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NECESSARY AND SUFFICIENT CONDITIONS
FOR OPTIMAL CONTROL OF QUASILINEAR
PARTYAL DIFFERENTIAL SYSTEMS
by
N.A. Derzko, S.P. Sethi, and G.L. Thompson

,'/‘
- U ABSTRACT

This paper studies the problem of optimal control of quasilinear
partial differential systems. A maximum principle necessary condition
is derived and shown to be sufficient when the Hamiltonian and boundary
conditions satisfy a convexity condition. The derivation is made using
Stokes theorem and a generalized version of Green's theorem. Management

science applications are suggested to problems of cattle ranching,

perishable inventories, manpower planning, and advertising.kff:::(
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1. Introduction

In this paper we deal with the optimal control problem

max J(u) = I F(x,u,t)dw + [ G(x,t) - do (1.1)
Q an _

subject to
A(t)x = £(x,u,t) : (1.2)

where t ¢ Q gnn, u(t) ¢ K < R®, A(t) is a linear partial
differential operator and 3R denotes the boundary of Q as
usual. We assume x is scalar valued for simplicity in
exposition. Generalization to vector valued x is possible.
Suitable boundary conditions for (l.2) will be introduced
later. We call (l.2) quasilinear kecause it is linear in the
derivatives of x (but x itself can appear nonlinearly).
We derive the maximum principle for this problem using methods
which treat all the components of t on an equal basis,
thereby allbwing more generality in certain directions than
the usual approach to distributed parameter systems. 1In
particular Q does not need to be a cylinder set. Further-
more this approach uses Stokes Theorem and a generalized
version of Green's theoram. It leads to a clean concise
methodology which can take advantage of existance theory when
available, and yields useful formulas even when existence
theory is not available. Finally, by making a convexity




assumption on the Hamiltonian and boundary conditions as in
(2, 7, 8] we obtain a sufficiency result as well.

There are numerous classical optimal control problems
currently handled as distributed parameter systems — optimal
heating of solids, efficient extraction of crude oil from oil
fields, optimal drying processes, and optimally controlled
large scale chemical reactions, to name a few. Governing
difforgntial equations and typical objective functions for
such problems are described in [4]. The results of this
paper will allow solution for more general geometries and

time profiles than hitherto possible.

In addition this theory is applicable to several new
areas in management science, for example: cattle ranching
(sj; perishable inventories (3); manpower planning
{Gaimon=-Thompson, unpublished]; and advertising problems
(Seidman-Sethi~-Derzko, unpublished]. Many other applications
are possible given the generality of the partial differential

operator and objective functional used in this work.
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Preliminaries

To make this paper more generally accessible we review
some concepts and results of general gecmetric integration

theory [9].

In this paper we shall deal with a standard domain & cR",
i.e. one to which ﬁhe gcncril Stokd; theorem applies; see [9].
The definition of standard domain includes that Q must be
connected. We impose the additional restriction that the
boundary 32 is made up of a finiée number of pieces, each
of which is a differentiable image of a connected open set
in Bl mhis requirement provides us with a parametrization
of the hypersurface 23Q, useful for evaluating integrals on
3. Of course further generalization of Q is possible hut

will not be considered in this paper.

We denote a point in Q@ by ¢t = (t1 ) eees tn). The
volume integral over Q of a scalar valued function ¢(t)
will be written f ¢(t)dw, where dw = dtidt2 ...dtn. The
surface intogralsgie consider are generalizations of the
common two dimensional formula [[ Y vdoc where v is the
usual outward normal. In the xrd? dimensional case hyper-
surface integrals (called simply surface integrals henceforth)

are written

f ¥ «do (2.1)
R

Here VY *do is an n-l differential form on 3Q. More
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specifically,

a
¥e+do = Zj‘l

?j(t)doj

where sach Wj(t) is a scalar valued function on 23R,

do = (da1 ,d02 reees don) and do, is the symbol

3.

-1)3
Evaluation of (2.1} requires us to choose a parametrization of
30 (or a piece of 3) say t(s) where s ¢ § = R°™L,
Then the term f Yj dcj is evaluated by the formﬁla

a

L Y. daj - (-1)3 Js-?j(t(s))vj(s)dsl ceods

Q J
where

a(t s e t t s e t )
- 1 j=1 “j+1 n
vj(s) 3T (2.4)

31 LRI ) LI BRI ) sn-l)

is a Jacobian. The order of appearance of the functions
tj(s) in (2.4) is determined by the orientation of 23Q as
a manifold. Again we refer the reader to (W] for details.

