general geometric integration

theory [9].

In this paper we shall deal with a standard domain 0 c n

i.e. one to which the general Stokes theorem applies; see (9].

The definition of standard domain includes that Q must be

connected. We impose the additional restriction that the

boundary 3 is made up of a finite number of pieces, each

of which is a differentiable image of a connected open set

in Rn-i. This requirement provides us with a parametrization

of the hypersurface a, useful for evaluating integrals on

3Q. Of course further generalization of Q is possible hut

will not be considered in this paper.

We denote a point in n by t - (ti ,..., tn ). The

volume integral over Q of a scalar valued function 0 (t)

will be written f 0(t)dw, where dw - dtIdt2 ... dtn. The

surface integrals we consider are generalizations of the

common two dimensional formula J If *vda where v is the

usual outward normal. In the n-i dimensional case hyper-

surface integrals (called simply surface integrals henceforth)

are written

f il f Y • da (2.1)

Here Y da is an n-I differential form on 3n. More

L
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-
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specifically,

I -do - - (t)do (2.2)

where each 'V (t) is a scalar valued function on ail,

do - (do1 ,da 2 , ... , do) and da is the symbol

do - -) J  ... dt._ 1 dt ... dt (2.3)

Evaluation of (2.11 requires us to choose a parametrization of

30 (or a piece of 3n) say t(s) where s e S R n -1.

Then the term fa 'j do is evaluated by the formula

fanIf j doj (-1)j Ifj(t(s))vj(s)ds, dsn_ 1

where

V (s) M (S I . .... . s n )  (2.4)

is a Jacobean. The order of appearance of the functions

t (s) in (2.4) is determined by the orientation of 30 as

a manifold. Aqain we refer the reader to [WI for details.

Stokes Formula is

fa dO fa a a (2.5)

where 0 1 oV*do is a differential form on 30. Corresponding
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to 4 - da the derivative 0$ is defined to be so that

dt- I a 'Pj(t)Jdw. (2.6)

The symbol a. is the partial derivative with respect

to t J*Thus we are-dealing 'with the n dimensional divergence

theorem which, using (2.2) and (2.5) and (2.6), can be written

as

* -- in the sequel we shall not use this theorem directly,

but rather the following derivate of it resembling the two

dimensional Green' s theorem.

Generalized Green's Theorem

Let x(t) and y(t) be sufficiently differentiable

scalar functions on Rn and nl 3Q be as in (2.7). Then it

follows from (2.7) that X y + ( l r l ~ y d

f[(k..k r k ...~-l~ **k rJ

r -
ij - kk-.il)I x)da k (2.8)

~2i- i1~ i+1* r i

where



7

akk . "k a k ... ak  . (2.9)
,2 r 2 r

Note that the first term corresponding to i- 1 in the integrand

on the right side is

YCk 2 " ... krx) dk:.

Proof outline

We have from (2.6)

d[xy doj] - 3 (x)da ' C([ X)y+x¢(jy)]ad (2.10)

We begin with the identity

(3 k~ Xk..)'Z + (-)-~k..kr y)
(3 k a**krX) Y + (~)(ak k )(akY

1 (** r -4

-(ak 2 ... krx) (akly) - (ak3..kr X)(kIk 2)

+(a k3,...k r )3 k I.k 2') + N4 :....k r x )( k2 k 3Y)

- 3 r-[(,* [x)(a k .. k Y)'" X~ak ija rY)

(2.11)

If we multiply (2.1) by dw and apply (2.10) to each pair of
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terms on the right we obtain

k-, -' % X, + (-% , Y) d

md (-I4) J1(3 .... .. (2.12)
j. j -I. rk

which when substituted in (2.5) or (2.7) yields the theorem.

Next we introduce linear partial differential operators,

their adjoints and boundary forms. For this it is convenient

to mention the standard notation for a high order partial

derivative. If J - (j 1J"Jn) is an n-vector of nonnegative

integers we let

Jl J2 inS-= a1 2  "'"~ .n (2.13)

It is understood that 3k means no derivative. The order IJil

of the derivative 33 is defined as J + J2 + +in' A

linear partial differential operator A is given by

Ax(t) -- E a (t)aJx(t) (2.14)

where J ranges over a finite set S. The order of A is
3AJSIJI|,. max J-Cs•

Rilbert spaces constitute a useful tool for dealing

with linear partial differential operators. We let L2 (Q)

denote the usual Hilbert space of square integrable functions

A , . - , . . , • -



9

on 0. If f(t) and g(t) are real, their L2  inner product

is denoted

(f,g) - ft)g(t) dw. (2.15)

For our subsequent work we derive the final specialization of

Stokes Theorem. Suppose in C2.8) we let

y(t) = a (t)X(t) (2.16)

and assume that a (t) is sufficiently smooth to present no

problems in taking the required partial derivatives.

