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(1 1. ENTRODUCTION AND SUMMARY

[1 1.1 IMTRCMUCTION

Radomes can limit the performance of airborne radar and guidance systems by reduc-

ing guidance accuracy and radar range. This limitation persists despite continuing
radome development because newer missiles fly faster and higher, and because newer

[threats require greater frequency bandwidths. In addition, the need for maximum ra-
dar range drives the antenna diameter to the maximum that fits within the radome;

consequently, the antenna receives waves that are guided by the radome. These guid-
f ed waves produce boresight errors. Our experiments have shown that the guided

wave induced errors require radome correction techniques that differ from the usual
method of small, local thickness variations.

k The electromagnetic design of radomes and the correction of radome boresight error
usually requires a long development period that includes much empirical work. Al-

L though analytical methods have been, and &,e being, developed, most methods are ap-
proximate. Unfortunately systematic error analyses are limited because radomes In-

volve many factors and because the enclosed antenna influences performance.

Because of these limitations on radome design methods, interest exists in electronic
*I compensation methods. Radome boresight error would be measured and stored in an

on-board, digital memory, and these data would be applied as corrections during mis-
sile flight. This approach is attractive, but it has limitations. Obviously, adequateLstorage is required. The memory must be large since boresight error depends on
gimbal angle, frequency, and wave polarization. Existing memories and processors
seem capable of handling these variables within size limitations of missiles, but fre-

111 quency and polarization sensors would be required. Cost impacts need study.

A potentially more serious problem Is the temperature dependence of radome bore-
sig ht error. This dependence involves many possible trajectories and the missile po-

sition within each trajectory. However, no accurate facility exists for measuring
boresight error of heated radomes; this is an obstacle to electronic compensation.
An alternative to electronic compensation is designing the radome for elevated tem-
peratures. The radome would be somewhat thinner than for best room temperaure
performance. However, this alternative still requires high temperature measure-

4j ments of boresight error for its evaluation, and It depends on accurate design methods.

Accurate radome design methods require accurate descriptions of wave propagation

1. through the radome. This description must include the effects of frequency, polariza-
tion and the direction of the incident wave. The radii of curvature of the radome are
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also a significant factor because they influence the wave types excited by an incident
wave and the accuracy of approximate descriptions. Typical radii range from less
then one to several wavelengths.

Fi This report describes a continuing study of wave propagation through dielectric shells.
Emphasis this year was on axially symmetric shells such as hollow cylinders. Last
year we considered the hollow wedge, which is a two-dimensional radome, and the flat
-slab, which is a building block of a wedge and a local approximation to a shell.1*
Qrntitative data were given on phase shifts caused by refraction and plane wave prop-
agation through the dielectrics; in addition some guided wave properties were deter-
mined. The analytical method used was the moment method'

1.2 SUMMARY

SectionZ describes a technique estimating the amplitude and phase of guided waves
excited on finite dielectric slabs by incident plane waves. The procedure is based onj the moment method, but it extends that method by postulating an explicit form for the
guided waves and solving for the guided wave amplitudes. The method solves for the

. itwo guided waves that travel in opposite directions parallel to the slab. Experiment
verified the technique.

Section8 describes nearfield scattering by a finite, solid, dielectric cylinder. Inci-I dence was broadside. The procedure extends the theory originally developed by
Richmond. It identifies the effects from the ends of the cylinder. Experiment verified

L the procedure for polarization parallel or perpendicular to the cylinder.

Section 4 describes a new technique for nearfleld scattering by a hollow dielectric
cylinder. The moment method was used but the cells were finite angular sectors.This is a new shape. Singularities of integrands were integrable. Experiment verified
our approximate theory, especially when a correction for the pattern of the probe an-

L tenna was utilized.

L 1f

*References are given in Section 5.
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2. FINITE DIELECTRIC SLAB: GUIDED WAVE AMPLITUDE

L 2.1 _NTRODUCTION

This section describes an application of the moment method to determining the guided
wave magnitude on a finite dielectric slab. Reference 1 presented a moment method
analysis of flat slabs, and it gave experimental checks. The method will be used in
this report, but only a brief summary of the theory Is Included.

2.2 THEORY

Let us represent the field within the slab as a sum of four waves, which, in the oo-

ordinate system of Figure 2-1, are as follows:

" U 1) A plane wave transmitted into the slab: Teikxx

2) A reflected plane wave: Re,

I ~ 3) A slab-guided wave: Aei gx,

I 4) A reflected slab-guided wave: Be - ikgx ,

At the slab midplane, Y equals zero; thus the field is

ik x ik x -ik x

E(y = 0) = Se x +Ae g +Be g (2-1)

Y

GEO28A

(/ - Figure 2-1. Co-ordinates for a Slab

[ " ,,2-1

, I
a -- '-- a'-- . .



where by assumption S is T +R, and T and R are respectively the complex-valued
*transmittance and reflectance of a flat dielectric sheet for plan waves. In addition,

kx Is (2w/X) sin a, with X the wavelength and a the Incidence angle, and kg the propa-
gation constant of a wave guided by an infinite slab. 2 We seek A and B.

U' The total field in a slab can be accurately determined with the moment method. Be-
cause that theory, extensive calculations, and measurements were given in Reference
1 through 3, we only summarize the method here. The moment method starts by di-

*viding a slab into a set of N parallel cylinders and assuming the field constant within
any cell. An integral equation for scattering relates the unknown total field ET, the

1. incident field EI, and the scattered field Es , so that

T 2 T I1E - (Ik /4) (K - 1) ff E- (x', y') H (1) (kp) dx' dy' = E , (2-2)

where He (1 ) is a Hankel function, K is dielectric constant, and p is distance between
observation and integration points. Equation 2-2 is evaluated at the center of each
cell, with the integral extending over all cells, to produce N simultaneous, linear al-

gebraic equations. The result is that

SN ET EI  (2-3)

; nl mn n mIn

n--1

for 1 m : N.

