AD=A082 378 GENERAL DYNAMICS SAN DIEGO CALIF ELECTRONICS DIV F/6 20/1%
WAVE PROPAGATION THROUSH AXIALLY=SYMMETRIC DIELECTRIC SHELLS, (U)
FEB 80 6 TRICOLESs E L ROPE, R A HAYWARD N00019=78~C-0%598
UNCLASSIFIED R=80-008




el X
g § i &
i -

2

B
—
ll>

Al

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




JVAVEPROPAGATION ———
THROUGH

AXIALLY-SYMMETRIC DIELECTRIC SHELLS
it 4 Y S dedd

‘/l Finalﬁg(o) [
_._u_,._._._’by - .
é G.zricoles E.Liope_‘ R.Aj-layward/
[ 4

, ' C
e Drt ] ©

J i
1 2]
; Prepared for
b
. U.S. Naval Air Systems Command
x under
.2 Contract NofNBB019-78-C-0594 MJ/"'/

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED |

GENERAL DYNAMICS

Electronics Division
£.0. Box 81127, Sen Diego, Catifornia 92138 - 714.279-7301

r-‘

LEV 7SS

B S -

" . o




W e

!

CONTENTS

INTRODUCTION AND SUMMARY

1.1 Introduction ....
1.2 Summary

FINITE DIELECTRIC SLAB: GUIDED WAVE AMPLITUDE. . ..

Introduction
Theory ...
Computation . .
Measurement
Discussion

| S

par———— fr—— e—
. [ .

NEARFIELD SCATTERING BY FINITE, SOLID CYLINDER
Introduction

Ty
f .
[

[
. .

Egaluatlon of ﬂ
Es for the Fleld Parallel to the Cylinder Axls

ES for the Field Perpendicular to the Cylinder Axis. . .

Algebraic Equations for Internal Fields . ,
External Fields ... ..

Computational Examples

Measurement

Discussion . .

.
DN W N =

i

.

©0 0w B wwww

NEARFIELD SCATTERING BY A HOLLOW DIELECTRIC
CYLINDER....

4.1 Theory

4.2 Scattered Field for Diagonal Elements
4.2.1 Vector Potentfal ...........
4.2.2 Scalar Potential ........

4.3 Scattered Field for Off-Diagonal Elements
4.3.1 Vector Potential

4,3.2 Scalar Potential

4,4 External Fields . . .

4.5 Computation

4.6 Measurement ..

-

L IR —— I —- I oue

REFERENCES

s e




“n

iy paeme—
PRTO o

L

Figure

2-1
2-2

2-3

2-4
3-1
3-2

3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

ILLUSTRATIONS

Title

Co-ordinates foraSlab .........

.. 2.1

Guided Wave Amplitudes (Computed from Equatlons 2-5 and 2-12),

¢i = 0° is grazing incidence, and | = 90° is normal

L R A I A R Y 2-4

Measured Intensity Near Slab (Polarization Perpendicular, Diople
Probe 0.1" from Slab, Incidence Angle 60%;9¢;=30%........... 2-6

Guided Wave Amplitude (Computed from Equation 2-5 (-)). ,...... 2-7
Subdivision of Cylinder Into Discs. C e e et sees 3=2
Total Internal Field |ET| inside cylinder, k=28, length 1 9"
diameter 0. 139" calculated by moment method ........ . 3-11
External Total fleld for 1.5Along rod; X = 2, 6; diameter = 0. 139"
A=1.259atx=0.5A. et e e ee e 3-12
As in Figure 3-3, but for electrlc ﬁeld perpendlcular torod ..... 3-13
Dielectric Ring and Coordinate System ...... et et e e e 4-2
" Subdivision of Hollow Cylinder Into Rings. . . .. et 4-3
CoordinatesforaCell ................ c e et e e e .o 4-3
Phase and Amplitude of ET for Single Ring. . . .......... ceve. 4-16
Phase and Amplitude of ET for TwoRings . ......... et 4-17
Total Field Behind DielectricRIng . ............... e e e 4-18
Total Field Outside DielectricRing ......... c e ceeeas 4-19
As in Figure 4-7 bt with 3p Reduced by 20 Percent ........... 4-20
" Accession For
NTIS @ORARIL
DDC TAB
Unannounced

Justification ___

By,
pistributicn/
__Availability Ccdrs
Avalland/ox
Dist special




Py
7

K 1

1. INTRODUCTION AND SUMMARY

1.1 INTRCDUCTION

Radomes can limit the performance of airbome radar and guidance systems by reduc-
ing guidance accuracy and radar range. This limitation persists despite continuing
radome development because newer missiles fly faster and higher, and because newer
threats require greater frequency bandwidths., In addition, the need for maximum ra-
dar range drives the antenna diameter to the maximum that fits within the radome;
consequently, the antenna receives waves that are guided by the radome. These guid-
ed waves produce boresight errors. Our experiments have shown that the guided
wave induced errors require radome correction techniques that differ from the usual
method of small, local thickness variations.

-

e
-

The electromagnetic design of radomes and the correction of radome boresight error
S usually requires a long development period that includes much empirical work, Al-
. . L though analytical methods have been, and a.e being, developed, most methods are ap-
proximate, Unfortunately systematic error analyses are limited because radomes in-
{ volve many factors and because the enclosed antenna influences performance,

. Because of these limitations on radome design methods, interest exists in electronic
\ L compensation methods. Radome boresight error would be measured and stored in an
L on-board, digital memory, and these data would be applied as corrections during mis-

sile flight. This approach is attractive, but it has limitations. Obviously, adequate

& storage is required. The memory must be large since boresight error depends on

- gimbal angle, frequency, and wave polarization. Existing memories and processors

i N seem capable of handling these variables within size limitations of missiles, but fre-

quency and polarization sensors would be required. Cost impacts need study.

A potentially more serious problem is the temperature dependence of radome bore-

sight error. This dependence involves many possible trajectories and the missile po-

- sition within each trajectory. However, no accurate facility exists for measuring
boresight error of heated radomes; this is an obstacle to electronic compensation,

B An alternative to electronic compensation is designing the radome for elevated tem-
peratures, The radome would be somewhat thinner than for best room temperature

’ performance. However, this alternative still requires high temperature measure-

i U ments of boresight error for its evaluation, and it depends on accurate design methods.