Stokes Formula is

f d¢ = f ) (2.5)
Q 1Y)

where ¢ = ¥ -do 4is a differential form on 3. Corresponding
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the derivative d¢ is defined to be so that

n

de = [j-{ll aj‘{’j(t)]dw. (2.6)

The symbol aj E 5%— is the partial derivative with respect

3

to tj. Thus we are dealing with the n dimensiocnal divergence

W

theorem which, using (2.2) and (2.S5) and (2.6), can be written

n n
I [ ¥ a.w.(t)]dm- f ) by(e)doy . (2.7
qly=1 3 I =l J

In the sequel we shall not use this theorem directly,
but rather the following derivate of it resembling the two

dimensional Green's theorem.

Generalized Green's Theorem

Let x(t) and y(t) be sufficiently differentiable
scalar functions on R® and Q , 30 be as in (2.7). Then it

follows from (2.7) that
I [(ak x Xy + (-l)r'ix(ak K )y]dm
Q 1 . o o : 1 * * O r

r
i-1
-L Lo (=177 (9,

y) (3 x)do (2.8)
Q isl k k ky

1ol.ki-1‘ i+1ioa r

where




(2.9)

Note that the first term corresponding to i =1 in the integrand

on the right side is

dcrk .

"~ y(3
k 1

P x)
2 * e .kr
Proof outline

We have from (2.6)

¥
o a[xy doj] = 3 (xy)doy = [(ajx)y-+x(ajy)]dw (2.10)

We begin with the identity

(3 x)y + (=177 x(a )
ki..'kr kl...kg

; = (3, akz...er)y * (akz...er)(ak1Y)

X .x) ( ak 1k2Yj

(e, %) O ¥) = e,

+(a x) (3  ¥) + (3 x) (3 Y)
kye ook koK, Ky ook K Kok,

S +(-l)r'1[(3 x) (2 y) + x(3 y)]
k) Pk ok, Kook,

l ‘ (2.11)

If we multiply (2.1) by dw and apply (2.10) to each pair of




terms on the right we obtain

(3 x)y + (=1)T (3 y)]du
> k1"°kr k -o.kr

1

r
3=-1
= 4 (-1) 3 3 4 (2.12)

which when substituted in (2.5) or (2.7) yields the theorem.

Next we introduce linear partial differential operators,
their adjoints and boundary forms. ' For this it is convenient
to mention the standard notation for a high order partial
derivative. If J = (jl"'jn) is an n-vector of nonnegative
integers we let

3

J . 31

3 3
3 322 I S (2.13)

It is understood that aﬁ means no derivative. The order |J|
of the derivative 3J is defined as j1 + j2-+---<+jn. A

linear partial differential operator A is given by
Ax(t) = L_ a ()3 x(t) (2.14)
J J ‘

where J ranges over a finite set S. The order of A is
maxXy o (3 .

Hilbert spaces constitute a usefui tool for dealing
with linear partial differential operators. We let Lz(n)

denote the usual Hilbert space of square integrable functions




on Q. If £(t) and g(t) are real, their L2 inner product

is denoted
(£,9) = f £(t)g(t)duw . (2.15)
Q

For our subsequent work we derive the final specialization of

Stokes Theorem. Suppose in (2.8) we let
y(e) = aJ(t)A(;) (2.16)

and assume that aJ(t) is sufficiently smooth to present no
problems in taking the required partial derivatives.

Substituting (2.16) into (2.8) we obtain

' J [an(aJx) + (-1 191-2 3J(aJA)x]dm

Q
= [ (el ent=t(a a ) (3

Iag[j’i kj...kj"l, J kj+1-o-kl
4 f T_(a A, x) - do (2.17)
where the last expression defines PJ .
Summation over J yields the form of Stokes Theorem

to be used in the next saction,

f (A(ax) - (A"} x]dw
Q

- I [, (A% «do (2.18)
aQ




PA is of the form

- ' )

be continuous in (x,y)

and assume that ho(x)

Then

Il'IZ'I3

where the formal adjoint operator A' is defined by

AN = £ (-1) |51 27 (a ) (2.19)

and the boundary form PA is given by

FA(l,x) = QJFJ(aJA,x) . (2.20)

N . We note that PA is bilinear in (A,x) and each component of

where |12| + |I3| < order ().

Finally, we shall need the following lemma in proving
our sufficiency result in section 5. Special cases of the

result are well known as envelope theorems.