To determine A and B, combine Equations 2-1 and 2-3 and use Snell's law. Thus,

ik x ik x -ik x ik x
SECmn e nAFC me B-Cmn e e (2-4)

for m equal 1 through N. Now N can be large. Its value depends on the size of the
slab because cylinder radius is limited by the assumption that the field is constant.
Although N is large, we have only two unknowns (A and B) because these guided wave
amplitudes were assumed constant. Actually A and B could depend on x. In this case
we would have N values of A and N values of B. However, if A and B vary slowly with
x, It seems reasonable to consider successive pairs of equations in Equation 2-4 and
to solve each pair for a value of A and a value of B. The solution Is of course approx-

j . ! [ imate because higher order modes can exist, and even the dominant slab mode may
not be fully excited near an edge.

, [ To evaluate A and B requires first evaluating the co-efficients Cmn and then solving
successive pairs from Equation 2-4. Form andm+1 we obtain

2-2



IA =ir s' r ( 8  )71  sm -sn s , (5' )-1) (2-5)

L ~ ~ ~ I mIn m+1 m+1 i + +

where

Lk x
sm = CIne g n (2-6)

Akx= >Cm+, g n (2-7)

-k x
s' In >Crone n(2-8)

22. e of-As ) (2-)
w e m l yed n e w2.6,

Eiqei metx ve ikxinfrteslbwsgvni

= x xI x0
ro e S e o (2-10)

eikx l ikx

In addition,

B r -As H, )-1 (2-12)

~2.3 COMPUTATION

~To test the approximate solution we analyzed a slab, with dielectric constant 2.6,

thiclness 0.25", and length 4". Experimental verification for the slab was given in
I Reference 3. Altoug the existence of guided waves was established and magnitudes

were estimated, no explicit values of A and B were given. Frequency was 9. 375 OHz
' and polarization was perpendicular. Figure 2-2 shows computed values of A and B.
L [! we see that computed values of A increase with x for grazing incidence 0i - 0 (or a

• , "'= 90"), but A decreases with x for 0i 22. 5°. For the other values of #V' the values
~oscillate.

' I 2-3



10 -1 -

L0.-

L1 0 .00o o 04o0o0oo0010o00000 o°o00

L .
0/ °o ___ _ _ _,,_

0.5 00 °00.A

' .0[

0.5 oo A

0..? ?~,000.s 0 0 A

1,0

0 00 * .1O 00 0 00 . .

0.5 t o fee 0oa.. 0
0 00 gQbj* 00 ,0 0

010 20 30
AUM00 Raw N

F Figure 2-2. Guided Wave Amplitudes (Computed from Equations 2-5 and 2-12);
0, = 0 Is grazing inoidence, and =1 9Oi is normal. The x

, is N times the cell spacing.

2-4

. -I_



;V.... . ..

2.4 MEASUREMENT

[The field near the slab was measured with a microwave interferometer that utilized a
dipole probe. Figure 2-3 shows an example of measured data for 0i = 30; the probe
was spaced 0.1" from the slab. We estimate guided wave amplitude A by first
smoothing the curves to delete the reflected guided wave, amplitude B. We obtain twovalues of A, at minima and maxima on the condition that

""E = T + Aevd (2-13)
p

where Tp is the plane wave power transmittance, v is the decay co-efficient for the

field outside the slab and d is perpendicular distance. We utilize the extrema because

at these features the two terms on the right hand side of Equation 2-13 are either in or
L out of phase. We then subtract Tp (which is easily calculated) from I E I, which is

*known from the measured graph of power I E 12. After subtraction, the difference E
- Tp is corrected by multiplying it by evd. We calculated v as 1.15 7r/inch from the
theory of Reference 1. Figure 2-4 shows the values of A determined from the meas-
ured data for five incidence angles.

2.5 DISCUSSION

In Figure 2-4 the experimentally determined values of A fall within the envelope of the
values of A computed by solving pairs of equations from Equations 2-4. This agree-
ment verifies the approach to solving the guided wave excitation problem for a slab of

finite length. The solution shows that A varies with position even for a single inci-
dence angle. Our verification with experiment shows the model and technique are
reasonable. We point out that we did not compare computed values of A at specific lo-
cations (values of x) with the experimentai Values at the same locations. However,
the good agreement shown in Figure 2-4 substantiates the model in Equation 2-1" and
the approximate pairwise solution of Equations 2-4.

In summary, we have utilized the accurate moment method as a step in a new proce-
dure that estimates explicitly the magnitudes of guided waves on dielectric slabs. Al-
though the moment method gave the total field, it did not identify constituent waves of
distinct types. This identification may become useful in correcting radomes to reduce
boresight error because the common radome practice of changing wall thickness to
correct refractive errors seems ineffective for errors caused by guided waves. It

seems possible that the method can be extended to replace A and B with functions of x
L [I while retaining the functional behavior given by Equation 2-1. Another possilility is

to utilize N/2 values of An and N/2 values of Bn , on the assumption that An is identi-

cal for an adjacent pair of cells and similarly for Bn . We did not pursue a more

eThis model was described in Reference 3.