. F L

Accurate radome design methods require accurate descriptions of wave propagation

‘ : { through the radome, This description must include the effects of frequency, polariza-

=9 si ’ tion and the direction of the incident wave, The radii of curvature of the radome are
g [
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also a significant factor because they influence the wave types excited by an incident
wave and the accuracy of approximate descriptions., Typical radii range from less
than one to several wavelengths.

This report describes a continuing study of wave propagation through dielectric shells.
Emphasis this year was on axially symmetric shells such as hollow cylinders. Last
year we considered the hollow wedge, which is a two-dimensional radome, and the flat
slab, which is a building block of 2 wedge and a local approximation to a shell, 1*
Qnentitative data were given on phase shifts caused by refraction and plane wave prop-
agation through the dielectrics; in addition some guided wave %roperties were deter-

mined. The analytical method used was the moment meﬂmdz’ .

1.2 SUMMARY

Section,é’ ’describes a technique estimating the amplitude and phase of guided waves
excited on finite dielectric slabs by incident plane waves. The procedure is based on
the moment method, but it extends that method by postulating an explicit form for the
guided waves and solving for the guided wave amplitudes. The method solves for the
two guided waves that travel in opposite directions parallel to the slab. Experiment
verified the technique.

Section 3 describes nearfield scattering by a finite, solid, dielectric cylinder. Inci-
dence was broadside. The procedure extends the theory originally developed by
Richmond. It identifies the effects from the ends of the cylinder. Experiment verified
the procedure for polarization parallel or perpendicular to the cylinder.

A .
Section 4 describes a new technique for nearfield scattering by a hollow dielectric
cylinder. The moment method was used but the cells were finite angular sectors.
This is a new shape. Singularities of integrands were integrable. Experiment verified
our approximate theory, especially when a correction for the pattern of the probe an-
tenna was utilized.\.

*References are given in Section 5.

TUIR, TR RSt o U L gt b R DY SV

i S ol




‘. -

-~
) { J—

e

R~

'

T R PRy
L ARy Ry Eds

2, FINITE DIELECTRIC SLAB: GUIDED WAVE AMPLITUDE

2.1 INTRODUCTION

This section describes an application of the moment method to determining the guided
wave magnitude on a finite dielectric slab. Reference 1 presented a moment method
analysis of flat slabs, and it gave experimental checks. The method will be used in
this report, but only a brief summary of the theory is included.

2.2 THEORY
Let us represent the field within the slab as a sum of four waves, which, in the co-
ordinate system of Figure 2-1, are as follows:

1) A plane wave transmitted into the slab: Te "*%,

2) A reflected plane wave: Reikxx ,
3) A slab-guided wave: Ael 8%,
4) A reflected slab-guided wave: Be_ikgx,

At the slab midplane, Y equals zero; thus the field is

ik x ik x -ik x
E(y=0) =Se X +Ae & +Be & | (2-1)

GEOQ28A

Figure 2-1. Co-ordinates for a Slab
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where by assumption S is T +R, and T and R are respectively the complex-valued
transmittance and reflectance of a flat dielectric sheet for plane waves, In addition,
kx is (27/A) sin &, with A the wavelength and a the incidence angle, andkgtha propa-
gation constant of a wave guided by an infinite slab.2 We seek A and B.

The total field in a slab can be accurately determined with the moment method. Be-
cause that theory, extensive calculations, and measurements were given in Reference
1 through 3, we only summarize the method here. The moment method starts by di-
viding a slab into a set of N parallel cylinders and assuming the fleld constant within
any cell. An integral equation for scattering relates the unknown total fleld ET, the
incident field EL, and the scattered field ES, so that

E" - ak*/4) (e-1) SSET (', ) H D ey axt gyt = 2-2)

where Ho(l) is a Hankel function, « is dielectric constant, and p is distance between
observation and integration points, Equation 2-2 is evaluated at the center of each
cell, with the integral extending over all cells, to produce N simultaneous, linear al-
gebraic equations. The result is that

N

T _ I
Z ConEy = E» (2-3)

n=1

forl<ms= N,

14

To determine A and B, combine Equations 2-1 and 2-3 and use Snell's law. Thus,

ikxxn ikgxn -1kgxn ikxxm
sEcml e + AECmn e + BECmn e " =e , (2-4)

for m equal 1 through N. Now N can be large. Its value depends on the size of the
slab because cylinder radius is limited by the assumption that the field is constant.
Although N is large, we have only two unknowns (A and B) because these guided wave
amplitudes were assumed constant. Actually A and B could depend on x. In this case
we would have N values of A and N values of B, However, if A and B vary slowly with
x, it seems reasonable to consider successive pairs of equations in Equation 2-4 and
to solve each pair for a value of A and a value of B. The solution is of course approx-
imate because higher order modes can exist, and even the dominant slab mode may
not be fully excited near an edge.

To evaluate A and B requires first evaluating the co-efficients Cy,,, and then solving
successive pairs from Equation 2-4, For m and m +1 we obtain




': o T A CI e

-1
-gt -gt ' -
[rm sm m+1 (sm+1) ) [sm sm sm-i-l sm+1) ¥ (2-5)
where
ikgxn
*m z Cmn ¢ } 2-6)
ikgxn
Sm+1 zcmﬂ, n® i -7
- -mgxn
1 - -
st »C_ e , (2-8)
-ik x
m+1 z m+l, n® ’ (2-9)
ikxxm ikxxn
r_ = -s ZCm e (2-10)
ik x ik x
X m+l X n
rm+1 szcmﬂ n ’ 2-11)
In addition,
m+l m+1 m+1
2.3 COMPUTATION

To test the approximate solution we analyzed a slab, with dielectric constant 2.6,
thickness 0,.25", and length 4". Experimental verification for the slab was given in
Reference 3, Although the existence of guided waves was established and magnitudes
were estimated, no explicit values of A and B were given. Frequency was 9,375 GHz
and polarization was perpendicular. Figure 2-2 shows computed values of A and B,
We see that computed values of A increase with x for grazing incidence ¢; = 0 (or

= 90°), but A decreases with x for ¢, = i = 22,5° For the other values of ¢i’ the values
oscillate.
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Figure 2-2. Guided Wave Amplitudes (Computed from Equations 2-5 and 2-12);
¢i = 0* is grazing incidence, and ¢‘ = 90° is normal. The x
is N times the cell spacing.
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2.4 MEASUREMENT