Substituting (2.16) into (2.8) we obtain

Jn [xaJ0aJx) + (-l)IJH'4 aJ(a )x]dw

J(-)1,.k. .i-.-.a ak " x)dk ]

J- 1 +*** k .I j+ . JIX j

a Q r (aA, x) • da (2.17)

where the last expression defines rj.

Summation over J yields the form of Stokes Theorem

to be used in the next section,

f x) -(AIX) x] dw

faQr A(X, x) *da (2.18)
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where the formal adjoint operator A' is defined by

AIX - -)IIa(~)(2. 19)

and the boundary form r A is given by

r A (Xx) - E .,x (2.20)

We note that r Ais bilinear in (X,x) and each component of

r A is of the form

1 12 13I1I~3 aa x 

where 132: 13 < order(A).

Finally, we shall need the following lemma in proving

our sufficiency result in section S. Special case& of the

result are well known as envelope theorems.

Lemma. Let h(x,y), with x eR, y cS cJ k~ and S compact

be continuous in (x,y) and continuously differentiable in x

for each fixed y. Define

h 0(x) - maxlh(x,y) : y 4 S1 - h(x, y 0()), (2.21)

and assume that h 0(x) is also continuously differentiable.

Then
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h(x) 3(x, 0 (x) , x S. (2.22)

Proof:

From the definition of derivative we have

h° Wx -. TX, .(x)W

lim hrx, ,r 0 (x')) -hfx', V0 (x)) (2.23)
xI-x X -x

If we let L denote the limit and DQ' denote the difference

quotient in (2.23), our uniformity assumptions enable us to

conclude that given e > 0, there exists 6 > 0, such that

Ix' -xl < 6 implies IDQ' -LI < e. Now (2.21) implies

h(x' , y0 (x')) - h(x' ,y 0 (x)) 0 0

for all x' , x. Consequently if we choose x" such that

x" -x - -(x' -x) and let DQ" denote the corresponding

difference quotient, then IDQ -LI < e and DO' , 0Q have

opposite sign. It follows that

I D"- DO'I ' IDQ-I L L-DQ'I < 2t

I- .implying both

-7 DQ" < 2c and DO' < 2z.
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We conclude

. < IL -OQ'l + ID'1 3C

for every e > 0 and therefore L - 0, completinq the proof.

3. The Optimal Control Problem

*In this section we give a precise statement of the

optimal control problem (1.1) and (1.2) usinq the notation

* of section 2.

In (1.2) let A be a linear partial differential

operator defined in the domain n c Mn as specified in

section 2. That is, if x a C ( ) hen
I

Ax(t) - Z, a,(t)3 x(t). (3.1)

*k I
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for all t t 0 where we assume a t C J (a), the space of

functions on Q continuously differentiable up to order JJI.

The set of admissible controls u(t) is specified by

requiring that u(.) be measurable and map Q * K c R'. We

assume that the function f(x,u,t) is continuously

differentiable, on R x K x Q. To complete the specification

of (1.2) we introduce the boundary conditions

Bkx(t) - gk(t) 1 I k S r t a a (3.2)

where each Bk is a linear partial differential operator of

order less than A and defined for t 4 3 where 3Q denotes

the boundary of 9 as is customary. It is often convenient

to use the vector notation Bx(t) - g(t) instead of (3.2).

Finally, we assume that the boundary value problem defined by

(1.2) and (3.2) has a unique solution for each admissible

control u(*). In the objective function (1.1) we assume

that the scalar function F and the Rn valued function G

are continuously differentiable on their domains, and x is

the solution of (1.1) and (3.2) for each admissible u.

We have now completed the specification of the optimal

control problem. To summarise, we restate the problem:

I.
max J(u)- |F(x,u,)dw + G(x,) .da (3.3)

subject to

1K
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A(t)x - f(X,,u,t) (3.4)

with boundary condition

9(tx- g(t) on ai (3.5)

with admissible controls

u • -. KC n . (3.6)

Necessary conditions for (3.3) -(3.6) are derived in the next

section.

4. Derivation of Necessary Conditions

In this section A' denotes the adjoint operator to

A and rA(.,.) is the corresponding boundary form as defined

* in section 2. The Samiltonian is defined by the function

H(x,u,X,t) -F(x,u,t) + Xf(x,u,t) (4.1)

Analogously to the adjoint equations in optimal control theory

we shall find that the adjoint function X(t), t a a satisfies

A'XCt) a- x (X~t), u~t), X(t), t) (4.2)

where u(t) and x(t), t t n are the optimal control and

r 

-
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corresponding state functions. In addition, X satisfies the

adjoint boundary condition given by

a xG(,t) r r A(X1,), t £ a (4.3)

for all functions 9(t) defined in..a neighbourhood of DO and

satisfying

BC(t) a 0, t 1 362 (4.3')

where B is defined in (3.5). Note that both 3xG  and rA

are n vectors.