T r". 2-5
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detailed evaluation of the accuracy of this approach because the results in Figure 2-4
L are reasonable and because the effects of curvature seemed more significant. The

next sections introduce curvature; of course, they also consider finite objects.
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f3. NEARFEL SCATTERING BY FINITE, SOLID CYIZNDER

3.1 INTRODUCTION

This section describes nearfield scattering by a finite length, solid, dielectric cylin-
der. The solid cylinder was studied because it may be useful as an element for de-
composing a hollow cylinder or an axially symmetric shell. The analysis extends that
of Richmond for Infinitely long cylinders. 3

3.2 THEORY

-. The field scattered by a dielectric object can be expressed as a volume integral over
polarization currents. The scattered field is

LE (r') = -1 +v'2 )/4r (3-1)

where

11 2f (K-1)gETdv (3-2)

SI -gV. C-1)E TI dv, (3-3)

and ET is the total field, g is r-1 expikr, and r is the distance between integration and
observation points. The prime superscript (on the gradient operator and r') denotesI ithe observation point.

The moment method determines E T , with the integral in Equation 3-1 and the relation
that

T s I
ducd o1 E - E = E' (3-4)

where E Is the known, incident field. Equation 3-4 is an integral equation. It is re-
duced to a set of simultaneous algebraic equations by subdividing the scatterer into

o (Asmall cells for the purpose of evaluating Equations 3-3 and 3-4. The subdivision jus-
tifies assuming the field constant within each cell; this assumption simplifies the inte-

j Igration. This subdivision leads to a set of simultaneous equations from Equation 3-1.

3-1



1E s
The following sections describe the theory for calculating Ea. To simplify notation let

SE5 (r') E + Es3-5
- -A -s (5

where

E51 1I/4' (3-6)
-A -1

L and

V E =V1I2 /47r (3-7)

S
7 . 3.2.1 EVALUATION OF EA

The integral I is expressed as a sum of integrals over discs like those in Figure 3-1.
* .Assuming K constaut throughout the cylinder and that the field is constant within any

one cell, we have from Equation 3-1 that

''

Is~
ia "\

- \ '

zxj ,L'A6MOO

'LI

Figure 3-1. Subdivision of Cylinder Into Discs
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U
LI ,n' O~n' = k2 (K - n gdv , (3-8)

n-1

where ET is the total electric field In the disc labelled n. Equation 3-1 leads to N si-
multaneous algebraic equations for m = 1,... N.

To evaluate the integrals in Equation 3-1 consider

i = + P' - 2pp 00os (b - 0') + (z - z')2 (3-9)

Because the field is assumed constant within a disc, the field is evaluated at pl, equal
zero; the 0 dependence is removed so the integral over 0 given 2r. We have then
that

z Z+6z ~a212
L_ (z, 2r (K-1) E T exp {ik [P 2 + (Zm J (3-10)

' f z-6Z o

L [2 + (Zn- Z)2] dv

V where a is the cylinder radius and each disc has thickness 26z. The integral over p
can be done with the substitution that

i 02 2 1/ 2

[P + ( -)2]

-i 2 1 k (K- 1)1 E{ exp ik a2 + (z -Z')] - exp k (z- z .

Hn (3-I11

There are two cases. First, zn zm  in this case expand the exponent

=2 1 /2

, ' ;: [a2 +(z-z')1

N,. 3-3



L In a binomial series. The resulting funetions have the form x-1 slnx where x is a Uin-

ear i 6z. For small 6z x-1 sin x is approximately one so that

N N [a 211/2}

f -i4r (K- 1) kz i ae +(",,') J expik Iz- zml

n=1 (3-12)

In the second case zn = zln; z - zn is replaced by the variable C which ranges be-
tween 6z and - 6z. Again expanding the exponential in Equation 3-11, we obtain Fres-
nel Integrals which we approximate by a small argument expansion, to obtain

I
4 = Qc - 1) (ka) (ktz) E . (3-13)-1-m

Note that I1 has the same form for E polarized in the y direction and in the z

* "direction.
4k.

The scattered field is found from Equations 3-12 and 3-13, and the definition in Equa-

* V tion 3-6.
S

3.2.2 ES FOR THE FIELD PARALLEL TO THE CYLINDER AXIS

t. In this case, E has only a z component so Equation 3-3 gives

12= f L(K - 1)E dv. (3-14)

Let the length of the cylinder be 2L. Then (K- 1) is discontinuous with jumps at z
f kL. We write it as (K-i) [H(z+ L)-H(z -L)J, where H is the Heaviside unit func-

tion. The partial differentiation leads to Dirac delta functions. We assume Ez varies
slowly. Again decompose the integral into a sum of integrals over discs like in Fig-
ure 3-1, with the field constant in each disc, and integrate over z, to obtain

(K -1) 12 = EzN I (L) (3-15)

where

2if af_0
1(L) r-1 (exp .krpdpd (3-16)

3-4
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q.Z.

12 (-L) f f r + (expiIF+) pdpd , (3-17)

-Land1/
2 2 21/L:k= [P + p -2pp' cos (0 - 0') + (L A z) (3-18)

To evaluate the Integrals in Equation 3-9, we expand the arguments of the exponentials
to second order. Note that we cannot set p' to zero (as in the previous section) be-
cause of the gradient operator. After doing the integrals and the gradient operation

L we obtain

ES = 1/2 (K-) Ez Ik-L IL+1 IkL+ -L a2 2
E 1/ (K -z1) +L k e - Ez L_ a+ L,

UzI2 2 Z1 zN[1
* v (3-19)

and the scattered field from I2(- L) is

S rl 'L+(a2+L2'1/2 1 (-L 2  eakL-(-_ E0
Z12 ZE1 [L+ +1 J2 zN -) e

U (3-20)

where L +is (L+ z)andL is (L- z').

The result of this subsection is that the integrations lead to two terms for the scattered
( field from Equation 3-13 and two terms from Equation 3-14. These terms arise from
- the 8 functions associated with the ends of the cylinder. Recall DEz/8 z was omitted.