The fleld near the slab was measured with a microwave interferometer that utilized a
dipole probe. Figure 2-3 shows an example of measured data for ¢; = 30°; the probe
was spaced 0, 1" from the slab. We estimate guided wave amplitude A by first
smoothing the curves to delete the reflected guided wave, amplitude B. We obtain two
values of A, at minima and maxima on the condition that

E=T +ae v (2-13)

where Tp is the plane wave power transmittance, v is the decay co-efficient for the
field outside the slab and d is perpendicular distance. We utilize the extrema because
at these features the two terms on the right hand side of Equation 2~13 are either in or
out of phase. We then subtract Ty, (which is easily calculated) from |E{, which is
known from the measured graph of power |E|2. After subtraction, the difference E

- Tp is corrected by multiplying it by e"d. We calculated v as 1.15 7 /inch from the
theory of Reference 1. Figure 2-4 shows the values of A determined from the meas-
ured data for five incidence angles.

2.5 DISCUSSION

In Figure 2-4 the experimentally determined values of A fall within the envelope of the
values of A computed by solving pairs of equations from Equations 2-4. This agree-
ment verifies the approach to solving the guided wave excitation problem for a slab of
finite length, The solution shows that A varies with position even for a single inci-
dence angle, Our verification with experiment shows the model and technique are
reasonable. We point out that we did not compare computed values of A at specific lo-
cations (values of x) with the experimentai values at the same locations. However,
the good agreement shown in Figure 2-4 substantiates the model in Equation 2-1* and
the approximate pairwise solution of Equations 2—4.

In summary, we have utilized the accurate moment method as a step in a new proce-
dure that estimates explicitly the magnitudes of guided waves on dielectric slabs. Al-
though the moment method gave the total field, it did not identify constituent waves of
distinct types. This identification may become useful in correcting radomes to reduce
boresight error because the common radome practice of changing wall thickness to
correct refractive errors seems ineffective for errors caused by guided waves, It
seems possible that the method can be extended to replace A and B with functions of x
while retaining the functional behavior given by Equation 2-1, Another possibility is
to utilize N/2 values of Ap, and N/2 values of By, on the assumption that Ay, is identi-
cal for an adjacent pair of cells and similarly for B,. We did not pursue a more

*This model was described in Reference 3.
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detailed evaluation of the accuracy of this approach because the results in Figure 2-4
are reasonable and because the effects of curvature seemed more significant, The
next sections introduce curvature; of course, they also consider finite objects.
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3. NEARFIELD SCATTERING BY FINITE, SOLID CYLINDER

3.1 INTRODUCTION

This section describes nearfield scattering by a finite length, solid, dielectric cylin-
der. The solid cylinder was studied because it may be useful as an element for de-
composing a hollow cylinder or an axially symmetric shell, The analysis extends that
of Richmond for infinitely long cylinders, 3

3.2 THEORY

The field scattered by a dielectric object can be expressed as a volume integral over
polarization currents. The scattered field is

E @) =@ +VL)4r (3-1)

where
L =¥ / (k-1) gE" av, (3-2)
L =/8V‘[(K'1)§T]dv, (3-3)

and ET is the total field, g is r-1 expikr, and r is the distance between integration and
observation points, The prime superscript (on the gradient operator and r') denotes
the observation point.,

The moment method determines QT, with the integral in Equation 3-1 and the relation
that

E-E'-F (3-4)

where EI is the known, incident field. Equation 3-4 is an integral equation. It is re-
duced to a set of simultaneous algebraic equations by subdividing the scatterer into
small cells for the purpose of evaluating Equations 3-3 and 3-4, The subdivision jus-
tifies assuming the field constant within each cell; this assumption simplifies the inte-
gration. This subdivision leads to a set of simultaneous equations from Equation 3-1,

s




The following sections describe the theory for calculating ES. To simplify notation let

8, _ 8 s -
E°G") = E,+ E. . (3-5)
where
. 1
2 E, = L/4r, (3-6)
! and
2 | )
b E° = V'I_ /4w 3-7)
- Lo S 2 ( ;
v L
E 0 3.2,1 EVALUATION OF Ei
f [
i ‘

‘ The integral I 1 is expressed as a sum of integrals over discs like those in Figure 3-1.
g Assuming « constant throughout the cylinder and that the field is constant within any
. ’ : one cell, we have from Equation 3-1 that

_ [
..
] [ - X
i. B e ‘ ASMOD4
VAl Figure 3-1. Subdivision of Cylinder Into Discs
. T}\ ) A [ 3-2 i




2 N T
1_1 (p;n’ ¢'n11 z;n) = k (K'l) z En fgdv ’ (3-8)

n-1

where _E_:_:‘ is the total electric fleld in the disc labelled n. Equation 3-1 leads to N si-
multaneous algebraic equations form =1, ., . N,

To evaluate the integrals in Equation 3-1 consider

1 -9

rs= [p2+ p'z -2pp' cos (p -9') +(z -z')

Because the field is assumed constant within a disc, the field is evaluated at p;n equal
zero; the ¢ dependence is removed so the integral over ¢ given 2r, We have then
that

2 +6z rra

n 2 1/2
I_1 (zz'n) = 27 (n-l)z E: exp lik [p2 + (zn-z'm) ] (3-10)
zn-éz ) '

TR

where a is the cylinder radius and each disc has thickness 20z, The integral over p
can be done with the substitution that

R

to obtain
zn+éz , 1/2
I_1 = -ian(x-l)zgn [e:q:ik[a +(z-z!'n)] -expik(z-z;n) dz .
z, %2 (3-11)

There are two cases. First, z * z;n; in this case expand the exponent

[a2 + (2 -z;n)]

1/2
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in a binomial series. The resulting functions have the form x"! sinx where x 1s a lin-
ear in 6z, For small 6z x™! sin x is approximately one so that

N 1/2
2 2
L = -i47(x-1) Kbz z {expik [a +(zn-z;n)] -expiklzn-z;nl }
n=1 (3-12)

In the second case zy, = z{,; Z - Zj, is replaced by the variable { which ranges be-
tween 6z and - 6z. Again expanding the exponential in Equation 3-11, we obtain Fres-
nel integrals which we approximate by a small argument expansion, to obtain