The actual derivation proceeds as follows. We let Ja

denote the augmented objective function

a J(u) + f )(t)[f(x(t), u(t), t) -Ax(t)]dw

f Hdw f G.da - (X, Ax) (4.4)

where we note that the derivation of the second expression

uses (3.3) and (4.1). If x satisfies (3.4) and (3.5) then,

of course, Ja - J. We assume also that X satisfies (4.2)

and (4.3). Then using (2.15) and the generalized Green's

1 -| theorem (2.18), we rewrite (4.4) as

ad+ (G-rA d - (A'X, x)

CH -~ (A'X) x] dwa + (G-rA)da .(4.5)
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Finally consider the first order variation 6 Ja of Ja

produced by a change Su in u, uniformly small for each t.

For each t, we shall denote the first order change in 3

due to a change dx in x by ax 198x (u held constant),

and the change in R due to the change in u by AB (x held

constant). Likewise ax G dx- denotes the first order part

of the change in G due to a change in x. Then

6J - C(3XH-A'X)x+sjdwa

+ [a[xGCx(t) ,t) sxt) - r (t) ,6x(t))]dcr

f M |B dw (4.6)

after using (3.4), (3.5), (4.2) and (4.3). Suppose now that u

is an optimal controller and 5 differs from u only within a

small neighbourhood of the given point t. Then W a 9 0 if

u corresponds to a maximum of J and standard techniques

E41 can be used to show

a A(x(t), u(t), )(t), t) S 0. (4.7)

This implies that if u(t) is an optimal control function and

x(t), X(t) are corresponding state and adjoint functions

then (4.7) implies

S H(x,u,X,t) , maxa H(xrIXt) (4.8)
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which is the maximum principle. To swmIarise, the necessary

optimality conditions are (3.4), (3.5), (3.6), (4.1), (4.2),

(4.3), (4.3'), and (4.8).

5. Sufficiency Conditions

In this section we derive sufficiency conditions which

generalize sufficiency conditions in ordinary control problems

[2, 7, 8, etc.], The assumptions required to prove these

results quite often hold in economics problems.

The key assumption is the concavity of the derived

Hamiltonian H0 where

a0 (x,X,t) - max u U(x,u,X,t). (5.1)

Specifically we assume that H0 is concave as a function of

x, for any given (,t), -hat is

H0 (x,X,t) - H0 (x*,X,t) 1 x H0(x*,X,t) (x-x*). (5.2)

In fact, as we shall see shortly, we only need this inequality

when x* is the optimum trajectory, but since such a

trajectory is not normally known at the outset, a concavity

hypothesis is more useful. We assume also that the function

G is oonowtve-tikea, that is

G(x*,t) - G(x,t) I axG(x-x*, t) (x*-x) (5.3)

T~!N

r1
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for each t, x, x (5.3) holds trivially if G(xt) is linear

in x. Combining (5.1) and (5.2) we obtain

3lx,u,Xt) 1 3 0lx,X,t) :S R0 (x*,Xt) + a x"0l(x*,X,tl(x-x*). 15.5)

Under the assumption that both H and a0 are continuously

differentiable functions of x we have from the lemma in Section 2

a a 0(x,,t)•  a aH(Xu(x) A,t (5.6)

where u(x) is the maximising point in (5.1). We now substitute

the expression for the Hamiltonian (4.1) in (5.51 and note (5.6)

and (4.12) to write

F(x*,u*,t) - F(x,u,t)

a X,*rf(x,u,t:)- ( ,u ,)'

- axH(x*,U*,X*,t) (x-x*)

= X'A(x(t) -x*(t)) - A '*(t) (x(t) -x*(t)) (5.7)

wheore x*, u', A* denote values at optimum. Integrating over

Q and adding the terms f G(x',t) -do fG(xt) -do to

, .both sides we obtain

i.,, , .... ..
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J(u*) - J(u)

a (X*, A(x-x*)) - (A'X*, x-x*)

+ G(x',t) do - JG(x,t) .do

a a r(X, x~* do

-o ' xG(x-x*, t) (x-x*)

=0

whe re we have used (2.8), (5.3) and (4.3). Thus J(u*) a J(u)

which completes the argument.

6. Extensions

I. This work can be extended to the state x. to be a

vector. Then A becomes a matrix whose entries Aij are

linear partial differential operators. The formal adjoint A'

is then the transposed matrix of formal adjoints [A; I.

11. In many practical problems the adjoint boundary

condition (4.3), (4.3') can be reduced to a condition of the

form BAX(t) a 0 where B^ is a vector of partial differential

operators. Such a simplification is very useful in simplifying

the handling of the adjoint equations.

IIi. Extension of this paper to include boundary controls

is currently under investigation.

- A
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