S
3.2.3 ES FOR THE FIELD PERPENDICULAR TO THE CYLINDER AXIS

In this case the field has p and # components so

I f g=K 1)E+ 4(xK-1) E'0]dv (3-21)

As before, we assume that the field depends only on z; in addition (i -1) is independ-
) ,- ent of . Therefore

Ilk

3-5
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fg (ic1) E d.(3-22)

OP P

Let the function (K - 1) be (- 1) [1 - H (a)] where now K is the value in the dielectric
and H (a) is the Heaviside function. Assume the field has only a y component so E is
Ey sin#. By decomposing the integration Into the discs of Figure 3-1 we have

12 = -(KI-1)Ey n f g sin* 4 6(a) dv. (3-23)

To do the integral first integrate on p and then introduce the variable -*' = 0. We
obtain

z +6z2Ur-01'n
2= (K ) a E E (coso' sinG + sino' cos 9) g(a) d~dz

z n 6 (3-24)

where g (a) is g in Equation 3-3 with

2 2 21/2r = r(a) =[a +p' -2aptcosG+(z- .t) (3-25)

The first term on the right side gives an integral equal zero because the integral is an
odd function of 0. To evaluate the second term expand r (a) in a binomial series

r(a) d-ad- 1 p'cos6+ d -1  (3-26)

where d is ((zn - z~a)2 + a2 1 / 2 , and is (zn - zj.). Recall zn is at the center of the
disc for which the integral is being done and z6 is the observation point, at the center

L of one of the discs. The integration yields

1 2 = 2i (K - 1) sinc (k6z) pt sin ' : E d- 1 expikd (3-27)

iL

where sincx indicates x sinx. The scattered field follows from the gradient opera-
tion in Equation 3-1; the y component is

S

y = -(x-1) k2 5z sine (M z) M Eyn  explkd (3-28)

TN. 3-6
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We see that the scattered field from the gradient of the scalar potential contains con-
tributons from all discs. This result contrasts with the case for the field parallel to

'V the cylinder. In that case there were only contributions from the ends for the gradient
of the scalar potential.

Li 3.2.4 ALGEBRAIC EQUATIONS FOR INTERNAL FIELDS

L The algebraic equations result from the definition

T_ S =I
E -E = E . (3-29)

For the electric field parallel to the cylinder we have for m = 1, ... N

NI
kC E = Em (3-30)

!n7-

where

C11 CNN 1pB

C i = Y I - A,N1I

L. for the other diagonal matrix elements,

Cnn=1-p,

and for the remaining elements

-mn = Iyfmn

where = K-1, P = kz, a = ka, p = y, and

L "fn exp1k [a 2 +(Zn m2 1/2

, f =+ z - - expik 1z - ZI.

' " 3 -7/
!r -
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II

In addition

A - y a 2/4) Itk - (2L - 6z) "1 (2L - 6z) - 1 explk (2L - 6z), (3-31)

i/nd

B = (1/2),[6z (a2 + 6z )  -I]. (3-32)

For E' perpendicular to the cylinder, the diagonal elements are
UL  C = 1-p-h

C nn Iphnn

where

h iaze /2ai!i
" 3.2.5 EXTERNAL FIELDS

The field outside a cylinder is found by evaluating Equation 3-1 with the values of ETUdetermined by solving Equation 3-30. The integrations are the volumes of the discs to

preserve dimensional units of the field, not on set of points corresponding to disc coen-L ters. For the divergence we utilized finite differences.

First let us consider the contribution of the vector potential to the external, scattered
f field. From Equation 3-1,

E s(r) /47rI (3-33)

where

f k2( 1) g ETdv, (3-34)

and ET is the total internal field, g is r- 1 expikr with r the distance between integra-
tion and observation points, and K is the dielectric constant. Equation 3-33 omits the

Lterm
E- V 'I14r (3-35)

3-8
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with the prime indicating differentiation on the observation coordinates where

-2 J/,V. [(K- 1) E] dv (3-36)

The result from 1 Is for the q component (q = y or z)

T I [I. (z') 1 2 1i2(Axz]2 Ax?]]-1/2
E151 =11 z ) 5k? Z (Klekx ~E (z) e + [x 2 (z -z)

(3-37)

For 12 the integrations are different for E1 and E'.
2 y zI

To evaluate I for E , in Equation 3-35 we utilize polar coordinates. So?y

1_ = (K - 1) E 1 (K-) E3 dv (3-38)

e. * Because the dielectric cylinder has small diameter, we assume Ep/Sp is negligible.
This assumption was also made in computing the internal field. Thus

I2 =-(K-1) 'E p 6(a) dpdCIOdz-(K-1) fg (Excos +Ey sin)dpdo dz
- jX3-39y

The Dirac delta function comes from differentiating (K - 1). Now the incident field has

only the E1 component, so we assume E Is negligible. After some manipulation, wel., have Y

i~ 2 fLLfo2 r" 5ib-1

ilk = (K1) a f E ei b-cos (0 - ')sin dO dz ,(3-40)
-2 2.L

2 2
where 2L is cylinder length and b is pt + (z - z1) 3 . By stationary phase we integrate

on z to obtain

ss= 3 ( 2)-k) co 'eikp' (k'3/2
E:=II(K_- (a) cosor ek (kp) (F +F )E (3-41)

s 8 + y

where F is the Fresnel integral evaluated at (2Ap') I / 2 (L • zt).