L, = 47 (k- 1) (ka) (R52) Q:n (3-13)

Note that I 1 has the same form for E polarized in the y direction and in the 2
direction,

The scattered field is found from Equations 3-12 and 3-13, and the definition in Equa-
tion 3-6, '

3.2,2 QS FOR THE FIELD PARALLEL TO THE CYLINDER AXIS

In this case, E has only a z component so Equation 3-3 gives

)
L —fga—-z(x-l)Ezw. (3-14)

Let the length of the cylinder be 2L. Then (k ~1) is discontinuous with jumps at z
=xL, We write it as (k-1) [H(z+ L)-H(z -L)], where H is the Heaviside unit func-
tion. The partial differentiation leads to Dirac delta functions. We assume E, varies
slowly. Again decompose the integral into a sum of integrals over discs like in Fig-
ure 3-1, with the field constant in each disc, and integrate over z, to obtain

w-1)"1 I, = E, L(-L)-E I (L) (3-15)

where

2r ,a -1 .
L@ = f f r_ (expilr ) pdpd¢ , (3-16)
0 0
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2 fa -1
L(-L) = f f r, (exptkr,) pdpd , (3-17)
] 0

and

1/2

r = [0+ - 2pp' cos (¢ - ¢+ (LE2)T] . (3-18)

To evaluate the integrals in Equation 3-9, we expand the arguments of the exponentials
to second order, Note that we cannot set p' to zero (as in the previous section) be-
cause of the gradient operator. After doing the integrals and the gradient operation
we obtain

2 -1/2
s _ 2 _ 1), -1 IKL+ (2, .2
E = 1/2 (x-l)[ 2 Egq (ik L, )L+ e E.N [1 L_(a +L_) ]] ,

(3-19)
and the scattered field from I2 {-L)is
g 51172 2 1 ikL_]
Ez12 = 1/2 (k-1) \Ezl [L+ (a +L+) -1]+—EZN(ik-L_ )e
(3-20)

where L+ is(L+z")andL_is (L - z'),

The result of this subsection is that the integrations lead to two terms for the scattered
field from Equation 3-13 and two terms from Equation 3-14. These terms arise from
the & functions associated with the ends of the cylinder. Recall 9E,/8, was omitted.
3.2.3 gg FOR THE FIELD PERPENDICULAR TO THE CYLINDER AXIS

In this case the field has p and ¢ components so
r = fg[;; (k-1 Ep +5 -a%(n-l)E¢]dv (3-21)

As before, we assume that the field depends only on z; in addition (x - 1) is independ-
ent of ¢, Therefore
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9
ls = = (k-1)E dv. 3-22
| L [83,-DE (3-22)
‘ ' Let the function (x -1) be (x-1) [1 - H (a)] where now « is the value in the dielectric
y | and H(a) is the Heaviside function, Assume the field has only a y component so E pls
L Ey sin¢. By decomposing the integration into the discs of Figure 3-1 we have
. |
: \ I, = -(xk-1) Eynfgsin¢ 5(a) dv. (3-23)
e To do the integral first integrate on p and then introduce the variable ¢ - ¢' = 6, We ]
i L obtain
! f L zn+6z 2n-¢"'
! ‘ : 12 = -(k-1)a3 Eyn (cos¢' siné + sin¢g® cos 6) g(a) d0dz
t {
! . - 1
; b 2,702 ¢ (3-24)
) r where g(a) is g in Equation 3-3 with
| 2 2 g 1/2
!Y r=1r() =[a +p' -2ap'cosf@+(z-2")] . (3-25)
by
o % - The first term on the right side gives an integral equal zero because the integral is an
\ i *{ odd function of 6, To evaluate the second term expand r(a) in a binomial series ;
-1, -1
[‘.i r(@) =~ d-ad " p'cosf +td (3-26)
: where d is [(z, - z{.n)2 + a2]1/2, and is (z,, - z},). Recall z,, is at the center of the
- disc for which the integral is being done and z}, is the observation point, at the center
L of one of the discs., The integration ylelds
[_‘ 12 = 2{ 7 (x-1) sinc (k6z) p' sin¢' £ Eyn d-l exp ikd (3-27)
. ﬁ where sincx indicates x-l sinx. The scattered field follows from the gradient opera-
L IR & tion in Equation 3-1; the y component is
- |
L 2l S i 2 -1
I E )y = "E'(x-l) ka 3z sinec (k5z) 2 Eyn d  expikd (3-28)
] '( .
L
o~
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We see that the scattered field from the gradient of the scalar potential contains con-
3 - tributions from all discs. This result contrasts with the case for the field parallel to
*‘ [ the cylinder. In that case there were only contributions from the ends for the gradient
; - of the scalar potential.

U 3.2.4 ALGEBRAIC EQUATIONS FOR INTERNAL FIELDS

The algebraic equations result from the definition

§T - =g, (3-29)

For the electric field parallel to the cylinder we have form =1, . . . N

YL al 1
3 z ConEm = B (3-30)
;}E n=1
g L
P where
el ;
o €y = Cyy = 1-P-B,
g8 Cin = 178y -4,
CL
i CNI = i‘YBiNI-A;
! [ ' for the other diagonal matrix elements,
=
: C =1-p,
| [_ nn
i and for the remaining elements
‘ Cmn= i‘Yﬁfmn

wherey = k-1, 8 = kéz, @ = ka, p = afy, and

2 2 1/2
fmn = explk[a +(zn-zm)] -expiklzn-z
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In addition

A= a2/4) ik - (2L - 6z) ] (2L - 6z) ! expik (2L - 6z) , (3-31)

1/2
B = (1/2)v [Gz @+ 52%) - 1] . (3-32)

For l-.‘.I perpendicular to the cylinder, the diagonal elements are

where
_ ika
hnn = ivyadze /[2a

3.2,5 EXTERNAL FIELDS

The field outside a cylinder is found by evaluating Equation 3-1 with the values of ET
determined by solving Equation 3-30. The integrations are the volumes of the discs to
preserve dimensional units of the field, not on set of points corresponding to disc cen-
ters., For the divergence we utilized finite differences.