Lemma. Let h(x,y), with x «¢R, y ¢ S c‘Rk, and S compact

and continuously differentiable in x

for each fixed y. Define

ho(x) = max{h(x,y) : ¥y ¢« S} = h{x, v (x)), (2.21)

is also continuously differentiable.




"(x) = gg(x. v¥x), xes. (2.22)

Proof:

From the definition of derivative we have

nl’ (x) - %%{x, y?(x))

0 , .0
= 1ip BlX_ ¥ (x)) -hix x) (2.23)

x'+x

If we let L denote the limit and DQ' denote the difference
quotient in (2.23), our uniformity assumptions enable us to
conclude that given e > 0, there exists & > 0, such that
|x* =x] < 6§ implies |DQ' -L| < €. Now (2.21) implies

h(x' , v (x") - h(x' .yo(k)) 2 0

for all x' ,x. Consequently if we choose x" such that

X" -x = =(x' =x) and let DQ" denote the corresponding
difference quotient, then |DQ" -L| < ¢ and DQ',DQ" have
opposite sign. It follows that

|p@" -pQ'| s [DQ" -L| + |[L=-DQ'| < 2¢
implying both

DQ" < 2¢ and DQ' < 2¢ .
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We conclude
L < |L=-DQ'| + |DQ'| = 3¢

for every ¢ > 0 and therefore L = 0, completing the proo:.'

3. The Optimal Control Problem

In this section we give a precise statement of the
optimal control problem (l.l1) and (l1.2) using the notation

of section 2.

In (1.2) let A be a linear partial differential
operator defined in the domain & <R as specified in
section 2. That is, if x ¢ c”(Q) then

J
Ax(t) = 23 aJ(t)a x(t). (3.1)




for all t ¢ @ where we assume ay ¢ c|J|(n), the space of
functions on @ continuously differentiable up to order |[J].
The set of admissible controls u(t) is specified by
requiring that u(°) be measurable and map Q + K cR®, We
assume that the function £(x,u,t) is continuously
differentiable,on R x K x Q. To complete the specification
of (l1.2) we introduce the boundary conditions

B x(t) = gk(t) lsksr ¢teaQ (3.2)

where each Bk is a linear partial differential operator of
order less than A and defined for ¢t ¢ 3Q where 3Q denotes
the boundary of Q2 as is customary. It is often convenient

to use the vector notation Bx(t) = g(t) instead of (3.2).
Finally, we assume that the boundary value problem defined by
(1.2) and (3.2) has a unique solution for each admissible
control u(¢). In the objective function (l-l) we assume

that the scalar function F and the r"®

valued function G
are continuously differentiable on their domains, and x is

the solution of (l.1) and (3.2) for each admissible u.

We have now completed the specification of the optimal

control problem. To summarise, we restate the problem:

max J(u) = I F(x,u,t)dw + I G(x,t) - do
u Q N

subject to




A(t)x = £(x,u,t) (3.4)

with boundary ceondition

B(t)x = g(t) on 3R (3.5)

with admissible controls

u: @+ K cR®. (3.6)

A, Necessary conditions for (3.3) - (3.6) are derived in the next

section.

4. Derivation of Necessary Conditions

In this section A' denotes the adjoint operator to
A and FA(-,°) is the corresponding boundary form as defined

in section 2. The Eamiltonian is defined by the function

H(x,u,A,t) = F(x,u,t) + Af(x,u,t) ’ (4.1)

[ o SN < -

Analogously to the adjoint equations in optimal control theory
1 . we shall f£ind that the adjoint function A(t), t ¢ Q@ satisfies

. A'A(e) = 3 H{x(t), ult), A(t), t) (4.2)

where u(t) and x(t), & ¢ Q@ are the optimal control and
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corresponding state functions. In addition, A satisfies the

adjoint boundary condition given by
axG(E,t)E = PA(A,E), t e 3Q (4.3)

for all functions §(t) defined in .a neighbourhood of 3R and
satisfying

BE(t) = 0, t e 3Q (4.3")

where B is defined in (3.5). Note that both axc and PA

are n vectors.