If 3-9I.
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I
For Ez, that is E parallel to the rod, the scattered field is associated with delta
functions, at the ends of the cylinder, arising from the divergence operation. The re-

isult is assuming the field constant in the end cells
ikD2 -1l-2D-L

Es  z (x', ') EN (e 1) a 2 - , (3-42)

L where
2 21/2(0,2 2 )

L is DisP + L

for E

S3 -(k)2 cos eikp -3/2
Es (xt, z') = i(c-1) 8  (F +F)E , (3-43)y + y

L if we assume the field is constant in the cylinder, where F, is the Fresnel integral

evaluated at4 42p I(L + z').

3.3 COMPUTATIONAL EXAMPLES

The formulas of Sections 3. 2.4 and 3.2.5 were utilized to calculate the fields near a
cylinder. The first step was to invert the matrix in Equation 3-30 to determine the
total field within the cylinder. The second step was to compute the external field.

T
Figure 3-2 shows I EI inside a dielectric cylinder for N = 26, with K equal 2.6, di-

r ameter 0. 139", length 1. 9". The wavelength was 1. 259", and the electric field was
Lparallel to the cylinder axis. The figure gives IETI computed according to the theory

of Section 3.2.4 with A and B in Equations 3-31 and 3-32 set equal to zero and again
for A and B evaluated according to these equations. We see that the effect of A and BLis to change I ET I near the ends of the cylinder. Figure 3-2 also shows the exact val-
ue of I ETI for an Infinitely long cylinder possessing diameter and dielectric constant[ equal to those of the finite cylinder.

The external field was computed first from the vector potential formula, Equation
3-37 with ET the internal field computed from both the vector and scalar potentials.
The total, external field was computed for E parallel to the cylinder axis for distance
p? equal X/2. See Figure 3-3. The total, external field for E perpendicular to the

- cylinder axis Is shown in Figure 3-4 again for pl = X/2.' The effect of adding the con-
. tribution from the gradient of the scalar potential also is shown in Figures 3-3 and

3-4.

3-10
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. 7.

A*8 ..* .- A-4

IETI

z ONOSA Z (INCH)

Figure 3-2. Total Internal Field 1E inside cylinder, m: 2. 6, length 1. 9",
diameter 0. 139"1 calculated by moment method. Exact solution for

infinite cylinder ( )X = 1. 259 ", N =26.

3.4 MEASUREMENT

The field near the cylinder of Section 3-3 was measured with a dipole probe in a mi-
crowave interferometer. Reference 1 described apparatus and procedures. Figures
3-3 and 3-4 show measured dat. The measurements were made with the cylinder
suspended by Nylon threads. Additional data were given in Reference 1.

3.5 DISCUSSION

In general, the discrepancies betwew-, lm measured and computed neartield values of
ET are reasoniably small and voib Ue theory, the mathematical approximations, and,
the numeical procedures. Figure 3-3 shows the scalar potential contribution negligi-
bly changes the compiud 'values for the field parallel to the rod. Discrepancies are
smiall even without tom scalar polental contribution. Figure 3-4 shows that the scalarr polentia contribution is sigipficant for the electric field orthogonal to the rod.

The expermental data show I ETI 12is larger for the hoeld parallel to the cylinder than
* for the field orthogonal. This result is intuitive. The phase values near the rod cen-

ter are approximately equal for both cases. Near the ends of the cylinder phase de-
creases more rapidly for the parallel ase.

i~i: 3-11
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x K

24 + 
\ x 1

* PHASEK
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h Figure 3-4. As in Figure 3-3, but for electric field perpendicular to rod.
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4. NEARFIELD SCATIERING BY A HOLLOW DIELECTRIC CYLINDER

V This section describes nearfield scattering by hollow dielectric cylinder.

4. 1 THEORY

The integral equation for the electric field is obtained from the definition that the
scattered field is

Es  A V4 (4-1)

where the vector potential is a volume integral

A = -lPo o (4)- 1 f(K-l) g dV, (4-2)

the scalar potential is

= -(4 g V (K-1) E dV, (4-3)

and g is r-1 expikr, with r the distance between observation and integration points K is
the dielectric constant, and the prime denotes differentiation on the observation point
coordinates. In these formulas E is the total field, which is unknown. The potentials
arise from a polarization current

Jol = -iWCo (K-1)E (4-4)

and a polarization charge

Ppol = - V (K-1) E (4-5)

tK where the divergence is over the Integration point coordinates.

The integral equation is
L

E - Es = E (4-6)

Swhere E is given by Equation (4-1) with A and 4 from Equations (4-2) and (4-3).

4-1
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The integral equation is solved for the interior of the dielectric cylinder. The equa-
tion is changed to a set of simultaneous algebraic equations. The cylinder is divided

* into rings and subdivided Into cells as in Figures 4-1, 4-2 and 4-3. The integral
equation is evaluated at the center of each cell to generate as many equations as there
are cells. At the center of a particular cell, labelled with index m, the integral equa-
tion for each rectangular component is

IE -E s =EIn m m

for 1 -sm-sN, where N is the number of cells. E is a sum of contributions from allm
cells, so

E m  E s  E I

In mn m

INCIDENT WAVE NORMAL

I.6.

t' : z

t 
AORO02

Figure 4-1. Dielectric Ring and Coordinate System
4-

T " 
4 -2

- - -



This equation can be put into obvious matrix form by writing

E1 E E

InE~ (En/En) E = l

or

IC E Emn n1 n

WF j( TT

z

II I I

I .

Figure 4-2. Subdivision of Hollow Cylinder Into Rings. An observation point has
coordinates (x', y', z'); It may be Inside or outside the cylinder.

Figure 4-3. Coordinates for a Cell. A typical cell has dimensions as follows:
radial 2 8 p, circumferential 264, and longitudinal 26z

TN,.. 4-3



Wp o

V where

nu 'mm E m/)

and

C =-E /E
mn mn n

The next step is to evaluate the scattered fields E:.. Formulas are derived in the
following sections. Diagonal and off-diagonal matrix elements are separately given,
and the vector and scalar potentials are separately evaluated.