First let us consider the contribution of the vector potential to the external, scattered
field. From Equation 3-1,

E: (x') = L /4n (3-33)
where

2 .
_11=k/(x-1)z§Tdv, (3-34)

and §T is the total internal field, g is r-l expikr with r the distance between integra-
tion and observation points, and « is the dielectric constant. Equation 3-33 omits the
term ’

8 = * -
E =V ;2/41r (3-35)

"
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with the prime indicating differentiation on the observation coordinates where

22=/8V-[(K-1)E1dv (3-36)
The result from I1 is for the q component (4 = y or z)
- 1, 2 1kx! T i[’f =, -2') Ax'] 2 -1/2
1 1y =2 - 2 -z
Ell(xlz) > (ka)” 0z (k-1) e ZEq(z)e x4 @ )]
(3-37)

For 12 the integrations are different for E; and EIz

To eva.luai:e_l2 for E;, in Equation 3-35 we utilize polar coordinates. So

9
12=/g[a—p(x 1)E +—5$(x 1)E¢_¢] (3~38)

Because the dielectric cylinder has small diameter, we assume 3Ep/9p is negligible,
This assumption was also made in computing the internal field. Thus

i-= -(K-l)fsEpé(a)pdpdd’dz-(x-l)/z(ExooS¢+Eysin¢)dpd¢dz
(3-39)
The Dirac delta function comes from differentiating (x - 1). Now the incident field has

only the E§' component, SO we assume E is negligible, After some manipulation, we
have

L -i-k(x-l)a f f E VPl o 6 - ") sin ¢ db dz , (340)

where 2L is cylinder length and b is p +(z - z‘) By stationary phase we integrate
on z to obtain

22 =12 0vTa’ we o ™ ™ 7, F)E, @4

1/2

where F=b is the Fresnel integral evaluated at (2/Ap') '~ (L % 2').




For E;, that is §I parallel to the rod, the scattered field is associated with delta

functions, at the ends of the cylinder, arising from the divergence operation. The re-
sult is assuming the field constant in the end cells

E: (x', z") = —;-EN (k - 1) a? P p? {LD'2 - n:LD"'} , (3-42)

where

1/2
Dis (2 +1%) .

for EI )
y
EQ () 2) = 1(c- 1) S (2)” cos 91 ! ke) /2 (¥, +F ) E. (343)

if we assume the fleld is constant in the cylinder, where ¥  is the Fresnel integral
evaluated at J2/Ap' (L = z').

3.3 COMPUTATIONAL EXAMPLES

The formulas of Sections 3. 2.4 and 3, 2, 5 were utilized fo calculate the fields near a
cylinder, The first step was to invert the matrix in Equation 3-30 to determine the
total field within the cylinder. The second step was to compute the external field,

Figure 3-2 shows |ET| inside a dielectric cylinder for N = 26, with « equal 2.6, di-
ameter 0.139", length 1,9"., The wavelength was 1. 259", and the electric field was
parallel to the cylinder axis. The figure gives IETI computed according to the theory
of Section 3. 2.4 with A and B in Equations 3-31 and 3-32 set equal to zero and again
for A and B evaluatecd according to these equations. We see that the effect of A and B
is to change |ET| near the ends of the cylinder. 'Figure 3-2 also shows the exact val-
ue of |[ET| for an infinitely long cylinder possessing diameter and dielectric constant
equal to those of the finite cylinder.

The external field was computed first from the vector potential formula, Equation
3-37 with ET the internal field computed from both the vector and scalar potentials,
The total, external field was computed for E parallel to the cylinder axis for distance
p' equal /2, See Figure 3-3. The total, external field for E perpendicular to the
cylinder axis is shown in Figure 3-4 again for p' = A/2. The effect of adding the con-
tribution from the gradient of the scalar potential also is shown in Figures 3-3 and
3-4,

3-10

B A sttt 4 WP WL e . S L T . # - Laalhd



3 )
n L T 14

5 5
Z(INCH) Z(INCH}
ASMOOSA

Figure 3-2. Total Internal Field 'ET| inside cylinder, «x = 2.6, length 1.9",
diameter 0.139" calculated by moment method. Exact solution for

infinite cylinder (— —) A = 1,259", N = 26,

3.4 MEASUREMENT

The field near the cylinder of Section 3-3 was measured with a dipole probe in & mi-
crowave interferometer. Reference 1 described apparatus and procedures. Figures
3-3 and 3-4 show measured data, The measurements were made with the cylinder
suspended by Nylon threads. Additional dats were given in Reference 1.

3.5 DISCUSSION

In general, the discrepancies betwcr~ the measured and computed nearfield values of
ET are reasonably small and verify e theory, the mathematical approximations, and
the numerical procedures. Figure 3-3 shows the scalar potential contribution negligi-
bly changes the computed values for the fisld paralie] to the rod. Discrepancies are
small even without the scalar potential contribution. Figure 3-4 shows that the scalar
potentia] contribution is significant for the slectric field orthogonal to the rod.

The experimental data show |ET|? (s larger for the field parallel to the cylinder than
for the field orthogonal. This result is intuitive, The phase values near the rod oen-
ter are approximately equal for both cases. Near the ends of the cylinder phase de-
creases more rapidly for the parallel case,

3-11
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4. NEARFIELD SCATTERING BY A HOLLOW DIELECTRIC CYLINDER

This section describes nearfield scattering by hollow dielectric cylinder,
4.1 THEORY

The integral equation for the electric field is obtained from the definition that the
scattered field is

s _ 9 '
E - -5?‘1}'. -V'e, (4-1)
where the vector potential is a volume integral
A= -iwp ¢ (4«)'1f(x 1) g E dV 4-2)
2 po o T gx ’ (

the scalar potential is

®=-én [gv. wDEW, (4-3)

and g is rl expikr, with r the distance between observation and integration points « is
the dielectric constant, and the prime denotes differentiation on the observation point
coordinates. In these formulas Eis the total field, which is unknown. The potentials
arise from a polarization current

~j'pol = -iwe_ (k-1) E 4-4)

and a polarization charge
= - . - 4"5
Pool = "V (KDE. (4-5)

where the divergence is over the integration point coordinates.