The actual derivation procseds as follows. We let Ja

denote the augmented objective function

I (u) = J(u) + I Aft) [£(x(t), u(e), t) ~Ax(t)]dw
Q

-f aduu-f G.do -~ (A, Ax) (4.4)
Q a

where we note that the derivation of the second expression
uses (3.3) and (4.1). If x satisfies (3.4) and (3.5) then,
of course, J, = J. We assume also that 1 satisfies (4.2)
and (4.3). Then using (2.15) and the generalized Green's

theorem (2.18), we rewrite (4.4) as
J -J'Hdmi-f (G=T_,) *do = (A')A, Xx)
a2 g 3Q A

= f (BE-(a'A\)x]duw + L (G=rp)do .
Q )
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Finally consider the first order variation 6Ja of Ja
produced by a change 6u in u, uniformly small for each ¢t.
For each t, we shall denote the first order change in H
due to a change §x in x by 3x86x (u held constant),

and the change in H due to the change in u by AH (x held

constant). Likewise axGGx»—- denotes the first order part
of the change in G due to a change in x. Then

83, -_f ((3 .8 =-a'2)6x +AH]dw
Q X
+ I [3,G(x(e), &) 8x(t) =T, (A (£),8x(t))]do
3Q
= J AH dw (4.6)

Q
after using (3.4), (3.5), (4.2) and (4.3). Suppose now that u
is an optimal controller and 4 differs from u only within a

small neighbourhood of the given point t. Then GJa <0 |if

u corresponds to a maximum of J and standard techniques
(4] can be used to show

AH(x(t), u(t), A(t), &) s 0. (4.7)

This implies that if u(t) 4is an optimal control function and
x(t), A(t) are corresponding state and adjoint functions
then (4.7) implies

H(x,u, A, t) = maX H(x,4,A,t) (4.8)




which is the maximum principle. To summarise, the necessary
optimality conditions are (3.4), (3.5), (3.6), (4.1), (4.2),

(4.3), (4.3'), and (4.8).

5. Sufficiency Conditions

In this section we derive sufficiency conditions which
generalize sufficiency conditions in ordinary control problems
(2, 7, 8, etc.], The assumptions required to prove these

results quite often hold in economics problems.

The key assumption is the concavity of the derived

Hamiltonian Ho, where
80(x,\,¢) = max_ H(x,u,},t). (5.1)

Specifically we assume that H° is concave as a function of

X, for any given (A,t), -that is
B (x,A,t) - BO(x*,2,8) < 3, B% (x%,1,8) (x-x*) . (5.2)

In fact, as we shall see shortly, we only need this inequality
when x* is the optimum trajectory, but since such a
trajectory is not normally known at the ocutset, a concavity
hypothesis is more useful. We assume also that the function

G is concave-like, that is

G(x*,t) - G(x,t) s 3xG(x-x", £) (x* = x) (5.3)
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for each t, x, x*. (5.3) holds trivially if G(x,t) is linear
in x. Combining (5.1) and (5.2) we obtain

H(x,u,A,t) s BO(x,A,t) s BO(x*,A,¢t) + axa°(x*,x,t)(x-x*). (5.5)

Under the assumption that both H and Ho are continuously

differentiable functions of x we have from the lemma in Section 2
2 8% (x,1,8) = 3 H(x,u(x),A,¢t) (5.6)

where u(x) is the maximising point in (5.1). We now substitute
the expression for the Hamiltonian (4.1) in (5.5) and note (5.6) ’
and (4.2) to write

F(x*lu*tt) - F(x,u,t)

2 A*[£(x,u,t) - £(x*,u*,t)]
= 3 H(x*,u*, A", t) (x=-x")
= A*A(x(t) =x*(£)) = A'AY(E) (x(t) -x* (%)) (5.7)

where x*, u®, A" denote values at optimum. Integrating over

@ and adding the terms I G(x",t) *dc =~ I G(x,t) *do ©o
an 1y}
both sides we obtain




»
]
.

A

J(u*) - J(u)

2 (A%, A(x=x")) = (A'A*, x-x")

+ [ G(x*,t) *do - I G(x,t) »do
n 3N
2 I rx<x*, x=%") * do ,
1Y)

J 3_G(x~x*, t) (x=x*)
aIn %

= 0

where we have used (2.8), (5.3) and (4.3). Thus J(u*) 2 J(u)
which completes the argument.

6. Extensions

I. This work can be extended to the state x. to be a
vector. Then A becomes a matrix whose entries Aij are
linear partial differential operators. The formal adjoint A'

is then the transposed matrix of formal adjoints {A;i}.

II. In many practical problems the adjoint boundary
condition (4.3), (4.3') can be reduced to a condition of the
form B A(t) = 0 where B~ is a vector of partial differential
operators. Such a simplification is very useful in simplifying
the handling of the adjoint equations.