4.2 SCATTERED FIELD FOR DIAGONAL ELEMENTS

4.2.1 VECTOR POTENTIAL

The scattered field from the vector potential is

e~ = k2 (K-1) (4r) 1
if g ILdV. (4-7)

Let us assume horizontal polarization both incident and within the ring. This assump-
tion may be valid if we consider thin rings and axial incidence. For the cell labelled
m we have

E I 2 (-)(l)fgd 48
xmn k(-)(i)f VI 48

To simplifyr notation let

I Am f gEdVm (4-9)

Since the Integration extends only over the cell labelled m,

[ 2+2 2]1/2

pm 2p co m+(ZZ )2] (4-10)

1.-with integration imits p -8p :Sp pm + p, zm -6 z :s z :s zr+6, Om -6 0 2,0
:5 Om + 0 , Introduce abbreviations 0 Om, t z z~m, anldC a p-pm. Then

* on assuming 0 -m Is small, we have

TN 4-.4



4 ... .. .. .I lI

[ r I - (or + 1/2

Sso that

6z 86 .0 -1 ikrm
I = f f f Ere (pm +a)cos odad. d .  (4-12)
'Am f xm In

-3z -60 - 6p

The factor cos 9 in the integrand arises from first expressing the x-component of field
in polar coordinates, expanding cos (0 + 0m) and sin (0 + Om), and then using small
angle approximations for sin 0 and cos 0. Now assume rm is small; that is, a and C
are small. Moreover, assume E is constant Em in the cell. Thus we can expand the
exponential, to obtain

'Am ( A + I( 2 ) (4-13)

S1:where

6z 64) 6p
= m J (P +o) cos 0 d dO d (4-14)

! -6- -60 -6P

This integral is, if we omit a inp + a,

1I(2) = ik (8 6z 6 0 ) E (4-15)
Am m m

The factor in parentheses is the volume of the cell.

The term I( I ) is more complicated. We omit limits, which equal those in Equation
(4-12)

(1) 2 21/I(11 - 1  + a) 0 + + I (Pm + a) cos 0 do dO d E (4-16)SAm Ii 'm Pm m

I tThe integral over C leads to a logarithmic function so

Am - f/( + o) cos 0 log [(R+1)/(R-1)] d" d9 E (4-17)Am mfInI

where Ris [+(s+/6 2 )]1/2, and

4-5
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where s+ Is + (Pm + ) M 1 . Assuming s+ 2 8z to expand the square[I root, we obtain
[i .~~~(1) { 1+(=2Z2 c eE

Am (Pm + o) cos a log 46 z2 s- 2  + (s/ 2]d (4-18)

= ff (Pr + a) cos 0 log (26/s+)2 da dO Em

+ ff (s+/26z)2 (p + ) cos 0 do dEI

We Wae that cos 0 - 1 and a -x pm to carry out the integrals. We finally have
? that the x component of the scattered field is

SAm = s 2 [1- log (s/26z)J2 + Pm --34z s 2 , (4-19)

L" "where

2 2 2 
-2

S2 + m

Equations (2-8), (2-13), (2-15), and (2-19) give the scattered field in the cell labelled
i. m

EA = k(-1) i k6z6p pm6 + Pm A,,, s 2 +L I- log (s2 /26z) E

m 127r6z 2  m

(4-20)

For brevity we omit the details of the integrations over o and 0. The integral was
done by integrating over local polar coordinates. In effect then our cells are small
right circular cylinders not the truncated wedges defined by Pmd0dJY. This approxi-
mation procedure is described near the end of Paragraph 4.2.2.

4.2.2 SCALAR POTENTIAL

. . The scattered field from the scalar potential is

E: -4! ~s 1 2 (4-21)

TIN, 4-6
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where

12 = v. (K-I) E dV (4-22)

To represent the dielectric constant we use the unit step functions as functions of p
only. That is, we shall understand,

(K-1) = (K-1) [H (PM - 6p) - H (PM - 6p)J (4-23)

where on the right side (K-1) is a constant, but on the left K is a function of p. Be-
cause we have assumed Ez = 0, it is unnecessary to specify the z dependence. Final-
ly, K is assumed independent of 0. Therefore

ikr
12 f e V-.(K-1)[H(p m -6p)-H(p m +6p

)] E lr cos - 1sin )dV

(4-24)

where 1 and 1 are unit vectors in the r and 0 directions respectively.

We assume div E =0, in the cell so

I2 (K-1) E ( 42)2 4) (4-25)

where

= g6 (p -6 p) cos dV , (4-26)

i(2 ) m'(2)
2j f gaPI + 6)CsdVIn4-7

~(3) 2 g fgos j5dp dodz (4-28)

The irst two integrals, 12 nd ,aroth cancel. To see this consider Ij
! Assume kr is small and expand expikr. Thus

I(1) =f (r- l + ik) 5(pm- 6p) cos dVm

TN' 4-7



The second term of the integrazd with factor ik, gives -41k (pm- 6 p) 6z 6 008 *m"
This term is omitted because It approximately cancels the term -41k (pm + 6p) 8z S#*
that arises from (2). The first term, with factor r - 1, gives

LP C1s - 06mfS(/Pn)2 +( . 1  p )2]'/ coo 9 dO dr;

! ((4-29)

recall 0 and C were defined earlier. Following Integration on 9 we have

) 6 P CosO- In P )cos 0 dO dt (4-30)S IL
where

(p - 6p)6q*6z In
** p + (4-31)II. . Pin2q

and

I q= 6+2  (4-32)