The integral equation is

4-6)




The integral equation is solved for the interior of the dielectric cylinder. The equa-
tion is changed to a set of simultaneous algebraic equations. The cylinder is divided
into rings and subdivided into cells as in Figures 4-1, 4-2 and 4-3. The integral
equation is evaluated at the center of each cell to generate as many equations as there
are cells. At the center of a particular cell, labelled with index m, the integral equa-
tion for each rectangular component is

for 1=m=N, where N is the number of cells. Ersn is a sum of contributions from all
cells, so

—t

E —ZES = E
m mn m

INCIDENT WAVE NORMAL

A0R002

Figure 4-1, Dielectric Ring and Coordinate System
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- | 2 This equation can be put into obvious matrix form by writing

R EDY AL

I
m'

2c & -

Ys
T T
o
| | L o y.7) -
N '
L1

A

Y

Figure 4-2, Subdivision of Hollow Cylinder Into Rings. An observation point has
coordinates (x', y', z'); it may be inside or outside the cylinder.

Figure 4-3, Coordinates for a Cell. A typical cell has dimensions as follows:
radial 26p, circumferential 26¢, and longitudinal 282z
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where

and

C =-E° /E
mn mn n

The next step is to evaluate the scattered fields E;m. Formulas are derived in the
following sections. Diagonal and off-diagonal matrix elements are separately given,
and the vector and scalar potentials are separately evaluated.

4,2 SCATTERED FIELD FOR DIAGONAL ELEMENTS

4,2,1 VECTOR POTENTIAL

The scattered field from the vector potential is

2 -

E% = k% (k1) (4m) " [ gE dv . @-7)
Let us assume horizontal polarization both incident and within the ring. This assump-
tion may be valid if we consider thin rings and axial incidence. For the cell labelled
m we have

s _ .2 -1 -
E_ =k (x-1) (4n) f gE dV_ (4-8)

To simplify notation let
= 4~
L [ gE, dV (4-9)
Since the integration extends only over the cell labelled m,

1/2
2 2 2
r= [p * Py~ 200, c08 (@ -0 )+(z-2Z ) ] 4-10)

with integration limits p, -8p = p = py, + 6p, 2y ~ 62 s 2 =2, + 82, ¢, -00 5 ¢
= ¢ + 6¢. Introduce abbreviations § = ¢ - ¢, ¢ =z - 24, ando = p - pr,. Then
on assuming ¢ - ¢, is small, we have

4-4
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so that

6z 59 5p -1 ikrm
IAm = f f f Ex ro e (p, + 9) cos 0dodddt. (4-12)
-5z -6¢ -Op
The factor cos 6 in the integrand arises from first expressing the x-component of field
in polar coordinates, expanding cos (6 + ¢,) and sin (6 + ¢,), and then using small
angle approximations for sin 6 and cos 8. Now assume r,, is small; that is, cand ¢

are small. Moreover, assume E, is constant E, in the cell. Thus we can expand the
exponential, to obtain

- ({1 (2 ' -
Loy = D * Lo (4-13)

where

@) 62 6¢  op
- r -
I kE J / f (P, * @) cos 0 do d6 d¢ (4-14)

Am
bz  -6¢ -bp
This integral is, if we omit ¢ in Pt O

@ _ -
L = k(802800 O$)E (4-15)

The factor in parentheses is the volume of the cell.

The term Ifklx)n is more complicated. We omit limits, which equal those in Equation
(4-12)

D« [[f [ruearng e es?

The integral over { leads to a logarithmic function so

-1/2
] (nm + 0)cos 6dododl Em (4-16)

x“:; = f f (p,_ +0) cos 6 log [(R+1)/(R-1)] & dO E_ (4-17)

where R is [1 + (33/6:)]1/2, and

e




1/2
2 2
where s, is [a' + (P + T) Py O ]
Toot, we obtain

2
Assuming s, <« Gzz, to expand the square

Igl)n = [ f (pm + o) cos 9 log {46z2 3:2 [1 + (s +/2&Sz)2]} do do Em (4-18)

2
= f ]’ (b, + 0) cos log (26/s )" dr dO E

2
+ [f (s+/26z) (P * g) cos 6 do do Em

We assume that cos 6§ = 1 and 0 K pp, to carry out the integrals. We finally have
that the x component of the scattered field is

2 2 6 2
= s, 1 - log (s/262) ] + pm-:;:—:; So»

e

o (4-19)

where

2 2 2 .2
s, = 80 +p_ 50

Equations (2-8), (2-13), (2-15), and (2-19) give the scattered field in the cell labelled
m

2
s _ .2 2 pm 2 s 2
EAm = k (x-1) i; k 6z 6p P 69 + 12,,.522 6pb0 So * 7 [1 log (82/262) ] ]Em

(4-20)
For brevity we omit the details of the integrations over o and 6. The integral was
done by integrating over local polar coordinates. In effect then our cells are small
right circular cylinders not the truncated wedges defined by p ,déds. This approxi-
mation procedure is described near the end of Paragraph 4. 2. 2.
4.2,2 SCALAR POTENTIAL

The scattered field from the scalar potential is

E, = V' (4-21)

4-6
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1, = jgv - (k-1) E dV . 4-22)

To represent the dielectric constant we use the unit step functions as functions of p
only. That is, we shall understand,

(k-1) = (k-1) H (o, - 6p) -H (p_ - 5p)] (4-23)

where on the right side (k-1) is a constant, but on the left x is a function of p. Be-
cause we have assumed E, = 0, it is unnecessary to specify the z dependence. Final-
ly, k is assumed independent of ¢. Therefore

ikr
1, = [—"'Tv-(x-l)m(pm-ap)-n<pm+ap)1g(;rcoscp-%smqb)dv

(4-24)
where lr and 1, are unit vectors in the r and ¢ directions respectively.