III. Extension of this paper to include boundary controls
is currently under investigation.




e .

O

TSR e

References

N. Aronszajn and A.N. Milgram, Differential operators on
Riemannian manifolds, Rendiconti del Circolo
Matematico di Paleérmo (2), wvol. 11l (1953),
pp. 266-325.

K.J. Arrow, M. Kurz, Public Investment, The Rate of Return,
and Optimal Fiscal Policy, Johns Hopkins Press,
Baltimore, Maryland, 1971.

A. Bensoussan, G. Nissen, C. Tapiero, Optimum Inventory
and Product Quality Control with Deterministic and
Stochastic Deterioration - An Application of
Distributed Parameter Control Systems, IEZE
Transgactions on Automatie Control 20 (1975), 407-412.

G. Butkovskiy, Distributed Control Systems, American
Elsevier, New York, 1969.

N.A. Derzko, S.P. Sethi, G.L. Thompson, Distributed
Parameter Systems Approach to the Optimal Cattle
Ranching Problem, Optimal Control Applications and
Methods, v. 1 (1980).

J.L. Lions, Controle Optimal de Systémes Gouvernéds par
des Equations aux Derivées Partielles, Dunod
Gauthier-vVillars, Paris, 1968.

O.L. Mangasarian, Sufficient Conditions for the Optimal
Control of Nonlinear Systems, SIAM J. Control,

S.P. Sethi, Sufficient Conditions for the Optimal Control
of a Class of Systems with Continuous Lags, J074,

B. Whitney, Geometric Integration Theory, Princeton | ’
University Press, Princeton, N.J., 1957.




¢

T TN —PERFORMING ORGANIZATION NAME AND ADDRESS

et a2 o W“"‘
Rl YRV TR -LA)E?R.&%@N"SJ'%QB PAaGs [ veen Uate anteren)
. REPORT DOCUMENTATION PAGE | o TR
T REBORY NG TR / '2. GOVY ACCESSION NOJ I RECIPIENT'S CATALOG NUMGER. 1

MSRR # 453

i

TITLE (and Subtitle)
NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL

5. TYPL OF REPORT & PEMOD COVERED
Technical Report

! CONTROL OF QUASILINEAR PARTIAL DIFFERENTIAL 1979
i SYSTEMS. S. PERFORMING ORG. ACPORT NUMBCR
. . I N R
(7 AGTHONES 3. CONTRAGT OR GAANT RUMNBERTs)
; tsl. :. ls)::;? . N00014-75-C-0621 /
! ° Fe N00014-725<C-0932
G. L. Thompson 0 '77‘52 3

2,

Graduate School of Industrial Administration
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

NR 047-048

. PROGRAM GLEMENT, PUOJACT, TASK
AREA & WORK UNIT NUMBERS

!
;
N

Arlington, Virginia 22217
o YR AN e T BN S e S

TIE—CONTROUTING OFFICE NAME ANC ASOALSS

Personnel and Training Research Programs

‘2. R'S.Pol'l' DATE
November 1979

Office of Naval Research (Code 458)

3. NUMBER OF PAGES
19

SCHEDULE

.-
15. SECURITY CLASS. (of thie iopvet) b

[T5e. DEGL ASSIFICATION/ OCANGHAGING

T~ ¢ 16 OISTRISUTION STATUMENT (of hie Repert)

e - o

. B N e AS et o

Approved for release; distribution unlimited.

PR

l

o g

L planning, and advertising.

&

STATOUTION STAYRMENT (of the abetrast antered in Bleek 20, i different trem Repert)

* e s loss 0p -+ ome w anne
i
1
[l
i

gy eSS v
'8 SUPPL IMENTARY NOTES

|
A

—

REY wWOROS (C ) otgo if ary and (dentily by bieck aunter)

optimal control, distributed parameter s&stemé. quasilinear differential

systems, maximum principle

A
130 AGSTRACYT (Continue an roveree «ide if noesscay and identily oy bieck numeer)

{
This paper studies the problem of optimal control of quasilinear partial i
differential systems. A maximum principle necessary condition is derived and )
shown to be sufficient when the Hamiltonian and boundary conditions satisfy ;
a convexity condition. The derivation is made using Stokes theorem and a i i
generalized version of Green's theorem. Management science applications are
suggested to problems of cattle ranching, perishable inventories, manpower

N

00 , 53 473 coimow o ¢ nov 8 13 oeesLaTR

S/N 0102-014- 6001 |