The evaluation of I2) proceeds In the same way. The result is that

I +{L, COS(O2 SflnQ+- InQ) cos (dOdt (4-33)
PM

where

S(p + 6p) 02(qk*6z) m43t

Qp " (4-34)

Pm

Now consider

41 - (1 -.. LP)fIn (L+/L) dO (4-35)

2 m

T:4-
• " 4 8

Il

I _________________________________________
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where

S s2 -6z 2 + 0 2 + I4 6z 6p 02 (4-36)
i  2 4 2 8 Pm

Inspection of L+/L_ shows that it tends to unit value for small 8. For example, at
S0= 0 the value is 1; for 8 = 0.2, the value is 1.046. Therefore the logarithm is

small so the contributions of d 1) and 1(2) from Em are omitted.2 Am

To evaluate 43), expand the exponential, expikr, in the integrand as 1 + 1kr. The
first term Is omitted because it is independent of the observation point coordinates

so the V1 operator yields zero. From the second term we obtain

3 r 1 cos 0 dp d dz (4-37)

Again we use substitution z -z = 'P - P = a, = O to obtain

-1/22 [1f 82  00 9odpd~dr. (4-38)

~~~We assume O is small so cos 6 1. I. ntegration on gives :(3) rc ff [a2 ) ~ 2 242
4 + +cos z cog 84 0 d dt d

2 ~L 2 ~ Em+GPm* +0or

i (4-38)

1I I Because wall thickness is much smaller than radius, we omit the term

Pm 82/46 z
in the i smntegrands. The integrations on C and 9 give

13). - 1 [ .,21 ,+ ,) , .,-, 2 _

/ ,-.'r, '(4-4)

4-9
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where

-L I (6p 2+Pn2 2).

To obtain the field apply the v' operator to I13 1. The p and components are as
follows:

(:) =--(-,) [1+ (1 - log S --2) ( -22 -2)

+ cos j E (4-41)

3ir 6z2 -
m

(E~) =4(K-1) (s)2 1[1 log i] + rz sin m E (4-42)

[. From Equations (4-41) and (4-42), the contribution of the scalar potential to the x

component of the scattered field is

KIL02 2 ]
Am 1$) = 2(p-) I +d( 0 2 )2 +IcnS2m

sm

+ )2 (d + f) sin2  JE 4-43)

where

2
d = 1 -log (1) (4-44)

id

and

f Prn 6P 60/(AU 6z) 2(4-45)

4-10
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4.3 SCATTERED FIELD FOR OFF-DAGONAL E LEMENTS

* L4.3.1 VECTOR POTENTIAL

I ~The scattered field at the cell centers results from a finite sum of Integrals over cells

like those in Figure 2-3. The vector potential gives for the x component

ES m  - k2 (4T) -1 (1) E n I, (4-46)

Amn I

$ Kwhere

I =f g cos -1 sino) d-, (4-47)LP
and the prime suggests the sum excludes the term for n - m.

L; In g, set P. Pm; for small O,

r = 2bP +(Z-Z) + 2 P b/+ 2 (z-Zm) (4-48)
In +nz)

where b is 1 - cos (n - m). The binomial expansion gives approximately that

r + p [pm b4 + (zn - z m)C] (4-49)

* where

[2 9.  Zm)2] 1 /2 (4-50)0 / = [b Pm + (z n _" (-0

With Equation (2-49),

-1 0 f e I " m eikA - (pn + cr) da do d C. (4-51)

* i

a* Fz 60, -1 p 1 j (1/6)(kp b6 *)- 1 [k ZczP-1]21
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The higher terms have mag itudes much less than 1, so

m 8pm1 p6z -lei (4-52)

LThe scattered field is

E' = (K-l)k p 6p6z 60 E - i (4-53)

4.3.2 SCALAR POTENTIAL

The derivation of matrix elements is slightly more general for this case because of
the gradient on observation point coordinates. That is, the gradient operation V? is
performed, after that set Pm = P.. The distance In the expression for g is

li m Zm)1/2
r = P+Pm -2PPmcos ( m +(z- z (4-54)

I. . i

I Nowlet z =z +,p pn + a sothat
n n

r L= + 2 pn - 2 pro cos( n - )) +2 (z n - Zmj  , (4-55)

Lwhere

s = (p2+ pm 2+znm - 2pnPma)1/2 (4-56)

The binomial expansion gives approximately that

r = S+pn -p. cos(. m) +z nm  s +  " (4-57)

Now consider 1 3 ) of Equation (4-28). With r from Equation (4-57),

L 8 12) = p z e i s s" I  n (4-58)

If we approximate the sinc functions that result from integration by unit value.

4-12



From Equations (4-26) and (4-27),

4 ~ ~~ 1 (1~2) iks-I A.A A - 1+k pp 04 -,)

28 z 60 p ei  - I+ fkpnn Pm Cos on-0m )]  .(4-59)

The scattered field from I3) for the nth cell is

Es i 3 ) (K-1) E V' (3)n 2 4v xn t2

1:2 iks -1
= -- (K-1) 6p 6 6zcos 0 E V'e s E (4-60)7 n n 2n

The differentiations are on p and 0m. The x component is

s (3) 2 -1 iks -2
E 1= I -(K-1) 6p6z6 cOS 4 (ik-s )e p s sin(q5 -m)sin4 EI x 2 n n m xn

(4-61)

i The gradient operation on i1) - (2) gives two terms; in fact,
2 2 ie w em;I

(2 (3) +AS
E ( - = E I + E (4-62)

Ki where

E Gs G22 s -2b-1 -p2 bks- 1 ] PmCos b[2pbs1
n Gn 2 nm [Inn

S+ (1 - b) -ik Pmb] }(4-63)

with

nm =sin(in -m) and sm =sin4m

nn n mIn

4.4 EXTERNAL FIELDS

-* The field outside the dielectric region Is found by evaluating Equations (4-7) and
(4-21). The integration extends over the dielectric region. It can be done after the
total field inside the dielectric is determined by solving the integral equation.

4-13
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The field near a cylinder is evaluated to test the approximations in the derivations.