)

We assume div E = 0, in the cell so

= ) _ @) _;0)
I, = ®k-DE_ (12 ol S ) '

I;I) = fgé (p, - Bp) cos ¢ dV_ , (4-26)

2
I; ) /gé (b, +6p)cOs ¢ AV, (4-27)

1(23) = fg cos ¢ dp dp dz . (4-28)

The first two integrals, Ig') and Iéz), approximately cancel. To see this consider 1(21).
Assume kr is small and expand expikr, Thus

1;1) = f @Y+ iky 6 (b, = 6p) cos ¢ AV

Rl SV R
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The second term of the integrand, with factor ik, gives —4ik (P ~5p) 62 8¢ cos Pm-
This term is omitted because it approximately cancels the term -4ik (om + 6p) 82 6¢
that arises from 1(22). The first term, with factor r'l, gives

-1/2
1;1) = ( - Gp) cos ¢_ f[(I/Pm)z + (.51)/I>m)2 + (1 -TGE) 92] cos 0 d0 dt ;

Pm m
(4-29)
recall 0 and { were defined earlier. Following integration on { we have
a _ {,_9% - -
L’ = ( = cos ¢ _ f(!nP+ n P_) cos 0 df dt (4-30)
where i
2
(p, -0p) 6
P, = axéz, m - (4-31)
Pm q
and

3
q= \[or"+ 50 (4-32) |

The evaluation of 1;2) proceeds in the same way. The result is that

1;2) = (1 +:—;)cos ¢ f(!n Q, -1nQ_)cos 64d6dL (4-33) 4
where
(o, + 6p) 6
= @Q%6z) "m -
Q, o b g (4-34)

Now consider

@ _2 _ [, _9%
L’'-1, (1 "—m) f!n(L+/L_)d0

L% - -~ . - . . B e ¥ Mt vt s o . WPt - . .

e PP
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where
2 2
2 2 p. =-6p
L, =220 2. .00 2 (4-36)
£ 2 2 8 p
P 4s m

m

Inspection of L /L _ shows that it tends to unit value for small . For example, at
6 = 0 the value is 1; for § = 0,2, the value is 1,046. Therefore the logarithm is

small so the contributions of Igl) and 1(22) from Eim are omitted,

To evaluate 1(23) » expand the exponential, expikr, in the integrand as 1 + ikr. The

first term is omitted because it is independent of the observation point coordinates
so the V' operator yields zero. From the second term we obtain

1;3) = f r L oos ¢ dp d¢ dz (4-37)

Againweusesubstitutionz-zm=§, p-pm=c,¢-¢m= o to obtain

£ = cono, [ff [P+ a10ysd

We assume 6 is small so cos § ~ 1. Integration on ¢ gives

-1/2
] cos 8dpdodt. (4-38)

2 2 2
(. +9)p 0 +o 46
1;3)=cos¢ gl 1.2 ™ z do a6
m 46 z2 (p. +9) 02 + az
Pm Pm
(4-39)
Because wall thickness is much smaller than radius, we omit the term
L 02/462
in the integrands., The integrations on ¢ and 9 give
{3 1 2] 2 opd¢ (5:)"2 2
y = tpm cos¢m [1 -log(sm/26 z)]sm +-—“—'—3—— L. ooc¢m
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sz - (6p2+pm2 6¢2).

To obtain the field apply the V' operator to 1(23). The p and ¢ components are as
follows:

(), - o 5 (o )17

op P o¢
+ ] cos ¢ l E (4-41)
2 m{ xm
3r 6z .
2 2 p_ bp 6¢
S - ) 5 m
(E(bm) = - k1) (E ) {[1 - log 262] +———2-] sing E_ (4-42)
o m 3rdz

From Equations (4-41) and (4-42), the contribution of the scalar potential to the x
component of the scattered field is

2 2
S _ 6o s 2
Em(@) = - (k-1) [—2' [1+d (1-———2 26¢2)+f] cos ¢m
pm
s \2 2
+ (W ) @+Dsin ¢ ]Em (4-43)
m
where
g 2
d =1-1log (2—) (4-44)
and
f= P 6p 6¢ /(3n cSz)2 (4-45)
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4.3 SCATTERED FIELD FOR OFF-DIAGONAL ELEMENTS

4.3.1 VECTOR POTENTIAL

The scattered field at the cell centers results from a finite sum of integrals over cells
like those in Figure 2-3, The vector potential gives for the x component

2 -
E:m = & (4m) Y (k-1) 2' E I, (4-46)

where

1=[gQ cos¢-1 sin¢)de, (4~47)

and the prime suggests the sum excludes the term for n = m.

In g, set Py = Py for small 6,

9 1/2
m (zn - zm) + 2pm be + 2 (zn - zm) §] (4-48)

T = [pr2 +
where bis 1 - cos (¢n - ¢m). The binomial expansion gives approximately that
-1
r=8+p lp bo+(z -z )1, (4-49)

where

2 1/2
g = [21; Py * (@ = 2) ] (4-50)
With Equation (2-49),

. ikp bo/B tk(z -2 )t/p
[ = g1 %8 fe m e o+ m (b, +0) do dé dt. (4-51)

2 2
=80 0p02008 R ,1 - (1/6) (k o, bS pp'l) -% ['k (2 -z _) o6z p'l] l
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', The higher terms have magnitudes much less than 1, so
1 i L" I=28p_ 8pbzbe gl ¥ (4-52)
' |
L‘ The scattered field is
. 8 _ 1 - 2 . -1 ik8
: l Eym = S-DK p 0p626¢Z'E_B e (4-53)
j
L 4.3.3 SCALAR POTENTIAL .i
. ; The derivation of matrix elements is slightly more general for this case because of ;
$] ! 1 the gradient on observation point coordinates, That is, the gradient operation V' is i
‘ { . performed, after that set P = Py The distance in the expression for g is
] ‘; : R g 1/2
: . r=[p+pm -2ppmcos(¢-¢m)+(z-zm)] ’ (4-54)
; Nowletz =z +¢, p=p +o0 sothat
; . n n
i 0 1/2
\, N L. T = [s + 2'pn c- me o cos (¢n - ¢m) +2 (zn - zm)] ’ (4-55)
L where
! i
2 2 2
s = (pn +pm +znm -2pnpm o) (4-56)
"=y
j The binomial expansion gives approximately that
= -1 -
{ T=stp -p cos(d - )tz s L. (4-57)
r} Now consider Iga) of Equation (4-28). With r from Equation (4-57),
|
k- ' ’
] L {, 1(23) = 8 5p 6¢ o2 eiks T oos ¢ (4-58)

E if we approximate the sinc functions that result from integration by unit value,
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From Equhtlons (4-26) and (4-27),

s 1 v ikg o, - o 0089 -6 8T (4-59)

1 2
0 -1#) = _s6ase e
The scattered field from 1;3) for the nth cell is

s 3 _ _(x-1) (3)
Ealy = g Fm ¥ 2

iks -1
s

E 4-60)

2 '
- — (k=1) 6p 6¢ oz cos ¢n En Vie <o

The differentiations are on P and ¢m’ The x component is

s (3) 2 -1 iks -2
E = -— (K- 6z 6 - i -
x I2 p (x-1) 6p 0z 6¢ cos ¢n ik-s )e p,s sin (¢n ¢m) sin ¢m Exn
(4-61)
D _@ :
The gradient operation on 0 12 , gives two terms; in fact,
s (1) (2)) _ o8 (3) s
En (12 -L )= En 12 +A En (4-62)
where
iks p
_ e -2 -1 m -1
AE] = G = lsnmsm[2p s b-1-1p_ bks ]+—co¢mb[2pmbs
+(@1-b)-ik pmb] ] (4-63)
with
Sm = sin (¢n - ¢m) and S sin ¢m .