The near field also is useful in understanding the effects of a dielectric cylinder or a
radome on an antenna.

The field from the vector potential is

E S(A)= iwA.

A measurement requires a probe. We consider a half-wave dipole and weight the con-
tribution of each cell by the far-field pattern. To simplify the expressions, consider
the field on the z-axis. The sector potential gives for the x component (from one ring)

(4) 2 -1
- ES () = (K-i) k ( -1  g E cos cos 0) (sin 0) pdpd *dz (4-64)

where the factor cos (7r/2 cos 0)/sin 0 is the far-field pattern of the probe. Consider
the distance large enough so that

r = R+(a - ap cos -zz) R 1  (4-65)

where a is the mean radius of the cylinder and R is (a2 + z'2)1/2. Furthermore ap-
proximate sin 0;

* sin 0 = 1 - (a/R)2 cos 2  ( (4-66)

To develop a simple formula we omit the dependence of E on ' and use an average
value E . The integrations are elementary, so that

0

E(A 1 ) = 2 (K-1)k a 6p z E e k R sinc (ka 6p/R) sine (kz' 6z/R) P

-(a/2R) 2  -I .(4-67)

i I! [P is [1 - (a/2R)2 (r 2/4 - 1)], the probe correction.

The field from the scalar potential is

x(4) = (4r) ~' gv.(K-1)E dV. (4-68)
x 

S 2I ,.4-14
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The procedures are like those in Section 4.2.2 and 4. 3.2. So

Es 2 e "" k ' ' " ] cos2 ,0 dado dz, (4-69)

x2 2

where

= (ao - ap' cos0 -zz') (4-70)

and

[...1 [6 (+6p)-6 (a-6p)-a -1  
. (4-71)

After doing the integrals, we have

= ir (K-1)a 6 6 ikR (R2 X) -+ Jo - sinc P'E

.x (a R 0 I)oE

(4-72)

2 2 2Note the probe correction P' is (1 - 3/8 (72/4 - 1) a /R J; ft differs from that in
Equation (4-67).

The total field is

T I s sE = E +E (A)+E s ($) (4-73)x x x
The observable quantities are intensity ET 2 and phase, the argument of ET.

x x

This theory does not include the effects of fields reflected from the probe to the scat-

L [terer and scattered back to the probe.

The formulas generalize readily to several rings forming a cylinder. For example
for two rings

E . E (A = Es (A,) (E 0 1 ez 6/R + E 0 2 •' 6z (4-74)

* where E 0 1 and E0 2 are the fields in each of the rings and Es (A1 ) is from Equation
(4-67). The scalar potential gives

4-15



E5  Es (E0 e" IkzI + 4-E W,6 (4-75)Ex(2 ) = s (*2)  01 E02

where Es (4 is from Equation (4-71).

4.5 COMPUTATION

The first example was for a single ring diameter 2a equal A, length 2 6z - 0.16 A, di-
electric constant 2.6. Because incidence was axial, necessary conditions on the corn-
puted results were that the field at = 0 equal that at v Tand that the field at
- T/2 equal that at = 3 r/2. This condition was well satisfied. Figure 4-4 shows
computed internal values of ET for several values of N.

Figure 4-5 shows computed internal values of ET for a cylinder, diameter A, length
0. 32 A. Two rings were utilized.

T
Figure 4-6 shows computed values of E outside the ring, on the z-axis, with and
without probe corrections. Figure 4-7 shows computed values of ET outside the cyl-
inder. Figure 4-8 shows computed values for the cylinder, but the area of the cylin-
der cross section was reduced by 80% in evaluating the external field integrals,

.0 -- 9.0

1.40 6.0

*

130- 70

1.20 - \.,0

0

o 0 LIII I IJ
IS 24 32 40 46 K 64

AOR005
N

Figure 4-4. Phase and Amplitude of ET for Single Ring: 6z = 0.100 in., 6p - 0. 030
,, in., x = 2.6, frequency = 9.375GHz. For = 0"(o), = 90"(.)
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AA - 46

V4. 4

ET,

1,2 - 41-42
I.! I

I 39

to 24 32 40 a 56

AON~ N

L TFigure 4-5. Phase and Amplitude of E for Two Rings. dz - 0. 1045 in.;
6p - 0. 0313 in. at center of second cell. Symbols as in Figure 4-4.

Equations (4-74) and (4-75). The area reduction makes the volume of the cylinder
equal to that of the elementary integration cells.

4.6 MEASUREMENT

Intensity and phase near the cylinders were measured with a setup that Included a
travelling half-wave dipole probe and a network analyzer. Measurements were made
for horizontal polarization in the system of Figure 4-3. The probe was scanned in the

f- . x direction or y direction for fixed values of z. Figures 4-6 and 4-7 show the two ob-
served values on the z-axis; one value comes from each scan.

4-17h.1
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[ 115

I.0.5 1.0 1.5 2.0Z O
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Figure 4-6. Total Field Behind Dielectric Ring. Length: 0. 2 in.; thicknaess 24p-
0.06 In.; mean diameter 2a: 1.25 In.; dielectric constant 2.6. Mesa-{ ured with dipole probe: (*); computed without probe corrections (o);
computedwith probecorrection) i.nternalfield 1. 9exp 17.S.
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