4.4 EXTERNAL FIELDS

The field outside the dielectric region is found by evaluating Equations (4~7) and
(4-21), The integration extends over the dielectric region. It can be done after the
total field inside the dielectric is determined by solving the integral equation,

4-13
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The field near a cylinder is evaluated to test the approximations in the dex'ivaﬁons;
The near field also is useful in understanding the efects of a dielectric cylinder or a
radome on an antenna,

The field from the vector potential is

E°(A) = iwA.,
A measurement requires a probe. We consider a half-wave dipole and wéight the con-
tribution of each cell by the far-field pattern. To simplify the expressions, consider
the field on the z-axis. The sector potential gives for the x component (from one ring)

T

5 €0s 6) (sin 9).1 pdpd ¢dz  (4-64)

E° @A) = (k1) K (am L f gE, cos (

where the factor cos (7/2 cos 6)/sin 6 is the far-field pattern of the probe, Consider
the distance large enough so that

r = R+ (ac - ap cos ¢ - zz") R (4-65)

1/2
where a is the mean radius of the cylinder and R is (a2 + z'2) / . Furthermore ap-

proximate sin 6;

sing =1 - (a/R)2 0082 ¢ (4-66)

To develop a simple formula we omit the dependence of E on ¢ and use an average
value Eo' The integrations are elementary, so that

E® (Al) = 2 (k-1) k2 a 6p 6z Eo eikR R-1 sinc (ka 6p/R) sine (kz' 6z/R) P

2 1r2
[1 - (a/2R) (7{ - )] . (4-67)

Pis[1- (a/ZR)2 (r2/4 - 1)], the probe correction.

The field from the scalar potential is

1-:: @) = @n) Lo fg V. (-1DE_dv.




The proéedures are like those in Section 4.2,2 and 4, 3.2. So

2 ikR
E; (2) = —i(K-l);—"?? E, [0 ) (. 1cos® g doap e,

(...) = (ac - ap' cos ¢ - 22") R.1
[...1 = [6(c+6p)-5 (a—6p)—a-1] .
After doing the integrals, we have

=1 '
s 2 kR 2 (2 ike kap') (kz' oz) ,
Ex(él)-ur(x 1)a Sz dpe (R A) (a+R)Jo(R sine R P'E

o]
(4-72)

Note the probe correction P’ is (1 - 3/8 (wz/4 -1) az/sz; it differs from that in
Equation (4-67).

The total field is

T 1 _s s
Ex = E +Ex(A)+Ex(@)

The observable quantities are intensity |E:| 2 and phase, the argument of E:.

This theory does not include the effects of fields reflected from the probe to the scat-
terer and scattered back to the probe,

The formul.as generalize readily to several rings foi'ming a cylinder. For example
for two rings

02 (4-74)

s _ 8 ikz' 6z/R
E_(A) = E (A) (E o1 ® +E

ikz' 62 m)
e

where E; and E( are the fields in each of the rings and E® (Aq) is from Equation
(4-67). The scalar potential gives




02

S s
E, (8,) = E° (8,) (EOIe

fhz' 6z/R _ Gz/R)

where E® (&,) is from Equation (4-71).

4.5 COMPUTATION

The first example was for a single ring diameter 2a equal A, length 2 6z = 0.16 A, di-
electric constant 2,6. Because incidence was axial, necessary conditions on the com-
puted results were that the field at ¢ = 0 equal that at ¢ = 7 and that the field at ¢

= 7/2 equal that at ¢ = 3 r/2. This condition was well satisfied. Figure 4-4 shows
computed internal values of ET for several values of N.

Figure 4-5 shows computed internal values of ET for a cylinder, diameter A, length
0.32 A, Two rings were utilized,

Figure 4-6 shows computed values of ET outside the ring, on the z-axis, with and
without probe corrections, Figure 4-7 shows computed values of ET outside the cyl-
inder. Figure 4-8 shows computed values for the cylinder, but the area of the cylin-
der cross section was reduced by 80% in evaluating the external field integrals,

150 —0 90
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1 L 1 1 |
18 u 2 0 ® % (7
N
Figure 4-4. Phase and Amplitude of ET for Single Ring: 8z = 0.1001in., 6p = 0.030
in., x = 2,6, frequency = 9.375 GHz. For ¢ = 0°(0), ¢ = 90° ()
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Figure 4-5. Phase and Amplitude of ET for Two Rings. 6z = 0.10451n.;
6p =0.0313 in. at center of second cell, Symbols as in Figure 4-4,

Equations (4-74) and (4-75). The area reduction makes the volume of the cylinder
equal to that of the elementary integration cells,

4.6 MEASUREMENT

Intensity and phase near the cylinders were measured with a setup that included a
travelling half-wave dipole probe and a network analyzer. Measurements were made
for horizontal polarization in the system of Figure 4-3. The probe was scanned in the
X direction or y direction for fixed values of z. Figures 4-6 and 4-7 show the twe ob-
served values on the z-axis; one value comes from each scan,
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Figure 4-6. Total Field Behind Dielectric Ring. Length: 0.2 in.; thickness 25p:
0.06 in.; mean diameter 2a: 1.25 in.; dielectric constant 2.6. Meas-~
ured with dipole probe: (+); computed without probe corrections (o);
computed with probe correction (+). Internal fleld: 1.19 exp i 7.8°.
for N = ¢4
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B Figure 4-7, Total Field Outside Dielectric Ring. Length is 0,42 in. with
b other parameters equaling those in Figure 4-6, Measured
R/ M’ (+), calculated with probe correction (+)
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7~ Figure 4-8, As in Figure 4-7 but with 5p Reduced by 20 Percent
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